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Introduction. Let R be a continuous semi-ordered linear space, name-
ly, a semi-ordered linear space where, for any sequence 2,=0 (»=1,2,--+),

Nz, exists.) R is said to be a normed semi-ordered linear space, if a

v=1

norm |z|(x € R) is defined and satisfies the condition:

o] < |yl implies  fof |yl

in addition to the usual conditions.
A norm |z|(x€ R) on a normed semi-ordered linear space is said to

oo

be monotone complete, if, when 0 ngT and sup ||a,] <+ oo, there exists
1 vl

y=

ER

v=1

A norm on R is said to be continuous, if xyl 0 implies lim |z,| =0
v=1 Vo0

and semi-continuous, if Oé%r 2 implies sup |@,|=|=|. It is clear that
v=1 v=1

continuity implies semi-continuity.

Kantorovitch [4] has proved that, if a norm on R is monotone
complete and continuous, then it is complete, namely, R is a Banach
lattice. Nakano [5; Theorem 31.7] has proved that, if a norm on R is
monotone complete and semi-continuous, then the norm is complete,
and, recently, Amemiya [1] has proved that, if a norm on R is monotone
complete, it is complete.” In this connection, see also [2].

In this paper, we will consider several problems concerning monotone
completeness and completeness of normed semi-ordered linear spaces
and Nakano spaces.

1. Monotone completeness of normed semi-ordered linear spaces.
In this section, we will consider two problems.

As usual, let (¢,) be the set of all null-sequences of real numbers.
This is a normed semi-ordered linear space by the usual ordering and

Received December 12, 1956. In revised form April 22, 1957.

1 Namely, a conditionally o-complete vector lattice. In this paper we use the termi-
nology and notation of [5].

2 In this paper, Amemiya also proved the following lemma: Let R be a monotone
complete normed semi-ordered linear space. Then there exists a number >0 such that

ngvTu’ x implies 7]z||<C sus | .
v=1 vZ1
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the norm: I|a:]|=s;1=1?|6y| for #=(§,)e(¢). The fact that this norm is

complete is well known. But, it is not monotone complete, because,
for the sequence of elements:

91:(1’ 0, 0? "')r 62:(17 1, Oy "')v 632(1, 1, 1; Oy "')7 ctty

we have 0§evr and suple,| =<1, but O e, does not exist in the space
v=1 v=1 v=1

(€)-
Among function spaces, we can also find an example of this type.
Let L, be the set of all measurable functions «(¢) (0=<¢=<1) such that

1
SUIEm(t))‘“ dt< + oo for all £>0.
Then Lj, is a Banach lattice by the norm:

lz|]= inf 1 where m(x):Sllw(t)(”" dt
mitz=1 |€| 0
but this norm is not monotone complete.

In §1.1, we will state a necessary and sufficient condition in order
that a complete norm be monotone complete.

It is well known that every (norm) closed subset of a Banach
lattice is also complete. But, we have a monotone complete semi-ordered
linear space which contains a closed, but not monotone complete sub-
space. Namely, let L;, be the set of all measurable functions x(¢)
(0<¢<1) such that

S]le(t)l”‘ dt< -+  for some  £>0.
0

This is a monotone complete normed semi-ordered linear space and Lj,
is a (norm) closed subspace of L, .

In §1.2, we will state a necessary and sufficient condition in order
that every closed subspace of a monotone complete semi-ordered linear
space be monotone complete.

1.1. Let R be a continuous semi-ordered linear space. A sequence

@, (v=1,2,--.) is said to be bounded, if there exists an element xe R

such that =, (»=1,2,..-). If ngyr and this sequence is not
v=1

oo

bounded, then we write ngv'{ _1+oo .

v

DEFINITION. R is said to be K-bounded (bounded in the sense of

Kantoroviteh), if ngyr 4+ implies we can find a sequence of real
v=1
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numbers &, (v=1, 2, ---) such that Eyl 0 and the sequence &z, (v=
v=1

1,2, .-+) is not bounded.

DEFINITION. R is said to be K*bounded, if Oé%,»r + oo for every
=1

v implies we can find a sequence of indices g, (v=1, 2, ---) such that
the sequence z, , (v=1, 2, ---) is not bounded.

These concepts were introduced by Kantorovitch [4]. It is easily
seen that K*-boundedness implies K-boundedness. If R is reflexive in
the sense of [5] § 24, then it is easily seen that R is K-bounded. There-
fore, for any R, its conjugate space is always K-bounded.

The K-boundedness can be expressed in other ways, namely, the
Jollowing three conditions are mutually equivalent:

(1) R is K-bounded;
@ if 0=z

(&) with 5:‘, |€,|< 4o, then the sequence x, (v=1, 2, --+) is bounded;

and > &x, is order-convergent for all sequences
v=1

3) if 2,=0 and i &x, is order-convergent for all sequences (£,)
v=1

with Eyl 0, then >, x, 1s order-convergent.
y=1 y=1

For example, we will prove that (1) implies (2). Let Ogmyr 4 oo,
y=1

o

Then there exists a sequence of real numbers 5”l 0 such that &, (v=
=1

v

1,2, ...) are not bounded. Since

Ty = VE (xu_xu--l)'*'xlT + o,
=2

oo
y=

and
vavé i Eu(wu'—wy.—l) + Elxl ’
p=2

the sequence:

v

ZI(EM_EMH)xu (v=1,2, ««0)

=
is not bounded and

i1|sp—sﬂ+ll<+oo.

This is inconsistent with the hypothesis of (2).
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THEOREM 1.1. Let R be a normed semi-ordered linear space. Then
the following three conditions are mutually equivalent;

(1) The norm on R is monotone complete;

(2) the morm is complete and R is K-bounded;

(3) the norm is complete and R is K>*-bounded.

Proof. We have only to prove that (2) implies (1).
Let ngvr

and sup|a,| <+ . Then, for any sequence of numbers
v21
£,>0 (v=1, 2, --+) such that i £,< -+ o , we have i || <+ . Since
v=1 v=1

the norm is complete by assumption, > &, is convergent in norm, and
y=1

so, in order convergence. Therefore, @, (v=1, 2, ---) is bounded, because
R is K-bounded.

1.2. Let R be a continuous semi-ordered linear space. For any
element p=0 and for all =0, the projector [p] is defined as

o=\ (2ns) .

[p]1=[q] means [plz=[qlx for any #=0.
Let R be a normed semi-ordered linear space. A norm |z|on R is

continuous if and only if =0 and [p”]r 0 4mplies lim|[pJx| =0
v=1 y—>00
([Nakano] Theorem 30.8) We will call a subset A of R monotone com-
plete, if ngyr and sup |z,| <+ o for x,€ A implies D x,€A.
y=1 =1 vZ1

If a norm on R is monotone complete and continuous, then every
(norm) closed subset is monotone complete in the sense described above.
Here, we will prove the converse. A subset A is said to be semi-normal,
if xe A, |y|<|«| implies ye A.

THEOREM 1.2. Let R be a normed semi-ordered Ilinear space and
suppose every (norm) closed, semi-normal subset of R is monotone complete.
Then the norm is continuous.

Proof. Let us assume that there exist [p,] (v»=1,2,---) and z,e R
such that [py]r 0 and lim|[p,J,|=¢ for some ¢>0. Then the least
closed set A4 covr:ltaining ;ﬁwweR such that lim |[p,]z|=0 is semi-normal
and 1—[»])z,€ A. On the other hand, o

0=(—[pDa| @ and  |A-[pDal<]w] -
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Therefore, since A is monotone complete, a,€ A. This is inconsistent
with the definition of A.

2. Monotone completeness of Nakano spaces. It will be necessary
to state here the definition and several properties of Nakano spaces.

A semi-ordered linear space is said to be wuniversally continuous, if
for any system of positive elements z, (1€ A) there exists A[e\A . A

Nakano space is a universally continuous semi-ordered linear space where
a functional m(x) (x € R) is defined and satisfies the following conditions:
(1) 0=m(z)=+o(xeR);
(2) for any x € R we can find a number £>0 such that m(éx)< + o«
(3) if m(&x)=0 for every £>0, then x=0;
(4) |z|=|y| implies m(z)=m(y);

(5) m(%x)é%{m(&x)%—m(éy)} for numbers &, >0 and for every
element ze R;

(6) |zl ~ly|=0 implies m(z+y)=m(x)+m(y);
(7) 0=Zx\treax implies m(x)zﬁgp m(x)) .
A

This functional m(x) is called a modular on the Nakano space R.
In the Nakano space R, we can define two kinds of norms:

the first norm: lz]= mf 1"‘7?(5%)
the second norm: ||z|= inf L
m(Ex)=1 Iél

It is easily seen that ||z||=|«|<2||«]]. The modular is said to be
complete or monotone complete, if these norms are complete or monotone
complete. Namely, a modular m on R is said to be monotone complete,
if, when ngyr and sup m(z,)< + oo , then there exists U x, .

v=1 vZ1 v=1
A modular m is said to be simple, if m(x)=0 implies =0. If m
is simple, we can define in R a convergence by this modular. Namely,
a sequence x, (v=1,2, ---) is said to be modular-convergent to xe R, if
lim m(z,—x)=0. If a sequence z, (»=1,2,--+) is convergent to xe R

Y—ro0

by the norms defined above, then it is modular-convergent to the same
limit. But the converse is not always true. In order that the modular-
convergence be equivalent to the norm convergence, it is necessary and

sufficient that the modular is uniformly simple: 1nf m( i Iu)>0 for

+#z€ER

any £>0 ([5] Theorem 48.1)
The norms defined above are not always continuous. If the modular
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is finite, namely, m(x)<+o for every x€ R, then the norms are
continuous ([5] Theorem 44.4)

A modular m is said to be uniformly finite, if sup m(é x ->< + oo
0+=€R ([l

for every £>0. It is clear that uniform finiteness is stronger than
finiteness.?

2.1. In this section, we will consider the relations between monotone
completeness and completeness of Nakano spaces. In the sequel, let R
be a Nakano space and m(x) (x € R) be its modular.

The following lemma is a generalization of the essential part of
Kalugyna’s results [3].

LemmA 2.1, If m 4s monotone complete, simple, and its norms ore
continuous, then m is uniformly simple.

Proof. If m is not uniformly simple, we can find a sequence x,=>0
(»=1,2, ---) such that limm(x,)=0 and ||@,|=e>0 for all ». Hence, we
can select a subsequenc:;m (r=1, 2, +-+) such that

m(‘xm)§1/2” .
Then, for the elements:

yM,A::a%M\~ja% .. '\-/ah

Bl T2 N
we have
m(yu,k) = m(xvu) ‘*‘m(xvnﬂ) Feee +7n(xvu+l\)
1 1
ot T

Namely, we have yMT and sup m(y,,)<-+o . Since m is monotone
A=1 AZ1

complete, there exist y, (#=1,2, - - ) such that y,hzg;jlymA and m(y,)<1/2+*.

oo

It is clear that y,Ll . On the other hand, for any =0 such that

m=i
2=y, (#=1,2, ---), we have

m(Y,—x) <m(y,) , thus, lim m(y, —x)=0 .
poseo

3 More details of the theory of Nakano spaces are given in [5]. As examples of Nakano
spaces, we cite two representative types. The first is an Orlicz space. The second is
the space Lyci)(p(t)=1), namely, the set of measurable functions x(¢)(0<t<1) such that

1
S |ex(t)|2¢0)dt is finite for some ¢>0. Here p(f) is a measurable function on 0<t<1.
0
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Therefore,

m( fl):m> = m(—;—(yu —x)+ %%)

< {m—2)+m)} 0 (=),

that is to say, m(%w)zo . Since m is simple, ®=0. This means that

y,kl 0. As the norm is continuous, we have lim|y,|=0, which con-
p=1 p>oo

tradicts the assumption, because

lv.l= |z, 1=

Therefore, m is uniformly simple.
The next two lemmas constitute the converse of the above.

LEMMA 2.2. If m is uniformly simple, then its norms are continuous.

oc

Proof. Let xvl 0. Then there exists a number £>0 such that

m(éx,)< + oo for all v_ For the elements y,=éx,—¢&x,, since y,=>0 and
éx,=0, we have

m(yv +éx,)= m(yv) + m(Exv) ’
S0,

m(éx,) =m(y,+Ex,) —m(y,) =m(Ex) —m(y,) .

On the other hand, we have m(Ea:l):sgp m(y,), because Ogy,r 15901-
Therefore, lim m(éx,)=0, and hence it follows that lim |, =0, because

m is uniformly simple.

LEMMmA 2.3. If m s uniformly simple and its norms are complete,
then m is monotone complete.

Proof. Let 0= x,T and sup m(z,)<+c . Then

V=1
m(@, — &) = mU,) — 1) (vz=p),
and hence, we have

lim m(z,—,)=0 .
Y, —>00
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Since m is uniformly simple, we have

lim |z, —2,| =0,
V, =00
so that there exists an element xe R such that lim|x,—x|=0. For

this z, it is easily seen that x:O x,, which shows that m is monotone
v=1

complete.
From these lemmas, we obtain the following theorem:

THEOREM 2.1. A modular on a Nakano space is monotone complete,
simple, and its norms are continuous, tf and only if it s uniformly
simple and complete.

Next, we will consider the case when m is finite.

DEFINITION. A modular m(x) (xe€ R) is said to be totally finite, if
0§x,,)r

v=1

and sup m(w,)< + oo implies sup m(&x,)<+ o for every £>0 .
vZ1 vzl

LEMMA 2.4. If m is monotone complete and finite, then it is totally
Sfinite.

oo

Proof. Ogm,T and sup m(z,)<+c . Then, since m is monotone
y=1

v=1

complete, there exists e R such that x= O x,. Therefore éx= O Ex,
= v=1

v=1
for every £>0. Hence it follows that m(éx)=sup m(&x,)<+ o , because
vz1
m is finite.
LeEMMA 2.5. If m is totally finite and complete, then it is monotone
complete.

oo

Proof. Let ngvT and supm(x,)<-+c . Then, by the as-
vZ1

sumption, we have sup m(éx,)< 4 for every £>0. Since
v=1

v=1

m(swv - Sxy.) é m(‘ng) —m(Exp«) (V g au) ’

we have lim m(&x,—&x,)=0 for every £>0, therefore we have

VY, pu—r00
lim |@,—x.|=0.
V, l—roo
Hence, there exists an element w e R such that lim |o,—2||=0. There-
Y00

fore, we have x= D w, , which shows that m is monotone complete.
v=1

Thus we obtain the following theorem:



MONOTONE COMPLETENESS OF NORMED SEMI-ORDERED LINEAR SPACES 1723

THEOREM 2.2. A modular on a Nakano space is monotone complete
and finite +f and only if it is totally finite and complete.

REMARK. It is easily seen that uniform finiteness implies total
finiteness and the latter implies finiteness. The converses are not always
true. In fact, L{, is a finite Nakano space by the following modular:

m(x):gzlx(t)l”‘dt for  a(tye Li, .

But, this is not totally finite, because, if it were totally finite, then,
by Theorem 2.2, it would be monotone complete, which is impossible.
Next, let f,(&) (v=1, 2, ---) be a sequence of convex functions such that

ruo={* i 0=esl;
v(E—1)+1 if £>1.

Then, the space* I(f., f3, ---) with the modular

m@)= 56D for  a=()

is totally finite, but not uniformly finite. To see this, we need only
take the elements:

61:(1,0,0,"'), 622(0,1,0,"‘), 63:(0’091701"'), ce

It is easily proved that |le||=1 and m(2e,)=v+1— 4o . But, this
sequence space is uniformly simple by Theorem 2.1. The relations
between uniform simplicity and uniform finiteness were considered by
my colleagues. If a modular on a Nakano space is uniformly finite and
simple, then, by considering the monotone completion and applying
Theorem 2.1, we can prove that it is uniformly simple. On the other
hand, T. Shimogaki has proved in an unpublished paper that, if a
modular is uniformly simple and the space has no atomic elements, then
it is uniformly finite.

2.2. In this section, we will consider relations between monotone
completeness and finiteness.

An element « is said to be finite, if m(éx)< + oo for every £>0.
The set of all finite elements is called a finite manifold of R and
denoted by F. F'is a (norm) closed subspace of R and the norms are
continuous in F' ([5] Theorem 44.5.). If the norms are continuous in
R and m is monotone complete, then F'is universally monotone complete,

that is, if 0=<a,},es and sup m(x,)< 4+ then there exists U z, .
AEA AEA

m is sald to be almost finite, if F' is complete in R (that is, if
|z]|nly|=0 for all ye F, then x=0).

4 For the definition of this sequence space, see [6].
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THEOREM 2.3. If m s almost finite and monotone complete, then m
s finite iof and only if F' is, as a space, universally monotone complete.

Proof. We need only prove the sufficiency. For any x e R, since
m is almost finite, there exists a system of projectors [p,]t.e [2] such
that [p,Jxe F', and there exists a number £>0 such that m(éx)<< 4 o .
Therefore we have

U énlr=éxe F,
AEA
since m is monotone complete. Hence it follows that m is finite.

THEOREM 2.4. If m is almost finite, monotone complete and separable
wn its norm topology, then m is finite.

Proof. It is well known that if m is almost finite and norms are
continuous, then m is finite. Therefore, we need only prove that if m
is monotone complete and separable, then its norms are continuous.

For this purpose, let us suppose that there exists an element =0

and a sequence of projectors [py]l;o such that
1yr;1f I[p,]2z| >e for some e>0.

Then, by Amemiya’s lemma, we can find a number £>0 such that
lim |[p,Ja—[p.Jal Z€lp.Jal & >0,

and here, we can select p, (v=1, 2, -++) such that
(7, Jo—[pa, Jol > e .
Putting p),:[p,kv]w—[ppwl]m v=1,2,---), we see easily that
7,20, p,np=0+4) and |p[>é,

and, for any subsequence Dy, (A1=1,2, .--), we have

Moreover, the set of all such sequences is not denumerable and
“ Z pv,\_ Z pvP“ >S€
A=1 p=1

for different sequences {p,,k} and {pvp} . This contradicts the separability.
Therefore, norms are continuous and the proof is established.
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REMARK. In order that m be finite, it is necessary and sufficient
that its norms be continuous and all atomic elements belong to F.
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