A DETERMINANT IN CONTINUOUS RINGS

R. J. Smith
A DETERMINANT IN CONTINUOUS RINGS

R. J. SMITH

1. Introduction. In the theory, developed by Dieudonné [1], of determinants of nonsingular square matrices over a noncommutative field K the determinantal values are cosets modulo the commutator subgroup of K^\times, the multiplicative group of K. Since the matrix groups $M_n(K)$ and their commutator subgroups C_n have the property that $M_n(K)/C_n$ is independent of n, the latter cosets will serve just as well for determinantal values, at least for theorems involving only the multiplication of determinants.

The rings whose principal right ideal lattices form continuous geometries have many resemblances to matrix rings; in fact, the axioms of Continuous Geometry are satisfied by finite dimensional geometries over a field which are always equivalent to the right ideal lattice of some matrix ring. Irrespective of questions as to the existence or otherwise of fields in connection with a general continuous geometry playing a similar role to that of the field of coordinate values in the finite dimensional case we will show that multiplicative determinantal theorems can be obtained for the more general ring; the determinants will be cosets of the group of invertible ring elements modulo the closure of its commutator subgroup with respect to the rank-distance topology in the ring.

The definition of a complete rank ring is given by von Neumann [3, (iv)]. Essential properties of such a ring \mathfrak{R} and the associated lattice of principal right ideals have been developed by von Neumann [3, 4] and Ehrlich [2]. We will assume throughout that \mathfrak{R} is a complete rank ring, of characteristic not 2; and that if the discrete case (matrices over a field) applies, then the order of the matrices is at least 3.

2. Groups in a complete rank ring. Using a notation similar to that of [2], [3] we denote by \mathfrak{G} the group of invertible ring elements; that is, $u \in \mathfrak{G} \subset \mathfrak{R}$ if and only if the rank $R(u)$ of u is 1.

DEFINITION 1. We denote by \mathfrak{K} the closure of the commutator subgroup of \mathfrak{G} in the rank-distance topology and by \mathfrak{K}^\dagger the closure of the group generated by the elements of class 2 in \mathfrak{G}.

COROLLARY 1. \mathfrak{K} and \mathfrak{K}^\dagger are groups.

Received June 19, 1957.
Proof. Let \(\{t_n; t_n \in \mathbb{C}, n=1, 2, \ldots \} \) be a converging sequence in \(\mathbb{R} \). Then \(\lim_{n,m \to \infty} R(t_n - t_m) = 0 \) implies

\[
\lim_{n,m \to \infty} R(t_n^{-1} - t_m^{-1}) = \lim_{n,m \to \infty} R(t_n^{-1}(t_m - t_n)t_m^{-1}) = 0
\]

and hence \(\lim t_n^{-1} \) exists in \(\mathbb{R} \). By the continuity of multiplication (\(\lim t_n)(\lim t_n^{-1}) = 1 \) so that \(\lim t_n^{-1} \in \mathbb{C} \). The result then follows routinely after the observation that the inverse of a commutator is a commutator and the inverse of the general class 2 element \(1 + r \) (\(r^2 = 0 \)) is \(1 - r \), also of class 2.

Lemma 1. Let \(t \in C^2 \) (be of class 2), \(s \in \mathbb{C} \). Then \(sts^{-1} \in C^2 \).

Corollary 2. Let \(t \in C^2 \), \(s \in \mathbb{C} \). Then \(st = ts \) for some \(t \in C^2 \).

Definition 2. We write \(u \equiv s \) for nonsingular (invertible) \(u \), \(s \in \mathbb{R} \) when \(u - ts \) for some \(t \in \mathbb{R} \).

Corollary 3. The relation \(\equiv \) is an equivalence relation.

Lemma 2. Let \(e \) be any idempotent of rank \(1/2 \) and \(s \) be nonsingular and otherwise arbitrary in \(\mathbb{R} \). Then for some \(t \in \mathbb{R} \)

\[
s \equiv e + (1 - e)t(1 - e).
\]

Proof. The existence of idempotents of rank \(1/2 \) is assumed in continuous rings, that is, when the range of \(R \) is the unit interval. In the discrete case the result has no meaning if the order of the matrices is odd.

Now suppose the principal left ideal \((1 - e)s e) = (g_i)\), where \(g_i = e g_i e \), \(g_i^2 = g_i \) [4, Chapter 15]. By the Pierce decomposition, \(s \) is the sum of the quantities in the blocks of

\[
\begin{bmatrix}
g_i s g_i & g_i s (e - g_i) & es(1 - e) \\
(e - g_i) s g_i & (e - g_i) s (e - g_i) \\
(1 - e) s g_i & (1 - e) s (e - g_i) & (1 - e) s (1 - e)
\end{bmatrix}
\]

where a matrix notation is used for clarity and to permit the comparison of later processes with standard matrix ones; we will simply equate such a partitioned array to the sum of its members. We have

\[
g_i = y_i (1 - e) s e = y_i (1 - e) s g_i = y_i (1 - e) s g_i
\]
for some $y \in \mathbb{R}$ so that

$$\{1 + g_i (g_i - g_isg_i)y_i(1-e)\} s$$

$$= \begin{bmatrix}
g_i & g_is(e-g_i) & g_is(1-e) \\
(e-g_i)s & (e-g_i)s(e-g_i) & (e-g_i)s(1-e) \\
(1-e)s & 0 & (1-e)s(1-e)
\end{bmatrix}$$

for some $s^* \in \mathbb{R}$ since

$$g_isg_i +(g_i-g_isg_i)y_i(1-e)s = g_isg_i + g_i - g_isg_i = g_i$$

and

$$(1-e)s(e-g_i) = (1-e)e - (1-e)s = (1-e)se - (1-e)s = 0.$$

Multiplying on the left by $(1-(1-e)s)g_i(1-(e-g_1)s)g_i)$ and on the right by $(1-g_is(e-g_i))(1-g_is(1-e))$ gives

$$t_is = \begin{bmatrix}
g_i & 0 & 0 \\
0 & (e-g_i)s_i(e-g_i) & (e-g_i)s_i(1-e) \\
0 & (1-e)s_i(e-g_i) & (1-e)s_i(1-e)
\end{bmatrix} = s_i$$

for some $s_i \in \mathbb{R}$ and some $t_i \in \mathbb{R}^t$ by Corollary 2.

Define g_{n+1}, s_{n+1}, t_{n+1} for $n=1, 2, \ldots$ as follows.

Let $((1-e)s_n(e-g_1-\cdots-g_n))= (g_{n+1})$, where $g_{n+1} = g_{n+1}$ and $(e-g_1-\cdots-g_n)(e-g_1-\cdots-g_n) = g_{n+1}$. We have, similarly to the above, the existence of a $t_{n+1} \in \mathbb{R}^t$ and an $s_{n+1} \in \mathbb{R}$ such that

$$t_{n+1}s = \begin{bmatrix}
g_1 & \cdots & 0 \\
g_{n+1} & (e-g_1-\cdots-g_n)s_{n+1} & (1-e)s_{n+1}(e-g_1-\cdots-g_n) \\
0 & (e-g_1-\cdots-g_n)s_{n+1}(1-e) & (1-e)s_{n+1}(1-e)
\end{bmatrix} = s_{n+1}.$$

Now,

$$\frac{1}{2} \geq R(g_1+\cdots+g_n) = R(g_1) + \cdots + R(g_n) = \sum_{i=1}^{n} R((1-e)s_i(e-g_1-\cdots-g_i))$$

so $\lim_{i \to \infty} R((1-e)s_i(e-g_1-\cdots-g_i)) = 0$ and in turn
More strongly,
\[
\lim_{n,p \to \infty} R(g_{n+1} + \cdots + g_{n+p}) = \lim_{n,p \to \infty} \{R(g_{n+1}) + \cdots + R(g_{n+p})\} = 0.
\]
Hence, by [3, (iv), Section 3] \(\lim_{n \to \infty} g_n = g\), say, exists in \(\mathfrak{A}\); also, by the continuity of multiplication, \(g = g e g\) and \(g\) is idempotent, being the limit of a sequence of idempotents.

In order to prove that \(\lim_{n \to \infty} t_n\) exists in \(\mathfrak{A}\) and so belongs to \(\mathfrak{F}\), we note that
\[
(2) \quad (1-(1-e)s_n g_{n+1})(1-(e-g_1-\cdots-g_{n+1}) s_n g_{n+1})
\]
\[
\times (1+g_{n+1}(g_{n+1} - g_{n+1} s_n g_{n+1}) y_{n+1}(1-e)) t_{n+1} s
\]
\[
\times (1-g_{n+1} s_n (e-g_1-\cdots-g_{n+1}) (1-g_{n+1} s_n (1-e)) = t_{n+1} s
\]
where \(s_n \in \mathfrak{A}\) and \(y_{n+1}\) is defined by the condition \(g_{n+1} = y_{n+1}(1-e) s_n e\).

The last two factors on the left side of (2) may be transferred after a similarity transformation to the left of \(t_n s\), by Corollary 2, giving
\[
(1+\Phi(g_{n+1})) t_n s = t_{n+1} s
\]
where \(\Phi(g_{n+1})\) is an expression involving no more than \(2^5 - 1 = 31\) terms, each containing \(g_{n+1}\) as a factor and so of rank \(\leq R(g_{n+1})\). Hence \(t_{n+1} - t_n = \Phi(g_{n+1}) t_n\) and
\[
R(t_{n+1} - t_n) \leq R\Phi(g_{n+1}) \leq 31 R(g_{n+1})
\]
\[
R(t_{n+p} - t_n) \leq \sum_{i=1}^{p} R(t_{n+i} - t_{n+i-1})
\]
\[
\leq 31 \sum_{i=1}^{p} R(g_{n+i}) \to 0 \text{ as } n, p \to \infty.
\]
[3, (iv), Equation 3, (iii)]

We conclude that
\[
\lim_{n \to \infty} (1-g_1-\cdots-g_n) s_n (1-g_1-\cdots-g_n) = \lim_{n \to \infty} (t_n s - (g_1+\cdots+g_n))
\]
exists in \(\mathfrak{A}\). It equals \((1-g)t(1-g)\) for some \(t \in \mathfrak{A}\). Moreover, \((1-e) t(e-g) = 0\) by (1). Then
\[
s = \begin{bmatrix}
 g & 0 & 0 \\
 0 & (e-g)t(e-g) & (e-g)t(1-e) \\
 0 & 0 & (1-e)t(1-e)
\end{bmatrix}
\]
where \(R((e-g)t(e-g)) \leq 1/2 \) and \((e-g)t(e-g)\) has an inverse in the subring \(\mathfrak{R}(e-g) \).

By the proof of [4, Lemma 3.6], if \((1-e)h(1-e) = h\) is an idempotent of rank equal to \(R(e-g) \), then \(e-g, h\) define quantities \(x, y \in \mathfrak{R}\) such that

\[
xh = (e-g)x = x, \quad hy = y(e-g) = y, \quad xy = e-g, \quad yx = h.
\]

We have that \(1+x, 1+y \in C^* \) since \(x^2 = xh(e-g)x = 0, \ y^2 = y(e-g)hy = 0 \), and so \((1+x)(1-y)(1+x) = 1-(e-g)-h+x-y \in \mathfrak{R}^* \) whence

\[
s \cong \begin{bmatrix} g & 0 & 0 \\ 0 & 0 & (e-g)t^*(1-e) \\ 0 & -h(e-g)t(e-g) & (1-e)t^*(1-e) \end{bmatrix}
\]

for some \(t^* \in \mathfrak{R} \). Since

\[
R(-h(e-g)t(e-g)) = R(e-g),
\]

then

\[
(-h(e-g)t(e-g))_t = (e-g)_t,
\]

and by a similar argument to one above we have, for some \(t' \in \mathfrak{R} \),

\[
s \cong \begin{bmatrix} g & 0 & 0 \\ 0 & e-g & 0 \\ 0 & 0 & (1-e)t'(1-e) \end{bmatrix}.
\]

This useful lemma permits us to obtain an analogue in continuous rings for a diagonalization theorem of Dieudonné [1, p. 30].

Theorem 1. In a continuous ring \(\mathfrak{R} \), let \(e^* = e, \ R(e) < 1 \) and \(s \) be nonsingular. Then, for some \(t \in \mathfrak{R} \),

\[
s \cong e + (1-e)t(1-e).
\]

Proof. If \(R(e) < 1/2 \), a similar proof to that of Lemma 2 yields the result.

We may suppose then, that

\[
\sum_{i=1}^{n-1} 2^{-i} \leq R(e) < \sum_{i=1}^{n} 2^{-i}
\]

for \(p > 1 \)

Let \(e_i = ee_i e \) be an idempotent of rank \(1/2 \). Then, by Lemma 2, \(t_i s_i = e_i + (1-e_i)s_i(1-e_i) \) for some \(t_i \in \mathfrak{R}^* \) and \(s_i \in \mathfrak{R} \). If \(p > 2 \), we let \(e_i = (e-e_i) \cdot e_i(e-e_i) \) be an idempotent of rank \(1/4 \); then \(e_i \) has normalized rank \(1/2 \) in the continuous ring \(\mathfrak{R}(1-e_i) \) and \((1-e_i)s_i(1-e_i)\) is nonsingular in this
ring. Hence, there exists \(t_2 \) in the group \(\mathfrak{F} \) of \(3t(l-\beta^i) \) such that
\[
t_2(1-e_i)s_t(1-e_i)=e_2+(1-e_i-e_2)s_2(1-e_i-e_2)
\]
where \(s_s \in \mathfrak{N}(1-e_i) \subset \mathfrak{N} \). Then
\[
(e_i + t_2)(e_i + (1-e_i)s_t(1-e_i)) = e_i + e_2 + (1-e_i-e_2)s_2(1-e_i-e_2);
\]
moreover, \(e_i + t_2 \in \mathfrak{F}^+ \) as can be verified simply.

Proceeding in a similar fashion, we have eventually, for some \(s_{p-1} \) and independent idempotents \(e_i=ee_i \) \((i=1, \ldots, p-1) \) with \(R(e_i)=2^{-i} \)
\[
s \equiv e_1 + \cdots + e_{p-1} + (1-e_1-\cdots-e_{p-1})s_{p-1}(1-e_1-\cdots-e_{p-1}).
\]
Application of the first statement of the proof to the idempotent \(e-e_1 \)
\(-\cdots-e_{p-1} \) in the subring \(\mathfrak{N}(1-e_1-\cdots-e_{p-1}) \) gives
\[
t_p(1-e_1-\cdots-e_{p-1})s_{p-1}(1-e_1-\cdots-e_{p-1})
\]
\[=e-e_1-\cdots-e_{p-1}+(1-e)s_p(1-e)
\]
where
\[
t_p \in \mathfrak{N}(1-e_1-\cdots-e_{p-1}),\ e_1+\cdots+e_{p-1}+t_p \in \mathfrak{F}^+ \text{ and } s_p \in \mathfrak{N}.
\]
The result follows.

Theorem 2. In a continuous ring \(\mathfrak{F}=\mathfrak{F}^+ \).

Proof. The equation \(utu^{-1}=t^2 \) is satisfied by any \(t \in C^z \), for some \(u \in \mathfrak{G} \) depending on \(t \) [2, Theorem 2.12]. Hence the arbitrary \(t \in C^z \) satisfies
\[
t=tuu^{-1}t^{-1}
\]
and \(\mathfrak{F}^+ \subseteq \mathfrak{F} \).

By Lemma 2, if \(a_1, a_2 \in \mathfrak{G} \) and \(e \) is an idempotent such that \(R(e)=1/2 \), then \(a_1=b_1d_1,\ a_2=b_2d_2 \) where \(b_1, b_2 \in \mathfrak{F}^+ \) and
\[
d_1=e+(1-e)d_2(1-e),\ d_2=e+(1-e)d_2(1-e).
\]
The commutator \(a_2a_1a_2^{-1}a_1^{-1} \) has the form \(bd_1d_2^{-1}d_2^{-1} \) with \(b \in \mathfrak{F}^+ \) by Corollary 2. It is sufficient to show that \(d_1d_2^{-1}d_2^{-1} \in \mathfrak{F}^+ \) and we need only show that \(d_1d_2=b^{(1)}d_1b^{(0)} \) where \(b^{(1)}, b^{(0)} \in \mathfrak{F}^+ \). Write \((1-e)d_1(1-e)=\lambda, \)
\((1-e)d_2(1-e)=\mu. \)

Now \(e, 1-e \) define a matrix basis \(s_{ij} \) with \(s_{11}=e, \ s_{22}=1-e, \ s_{12}=es_{12} \)
\[=s_{11}(1-e), \ s_{22}=(1-e)s_{22}=s_{21}e \ [4, \ Chapter 3]. \] Then
\[
(1+s_{12})(1-s_{21})(1+s_{12})=-s_{11}+s_{12}
\]
and

\[(-s_{11} + s_{12})^2 = -s_{11} - s_{22} = -1 \]

belong to \(\mathfrak{S}^\dagger \).

Noticing that \(\lambda \) has an inverse in \(\mathfrak{N}(1-e) \) we obtain without difficulty

\[
\begin{align*}
\mathfrak{d}_1 \mathfrak{d}_2 &= \begin{bmatrix} e & 0 \\ 0 & \lambda \mu \end{bmatrix} \cong \begin{bmatrix} e & s_{12} \mu \\ 0 & \lambda \mu \end{bmatrix} \cong \begin{bmatrix} e & s_{12} \mu \\ -\lambda s_{21} & 0 \end{bmatrix} \cong \begin{bmatrix} 0 & s_{12} \mu \\ -\lambda s_{21} & 0 \end{bmatrix} \\
\end{align*}
\]

and on left multiplying the last member of (4) by \(-(s_{21} + s_{12}) \)

\[
\begin{align*}
\mathfrak{d}_1 \mathfrak{d}_2 &\cong \begin{bmatrix} s_{12} \lambda s_{21} & 0 \\ 0 & \mu \end{bmatrix} \cong \begin{bmatrix} 0 & s_{12} \lambda \\ -\mu s_{21} & 0 \end{bmatrix}.
\end{align*}
\]

Retracting the steps of (4) we obtain the result.

Remark 1. When \(\mathfrak{N} \) is a matrix ring over a field (discrete ring), \(\mathfrak{S}, \mathfrak{S}^\dagger \) are respectively the commutator group and the group generated by the elements of class 2. Provided the order of the matrices exceeds two, as we assume, (3) holds and again \(\mathfrak{S}^\dagger \subseteq \mathfrak{S} \); also \(\mathfrak{S}^\dagger \) contains the group generated by the transvections which is shown by Dieudonné [1, p. 31] to itself contain \(\mathfrak{S} \). Hence Theorem 2 holds for rings of matrices of order greater than two.

3. Determinants in a complete rank ring.

Definition 3. Let \(\mathfrak{N} \) be a continuous or discrete ring. We define the determinant \(\Delta(a) \) \((a \in \mathfrak{S}) \) as the coset \(\mathfrak{S}_a \).

We now proceed to obtain generalizations of some well-known results in determinants; the restrictions on characteristic and order apply and the determinants, we note, are defined only for nonsingular ring elements. Theorem 2, Remark 1 and the commutativity of the cosets are used freely without additional reference.

(1) A theorem on minors of the inverse.

Theorem 3. Let \(c \) be nonsingular and \(e \) any idempotent in \(\mathfrak{N} \). Then

\[
\Delta(1-e+ec^{-1}e)\Delta(c)=\Delta(e+(1-e)c(1-e)).
\]

Proof. \(\Delta(1-e+ec^{-1}e)\Delta(c)=\Delta\{(1+ec^{-1}(1-e))(1-e+ec^{-1}e)\}\Delta(c)\]

\[=\Delta((1-e)c+e)\]
Theorem 4. Let $e^z = e$, $x \in \mathbb{R}$. If $R(\text{exe}) = R(e)$, then

$$\Delta(x) = \Delta(\text{exe} + (1-e)) \Delta(e + (1-e)x(1-e) - (1-e)x e \cdot \text{eye} \cdot ex(1-e))$$

where eye is the inverse of exe in $\mathbb{R}(e)$.

Proof. \[\Delta(x) = \Delta((1-(1-e)x)e) \]
\[= \Delta(\text{exe} + x (1-e) + (1-e)x(1-e) - (1-e)x e \cdot \text{eye} \cdot ex(1-e)) \]
\[= \Delta((\text{exe} + x (1-e)) x(1-e) - (1-e)x e \cdot \text{eye} \cdot ex(1-e)) \]
\[\cdot (1-e) \text{eye} \cdot ex(1-e)) \]
\[= \Delta(\text{exe} + (1-e)x(1-e) - (1-e)x e \cdot \text{eye} \cdot ex(1-e)) \]
\[= \Delta(\text{exe} + (1-e)) \Delta(e + (1-e)x(1-e) \]
\[-(1-e)x e \cdot \text{eye} \cdot ex(1-e)) \]

(iii) Cramer's rule.

Theorem 5. Let $ax = b$ be satisfied by a, b, $x \in \mathbb{R}$. Then

$$\Delta(be + a(1-e)) = \Delta(a) \Delta(\text{exe} + (1-e))$$

for any idempotent e.

Proof. $ax = b$ implies $axe = be$ and so

$$\Delta(be + a(1-e)) = \Delta(axe + a(1-e))$$

\[= \Delta(a) \Delta(xe + (1-e)) \]
\[= \Delta(a) \Delta((exe + (1-e)xe + (1-e))(1-(1-e)xe)) \]
\[= \Delta(a) \Delta(xe + (1-e)). \]

Remark 2. The fact that Theorem 5 includes Cramer's rule can be seen as follows.

The matrix equation $Ax = b$ with $A = (a_{ij})$ an $n \times n$ matrix and $x = \{x_1, \ldots, x_n\}$, $b = \{b_1, \ldots, b_n\}$, the components being in a field K, can be expressed
where each vector is replaced by a ring element with identical columns.

Taking $e=e_i=\text{diag}(0, 0, \cdots, 1, \cdots)$ with 1 in the ith place, Theorem 5 gives

$$\Delta \begin{pmatrix} a_{i1} & b_1 & a_{i+1,1} \\ \vdots & \vdots & \vdots \\ a_{in} & b_n & a_{i+1,n} \end{pmatrix} = \Delta(A) \Delta \{\text{diag}(1, \cdots, x_i, 1, \cdots)\} .$$

If C is the commutator subgroup of K^*, the isomorphism of $M^*_n(K)/ C$ and M^*/C implies the preceding equation holds when we interpret Δ as the Dieudonné determinant (K noncommutative) or as the ordinary determinant (K commutative).

REFERENCES

 (i) *Continuous geometry*, 22 (1936), 92-100;
 (ii) *On regular rings*, 22 (1936), 707-713;
 (iii) *Algebraic theory of continuous geometries*, 23 (1937), 19-22;
 (iv) *Continuous rings and their arithmetics*, 23 (1937), 341-349.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. All other communications to the editors should be addressed to the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10, 1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Robert George Buschman, A substitution theorem for the Laplace transformation and its generalization to transformations with symmetric kernel ... 1529
S. D. Conte, Numerical solution of vibration problems in two space variables ... 1535
Paul Dedecker, A property of differential forms in the calculus of variations ... 1545
H. Delange and Heini Halberstam, A note on additive functions ... 1551
Jerald L. Ericksen, Characteristic direction for equations of motion of non-Newtonian fluids ... 1557
Avner Friedman, On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order ... 1563
Ronald Kay Getoor, Additive functionals of a Markov process ... 1577
U. C. Guha, \((\gamma, k)\)-summability of series 1593
Alvin Hausner, The tauberian theorem for group algebras of vector-valued functions ... 1603
Lester J. Heider, \(T\)-sets and abstract \((L)\)-spaces ... 1611
Melvin Henriksen, Some remarks on a paper of Aronszajn and Panitchpakdi ... 1619
H. M. Lieberstein, On the generalized radiation problem of A. Weinstein ... 1623
Robert Osserman, On the inequality \(\Delta u \geq f(u)\) ... 1641
Calvin R. Putnam, On semi-normal operators ... 1649
Binyamin Schwarz, Bounds for the principal frequency of the non-homogeneous membrane and for the generalized Dirichlet integral ... 1653
Edward Silverman, Morrey’s representation theorem for surfaces in metric spaces ... 1677
V. N. Singh, Certain generalized hypergeometric identities of the Rogers-Ramanujan type. II ... 1691
R. J. Smith, A determinant in continuous rings ... 1701
Drury William Wall, Sub-quasigroups of finite quasigroups ... 1711
Sadayuki Yamamuro, Monotone completeness of normed semi-ordered linear spaces ... 1715
C. T. Rajagopal, Simplified proofs of “Some Tauberian theorems” of Jakimovski: Addendum and corrigendum ... 1727
N. Aronszajn and Prom Panitchpakdi, Correction to: “Extension of uniformly continuous transformations in hyperconvex metric spaces” ... 1729
Alfred Huber, Correction to: “The reflection principle for polyharmonic functions” ... 1731