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A SUBSTITUTION THEOREM FOR THE LAPLACE TRANS-
FORMATION AND ITS GENERALIZATION TO TRANS-
FORMATIONS WITH SYMMETRIC KERNEL

R. G. BuscHMAN

In the problem of the derivation of images of functions under the
Laplace transformation, the question arises as to the type of image pro-
duced if ¢ is replaced by g(¢) in the original. Specific examples have
been given by Erdélyi [3, vol. I §§ 4.1, 5.1, 6.1], Doetsch [1, 75-80],
McLachlan, Humbert, and Poli [6, pp. 11-18] and [7, pp. 15-20], and
Labin [5, p. 41] and a general formula is also listed by Doetsch [1,
75-80].

The Laplace transformation will be taken as

f(s)= S:e““F(t) dt

in which the integral is taken in the Lebesgue sense and which, as
suggested by Doetsch [2, vol. I, p. 44], will be denoted by

<
F(t)o-ef(s).
t s
(The symbol will be read ¢‘ Fi(¢) has a Laplace transform f(s)’’.)

THEOREM 1. If
(i) k, g, and the inverse function h = g~ are single-valued analytic
Sunctins, real on (0, ), and such that g(0)=0 and g(co)=c (or g(0)
=oco and g(w)=0);
@

i
(ii) F(t)o-ef(s) and this Laplace integral converges for 0 <Rs;
t s
(ili) there exists a function O(s, u), O(s, u)o-e¢(s, p) and this Lap-
u p
lace integral converges for 0 <R p, and ¢(s, p) = e " Vk[h(p)] |# (D)|; and

(iv) Sw Bwl e @ (s, u)F(p)| du] dp converges for a<Ns;
0 0
then

R
KE) Flo015"e| 066, u)f (w) du

Received June 25, 1957, This paper is a portion of a thesis submitted to the Graduate
School of the University of Colorado.
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1530 R. G. BUSCHMAN

and this Laplace integral converges for a < Rs.

Proof. From (iii) and (iv) it follows that

S:’e—Mk[h(p)]1h’<p)|F(p)dp

is absolutely convergent for a< Rs. There are two cases to be con-
sidered. Since from (i) both g and % are single valued, 4 is monotonic.

Case 1. If g(0)=0 and g(o)= oo, then 0 =<2'(p).

Case 2. If g(0)= o and g(o)=0, then Z'(p)<0.
In either case, therefore, if the substitution ¢=~A(p) is made in the
integral

[ ety Proonat,

then

R
(t) Flo(®)Io-e| e (o)) 11/() | F(w) dp .

From (iii) @(s, #) can be introduced and by (iv) the order of integration
changed so that

k) FLoonoe| | | o5 (w) d | 0t6, ) du.

Finally, from (ii)
Pl
k(t) F[g@ng--go (s, u) £ (u) o .

To show that there are functions ¢(s, p) as assumed in (iii), let, for
example, g(t) =¢* and k() =1 so that

0(s, 1)=(4p) e~

and

B(s, u)=(dnu)~"e~"Im,

From this the known relation

L 2
F(tZ)o-.S ()6~ £ (u) g
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is obtained.
Special cases of k(t) will sometimes simplify the image of @(s, u).
It k(¢)=]9'(t)|K[g(?)], then

<~
O(s, u)o-e K(p) e sm® |
u p

If k()=lg'@)ilg@)], then

i
O(s, u)o-ep°e sr® |
w P

In the proof of Theorem 1 it is noted that the only important pro-
perty required of the kernel is that it be symmetric. Therefore consider
the transformation

f(s)= S:K(s, £) F(t) dt

in which the integral is taken in the Lebesgue sense and in which the
interval (@, b) may be unbounded. This transformation will be called
the Z-transform and denoted by

T
F(t)o-ef(s),
t s
The following theorem is for this transformation with symmetric kernel.

THEOREM 2. If
(i) k&, 9, and h=g™" are single-valued analytic functions, real on
(a, b), and such that g(a)=a and g(b)=b (or g(a)=>b and g(b)=a);

o
(ii) F(t)o-e f(s) and this transformation integral converges for
t s
a<s<b;
s
(ili) there ewists a function (s, u), O(s, u)o-ed(s, p), this transfor-
u P
mation integral converges for a<s<b, and
W(s, p)=Kls, (D) k[R(p)] |7 ()] ;
(iv)
b b
(1] 1, o, wF@ au |ap
converges for s=s,; and

(v) K(u, p)=K(p, u); then k(t) F[g(t)]ﬁsb(b(s, u)f(w)du and this
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transformation integral converges for s=s,.
The proof follows in a manner similar to that of Theorem 1.
Formulas which hold provided F(¢) satisfies (ii) or (iv) of the theorem
can be obtained for various transforms for specific k(s) and g(s) with
the aid of tables [3, formulas 14.1(6), 8.12(10), 5.5(6)].

Formula 1. For the Stieltjes transformation K(s, t)=(s+?)".

F rw - .
pel 0o (u/a)**" (u/a) cos brr/2—s sin br/2
e F (ot )? :So 2ra s’tufa _Jf(u) au

for a positive.

Formula 2. For the Hankel transformation K(s, t)=.,(st)(st)""
& -
t-2F(a/t) o—oa‘lg Vausd, (2 qus) f () du
t s 0

for —1/2<» and a positive.
The Laplace transformation will be considered in the next two
formulas.

Formula 3.

(t+bja)*F(at*+2bt)

<z w . _ .
o-e(1/2r) e*le S e~V slm gms Ban(y  2au) =41 Dy(s[v/ 2au) f (w) du

for ¢ and b positive and in which D,(z) is the parabolic cylinder funec-
tion. The range of permissible values of d will depend, according to
(iv), on the particular function F'(u).

Formula 4.
s
14 F(at")c-eb™ SO (@) [1b, (d+b)fb; —s(au)Pf (x) du

for @ and b positive and in which ¢(4, B; Z) is Wrights’ function [4,
vol. 3, §18.1]. The range of permissible values of d will depend, ac-
cording to (iv), on the particular function F(u). In the special case
b=1 the formula becomes

P
td‘lF(a/t)?—oSO (v aufs) J(2v/ aus) £ () du .
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NUMERICAL SOLUTION OF VIBRATION PROBLEMS
IN TWO SPACE VARIABLES

S. D. CoNTE

1. Introduction. The classical theory of vibrating plates leads to
the following non-dimensional fourth order partial differential equation
in two space variables W(x, y, t) for the transverse vibrations :

(1) AAWK%WGfZO,
where 44 is the biharmonic operator

=0 4o 0 L &
ooy oy

Solutions of this equation for two dimensional regions of arbitrary
shape are of course not known, but even for those plate problems for
which analytic solutions in series form for this equation are available,
the series do not lend themselves easily to numerical calculations. Direct
numerical solutions of this equation are therefore of considerable im-
potance. It is the purpose of this paper to present a new finite dif-
ference approximation to this equation which is stable for all values of

the mesh ratios 4t/4* and 4t/4y* and which involves an amount of work
which is entirely feasible on large-scale digital computers. The method
is a generalization of a method prepared by Douglas and Rachford [1]
for solving the two dimensional diffusion equation.

2. The differential and difference equations. We consider first the
specific problem of determining the transverse vibrations of a square
homogeneous thin plate hinged at its boundaries and subjected to an
arbitrary initial condition. The boundary value problem may be written

O*wW | W | W 6W

2 =0 R, 0=t<T,
a) -t ooy oy e 0 (@ y)e =
b) W, y, 0)=f(z,v), (x,y)e R,
(2) ¢) Wiz, y,O)—O (x,y)eR,
d) Wz, v, t)- (w, y,t)=0, atx=0, 1 for O0<y<1, t>0,
e) Wi(z, vy, t)* (x Y, t)=0, at y=0, 1 for 0<xz<1, t>0,

Received February 11, 1957. The author is currently on leave of absence from Wayne
State University, Detroit, Michigan.
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1536 S. D. CONTE

where R is the open region [0<x<1, 0<y<1]. Letting do=dy=1/M
we now lay a mesh over the region R and we introduce the following
typical notation for difference operators

’LU(’LAZU, JA’_I/, ndt):wijn ’
(3) Agwwn:(wi,j,n—ﬂ—zwijn+wi,j,n+l)/17t-z ’
Aifwun:(w¢+z,1,n—4w¢+1.1,n+6wun"4wz—1,j,n+wi—2,1,n)/4374 .

We now approximate (2) by the following finite difference system :

1 .
a) Eﬁ’i [w;‘ij,n+1+wi,1,n—1]+2Aid§wijn+dg4/wijn

k
W —2W, 1+ Wi e
4 Higner " & T Wi 5n-1 ()

e ’
b) }‘A; [wi,5,n41 +FWign-1]= AW, 50— w’i”'j"nﬂ»;zgzj*@ﬂ ,
2 At?
(4) (2dx, jay)e R, 0=Zndst<T,
¢) Wis0=Wip=1Fi, (4,7=1,2,+-+, M—-1),
d) w0=W.;o, @,7=1,2,.--,M-1),

e) {wo,j,n:wM,J,n: 0

_ =1, ..., M—1; 0<ndt<T),
Wis1,5,n= —Wi-1,5,n (z=0, M) } G " )

Wi 0.0 =Wia,n=0
f)

. i=1, e, M—1; 0<n4t<T),
Wi, 41,0 = — Wi, j-1,u (7=0, M) } ( )

where R’ is the set of lattice points (idx, j4y) in R and in condition e)
and f) wH,=w;jn.

Equation 4a) is implicit in x alone while equation 4b) is implicit in
y alone. The numerical procedure consists of first solving equations 4a)
to obtain wj,.;. A system of (M—1) equations in (M—1) unknowns is
obtained for the unknowns along a single line in the z-direction. The
matrix of this system of equations has at most 5 non-zero elements in
any one row (either on the main diagonal or on two adjacent diagonals).
We shall call such matrices quidiagonal. These quidiagonal systems can
be solved efficiently by an extension of an algorithm for solving tridia-
gonal matrices due to L. H. Thomas and involve about twice the amount
of work as for tridiagonal matrices.

Use of equation 4a) above, however, is not sufficient to yield good
values of w over a wide range in ¢ because as will be shown the finite
difference approximation is unstable. Equation 4b) then provides a cor-
rective process which combined with 4a) does provide a stable, convergent
process. Equation 4b) is implicit along lines parallel to the y-axis and
again for rectangular regions yields M—1 systems of equations each
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involving M—1 unknowns. The matrices of these equations are again
quidiagonal in form. '

By eliminating w;; .., from equations 4a) and 4b) we obtain the fol-
lowing implicit finite difference equation

(5) %A:[wi},n+1+wij,n—l]+242:A§wijn+—;‘dé[wij,n+l+wi1,n—1]

+ Wiy n+1 2[@;)tq,)jn+wlj oty & 4451444;,[’&0“ - 2,w“n+,w” e 1] 0

which lends itself more readily to a stability and convergence analysis.
3. Stability considerations. Let v(z, ¥, t) be the error due to round-

off. Then since equation (5) is linear, it follows that v, will satisfy
the system

a) %A;[’Uw,nﬂ“‘vw,nﬂ]+2A§A?/an+é—dé[’vu,n+1+vij,n—1]
+v“ nﬂ_zzl);n—‘_?jw - A’t‘d“d;j[vw w1~ Wi +Vign-11=0,
(6) b) ;0 and v, ,, arbitrary @, 5=1,+--, M—1),
’Uo.J,n:?JM,j,n:O .
c =10, M—1; 0ZnMt<T),
) {vnl,j,n: —yrga (=0, M) } G )

V40,0 =i, 2,0 =0
d { - - . } 1=1, +-o, M—1; 0=Zndt<T) .
) vi,j+1,n=_vi,j—1,n:0 (=0, M) (

The eigenfunctions of (6) are of the form
Vyyn =0y, sin mpx, sin zqy, , p,q=1, «--, M—1,

where x,=1dx, y,=jdy. 1t is easily shown that, for example,
ok gt _ s dz
A3 430, 5+, =16 sin ”p‘?vw,nﬂ ’
szdy-zﬁzl;vm_lfi sin® pni’z sin® Qn-%?ivijn .

Applying this to equation (6a) and rearranging we obtain the fol-
lowing recurrence relation in a, :

(7) Gy — 200, + 0y =0 ,
where
( 8 ) a=_— " 1"‘/’“31)311_2‘03:03 —_ (1"‘10312082)2

1+psysit-p(sp+sy)  (L—psyse)+p(sp+80)°
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and s,=sin 270];2 ) —snmql, p= At 8£_8r

2M Ax
(6) will be stable provided that the roots of the characteristic equation

The difference equation

§F—2af+1=0

corresponding to (7) are at most equal to one in absolute value. These
roots are equal to one in absolute value if |a|<1, a condition which
follows at once from the definitions of s,, s, and p. Thus the finite
difference system (4) is stable for all values of the mesh ratio p and
for all values of » and gq.

It should be pointed out that if (2) is replaced by an explicit finite
difference approximation, a stability analysis leads to the requirement
that

r=20 A <14

A

53
k
33

N
k
<,

This restriction on the time step ordinarily leads to an amount of com-
puting time which is not feasible even with the most modern computers.
On the other hand a straightforward implicit finite difference approxi-
mation to (2), while simpler than (4) and also stable for all values of
the mesh ratio, leads to a system of (M—1)* equations in (M—1)* un-
knowns which must be solved at each time step. Even a 20 x 20 interior
grid leads to a system of 400 equations in 400 unknowns again involv-
ing an unreasonable amount of computing time.

Finally if one attempts to use 4a) without the corrective equation
4Db) the same stability analysis given above leads to the characteristic
equation

—2p+1=0
where

f= 1- P(sq + zspsq
1+ps;,

It is easily verified that for some values of p and ¢, |f|>1 and hence
equation 4a) is not stable for all values of p.

4. Treatment of other boundary conditions. The stability analysis
of §3 depends upon the existence of a set of eigenfunctions of the dif-
ference operator given in (6a) which satisfy the boundary conditions (6¢)
and (6d). If the boundary conditions (2d) and (2e) corresponding to the
difference conditions (6¢) and (6d) change, the eigenfunctions of the sys-
tem (6) will also change. Let us consider then the error equation (6a)
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with the boundary conditions (6¢), (6d) replaced by the general homo-
geneous conditions :

(9) L,(v:5,)=0, @E,DeS. (m=1,2,3,4),

where S! is the set of boundary points affected by the conditions L.
Assume a set of eigenfunctions of (6a) of the form

vijn(pr Q)za'nd)u(p; Q) ’ », (1=1, ) M-1.
Substituting into (6a) and rearranging, we obtain
U1 — 20U+ g = 0

where

1 R
— At AL AL
T g

ST bt Ao+ 1+ dE ity 1P

— 48 £, Bypis+ iy +

Apy=

Now let H and K have a common set of eigenfunctions subject to the
condition (9), i. e.

H[‘ISU] =2pgPis » Lm(¢ij) =0,

K[¢u] = ﬁm‘f)u ’ Lm(¢ij) =0.
We then have

Apq
ﬂpq

and the condition for stability is simply that for all » and ¢

Rpg=

lan =1 .

Thus the stability analysis of § 8 can be applied for any boundary con-
ditions for which the operators H and K have common eigenfunctions.

5. A mean square convergence theorem for the square region. For
the problem considered in § 2 assume that the function f(z,y), is suf-
ficiently regular in the closed region R to guarantee the existence and
boundedness of

o°w 05w 0%w o'w  tw

ox* oy ' oy oxor’ ra

in B. Then it can be shown following the usual series expansions that
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(10) ";—A;[wij,ni-l F W5 n ]+ 245850, 5, + ’;‘A;[ww,n+1 + Wi5,n-1]

4+ wu,nﬂ_zz%zjn T Wijn-1 :0(2:}72_'_2%2) ,

and moreover that
(11) B LLTWs g a1 — 2015+ Wiy 1= 0(4E)

Hence the difference operator (5) approximates the differential equation

(2) to terms which are 0(dax*+4t%). In the notation of [2] the elementary
truncation error 4, is

(12) Py =0(da’ + At 42%)
and by Theorem 1 of [2] we have

Adxt | =
— At4)
5 +

(13) I Wisn—wi5]|= O(
uniformly in n, where

(14 IWon—wil= {517 i
tin tin _—(—ﬂ = tin — Wijn }

It thus follows that if the boundary value problem (2) is sufficiently
well defined in the sense that the derivatives mentioned above exist

boundedly in the closed region R, then the solution of (4) converges in
the mean to the solution of (2) with errors given by (13) as dx and 4t
tend to zero.

The convergence proof given above holds for a rectangular region
only. In practice one is usually interested in point-wise convergence
rather than convergence in the mean square sense. Section 6 establishes
point-wise convergence of the solution of the difference system to the
solution of the differental system.

6. Point-wise convergence. A solution of the boundary value prob-
lem (2) can be given in series form

(15) Wiz, y, t)= i i A,, sin prx sin gry cos (p*+ )=’ .
p=1q=1

The initial condition (2b) will be satisfied provided that 4,, are taken to
be the Fourier coefficients of f(x,y), i.e.

(16) A,,=4 Sl Sl S (@, y) sin prx sin gry dedy .
0 Jo
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The conditions on f(x, y) are assumed to be such that the series
(15) converges and is the unique solution of the boundary value problem
(2). A solution w(x,y,t) of the finite difference system consisting of
(4a, b, e, f) can be obtained by separation of variables as follows :

11) w(w, Y, t) —Z Z B, sin prx sin qnry Cos t arc cos M R
( g
et T Zz(p; Q)

where
A(p, )= —ps;s))* ,
A(p, @) =1 —pspsy)*+p(s,+s7)*
de=dy=1/M ,
and B,, are arbitrary constants. The series (17) satisfies the finite dif-
ference system (4) except for the initial condition 4c).
We will now show that it is possible to choose the coefficients B,,
so that the solution w(w, y, t) of the difference system will converge to

the solution W(z, v, t) of the differential system as M—c. We first
define an integer k(M) such that k(M)<M' and limk(M)=o. We
Moo

then choose the B,, so that B,,=0 for p>k(M), ¢>k(M) and the re-
maining B,, so that for any e>0 there exists an M(¢) such that for
M>M,,

(18) | Bpy— A | <eM~21 uniformly for p, g=1, -+, k(M) .
One way of satisfying (18) for instance is to choose B,,=A4,, for p, ¢=
1, .-, k(M). An exact solution of the difference equation then is
k(M) k(M) . . Mzt 2
19) wy(x, ¥, t)= >, >, B,,sin prx sin gry cos arc cos L
p=1 q=1 N
This solution satisfies the initial condition
13 k
(20) w(@, Y, 0)= 2, 3, B,q sin pra sin gry
p=1 q=1

and of course does not satisfy the exaect initial condition w(z, y, 0)=

Flx,v). However, it will satisfy this initial condition in the limit as
M— oo,

LEMMA 1. For any p>0, 0=<z=< ”M ~4ls ngzézzr‘M‘“, there
exists an M,(p) such that for M>M, and for any >0

(21) 4r(2+#)—arc cos:—2 < % ,
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where
A=(l—psin*z sin®*z,)*,
2, =(1—p sin® z, sin®2,)*+ p(sin® 2, +sin’ z,)* .
Proof. We first choose M,(p) such that M>M; and for all admis-
sible 2, z,
(22) 1—psin*z sin®2,>0 .
Let

F(z,, z,)=4r(zi+2)— arc cosL jl

2

It is obvious that F(0,0)=0 and it can be shown by direct calculation
that the partial derivatives of F(z,2,) up to and including those of order
3 all vanish at 2,=0, 2,=0. Thus in the Taylor series expansion of
F(z,, z,) the remainder term is

R(z, 2,) = Oy @i+ Q232 + Q5?12+ B2 25+ Ais?s

where the coefficients a(2,,Z,), t=(1, -+, 5), are related to the fourth
derivatives of F(z,z,) and 0<§1<%M —4fs 0§%2<%M -¢5 Using the
inequality (22) it is possible to show that the a, are bounded functions

of p. Thus using the extreme limits of z, 2, we have

|F(z, 2)|<|R(z, )| A(p) - ’2LM/ ,

and hence it follows that there exists an M,(p) such that for M>M,,

| F(z, z2)1<;4—*; ,

as the lemma asserts.

Now multiplying (21) by ]‘—Ii and putting zl-—— 2= ar

o0 o1l we have

l Mzt are cos Zl(py Q)—nz(p2+q2)t < i
r (P, ¢

and therefore

(23) ‘cos M arc cos :':l(ﬁ’—Q) cos 7 (p*+¢*)i
- >

et
<M .



NUMERICAL SOLUTION OF VIBRATION PROBLEMS

THEOREM 1 (THE CONVERGENCE THEOREM). Under the assumptions

a) t>0, 0<xz<l, O0<y<l; p>0; p,t a9 fixed;

b) [A,IZP, P constant, for all p,¢=1,2, ---,

¢) K(M)<M™ , limk(M)=oo
Moo

d) [Byg—Ap|<eM™, 1=p, ¢skM),

we have

lim wy(z, y, t)= W(=, ¥, t)
M 00

or
k(M) k(M 2.
lim 2 Z B, (M) sin prx sin qry cos ——— L are cos A (P, @)
e p=1 = r 4(p; q)
=3, 3 A,, sin prz sin qry cos (PP +¢%)x% .
p—1q=1
Proof.

k k
wu(®@, ¥, t)— Wz, y, )= > (Bpe— Ayq) sin pra sin gry cos (p*+¢°)n’t

p=1q=1

—

p=1q=1

2

k& . . M3
+> 3 A, sin prx sin q:ry[cos
T 1 r

arc cos ﬁ_l —cos (p*+¢?) nzt]

+ i i A,, sin prx sin gy cos (p*+q%)’t ,
kE+1 k+1
=L+L+ 141, .
By conditions ¢) and d) above and Lemma 1,

\L|<K(M)-eM o<,

|LI<I(M) - M -mjég <et

M
By condition b) and ¢) and Lemma 1,

|L,|< P-FA(M)- ~—<Pst

k k 2
+ 3 3 (By—A4,,) sin prx sin qzry[cos M arc cos %—cos (p2+q2)7r2t:|
r

and because the series for w(zx,y, t) converges there exists an M, such

that for M>M,

II41<5 .
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Thus for M>max (M, M,, M,),
lwy(x, y, t)— Wiz, y, t) | =e(2+et+Pt) .

This establishes the convergence theorem.
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A PROPERTY OF DIFFERENTIAL FORMS IN
THE CALCULUS OF VARIATIONS

PAuL DEDECKER

1. In the classical problems involving a simple integral
(1) Ilsz(t, ql, ql)dt’ ’l/:l, e M,

one is led to the consideration of the Pfaffian form

(2) w=I dt+ 2L a)i:a,L_dqi——@ial_-{—L)dt
0¢ 0q" 0’
where
o'=dgt—§¢* dt .

For example this form o is the one which gives rise to the “relative
integral invariant” of E. Cartan.

In a recent note [1] L. Auslander characterizes the form o by a
theorem equivalent to the following one.

THEOREM 1. Among all semi-basic forms 6 such that
(3) 0=L dt mod
the form o of (2) is the only one satisfying the condition
(4) df=0 mod o’ .

In this, a semi-basic form is a form for which the local expression
contains only the differentials of ¢, ¢'(not of ¢®). The integral I is defined
over an arc ¢ of a space 77  with local coordinates ¢, ¢’, ¢¢ satisfying
the equations w’=0: Therefore in (1) the form Ld¢ may be replaced
by any @ satisfying (3).

Condition (4) is a special case of a congruence discovered by Lepage
[5]. The purpose of the present note is to give a natural reason for this
congruence which goes beyond its nice algebraic expression.

Let us observe that the space %7  is the manifold of 1-dimensional
contact elements of a manifold 27”7 with local coordinates ¢, ¢°. The map

is then the local expression of the natural projection z=: % — . We
Received January 14, 1957.
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remark that we do not integrate (1) on any are ¢ in % satisfying
©'=0 but on such an are the projection ¢ of which in ¥ is regular.

2. Let U be the domain in ¥~ of the coordinates %, ¢*; then the
t, ¢¢, ¢* are defined in an open subset W %% of projection =(W)=U.
If we denote by L; n real undeterminates, we have coordinates ¢, ¢, ¢*, L,
in WxRE"; we then define in this product the Pfaffian form

(5) Qp=Ldt+ Lo .

Now, let us cover 27 with open sets W, W', -.-; this way we get a
family of products Wx R*, W xR*, --- with forms 2,,, 25, ---. Using
fibre bundle techniques, one proves that over a non-empty intersection
WN W the products Wx E* and W xR" can be glued together in such
a way that the forms induced on WnN W’ x R® coincide. This yields a
fibre bundle E( %, R*) over %7  as base, with fibre E*. This bundle is
covered by open subsets isomorphic with the products Wx R" and in
which the ¢, ¢%, §¢, L, are local coordinates; there is also on £ a global
Pfaffian form £ of local expression (5). Combining the projections
E— 97 and % — 7 we obtain a map E — 7 locally defined by

(t’ qi9 Qi, Lz) g (t’ qz) .
We want to characterize in E the extremal arcs ¢* of SQ which have
a regular projection in 7.

An extremal arc ¢* of SQ has to satisfy the local equations

0(dQ) _ 0(dQ) _ 9(d2) _ 0(dQ) _

a(dt) (')  8(dq)  B(dL)
We have

d0="L ,indt+ (iﬁ— Li>dqi/\dt+dLi/\wi .
aqz aqz

These equations are therefore
V=0, (%_Li) dt=0, SLg_qr.—o.
i 0§

Since an arc c¢* of regular projection in 77" ecannot satisfy simultaneously
»'=0 and dt=0 it has to lie in the submanifold F' of E locally charac-
terized by

oL
aq"

3
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or equivalently by condition (4).

THEOREM 2. Every arc ¢* in E for which SQ 18 stationary and the

projection of which in 7 is regular necessarily lies in the submanifold
Fof E locally defined by the congruence (4). Furthermore the projection
¢ of ¢* in 7 extremizes in the classical sense the integral (1). Finally
if ¢ is a regular extremal are of (1) in 7~ let ¢* be the arc of F the
projection ¢ of which in ¥ is the arc of tangent directions to c; then

c* extremizes SQ

3. The submanifold F' can be identified with 9%  in an obvious
way so that 97 can be considered as a submanifold of £. Then clearly
£ induces » on %~

THEOREM 3. If the integral (1) is regular there exists a (one-to-one)
correspondence between the regular extremal arcs ¢ in 7~ of (1) and the

extremal arcs ¢ of Sw in % which have a regular projection in F

Starting from an extremal c, the corresponding ¢ is the arc the points
of which are the tangent directions to ¢; starting from ¢ the correspond-
g ¢ s its projection in 7.

In this statement, regularity of (1) means that the matrix (6°L/0¢'0¢’)
is everywhere non singular.

Theorem 2 and 3 give a complete justification of condition (4).
Theorem 3 was actually proved by E. Cartan [2]. These theorems are
special cases of similar theorems involving multiple integrals and even
those in which the function L depends on higher order contact elements.
Theorem 2 was first proved by the author [3], as well as the alluded
generalizations.

Combining Theorems 2 and 3 yields the following.

THEOREM 4. In the regular case, every arc ¢ in %% of regular

projection in 7" which extremizes Sw with respect to variations confined

to % does also extremize SQ with respect to variations in the larger

space E.

4. There is a last question to be answered: why in Theorem 1
restrict oneself to semi-basic forms?

We can only add to L.dt a linear combination of Pfaffian forms
vanishing with «!; every such form is a linear combination of the *
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and is therefore semi-basic. Hence the restriction to semi-basic forms
in Theorem 1 was actually redundant.

However, as mentioned above and as I have proved in various papers
(e.g. [3, 4]), the above properties generalize to a multiple integral

(6) 1,={Le, ¢, aa,
dt=dt* A\ -+ NdE?, a=1,2, <<+, p; 1=1,2, 4,1,

to be integrated over a p-surface ¢ defined by ¢'=¢%(t*) and where ¢,
stands for 8¢'/6t*. Then %" is of dimension n+p and %~ (which is
geometrically the manifold of p-dimensional contact elements of #7) is
of dimension n+p+mnp. We can consider that we integrate (6) in %7~
over a p-surface ¢ of regular projection in %~ and solution of the Pfaffian
equations

wt=dgi— 3, ¢, dt*=0 .

Such a p-surface ¢ is formed of the contact elements of dimension p to
a regular p-surface in 7" and will be called a p-multiplicity.

Now in (6) we can add to L.dt any p-form vanishing on all p-
multiplicities and all such forms are no longer semi-basic if p>1: for
example dw’AdBA--- Adt? is such one. Nevertheless, the semi-basic
forms satisfying the Lepage congrences [5]:

(7) 0=Ldt mod »® ,
(8) di=0 mod o .

play an important role for a deeper reason which is actually a trans-
versality condition. We briefly discuss this below referring the reader
to my memoir [4] for further details.

5. Let .7 be a p-dimensional manifold and K a domain of .2~ with
regular boundary K. A map

c: K>
is a domain of integration of (6); it gives rise canonically to a map
c: K->y

such that for ke K, ¢(k) is the contact element of dimension p to ¢ at
k. A variation (or homotopy) of ¢ is a family of maps

c.: K—> 77, teR, G=c;

this yields a variation of ¢:
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¢,: K— 7.
We also define C: KxR— % C: KxR— % by
Ck, t)y=c,(k) , Clk, t)y=¢,(k) .

The corresponding variation of 50 is then

A-—_Sc_ 0—50_0

t 0

which may be expressed as a sum of two terms:
(9) A:S_ dﬂ-{-S 9.
GOt }\OEC

The domains of integration C,, and A,C are the restrictions of C to
Kx1I,, and KxI,, respectively (where I,=[0,t]cR). We say that the
variation C is transversal to ¢ if this form vanishes on AC (restriction
of C to KxR). This being the case, the last integral (or boundary
term) in (9) is zero.

Now the variations usually considered are those for which the re-
striction of C to K is constant (fixed boundary variations): for those,
AC has an everywhere non-regular projection in % so that every semi-

basic form vanishes on AC. Therefore if we replace in (6) L.dt by a
semi-basic p-form @ satisfying (7), all variations with fixed boundary are
transversal to it. This would of course not be the case, should we add
to L.dt a non-semi-basic p-form vanishing on all p-multiplicities.
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A NOTE ON ADDITIVE FUNCTIONS

H. DELANGE AND H. HALBERSTAM

1. A real valued function f(n), defined on the set of natural num-
bers, is called additive if f(mn)=f(m)+ f(n) whenever (m, n)=1, and
strongly additive if also f(p®)=f(p) for p prime and «=2,38,.-.--. We
define

(1) 4,=3 f@p, B.=> f(v)v,
p<n p<n

and we assume throughout that

(2) B,—o n—>co .

Additive funections for which B,=0(1) have already been discussed
thoroughly in Erdés and Wintner [4]. They proved the following theorem:

Define

1 for [f(p)|>1,
Sf(p) for |f(pI=1.

Then the additive function f(n) possesses a distribution function if, and
only if, the series

rn=1

/@ and 3 {F(0)}p

converge.

Moreover, it follows from a general result of P. Lévy [10] that this
distribution function is continuous if, and only if, the series > f(p)/p
J(P)*0

diverges. Surveys of this subject are given in Kac [7] and Kubilyus [9].
A comprehensive account is being prepared by H. N. Shapiro.

Our knowledge of functions subject to (2) is not as complete. Out-
standing is the result of Erdds and Kae [3] which states that if

(3) f(p)=0Q1),
the distribution of

Sf(m)—A4,
B

) m=n,

is asymptotically Gaussian. In a recent note H. N. Shapiro [11] has
shown that the theorem of Erdos and Kac remains true even when (3)
is replaced by

/ Received July 26, 1956 and in revised form April 11, 1957.
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(4) limB;* > fAp)/p=0 for every ¢>0 .

T oS
Since (4) is essentially the Lindeberg condition which is necessary and
sufficient for the central limit theorem to hold, one is led to conjecture
that (4) is not only the sufficient but also the necessary condition for
the truth of the theorem of Erdos and Kac. However, it seems very
difficult to establish the necessity (see Kubilyus [8] and Tanaka [12]).
Associated with such questions about the distributions of additive
arithmetic functions is a number of ‘ moment’ problems, which, if solved,
lead to results of independent interest. Thus, for example, the following
result is suggested by, and includes, the theorem of Erdds and Kac.

THEOREM 1. Let f(m) be strongly additive and subject to (2) and
(5) f(p)=o(B}) .
Then we have for each fized k=1, 2, 83, «--

}zim m=1 oy =(2x)" 1
oo i

S (f (m)—A,) -
S e *dw .

(For proofs see Delange [1], [2], Halberstam [5], [6].)

The purpose of the present communication is to indicate briefly a
proof that Theorem 1 remains true even when (5) is replaced by the
weaker pair of conditions (4) and

(52) F(@)=0(B}") .

That (5a) alone does not suffice can be seen readily from the case f(p)
=log p, which determines a very different kind of distribution. On the
other hand, (4) alone would also be inadequate, as can be seen from the
following example.

Let », ps, --+, p;, --+ be an increasing sequence of primes with the
property that the number of primes which belong to this sequence and
do not exceed x is o(log log ). Now take

(p)* it p=p,,
1, if p does not belong to the sequence.

f(p)={

Then B, ~(log log ) and condition (4) is satisfied. However,

2 (fm)— A, ) =(f(p))—4, ) ~ D]

'm§17j

whereas, if Theorem 1 were true in this case, we should have
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2 (fm)—4, ) ~3p,(log log p,)" .
=7

The most general formulation of Theorem 1 remains an open ques-
tion. The theorem shows, incidentally, that although the method of mo-
ments is in many ways more tractable for determining the distributions
of given functions, it is not as wide in scope as the method evolved by
Erdss and Kac.

2. We suppose throughout this section that (4) and (5a) hold. First
of all, we rewrite (4) as

(6) lim ¢(n, €)=0 for every ¢>0,
where
(7) d(n, )=B;* > fAp)lp .

<N
1731 >eBL?

To simplify subsequent arithmetic we choose ¢<1/2 and keep it fixed ;
then we choose n so large that

(8) d(n, €)<~;—s

as is possible by (6). We set

(9) ot =nE

and observe that in view of (9) and the well-known relation
(10) S p'=log log y+c+o(1)

<y

where ¢ is an absolute constant,!

(11 > p7'=0(1) .
“7L§P<7b
We define
(12) A= 3 flp, Bi= 3 FfO|p
MO e

and
(13) =3 .

p<d, . pim

170> I=eBL/2

By (7) and (12)

1 The constants implied by the use of the O-notation depend throughout on at most k.
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=B, (1—¢(n, ¢))
and this combines with (11) to give

(14) By =B,(1+0(s*+¢(n, ¢)) .
LEMMA 1. A, =A% +O(BY {e+e9(n, €)}) -

Proof. By (1)
A,= Z f(p)p+ Z f(p)/p+ Z f(p)/p

IJ(P)|<EB 1/2 ]f(pr)bt<531/2 If(p)l>aB 1/2

The first sum on the right is A;: by (12) with y=«,, the second sum
is O(eBY?) by (11), and the third is less than

B 3 fAp)p=B""d(n, ¢)

7o) Senl?
by (7). Hence the result.

LEMMA 2. If rZEk, then

mizl (f(m)— f*(m)y"=0(nBr{e+e7d(n, ¢)}) .

1

Proof. By (18) and the definition of f(m)
S(m)—f*(m)= Z S+ Z So)= 2 f(p)

lI(p)I>eB”2 177?p)|<w” 2 e %’
where &, is the set of those primes less than n which satisfy either

(1) If(I>eB,”
or

(ii) |f(p)=eB?, pza, .

Then the sum of Lemma 2 is

o5, 5 ., Zme) el 3 1)
v 1'r1—; -x->a;==>21 iy (”1'7?';11;)”"

" rw)-rw))

"=

:0<§1 {T;»X LF ()P} pvg";:vl: o,

where )" indicates that the summation is carried out over all sets of
distinct prime numbers p, ,, -+-, », With p,e & (¢:=1, 2, ---, v), and
[v] stands for the integer part of y. Using (5a), (i) and (ii) this expres-
sion is
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o(nxE® S| = el S ireisp-),

880 @, Sp<n
o Sen® rcpiseBy?

which, as in the proof of Lemma 1, becomes
o(n 3B 3 (B (B )= 0(nBi 5 5 (igye)
v=1 5=0 y=13=0
=0nB{e7'p+e}) ;
here we have used the restrictions on the magnitudes of ¢ and ¢ im-

posed at the beginning of §2 (see inequality (8)).

Next we set
Mn)=3 (Fm) =AY, ME)=3 (F*(m)—A%) .
Then
My(m)= 3} {(AZ, — A+ (f(m)— Fm)+(f*(m) — A )}
so that by Lemmas 1 and 2 and Cauchy’s inequality

M,()— M ()
=0( S 14, AL 1 Gm)— )l (m) — AZ )

T HTy =
r3=k-1

=0( |3 Brt e+ gn S (Fom)— FH om0 m) )

<k-
7‘3=k 1

=0(w"* 5 BEDete g} (MEM)")

rsk-1

But by the methods of Halberstam [5] or Delange [2] it is a straight-
forward matter to confirm that for n sufficiently large

Ml*(n):n(B;“n)"2(27r)‘”zrwwle’“’z’2dw{1—1—0(6)} , <2k,
so that by (14) and (8)
(15) l*(n):nBﬁF(27r)‘1/2Siwwze“"2’2dw{1-I—O(s)} , =
and, in particular
ME(n)=0(nB) , r<k .

Hence
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My(n)—Mi(n)=0(nB; {e+e'p}'?) ;
now, whilst still keeping ¢ fixed, we let n tend to infinity, and obtain

M(n) _ M (n)

hm k/2 k/2
‘nB: nBE

N~—>oc0

=0(eh).

Thus, by (15) with i=F,

fim | M) (27r)'”zsu w*e=*"Pdw | =0() .

n—ro0 B;‘Ln

Since the left side is entirely independent of ¢, and yet the relation is
true for every ¢<1/2, we have now proved that

11m Mg(:/? =2 )‘1’28 mw"e“"z“dw

for every fixed k=1,2,3, ---.
This concludes the proof of Theorem 1 with condition (5) replaced
by the pair of conditions (5a) and (4).
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CHARACTERISTIC DIRECTION FOR EQUATIONS OF
MOTION OF NON-NEWTONIAN FLUIDS

J. L. ERICKSEN

1. Introduction. According to the Reiner-Rivlin theory of non-
Newtonian fluids," the stress tensor # is given in terms of the rate of
strain tensor d! by relations of the form

(1) ty=—pdi+ A di+ .7, did} ,
where p is an arbitrary hydrostatic pressure, the .#’s are essentially
arbitrary differentiable functions of

(2) 11:_%(1;01{, 11l =det d!,

and d satisfies the incompressibility condition
(3) di=0.

The tensors d} and ¢! are both symmetric.
It is known [2] that the characteristic directions of the corresponding
equations of motion are the unit vectors »; satisfying

(4) F(v)=2U04+-20U+- (U} - U.U=0 ,
where
Uz%‘l’%/ﬁui ’

Ui T @)+ 20— ), O — 0,05

™ B111 11
0.%  0.%
SR N A
+2(dp ™ — ") 22 3T ”’an>

,U,;:d“l)j .

Sinece F(y;) is a continuous function of y; on the compact set v;p'=1,
a necessary and sufficient condition that no real characteristic directions
exist is that F(v;,) be of one sign for all unit vectors. Using this fact,
we obtain simpler necessary conditions which are shown to be sufficient
when & =0.

2. Necessary conditions. Let d;, d, and d, denote the eigenvalues
of di. From (3),

Received April 12, 1957.
1 This theory was proposed independently by Reiner [4] for compressible fluids, by
Rivlin [5] for incompressible materials. We treat the latter case.
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(5) di+d,+d;=0

We restrict our attention to unit vectors v, which are perpendicular to
an eigenvector of d! and note that F'(»;), being a continuous function of
y;, must be of one sign for all unit vectors in order that no real
characteristic directions exist. Given any unit vector v; perpendicular
to an eigenvector ¢; corresponding to d,, we may introduce a rectangular
Cartesian coordinate system such that, at a point, v, is parallel to the
positive a'-axis and e, is parallel to the z’-axis. Then

Vt=8i17 dm:dzz:dudg =d21d§ =0,
2dlz:(d1_dz) sin 2(15 ’ d33:d3 y

where ¢ is the angle between », and an eigenvector corresponding to
d,. Making these substitutions in F(v;), given by (4), we obtain, by a
routine calculation,

(6)  Fe)=2LA — A d)| A —Fd— L @& dysin2g 270

d s
1l + oI alll

_ g0 | g0 _dﬂag]}

which must be of one sign for all real angles ¢. This is clearly true
if and only if it is of the same sign for ¢=0 and ¢=xr/4. That is,
either

(7) [ — AL — ] >0
and
(8) (A~ d) | A~ d— L d—ay| 2

0.7 | 0T af]
- d L— 32, 2 0’
ot T % om }>

or (7) and (8) hold simultaneously with the inequalities reversed. By
similarly analyzing the cases where y;, is perpendicular to eigenvectors
of d} corresponding to d, and d,, we conclude that either

(9) [A —FdllF —Fd]>0 (@ #7),

and

10 A —FAF —Fd— @)%

0.7 07} .
— d dk—‘flf : - 0 s Js k ’
ot T %amr %o }> (4,3, k)
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or
(11) [A —F dill A — % d;1<0 (i#39),

and (10) holds with the inequality reversed. Now (11) cannot hold for
all ¢ and 7, so this possibility is ruled out. We thus have

THEOREM 1. A necessary and sufficient condition that no real charac-
teristic directions ewist is that F(v;)>0; in order that there exist no
real characteristic directions perpendicular to an eigenvector of d, it is
necessary and sufficient that the inequalities (9) and (10) hold.

For (9) and (10) to hold, it is necessary and sufficient that either

(12) G —F d;>0
and

1 0.% _ 105 | J0A 50
18) A —Fdy—Ld—d [ L d g ]
(13) LA 2( ) B ’“an tad oIl alIL >0

@, 4, k#),
or
(14) T — F <0
and
1 657'
15) o —Fde— L [ a2 f_]
(15) ! g 2“ ) i an+ "am ’Cam <0
G, 7, k).

3. Equivalent conditions. Let ¢, denote the eigenvalues of the
stress tensor corresponding to the eigenvalue d; of d,, so that from (1),

Li=—p+FA d+Fd}.

Using (5),
(16) ti—t;=[A +% (di+dy))d;—d,)
=[S —F d]](d;—4d)) (@, g, k+).
From (2) and (5),
(17) 11 :——(d2+d2+d )-_——zll—(di—dj)z——i’-d,i,
L =d,dds = doldi —(d: =] G, 4, k).

Using (16) and (17) to express ¢;—t, as a function of d,—d; and d.(4, j, k#),
we calculate
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as) i)
a(dz - dj) : @, =const.

1 0% L 0.F | 0.7 0.
= — Z d.— = (d,— 2[ 1 2 d - :l.
= A 2( —dy) o1l — Il + FoIIl d: o111

From (12), (138), (14), (15), (16), (18) and Theorem 1, we have

THEOREM 2. When the eigenvalues of d; are all unequal, a necessary
and sufficient condition that there exist mo real characteristic direction
perpendicular to an eigenvector of di is that either

(t;i—t)/(d;—d)>0 and 0(t;—t,)/(di—d ) a=cons. >0,
or
(ti~tj)/(di~d.1)<0 and a(ti__tj)/a(di_dj)idk=const.<O (7'7 7 k;&)’

When (12) holds, the stress power @, given by
30= 3t;dj‘= (tl - tz)(dl - dz) + (tz - ts)(dz_ ds) + (t3“ tl)(dS - dl)

is negative, a possibility which many writers exclude on thermodynamic
grounds.

4. The case % =0. When & =0, # #0, the characteristic
equation (4) has been shown [2] to reduce to

(19) Gv)=FA +A4'B;=0,
where
A=2(p'— V)

0.7 0.7

= ymd, .
Bi=pmes T Mo

In fact, F(v,)=2% G(v;). When & =0, %4 =0, every direction is
characteristic, a case which we exclude. Using the Hamilton-Cayley
theorem,

dididy,=111¢8%, —11d,, ,

we can reduce (19) to the form

b

(20) G(a, By=% +2(111-1la

III 6II

where

(21) a=ppt=d, ph , B=pgip,=did 5™
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Now (21) is a mapping of the unit sphere vpi=1 onto a region R
in the a—p plane. The conditions

%G — 214907 44027 2,

o111 oI1
0G _ _ 9o A DA _q
op oIII ~ oIl

+ dG= i4[6‘%daz—%dadﬁ]§0 for all da, dg
o1l oIIl

must be satisfied at any interior point of R at which G is a maximum
or minimum. These conditions cannot be satisfied unless 0.% [011=
0.7 [6111=0, in which case G(v;,) is independent of »;, and &% #0 is
then necessary and sufficient that there exist no real characteristics.
From the implicit function theorem, values of v; corresponding to boundary
points of R are such that the equations

da=2d, y'dy’ , dp=2d%d;,*dv™ , 0=y,dv*

do not admit a unique solution for dv*in terms of da and df5. We thus
have

THEOREM 3. Mawimum and minimum values of G(v;), hence of F(v;),
hence of F(v;), occur only at values of v; such that the wvectors v;, d;’
and did...™ are linearly dependent or, equivalently, at values such that
the determinant D of these three vectors vanishes.

Whatever be the unit vector »;, we can always choose rectangular
Cartesian coordinates such that, at a point, v;=0y, dy=0. The condition
D=0 then reduces to

1 0 0
0= dy d, dy,
dh+dh+dl,  da(dy+dy)  da(dy+ds)
=y dy(dys— ) -

If d,=0(dy,=0), 0(ds) is an eigenvector of d;. If dudy+#0, dy=d.,,
the vector with components (0, dy;, —d,) is an eigenvector of d;;, whence
follows

THEOREM 4. The vectors v;, d;p’°, did,v™ can be linearly dependent
only when v, is perpendicular to an eigenvector of d.

Theorems 3 and 4 imply that, when % =0, we will have F(v;)>0
for all unit vectors v, if and only if F(»,)>0 for each unit vector v;
which is perpendicular to an eigenvector of di. From Theorem 1, we
then deduce
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THEOREM 5. When & =0, a necessary and sufficient condition that

there exist no real characteristic directions s that the inequalities (9) and
(10) hold.
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ON TWO THEOREMS OF PHRAGMEN-LINDELOF
FOR LINEAR ELLIPTIC AND PARABOLIC
DIFFERENTIAL EQUATIONS OF
THE SECOND ORDER

AVNER FRIEDMAN

1. Introduction. In Part I of this paper our main interest is to
generalize to elliptic equations the following theorem of Phragmén-
Lindelsf :

THEOREM 0. If f(k) >a as z— o along two straight lines, and
f(@ is regular and bounded in the angle between them, then f(z)—a
uniformly in the whole angle as z — .

A generalization of the classic Phragmén-Lindeléf theorem to elliptic
equations was given by Gilbarg [1] and Hopf [4]. A refined form of
that classic theorem, due to the Nevanlinnas [5], [6; 42-44] and Heins
[3], was generalized to elliptic equations by Serrin [8].

In generalizing Theorem 0 we shall make an extensive use of
the Gilbarg-Hopf results.

In Part II we generalize to parabolic equations both the classic
Phragmén-Lindelsf Theorem and Theorem 0.

In § 2, Theorem 0 is proved for elliptic equations defined in any 2-
dimensional domains (Theorems 1, 2). The case n>2 is treated in § 3,
for domains contained in a half space. In §4 we consider the behavior
of solutions in an angular neighborhood of the origin, and we obtain
results similar to those of §§2,3. In §§5, 6, generalizations to parabolic
equations are given: Theorems 7, 9 extend the classic Phragmén-
Lindeléf Theorem and Theorems 8, 10 extend Theorem 0.

The results in Part I are somewhat analogous with Theorems 2, 3,
3" of Gilbarg-Serrin’s paper [2]. The similarity appears both in the type
of conditions imposed on the coefficients of the elliptic operator and in
the assertions. It is however important to note that our results cannot
be obtained by the Gilbarg-Serrin methods, since Harnack Inequalities
which play an essential role in their paper, do not hold uniformly in
open domains.

Received May, 13, 1957. Paper written under contract with Office of Naval Research
N58304.
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ParT 1

2. Consider the differential operator

(1) Lu= 3% (@) 2%t 3 ba) w= (@, ~+ v, 3,)
8351 Ox0x,;  i-t ox;

defined in a domain D. In this and the following chapter D is supposed

to be unbounded. We denote by 8D the boundary of D, and by D the
closure of D. We shall assume throughout Part I that L satisfies the
following conditions ([1], [4]):

(i) % la;;(x)| is bounded in D, and, for all xe D, &, real,

;;_ a;(2)6:6,za ; & a>0,
(ii) for all ze D, |x|=r,
(2) S i) = plr)

where p(r), defined for 0<r< oo, is monotone decreasing and

S:p(r) dr<eo .

Define a;(o)=lima;,(x) as |x| > « (xe D), whenever the limit exists.
The matrix (a;,(x)) is said to be Dini continuous at infinity, if there

exists a monotone decreasing function ¢(r) with rr’lso(r) dr< «, such
that for ze D, |x|=r,

% |as5(@) —a;,( )| = e(r) .

Let wu(x) be defined in D and belong to C*D). In Theorems 1-6 the
function u(z) is also assumed to be continuous in D. Denote

mr)=__ 3",£|=r“(x) , M= Sup =rlu(ac)l .

Let K, denote the n-dimensional cone with angular opening 3, 0<3<2r,

whose axis is the positive x,-axis and whose vertex is at the origin.

LEmMMA 1. Suppose DC Kz, n=2. Assume that L satisfies (i), (ii)
and that (a,;(x)) s continuous at infinity with a,(o)=0d;;. If Lu(xr)=<0
in the open set D, =DN|x|>r,, w(@)=0 on 8D,, and for some y'<y=n/B,

lim r;"m(r,) =0 (ry, = o as k— ),
k—co
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and if 1, is sufficiently large (depending only on L, B and 7’), then u(x)=0
m D,,.
By u()=0 on 8G we mean: liminf u(x)=0 as « tends to 8G (z e G).

Proof. Following the Gilbarg-Hopf method, it is enough to prove the
existence of functions vy(z), r,<R< oo, with the following properties :

ve(2)=0 if |z|=R, xe oD,
(%) ve(2)=1 if |z|=R, zeD,,,
(4) Loy(x)=<0 if |z|<R, veD,,,
(5) for every ze D,,, R vx() is bounded as B — o .

Denote by A(x;, x;) the harmonic function defined in the semicircle
C’: x+x2<1, x;>0, which takes the value 0 on the diameter and the
value 1 on the rest of the boundary. The transformation z’=2°, where
7' <0<Ly, ¥ =x,+ix,, 2=x,+12,, maps S=K,;N[x|<1 onto a domain S'cC'.
The function k(zx,, x,)=nA(x], ;) is harmonic in S and takes boundary
values =0 on the radii and the value 1 on the rest of the boundary.
We shall find vg(z) in the form v,(z)= f,(k(%))
If we show, in addition to Lf;<0, that

(6) f200=0, fx(1)=1, 0=fu(k)<1 if 0=<Kk=<1, and
(7) fe(k)=0(k"""®) uniformly in R, as k—0,

then (3), (4), (6) follow. Note, in proving (5), that Rak(%) is bounded
as B— c. The construction of f; proceeds as in Hopf’s proof [4], ex-
cept for the facts that property d) p. 421 and the inequality

@)l o o
(8) Zj Ih’(x)|2<

0<|z]<1

do not hold for the corresponding k.

The image of K, under the mapping 2=z’ is a 2-dimensional cone
K, . (¢>0) with opening 7—e and S’CcK,_.. From Hopf’s proof it is
clear that instead of satisfying d), it is enough for % to satisfy:

d’) along each equipotential arec k(x)=-const.,

@) =(= (5’6&)2)“ >pg 0k

; 0,

on the axis of @, (say at ), H>0. Since the equipotential arcs of k(x)
is S correspond to equipotental arcs of A(x’) in S, we have
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WL( )51 p-i= _oh(@ )5‘ r|@-vis

k/ — h/ /
@)= 2 (& e e~

= B ppyo-on— K@)
6:172 axz

where %’ is the image of & and H>0. Here, in the case § <1, we used
the inequality |«'|<H,|&'| (H,>0), noting that S'cK,_..

The estimation of > a;,(x)k(6) in Lk (see [4; p. 423]) has to be
modified, since (8) does not hold for k. Defining

(9) €i(@) =i (2) =8y, e(r)=_ sup 3iley(@)l,

€D, jz]=7

and using the harmonicity of %k, we get

I= KOS ay@FH§) SACH leu(@)| 5[‘;,(‘5,;' I‘;‘fj_n

Be(r)

<AC ,
T

where A and B are constants, and |g|<1.
Using the inequality 2|¢'|=A(&) ([1; p. 414]), we obtain
I<AC+Be(r)k- .

Define #, to be such that if »>#, then Be(r)<1—7'/s. Then, the last
inequality for I shows that Hopf’s method can be applied to prove that
Lfr=<0, provided that f, satisfy:

F)_ e 1=7)0  P) /
10 - T T Hek@)en) | F&>0,

where £=(0, x,) (k£ is a monotone function of x,).
Solving (10) we obtain,

(11) fill)=Ek"p" exp (—ACk—P(x)),  fa(0)=0,

where
E‘—lzglk”"s‘l exp (—AC—P(x,)) dk , P(s)=H~- 1§ p(t) dt .

The verification of (6), (7) is immediate and the proof is thereby com-
pleted.

LEMMA 2. Suppose DC K, n=2. Assume that L satisfies (i), (i)
and that (a;,(x)) is continuous at infinity with a,(c)=20,. If 1, is suf-
Jiciently large, then there exists a function w(®), defined in D,,, and
having the following properties :
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(@) w@)=0 if xzedD,,
() w@)=1 if xzeD, zl=r,
(¢) Lw(x)=<0 i xeD, , and

(d) w(x)—>0 wuniformly in D, as |@|— o .

Proof. To prove the lemma, define 5(x’)=30(w’), where Jz') is
T

the polar angle of the point &' with (—w;, ;) as a pole. Define also

v(x)=7(a’), where «’ is the image of x under the mapping 2z’ =z", where

r=n/f, Z=wm+ix, z=x,+ix,. We try to find w in the form w=f(v).
(c¢) implies that

Using the harmonicity of »(x) we conclude, after some calculations (see
[1; p. 414]), that (12) is a consequence of the inequalities:

saH (S

(13) jj(@)) < — Age(lerf) ] 'z' — Alelp(al) ZL 'z' F@)>0,

where A,, A, are proper constants and () is defined by (g).
Taking 7, to be such that 24.e(r)+24.0p(r)<1—¢8 (0<i<]) if r>nr,
(note that rp(r) —0), and using the elementary inequalities

|| <r; ctg & [2=2r[V(a') ,
we conclude that if f(v) satisfies:
(14) SO w)=—-A=0)v,  [f()>0,
then (13) follows. Solving (14) we find that the function f(v)=1’ satis-
fies (a)-(d).

THEOREM 1. Suppose DC K;, n=2, and assume that L satisfies (i),
(ii) and that (a,,(x)) is continuous at infinity with a,(0)=0;;. If Lu(x)
=0 in D, and, for some 7,

(15) lim ") g (>0 if f#r, 7=0if f=x),

roseo pT/B=7

and if u(x)—>0 on 0D as |x|— oo, then w(x)—>0 uniformly in D as

|| — 0.

Proof. Given ¢>0, there exists #,>0 such that —e<u(x)<e for
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xzedD, [x|=r,. Denoting M(,zlqnax [w(x)], we can apply Lemma 1 (in the
x| =7

case f=n we apply the Gilbarg-Hopf theorem) to the function v(x)=u(x)
+Maw(x)+¢ in the open set D,. We get v(x)=0 in D, . Taking » to
be such that Mw(z)<e in D,, we conclude that wu(x)>—2¢ in D, .
Similarly we get w(x)<2¢ in D, and the theorem is proved.

REMARK. Using a proper linear transformation we conclude that
the assumption a,,(0)=24;,, can be dismissed if in (15) F is replaced by
f’, where f’ is the angular opening of the image of Kj; under the linear
transformation. The continuity assumption of the a;;,(x) at infinity can
be replaced by the weaker assumption that the oscillation of the a,,(x)
near infinity is sufficiently small.

We can reduce the case 0<f3=2r to the case f=r by the conformal
mapping 2 =2"#, where z=ux,+1x,, 2 =2,+%x,. Applying Theorem 1, we
get the following theorem after some calculation.

THEOREM 2. Let DC Kz, n=2, and assume that L satisfies (i), (ii),
that (a,,(x)) is Dini continuous at infinity with a;,,()=20;;, and that
rp(r) (r=n|B) is monotone decreasing. If Lu(x)=0 in D, and

(16) lim 207) g |

and if u(@)—0 on 8D as |x|—> oo, then u(x)—0 uniformly in D as
x| — .

As in Theorem 1, the restriction a;,()=4d;, can be dismissed, but
then in (16) and in +'~'p(r), # should be replaced by 7.

In analogue with Theorem 2, one can formulate an extension of
the Gilbarg-Hopf theorem to the case 0<f<2r. Serrin’s results [8] can
also be extended to domains DC K, (0<5<2z) such that the image of
D under the mapping 2’ =z%# contains a half plane a;>c¢. In particular
we have the following.

If Lu<0 in D and v=0 on 0D, then lim r~"Pm(r) exists and is <0.

T-»00

3. In this section we consider the case n=3.

LEMMA 8. Suppose DCK,, %§ﬁ<7r, n=3. Assume that L satisfies

(i), (i) and that (a,,(x)) is continuous at infinity with a,()=8d;. If
Lu(2)<0 in D, , w(x)=0 on 8D, and, for some y'<y=r/f,

lim r;""m(r,)=0 (ry—> o as k— «),

k~>o0
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and if r, is sufficiently large, then u(x)=0 in D, .

Proof. The proof proceeds as in Lemma 1, if (following Hopf [4]),
we define

K(w):k(f); x«n) y P:'\/m%+...+xi_1=1/r2_wi‘ , 0<,r<1 ,
where k is the function defined in the proof of Lemma 1. The only

essential difference will be in estimating >’ a,,()K;)(§). Clearly,

> K (@)=(n—2) L a’;

and

S K @)<4, S Ikul+A4—| Ok | (lal<1, 4,>0, 4,>0).

If we show that

(17) =1 0k /1k'12<B and |J|=B+5:,
p op k

where B, and B, are positive constants, then we can proceed as in the
proof of Lemma 1, and the proof of Lemma 3 will be completed.
To prove the first part of (17), we write J in the form

_ |2l~*sin 08 1 Izl8 'cos (6—1)8 ok
sin & TR (2P0l ap

1 [2P'sin (6—-1)F A

— =J,+J,
Izl sin @ |/ (Z)]Polzl2C-D oz, it

where J; is the first term and 2'=2% z=ux,+ip, 7 =w,+ip’, p=|z|sind,
etc.. Since %6—;&’ is bounded near p’=0, and since |A'(?’)] is bounded
from below by a positive constant, we get |J,|<B;.
Mgo and sin(?—l)ﬂ
5, sin &
take 1<0<3), it follows that J,<0 and consequently, J<B;.

The second part of (17) follows from noting that |J2|<

Since =0 if 1<6<3 (since 1<7r=38 we can

gé
8Tk

LEMMA 4. Lemma 2 is true also in the case n=3.

Proof. The function t(x)=ry*z*™ satisfies (a), (b) and (d). We
shall find w(z) in the form f(¢). Condition (¢) implies that
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18 (t) K an(@) PHIEI L (S a ) 22

lwlm lx[n +2

~Saa) "2 — 5 b) O D) <0
S T ol

By our assumptions, 3 la;(x)—3d,=Ze(lz])—0 as |z| —>0. Using the
harmonicity of |z|*?, we find that if f(¢) satisfies

(19) F'@OF' ()< —(Be(lz)+Bilzlp(lzl))jt ,  f'(#)>0,

where B, and B, are proper constants, then (18) follows. Now, if 7, is
such that Be(r)+Byp(r)<1—4 (0<o<1) for r>r,, and if

(20) SO O=—0=0t",  f©>0,

then (19) follows. Solving (20) we get the function f(¢)=t°, which
satisfies (a)-(d). ,

With Lemmas 2 and 3 at hand, we can use the argument used in
proving Theorem 1 and thus get the following.
THEOREM 3. Suppose DC Kg, %g B, n=8. Assume that L satis-

Jfies (1), (i) and that a;,(x)) is continuous at infinity with a,,()=20,;. If
Lu(x)=0 in D, and for some 7,

lim A1) _ (>0 if f#x, 7=0 if f=x),

Ny L -

and iof u(@)—0 on 8D as |x| > o, then u(x)—0 uniformly in D as
lg| = oo.

REMARKS. (a) The remark which follows Theorem 1, applies also
to Theorem 3.

(b) If we assume in Theorem 3, that wu(x)=0(*"*%), 6>0 on 8D
then the same holds in D. This follows by applying the maximum
prineiple to functions of the form wu(x)+ Ar*~"+**+e, where A is a proper
fixed constant and ¢>0 (compare [2; 324-325]).

4. Let D belong to the half space x,>0 and denote by C, the open
set DNlz]<r. We shall consider the behavior of solutions near x=0;

it is therefore assumed that 0e D.

We first observe that the construction of w(z) in Lemma 4, can be
easily modified to derive functions w,(x) defined in C;=C, N|z|>r for all
0<r<r,, and having the following properties :
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@) w(x)=0 if wzeoC,,

() w(x)=1 if zeC, , |o=r,

(¢) Lw (x)<0 in C,, and

(d) there exists 6 (0<d<1) depending on 7, (6 =1 as r,— 0), such that

lim 973G, () =0 if wzeC,;

r-0

here, 7, is assumed to be sufficiently small, and, (a,,(x)) is assumed to
be continuous at =0 with a;;(0)=0,;.

With the aid of w,(x) we can prove an analogue of the Gilbarg-Hopf
theorem.

If Lu<0 in C,, u=0 on 9C, and
lim P®=Dm(r)=0 (0<o<]),

70
and if r, is sufficiently small (depending on 6), then u=0 in C, .

We can now use the method used in proving Theorem 1, noting
that the role that w(x) played in that proof is now given to the function
f,o(k(ﬁ)) of Gilbarg-Hopf. The following theorem is thus proved.

7o

THEOREM 4. Let D belong to the half space x,>0, n=3. Assume
that L satisfies (i), (i) and that (a,,(x)) is continuous at x=0. If Lu(x)
=0 ¢en D, and, for some positive e,

lim r*=2=fu(r)=0 ,

r—0
and if w(@)—0 on 8D as |x| =0, then u(x) — 0 uniformly in D as |z| — 0.
The continuity assumption on the a,,(x) at =0, can be weakened.

The case n=2 can be treated in a similar manner. Note that now,
instead of modifying Lemma 4, we rather modify Lemma 2 and thus

§
obtain w,(x) in the form (_2» Ny, x;)> , where (x;, #;) is the image of
T

(,, x,) under the mapping z'=z"?. We have the following.

THEOREM 5. Let DC Kz, n=2, and assume that L satisfies (i), (ii)
and that (a;,(x)) is continuous at x=0 with @;(0)=0d;;. If Lu(x)=0 in
D, and, for some positive e,

l}_r}ol r Bt p(r)=0,
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and if uw(x)—0 on 0D as |x| — 0, then u(x) = 0 uniformly in D as |x| — 0.

Another way to treat the case n=2, is to reduce it to Theorem 1,
using the mapping 2 =2""f. We thus get the following.

THEOREM 6. Let DC Ky, n=2, and assume that L satisfies (i), (ii)
and that (a;,(x)) s Dini continuous at x=0 with a;,(0)=0;;. Assume
Surther that r****p(r) is monotone increasing. ILf Lu(x)=0 in D and

lim 78 u(r)=0 ,
r-0
and if w(x)—>0 on 8D as |x|— 0, then u(x) — 0 uniformly in D as |x| — 0.

By using the same mapping z'=2""f, we can derive theorems analo-
gous with the Gilbarg-Hopf ([1], [4]) and Serrin’s ([8]) theorems, provided
that L satisfies the assumptions of Theorem 6.

In the case n=38, B=<m, such theorems can also be obtained, by
using the transformation z;=a,/|z|* (:=1, ---, n).

PArT II
5. Let z=(w,, ++-,a,) and denote X=(z, t), |X|=(z*+¢*)"*. Con-
sider the operator

ou _
0

b

n 2, n 6
(1) Lu= 3 a(X) 0% 4 Spx) 0% 0%
=1 oxdw, =1 x, Ot

defined in an unbounded domain D. We shall assume that L satisfies
the following conditions :

(i) 3 lai(X)| is bounded in D, and, for all Xe D, ¢, real,

%l a(X)é, = 2 é (>0),
(ii) for all Xe D, |X|=R,
(2) 13 2b(X)|=p(R) ,

where p(R) (0<R< =) is bounded and p(R)— 0 as R— .
Beside the functions m(R), p(R) defined in Part I, we introduce the
functions

m/(R)=inf u(X),  p/(R)=sup [u(X)l,

where T,=DnN|z*+[t|=R.
Let K, denote the cone with angular opening 3, whose axis is the
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positive ¢-axis and whose vertex is in the origin. In what follows,
w(X) is assumed to belong to C* D). In Theorems 8, 10 u(X) is also
assumed to be continuous in D.

THEOREM 7. Let D belong to the half space t>0, and assume that
L satisfies (i), (il). If w(X)=0 on 8D, Lu(X)=<0 in D, and if

(3) limmzo (R, > as k— ),
[ add R,i

then w(X)=0 in D.

Proof. The function vx(X)=(la*+(+K)*)/R* (K>0) has the follow-
ing properties :
(a) vx(X)=0 if XeodD, |X|ZR,
(b) vx(X)=1 if XeD, |X|=R,
() Lwe(X)<0 in Cr=DN|X|<R, if K is sufficiently large, and
(d) Rwg(X) is bounded, for every X, as R — oo,

The function #(X)=u(X)—co(R)vx(X), where o(R)= min (0, m(R)), is non-
negative on 9C, and Lu(X)=<0 in C,. Applying the (weak) minimum
principle [7], we conclude that #%(X)=0 in C,. Taking R=R; — o and
using (3), we get u(X)=0.

REMARK. It is eclear that the same proof holds under weaker as-
sumptions on L: (ii) may be replaced by > #b,(X)<H, where H is a
constant, and in (i), the boundedness of 3} |a;;(X)| in D may be replaced
by the boundedness of >} a,(X) in D and the boundedness of > |a;,(X)|
in each C;.

LEMMA 5. Let D belong to the half space t>0, and assume that L
satisfies (i), (il). If R, is sufficiently large, then there exists a function
w(X) defined in Dpy=DN|X|>R,, and having the following properties:

(@) wX)=0 i XeodDg,

(b) wX)=1 if XeD, |X|=R,,

() Lw(X)=<0 in Dy, and

(d) w(X)—0 uniformly in Dy, as |X|— c.

Proof. Define
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_C —Hlz
X)= :
W= exp< Ak ) (C>0, >0, H>0)

Since W(X)>0 if |[X|=R,, t=0, we can choose C such that (b) is satis-
fied. Since (a) and (d) are also satisfied, it remains to verify (c).

4H?z,x 2H e Hlx|? }
DLU { Lol i - Zy - ’
WAy 2 t+1 s TR R
consequently, if
(4) A S a,am,<|lolf, 2HS au+2HS ab=e,

then Lw=<0. Obviously we can choose H and e such that (4) is satisfied.

With Theorem 7 and Lemma 5 at hand, we can now proceed as in
the proof of Theorem 1 and get the following.

THEOREM 8. Let D belong to the half space t>0, and assume that
L satisfies (i), (ii). If Lu(X)=0 in D and

(5) lim #E)—o

R—»o00
and if w(X)—>0 on 0D as |X|— «, then w(X)—0 uniformly in D as
|X| — .

Theorems 7, 8 are not true for domains D in the half space ¢<O0.
As an example take D to be the whole half space <0, and take u(w, t)
=t where m is an odd positive integer. Then

1

u=0 on ¢=0, Lu=——¢'m1<0 if t<0,
m

hm’l(R) =0 if l<a,
m

R

but #(X)<0 if £<0, and lim w(X) does not exist as [X|— o, £<0.

6. THEOREM 9. Let DCK,, 0<f3<2r, and assume that L satisfies
(1), (). If Lu(X)<0in D, w(X)=0 on 0D, and if

(6) tim 7 (%) — g (Ry— o as k— ),

k=00 %

then w(X)=0 in D.
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Taking vx(X)=2(|z|*+ Bt+ C)/R* (B and C are proper constants), we
proceed as in the proof of Theorem 7. Details will be omitted. The
remark that follows Theorem 7 applies also to Theorem 9.

Lemma 5 can also be generalized to the case DcK,, 0<p3<2x.
Indeed, the function w(X) may be defined as follows:

C Hizly .

Y _exp{ — if t>—R

w(X)=] C+RY 2(~in) "
0 if t§_Ro-

Proceeding as in § 5, we get the following theorem.

THEOREM 10. Let DCKg, 0<B<2r, and assume that L satisfies (i),
(ii). If Lu(X)=0 in D and

im KR _
(7) lim ?T~O

R0

and if W(X)—>0 on 8D as |X|— oo, then w(X)—>0 uniformly in D as
1X| - co.

Note that (7) can be replaced by the stronger assumption

(7 lim 20 _g .
R—oo R
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ADDITIVE FUNCTIONALS OF A MARKOV PROCESS
R. K. GETOOR

1. Introduction. We are concerned with functionals of the form
1

L:S Vla(z)ldr where x(t) is a temporally homogeneous Markov process
0

in a locally compact Hausdorff space, X, and V is a non-negative
measurable function on X. In studying the distribution of this functional
various authors (e.g. [1], [3], and [7] have considered the following
funetion

1.1 r(t, x, A)=E{e-**|x(0)=x;x(t) € A} p(t, x, A)

where p(t, #, A) is the transition probability function of z(¢). If one
can determine 7 then one can in essence determine the distribution of
L since (#>0)

¢, , A):S:e‘“de[Lg NaO)=z:at)e 4]  p(t, @, A) .

Formally it is quite easy to see that if p satisfies an equation of diffusion
type

op
1.2 £ =0
(1.2) ot P

that r should satisfy the equation

or
1.3) fé,t-,_(Q uVr .

If «(t) is the Wiener process in E¥ and V satisfies a Lipschitz
condition of order «>0 Rosenblatt [12] has given a rigorous derivation
of (1.3). In this paper we use the theory of semi-groups to give a
meaning to (1.3) for a wide class of processes without assuming any
smoothness conditions on V. Rosenblatt’s result does not follow from
ours since our results only imply that = is a “weak” solution of (1.3).
However, for many applications (e.g. [10]) this is all that is really
required.

Because of certain difficulties connected with the definition of the
conditional expectation in (1.1) we define r directly and prove that if

r(t, x, A)
o(t, , A)>0 then m
Since we intend to apply analytic methods it is necessary to investigate
the dependence of r on its various variables. This is done in § 2.

Received May 8, 1957.

is the appropriate conditional expectation.
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Beginning in § 3 we assume that p(¢, 2, A) has a density f(¢, «,¥)
with respect to a Radon measure m and we show (8§84 and 5) that if

U.o(x) :Sgo(y)p(t, x, dy) has infinitesimal generator 2 on L,(m) then T,¢(x)

:S<p(y)r(t, xz, dy) has infinitesimal generator 2—uV if V is bounded,

subject to certain regularity conditions on f. If V is unbounded our
results are less complete and are contained in Theorem 5.2. In the
sequel we will suppress the parameter u.

We use throughout this paper the function space approach to
stochastic processes. We also make use of certain elementary facts
about integration in locally compact spaces. The reader is referred to
[2], [4], and [5] for the basic facts required. In a future paper we
plan to study the spectral properties of the operators defined here. In
that paper X will be an open subset of an N dimensional Euclidean
space.

I would like to thank Dr. R. M. Blumenthal for several enlightening
discussions during the course of this research.

2. A class of integrals over a function space. Let X be a locally
compact Hausdorff space and B(X) the Borel sets of X; that is, the
smallest s-algebra of subsets of X containing the compact sets of X.
Let X be the set of all functions from [0<¢< o] to X which are right
continuous; that is, a(t)—a(t,) if ¢t | t,. Let p(t, #, A) be a transition
probability function defined for ¢>0, xe X, and AeB(X), such that
given an arbitrary probability measure ¢ on B(X) there exists a Markov
process x,(t) with paths which are right continuous and which has ¢ as
its initial distribution and p(¢, , A) as its transition probability. In
other words, if B(X) is the s-algebra of subsets of ¥ generated by sets
of the form

A:{x(')lx(tj)eAJ;j:()y 17 s, Ny Aje%(X); 0:t0<t'1<"‘ <tn}

then there exists a countably additive probability measure, P,, on B(%X)
such that

@y P=| | | wdapt,m, dmpt—t, 5, )

0 1 (3

'p(tn'—tn—ly Ln-15 dxn) .

If ¢ assigns mass one to a single point, x, we write P, for P,.

We agsume that
(P)p(+, -, A) is jointly measurable' in (¢, ) for each AeB(X). We also
pick a fixed g, and x(¢) will always denote the processes having p as

1 Measurability conditions in ¢ are understood to be with respect to the ordinary Borel
sets of [0t < o].
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its initial distribution. Clearly (once we have established Theorem 2.1)

(2.2) PlA|2(0)=ax]= P, 4) , (4€B(%)) .
If Ae®B(X) we define

(2.3) A,={a(He(-)eX; x(t)e A} e B(X) .

If AeB(¥) and AeB(X) we define for £>0

(2.4) P z;t, A)=PJ4ANA,].

It is evident that P(-;x;t, A) is a finite measure on B(X) for fixed
xz,t, A and that P(4; z; ¢, -) is a finite measure on B(X) for fixed 4, z, ¢.
It is easy to see that if ¢ and A are such that p(¢, #, A)>0 for all z, then
(again assuming Theorem 2.1)

(2.5) PlA|2(0)=2; o(t) e A]=LLI4: @it Al
p(t, @, A)
THEOREM 2.1. P[A;-; -, A] is a measurable function of (¢, x) for
JSized 4, A.

Proof. Let A be fixed and suppose
A={w(-)|x(t)e A,;5=1, -+, n}

then P[4;x;t, A]=P,[4NA,] which is measurable in (¢, ) in view of
(2.1) and (P,). Hence P[4;x; ¢, A] is measurable in (¢, 2) for A’s which
are finite disjoint unions of sets of the above form. But the measur-
ability of P[4;x;t, A] is preserved under monotone limits of 4’s and
hence P[4; z; ¢, A] is measurable for all 4¢e B(X). See [8].

The following lemmas will be of use in the sequel.

LEmmA 2.1. Let (Y, ®) and (Z, D) be measurable spaces and let
m(A, B) be defined for Ae & and Be . Suppose that m(-, B) is a measure
on (Y, ®) for each fized Be 9 and that m(4, -) is a measure on (Z, )
Jor each fized Aec®. Let f=0 be a measurable function on (Y, ®) then

2.6) o(B)= | rwymidy, B)
1S o measure on (4, ).

Proof. The only thing that requires proof is that ¢ is countably
additive. Let {f,} be a sequence of simple functions such that f,=0
and f,1f. Clearly

0.(B)= an(y)m(dy, B)
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are measures and ¢,(B) 1 ¢(B) for each Be . Let B= \D_oj B, where the
j=1

B,’s are disjoint. Put B®= OBj, then lim lim ¢,(B®)=q(B). Since ¢,(B®)
j=1 n Ok

is increasing in both n and & we can interchange the limits obtaining

q(B)=1ilxcn lim ¢, (B®)=1lim ¢(B®)= i q(B,) .
n k Jj=1

LemMA 2.2. Let (Y, ®) be a measurable space and let f(t,y) be an
X valued function defined for t=0 and ye Y. If f(-,y) is right continuous
Jor each ye'Y and f(t, -) is G-measurable for each t then f(t,y) is jointly
Bx G measurable. (B is the s-algebra of ordinary Borel sets.)

Proof. Define g,(t,y)=f((7+1)/n,y) if j/n<t=(j+1)/n for j=0,1,2,---
and n=1,2,.-.. Let Be®B(X) and define G,,=f((+1)/n, -)"}(B), then
since f(¢, -) is G-measurable G,,€®. Let A,,= {tlj/n<t=(j+1)/n} B,
then

92 '(B)= JQ) Aax Gy

which is in Bx®. Hence g, is jointly Bx G measurable for each 7,
but ¢.(¢, 2)—> f(t, ) as n— oo and thus f is Bx G measurable.

If @ [x(-)] is a complex valued measurable* functional on X we
write r[@;¢t,x, A] for the integral of @ over X with respect to the
measure P[-; x;t, A], provided the integral exists.

THEOREM 2.2. If @=0 48 a measurable functional on X then
r[@;t, x, A] is @ measure on B(X) for fized (t, x) and is measurable in
(¢, x) for fized A.

Proof. This is an immediate consequence of Lemma 2.1 and
Theorem 2.1.

Let ¢ be a complex valued measurable function on X, then for
each ¢t>0 we define a measurable functional, ¢,, on X as follows:
o 2(-)]=¢[a(t)]. Also if @ is a measurable functional on ¥ we denote
its integral over ¥ with respect to the measure P, by E{®[xz(-)]lx(0)=xa}.

THEOREM 2.3. Let @=0 be a measurable functional on X and ¢ a
complex valued measurable function on X; then

@.7) [e@riost, o, an=E(@-gla=) ,

provided either integral exists.

2 Measurability of real or complex valued functions always means Borel measurability.
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Proof. Suppose ¢=1, where I, denotes the characteristic function
A, then the left hand side of (2.7) is 7[@; ¢, «, A]. Now if @=1I, then

rll,;t, @, A]=P[4; z; t, A] .
But
(L)L (=L [a(@)] =L [2(-)] ,
where 4,= {a(:)|x(t)e A]. Thus
E{1,-(1,).|2(0)=2} =P[ANA]=P[4; z; ¢, A] .

Let @, be a sequence of simple functionals such that ¢, 1 @, then @,-(L),
is a sequence of simple functionals increasing to @-(I,),. Therefore

EA{@,- (L)), |2(0) =2} 1 E{0-(Ly).|2(0)=x} .

On the other hand »(@,;t,x, A1 r(®;t, «, A) by the monotone con-
vergence theorem and since

E{d)n' (IA)tlw(O):x} :,r‘[@n! t, €, A]

it follows that if either of the integrals in (2.7) is finite the other is
also and they are equal in the case ¢=1,.

If ¢=0 let ¢, be a sequence of simple functions increasing to ¢
then if either of the integrals in (2.7) exists we have equality for each
¢, and by monotone convergence for ¢. The result for a general ¢ now
follows in the usual manner.

For each ¢=0 let z,(r)=a(t+7) for all =0, then we define a map,
S,, from % into X by S,2(-)==,(-). Clearly S, is a measurable transfor-
mation of X into X. If @ is a measurable functional we define S,@[x(-)]
=@[Sy(-)].

THEOREM 2.4. Let @ be a functional measurable with respect to® B,
and ¥ be measurable with respect to B, such that 0<O0<M and 0S¥V <M,
then

2.8) Sr[(ﬁ; t, @, Ayl s s, y, Al=r[0-S,0; t+s, @, A] .

Proof. Since @ and ¥ are non-negative and bounded it is clear that
the integral in question exists. If @=1, and %=1, with F'e®, and
G e B, then

S [a(-1=LSa(-)]=1,

-1y
: ¢

thus to prove (2.8) for I, and I, we must show that

3 %[?,t;f denotes the c-algebra of subsets of ¥ generated by sets of the form
{x() |2(z ) € Aj; hiry=to}, and B;=DB[0, t].
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(2.9) SP[F; w1 t, ylP[G; y; s, A]=P[FNS7G: o t 43, A] .

We first consider the case in which

F={a(-)|a(t)e A,; j=1, -+, m; t,<t}
G={z(-)|a(t:) € By; k=1, « -+, m; t;<s} .

In this case

S;'G={a(-)|x(t+¢t) € By; k=1,2, -+, m} ,
thus

SP[F; x; t, dylP[G; y; s, Al

=S§ S Dt @ da)plts—ts, @1, d) + -+ PE—tr, @0, )
Al A

n

Jee ] w v aw o w6t v, )
By B

m

=S S S S Dy, @, dwy) -+ pE+ti—tn, 20, dyy)
Al An Bl Bm

'p(t—l_t;_(t—l_t;)) yl’ d?/z) e p(t+s_(t+t;n)y ymy A)
=P[FNS;'G;x; t+s, A] .

If ¢t=t,, or s=t,, or both, it is necessary to make only minor changes
in the above argument.

This equality clearly extends to finite disjoint unions of such F’s
and G’s and since S;! is a s-homomorphism it extends to monotone limits
of such G’s. Thus (2.9) holds for each F'in the algebra of sets generated
by sets of the given form and for each Ge®B,. For fixed GeB, the
left hand side of (2.9) is a measure in F' by Lemma 2.1, hence (2.9)
holds under monotone limits of such F’s and thus finally (2.9) holds for
all ¥ and G in the appropriate s-algebras.

Let @, and ¥, be sequences of simple functionals increasing to @
and ¥, then by monotone convergence

Sr[@,; t,xz, dylr[?; s, y, A]l=r[@,-S,¥; t+s,x, A] .

Applying an argument similar to that used in the proof of Lemma 2.1
the equality (2.8) results. (This also follows from Theorem 2.3.)

We conclude this section with the following theorem which is easily
proved using standard approximation techniques.

THEOREM 2.5. Let @ (¢, (+))=0 be jointly measurable in t and z(-)
then r[@(, x(-)); &, x, A] is jointly measurable in (t, x).
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3. Additive functionals. For each pair (¢,,%,) with 0=¢,<¢t, let
L[t t,; ©(-)] be a functional (L may be+ ) on ¥ which is measurable
with respect to ¥B[¢,, £,] and which is jointly measurable in ¢, £,, and
(). We further assume that for ¢,<¢<#¢, and each z(-)e X we have

(3.1) Lt ty; 2(-)]=L[t,, t; (- )]+ LE, ty; 2(+)];
and that
(3.2) S.L{t,, t,; «(-)]=L{t,+¢t, t,+¢; z(-)] .

Such a functional will be called an additive functional on X (See [1]).
THEOREM 3.1. Let V=0 be a measurable function on X, then
Lit,, t; a()]= | VIa(e)1dr

gt
18 an additive functional on %.

Proof. Define F(t, z(-))=x(t) then F' is measurable in z(-) for fixed
t and right continuous in # for fixed 2(-). Thus by Lemma 2.2 F is
jointly measurable in ¢ and a(-). Since V[a(t)]=V[F'(, 2(-))] is the
composition of measurable transformations V[a(z)] is jointly measurable
in r and @(-), and therefore (a simple argument using Lemma 2.2 shows
that) Szz Va(z)ldr is jointly measurable in ¢,,¢,, and x(-). The other

1
properties that L must satisfy are obvious.

We suppose that L[¢,, ¢,; 2(-)]=—M where M >0 is independent of
t, &, and z(-). We define

(3.3) r(t, x, A)=rle”tOH= ¢ gz A] .

Theorems 2.2 and 2.5 imply that (¢, 2, 4) is a measure on B(X) for
fixed (¢, «) and is jointly measurable in (¢, ) for fixed A e B(X). More-
over the fact that

(3.4) 0=r(t, =, A)=e"p(t, x, A)

is a simple consequence of our definitions.
THEOREM 3.2. r(t+s, A):Sr(t, @, dy)r(s, y, 4) .

Proof. This is a corollary of Theorem 2.4 once we observe that

Ste—L[o,s; ()] :e-L[o.s; Szz(-)] — e-StL[ﬂ,s;w(-)] ____e—L[t,t-l-s:z(')] ,

and therefore
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e—-L[O,t;z(')] . Ste—L[O,s; #)] — o= L0t +s; ()] .
At this point we assume that there exists a Radon measure, m, on

B(X) such that p(¢, z, A) has a density f(¢, z, ¥)=0 with respect to m
for t>0; that is

(3.5) pit, @, )= 7, vmiay, £>0.
We assume that f is jointly measurable in ¢, 2, and y, but we do not
assume that m is finite. We introduce the following conditions on

S x,9):

(P,) S S, z, yym(dx)<ke* where k and « are positive constants in-

dependent of y and ¢.

(P;) Given ¢>0 and a compact set AC X there exists a compact set B
such that

S (@, x, yym(de)<e for ye A and t<1 .
z¢B
We define operators on appropriate funection spaces as follows:

(3.6) (T.9)(a) = {pyrt, @, dv)
3.7) U)@)=[entt, 2, dn)={e@)£¢, 2, midy) .

THEOREM 3.3. If f(t,x,y) satisfies (P,) then {T,; t>0} and {U,; t>0}
are semi-groups of bounded operators on L.(m).

Note. All Borel sets are m-measurable [4; 5] .

Proof. From (3.4) we obtain
| T ()| < Slsv(y)lr(t, z, dy)
geﬂg o), @, dy)=e"T)¢|(z)

and thus it will suffice to prove that U, is a bounded operator on L,(m)
for each ¢>0. But

U () =] S £ (&, 2, 9)e)m(dy)

< Sf(t, @, 4) | ¢() Fru(dy) |
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and therefore

[wg@pm@n < [m(da) S £(t, @, vle@)m(dy)
<ke*-|¢| .

Thus |U,|*< ke and |T,f<ke™**. The fact that {7,;¢>0} and
{U,; t>0} are semi-groups now follows from Theorem 3.2 and the fact
that p(¢, x, A) satisfies the Chapman-Kolmogorov equation.
THEOREM 3.4. If f(¢, z, y) satisfies (P,) and (P;) and lim L[0, ¢; 2(-)]=0
-0
for all x(-)e X then the semi-groups {U,; t>0} and {T,; t>0} are strongly

continuoust on Ly(m).

Proof. We prove the theorem for {7',; £>0} the results for {U,;t>0}
being a special case (take L=0). We must show that |T,¢—¢|—0 as
t—0 for all ¢ e L(m). Since |T,| is uniformly bounded for ¢<1 it will
be sufficient to show that |7,¢—¢|—0 as t—0 for ¢ continuous with
compact support, such functions being dense in L(m) since m is a
Radon measure, [2]. We first show that T,¢(x) — ¢(x) pointwise as ¢—0
if ¢ is continuous with compact support. According to Theorem 2.3

Tip(a)= Sﬂﬂ(y)r(t, x, dy)=E{e~ "% - o(a(t))|w(0) =2} .
Using the right continuity of x(-) and our assumption on L we see that
&™) o (#)] > ¢l 0)]
boundedly as ¢ | 0 and hence by the bounded convergence theorem
T.p(x) — E{g[x(0)]|2(0)=a} =¢(x) as ¢]0.
Let A be the support of ¢, then if Bis compact and BDA we have

10— ¢b={, | T@— (@ Pmida) + | 1 Tugta)—p(a) Pm(de)

=I+1, .
But

|T0(a) | = | le@r(t, o, dy) < sup (@) -

hence I,—0 since B is compact. Now since BDA we have

L|  (Te@lmdn) zer| 1o@l| 7 o ymdymds)

4 By the strong continuity of a semi-group {7%;t>0} we will always mean strong
continuity for t=0 where 7, is the identity.
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and so, if B is chosen properly, using (P;), we see that I, is small.
This completes the proof of the fact that {T,;¢>0} is strongly con-
tinuous on L,(m) .

4. The Darling-Siegert equations. In [3] Darling and Siegert showed
that (¢, z, A) has to satisfy two integral equations. We give a derivation
of these equations based on the material of §2. We assume that
p(t, @, A) satisfies (P;) and that

t
Lt t; a(1=| " VIa(e)lde
1
where V is a bounded, non-negative, measurable function on X. The

formal outline of the derivation given below is exactly that of Darling

and Siegert.
We begin with the following identities which are easily verified (f
measurable, non-negative, and bounded)

(4.1) exp [_ S f(r)dr]:l—S:f(s) exp [—S f(r)dr:lds

(4.2) exp [— SO f(r)dr}: 1— SO £(s) exp [— SO f(r)dr:|ds .

Also using Theorem 2.4 we have

(4.3) 'r|:V[x(s)] exp (— S’ V[m(r)]dr); t, z, A]
=7‘[V[x(s)]-Ss exp (—SZ Viat)lde); (t—s)+3, 2 A]
=[rtVIts; 5, 2, dupexo ([ VEntedc)s -5, , 4]
=[vwwts, 2, dure—s, v, 4)

provided we show that

(4.4) |tV s, @, = r@) V@, a)

for measurable, bounded f=0. Suppose f=I, and V=I, then

[r@rtvieen; s, 2, dyl=PiLL6); 555, 4]
=PIB.N A= P, 5, ANB)=| 1) Vs, =, dy)

The standard approximation technique now yields the desired result (4.4).
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Putting f(zr)=V[x(r)] in (4.1) and applying (4.83) we obtain (the
interchange in the order of integration is valid since

Va(s)]- exp (—j Via(e)] dr)

is bounded and jointly measurable in s and z(-))

(4.5) r(t, x, A)=p(t, x, A)—S:dsg Vy)r(t—s, y, A)p(s, z, dy) .
In a similar manner using (4.2) we find

@) (@, A=plt, 2, A~ | ds| V@t —s, v, (s, o, dp);

and these are the Darling-Siegert equations. In deriving (4.6) one needs
the relation

(4.7) r[VIz(0)]; ¢, y, A1=V(9)p(t, v, A)

which is obtained in much the same manner as (4.4).

Taking Laplace transforms in (4.5) and (4.6) yields (the necessary
interchange of order of integration is again justified since the integrand
is bounded and jointly measurable in its variables)

4.8) #t, 2, A)=p(2, 2, )= [ VWG, v, DB, 2, dy)

(49) (2, 2, A)=2, 2, A)= |V, v, 43, 2, dy)
where # and p are the Laplace transforms of » and p.

5. The infinitesimal generators. Let 2 and £ be the infinitesimal
generators of {U,;t>0) and {T,;¢>0} respectively. We assume in this
section that (P,), (P,), and (P;) are satisfied. It then follows, since the
semi-groups involved are strongly continuous on L,(m), that 2 and &'
are closed densely defined operators on Lym). See [6] and [9].

We assume that

(5.1 Lit, ti o()=| VIs(ede

where V is a non-negative measurable function on X. Note that in
this case M=0.

THEOREM 5.1. If V 4s bounded then 2 =2-7V.

Proof. Let J, be the resolvent of {T,;t>0} then for 1>a we
have
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Jp(a) =" e Tt
0
and thus

IJASO(x)lzé—}—j:e‘“IT,go(x)lzdt .

Applying the Fubini theorem we see that J,¢(x) exists for almost all
x(A>a) and is in L,(m), moreover for >« we have

" k
(5.2) IS o

In view of the above facts we can write

(5.3) ()= Sso(y)%(z, @, dy) .

From the general theory of semi-groups, [6] and [9], we know that
for 2>« the range of J, is independent of 1 and is, in fact, the domain
of ', which we denote by Dy.. In addition it is known that

(5.4) A=) o= for all ¢e Ly(m);
(5.5) J(A—2)p=¢ for all ¢eD,, .

Let I, be the resolvent of {U,;¢>0} and then in a similar manner
we have

(5.7) Lg(z)= S Wi, , dy)= o) G, 2, Ym(@y)

From (4.8) we see that

sto(w)zzxso(x)—Ssa(z)SV(y)%(z, y, dD)D(A, , dy)
=L ¢(x) —L[V. Jrel(x)
=LIe—V-J,¢l(x) .

The above steps are justified since V-J,¢ € Ly(m) under our assumption
that V is bounded. Thus D, CD, and conversely using (4.9) D,C Dy,
that is, D,=Dg . Now

(A=) Jxp=2—L[¢— VJ,¢]
= ¢> - VJ)\SD ’
or equivalently,

[2—Q—-V)]lyo=¢ for all ¢elL,.
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Thus 2--V is an extension of £, but since V is bounded the domain
of 2—Vis D,=Dy . Hence @=02-V.

COROLLARY. If Vs bounded and f(¢t, x, y)=1(t, vy, x) then Q and £’
are self-adjoint operators.

Proof. Since f(¢, z, y)=f(t, vy, ) each U, is a bounded self-adjoint
operator and hence 2 is also self-adjoint, although not necessarily bounded.
The boundedness of V implies that V considered as an operator on L,(m)
is bounded and self-adjoint, therefore 2—V is self-adjoint, [11]. Thus
Q'=0Q-—V ig a self-adjoint operator which in turn implies that each T,
is a bounded self-adjoint operator.

If V is not bounded our results are much less complete (V is no
longer a bounded operator on L,(m) and one runs into the usual *“ domain
problems ”’). It is natural to try to approximate ¥V by bounded functions
and then use a limiting procedure. Accordingly we define

V) if V(@)=N,
N if V@=N

(5.8) Va(@)=

and it is evident that each V, is measurable and bounded. Let
Dy = {¢lp e L(m); V-¢ € L(m)};

that is, D, is the domain of V considered as an operator on L,(m). We
are, of course, assuming that f(¢, «, y) satisfies (P,), (P,), and (Py).

THEOREM b5.2. If V is non-negative and measurable then D, N D, C Dg,
and ©f ¢ € DoNDy then Q' ¢=(2—V)e.

Proof. We define

-— 4 (T T
ry(t, z, A)=1(e W tecen it @, Al
and

Tip@) = ewrat, =, dy)

For each N we know that {T:";¢>0} is a strongly continuous semi-
group of bounded operators on L,(m) whose infinitesimal generator is
2—V,. Since Vy1 V we have by monotone convergence that

(5.9) ry(t, @, A) | r(¢, @, 4) .
We first show that for each >0 and all ¢ € Ly,(m)
(5.10) | TP —T,e||—0 as N> .
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Since |T¢"| <ke** it will suffice to prove (5.10) for ¢ continuous with
compact support. Let py(4A)=ry(¢, x, A)—r(t, x, A)=0, then py(A) |0
for each fixed A and is a measure on B(X) for each fixed N. It is
clear that

| T5%p() — Tp(a)| < S e (@)l -

Let ¢, be a sequence of simple functions decreasing to [¢|, then since
Sga,(y),uN(dy) is decreasing in both N and j we can interchange the limits

obtaining |T\™¢(x)—T,¢(x)|— 0 pointwise as N— o at least if ¢ is con-
tinuous with compact support. If the support of ¢ is A then (5.10)
follows exactly as in the proof of Theorem 3.4 since

|, Te@pm@a) < | 1@l s, @ ymdam(y)

for compact B. Thus (5.10) is established.

We prove next that D,ND,cD, . LetJ® and J, be the resolvents
of {T{;t>0} and {T,;t>0} respectively. Since |T5"|=<Fke** and
T™¢—T,p it follows that J&'¢—J,¢ for each ¢e L (m) and 1>a.
Choose a 1>« and let it be fixed for the remainder of the present
proof. If ¢eD,ND, then ¢e D, v, for each N, hence there exist
¢y € Ly(m) such that ¢=J¢, . Moreover [1—(2—Vy)le=¢xy or ¢y=12¢
— Q¢4 Vye. Clearly Vy¢— Vo pointwise and since |Vy¢|<| Vel it follows
that |Vye—TVell—>0. Thus ¢,—>¢—Q¢-+Ve=¢ as N—oo in Ly(m).
But

1J5°¢y — D | < | TPy — Y| + [P — TS|

and therefore J™¢, —J,¢ as N— o sgince |J| is uniformly bounded
in N. However, o=J®¢, for all N and hence ¢=J,¢ which implies
that ¢ e Dy, .

Since ¢=J,¢ where ¢=1l¢p—0Q¢+ V¢ we see that (1—2)e=d=¢
—Q¢+ Ve or equivalently that Q¢=(Q—V)¢ for ¢eD,ND,. This
completes the proof of Theorem 5.2.

COROLLARY. If R is self-adjoint (that is, f(t, x, y)=f(,y, x)) then
2 is self-adjoint. Let E, (1) denote the spectral resolution of 2—Vy and
E(2) the spectral resolution of 2, then Ey()¢—>E)¢ for all ¢ e L(m)
provided that 2 is a continuity point of E(2).

Proof. We use the same notation as in the proof of Theorem 5.2.
From the corollary to Theorem 5.1 it follows that each T is self-adjoint
and T, being the strong limit of self-adjoint operators is self-adjoint
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for each t>0. Hence the infinitesimal generator, 2', of {T,;¢>0} is
self-adjoint. The strong continuity of {T,;¢>0} implies that T,¢=0 if
and only if ¢=0. A similar statement holds for 7. Under these
circumstances EP=Fy(¢") and E(1)=F(¢") where F, and F are the
spectral resolutions of 7™ and T, respectively. See [11]. Thus if we
show that Fy()¢—F(l)¢ at all continuity points of F we will have
proved the corollary. Since T™¢—T,¢ this follows from a theorem of
Rellich (See [11], p. 366).
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(r, £}>SUMMABILITY OF SERIES
U. C. GuHA

1. Introduction. Let 7,(x) denote the (C, k) mean of cos x, so that

1.1) ro(®)=cos z ,
and
(1.2) ()= 9% Sc (@—u)tcosudu , (k>0),

=k Sl (1—%)*-*cos xt dt ,
0

= I'(k+1)C@) |

xk
where C,(z), the kth fractional integral of cos x, is commonly known as

Young’s function [6, p. 564].
We shall say that the infinite series 3} a, is summable (7, k) if
0

(i) 2 a,r(nt) converges for 0<t<A

and

(i) lim > a,7i(nt)=S, where S is finite.
-0 0

We see that (r, 1)=(&, 1) and (7, 2)=(R, 2), where (&, 1) and (R, 2) are
the well known Riemann summability methods. Hence the (7, k)-sum-
mability methods constitute, in a sense, an extension of (R, 1) and (R, 2)
summability methods to (R, k) methods where % may be non-integral.
But this extension is not linked with the ideas which lie at the root of
the Riemann summability methods, that is, taking generalised symmetric
derivatives of repeatedly integrated Fourier series, so that the equivalence
of (r,k) and (R, k) for k=1, 2 may be considered to be somewhat ac-
cidental, and the extension artificial. However, the (7, k) methods are
also connected with certain aspects of the summability problems of

Fourier series. For, let i A,(2) be the Fourier series of a periodic and
0
Lebesgue integrable function f(x) and let

H)= L F@+t)+Fla—0} .

Received June 3, 1957.
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Then, by some well known theorems (see, for example, [1].) the problem

of Cesaro summability of > A4,(x) is connected with Cesaro continuity
of ¢(t) at £¢=0, @) being said to be (C,k) continuous at £=0 if

k ' A —y)'¢p(ty) dy exists for 0<t< A and tends to a finite limit as ¢ tends
0

to zero. On the other hand, under certain conditions (e.g., if k=1) we
have

1 oo
B, =0y o) dy=S Aaprnt)
Thus the nature of the connexion between (7, k) and Cesaro summability
methods, when the series in question is a Fourier series, is immediately
apparent.

Some known theorems which may be interpreted as results on (7, k)
methods are stated below. & denotes any arbitrary positive number.
(A) If a series is summable (r,1) then it is summable (C,1+9).

See Zygmund [11].

(A)) If a series is summable (v, 2) then it is summable (C, 2+-0).

See Kuttner [7].

(A;)) If a Fourier-Lebesgue series is summable (v, k), k=1, then it 1s
summable, (C, k+9).

See Bosanquet [1] and Paley [8].

Neither Bosanquet nor Paley actually states any such result, but if
a=1, then Bosanquet’s Theorem 1 as well as Paley’s Theorem 1 can be
restated in the present form.

(B)) If a series is summable (C, —98) then it is summable (7, 1).

See Hardy and Littlewood [4].

(B,) If a series is summable (C,1—0) then it s summable (7, 2).

See Bosanquet [1] and Verblunsky [10].

(B, If i‘, a,/n* is convergent and ian is summable (C, k), k=—1, then
0 1}

i a, 18 summable (r, k+1+9) .
0
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See Bosanquet [1].

In view of the above results the question naturally arises whether
we can remove the restrictions (a) that in (A;) the series in question is
a Fourier series and k=1 and (b) that in (B;) > a,/n* is convergent, and
obtain the general results

(A5 (G, k) implies (C, k+9), k=0,
and
(B, (C, k) implies (v, k+1+8), k= —1.

But so far as (B;) is concerned, we may state here that the con-
vergence of >, a,/n* is essential for the truth of the conclusion, because
we shall prove a result (Lemma 5) which implies that if > a, is sum-
mable (7, k), k=2, then > a,/n* is convergent.

In this paper we shall obtain the following results of the type of
(A7) :

(i) If k s zero or a positive integer, then (v, k) implies (C, k-+9).

(i) If [k]1=4, then (v, k) implies (C, k+9).

The question of the truth of (A’;) for fractional values of & less than 4
is still open.

2. Lemmas.

LemMma 1. If k>0, then for large positive values of z,

B cos (x—%)

1
" +O<wk+1> ’

where A and B are mon-zero constants; the asymptotic formulae for the
derivatives of 7.(x) are obtained by formal differentiation of this formula.

ro)="2+0(1)+

x? z?

This result is familiar. See, for example, Bosanquet [1].

LEMMA 2. Let f(x) be periodic with period 2z and Lebesque integr-
able, and let 3. (a,cos nx+b, sin nx) be its Fourier series. Set

¢(t):-;—{f<x+t)+f(x—t)} :

¢(t)=%{f(x+t)—f(w-t)} ,
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()= d@)t" if r is an even integer
= St if r is an odd integer.

If ¢(t) is integrable in the Cesaro-Lebesgue sense in (0, ) and its Fourier

series s summable (C, k) ot t=0, then >, (%)T(an cos nz+b, sin nz) is
fod

summable (C, k-+r).

For this result see Bosanquet [2, Theorem 2].

LEMMA 3. Let f(t) be an even periodic function with period 2x. If
J@)eCL where 0<A1<1 and f(£)=0(Q)C, 1+1) as t—0, then the (C.L)-
Fourier series of f(t) at t=0 is summable (C, k) for every k>141.

For this result see Sargent [9, Theorem 4].
LeMma 4. If ianrk(nt) 18 convergent for a<t<f, then
0

(i) a,=o(®*) if O0<Ek=2,
Gi) a,=o(n?) if k=2.

Proof Case 1. k=0. The hypothesis implies that lim a, cos nt=0

-0

for a« <t<f, which, by the Cantor-Lebesgue theorem, implies that
a,=0(1).

Case 2. k>0. The hypothesis implies that lim a,r(nt)=0 for a<

N—>c0

t<p, which, on account of Lemma 1, implies that

=
lim an{nAero( 1 )+€is_(it k2}+0(_—1—)}:0 for a<t<f.

I 2 e I i i+

If 0<k<L2, we write this as

Beos(nt—k™
IRV e i N WY

and if k>2, we write

4 ) B cos (nt—k%) .
tim {5+ O )+ +O (e )} =0

The result, for 0<k=<2, is now obtained by a slight modification of the
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usual proof of the Cantor-Lebesgue theorem, whereas, for k>2 we get
the result by noticing that the expression within brackets tends to
a non-zero limit as » tends to infinity.

LEMMA 5. If k=2 and ianrk(nt) is convergent for a<t<p, then
0

> a,/n* is convergent.
1

Proof. Since Kuttner [7] has proved the result for k=2, we assume
that £>2. We also assume without any loss of generality that «>0.
Now suppose that (a,, §,) is a subinterval of («, £). Since

@.1) Ci(nt >—ﬂ(l+)1~)~ck_z(m> ,

therefore
B
> Cutmt)—t)t—a) at

_ By pl-2gk-2 _ . . Bo _ _
—S%m(ﬂo Bt — ) dt S Comsmt)(Bo—t)(t—aty) dt

=n"""¢(, Bo) — Siﬂ Ci-o(nt)(Bo—t)t—an) dt

where

By, Po)= E (B —INE— ) dt

F(k 1) S

is positive.
Hence, integrating by parts twice, we have

@2) " Cnt)(m—tit— ) dt
= 9t )= S [(fo—t) {Culnf)+ Culna} )+ 2 [ Cutrty e
Now, since k>2,
Cu(nt)= F(k 1)rk<nt) 0@ ,
for any fixed #. Hence, from (2.2) we get

2.3) [* Cutntypo—t)(t—au) dt=notp(en, B)-+ 00 .

Therefore, if p and ¢ are two positive integers and ¢>p,
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@) [ {3 S mie—it—ag)dt= 3 | SO~ di

%o

=4l f) 3 2+ 3 00n79a, by (2.9

q q
=g, B) 3 %2+ 31 0( L) by Lemma 4.
n=p N~ =p n

If possible, let the lemma be false. Then we can find a positive
number ¢ such that, for an infinity of pairs of integers (v, ¢;), ¢.>vi,
we have

%

Za—z">2€.

n=p, N

(2.5)

Again, if p, is sufficiently large, then

(2.6) S o( >< (o, o) -

7Lp0

From (2.4), (2.5), (2.6) it follows that

2.7

{2 %ck(nt)(ﬂo—t)(t—“ﬂ)}dt’ > el fo)

n=p,

But the quantity on the left hand side of (2.7)

9

Z ~«C (nt)

npo

(2.8) <{1 wb.

@ =t=B,

} S: (Bo—t)(t—atp) dt .

From (2.7) and (2.8).

Lub. | 3% % 6,00)| > ettt 80 /| (Bo—tMe i) at
wo—t</30 n=p0 @,

> ey I'(k—1)
> et~ I(k—1)
>Me,

where M is a positive constant independent of the subinterval («,, 5,)

IIO a
> ﬁ Ci(nt)

n=pg

Hence < Me at some point in («,, 4,) and therefore through-

%
out a subinterval («y, 5;) of (@, B,), since 3 9»: C.(nt) is a continuous
n=p, 1

funetion of ¢.
If, in the above argument, we now replace (a,, ) by (a, £), (Do, @)
by (p;, q.) where p,>q,, we will reach the conclusion that
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q
> " Cylnt)

n=p1

> Me

throughout a subinterval (a,, 8,) of (a,, f;). We can thus determine
a sequence of pairs of integers (p;, ¢;), tending to infinity with ¢, and a
corresponding sequence of intervals («;, 8,) such that «;,=«;, B,..<85; and

q

i
S %;: Cy(nt)

n=pi

> Me

throughout (a,, 3;). Therefore, there is at least one point ¢, common to

all these intervals such that the infinite series 3, Q% Ci(nt) diverges for
n

t=t,. This contradicts the hypothesis of the lemma.
3. Theorems.

THEOREM 1. If 3\ a, is summable (v, k) where k is zero or a posi-
0

tive integer, then ian s summable (C, k+9), 6>0.
0

Proof. Case 1. k>0. As we have already noted in the introduc-
tion that the result is known to be true for k=1 and k=2 we take & to

be an integer greater than 2 and assume that ian is summable (7, k)
0

to S.
Suppose % is an even integer. Then by (1.2) and repeated applica-
tion of (2.1), we find that, if =1 and ¢+0,

A A A R cosnt
Tk(m):(nztlz 'n4t24+ o +#>+W ’

where R, A,, A,, etc. are some constants. Therefore

e e e )

oo

for t+£0. Since, by Lemmas 4 and 5, ian/nz, S a,/nt, ete. converge
1 1

respectively to S, S,, etc. say, it follows from (3.1) that i CLj:cos nt is
T n

covergent for 0<t<<A. It is also convergent for t=0.
From (3.1)

R =3 (AS AS Ly AeSe
(3.2) @ty % cosmt=3 a,r. (nt) (Tz+ oy )
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By suitably altering %/2+1 terms of the series 3. a, and working with
the resulting series, say >,a,, we can simultaneously have S=a,=a;,
S,=8,=++-=8;,=0, so that by (3.2),

(3.3) i‘_"_ cos nt=o(t*) as t—0 .
1 9’&

. a - _ =y,
Again, 7’;:0(%2 By=o0(n"!), so that §"~kcos nt is a Fourier series con-
n 1

verging to a function f(¢), say, in a neighbourhood of the origin. Since f(t)
=o(t*) for small ¢, it follows that the kth symmetric generalised derivative
of f(¢t) exists at £=0, and is equal to zero there. Hence, by virtue of well
known results in the theory of Fourier series, we can immediately con-

clude that (C,%+d) S a,=0, so that (C,k+0)3 a,=S. The proof,
1 ]

when k is an odd integer, is similar.

Case 2. k=0. We are given that i a, cos nt converges to a func-
tion f(t) for 0<t<A and lim f(¢) is a ﬁn%te number S. Therefore f(¢)
is bounded in some intervs;,f00<t<77.

Let ibn cosnt be the Fourier series of an even periodic function
A(t) deﬁneod as follows.

1 for 0=t=79'<y
0 for n=t=r.

At)=

Moreover, let A(¢) change smoothly as ¢ increases from % to 7, so that
V(t) exists and is continuous. Hence b :o(l/ns) (See [5 Theorem 40]).

If ch cos nt is the formal product of Za cos nt and Zb cos nt,
then it follows from Rajchman’s theory of formal multlphcatlon [12,
section 11.42] that ch cos nt converges to f(¢) in 0<t=7/, to At)f (%)

0

in 7’<¢<7%, and to zero in <¢<x. Hence it follows that icn cos nt is
0
a Fourier series [12, Theorem 11.33], and therefore icn is summable
0

(¢, 0) for 6>0, because lim f(£)=S. Consequently, i a, 1s also summable
t—-0 0
(¢, 8) (See [12, section 11.42].

THEOREM 2. Let ia, be summable (r,k) where k=1 and let

i [k] — cosnx (when [k] is odd) or Z — sin nx (when [k] is even) be
1
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o Fourier series. Then ian is summable (¢, k+3), 6>0.
0

Proof. Since, in Theorem 1, we have already proved the result for
integral £ under more general conditions, we assume k& to be non-
integral. We also take [k] to be an odd integer. The proof, when [k]
is even, is similar.

By making _[@2__1 applications of (2.1), using Lemma 5, and arguing

as in the deduction of (3.3), we get

oo ’

(3-4) 3% Cora(nt)=o0(t")

where ia; differs from i @, in a finite number of terms only,
0 0

S o [n*=0, > a,/n*=0, etc., and 3 a, is summable (7, k) to ay=a,.

1 1 0

7

=@, . . .
Let 31~ cosn be the Fourier series of an even function ¢(x)el.
1 pte-

Then it can be easily shown that
(3.5) ¢k—[k]+1(t): i %;;Ck—[klﬂ('nt)

—o(t*) by (3.4) .

Again, ¢(t)e L obviously implies that ¢(¢) is Cesaro-Lebesgue integrable
C,\L for any 1=0 so that

(3.6) () € CogrlL
From (3.5) and (3.6), we have (See [3, Theorem 2])

t
?%—)f e Cy_plL

and

,féff.)l =o(1)(C, k—[k]+1) as ¢-0.

Hence, in view of Lemma 3, we conclude that the (Cesaro-Lebesgue)

Fourier series of :Eg_)l is summable (C, k—[k]+1+0) at t=0 for any

0>0. Now it follows from Lemma 2, where we take r=[k]—1, that
S a, is summable (C, k+0). Hence ian is also summable (C, k-+9).
1 0
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COROLLARY. If f_‘,an is summable (7, k), k=4, then ian 18 summable
0 0
(C, k+6), 6>0.

The corollary follows immediately from the theorem because a,=0(n?)
by Lemma 4.
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THE TAUBERIAN THEOREM FOR GROUP ALGEBRAS OF
VECTOR-VALUED FUNCTIONS

ALVIN HAUSNER

1. Introduction. The object of this paper is to prove the ideal-
theoretic version of Wiener’s tauberian theorem for algebras which we
will call group algebras of wvector-valued functions. These algebras are
defined as follows. Let G={a,b, ---} denote a locally compact abelian
group and let X={x, y, ---} represent a complex commutative Banach
algebra. Our group algebra B=B(G, X) consists of the set of all measur-
able absolutely integrable functions defined over G with values in X.
Of course we must identify functions which differ on sets of Haar
measure 0. As norm for an element fe B we take

I71.=, 1@< da.

(Hereafter, we will omit an indication of the domain of integration if
the integral is taken over the entire group G.) The space B(G, X) is
known to be complete in the given norm [4]. Further, we introduce
into B the following operations

(f+a@)=r(@)+g@), (Af)a)=1f(a)

where 4 is a complex number, and

(f *g)a@) = Sf(b)g(a—b) db

where the integral is taken in the sense of Bochner [1, 4] with respect
to Haar measure db. The algebra B(G, X) thus becomes, as is easily
shown, a complex commutative Banach algebra which specializes into
the classical group algebra I(G) if X is chosen as the complex numbers.
It is these algebras B(G, X) which will be the object of our study.
The tauberian theorem for B(G, X) will be proved by appealing to
a theorem in the general theory of Banach algebras (see [5], p. 85
corollary, or [6], Theorem 38.) This latter result might be designated
as the “general tauberian theorem.” It says that if a complex com-
mutative B-algebra Y is semi-simple, regular, and is such that the set
of yeY with ¢,(y) having compact support in M(Y) is dense in Y, then
every proper closed ideal in Y is contained in a regular maximal ideal.

Received November 7, 1955 and in revised form February 5, 1957. This paper is a
revised version of a portion of the author’s Yale (1955) doctoral dissertation. See, also,
[3] in the references at the end of the paper.
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Here M(Y) denotes the space (in the usual weak topology) of regular
maximal ideals in Y and ¢, represents the canonical homomorphism from
Y onto the complex numbers associated with an Me D(Y). It will be
taken as known that the classical group algebra IL(G) satisfies the hy-
potheses of this general tauberian theorem. This amounts, then, to
assuming the tauberian theorem in the case of L(G). It will also be
assumed, but only in the final theorem of the paper, that the range
space X meets the conditions of the general tauberian theorem. It is
clear, therefore, that the proof of the tauberian theorem for B(G, X)
found here, does not yield a new proof in the case of L(G). However,
this paper does provide, it is hoped, an interesting application of the
general tauberian theorem in the case of our generalized algebras.

2. Proof of the theorem. It is important to know the form of
the most general multiplicative linear funectional in B(G, X). This is
determined in Lemma 1 which requires the following preliminary obser-
vations.

The convolution f *g of a function f € L(G) with a function g € B(G, X)
results, as in easily seen, in a function contained in B(G, X). Suppose
{jw} is an approximate identity for L(G); that is, for each neighborhood
W of the identity 0 in G, j, is some (numerical) non-negative function

vanishing off W such that S jw(@)da=1. Then for every feIL(G) we

have j,=f — f as W—0. (Of course, convergence is here understood in
the sense of directed systems.) But {j,} acts, also, as an approximate
identity in B(G, X), that is, j,*g—g¢ in B-norm for every ge B. This
can be shown, just as in the case of L(G), by noting that functions in
B are continuous in B-norm [4], i.e., for any ¢>0 there is a neighbor-
hood W, of 0 in G such that |f(a—b)— f(a)|z<e if be W,.

The approximate identity will be of service to us in proving Lemma
1 which we now state.

LEmMMA 1. Let G:{d, ?), «++} denote the dual group of G in the
usual Pontrjagin topology. Define the “ Fourier transform” of feB as

(M, &) :§¢Mf(a) (a, &) da .

The Fourier transform evaluated at a fized (M, a)€ %(X)xé is a4 non-
zero, continuous multiplicative linear functional in B and, further, all
such functionals are of this type, that is, if p is a non-zero, continuous
multiplicative linear functional in B, then there is some (M, &) such that

t(f)=f(M, &) for every f € B.
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Proof. That the Fourier transform, at a fixed (M, @), is a multi-
plicative functional is easily shown. We, consequently, turn to the
second half of the lemma. Choose a function fe B such that u(f)+0
and let {j»} be an approximate identity. For every ze X, 1‘11711}] m(gx)

exists. (Here, jpx denotes the function (jpz)(a)=jw(a)-z. Of course,
jwxe B.) For
e(Gwa )= p(gwa) ()= pl(Gw* o] = p#(f2) as W-0

because (jp* f)x — fx. Hence p(jrx) necessarily converges to a limit
independent of the approximate identity {4}, namely p(fz)/#(f). This
limit is likewise independent of the f e B with u(f)+0, for if ge B is
such that p(g)=+0, then

w(fx) m(9)=pL(f *9)x]=p(gx* )= p(ga) p(f)

so that p(fx)/p(f)=p(gx)/x(g). We will denote the limit of p(jyx) by
ou(x) for ze X.

Suppose, temporarily, that X possesses an identity e. Then ¢, is

certainly not zero. For ¢.(e)=pu(fe)/u(f)=p(f)/r(f)=1. Further, ¢, is
easily seen to be additive and homogeneous, that is,

45#(31517 + '{-zy) = 'zlﬁbu(w) + lz‘ﬁp.(y)

for all «, ye X and complex numbers 2,, 4,.

_ M fay)_pm(fx)  p1(fy)
e N G

=du(@)puv) »

so that ¢, is multiplicative. Therefore, as is well known, there is some
Me M(X) (depending on g) such that ¢.(x)=¢py(x).

Still assuming that X has an ¢ (which we may take of norm 1), let
g€ L(G), xe X. Then

#(Jw * 9) = p(Jwr *ge) = t(Gwa)(ge) — Pu(x)p(ge) .
But

(Gw * 9) = p(Gw * 9] — p(g2)

so that plgx)=¢y(x)(ge) for any ¢gel(G) and any xe€X. Since
Le={gee B|ge L(G)} is isometrically isomorphic with I(G) and since g
is a continuous multiplicative linear functional on LecC B (not identically
zero on Le, because linear combinations of functions gx with ge L(G),

xe X are dense in B [1,4]) there is an aeG (depending on p) such
that p(ge)zgg(a)(a, &) da for all ge L(G).

Suppose, now, that f is any function in B. Then, because the
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simple functions are dense in B(G, X) as we observed above, there
exists a sequence g, € B such that g, — f and (9,)=9.(M, a) — f (M, a)
and so ,u(f)zf‘(M, ).

We now remove the restriction that X possess an identity. If X
lacks an e, then we imbed X, isometrically and isomorphically, in a
Banach algebra X’ with unit ¢ in such a way that maximal ideals in
X’ are the regular maximal ideals in X and X itself. This is done in
the usual well-known manner. The homomorphisms of X’ onto the
complex numbers are ¢, (Me M(X)) and the additional functional ¢,,
where ¢y (x+12¢)=1 for xe X, 1 a complex number. By what we have
already proved, the non-zero multiplicative functionals in B(G, X’) are

of the form f (M, &) and the additional functionals F(X, &). These latter
functionals, namely, qux f(a)a, @)da are, however, all identically zero

in B(G, X) and thus the lemma is established.

The following lemma gives a topological characterization of the space
of regular maximal ideals M(B) in B(G, X). For a similar result and
proof see [2].

LEMMA 2. The space M(B) of regular maximal ideals in B, topolo-
gized in the weak topology, is homeomorphic with MM(X )xé, that s the
topological product of M(X) and G.

Proof. There is a 1—1 correspondence between the points of M(B)

and those of ?IR(X)XG. To see this, suppose (M, a)+ (N, ?)). If a4+b
and M=N, take x¢ M and find an f € L(G) such that

£@) =§f(a)<a, &) da = £) .
Then

FaM, 6)= f(@)pul)# fu(N, D) .
If 4=#b and M+N or if &=b and M=+ N, then we may proceed in the
same way to construct a function fa with f e L(G), x€ X such that the
Fourier transform of fa separates the points (M, &), (&, 3). No two
points in M(X )><(§’ give rise to the same regular maximal ideal in
M(B).

The topology of M(B) is precisely that induced by the family
Sz{f(M, @)|f € B} of functions defined on M(X)xG. We must show
that this topology is identical with the product topology of DYX )XG.
This will be done by showing that the J-topology of (X )x(;' is iden-
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tical with that induced by another family of functions FcJ defined on
M(X)xG. Then the proof will be completed by showing that this -

topology is identical with the product topology of E)JZ(X)XG'.
First we must define . For each positive integer n and each
choice fi, fy, ++, f[n€L{G); 2, @, +--, x,€ X, there is a function ~ de-

. A n N

fined on M(X)x G by MM, &)= iZfiwi(M, a), Let ¥ be the family of
=1

all functions % so defined. Clearly FCS. But § is also dense in I in

the uniform norm. For, suppose feB. Then we can find f;e€I(G),

xz; € X, such that ‘f~ S‘_n‘fiwi <e. Hence
=1

B

|Fat, -3, faor, )| = || #ur@— 5 £i@out | (@, & da <e.

Therefore, sup{ f(M, &)~§n‘, f/i}i(M, )| <e where the sup is taken over
4=1

SJt(X)xG. This shows ¥ is dense in § in the sup-norm and it is easy
to see, from this, that the §- and -topologies on IM(X) x G are identical.

It remains to show that the F-topology on IYX )XG is the same
as the product topology. To do this we first develop a few properties

of .

(i) The functions in ¥ separate the points of EIR(X)XG as we saw
in the beginning of this proof.

(ii) Functions in § are continuous over M(X )x G in the product
topology. For, if feI(G), e X, (M,, &) is a fixed point of MMY(X)xG,
and ¢>0, then

\Fa(M, &) — fa(M,, &)

<1 F (@) (@) — F(@) b, (@)] + | F (@)D (@) — F(G) b ()]
=1 F(8)] | (@) — i ()] + | bag(@)] | F (@) — £ ()]

<1 f e [bu(@) — (@) ||| F (@) — £ (@)

<1 o (/2110 + el - (e/2lal) =

if (M, &)e UM, x Ué,) where UM,), U(a,) are neighborhoods of M,,
G in M(X) and G, respectively, such that |$.(a)—epy(@)|<e/2|f|; for
Me UML) and |f(@)— f(4)|<e/2a] for e U(d,). Since T consists of
finite linear combinations of f/;:( feL(G), xe X), each function in § is
continuous in the product topology of E)JE(X)XG.

(iii) Let (Mo,do)eim(X)xG. Choose f e IL(G) such that f(&)#0
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and let 2 € X be such that ¢ M,. Then f/%(Mo,do)qEO, so that not all
Sfunctions in F vanish at a fixed point in DX )xé.

(iv) Each function in § vanishes at infinity in EITZ(X)XG. For,
suppose ¢>0 is given. If ﬁ,fz.}vi(M, a) e, then

<e

| & Ao, )

=[S @butw)
if
it ({6« ¢)er

where |f(&)|<0, ldulz)<d if 4¢C,cG and MgG,cM(X). Here,
d<min (Ve/n, ¢/nK,, e/nK,) with K,= sup lz,] and K,= sup sup |fA&)|;
1=si=n

1=si=n aeé

(f't and €, are compact sets which exist because each f; and each z;
vanish at o in G and WM(X), respectively. [ is compact in WM(X )XG‘
so that each function in $§ vanishes at .

We now appeal to a result in general point-set topology (see [5] p.
12) which states: If @ is a family of complex-valued continuous func-
tions vanishing at infinity on a locally compact space S, separating the
points of S and not all vanishing at any point of S, then the weak
topology induced on S by @& is identical with the given topology of S.
We take S=0My(X )x@ and @=%. This finishes the proof.

The next lemma deals with the radical and regularity in B(G, X).
Following this we conclude with the tauberian theorem.

LEMMA 3. (i) The radical of B consists of those functions fe€B
with values in the radical of X a.e.
(ii) If X ds regular, then B(G, X) is regular.

Proof. Necessity (i). Suppose f takes values in the radical

R= N M of X a.e. Then ¢,/=0 a.e. for each M e M(X) and thus
MeMm(X)

F(M, &)=0 for each (M, &)e M(X)xG. This means f is in the radical
of B.

Sufficiency (i). Suppose that f is in the radical of B. We must
show that f takes values in the radical R of X, a.e. We have

FM, 6)=0 for all (M, &)e M(X)xC, that isS b f(@)(a, &) da=0 for all

(M, @). Since ¢,f is in L(G) and since L(G) is semi-simple, we have
¢uf =0 a.e. for each Me IM(X).
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Let {j»} be an approximate identity for L(G) consisting of bounded
functions vanishing outside neighborhoods W of the identity in G. Since
f is continuous in B-norm, it follows that the funections j,*f from G
to X are continuous. Consequently, the functions 7, * f take values in
N everywhere over G since N is closed in X. Choose a sequence {jwn}
from {44} such that Jw,*f — f in B-norm. Then, as is known, there
is a subsequence of the jWn* f converging to f pointwise a.e. in X-
norm. Since R is closed, f takes values in R a.e.

Proof of (ii). Suppose X is a regular algebra. We wish to show
that, given any point (M,, &) € M(X)x G and any open set O containing
(M,, &), there is a function ge B(G,X) such that g(3,, d,)=1 and
oM, a)=0 if (M, a)¢ Q. By Lemma 2, the open sets of W(B) are of the

form U (O}x%) where the Oi are open in G and the %, are open in
ieQ

IM(X). Suppose our L equals E} (O, x%R,); then (M(,,&o)eOAioxﬁJE% for

some 17,€ Q, that is, ageéio and M,ed;,. We can find a function
feLG) such that f(a)=1 and f(&)=0 if 4¢O,. This follows from
the regularity of the group algebra L(G). Since X is regular, by hy-
pothesis, there is an xe X such that ¢, (x)=1 and ¢,(x)=0 if Mg¢N, .
We will show that the ¢, above, can be taken to be fz. Firstly,
fa(M,, 4;)=1. Now, suppose (M,a)¢ L. Then (M, a)¢ 0, xR, so that
d¢OAiO or M¢%, . In either case, f/Ec(M, @)=0. Hence fo(M, @)=0 for
all (M, a)¢ Q.

We might add that if B(G, X) is regular, then X is likewise regular.
However, this fact will not be used in the following theorem and so we
do not enter into its proof.

COROLLARY. B(G, X) is semi-simple if and only if X is semi-simple.

THEOREM. Let X be semi-simple and regular. Suppose thot the
elements x € X with ¢,(x) having compact support in M(X) are dense in
X. Then every proper closed ideal in B(G, X) is contained in a regular
maximal ideal.

Proof. By the hypothesis and Lemma 3, it follows that B(G, X) is
regular and semi-simple. Using the general tauberian theorem (see the
introduction), we can prove that any proper closed ideal in B is contained
in a regular maximal ideal by showing that if f is any function in B
and ¢>0, there exists an keB such that |f—%|,<e and A(M, &) has

compact support in EJLYE(X)XG. Suppose, therefore, that f e B and ¢>0
are given. We can find f,e L(G), v, X (:=1,2, ---, n), such that
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|- S <

We have functions f;e L(G) such that |f,—fil;<¢/3Kn (=1, 2, -+, n),
where K= sup |z;| and the f; have compact support C‘icé. This follows

1=i=n
from the fact that L(G) satisfies the hypotheses of the general tauberian
theorem. By the hypotheses on X, we may find «; in X such that
@, —zi|<e/8Rn (:=1,2, ---,n), where R= sup |fil; and the ¢,(x;,) have
isisn

compact support €,cM(X). Now

|- S i), =7 - Sirot £ mrim 5 Fiw—si)

B

<¢/34+ Kn(¢[3Kn)+ Rn(e/3Rn)=¢ .
Take (see above) h= é fiwc; . We see that fa(M , @) has support

<C} @z) x( \nj CZ> which is compact in DX )xé. The theorem is now
t=1 i=1

proved.
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7-SETS AND ABSTRACT (L)-SPACES
L. J. HEIDER

1. Introduction. The theory of T-sets and of F,-functionals was
developed [4] in reference to abstract (M)-spaces for application to the
characterization of Banach spaces which may be represented as Banach
spaces of continuous functions. The purpose of this paper is to discuss
their use in reference to abstract (L)-spaces [3] for application to the
representation of certain Banach spaces as spaces of integrable functions.

A distinction of three types of abstract (L)-spaces is first made and
illustrated. Next an extremely simple characterization of the Banach
spaces which are susceptible of a semi-ordering under which they be-
come abstract (L)-spaces of the second or third type is established.
Then a complete analysis of the role of T-sets and of F,-functionals in
the third and most important type of abstract (L)-space is given.
Finally a few remarks are appended relative to T-sets in abstract (L)-
spaces of the first type.

2. Preliminary concepts. Let BL be a semi-ordered Banach space
which is a linear lattice under its semi-ordering, and in which the col-
lection P of elements a=0 is closed with respect to the norm. Con-
sider, with reference to the subset ‘P of BL, three possible additional
requirements:

(I) If a, be P, then |la+bli=Ilal|+ |l

(I1) If a, be P, then |la-+b|l=|lal|4+|bll, and P is a subset of BL
maximal with respect to this property.

(III) If a, be P, then |la+bll=|lall+|bll, and if a Ab=0, then
lla—bl|=lla+Dbl|.

A space BL wherein the subset P possesses property III is usually
called an abstract (L)-space. If property III obtains in P, then proper-
ty II also obtains in P with respect to BL. Thus for any ae BL with
aé P, a=a*—a~ with a*, a- € P, a* Aa"=0, while a~#0. Then

lla+a-li=lla*lI<lla* |+l |+]la"||
=lla*+a||+lla-||=llo* —a||+la"|=llal|+la-]] ,

so that P is maximal in BL with respect to the stated property. Thus
for the subset P of BL, we have III=II=1. It will presently be
seen, however, that I does not imply II and that II does not imply III.
Hence let BLI denote the space BL under the additional assumption

Receiva January 15, 1957. In revised form June 4, 1957. Presented to the Ameri-
can Mathematical Society, August 22, 1956. This research was sponsored by the National
Science Foundation.
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that the subset P possesses property I but not property II, and similar-
ly for BLII while BLIII denotes the space BL under the assumption
that the subset P possesses property III. It is known [3] that a space
BLI, under an easy change to an equivalent norm, becomes a space
BLIII, neither the elements of the subset P nor their norms being dis-
turbed in the process. Hence reference will be made to spaces BLI,
BLII and BLIII as abstract (L)-spaces of type I, II and III.

Now let B represent an arbitrary Banach space. Let P be a sub-
set of B maximal with respect to the property: for every finite set of
elements (b, ---, b,) in P,

|50

=31l -

Such subsets are called [4] T-sets. Each T-set P of B has the pro-
perties [4, Lemma 2.1]: if a, be P, then a-+be P: if |la+b||=]lal|+]bl]
for all ae P, then be P. In view of these properties the T-sets of B
may be described as subsets P of B that are closed under addition and,
as subsets of B, are maximal with respect to the property: a, be P im-
plies |la+bl|=lal|+|b]|.

For each such T-set P of B define an associated F,-functional F'»
with FP(a)zbi(r_:llf {|la+b||—1bl|} for each element a of B. Each such F)-

functional F, has the following pertinent properties [4, Lemma 2.2]:
Fp(b)=\lpl| if and only if be P; the functional F', is linear over the
linear extension of P in B.

The fact and the general form of the role played by 7-sets in ab-
stract (L)-spaces is clear from the definition of these spaces and from
their representation as spaces of integrable functions. Using this guide,
the possibilities when a beginning is made not with a space BL but
with an arbitrary Banach space B are not difficult to discern.

Let P be a T-set of Banach space B. Define a relation ; on Bx

B with aéb exactly when (b—a)e P. Since every T-set is closed under
addition and under scalar multiplication by non-negative real scalars,
this relation determines a linear semi-ordering for B. Since every T-
set is closed under the norm and contains the zero element, the set of

elements aéo of B coincides with P and is closed under the norm.

Reference will be made to the relation é as the canonical semi-order-
ing induced on B by P.

Of course, B is not necessarily a linear lattice with respect to this
semi-ordering. However, the F,-functional F, associated with P pro-
vides a simple test of the semi-ordering in this respect. First apply
the fact that Fu(a)=|la|| exactly when a is an element of P. This
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means that, for any element ¢ e B, an element a*e P with (a*—a)e P

serves as the element a\v0 with respect to ; exactly when F,(b—a*)
=||b—a*|| for each be P with (b—a)e P. Next apply the fact that F,
is linear on the linear extension of P in B. This means that with b,
ate P, Fo(b—a*)=|bl|—|la*]l. Note, lastly that a=b—c¢ with b, ce P is
equivalent to having both b and (b—a) in P. This may be summarized.

LATTICE CRITERION For any element ae B and T-set PCB, an
element a*e P with (a*—a)e P serves as the element a\/0 under the
canonical semi-ordering induced on B by P exactly when a=b—c, b, ce P,
always implies ||b—a*]||=1bl|—|la*]].

If B becomes a linear lattice and thus an abstract (L)-space of at
least type II under the canonical semi-ordering induced on B by T-set
P, the significance of the functional F, is easily found. Thus, if a
=a*—a~ with a*, ¢~ € P and defined as usual, then

Fp(@)=Fpa*)—Fr(a)=lla*|—lla],

so that in the representation of B as a space of integrable functions,
the value F.(a) equals the value of the integral over the representing
space of the function representing the element a.

Finally, if a particular T-set P and the corresponding F-functional
F, may be thus employed in representing the space B, surely the other
T-sets and F,-functionals of B are eligible for similar usages, presumab-
ly in respect to the measurable subsets of the representing space.

With this outline of the possibilities completed, attention is turned
to specific details.

3. Preliminary examples. Let L, be the set Rx R of all ordered
pairs of real numbers. Let L, be regarded as a linear lattice using the
usual definitions of addition and of secalar multiplication, while (a, b)
>(c, d) exactly when a=c and b=d as real numbers. Within L, dis-
tinguish subsets N,, N, and N,. In geometric terms, let N, be the
area about the origin bounded by the pairs of lines z+y=1, x+y=—1
and x—y=—1, x—y=1. Let N, be the area about the origin bounded
by the lines x+y=1 and #+y=—1 in the first and third quadrants,
but by the circle 2*4+%*=1 in the second and fourth quadrants. Let N,
be the area about the origin bounded by the lines a+y=1, a+y=-—1
and by the circle a*+4*=5.

For each element (x, y) of L, define

H(xv y)”z:lnf {al(x/a, y/a’)e Ni’ (1/>0} ’ 'L:1, 2; 3'

The third of these norms is familiar: ||(z, ¥)il;=|x|+ |yl for each element
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(x, y) of L,. The second of these norms was discussed in [3]: |[l(z, »)|L
=le+y|=lz|+y| for elements (x, y) in the first and third quadrants,
while [|(w, ¥)ll.=v z*+4 for elements (x, y) of L, in the second and
fourth quadrants. The first of these norms is presumably new: ||(z, )l
=(1/v'5)-V &>+ for elements (x, y) on or within the cones formed in
the second and fourth quadrants by the intersecting lines a+2y=0
and 2z+y=0, while [|(z, ¥)l=|z+y| for all other elements (x, y) of L..

Now let BL,J, BL,JI and BL,JII denote respectively the linear lat-
tice L, as under the distinct norms based on the subsets N, N, and
N;,. Then BL,I is an example of a space BLI wherein the subset P
possesses property I but not property II. Specifically, P consists of
all points in the first quadrant, while the unique T-set of BL,I contain-
ing P consists of all points on or within the angle determined by the
line #+2y=0 for =0 and the line 2x+y=0 for y=0. Similarly BL,II
is an example of a space BLII while BL,III is an example of a space
BLIII.

The fact that in abstract (L)-spaces of type I the set P is not a
T-set complicates the following discussion. The basic relation between
T-sets and abstract (L)-spaces of type II and III is treated first. Then,
because of its superior importance and because of the perfect applica-
tion of the T-set theory, the type III situation is discussed in full de-

tail. Last of all, some remarks pertinent to the type I situation will
be made.

N\ NN
N\ T see N N

Zx-«-% =0

4. Canonical semi-orderings. This section is devoted to a single
theorem.

THEOREM 4.1. A Banach space B is susceptible of o semi-ordering
in respect to which it becomes an abstract (L)-space of type 11 or III ex-
actly when it contains a T-set P such that for each a € B there exist a*,
o~ € P with the double property that a=a*—a~ while a=b—c¢, b, cec P,
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always implies ||b—a*||=|bl|—||la*||, the semi-ordering then being identical
with the canonical semi-ordering induced on B by P. With this condi-
tion satisfied, a space BLIII rather than a space BLII results exactly when
the additional relation ||a||=|la*||+|la"|] s satisfied for each o€ B.

Proof. Assume first that B has been endowed with a semi-order-
ing in respect to which it may be regarded as a space BLII or BLIIIL.
Let P be the subset of B consisting of all elements a¢=0 under the
given semi-ordering. In either case P is a T-set in B: for the case
BLII by explicit assumption, and for the case BLIII by assumption and
easy conclusion as explained earlier. The canonical semi-ordering induc-
ed on B by P obviously duplicates the semi-ordering assumed on B as
a space BLII or BLIII.

For any element ae B, let a*=aVv0 and a-=—(aA0) be as defined
under the assumed lattice ordering of B. Then a=a*—a~ with a*, a-
e P. Next, if a=b—e¢, b, ce P, then =0 and (b—a)=0 by definition of
P, Hence b=a and b=a* so that (b—a*)e P. Then

Bl =l(b—a*)+a*||=]l(b—a*)l|+]la*]| or {b—a*||=Ilbl|—[la*]l.
Finally, if the assumed ordering is of type III, then for each a€ B,
llall=lla*—a-ll=lla"+a [|=lla*||+]la" 1],

since a* Aa~=0.

Conversely, assume that B contains a T-set P as described in the
P

theorem. Let < be the canonical semi-ordering induced on B by P.
Then, as explained in the Lattice Criterion, the space B with semi-

»
ordering < is a space BLII if not a space BLIII, noting that the ex-

istence of a\/0 in the usual sense is the single additional requirement
needed in order that gP be a linear lattice ordering. Finally, if the

condition that |la||=|la*||+|la"|| for each a e B is satisfied, then, for a
=b—c¢ with bA¢=0,

lo—cll=1b—ec)*II+1I(6—e)l|=I(b—0)*+(b—e)"|
=|bVe—c+eVo—bll=lI(b—bAc)+(c—cAD)I|
=1l -+ [lell —2lIb Acll=1Bll+llell=1lb+ell .

5. T-sets and Fy-functionals in Type III Spaces. Assume now that
Banach space B contains a T-set P, such that B is a space BLIIl with
P

0

respect to the canonical semi-ordering < induced on B by P, With
Fo

P, fixed, write < instead of < and let all lattice notation refer to this
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fixed lattice ordering of B as BLIII. Certain concepts and results
found in [3] will be needed:

(A) For a, be P, |la—Dbl|=lall+bll—2lla Abl|.

(B) An element 1 of P, ||1|{|=1, is said to be a weak unit in BLIII
if aA1l>0 or, equivalently, |la—1||<[llall+||1l]], for each ae P, a+0.
It is assumed for the present that BLIII contains a weak unit, the ad-
justments necessary in the contrary case being indicated later.

(C) Associated with each ae P, is a projection function P,. It is
defined by the relation P,()=lim {[#a]Ab} for each be P,. If aAb=0,

then P (c) AP,c)=0 and P,(a)A\P,(b)=0 for each ce P,. If ae P, with
P,(1)=0, then a=0.

(D) An element ¢ of P, is said to be a characteristic element of
BLIII if eA(1—e)=0. For each ae P, P,(1) is a characteristic element
of BLIII. For any ae P, and any characteristic element e¢ of BLIII,
a=P(a)=Pla)+ P,_,(a) with P (a) AP, (a)=0.

(E) The characteristic elements of BLIII with weak unit form a
Boolean algebra, and if {e,} be a sequence of such elements with e,
<é,.:, then there is a characteristic element ¢ of BLIII with ¢,<e for
all » and lim {¢,} =e in terms of the norm.

With this information, and with B, P, <, BLIII, 1 as explained
above, two lemmas are in order.

LEMMA 5.1. For arbitrary T-set P of B the following statements
are true:

(a) If a,be P, then (a*+b*)A(a~+b")=0.

(b) If aeP, then a* e P and o~ e —P.

(¢) If 0b=Za with a€ P, then be P.

(d) There exists a unique characteristic element e such that ee P and
(1—e) e —P.

(e) For this e and for arbitrary o€ B, there exist elements a}
=[P (a")—P,_(a¢7)] and a; =[P,(a")—P;_(a*)] in P with the double pro-
perty that a=a; —a; with ||a||=]la}||+]la;|| while a=b—c¢ wilh b, ce P
implies ||b—az||=|bl|—Ila;]|.

() For arbitrary ae€ B, }{Fy(a)+Fp(a)} =IP(a")l|—[IP(a)l.

LEMMA 5.2. For arbitrary characteristic element e of BLIIL, the
subset of all elements P,(a*)—P,_,(a"), a=a*—a~ € BLIII, of B constitu-
te a T-set P of B with ec P and (1—e)e —P.

The truth of Lemma 5.2 is easily established in terms of the re-
presentation of BLIII as a concrete (L)-space. Because of the routine
nature of the proofs for the various parts of Lemma 5.1, attention is
restricted to two comments on parts (e) and (f).
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First, suppose a € P with a=0. Then nae P and thus [ra]Ale P.
Then e=P,(1)=lim {[ra] A1} is in P since every T-set is closed under

the norm, and |le/|<1. Let
s=sup {|lel| |e=P,1), ae P, a=0} .

Form {a,}, a,€P, a,=0, and then {e,} with e, =P, (1) such that
lim {|le,|l} =s. Then let a}=a,+:-+-+4a, and ey =P, (1) so that a;eP,

efe P with e,<ef<ef., and lim {|le}]|} =s. Now use (E) to select
characteristic element ¢ with ¢<e and lim {¢}}=¢ under the norm.

Since each e¢fe P, also ee P. Also |le|]|=s. But if P is a T-set in B,
so also is —P. Repeating the above process for —P, a second charac-
teristic element is obtained which is disjoint from the e obtained above
since P and —P have only the zero element in common. It is then but
a small matter to show that this second element is (1—¢) and that this
e and (1—e) are unique with respect to the stated property.

To prove (f), use is again made of the fact that a F,-functional is
linear on the linear extension in B of the T-set used. Thus for arbi-
trary a=a*—a- € B, with P,, P and e as above:

Fp(@)=[P.(a")| = |Pi—c(a)] =[Pl = IPi-c(a*)I]]
Fp(@)=[l|P(a")l|+ = Pr-(a)]~[IIPa)|+ ][ — Pi_o(a)I] .

Finally, consider the case wherein B, P, <, and BLIII are as be-
fore, but in which the existence of a weak unit is not assumed. Then,
following [3], it may be shown that there exists a collection 1,, ae 4
. an index set, of elements 1,, ||1.||=1, of elements of P, maximal
in BLIII with respect to the property that 1,A1s,=0 a#f in &4 A
characteristic element of BLIII with respect to a particular 1, ae . o7
is then taken as an element ¢, of BLIII such that ¢,A(1,—e,)=0 in
BLIII. Finally, if & ={e,, ae %} indicates any definite choice of
characteristic elements, one for each 1,, then Lemmas 5.1 and 5.2 may
be restated with each reference to a particular element e replaced by
a reference to a particular choice &, and each reference to an element
[P(aF)—P,_,(a¥)] of B replaced by a reference to an element

S [P, (a*)—P, -, (a%)]
@€

of B.
These observations are now summarized.

THEOREM 5.3. Let Banach space B be a space BLIII, under the
canonical semi-ordering induced by a particular T-set P, of B. Let {1,



1618 L. J. HEIDER

a € ¥} be a complete set of weak units in BLIII, and let & ={e,, a€
&} denote any chosen family of characteristic elements e,, one for each
1,. Then each such family & determines a wunique T-set P of B with
e.€P, (1,—e,)e —P. Also every T-set of B is determined in this
fashion. Moreover the space B is a space BLIII under the canonical semi-
ordering induced by each T-set. Finally, in the concrete representation
of BLILL, for any T-set P of B the function 3{Fp+Fp} may be inter-
preted as the result of the associated integration process when restricted
to the measurable subsets corresponding to the choice {e,, a € 7} deter-
mining P.

6. Concerning BLI spaces. Let BLI denote an abstract (L)-space
of type I and let B denote the same space regarded simply as a Banach
space. Let P be the subset of elements @B with a=0 as in BLI.
By definition of P as in BLI and by Zorn’s lemma, there is at least
one T-set T of B containing the set P. For elements ae PCT, Fy(a)
=llall. But F, is linear on the linear extension of T in B. Thus for
any element a € B, with a=a*—a~ with respect to BLI, Fy(a)=|la*||
—lla~|l. However, Fy(a)=Fy(a) for each ae B implies T\=T.. Thus
n B the T-set T containing P is uniquely determined.

Next let a€ B be any element of 7' and let a=a*—a~ with respect
to BLI. Then a, a- €T imply |la|/|+lle-l|=]|le+a||=]la*]] and so |lal|
=|la*||—lla-|]. Conversely, let ae€B be such that |la||=|la*||—]la" |l
Then |lall=F(a), so that ae T. Thus T consists exactly of the elements
a e B for which lal|=|la*]|—|la"]l.

It has already been seen that for any space B the type II and
type III orderings are mutually exclusive, in the sense that all order-
ings of either type are canonical semi-orderings based on T-sets, and
if one such ordering is of type III so is every other. No success has
been had thus far in demonstrating a similar exclusiveness between
type I orderings on the one hand, and type II or type III orderings on
the other.
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SOME REMARKS ON A PAPER OF ARONSZAJN
AND PANITCHPAKDI

MELVIN HENRIKSEN

In the paper of the title [1], a number of problems are posed. Ne-
gative solutions of two of them (Problems 2 and 3) are derived in a
straightforward way from a paper of L. Gillman and the present author
[2].

Motivation will not be supplied since it is given amply in [1], but
enough definitions are given to keep the presentation reasonably self-
contained.

1. A Hausdorff space X is said to satisfy (Qw), where m is an in
finite cardinal, if, whenever U and V are disjoint open subsets of X
such that each is a union of the closures of less than m open subsets
of X, then U and V have disjoint closures. In particular, a normal
(Hausdorff) space X satisfies (Qéﬁ) if and only if disjoint open F,-subsets
of X have disjoint closures. (For, an open set that is the union of less
than -, closed sets is a fortiori an F,. Conversely if U is the union
of countably many closed subsets F,, then since X is normal, for each
n there is an open set U, containing F, whose closure is contained in
U. Thus U is the union of the closures of the open sets U,.) In Prob-
lem 3 of [1], it is asked if every compact (Hausdorff) space satisfying
(Qu) for some m>Y, is necessarily totally disconnected, and it is re-
marked that this is the case if the first axiom of countability is also as-
sumed.

If X is a completely regular space, let C(X) denote the ring of all
continuous real-valued functions on X, and let Z(f)={xe X: f(x)=0},
let P(f)={rxeX: f(x)>0}, and let N(f)=P(—f). As usual, let X

denote the Stone-Cech compactification of X. If every finitely generated
ideal of C(X) is a principal ideal, then X is called an F-space. The fol-
lowing are equivalent.

(i) X is an F-space.

(ii) If feC(X), then P(f) and N(f) are completely separated [2,
Theorem 2.3].

(iii) If fe C(X), then every bounded ge C(X—Z(f)) has an ex-
tension g e C(X) [2, Theorem 2.6].

A good supply of compact F-spaces is provided by the fact that if
X is locally compact and o-compact, then X —X is an F-space [2, Theo-
rem 2.7].

Receivé?April 1, 1957. 1In revised form April 29, 1957. This paper was written while
the author was an Alfred P. Sloan fellow.
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We remark first that a normal (Hausdorff) space X satisfies (Qsx,)
if and only if it is an F-space.

For, suppose first that X is an F-space, and let U, V be disjoint
open F,-subsets of X. Since X—(UU V) is a closed G; in a normal space,
there is a bounded f e C(X) such that Z(f)=X—(UuU V). Hence by (iii),
there is a ge C(X) such that g[U]=0 and g[V]=1. In particular, U
and V have disjoint closures, so X satisfies (Qy,). Conversely let X
satisfy (Qw,), and let j e C(X). Then P(f) and N(f) are disjoint open
F,-subsets of X, which by (Qst,) have disjoint closures. So, by Ury-
sohn’s lemma, P(f) and N(f) are completely separated. Thus X is an
F-space by (ii).

Compact connected F-spaces exist. In particular it is known that
if R* denotes the space of nonnegative real numbers, then SR*—R* is
such a space [2, Example 2.8]. Hence Problem 3 of [1] has a negative
solution.

We remark finally that if the first axiom of countability holds at a
point of an F-space, then the point is isolated [2, Corollary 2.4]. In
particular, every compact F-space satisfying the first axiom of countabi-
lity is finite.

2. In Problem 2 of [1], it is asked (in different but equivalent lan-
guage) if for every totally disconnected compact space X satisfying (Qu)
for some m> &y, the Boolean algebra B(X) of open and closed subsets
of X has the property that every subset of less than m elements has a
least upper bound. A lattice is said to be (conditionally) o-complete if
every bounded countable subset has a least upper bound and a greatest
lower bound. In view of the above (and since every subset of B(X) is
bounded), in case m=g,, the problem asks if for every compact totally
disconnected F-space X, the Boolean algebra B(X) is os-complete.

In [3, Theorem 18], it is shown that if X is compact and totally
disconnected, then B(X) is o-complete if and only if C(X) is o-complete
(as a lattice). It is noted in [2, Theorem 8.3, f.f.] that for a completely
regular space Y, the lattice C(Y) is o-complete if and only if feC(Y)
implies P(f) and N(f) are disjoint open and closed subsets of Y (P(f)
denotes the closure of P(f)). It is easily seen that Y has this latter
property if and only if AY has [2, Lemma 1.6].

In [2, Example 8.10], an example is given of a completely regular
space X such that AX is a totally disconnected F-space, and such that
C(X) is not o-complete. By the above, it follows that B(fX) yields a
negative solution to Problem 2.

We remark also (as was pointed out by J. R. Isbell) that if N de-
notes the countable discrete space, then FN—N is also a totally dis-
connected compact F-space such that B(SN—N) is not o-complete. The
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former assertion follows easily from the remarks in §1, and the latter
follows from the fact that B(BN—N) is isomorphic to the Boolean al-
gebra of all subsets of N modulo the ideal of finite subsets of N (under
the correspondence induced by sending a subset of N to the intersection
of its closure in AN with SN—N). It is easily verified that this latter
Boolean algebra is not o-complete.
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ON THE GENERALIZED RADIATION PROBLEM OF
A. WEINSTEIN

H. M. LIEBERSTEIN

1. Introduction. The generalized radiation problem as formulated
and solved by A. Weinstein [8] requires determination of a non-singular
solution of the two-dimensional Euler-Poisson-Darboux (abbreviated EPD)
equation

k

(1.1) ul=uff) + = ult
Y
for — oo <k<1 such that
1.2) lim u™(xz, )= f(x) and u"z,y)=0 for y==z=
y—0

where f(x) is a function given on some interval 0<x=<a, possessing a
specified number of continuous derivatives there and having another
specified number of zero derivatives at x=0. These conditions on f(z)
depend on the parameter % as stated in [8]. The classical radiation
problem, requiring an axially symmetric solution of the higher dimen-
sional wave equation with a certain type of singularity, as given in [3],
is a special case. If k is an integer and u!*! a solution of the above
generalized radiation problem, then

(1.3) u(2~7ﬂ)(w, y) — ut™ ((U, y)

1-k

is a solution of the classical radiation problem in an m=3—k dimensional
space (not counting time as a dimension). Thus from a regular solution
u! one generates a solution u!*-*! of the EPD equation with that type
of singularity needed to solve the radiation problem.

The first part of this paper will be devoted to uniqueness for the
generalized radiation problem. Although a more complete answer to
the uniqueness question would be welcome, consideration of solutions
which have two continuous derivatives on y=2« is natural since such
solutions are the ones that correspond closely to radiation phenomena.
Let T be a triangle with vertices (0, 0), (@, 0), (a/2, @/2). We define a
function to be regular on 7T if it has two continuous derivatives in some
triangle G the interior of which contains T and its sides except for the
base line, y=0. Only a function satisfying the EPD equation, regular
on 7T, and taking on the given data will be considered a solution of the

Received May, 13, 1957.
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radiation problem. Such considerations cover an important class of the
Weinstein solutions.

We are concerned for uniqueness only with the difference of two
solutions #™(x, y) which take on the given data f(x); that is, we show
that «™(z, 0)=u"(z, x)=0 implies u*(z, y)=0. It will be convenient
to use several properties of solutions that follow from the general solu-
tion of the EPD equation. These general solutions were known to
Darboux [4], except for the case k=—(2rn—1), n=1,2, ---. We use the
E. K. Blum [2] representation of the general solutions.

The recursion

(1.4) iz, y)=yu** Yz, y)

plays a basie role in our uniqueness considerations. This relation and
the relation (1.8) are still valid even where x represents variables z,,
Ly, + o+, @, and u¥ is a solution of

k
Axu:uw,—k;uﬂ .

In their n-dimensional form both recursions are due to A. Weinstein,
but in the two-dimensional form used here the recursion (1.3) was known
to Darboux. In place of (1.4) Darboux uses a relation which in our
notation is

kuf Nz, y)=yu* Nz, y)

and which therefore does not admit an inversion for £=0. Certainly
the discovery and emphasis of the very important role of these recursions
in the general theory of the EPD equations is the work of A. Weinstein.

Of course, any uniqueness proof which applies to solutions of (1.1)
(1.2) also applies when it is required that

(1.5) w e, x)=g(),  w Nz, 0)=f(z)

where f(x) and ¢(x)#0 are given functions. A later paper will be
devoted to solution of the problem (1.5), and precise conditions on f
and ¢ required for existence of solutions regular on 7' will be given
there.

From the Weinstein solutions it can be seen that the region of
determination of f(x) defined for 0<x<a is the infinite strip bounded
by the lines y=2 and y=x—a. The uniqueness question, however, can
be restricted to consideration of the characteristic triangle T defined
above. That is, for uniqueness one considers only the problem f(x)=0.
If it follows from this prescription of f(x) that the solution is identically
zero in the characteristic triangle, then it is certainly zero on the
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characteristic y= —«+a. But now as the solution has been prescribed
to be zero on y=w, it can be shown to be zero in the infinite strip by
solution of a characteristic problem. The characteristic problem for the
two-dimensional EPD equation is classical. It was solved by Riemann
[6] in order to obtain the Riemann function for the EPD equation.

2. Some important properties of solutions. In this section we shall
be concerned with several properties that are derived from the general
solutions of the two-dimensional EPD equation for solutions u™(zx, y),
k<1, regular on T, and such that

ult(x, ) =u z, 0)=0 .

The general solutions which we use are valid on a characteristic
triangle in which the solution has two derivatives in a region G containing
that characteristic triangle except for the points of its base. Certainly
then the general solutions are valid for functions which are regular on
T in the sense described above.

The general solutions for ¥ negative are obtained [2] from repeated
application of (1.3) and (1.4) (and certain considerations associated with
them) to solutions u')(z, y), 0<s<2. Consider coefficients a,, defined by

_(_ 1\ [rt+2(n—r)—1]! _
(2.1) am—( 2) 1) =1 .

The general solutions are:

Case 1. 0<k<1
2.2) uz, )= — 2y gla-+ ayl(l—a) " da

—2-“15_ Jlz+ay)(1— a1 da .
1

For solutions which are regular on 7', the arbitrary functions ¢ and ¢
have one continuous derivative on the closed interval [0, a].

Case 2. k<0, k non-integral,

(2.3) Wz, y) = —2“Za »l 2(1 8)(— f) (=8=r—j) s
(r—m!

x| "¢+ anl(1— o) e dar
1

—2-t4 i amy“"ls:lsl’(”[x+ay](1 —ay e dat



1626 H. M. LIEBERSTEIN
where 0<s<2, s#1 and = is an integer given by 2—k=2n+s. Here if
w1 is regular on 7T, ¢ and ¢ have (n+1) continuous derivatives on
[0, a].

Case 3(a). k=0, u"z, y) =F(x+y)+Gz—y).

Case 3(b). k=—2n, n=1,2, ---,
@) w1 =S O (-1 GO@—0)]

Here if 1 is regular on T, F' and G have (n+3) continuous derivatives
on [0, a].

Case 4. k=—(2n+1), n=0,1,2, ---

7 75,011
(2.5) u(z, y) = Zlar,nnyr ot
r=1 6yT
where
(2.6) u(z, y)= 28—1¢[$+ay](1—a2)‘”2 da
1

+2S:1¢[x+ay](1——az)‘“2 log [y(1—a?)(1/2)"] det .

Here if u' is regular on T, ¢ and ¢ have n+2 continuous derivatives
on [0, a].

LEMMA 1. If ul¥l(z, 0)=0 and uNx,y) is regular on T, then

Case 1. ¢=0

Case 2. ¢$=0

Case 3(a). =—-G
(b). F'=-G

Case 4. ¢=0.

Proof. There results were known to Blum [2]. The hypothesis is,
as stated above, intended in the sense that lim u™)(z, y)=0. In Case 2,
y—0

for example, let ¥y —>0. As s+r—1 is always positive, since r=1, we
have
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ut(z, 0)=lim utI(z, y)
Y0
n -1
=213 a,(1—s)(—s)- -(—s—rwx)g (1—a)-* dat
r=1 1

or
uti(z, 0)

~*2“‘121%”(1—3)(—3). . ‘(“S—T)S:l(l~a2)-sl2 de

2.7 @)=

But the integral cannot be zero since it is a symmetric integral of an
even function—in fact, the integral is

—I'(1/2)I"(1—s/2)

(3/2—s/2)

and it can be shown that éam(l—s)(—s)---(—3—7')9&0. Thus u™(z, 0)

=0 implies ¢(x)=0 as stated.
Consider now Case 4. Here we have

u(z, 0)

(2.8) (@)= — -
A tunet 3 trmeir—1)(—=17 ]

and ¢=0 if u™(x, 0)=0. For example, take k= —1,
utY(w, y) =2yg_1¢[m+ ayl(l—a’)Pa da
1

-1
1

2] o+ auly Tog [u(1 - a)1/21(1 )t da
20 ylo+ (L) (1) dec
1 Y

un letting y — 0 we notice that ylogc y — 0 for any constant ¢ so that

0=u<-D(z, 0)=2S:1¢[x](1—a2)-1/2 dat
and again, since

551(1—@)—1/2 da0,  J[z]=0.

Case 1 and Case 3 are now entirely trivial.

LEMMA 2. For k<0, ¢f u™ 4s regular on T and u¥(z, 0) exists,
then
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ui iz, 0)=lim ufi(z, y)=0 .
-

That is, for k<0, letting u™(x, 0)= f(x), given, the function ul*I(z, y) is
a (non-unique) solution of the singular Cauchy problem.! This is the
main result of Blum [2]; one arbitrary function is determined as seen
in Lemma 1 by specification of f(x), the other is left free so that the
general solutions then yield the eclass of all solutions of the Cauchy
problem for k<0. For k>0 solutions of the singular Cauchy problem
are unique. One now sees that the solution of the generalized radiation
problem for k<0 is a solution of the Cauchy problem with one additional
condition. It is this condition which must provide uniqueness. The
proof of the lemma consists simply in deriving the general solutions with
respect to y and examining limits as ¥ — 0. It should be noted that in
deriving the general solutions of the EPD equation nothing is said about
the behavior of u, on the line y=0. Also, it should be emphasized that

one cannot simply look at the term k u, of the EPD equation and con-
Yy

clude the above immediately; for £=0, ul*(x, 0) is not necessarily zero.

Lemma 2 is true for any u™ regular on T such that «*)(z, 0) exists,
but the problem of uniqueness involves only uM(x, 0)=0, and in this
case a more general result, valid for k< —1 but used here only for
k< —2, is obtained. In [8] the existence of certain derivatives of u!
on y=0 was (tacitly) assumed. Lemma 3 allows us, for unicity only,

to avoid any such assumption.

LEMMA 3. Let u™(x, y), k< —1, be any solution of the EPD equation
regular on T. Then u™(x, 0)=0 implies

lim 7@ Y) ¢
v Y

For —1<k<0, a counterexample is u*z, y)=y'-*.
Proof. We must again consider separately each of the general solu-
tions. To avoid extensive manipulations a sample case only is presented ;

k non-integral, —2<k<—1.
By Lemma 1 all solutions are of the form

u' N, y)= —2‘“‘ysg~l¢'[x+ay](l—az)”‘“a det
1

with 1<s<2. We have

1 For the singular Cauchy problem, specify f(x) and require

uMw, O=r@), ufz,0)=0.
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[x] -1
lim %@ Y) _ Jim —g-sn {syg ¢lz-+ayl(l—a)" ' da

y-0 Y y-0

|9+ a1 — a2y da)

=—2"*1g]lim ys‘zg—lsl/[x-l—ay](l —a?)* e da
y-0 1
But as y — 0, the integral factor goes to
¢'[x]§ ~ =@yt e da=0
1
(the integrand is odd), and the L’Hospital rule is applicable. We obtain

(%1 -
lim %" @¥) _ _g-sm 8 jiy e S 'L+ agl(1— ) da=0
1

y—0 Y — 8 y-0

LEmMMmA 4. If u™ is regular on T, in the gemeral solution for u™
we may without loss of generality take

Case 2. ¢/(0)=¢"(0)="+-=¢™(0)=0

Case 8. F'(0)=F"(0)=+++=F@+D(0)=0
or G(0)=G"(0)=--=G@*D(0)=0
Case 4. ¢'(0)=¢"(0)=+ - =¢™*(0)=0 .

The importance of this lemma is that it is essential in the proof of
Lemma 5 where these results are used in repeated application of the
rule of L’Hospital. Lemma 5 in turn is essential to an important in-
duction used in the uniqueness proof of §4. For solutions with two
derivatives inside T only, the lemma can be extended by replacing the
evaluation of ¢, ¢, F, and G at 0 by evaluation at ¢>0 and considering
solutions regular on a triangle T, contained in 7.

Proof. Case 2. Let the function ¢$(z) be defined by

@14) 9@ =90 —g00) —0)— IO g O s
2! (n—1)!
Of course, ¢P(0)=¢P(0)="-..-=¢(0)=0, and we show that ¢{’(z) can

replace ¢(z), r=1, ---, n, in equation (2.3). Differentiating (2.14) »—1
times we obtain

PR =¢@)+ 3 SO s,

m-r(m——’l‘)!
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and using binomial expansion we have

(2.15) ¢y =¢a-ray)+ 35 SO fonm ey ]
mer 3= (m—r)! U gl(m—j—r)!

Then using (2.15), we may rewrite equation (2.3) as
(2.16)  uM(w, ) =—2"1 3 --- 3 S‘l(,)...
1

98+l i amys +7-._1S —1¢5€)[90+dy](1 _az)m/z_lar da
r=1 1

2s+1 {i an_r ¢(m)(0) xm—r—]ij'—!
R 5 flm—j—r)!

% S—I(l — )+ da }

so that our lemma will be proved when we have shown that the last
group of terms sum to zero for all  and y. In this group for
terms where r+4j is odd, the integral factor vanishes. We prove that
the indicated brackets is zero for each r-+; even. Reordering terms,
the brackets in (2.16) becomes

(2.17) iwm)(o){imﬁf 4, L gmecenytren-

m=g r=1J=0 '(m J ’l")‘
-1
X S (1—a?y 2 1gqr+/ dcx}
1

and it will be possible to show that the new brackets, denoted by S(n)
is zero for all n such that r<m<n. Letting 2v=r+j, for 0<j<m—r

we have r<2v<m or since the least value of ris 1, lgug[znz—].z Then

=] 4
(2.18) S(,n)_ Z (m 2y)' g zv 1{2(2,;_7')Y }S (1 aZ)S/l In? da

r=1

and we only need show that

2.19 =S Om
(2.19) =R @]

is zero for all » and v.

2 [2723] is the Legendre symbol—the greatest integer less than or equal to ZZE .
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From (2.19) and (2.1), then

(=) (r—1)! (20— 1)!

___i(_l/z)n, (2n—r—-1)!

and this is the quantity which is our present concern.
Consider the polynomial

( 1/2)2n -— 1(1 z)2’n r-1 2(n 1) .
(2.21) P(z)= ;, (D) @ —)] = l§=“1 b2t .
Then

n-1 2n~1r-1 (2'”' r— 1)'( 1)"1 __\n-r
P (z)= Z( 1/2) (—r)l (r— 1)'(2u—r)¥(1 7)

and

n-1 —(—1)-1( — n-1 % _ n—7 (2”—7‘—*1)’
B = Ay e 1)1 o !

:(_1)n—1(_1/2)n—10_

Thus P(z2) has been chosen so that it will be sufficient to demonstrate
that the coefficient b,., is zero. Let us rewrite P(z) as follows

(122— /2y 1 2—1 -
PE=3 r—1)l 2v—1)! (2u-—1)!r§=—:1< 1 )H2=1)

_ (1/22—1/2yn-2 1 av-1
T (1) <1+1/2z—1/2)

(1/2z 1/ )2(n vy~ 1(1/22+1/ )m,_

@ —1)'
:c(z_l)z(n—v)—l(z+1)2v—1 , c_..( 1)'(1/2)2(41 -1)
— e —V=1/2 ., 1 Hn-n-1 1 —\>! v--1/2
=CZ /('\/Z —ﬁ) (7‘?"{"1/2) e
__czn—lQ(z)

where

ow-(v - (e )

We note that Q(z)=—@Q(1/2), and that, therefore
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0B p(L)e = al2)

z

or P(z)=—2""YP(1/2). Thus

2(n=1) 2(n -1)

Z bz_—" Z bzz(n Drt= — Z a(n-1)-1%"

and b,+b,,-y-;=0. Putting {=n—1, the required result 5,_,=0 is ob-
tained.

It is noted that the coefficients a,, of the general solutions do not
arise from consideration of any polynomials.

Case 3(b). It remains only to show that this treatment reduces
after a certain point to that of Case 2
Let

FP(@) =FO(x)— GO0) —aGD(0) — ng<3>(0)— e — ﬂ’:G<n+l>(0)
i ni

and
GP(x) =GP(x) — GD(0) —a2G(0) -g G®(0)— - - ——ﬁ; G*+1(0) .
! n!

Then F' and G have the required number of continuous derivatives
and GP0)=GP0)="---=G¢L*(0)=0. (Of course, if we subtracted the
“Taylor part” of F®(x) from F® and G® we would find that
FP0)=FP(0)=---=F$+>(0)=0.)

FO(z)=FO(a)+ b G™(0) .
m=1‘( —’)")'
and
GO =Gp @)+ 3 0 5
& ™
From (2.4)
wm= 34, POt + 5 E0 oy
D6+ 8 PO

n+1

=2 G [FO(@+y)+H(—1YGP(x—y)]— 3
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where
e [ PO menl | (<D m—nl(=1)
2= 2 rnely Lgl(m—r)!3§<jz(m—j—r)z+ Hlm—j—r)! )
xw’"""y’]

and, of course, we must show that 3 is zero. We have

2.22) > = E G(m)(O){gl wirarmﬂ._L'___xm-(w;)y(“j)_l }
m=r r=1 7=0 Jl(m—g—r)! )

X (14+(—1)+9) .

But the expression in brackets in (2.22) is exactly that of (2.17) with
n replaced by (n+1), and the factor 14+(—1)"+’ plays exactly the role of

-1 :‘}._1
S (—a?) i da |
1

each being zero for »-+5 odd.

LEMMA 5. If k<0 and u™(x, y) is a solution of the EPD equation
regular on T and such that

u(z, 2)=0,
then
(i) ul(x, x)=Bx**, B constant
(ii) «™(x, 0)=0—) B=0.

That the solution be regular on T implies that all second derivatives
exist on the line y=2 and that the EPD equation be satisfied there.

Proof.
(i) On y==z the EPD equation may be written, using « as a parameter,
(2.23) (i w, )~ (w, )= L ul(z, 2) .
dx @

Differentiating »™)(z, y) on the line y=x, we have
(2.24) 0=ulNw, )+ ullx, )
so that (2.23) may be rewritten

L (e, 2) = e, 2)
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and the first part of the lemma follows. This elementary procedure is
basic in our problem and similar techniques will be used often.

(ii) To demonstrate the second part of the lemma we note that since
u" (@, y) has been assumed to be regular on T the general solutions
apply on the line y==z, and from Lemma 1 the condition u™(z, 0) gives
the general solutions a simplified form. Thus for Case 2, %k non-integral,
noting that k/2=—s/2+1—n, we have

(2.25) B=a**u(z, x)

= ~2’S“Zn] Oy {(s+r+ 1)903/2*"‘”"5—19!1(")[(1—l—a)zv](l — )" da
r=1 1

+x"/2”‘"s_l¢("“)[(1 +a)e](1—a?)*'ar+! da} .

We can now conclude that B=0 by taking the limit of (2.25) as = — 0.
To do this we apply the rule of L’Hospital (n+1—7) times to the
term in the first set of terms and (n—7) times to the 7" term in the
second set of terms. The purpose in presenting Lemma 4 was to justify
this procedure.

The Cases 1 and 3(a) are irrelevant to this lemma as we require k

to be negative. Treatment of Case 4 is precisely analogous to Case 2

except that here, by Lemma 1, ¢(x)=0, and (2.25) appears in terms of

integrals of ¢ instead of ¢ and with a slightly different kernel.
Consider Case 3(b), k=—2n, n=1,2, --- . The analogue of (2.25) is

n+l

(2.26) B=a"ujw, )= 3, @y pur@” " [FD(20) + (= 1) F7(0)]
1=1

+ ’ilaﬂ., wer(r =D& F(2a)+(— 1Y F(0)] .

We again conclude that B=0 by taking the limit of (2.26) as x — 0,
applying the rule of L’Hospital (n+1—7r) times to the ™ term of the
first set of terms and (n+2—7) times to the »** term of the second set
of terms. For this purpose an immediate extension of Lemma 4 is used ;
that is, without loss of generality, in the expression from the general
solutions for u{l, we may assume that

F®O0)=F®0)=---=F®*(0)=0 ;

it is only 2%, not u™ itself, which enters into (2.26).

Since the coefficients of the EPD equation do not depend on z, it is
evident that if a solution u™)(z, y) has three continuous derivatives in a
region, then ul(x, y) is a solution with at least two continuous deriva-
tives in that region. This is the motivation of the following lemma
which is essential to the induction of §4. A solution which has three
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continuous derivatives in a triangle G the interior of which contains the
triangle 7 and its sides except for the base line, will be said to be
regular plus one on T.

LEMMA 6. Let U™z, y) be any solution regular on T such that

U™z, 0)=0. There exists a solution u"i(ax,y) regular plus one on T such
that

U™z, y)=ulNz, y)
and such that
u(z, 0)=0 .

Proof. This lemma is obtained in a trivial manner from the general
solutions using Lemma 1. For Case 2,

Uz, y)=—2'+1 3, amys”_lS_lsf’(”[xﬂﬂy](l—az)s“"1 a" da

:56_[__2,@ +1 zn: amys +7r-1 S - ¢(r—1)[w+ay](1 _a2)s/z—1ar da] ,
X r=1 1

or for Case 3(b)

U@, 4)= 3} @, 0~ {FO(049) (=1 FO@—y)}

a n+1

ox T=1[ar,n+1y’“f1 {F(T—l)(x‘*‘y)+(—1)“1F(T)(x~y)}:l .

In both cases the quantity in square brackets is a solution of the EPD
equation which is regular plus one on T since the arbitrary functions
¢ and F' have (n+1) and (z+38) continuous derivatives respectively. Of
course, u*(x, 0)=0 as required. Again the treatment of Case 4 is
analogous to Case 2.

3. Uniqueness for —2<k<1. In this section we show that when
—2<k<1

u®(x, y) regular on T

lim u™(z, y)=0 = u(z, y)=0.
40

u(x, 2)=0

The argument is divided into the cases 0<k<1, k=0, and —2<k<0.
In §4 it will be shown that uniqueness for all £<0 follows from the
uniqueness for —2<k=0.
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The k=0 case is entirely trivial. We have
w™z, y)=F(r+y)+G@—y) .
The boundary conditions yield
0=u Yz, 2)=F(2x)+G(0) or F(x)=—G(0)
0=uz, 0)=F(x)+G(x) or G(x)=—F(x)=G(0)
so that
uz, y)= —G(0)+G(0)=0 .
Consider now 0<k<1. We have from (2.2) by Lemma 1
(3.1) w9z, 4) = — 2| o+ oyl —a)* da
and
0=z, z)= —2’“‘1:1:“’°S;1¢[x(1+a)](1 —at) " der
Let o=a(1+«a). Then
0=2'=—IS:%-W¢[¢](U—2x)—k/2 do
or
0=TI'"*"[(2x) " ¢[22]]
where I*f[x] is the Riemann-Liouville integral of f to the order « (see

e.g. [8]). Then (2x)-*2¢[2x]=0 and ¢[2x]=0. Of course, then, from
(3.1)

u(z, y)=0 .

The case —2<k<0 is similar. We treat only the case k= —1 be-
cause using Lemma 1, the treatments of k= —1 and & fractional become
entirely analogous. We have
(3.2) @, 4)= -2y’ ¢ lo—a1—a) " a da

1
where 0<s<2 and ¢ has two continuous derivatives on [0, a]. Then

0=1(z, 7)= -2s+1xsg_l¢’[w(1+a)](l — eyl da
1

or, integrating once by parts,
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wS-i-l -1 ' . .
0="—\ ¢"[eQ+a)(1—a?)2da
S 1

for all . As above let o=2(1+«) and obtain

0 ZLS”" o )2z~ )" dor
s Jo

or
0=1°"*'[(2z)"*¢""[2x]] .
Again
(2x)° P [2x]=0
or for x+0, ¢"[2¢]=0 and ¢'[2x]=constant=K. But with ¢'=K, (3.2)
becomes
u Nz, y)= —2‘*"‘1/31{&1—1 (1—a?)**'a da=0

since the integrand is odd.

4. An induction, uniqueness for all #<1. Uniqueness for —2<
k=<0 as proven in the last section together with the lemmas of §2 are
used here to establish uniqueness for all k<0, the case 0<k<1 having
already been considered in § 3.

Define (negative) numbers k, recursively by the relation k,.,=k,—2,
n=1,2, -«« where —2<k,;<0; that is, such that —2n<k,<—2(n—1).
We apply a complete induction. In §3 it was shown that for n=1
(that is, for any k which is a k) u™i(x, 0)=u"x, x)=0 implies u)(z, y)
=0 provided u*! is regular on 7. It remains only to show that if this
statement is true for k=k,, then it is true for k=k,.,=k,—2.

Induction assumption. u*Nx, 0)=u%Ywr, x)=0 implies ul(z, y)=0
provided u'! is regular on T.

(a) Given uns+il(zx, y) regular plus oneé® on T and such that
u{kn-ﬁ-l](x, O):u[kn-rl](x, :U)EO

we generate a solution u™l(x,y) of the EPD equation which is regular
on T by the recursion

(4.1) yulel(z, y) =ulfnal(z, y) .

3 See Lemma 6.
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Now by Lemma 5, ulfx+i)(x, 2)=0 so that
(4.2) WXz, 2)=0 .
Further from (4.1) by Lemma 3

S |
(4.3) w)(z, 0)=lim w(w, y)=lim @@ Y ¢ |
=0 v Y

0

(b) Now the induction assumption together with (4.2) and (4.3) imply
that ul)(x, y)=0. But then by (4.1)

u'fnﬂ](w, y)=0
or
utn+l(z, y)=F(x) for all y.

However, F(x) may be evaluated by setting y equal either to zero or z
so that

F(x)=ukn+(x, 0) =utn+1l(z, £)=0
and
(4.4) ultnerl(z, y)=0 .
(¢) Consider now UYx+id(a, y) regular on T and such that
Ulnstd(z, 0)=U%nwl(z, 2)=0 .
By Lemma 6 we can write
(4.5) Utnsi(z, y) =ulinei¥(, y)
where u*z+1! is regular plus one on T and
(4.6) ultnsd(2, 0)=0 .

Let us examine the condition UMx+1(x, 2)=0 or, equivalently, the con-
dition ulw+)(z, )=0. On the line y=x, the EPD equation may be
written

L (e, 7)o, ) = Ko i, 2
XL X

and the condition ul=+1)(z, 2)=0 yields

iu[,’°n+1](w, ) = —E’iilu,[,’“nﬂ](x, x)
dx Py

or
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(4.7) S+ (@, &) = Az ~*ns1 A arbitrary.

Differentiating ul*x+1)(x;, y) on the line y=a we have

W@, 2) o, 9= iz, )
“i

and, again since ulfa+1)(z, x)=0, using (4.7) we have

Ax"’“n-l-l :u%kn-»l](a:, w) = éd— u[’cn-;-l](:z,', m)
&£

so that
(4.8) u[kn+1](x, :1,‘) =B n+14-C .

Here B is arbitrary but C becomes zero since u*»+1(x, 0)=0. From parts
(a) and (b) above in which the uniqueness of a solution uffz+1! which is
regular plus one on T was established, the unique solution of the
boundary value problem (4.6) (4.8) is

u['“n-l-l](x, y):Byl‘an .
Then by (4.5)
Uttna(z, y)=0

and this completes the induction.
The following theorem summarizes the results obtained in §§ 3 and 4.

THEOREM. For —o <k<1 there is at most one solution of the EPD
equation which is regular on T and is such that for given functions f(x)
and g(x)

nm uie, y)=F@),  uNw, 2)=g() .

It should be noted that the uniqueness theorem given in [1] does
not apply here for the cases k<0 since the EPD equation does not
satisfy the relation (A) (5”) of that paper unless 0<k<2
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ON THE INEQUALITY 4u= f(«)

ROBERT OSSERMAN

We are interested in solutions of the non-linear differential inequality
(1) duz= f(u)
where u(x,, ---, x,) is to be defined in some region of Euclidean n-space
and Au:g% is the Laplacian of w. Wittich [5] considered the corre-
sponding equation

(1a) du= f(u)

in two dimensions and found conditions on f(z) which guarantee that
(1a) has no solution valid in the whole plane. Haviland [1] found
a slightly weaker result in 8 dimensions, and Walter [4] generalized
Wittich’s theorem to n-dimensions. The method is essentially the same
in all three papers, resulting on the one hand in the requirement that
the funetion f(#) be convex, and on the other hand in a rather involved
argument for the n-dimensional case. The proofs do extend immediately
to the inequality (1).

In the present paper we deal directly with (1), and obtain in
particular a simple proof of a stronger theorem (Theorem 1 below) where
the convexity of f(u) is no longer required. Our method also yields
much more precise information on the behavior of solutions.

Recently Redheffer [3] has obtained in the two-dimensional case
an improvement of our Theorem 1, where the monotonicity of f(u) is
not needed. Although Redheffers’s theorem may very likely be ex-
tendable to » dimensions, it does not seem possible by his method to
obtain the more precise results mentioned in the remarks following
Theorem 1.

The present investigation resulted from an attempt to determine
the type of a class of Riemann surfaces. One result, Theorem 2, is
given here as an application of Theorem 1.

We should like to mention finally that the method presented here
has been developed independently by Keller, who, in a paper to be
published, derives further information on the behavior of solutions of
(1a), and applies his results to an interesting physical problem described
in [2].

Notation. Throughout this paper we shall reserve + for the polar

Received March 11, 1957. Work sponsored by Office of Ordnance Research, U. S.
Army, Project No. 1323.
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distance, r=1"2?4---+a2, in space of some fixed dimension n=1. We
note that if ¢(r) is considered as a function in this space depending
only on r, then

¢  n—10¢ 1 o oy
2 tp=E g n =200 L0 ( wi07)
(2) 4 or? r Or or*lor r or
LemMMA 1. Let f(t) be a (weakly) monotone increasing continuous
Sunction defined for all t. Suppose that there exists a function ¢(x)
satisfying

n—1
x

(3) ¢"(2)+

¢'(@)=s(¢)

Jor 0= < R, with ¢'(0)=0 and ¢(x)—> +x as x—E. Then if u is any
solution of (1) for r=R, we have u(x,, -+, )< ¢(r) at each point.

Proof. By (2) the function ¢(r) satisfies do=f(¢) for r<R. We
let v=4—¢ and wish to show that »<0 for r<RE. But suppose v>0
at some point. Since v—>—w as r—>R it would follow that v would
take on its maximum at some point P with »r<E. Then v>0 in some
neighborhood N of P, that is #>¢ throughout N. This implies dv=4du
—do= f(u)— f(¢)=0, so that 4v would be subharmonic in N, contradicting
that v had a maximum at P.

LEmMA 2. If f(£)>0, f'(t) continuous, and f'(t)=0 for all t, then
equation (1) has a solution w valid for all (m,---,x,) ©f and only if
there is a solution of (3) valid for all x=0, with ¢'(0)=0.

Proof. If such a function ¢ exists, then ¢(r) is the desired solution
of (1).

Conversely, suppose that no such function ¢(x) exists. Given an
arbitrary real number a, there exists' in any case a solution of (3) with
initial values ¢(0)=a, ¢’(0)=0, valid in some interval 0<wx=<x,. Then
there is a maximal interval 0<z<R in which this solution exists.

Further, we have by (2) that di(x”‘1<p’):m""1f(s0)>0 for >0, so that
x

2""'¢’ is increasing, hence positive for x>0 since ¢’(0)=0. Under these
conditions we must have ¢(x)— + as x— R. Then by Lemma 1 any
solution = of (1) would satisfy u<¢ for r<R. In particular we would

1 The existence does not follow immediately from classical theorems, but may be

¢ 'S
L[ e-ispyatds and

proved by writing equation (3) in the integral form qa(x)=a+yo o1

applying standard iteration procedure.
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have #(0)<¢(0)=a. But since a was arbitrary there could be no solution
u valid in r< R for arbitrarily large R.

LeMMA 3. If f(t)>0, f'(t) continuous, and f'(t)=0 for all t, then
equation (3) has a solution ¢ with ¢'(0)=0 valid for all =0 if and only +f

(4) g"(g:f(s) ds>“”2dt:oo .

Proof. Suppose first that there does not exist a solution of (3)
valid for all #=0. Then we have seen that if ¢(x) satisfies (3) in some
interval, with ¢(0)=0 and ¢'(0)=0, then for some R>0 we will have
o(x)— + oo as x— K. Further we noted that for x>0, ¢'(x)>0, and

hence from equation (3), ¢ <f(¢). Thus ¢ ¢”" < f(¢)¢ and integrating
from =0 to x=t gives

¢ @by
[ or<2| rloy do=2{""r()de .
Hence
@ —-1/2 _
(S f(S)ds> de<V'2 dt
and integration from ¢=0 to t=R gives
S”(S” £(s) ds)_1/2d90<1/7R .
0 0

Suppose conversely that
oo t -1{2
S (S f(s)ds) dt< oo .
0 0
1/2

Then t- (Sbf(s) ds)dl2 —0as t— o sgince <Szf(s) ds)ﬂ is monotone de-
[i] 4]

13
creasing. Hence t‘z-s f(s)ds— o and f(£)/t— o since f(t) is monotone
0

inereasing. Thus for an arbitrary fixed a, f(¢)>t—a, for t>t,. Further,
if ¢ is the solution of (3) with ¢(0)=a, ¢'(0)=0, then ¢(x)=a for x=0,
and f(¢)=f(a). Hence (z"'¢'Y=f(a)-2z"*, and integrating twice we

find w”‘lgo’zmx”, gogf—;a—)x”’. Thus ¢(z)>t, for z>x,. As above we
n n

note that

¢<2| (9 dp=2Ap- A FO<AS QT for ¢t

Hence @;190’<f—é@ for x>z, and consequently 90”>—;~f(90) for x>z, .
x
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Thus
[P —Ty@)> | rs)ds
or
o)
[e@r> (" reds—C
whence

S:”(So 1(s) ds—C>—mdt Sa—a, .

Since the constant C does not affect the convergence of the integral
we have that x must be bounded, which completes the proof of
the lemma.

We may note that the proof of Lemma 3 is essentially that of
Haviland [1]. The assumption made by Haviland that f(¢)=¢>0 is seen
to be unnecessary, but it is interesting to note that the theorem is no
longer true in #=3 dimensions if we weaken the requirement to f(£)=0.
(If we allow f(t)=0 we must speak of non-comstant solutions of (3) for
all x.) The reason for this is that a non-constant subharmonic function
in one or two dimensions cannot be bounded above, while in three or
more dimensions it can. Thus if we set f(¢)=0 for ¢<0 and f(t)=¢
for ¢>0, we see that any negative subharmonic function ¢ (such as
¢(r)=—1/(1+7* in 4 dimensions) satisfies 4¢= f(¢) throughout space,
although the integral in (4) converges.

Combining these three lemmas we obtain the desired result:

THEOREM 1. Let f(t) be positive, continuous, and monotone increasing
for t=t,, and suppose

S‘”(S: £(5) ds>_uzdt< o .

Then o twice continuously differentiable function u cannot satisfy Adu>0
throughout space and duz= f(u) outside of some sphere S.

Proof. Suppose such a function » exists. Then it has a maximum

t, on S, and 4du has a minimum 7 >0 on S. Define g¢(¢) to be continuously
differentiable for all ¢, and such that

a) ¢(6)=0 for all ¢
b) 9(t) =m for t<t,
c) g(t) =f(t) for all ¢
d) 9() =f()—-1 for t=t, .

Then 4duz=g(u) throughout space, so that by Lemma 2 there exists
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a solution of (8) with f replaced by g, and by Lemma 3 we would have

S”(S: o(s) ds>—llzdt: o

which, in view of d), contradicts the hypothesis.

Remarks 1. That the integral condition on f(¢) is the best possible
can be seen most easily, as was pointed out by Walter [4], by noting
that for an arbitrary continuous positive function f(¢) we can define
u(x,) for ;=0 as the inverse of

ml(u)=17%5:<sz £(s) ds)""zdt

and for #,<0 by u(x)=u(—x,). Then Au=%= f(w) in any number
Xy

of dimensions, and if the integral diverges this will hold for all z,
and hence throughout space.

2. We may note that in the proof of Lemma 3 we have obtained
somewhat more than the non-existence of a solution for all . Namely,
we have an upper bound on the values of 2 for which (3) can hold.
However, the expression obtained is not a very convenient one, and in
any case does not give the best possible bound. The advantage of
Lemma 1 is that it allows us to give the best bound whenever we can
find the funection ¢ explicitly. For example, if we have the inequality
Au=ee®, ¢>0, in two dimensions, then we can easily verify that

2R
=log —“*
=)
satisfies the hypotheses of Lemma 1, so that #(0)=<¢(0)=log Rj__.
€

We may therefore state the following result:
If u satisfies dJu=ee™ for r<R and u(0)=a,

2
eV ¢ )

then R<

3. We note that in the proof of Lemma 1 we need only assume

that ¢ satisfies the inequality <p”+n—_~1¢’§f(go) . In many cases it may
x

be possible to find an explicit solution of this inequality, but not of
equation (8). For example, if f(¢)=el¢|*, a>1, then the function
cRZm

=" c>0
==y
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satisfles in » dimensions
do=2mR*c™™(nR*+ (2m+2—n)r?) o'+im
<4dm(m+1)R ¢ Hmpt+2m if 2m+2=n, r<R.

Hence do<eu'+*™ if R=2(m+1)e Ve U™, We can therefore state the
following:

If u satisfies du=elul* for r<R in n-dimensions, where ¢>0 and
a>1, and of w(0)=a>0, then R<2(m+1)e g™ | where

m=max {n -1, — 2 ;_} .
2 a—1

4. The above remarks may also be viewed from the other direction.
That is, if a function « is known to satisfy (1) for »<R, then we get
a pointwise upper bound on u in terms of the solution of (8). Further-
more, if we know that u<M for r=R, then we can improve these
bounds. Namely, we have u<¢, where ¢ is the solution of (3) with
¢’(0)=0 and ¢(R)=M. Finally, these bounds are again the best possible
since ¢(r) itself satisfies (1).

We turn next to an application of Theorem 1.

THEOREM 2. If a simply-connected surface S has a Riemannian
metric whose Gauss curvature K satisfies K< —e<0 everywhere, then S is
conformally equivalent to the interior of the unit circle.

Proof. Considering S as a Riemann surface, we know that it can
be mapped conformally onto either the interior of the unit circle or
else the whole plane. We proceed by contradiction. Suppose we could
map S conformally onto the =, y-plane. The Riemannian metric on S
could then be expressed as ds’=2(dx*+dy*), and we have for the Gauss
curvature:

K:_gjlog A
a2

K< —¢ means that the function w=log 2 would have to satisfy Ju=ee*
throughout the plane, contradicting Theorem 1.

We remark finally that the condition K< —e can be weakened slightly
to K<0, and
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for every region R on the surface including some fixed compact set D,
where dw is the area element on the surface. The proof of this again
involves assuming that the surface may be mapped conformally onto
the whole #, y-plane and defining z(r) as the mean value of K over
the disk x’4-9*<7*. Simple inequalities yield

J
2+ §zfzee” for r sufficiently large,
r

and

37
r

2"+ >0 everywhere.

. 3 . . . . . . .
Since 2+~ is just the Laplacian of z in four dimensions, we again
r

have a contradiction to Theorem 1.

REFERENCES

1. E. K. Haviland, A note on unrestricted solutions of the differential equation du= f(u),
J. London Math. Soc. 26 (1951), 210-214.

2. J. B. Keller, Electrohydrodynamics I. The equilibrium of a charged gas in a con-
tainer, J. Rational Mechanics and Analysis 5 (1956), 715-724.

3. R. Redheffer, On entire solutions of nonlinear equations (Abstract) Bull. Amer. Math.
Soc. 62 (1956), 408.

4. W. Walter, Uber ganze Liésungen der Differentialgleichung du=f(u), Jber. Deutsch.
Math. Verein 57 (1955), 94-102.

5. H. Wittich, Ganze Loisungen der Differentialgleichung du=e*, Math. Z. 49 (1944),
579-582.

STANFORD UNIVERSITY






ON SEMI-NORMAL OPERATORS

C. R. PurtNnAM

1. A bounded linear operator A in a Hilbert space will be called
semi-normal if

(1) H=AA*—A*A>0 (or <0).

If A is a finite matrix, for instance, then relation (1) implies H=0, so
that A is even normal ; cf., e.g., [4]. That (1) may hold with H+0 is
seen if one chooses, for instance, A to to the isometric matrix defined
by A=D=(d,;) where d;,;;=1 and d,,=0 otherwise. The purpose of
this note is to investigate the spectrum of the semi-normal operator A
and of the associated self-adjoint operators .J, defined by

(2) Jo=£fir§4'i . Ay=Ac " (0 real).
It is seen that, in particular, .J, becomes the real or the imaginary part
of A according as =0 or 6=n/2.

A number 1 belonging to the spectrum of A (sp (4)) will be called
accessible if there exists a sequence of numbers 1, not belonging to
sp(4) for which 1,—-1 as m—. If M is any self-adjoint operator,
max M and min M will denote the greatest and the least points respec-
tively of the set sp (M).

The following theorems will be proved :

THEOREM 1. Let A be semi-normal with H=0 and let A=re” (r real,
=0) be an accessible point of the spectrum of A. Then

(3) (max Jp)*=min AA4A*
and
(4) jr—max Jy | < ((max Jp)*—min AA*)2

where J, is defined by (2).

THEOREM 2. Let A be semi-normal and let J=J, have the spectral
resolution J :S AE. Then, if S=S8, is any measurable set for which

(5) SSdEzl,

Received March 6, 1957. This research was supported in part by the United States
Air Force under Contract No. AF 18 (603)-139.
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there holds the imequality
(6) |H|<=4|A| meas S .

The proof of Theorem 1 will be given in § 2 below. The assertion
of Theorem 2 can be considered as a supplement to Corollary 3 of [5].
The proof follows readily from the Lemma, loc. cit., p. 1027 if one notes
that H/2=J,A5 —AsJ, and that | 4,|=]A4].

Various corollaries can be obtained from the two theorems. For
instance, as a consequence of Theorem 1, one has the

COROLLARY 1. If V 4s isometric and not unitary, then its spectrum
s the disk |2|Z1 of the complex plane.

Actually it is possible to deduce this result from a normal form for
such operators; cf., e.g., [8, p. 351 ff]. It should be noted that the
spectrum of the isometric matrix D defined earlier in this paper, and
which occurs in the normal form, is the disk |{1|<1; ef. [9, p. 279].

The proof of the corollary as a consequence of Theorem 1 however
is as follows. Put A*=V so that AA*=1I; clearly V is semi-normal
and H>0. Let 1=7¢® (r=0) be an accessible point in the spectrum of
A (that is, of 4* or V). Then, by (3), |maxJ,|=1. On the other
hand, |A|=1, and hence |maxJ,|<1. Thus |maxJ,|=1 and (4) implies
r=1; consequently, the only possible accessible points of the spectrum
of an isometric operator lie on the circle |1]=1. However, if the operator
is not unitary, then 1=0 lies in its spectrum. Hence, the entire disk
|2|<1 is in the spectrum and the proof is complete.

Another consequence of Theorem 1 is

COROLLARY 2. If A is semi-normal, if O lies in the spectrum of A,
and 1f min AA*>0, then for any 0 the circular disk

M lémax Jg—((max Je)z—min AA*)l/z

lies in the spectrum of A (where, of course, max J,>0).

The proof follows from the observation that 1=0 is in sp(4) but
no accessible points of the spectrum can lie in the disk in question.

It can be remarked that if A is an arbitrary bounded linear operator
(not necessarily semi-normal), and if the conditions that 0 be in sp (4)
and min AA*>0 are fulfilled, then there surely exists some circular
disk [1|<Zconst. in the spectrum of A ; sec, e.g., [7, pp. 76-78]. If
however A is semi-normal, the radius of the corollary can even be
specified.

An immediate consequence of Theorem 2 is the

COROLLARY 3. If A is semi-normal but not normal, then the spectrum
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of Jy (in particular, of the real or imaginary part of A) has a positive
measure not less than |H|[/4|A|.

It should be noted that (5) surely holds if S is the spectrum of
J although it may hold for a set of measure less than that of the
spectrum (but whose closure would, of course, contain the spectrum).

It seems natural to conjecture that the spectrum of (say) the real
part, J=(A+A*)/2 of any semi-normal, but not normal, operator A
must be an interval. Evidence to support the conjecture is furnished
by the isometric, but not unitary, operators V, in which ecase the
spectrum of (V+ V*)/2is the interval —1<21<1. This fact also follows
from the normal form for isometric operators referred to above and
from the fact that the spectrum of (D+D*)/2 is the interval —1<i<1
(cf., e.g., [3, p. 155]). Further evidence is furnished by the (bounded)
matrices A=(c¢;-;), where ¢,=0 if n<0, for which the spectra of the
associated Toeplitz materices J=(A+ A*)/2 are intervals, provided J is
not a multiple of the unit matrix (in which case A is also); see [1, p.
361] and [2, p. 868]. It was shown in [6] that the matrices A are
semi-normal.

The conjecture will remain unsettled. In faet, it will remain unde-
cided whether or not the spectrum of the real part J of a semi-normal,
but not normal, operator must even contain some interval. The asser-
tion of Corollary 3 does not seem to preclude the possibility of, for
instance, a nowhere dense spectrum (of positive measure).

2. Proof of Theorem 1. Let A,=r,¢% be chosen so that 4, is not in
sp (4) and 1,»1as n—->o. Put 4,=A—4,1. Then A,4F=A,4AFA4,4,7", so
that the spectra of A,A} and A}A,, hence the spectra of AA*—ZrnJgn,
and A*A—Zr,,Jen, are (respectively) identical. Since 1=r¢” is in the
spectrum of A, then either (4A—2)x,—0 or (A—2)*z,—0 for some
sequence of unit vectors x,. In either case, it follows from (1) that
lim sup (x,,, A*4x,)<r* as m—>o and that (x,, Jo Tp)—>T 8S M, N>,
Consequently, min (A4*—2rJ,)< —1* and hence min AA*—2r max J,+1r*
=0. The desired relations (8) and (4) follow and the proof of Theorem
1 is complete.
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BOUNDS FOR THE PRINCIPAL FREQUENCY OF THE
NONHOMOGENEOUS MEMBRANE AND FOR THE
GENERALIZED DIRICHLET INTEGRAL

BINYAMIN SCHWARZ

Introduction. In §§ 1 and 2 of this paper we consider an arbitra-
rily shaped membrane of variable density and uniform tension. We
assume that this nonhomogeneous membrane is stretched in a given
frame and obtain bounds for its principal frequency (fundamental tone).
Before describing our results we quote the analogous result for the
nonhomogeneous string proved in a paper by P. R. Beesack and the
author [1, Theorem 2].

Let p(x) be continuous and not tdentically zero for —w,<xx,,
0 wy< o0, and let p*(x) and p~(x) be the rearrangement of p(x) in sym-
metrically increasing respectively decreasing order. Consider the three
differential systems

¥’ (@) + p(x)y(x)=0 , Y(£2)=0;
u''(x)+ 2*p* (@)u(r)=0, u( £ a,)=0;
v(x)+ 1-p~(¢)v(x)=0, W+ x)=0:

denote their least positive etgenvalues also by 2, i* and A~ respectively.
Then A~ even if p(x) changes sign finitely often while A=A* holds if
p(2) = 0.

For the nonhomogeneous membrane we consider a domain D bounded
by a Jordan curve C. The differential system (for the original density)
is given by

du(x, y)+ Ap(w, yule, y)=0

for (@, y) in D and u(C)=0. We base the existence of the first eigen-
function and its minimum property on the classical treatment of Courant-
Hilbert [3, vol. 2, Chapter VII]. We assume therefore that p(z, y) is
positive and continuous in D and has continuous first derivatives in D.
Together with p(x, y) we consider its rearrangements in symmetrically
increasing respectively decreasing order. The symmetrization is with
respect to a point: p*(x, y)=p*(r) and p-(x, y)=p~(r) are defined in
a closed disk D* of the same area as D. The properties of p(z, y) imply

that p*(x, ¥) and p~(x, y) are positive and continuous in D*. However,

Received December 28, 1956. The author wishes to thank Dr. P. R. Beesack of Mec-
Master University, Hamilton and Professor E. Netanyahu of the Technion, Haifa for many
helpful remarks in the preparation of this paper.
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their first derivatives may be discontinuous along infinitely many con-
centric circles which accumulate to circles lying in the open disk D*.
A* and A~ can thus not be defined as the classical first eigenvalues of
a circular membrane with the density function p* or p-, but are easily
defined as a generalization of this notion (see formulas (8*) and (87)
below). The actual statement of Theorems 1 and 2 uses only density
functions with continuous first derivatives, so that all eigenvalues are
in the classical sense. Here we summarize these results as follows: In
§1 it is shown that if the original domain D is a disk, then 1<2*
(Theorem 1). In §2 we prove that for any domain D (bounded by
a Jordan curve) i~ <{4. This Theorem 2 is a generalization of the theorem
of Rayleigh, Faber and Krahn and it implies (essentially) a result of
Szego on the principal frequency of nonhomogeneous membranes [10,
§ V]. In Theorem 2 we formulate these results in complete analogy to
[1, Theorem 2], using generalized first eigenvalues.

Following Szegd([10] and [9, Note D]), we consider in §3 a ring-
shaped domain D and the class of the admissible functions ¢(x,y) in D.
These admissible funections satisfy a smoothness condition, vanish on the
inner boundary of D and are equal to 1 on its outer boundary. op(z, ¥)

is defined in D and satisfies the same conditions as in §§1 and 2; p*

and p~ are now defined in a closed annulus D*. We denote the minimum
of the generalized Dirichlet integral

[[t1grad ¢+ vy as

in the above class by 4=y and define y* and y~ in a similar way. Theo-
rem 3 states that for any ring-shaped domain D (bounded by two Jordan
curves) 7y~ <y. After restating this theorem in terms of Szegi’s—slightly
different—definition of the generalized Dirichlet integral, we show that
it implies (essentially) Szego’s result on this integral. Theorem 4 states
that if the original domain is an annulus, then y<{y*. We conclude
with two theorems which are one-dimensional analogues of the results
on the generalized Dirichlet integral.

Throughout this paper, symmetrization which respect to a point is
the main tool. We rely in §2 on Krahn’s paper [7] and in §3 on
Szegt’s paper [10], and we use their results with regard to the behavior
of the (ordinary) Dirichlet integral under this symmetrization (see (117)
and (11*) below). In addition, we use a well known theorem of Hardy,

Littlewood and Pélya on the rearrangements of functions ([5, Theorem
378] and [9, p. 153]).

1. The nonhomogeneous membrane I. We start with the defini-
tion of the symmetrical rearrangements of a function p(x,y) (cf. [5], [6]
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and [9]). Let D be a simply connected bounded domain in the x, y-plane

and let p(w, y) be defined and continuous in the closure D of D and be
positive in D. We denote by D* the open disk with the same area as
D. R is the radius of D* and r=(2*+y*)"* the distance from its center.
(By using x, y-coordinates for the planes containing D and D* we do not
imply that these planes have to coincide). The rearrangements of
p(x, y) in symmetrically increasing and decreasing order will be denoted
by p*(xz,y) and p~(x, v) respectively. They are uniquely defined in the

closure D* of D* by the following three requirements : First, both func-
tions have circular symmetry, p*(z, y)=p*(), p~(x, y¥)=p"(r), 0<r<R,
and p*(r) is a nondecreasing, p~(r) a nonincreasing function of r.
Secondly, both functions are equimeasurable to p(x, y) ; that is denoting
by A(z) the area of the open set in D for which »(x, ¥) >z and similarly
by A*(z) and A-(z) the area of the set in D for which »*(x, ¥) >z and
p~(x, y) >z respectively, then we require that for each z_>0 A(z)=A4%(2)
=A-(z). Finally, at the center »=0 of D* we let p*(p~) be equal to

the minimum (maximum) of p in D and we complete p*(p~) to the
closure D* of D* by assuming that its value on the boundary circle C*
is equal to the maximum (minimum) of p in D.

The two rearrangements are connected by the formula p~(r)=
pr((R*—r)?), 0 _'YS_R. If p is positive in D then, clearly, the same
holds for p* and p- in D*. Moreover, the continuity of » in D implies
the continuity of its rearrangements in D* (cf. [6, Theorem 5]). Indeed,

the continuity of p(x, ¥) implies that A(z) is a strictly decreasing function
of z (for the z-interval bounded by the minimum and maximum of p(x, ¥)

in D). As p*(r) and p~() are monotonic functions their only possible
discontinuities would be jumps. Such a jump would imply that A*(2)
or A-(2) had to be constant for the corresponding z-interval. But,
as A*(z)=A"(2)=A(z), this possibility is excluded.

Though not necessary for the following proofs, we wish to justify
our above statement concerning the discontinuities of the first deriva-
tives of »*(x,y) and p~(x,y). We assume therefore that p(x, y) has
continuous partial derivatives of first order—or, indeed, of any desired
order—and we consider the surface z=p(x,y) lying above D. Let us
perform the transition from p(z, y) to »~(x, y)=»"(r) in the direction of

decreasing z-values. The absolute maximum of #(x,y) in D becomes
p~(0) and every z-value, smaller than this absolute maximum, for
which p(z, y) has a local extremum induces a jump of dp~/dr at the
corresponding value p~(r)=z. Clearly, the values of the local extrema
of p(x,y) may accumulate to one or more values lying in the open

interval bounded by the absolute extrema of p(x,y) in D. This case
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generates the situation mentioned in the introduction with respect to
the discontinuities of the first derivatives of p~(z, y) and p*(x, y). We
shall return to this question in a special case (for the function u~(z, y)
appearing in the proof of Theorem 2).

We state now the following.

THEOREM 1. Let D be the disk 0 <a*+y*< R? 0<R< oo, and denote
its boundary by C. Let the function o(x,y) be positive and continuous in

D (=D\J C) and have continuous first derivatives in D. Let p*(x,y)
=p*(r) (F=z*+9*, 0<r<R) be the rearrangement of p(x, y) in symmetric-
ally increasing order defined in D (=D¥). Further let m(x,y) be
a function which is positive and continuous in D, has continuous first
derivatives in D and satisfies for each (x,y)e D

(1*) ml(x, ¥) <p*(x, y) .

Consider the differential systems

(2) du(x, y)+ Ao, Yu(, y)=0 for (x,y)eD, w(C)=0,

and

(3%) Mo(, y) + pml, y)(@, y)=0 for (z,y)eD, v(C)=0,

and denote their first eigenvalues by 2 and p=p(m) respectively. Then
(4*) A p(m)

For the proof we need the properties of the first eigenfunection.
As mentioned, we rely on the last chapter of Courant-Hilbert [3,
Vol. 2, Chapter VII]. In our §§1 and 2 we deal with the eigenvalue
problem for vanishing boundary values. (See their §3; and put in
their notation p==1, a==b=¢==0, and replace their k—in case of our
system (2)—Dby p). Throughout this paper we use the result of their
§ 4 ; this implies that if the domain D is bounded by a Jordan curve C,

[o]
then a function belonging to their classes D and F' is continuous in the

closure D of D and vanishes on the boundary C. We state now all the
needed properties, e.g. for system (2).

A first eigenfunction u(x, y) of the system (2) is defined as a (non-
trivial) solution of this system corresponding to the first eigenvalue
A(2>0). u(x,y) is continuous in D, vanishes on C, has continuous
derivatives of first and second order in D and the integral

Sglgrad u lzda=SS(ui+u§)do

D
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exists. do denotes the area element of D and throughout this paper all
area integrals are improper Riemann integrals [3, Vol. 2, p. 478]. More-
over, u(x, )50 in D [3, Vol. 1, Chapter VI, §6] and the first eigen-
function is therefore essentially unique (i.e. except for a multiplicative
constant). The Rayleigh ratio

SSigradgoIgda/Hpng do

D

attains its minimum 1 in the class of all admissible functions ¢(z, y) for
¢=u. Here a function ¢(z, y) is called admissible in D if it is con-

tinuous in D, vanishes on C, has piecewise continuous® first derivatives
in D and if the integral

ngradgpl’lda

exists.

To prove Theorem 1 assume first that m(z, y) has circular symmetry
in D, m(z, yy=m(r). Let v(x,y) be a fixed first eigenfunction of (3*).
As the first eigenfunction is essentially unique, it follows from the
circular symmetry of m(r) that o(x,y) too has circular symmetry,
v(@, y)=v(r). (3*) becomes therefore

1 d

?dr{T’gr'”<*)}+#m<7‘>v(r>=0 for 0<r<R, wo(R)=0.

As v£0 in D, we may assume that v(r) >0, 0 << R, and it follows
that

,di {r—$~v(r)}<0 for 0<r<R.
This inequality and

lim{rwdo;lr— v(r)}s()

r=0
imply

& ) <0 for 0<r<R.,
dr

1 A function is called piecewise continuous in a domain D if it is continuous there
except for arbitrary discontinuities at isolated points and discontinuities of the first kind
(jumps) along smooth arcs; and it is required that each closed subdomain of DD has
a nonempty intersection with only a finite number of these arcs [3, Vol. 2, p. 473].
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v(z, y)=v(r) is therefore symmetrically decreasing in D and, as v_>0,
the same holds for v*. We have now

) oy Wamadords_(fiemad ot

ngvzd«r N Sgpwzfza

Sg|gradv12da Sglgradgol"'da
— —Zmin 4 =1,

T {fmras [{peao

All the integrals are taken over the disk D. The first inequality sign
follows from (1*). The second inequality sign is justified by the above
mentioned theorem on the rearrangements of functions [9, p. 1563]. To
apply this theorem, we note that p and p* are equimeasurable and that
p* and v* are oppositely ordered. The minimum in (5) is taken over the
class of the admissible functions ¢, and » clearly belongs to this class.
We proved thus (4*) under the additional assumption that m(x, y) has
circular symmetry.

We define now

(6%) =g Lb. p(m) ;

here the g.l.b. is taken over all functions m(zx, y) fulfilling the require-
ments stated in the theorem and having, in addition, circular symmetry.
Hence, we have until now established that

() A=A,

A2* is connected with the function p* in a more direct way ; that is, we
show that

& —

SSp*gDZda

where the g.1.b. is taken over all admissible functions ¢(z,y). To prove
(8*) let us denote its right hand side by 1.. (6*) implies that for every
e >0 there exists a circular symmetric function m(z, y)=m(r), fulfilling
all our above requirements, for which g(m)<i*+e. Denoting the cor-
responding first eigenfunction by v and using (1*) we obtain

ngradvlzda “Igradvlzda
Fezpmy=3d T

= — 2
ng?ﬁdo “p’“vzda
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It follows that
(9) 2,

On the other hand, given any ¢, 0< e<1, there exists an admissible
function ¢(x, y) such that

Sglgrady)lzd(f

e +e>
e
Furthermore, by using the Weierstrass approximation theorem with
respect to p*(r), we can find a function m(zx, y)=m(r) which, in addition
to all our former requirements, fulfills also p*(r)(1 —¢) <m(r) for 0 <r<R.
Hence,

gglgrad’sﬂlzda\ Sglgrafi solqu

S =(1-e)

A, +e
SSP*WCZG Hlmgﬁz do

\Y%

21 —e)p(m)=(1—e)a* .

This implies
(10) 2. =>2%

(9) and (10) give (8*).

Let us interpret the g.l.b. #(m) in a less restrictive way than in
(6*) ; that is, we take now this g.L.b. over all functions m(z, y) fulfilling
the requirements stated in the theorem (and drop the additional require-
ment of circular symmetry). By a proof entirely analogous to the one
given just now, it follows that also this g.l.b. u(m) (for the wider class)
is equal to the right hand side of (8*). This and (8*) imply that 2+,
that is, the g.l.b. p(m) for the restricted class (of circular symmetric
functions), is equal to the g.l.b. p(m) for the wider class of functions
m(x, y¥) (not necessarily having circular symmetry). (7+*) establshes there-
fore (4*) for any function m(zx, y) fulfilling the requirements stated in
the theorem. This concludes the proof of Theorem 1.

In the special case of p*(wx, y) having continuous first derivatives in
D, i* is the first eigenvalue (in the classical sense) of the differential
system

dv(z, y) + 2 p*(x, y) v(z, y)=0 for (w, y)eD, v(C)=0.

In any case we shall call 2* the generalized first eigenvalue of this
system.
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2. The nonhomogeneous membrane II.

THEOREM 2. Let D be a domain in the x, y-plane bounded by a Jordan
curve C. Let the function p(x, y) be positive and continuous in D (=D\J C)
and have continuous first derivatives in D. Let p~(x, y)=p"(r) (r=a"+19*,
0<r<R) be the rearrangement of p(x,y) n symmetrically decreasing
order defined in the closed disk D* (whose boundary we denote by C*).
Further let k(x, y) be a function which is positive and continuous in D*,
has continuous first derivatives in the open disk D* and satisfies for
each (x,y) e D*

1) k@, y)=p=(2, ) .

Consider the differential systems

(2) du(x, y)+ 2p(x,y) w(x, y)=0 for (x,y)eD,w(C)=0,
and

(37) dw(z, y)+ sk(z, y) w(x, y)=0 for (x,y)e D*, w(C*)=0,
and denote their first eigenvalues by A and k=rk(k) respectively. Then
4-) Az=k(k) .
For the proof set
(67) i-=Llu.b. k(k) ,

where the l.u.b. is taken over all functions k(x,y) satisfying the just
stated conditions. The theorem will be proved if we show that

(7) A=A

Similar to (8+*), it follows that

Sglgradgolzda
() I-=glb. 2
Sgp'sv“do

here the g.l.b. is taken over all admissible functions ¢(x, ¥) in D*, We
shall use (8-) for the proof of (7-).

In the proof we make use of the first eigenfunction u(x,y) of (2)
and of its rearrangement in symmetrically decreasing order u—(x, y)=u"(r).
In particular, we have to show that - is an admissible function in D*

(see (12) below). u- is continuous in D* and vanishes on C*; it is,
however, doubtful whether in the case of a general p(z, y), satisfying the
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conditions of the theorem, the first derivatives of u~(x,y) are piecewise
continuous in D*. But this is true, as we shall see presently, in the
case in which the function p(w, y) is analytic.

We therefore prove (7-) first under the assumption that p(z,y) is

positive and continuous in D and analytic in D. The first eigenfunction
u(x,y) of (12) is then also analytic in D [8, p. 162]. We assume u(x, y)
fixed so that u(x, y) >0 for (x,y)e D. Following Krahn [7], we consider
the planes z=constant which touch the surface z=u(z, %), (x, y) € D, and
we claim that this (finite or infinite) set of horizontal planes can be
enumerated z=z,;, ¢=1,2, ---, in such a way that 2, >2,>-.-,2,>0, and
that (in case of infinitely many such planes) limz,=0. Indeed, as wu(z, y)

is continuous in D, positive in D and vanishes on C, if this were not so
then we could find a sequence (x,, ¥,) €D, n=1,2, -.-, with the follow-
ing properties :

(a') hm (xm yn) (xO’ ?/o) € D

(b) grad U(2,y ¥,)=0, n=1, 2,

() u(wn, yn)F~u(z,,y, for m;én, m,n=1,2,+.--. We show now
that the existence of such a sequence (x,,¥,) is impossible. Let us
consider the two sets of points (x,y) in D given by u.(x, y)=0 and
u,(x, y)=0 respectively. u, and w, are together with » analytic func-
tions in D. As u is a solution of (2) the identically vanishing of u, or
u, is excluded. Hence, both these sets consist of analytic curves (or
arcs) and we consider these curves near (w, ¥,). Using 4u <0 and, if
necessary, rotating the coordinate system of the plane, we may assume
that both u,,-~0 and u,540 at (x, ). The curve u,(, y)=0 is thus
near (w,, ¥,) represented by a power series of the form a—ax,=P,(y—u).
Similary, w,(x, y)=0 is there represented by y—y, =Py (x—a). The ex-
pansion for u,(x,¥)=0 may be solved by y—y,=Ps((x—a,)"*), where
k>1 is given by the index of the first nonvanishing coefficient of P,.
By the above properties (a) and (b) of the sequence (x,,y,) it follows
that Py(x,—,)=Py((x,—x,)"'*), n=1,2, -++. As infinitely many of these
last equalities hold for a fixed branch of (x—uwx)"*, it follows that
Py(x—x)=P(x—ax,)"*) and that k=1. wu, and %, vanish along this
analytic curve which contains all the points (z,,y,.). This gives the
desired contradiction to property (c) and we have justified the enumera-
tion of the horizontal tangential planes z=z;.

Using 4u < 0—which excludes the existence of minima of u(x, y)—it
follows that there are no closed curves along which gradu=0. Arcs,
ending at the boundary C of D, along which grad =0 are clearly
excluded. This implies that no sequence (w,, ¥,) having the above pro-
perties (a) and (b) exists. Hence, each critical plane z=z, touches the
surface z=u(x, ¥) only in a finite number of points (and, for i=2,3, ---,
cuts the surface along certain analytic curves).
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For any z, 0< z< =z, denote by C(z) the level set u(x, y)=z and let
A(z) be the area of the open set in D for which u(z, y) >z. C(z) con-
sists of the boundary of this open set and contains for z=z, (1=2,3, --+)
perhaps an additional finite number of points. For zz%4z, C(z) separates
into a finite number of simple closed analytic curves and it follows that
for each z, 0<2 <z, C(z) is of finite positive length. We consider now
the open intervals z,>2>2,., (1=1,2, --.), where in the case of only
a finite number n of critical values 2z, the last interval is z, >z >0.
For each z in one of these open intervals we have ([7, formula (10)] and

[10, §1I7)

dA_ _ S _ds
dz o, leradu|
where ds denotes the length element of C(z). Clearly dA/dz< 0 (25%4%z;).

Let %, denote the number of simple closed analytic curves into
which C(z) separates for z in the open interval (z;.,, 2;), 1=1,2, «+-. k;
is a function of ¢ only, and it follows from the last formula that dA4/dz
is continuous for (z;..,2;). The same consideration implies the existence
of the one-sided limits of dA/dz as z tends to z,.,+0 and z,—0. These
limits may conceivably be equal to — ?, but are different from zero.
Indeed, as C(z;.,) is of positive length (i=1, 2, ---), it follows that for
2—2,.,+0 at least one of the %, families of simple closed curves, into
which the level sets C(z) separate for z in (2,1, 2;), converges to a part
of positive length of C(z;.,). The same argument holds for z—=z,—0
(t=2,8, +++).

As remarked in §1, A(z) is a strictly decreasing function of z,
0<L2<2. In the present case A(z) is also continuous in this interval.
This follows from the fact that u(x, y) achieves a fixed z-value only for
finitely many ecurves and (perhaps) points in D and not for a set of
positive area. The definition of u (z, ¥)=u"(+) and the continuity of
A(z) imply that A(z)=mr* for u (r)=2z (0<2<2, 0<r<R). Hence,
u~(r)=A"Y(=r*) and u~(r) is not only continuous (see § 1) but also strictly
decreasing. The critical z-values 2,2, --- correspond to the critical
r-values 7y, 7y, +++ with r,=0<r,<r; --+, r,< R and (in case of infinitely
many critical values) }im ri=RK. As

]

2 This, indeed, cannot occur. We do not have to bring the argument which excludes
this case, as we may allow that the one-sided limits of du~/dr at »;(i=2, 3, ---) are equal
to 0. Similary, it can be shown that dA4/dz tends to a (finite) negative value as z-z;-0 so
that du-/dr—0 as r—0. This again will not be needed as an arbitrary singularity of wu,~
and u,~ at (0, 0) does not invalidate their being piecewise continuous in D*. (See below).
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it follows that du~/dr is continuous for each open interval #,<7r<r;.,
(i=1, 2, ---) and that its discontinuities at the values », (=2, 3,---) are of
the first kind (jumps). Every interval 0<r<p, 0< p< R, contains only
a finite number of ecritical values r, and every closed subdomain of D*
intersects therefore with only a finite number of eritical circles a*+ y*=1r1.
The continuity of du~/dr at r=~=r, implies the continuity of u; and u, at
all points of D* different from the center and not lying on these critical
circles. At the critical circles 2*+y’=7} (¢=2,3, --+) u; and u, have
(at most) jumps and it follows that these first derivatives of u-(z, y) are
piecewise continuous in D*. Moreover, as was shown by Faber [4] and
Krahn [7] in their proofs of Rayleigh’s conjecture, the Dirichlet integral

SSI grad(u-) *do

D¥

exists and fulfills the inequality.

(11-) “lgrad ” |2dag”|grad ") Pdo

D*
which we shall use presently. All this, together with the previously
established continuity of »-(z,v) in D* and its vanishing on C*, prove

finally that the function u~(zx, y) is admissible in D*,
We have now

Sglgradulzd(; Sglgrad (w™)|*do
(12) A=7 P

Sgpu”do o SS “(u- )"‘dr;

To justify the first inequality sign in (12) we use (11-) for the nume-
rators and for the denominators we apply again the theorem on the
rearrangements of functions. (As >0, (z~)* is together with »~ sym-
metrically decreasing, and p~ and («~)* are therefore similarly ordered.)?

3 The integrals in the theorem on the rearrangements of functions [9, p. 153] are taken
over the same bounded region. Our case, integrating once over D and the other time over
D*, can easily be rfeduced to that case of the same region of integration. We embed D
and D% into the same plane and take all integrals over a bounded region G containing both
D and D*, after having completed p, p-, » and u~ into G by steting p=u=0 in G~-D and

p-=u-=0 in G-D*,
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The g.l.b. appearing in (12) is taken over all admissible functions ¢ in
D* and is thus by (8") equal to 2. We proved (7-), and hence the
theorem, under the additional assumption of »(z, ) being analytic in D.

This special case implies now (7-) for any function p(w, y) satisfying
the conditions stated in the theorem. Indeed, as p(x, y) is positive and

continuous in D, the Weierstrass approximation theorem assures that
for every 8 >0 there exists a polynomial ps(z, ¥)=ps;, so that

(13) 0<p(, y) <ms(@, y) <p(w, y)1+9)

holds for all points (x,y) of D. Denoting by () the (classical) first
eigenvalue of the differential system with the density function p;, the
minimum property of the first eigenvalue implies

14) () 2Z52(0)(14+9) .

Let ps(zx, y)=p5(r) be the rearrangement of p; in symmetrically decreas-
ing order defined in D*. (13) gives

(13-) 0<p (N =<ps(r)<p (r)(1+9)

for 0<r<R. For the corresponding generalized first eigenvalues it
follows by (8~) and the analogous definition of 17(5) that

(14-) 17(0) <A~ <A (O) (1 +9) .
For each polynomial py(x, y) we proved
A(8)=27(9) .
As 0 tends to 0, we obtain from (14), (14-) and the last inequality
(7) A=A

Theorem 2 is therefore established.

Inequality (11-), i.e. the fact that the Dirichlet integral of the
first eigenfunction decreases under symmetrization, was an essential
step in our proof. On the other hand, this inequality constitutes Faber’s
and Krahn’s proof of Rayleigh’s conjecture. It is thus by no means
surprising that Theorem 2 includes the theorem of Rayleigh, Faber and
Krahn as the special case p(x, y)=1. However, Theorem 2 implies only
a weakened from of their theorem, since with regard to inequality (11-)
Faber and Krahn proved more than we used. They showed that equality
in (11-) can oceur only if D is a circle. Their theorem thus states that
for all homogeneous membranes with constant area the minimum of the
principal frequency is achieved for the disk and only for the disk. As
for any homogeneous membrane i*=41-, it follows that if p=1 and D
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is not a disk then 1>21*. Hence, Theorem 1 can not be extended to any
noncircular domain. For any such domain there exist functions p(x, y),
for example, all the positive constants, so that 1>>1*, and at least for
nearly circular domains there exist functions so that 1< 2*. This last
fact follows from the continuity of the first eigenvalue as a function
of the domain [3, Vol. 1, Chapter VI, Theorem 11] (and we assume that
for some functions p(x, ) in the disk the proper inequality sign holds
in (7).

A lower bound for the principal frequency of nonhomogeneous mem-
branes was obtained by Szegé in his paper on the generalized Dirichlet
integral [10]. In this case the density function p(x, y) is given in the
whole x, y-plane (except at the origin) and satisfies there the following
conditions :

(a) o(x,y) is positive in the whole x, y-plane (with the exception of
the origin) ;

(b) p(x, y) has circular symmetry, p(x, y)=p(r), and p(r) is a non-
increasing function of =, r>0;

(¢) rp(r) is integrable in a neighborhood of »r=0. Considering
membranes lying in this plane, Szego’s result is that for all membranes
with given area the minimum of the principal frequency is achieved for
the disk whose center coincides with the origin of the plane. [10, § V].
While keeping Szego’s condition (b), we replace his conditions (a) and
(¢) by the following more restrictive assumptions : (a’) o(x, y) is positive
and continuous in the whole x, y-plane ; (¢’) p(wx, y) has continuous first
derivatives in the whole z, y-plane. Under these more restrictive condi-
tions (a’), (b) and (c’), Szegtd’s result follows from Theorem 2. Indeed,
let D be a domain in the =z, y-plane with the given density function
p(z, y). Let D* and p~(x,y) be defined as in Theorem 2, but put the
center of D* into the origin of the given «, y-plane. As p(r) is a non-
increasing function of », »=>0, it follows that for each (zx, y) e D*

(15) @, y) =p (2, y) .

('), (¢’) and (15) imply that p(x,y) in D* satisfies all the conditions
which were in Theorem 2 required of k(x,y). (4°) is thus the desired
conclusion. (For a one-dimensional analogue of Szegd’s theorem see [1,
Lemma 3].)

We state now our results on the nonhomogeneous membrane in
a form involving only generalized first eigenvalues. We drop therefore
the requirement that the original density function p(zx, y) has continuous
first derivatives.

THEOREM 2. Let D be a domain in the x,y-plane bounded by
a Jordan curve C and let p(x,y) be positive and continuous in D, Let
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p*(x, yy=p*(r) and p~(x, y)=p - (r) be the rearrangements of p(x,y) in
symmetrically increasing respectively decreasing order defined in the
closed disk D*. Consider the three differential systems

du(z, y)+ Ap(e, y) w(z, y)=0 Sfor (xz,y)eD, w(C)=0;
do(x, y)+ 1*p*(x, y) v(w, y)=0 for (x,y)e D*, »(C*)=0;
A’LU(:U, y)+ '{—p_(x, y) w(x, y)=0 fOT (KI?, ZI) € D*: w(C*)ZO H

and denote their generalized first eigenvalves by 2, 1* and 2~ respectively.
A 18 defined by

Sglgrad o ldo
(8) I—g b

where the g.l.b. is taken over all admissible functions ¢(x,y) in D, and
2* and i~ are analogously defined by (8*) and (87). Then 1~ <A, In the
special case of D being o disk (D=D*) we have in addition 1=2*.

To prove this let us again approximate p(x, ¥) by polynomials py(x, ¥)
satisfying (13). This implies (14), with 2 now being defined by (8) ; (14)
and (14-) give as before (7-), that is, A~ <. The additional result for
the disk follows, by the same approximation, from Theorem 1.

We conclude the treatment of the nonhomogeneous membrane with
the following remarks. It is known that the second proper frequency
of a homogeneous membrane of given area does not attain its minimum
for the disk [9, p. 168]. This implies that Theorem 2 cannot be extended
to the second proper frequency ; i.e. under its assumptions the relation
4; << 1, cannot be proved. Even for the circular nonhomogeneous mem-
brane we are not able to establish any inequality—or equality—between
A, 4 and A;. It is thus of some interest to note that for the one-
dimensional case (see [1, Theorem 2]) 1;=1;. This follows easily from
the relation p~(2)=p*(z,—2), 0L,

Finally, an intuitive proof gives the following analogue of Theo-
rem 2. The principal frequency of a mnonhomogeneous membrane of
arbitrary shape decreases (i.e. does not increase) under Steiner symmetri-
zation or under Polya (circular) symmetrization. (cf. [9, Note A] and
[6, Chapter I]). Indeed, formula (12) holds also for these symmetriza-
tions. The Dirichlet integral of the first eigenfunction decreases and we
apply the one-dimensional case of the theorem on the rearrangements
of functions for each member of an (obvious) one parameter family of
straight or circular segments respectively. (Note that if D is not convex
with respect to this family, then p~ is in general not continuous in D™,
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On the other hand, u- is always continuous in D*.) It is easily seen
that Steiner and Pélya symmetrizations are weaker than Schwarz sym-
metrization used in Theorem 2 ; the lower bounds obtained by the first
two kinds of symmetrization are not smaller than 1- of Theorem 2.

3. The generalized Dirichlet integral. In this section we follow
closely Szegd’s treatment of the generalized Dirichlet integral ([10] and
[9, Note D]); however, our definition of this integral will be somewhat
simpler than Szegd’s. We consider a ring-shaped domain D in the z, y-
plane, that is, D is bounded by two Jordan curves C, and C,; such that
C, is completely in the interior of C,. We ecall C, and C, the inner and
outer boundary of D respectively and we denote the interior of C;, by
G. Let D* be the open annulus which has the circle C§ of radius Ro
as inner boundary and the (concentric) circle CF of radius R, as outer
boundary (0 < R,< R;< ). The radii are so chosen that the disk
bounded by C; has the same area as the interior of C, and that the disk
G* bounded by Ci¥ has the same area as . Hence D* has the same
area as D and we assume that the center of D* is the origin of a (new)
2, y-plane and use again r=(z*+y")"%.

Let p(x, y) be nonnegative and continuous in the closure D of D.
Its rearrangements in symmetrically increasing and decreasing order are
defined in complete analogy to the case of a simply connected domain :
p*(x,y) and p~(x,y) are defined in D*; both functions have circular
symmetry p*(wz, y)=p*(r), p~(x, y)=p~(r) and p*(r) is a nondecreasing,
p~(r) a noninereasing function of », Ry<r<R,; p, p* and p~ are equi-
measurable ; finally, p*(R,) (p~(R,)) is equal to the minimum (maximum)
of p in D and p*(R.) (p~(R)) is equal to the maximum (minimum) of »
in D. Both rearrangements are nonnegative and continuous in D*.

The admissible functions are now defined as follows. A function
¢(z, y) is called admissible in D if it is continuous in D, vanishes on C,,
is equal to 1 on C,, has piecewise continuous first derivatives in D and
if the integral

Sglgrad ¢ *do

exists. The admissible functions in D* are defined analogously and will
be denoted by ¢(x,y). Using these definitions, we state.

THEOREM 3. Let D be a ring-shaped domain in the x,y-plane and
let the Jordan curves C, and C, be the inner and outer boundary of D

respectively. Let the function p(z, y) be positive and continuous in D and
have continuous first derivatives in D. Let p~(x,y)=p"(r) (R, <r<R)
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be the rearrangement of p(x,y) in symmetrically decreasing order defined

in the closed annulus D.* Denote by 4ny the minimum of the generalized
Dirichlet integral

(16) E<¢)=S§ {|grad ¢ P+ p¢} do

D

in the class of all admissible functions ¢(x,y) in D. Similarly, denote
by 4drny~ the g.l.b. of the generalized Dirichlet integral

(167) E-@)=|{(lerad gr+p-g) ar

D

in the class of all admissible functions ¢(x, y) in D* which satisfy |¢|<1.
Then!

(177) r=r" .

We rely again on Courant-Hilbert [3, Vol. 2, Chapter VII]. To
minimize E(¢) in the class of all admissible functions ¢(x,y) in D is
a special case of their Variational Problem I corresponding to the first
boundary value problem. (See their §2; and put in their notation
p=k=1, a=b=f=0, and replace their ¢ by our p. To assure that
all their assumptions are satisfied, we have to show that there exists
a function g which is continuous in D, vanishes on C,, is equal to 1 on
C, and has piecewise continuous first derivatives in D which are such
that

“{grad g do

exists. The existence of such a function g follows by conformal map-
ping. Set z=a+1y and let {=¢(2) be the function which maps D onto
the annulus p<{|{|<1. The harmonic function g(z, y)=09(2),

oo | 9] 1
9(z)=log 0 / log )

has all the required properties.)

We again use the result of their § 4 with an implication similar to
the one stated in our § 1. With regard to the same problem for E-(¢),
the conditions of Courant-Hilbert are satisfied only if p~(x,y) has con-
tinuous first derivatives in D*. As this is in general not true, 477~ has
to be defined as the g.l.b. E-(¢).

4 The words “ which satisfy |¢|< 1” may of course be deleted. But we shall need the
above given formulation of Theorem 3 to obtain Theorem 3’,
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The variational problem to minimize E(¢) in the class of all admis-
sible functions ¢(x, y) in D has a unique solution w(x,y). This admis-
sible function u(x, ¥) has continuous derivatives of first and second order
in D and is also the unique solution of the corresponding boundary value
problem ; that is, u(x, y) solves the system

(18) AM(IE, y)‘p(x9 y) u’(xy y):() for (x, y) € D’ u(CU)=0 ’ u(cl)zl ’

and is the only admissible function having continuous first and second
derivatives which solves this system. (18) and p(x, ¥) >0 imply
0<u(x, y) <1 for (x,y)eD.

For the same reason as in § 2, we prove Theorem 3 first under the
assumption that p(x, y) is not only positive and continuous in D but is
also analytic in D. (18) implies the analyticity of w(x, ) in D and in
complete analogy to § 2—using (11*) below— it follows that u*(x, y)=u*(r)
is an admissible function ¢(z, y) in D* which, by the above, satisfies
[¢]1<1. We have now

(19) 4nr=“ (| grad upP+ pu) daggg{lgrad (") P+ p- ()} do

D

> g.l.b.“{]grad JP+p ¢ do=4dnyr- .
D¥

To establish (19) it remains only to justify its first inequality sign. For
thisYpurpose we use

(11+) Sglgrad uPdogSSIgrad (u*) o ;

D

that is, the fact, proved by Szegt [10], that also in this case the
Dirichlet integral decreases under symmetrization. The remaining inequ-
ality

Sgpwdagﬂp-(wyda

D D¥
is again a consequence of the theorem on the rearrangements of func-
tions. (See footnote 3) and complete u, u*, p and »~ in an obvious way
into a bounded region containing D and D*.) This establishes (19) and
thus proves Theorem 3 for analytic functions p(x, ¥).

This special case implies (17-) for any function p(z, y) satisfying the
conditions stated in the theorem. We use the same approximation as
in the analogue step in § 2. ps(a, ¥)=p; is again a polynomial satisfying
(13) in D and (13-) holds therefore for D*. Replacing in (16) » by ps
and in (167) »~ by p;y, we denote the corresponding minimum and g.l.Db.
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by 4zy(d) and 4zy-(0) respectively. By (13) and the definitions of y and
7(0) we obtain (using that 0 <{u 1)

4rrr=gg {lgrad u|*+ pu’} dog“l grad u [*do + (1 _— )Hmuzdﬂ
) ) 1+6/),
> 4xy(6)—6Pd

where P is the maximum of p(z,y) in D and d denotes the area of D.
Setting a=Pd/4r we have

(20) r=7(0)—da .

By (13-) and the definitions of y- and 7-(¢), there exists for each ¢>0
an admissible function ¢(x, y) in D*, satisfying |¢]<1, so that

4 (0)+e= ([ Ugrad g 407 9o = ([ grad g P4 p-g} do =t

D¥ D*

hence,

(21) (@) =7

For each polynomial pys(x, ¥v) we proved
1(6)=717(9) .

As 0 tends to 0, we obtain from (20), (21) and the last inequality the
desired conclusion (17-) and we thus completed the proof of Theorem 3.

The assumptions of this theorem can be weakened ; that is, as in
Theorem 2, there is no need to assume the existence (and continuity)
of the first derivatives of p(x, y). Theorem 3 remains correct if we as-

sume with respect to p(x,y) only its being positive and continuous in D
and if we accordingly define Any as the g.l.b. E(p) in the class of all
admissible functions ¢(x,y) in D which satisfy |¢|<1. Indeed, the just
given proof remains unchanged except for a slight modification in the
derivation of (20).

We mentioned that definition (16) differs from Szegt’s definition of
the generalized Dirichlet integral. In order to obtain his result on this
integral it will be convenient to restate Theorem 3 using his definition.

TueorREM 3 Let D, C,, C,, D*, C¥ and Cf have the same meaning
as in Theorem 3 and denote the interior of C, by G and the interior of
C¥ by G*. Let p(x,y) be positive and continuous in G and have con-
tinuous first derivatives in G (or at least in D). Let p~(x, y)=p (1)
(0<r<R) be the rearrangement of p in symmetrically decreasing order

(in the sense of §1) defined in G*. Further let k(x, y) be positive and
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continuwous in G*, have continuous first derivatives in G* (or at least in
D*) and satisfy for each (x,y)e G*

(1) k(x, y) =p (2, y) .

Denote by 4rnc the mintmum of the generalized Dirichlet integral
(22) D)= |{Igrad ¢+ 0} do—{ [ds
D G

i the class of all admissible functions ¢(x,y) n D. Simalarly, denote
by 4nc(k) the minimum of the generalized Dirichlet integral

(23) Dk(¢)=“{l grad ¢ !+ g?} do— Sgk do
D* @*
in the class of all admassible functions ¢(x,y) in D*. Then
(24) c=>c(k) .
For the proof let 4zc~ be the g.lL.b. of the generalized Dirichlet
integral
(22) @)=\ {1grad g1+ v~ ¢} do— | 1o
D¥* G*

in the class of all admissible functions ¢(z,y) in D* which satisfy
|¢]1<L1. We show first that

(25) c=>co .

o=

G G*

As

and as these two integrals are independent of ¢ and ¢ respectively,
(25) is equivalent to

(26)  min Sg {lgrad ¢ [*+pp*} do > g.Lb. “{lgrad O+ p ) do ;

D¥

here the minimum is taken over all admissible functions ¢ in D, the
g.1.b. only over those admissible functions ¢ in D* which satisfy |¢|<1.

p~ in (26) is obtained by rearranging —in the sense of §1—the in G
defined function p and then considering this rearrangement only in D*,
p~ in (16-) is the rearrangement—in the sense of the beginning of this

section—of the restriction of the function p to D. It is easily seen
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that, at each point (x, y) € D*, p~(x, y) in the sense of (26) is not larger
than p~(x,y) in the sense of (16°). Theorem 3 implies thus (26) and
hence the proof of (25).

Let now k(wx, y) be any function satisfying the conditions stated in
Theorem 3. By the definition of ¢-, there exists for each ¢>0 an
admissible function ¢ in D* satisfying |¢|<1, so that 4nc-+e=D~(¢).
Using (17), (227), (23) and |¢|<1 we obtain

dre+e=D-(9)= || Igrad prao— | [p-1=9)do— || p-ds

Dk D¥ G*— D¥

ggglgrad ¢ [Zda—“ka—w) do— Sg ledo— Dy($) > Are(k) .

D D* G*¥—- D¥

We thus obtain ¢~ =>c¢(k) which together with (25) gives (24). Theorem
3’ is therefore established.

We state now Szego’s theorem on the generalized Dirichlet integral
([10], [9, Note D]) in the following restricted form: Let the function
oz, y) be given in the whole x, y-plane and satisfy there conditions (a’),
(b) and (¢’) stated in §2. Let D be a ring-shaped domain in this plane
bounded by the immer Jordan curve C, and the outer Jordan curve C..
Denote by 4nc the minimum of the gemeralized Dirichlet integral

22) Do)=| [ {1grad o+ pg*) do— [0

D G

in the class of all admissible functions ¢(x,y) in D. Of all ring-shaped
domains D with given area and with given area of the containing simply
connected domain G, the annulus whose center coincides with the origin
of the given plane has the minimum generalized capacity c.

This theorem follows from Theorem 3’ in the same way as our re-
stricted form of Szegt’s theorem on the membrane followed from Theorem

2. ((15) holds now in G*.) Szegd proves this theorem on the generalized
Dirichlet integral assuming only conditions (b) and (¢) stated in §2°
instead of our more restrictive conditions (a’), (b) and (¢’).

Similarly to the final remark of §2, it follows intuitively that
Theorem 3 and Theorem 3’ remain correct if we use Steiner or Pélya
symmetrization instead of Schwarz symmetrization. For the analogues
of Theorem 38, Steiner and Pélya symmetrizations of functions given in
a ring-shaped domain have to be defined in an obvious way.

Theorem 3 corresponds to Theorem 2 on the membrane. We state
now a theorem on the generalized Dirichlet integral which corresponds
to Theorem 1. ’

5 We aré4 unable to follow Szegs’s argument allowing to drop the condition p > 0 (that is,
condition (a) of §2).
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THEOREM 4. Let D be the annulus Ri<a*+y*< R}, 0<R,<R;<
and denote its inner boundary by C, and its outer boundary by C,. Let

p(x, y) be positive and continuous in D and have continuous first deriva-
tives in D. Let p*(z, y)=p*(r) (R,<r<R,)) be the rearrangement of

@, ¥) in symmetrically increasing order defined in D (=D*). Let 1 have
the same meaning as in Theorem 3 and denote by 4rny* the g.l.b. of the
generalized Dirichlet integral

(16°) E*(o)= || (1grad g+ ¢ do

D

tn the class of all admissible functions ¢(x, y) in D which satisfy |¢|<1.
Then

(17*) T=1r".

For the proof let m(x.y)=m(r) be a function having circular sym-
metry in D and assume that m is continuous in D and has continuous
first derivatives in D. Moreover, for each (x,y)€ D let m(z, y)=>p*(z, y).
Denote by 4zy(m) the minimum of

Eu(o)=|| tgrad o +me} do

in the class of all admissible functions ¢(x, ¥) in D. Then il is easily
proved that

r*=g.lb.r(m),

where the g.l.b. is taken over all functions m(x, y)=m(r) satisfying the
above conditions. Let now m be such a function and let v(w, y) be the
uniquely given admissible function for which E, (v)=4ny(m). The unique-
ness of v and the circular symmetry of w imply that v too has cir-
cular symmetry, v(z, y)=v(r). As v(r) solves the differential system
1 d d _ _ _
—~{fr————v(7‘)}—m(r)v(r)—0 for Ry<r<R,, vw(R)=0, w(R)=1,
r dr U dr
and as m(r) >0 and v(r)>0 for R,<r<R,, it follows that v(r) is a non-
decreasing function of » in this interval. We thus obtain

47rr(m)=SS {lgrad v > + mv*} dag“ {lgrad v "+ p*v*} do

-_>:S g {lgrad v P +pv*} do =4ny .

D

This proves Theorem 4. The last step of this proof shows that tie
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(italicized) statement following the proof of Theorem 3 holds also true
with respect to Theorem 4.

We started this paper with quoting the one-dimensional analogue of
the results on the nonhomogeneous membrane. With regard to the
generalized Dirichlet integral we state now the one-dimensional analogue
of Theorem 3. It will be convenient to exchange the boundary condi-
tions. We thus require the vanishing of the admissible functions at the
outer endpoints of the two disjoint segments, so that p* (instead of p-
of Theorem 3) appears in our statement. Moreover, we let the inner
endpoints of the two segments coincide and thus obtain

THEOREM 5. Let p(x) be positive and continuous for —x,<x=1a,
0<Zay< oo, and let p*(x) be the rearrangement of p(x) in symmetrically
increasing order. Let w(x) be the wunique solution of the differential
system

w(@)—p*@)u@)=0 for —-x<e<0, u(-xz)=0, u(0)=1,

and set a=2u'(0). Let ¢(x) be any function of class D' in —x,<x<x’
which satisfies ¢(—x,)=¢(x,)=0 and denote the maximum of |¢(x)| in this
interval by ¢. Then

Ty

S (¢"+pe’)da =ap® .

-

Equality is obtained in the case p(x)=p*(x) and ¢(x)=Cu(x) for —x,<x
<0, ¢@)=¢(—x) for 0 <z =,

For the proof let «, be a point in < —uy, x,> such that {¢(x)|=¢
and assume that ¢(x)=¢. Let us minimize the integral

!

S (¥"*+ py*)dx

-2

under the boundary conditions y(—=x,)=0 and y(x,)=¢. The Euler equa-
tion ¥y’ —py=0 has (by »>>0) a unique solution satisfying the boundary
conditions and it follows by standard criteria of the calculus of variations’
that this unique extremal satisfying the boundary conditions gives the
absolute (strong) minimum of the variational problem. Considering also
the analogue problem for < z,, 2, > with the boundary conditions y(x,)=¢
and y(x,)=0 we finally obtain

a;o X,
S (¢ + pe*) dar = S<y'2+py2)dx ,
] )

6 See (2, p. 7].
7 See Bolza [2; pp. 101, 102] and use his conditions (I), (IIb’) and (III’).
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where y(x) is the unique solution of ¥’ —py=0 for —az, <z <z, and
< <a, which satisfies y(—x)=y(x,)=0, y(x,)=¢. (Note that 0<y<¢
follows). We have now

Ty Ty 0

| @+ p)to= | 1w r+rr @y de=2 | (@) 40 0y} o

- -

0 0 0

=>2¢* S U+ prur)de=ae¢® .

0

Here we used again the calculus of variations to justify the last inequ-
ality sign and we obtained the last equality by partial integration of
u”?. This completes the proof of Theorem 5.

In case of p(x) being a monotonic function we obtain

THEOREM 6. Let p(x) be positive, continuous and non-decreasing for
a<x<b (—o <a<b<ow). Let y(x)and y(x) be any (nontrivial) solu-
tions of

Y (@) —p@)y(@)=0, - a<x<b,
which satisfy y(a)=y,(0)=0. Then

i) ¥il@)
yi(@)” v (b) >0

For the proof we may assume y,(b)=vy,(a)=1. As the Wronskian of
the two solutions y,(x) and y.(x) is constant, (and using p>0) we obtain

yi(@)=—u,(0)>>0 .
Setting p*(x)=p(a+b—2), a<ax<b, we have

a

b b
yi(b)= S(yfz T py)de > S(y? + Py do

b

__>:§(y;2+py;)dx= — @) 0) .

Dividing %:(b) = —yy(a) by yi(a)=—1y:(b) we obtain the assertion of the
theorem.
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MORREY’S REPRESENTATION THEOREM FOR SURFACES
IN METRIC SPACES

E. SILVERMAN

1. Introduction. In 1935 Morrey showed that a non-degenerate
surface of finite Lebesgue area has a quasi-conformal representation on
the unit circle. He made use of Schwarz’ result for polyhedral surfaces
and was able to use a limiting process after he had shown that the
representations of the surfaces involved were sufficiently well behaved
for the area to be given by the usual integral. The limiting process
depended upon Tonelli’s result concerning the lower semi-continuity of
the Dirichlet integral.

Several years later Cesari reduced the dependence upon complex
variable theory by the use of a variational technique to obtain a slightly
weaker version of Schwarz’ result, but he showed that for the remainder
of Morrey’s argument his form was adequate.

The purpose of this paper is to remove the restriction that the
surfaces be in Euclidean space; the method is that of Cesari.

Morrey’s theorem has proved useful in the study of certain two-
dimensional problems in the calculus of variations. It is hoped that the
extension of his theorem will permit corresponding extensions of that
theory [3, 6, 12].

A desirable feature of quasi-conformal mappings is that the area of
the surface is given by one half the Dirichlet integral. To retain this pro-
perty for surfaces which are not in Euclidean space requires the definition
of an appropriate integral to complement the definition of area. The de-
finition of (Lebesgue) area used in this paper is that given in [13] which
agrees with the usual definition in case the surface is in Euclidean space.

We shall make use of the ideas of [13] in two other respects. First,
we need only solve our problem for surfaces in m, the space of bounded
sequences [1], since the definitions are chosen so as to be invariant
under an isometry and we can map other surfaces isometrically into m.
Second, we shall make use of the fact that the area of a function in m
depends only upon its distinct components. The last remark results
from the definition of the area of a triangle. Let r={r'}, s={s'}, and
t={t"} be three points in m. Then the area of the triangle with these
points as vertices is, by definition,

r¢opr 1
Lsup st st 1
2 4k

o 1
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2. A closure theorem for A.C.T. functions. Certain definitions ap-
plying to real-valued functions must be modified to apply to functions
which range in a metric space.

DEFINITION 1. Let ¢ be defined on the interval [a, b] with range
in a metric space D. Let @ be the interval function defined by

?([e, d))=0d(¢(c), ¢(d)) asc=d=b,

where o(r, s) is the distance between » and s in D. Then ¢ is B.V. or
A.C. according as @ is B.V. or A.C. Define Dg=D@® wherever the right
hand side exists.

With this definition of bounded variation and absolute continuity of
a function of one real variable in a metric space D, we extend verbatim
the definitions of bounded variation and absolute continuity in the sense
of Tonelli, B.V.T. and A.C.T., to apply to functions of two variables
with range in D [10].

If « is continuous on an open set G contained in FE, into D, define,
where the right hand sides exist,

D,x(u, v)=De(u) where ¢(t)=a(¢, v) ,
D x(u, v)=D¢(v) where ¢(t)=a(u, t)

If # is B.V.T. then D,x and D exist a.e. [8].
If ¢ is defined on [a, b] into m and is A.C. it is still possible that
lim M may not exist anywhere [5]. Hence we define a component-
w_

w-t

wise derivative ¢’ by ¢'={¢”}. Since ¢ is A.C. it follows that all of
the ¢‘ are also and that ¢ and D¢ exist almost everywhere. That
D¢ =|¢”| for each 4 is evident, hence ¢’ is defined, and in m, almost
everywhere in [a, b].

THEOREM 1. If ¢ is A.C. then D¢ exists and is equal to |¢'| wher-
ever ¢’ exists.

Proof. Suppose that the theorem is true whenever ¢ has only a
finite number of non-zero components. Let ¢, be that function whose
only non-zero components are the first », and these are the first » com-
ponents of ¢. Then (see the proof of Theorem 10) length ¢=1im length

N—>00

¢,. Hence
SDgo:Iength ¢=lim length ¢,=lim SD%:nm Sugp;u: Su | -

Thus we may as well suppose ¢ has only a finite number of non-zero
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components. Let ¢ be a point where ¢’ is defined. It suffices to show
that

Do(t)= hm sup “q)(—w)—flﬁl|<||90 I

For some ¢ there exists a sequence of numbers w, —t such that

lim le(w,)— S”(t)“ = D*o(t)

e ]
and

' (wa) — @' (&) =] p(w,) — @ (t)] .
The existence of this sequence implies that D*¢(t)=l¢" ()| ¢|.

DErFINITION 2. If x is continuous on an open set GG into m, define,
where the right hand sides exist,

x,(u, v)=¢'(u) where o(t)=2x(t, v) ,
z,(u, v)=¢'(v) where ¢(t)=x(u, t) .

THEOREM 2. If z is A.C.T. on G into m then
lz.|=D2 and |,|=Dx
wherever the left hand sides exist.

DEFINITION 3. If z is A.C.T. on G into D and if D,x and D,x are
in L*, then x is a D-mapping [4]. Let

Dia)= | {[@ur+ Dy

It was shown in [13] that if x is a D-mapping on a Jordan region
into a metric space, then the Lebesgue area of xz, L(x), is given by
what corresponds to the usual integral (see § 6).

Let /1" be the projection of m defined by

! <N,
HWWD=£ Z;N.

Put N¥z=yz.

THEOREM 3. If x, is a sequence of A.C.T. functions on a bounded
open set G into m, if T,—x uniformly in each closed set H contained
in G, if the norms of the partial (component-wise) derivatives p,=|on.],
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n=|@m,| are in L*, a>1, and SS[Z’%-I—Q%] <M for all m, then x is A.C.T.
G
in G, the norms of its partials p=|x,| and ¢=|z,| are in L* and

Sgp"‘zlim inf ngp‘fn , qu‘”zlim inf qus; .
G m—oo

G G G

Proof. Let us first suppose that z,=,yx, for each m and fixed N.
The hypothesis, together with the closure theorem for A.C.T. real-valued
functions, assures us that a* is A.C.T. for each ¢. Hence yx is A.C.T.

The remainder of the proof, in case x,,=yx,, deviates slightly from
that given in [4] for real-valued functions.

Let K be a closed set contained in G whose distance from the
boundary of G is 20>0. Let K, be the closed set of all points whose
distance from K does not exceed p. Let n>2/p. Define (n; x) by

(n; #)={(n; =, 4)} and

u+1fno+1/n
(n; @, 0)(u, w):nzg ! S z4(r, s) dr ds for (u,v)e K.

Then (n; x) has continuous first partial derivatives, (n; x),=(x; z,),
(n; 2),=(n; @), and (n; @,),—1; @)y, (7; €,),—>(n; 2),. Furthermore, if |y|
isin L%, where y={y'} is defined on G into m, each y' being measurable,
then

([ o= (e

K G

Thus
[Tee; e =1im ([ hon; b <tim nt ([ hzle < a1

[

Since x is A.C.T. and &% is integrable for each ¢, (n; z%)—>2% a.e. in K
and |(z; «,)|—|@.] a.e. in K. Thus |,] is in L* and

[(isate=tim in {{1ees aote<tim int {{pae<at

Finally, p*=lim || yo,|* and
N->co

Sgp‘”———lim SS |y, [P <lim lim inf S S I(y@n)*<lim int SS @) <M .
N—>oco N—>oo m—»oo m—>eo
K K G

G

Similarly

SSq“:lim inf qu;‘:,gM .
K

m—reca
G
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3. Equicontinuity theorems. The theorems listed in this section
are taken from [4], except that now the surfaces need not be in Eucli-
dean space. The proofs carry over almost without change.

Let @ be the square [0=u, v<1], let @* be its boundary, and = be
defined on @ into a metric space D.

THEOREM 4. [L. C. Young]. Given two positive numbers N and e
there exists a positive number 7 depending only upon N and ¢ such that
Jfor any D-mapping « with D(x)<N there exists a J, n<d<e, and a
JSinite subdivision of @ into rectangles whose side-lengths lie between o
and 20 and such that image of each side of such rectangles not on Q* is
a rectifiable curve whose length is less than e. A subdivision may be ob-
tained by means of straight lines parallel to the sides of Q.

THEOREM 5. Let S be a base (or open wnon-degenerate) surface, let
S,, n=1,2, «--, be a sequence of surfaces such that |S,, S| — 0, each S,
kaving a D-representation x, on Q with D(x,)<M (|S,, S| is the Fréchet
distance between the surfaces S, and S). Then the mappings «, are
equicontinuous in each closed set KCQ° (the interior of Q).

THEOREM 6. Let S be an open non-degenerate surface and S, be
o sequence of surfaces with |S,, S| — 0 such that each S, has a D-rep-
resentation x, on Q with D(x,)<M and such that there ewist points
Wi € Q%, 1=1,2,8, and a positive number m with |w,,—w.|>m,
(@, (Win), Tp(wy))>m for i#37. Then the mappings are equicontinuous in
an open set contaiming Q. That is, for each >0 there is a 6>0 such
that if w, w'eQ, Jw—w|<d, dist (w, Q%)<d, and dist (w', Q*)< 3, then
o (w), @ (w))<e.

4. Lower semi-continuity theorems. The results in this section
follow from [10].
If y is a D-mapping on G into m, let

En(y):gg Sup {t, k, y}

E@=|| sup {i, &, 1)

where

i, b, v} =13, y} + {&, v}

and

{0, v} =Wy +@h) .
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Let

F(y)=“ sup {3, ¥} .

THEOREM 7. If x, and @ are continuous on G (the closure of G)

into m and are D-mappings on G with @, — x uniformly on G, G being
of finite measure, then

D(z)<lim inf D(x;) , E(x)<lim inf E(x,) ,
k—co k—oo
F(z)<lim inf F(x,) .
k->o0

Proof. We shall prove that £ is lower semi-continuous. The other
two parts are proved in a similar manner.

The hypothesis and Theorem 2.1 [10, p. 26] show that E, is lower
semi-continuous. The theorem follows since E,<FE,., and E=lim E,,.

N-—>c0

5. Quasi-conformal representations for surfaces in m. Much of
this section is lifted bodily from [2]. The principal problem is to obtain
a desirable representation for certain polyhedra. After this representa-
tion has been obtained, Morrey’s technique yields a similar representa-
tion for other surfaces in m.

LEMmA 1. Let a,=0,b,, and c, be constants, n=1, 2, -+, N. If
S(@)=max [a,t*+b.t+c,] then for some m, f*(0)=fn(0) where [*(0)=
lim (f(£)—f(0)/¢ and f,(t)=aut*+but+cp.

t—0

Proof. That f+*(0) exists is a result of the convexity of f. Now
let w,>0, w,—0. Then for some m we have f(w,)=f.(w;) for an in-
finite set of k’s, and in addition, f(0)=f,(0). Therefore

F+0)=lim J(wy)— f(0) = lim fm(_qiui):f;mgo)g =fn(0) .
w, 3

ko0 N Koo w

LEMMA 2. Let a,, b,, and c, be measurable functions on a bounded
measurable set E with a,(x)=0, n=1,2,---, N. Let a, b, and ¢ be sum-
mable functions on E such that a,(x)<a(x), [b(x)| (@), and |c(x)|=c(x).
In addition let M be a positive constant and A and B be measurable
Sfunctions on E such that |A(x)|<2M and |B(x)|<2M* on E. Let

S, )=+ A(x)t+ B(x)t?) (@, (x)t* + b, (x)t + c.(x))
f(x7 t) = maxfn(x, t)
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and
o®)=| f@ t)de.

Then, for each x, there is an r=mn(x) such that
0= fu@ 0)do.

Proof. If we examine the proof of the theorem permitting differ-
entiation under the integral sign [7] we see that it is sufficient to show
the existence of a summable function ¢ such that, for some 7>0,

@ )= @ 0| <oy | 0<t<7 .
. <

If we take »<<(5M)~' we may take g(x)=2[ya(x)-+b(x)].
If y is a D-mapping into m, let

[¢, k, yI=v'¥i—v'vs .
Then

L(y)zgg sup [é, &, y] -

THEOREM 8. An open non-degenerate polyhedron F contained in
range 1Y for some N has a representation x* on the unit circle & such
that x* is a D-mapping and

max {3, #*} =max [, k, *] a.e. in %
i ik

Proof. Let X be a representation of & on @ and let C=range
X|@*. Consider the class K of all representations & of ” which are
D-mappings on %. Since &7 is a polyhedron, K is not empty. Let
I=inf E(x) for all ze K. We shall see that the infimum is attained for
r=a¥*.

Let Z, be a minimizing sequence with E(Z,)<I+1/n. Fix three
distinct points P, on Q* with Q,=X(P,) also distinct. For each =,
choose P, on &€ * so that z,(P,,)=Q;. Let P; be three distinct points
of Z*. By means of a conformal transformation taking < into itself
and P,, into P}, the functions Z, are transformed into z, where z,(P;)
=Q,. It is easy to verify that E(z,)=E(Z,).

Theorems 5 and 6 assure us that the sequence {x,} is equicontinu-
ous and hence a subsequence of the w, converges uniformly to z*. The
closure theorem for D-mappings enables us to conclude that #*e¢ K. By
Theorem 7, E(x*)=1I,
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Now let ¢ and ¢ be Lipschitzian with constant M in & and vanish
on #*. Then [2] the transformations T and T,

T: a=u+tep(u,v), B=v+ed(u,v),
are both Lipschitzian if |e|<1/(8M). Put

CU*[’&L(“, 18’ 5), ’U(d, ;Hs e)]:w(a, 187 e) ’

Then e K [10].
Now put

J(e):E(w):SS max {i, &, o} («, f)dd .
Z

A straightforward computation shows that

J(e)= SSD max (B 5 (a4 f2) — 2F (a4 Bufl) + GE(a+ B2)] du dv
(6/
where

ik—(x*i 2+(x*k 2 , G::Z(wfi)2+($fk)2 , Fu_xu x*L+x

_0a, B)

o(u, v)

We apply Lemma 2 to compute

.
7O={[{(-Ez- G0 —2Fsp) (B~ G, —2F g du dv
&
where r and s depend upon (u, v). That J*(0)=0 is evident since J
assumes its minimum at ¢=0.

From the arbitrariness and independence of ¢ and ¢ we obtain,
first of all, that

[(czs-cne~2ripa duav=o
(g
and

[(iEs—c2p,—2rag1duavzo.
7

Next we see that if we replace ¢ by —¢ and ¢ by —¢ then the
equality must hold in each case.

The remainder of Cesari’s proof now goes through without change,
and we conclude that EX=GX, F}=0 almost everywhere. It is clear
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that
[¢, k, *]1=4 13, k, a*}

for all 4, k. Also, where the equalities above hold, if we order » and
s properly we see that

wy =), wy =yt [r, s, *]=%{r, s, "} ={r, a*}={s, a*} .
Also, from the maximizing property
max {i, k, x*} ={r, s, *} ={r, a*} + {s, 2%} =2{r, 2*}
15k

=2{s, *} =2[r, s, *]=2max [i, k, 2*] .
ik
Finally {r, «*} =max {3, 2*} for otherwise {i, s, x*} > {r, s, x*}.

LEMMA 3. Let &P be a non-degenerate polyhedron in m. Then for
some N, the projected polyhedron II"° is non-degenerate for all n>N.

Proof. The hypothesis implies that the vertices of each triangle of
&° are distinct and not on a line. It is clear that N may be taken
large enough for II"&” to have this property for all n>N.

LEMMA 4. If & is a non-degenerate polyhedron with representation
x, and vf in the countable set of functions &' there are only a finite
number of distinct functions, then < has a representation x* on the
unit circle & such that

max {¢, *} =max [7, k, 2*] a.e. i &.
i i,k

DEFINITION 4. A D-mapping x is quuasi-conformal in a Jordan region
R if

sup [(xi)“’+(xi)“]=syp [} — 2yt a.e. in R .
T K

THEOREM 9. If x, and x are quasi-conformal mappings on R with
x, converging uniformly to x and L(x,)— L(x), then x is quasi-conformal.

Proof. From [y f+|yl<2sup {7, y} it follows that D(w,)=<2L(w,)

and hence that D(x,)< M for some M. The closure theorem for A.C.T.
functions assures us that x is a D-mapping and D(x)<M. More exactly,
we have

L(x)§SS sup {i, z} <lim inf SS sup {i, #,} =lim inf L(z,)=L(z) .

N~—>00
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Hence §up I, k, «]=sup {7, ¢} a.e.
ke i

THEOREM 10. An open mon-degenerate surface & of finite Lebesgue
area has @ quasi-conformal representation on .

Proof. There exists a sequence of polyhedral surfaces ~°F ap-
proaching & with L(&°})— L(.%), and we may suppose that each &} is
open non-degenerate.

Using the idea of [13, § 8] we can, for each n, determine a poly-
hedron &, with the properties

(a) The Fréchet distance between &2 and <7} is less than 1/n.

(b)) L(FNz=L(F)>LF5)—1]n.

(¢) If «, is a representation of &, then there are only a finite
number of distinet functions in the collection «f.

(d) The &, are open non-degenerate.

Hence the sequence &, approaches &7 and L(S7)=lim (.3).

n—>o0

The remainder of the proof is the same as that for a surface in
Euclidean space [4].

The idea referred to is the following. If y is a representation of
a polyhedron &7 then the sequence %' is uniformly bounded and equi-
continuous, thus totally bounded. Hence for each ¢>0 there exists a
finite subset #'s of the y* with the property that sup |y'—ui|<e for each
1 and some 4,. If & is open non-degenerate and II”"<” is also, then
adjoin #*, k=1, 2, ---, n to the y's. Now replace those components of
y which are not in the subset by one which is and is within e of it.
The resulting function represents an open non-degenerate polyhedron
whose Fréchet distance from & does not exceed ¢ and whose area does
not exceed that of &

6. Isometric surfaces in m. For later applications it is convenient
to know that if x is quasi-conformal and v is isometric with «, then y
is also quasi-conformal.

Let a, b, A and B be points of m.

LEMMA 5. If |acosf+bsin6]=|A cos 6+Bsin 0| for all 6 then sup
[(a'y*-+(®)]=sup [(A)+(BY].

Proof. Suppose that for some p we have (47)*4+(B?)*>0. Then
there exist real numbers A>0 and ¢ such that A?=2Acosf and B*=2sin®.
Thus
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(A7} (Bry=1-[(A?)+ (BYYT'< 2~ sup [A7A' + BB
=sup [4’ cos 0+ B’ sin 01'=| A cos 6+ B sin 0|*=| a cos 0+ sin 0|
=sup |a’ cos +b* sin 0* < sup [(¢*)*+ (b)) .

Similarly

sup [(a?)*+ (b))’ ]< sup [(A)*+(B)7T .

COROLLARY 1. If {0,;7=1,2,---} is dense in [0, 27] and if ||acos
0,+bsind |=|Acosf;+ Bsinb}| for all j, then sup [(ai)z—}—(bﬂ)”]:s?p [(A%)*+
(B)1.

Fix 0 and let u=7rcos 0 —ssin f, v=rsin 6+scos . Suppose that =
is A.C.T. on G into m and define y by y(r, s)=a(u, v). Since ' is
A.C.T. for each 7, so is y*. Furthermore, except for a set Z of measure
0, yi=a, cos §-+af sin @ for all 4. Thus for s,& Z we have

length y(r, s,)=lim length II¥y(r, s,)= lim SDT(H )
Noeo N—eo

= lim g sup |xk cos 04! sin 01§S"% cos 0+, sin 0||§S .| +Sl]x,,||
N—>co i1=N

where the first integral is taken over the intersection of dom y with

the line s=s, and the other integrals are taken over the intersection of

G with the line [~wu sin 6+v cos ]=s,. Thus

[, tength o, s = ({12t {11
So (23 G

and since r and s may be interchanged in this argument, we see that
y is A.C.T.

The partials of y are, of course, directional derivatives of . We
can now apply Theorem 1 to obtain, almost everywhere in G,

xy={x}, cos 0+} sin 6} and Dyr=|x, cos 0+, sin 0

where, if ¢(s)=a(u+scosf, v+ssind), then z,=¢'(0) and Dyx=Dg¢(0)
(see Definition 1).

Now let 6y, j=1, 2, ---, be dense in [0, 27]. Let W be that set of
measure 0 in the complement of which xgj::{x; cos 0,+ sin 6,} and
D, x=|, cos 0,+x,sin 0,].

Observe that if  and y are isometric (dom x=domy and |a(p)—
2(g)|=ly(p)—y(q)| for all p, g€ domx) then D,,jw:ngy wherever either
side exists.

J

THEOREM 11. If « is quasi-conformal and y is tsometric with =,
then y is quasi-conformal.
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Proof. That y is a D-mapping follows directly from the definitions.
By the preceding remarks and Corollary 1 we have sup {4, x} =sup {¢, y}
almost everywhere. In [13] it was shown that L(x)=L(y). Hence

L) = | [supti, &, 1= [ [ sup 43, 3 = sup {3, o = sun i, &, 21 =L@)

from which we can conclude that sup i, &k, y]=sup {¢, y} almost every-
where.

7. Almost conformal representations for surfaces in a metric space.
If a surface is in a metric space, then there exists an isometric surface
in m. The definition of ‘almost-conformal’ is phrased so as to be in-
variant under isometries. Hence the result of the last section can be
applied to surfaces in metric spaces.

DEFINITION 5. Let X be continuous on a Jordan region R into a
metric space D. Then X is almost-conformal if there exists a quasi-
conformal map « on R into m which is isometric with X.

We can now repeat some familiar reasoning of [13] to obtain the
following.

THEOREM 12. Amn open non-degenerate surface in o metric space has
an almost-conformal representation upon the unit circle.

Proof. Let X be a representation on @ of an open non-degenerate
surface 90 If p;, =1, 2, .-, is dense in range X then X is isometric
with z={X'}, where X¥q)=0(p;, X(¢)) for all ¢ge Q. By Theorem 10
there is a quasi-conformal map y on the unit circle & which is Fréchet
equivalent to xz. Define Y on & into D by Y(s)=X(r) where xz(r)=y(s).
If 2(r)=y(s) and xz(r")=y(s) then X(r)=X(+'), so Y is well defined. The
map Y is a representation of .77 upon % which is isometric to a quasi-
conformal map y. Hence Y is almost-conformal.

Let & be a surface in D and suppose . has an almost-conformal
representation X on a Jordan region E. Then X is a D-mapping and

L(&)z“sup [, &, X] where X’ is defined as in the proof of Theorem 12.
Lk
R

Finally we observe that if X is a D-mapping then X is almost-
conformal if sup {¢, X} =sup[é, k, X], and conversely. The direct state-
ment is an immediate consequence of the definition. For the converse
note that if x={X¢} then x is isometric with X and is quasi-conformal.

8. Surfaces in a Banach space. If a D-mapping has range in a
Banach space B then it is possible to give a definition of quasi-con-
formality which is analogous to that for the case B=m. Then we shall
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see that the notions of quasi-conformal and almost-conformal are equi-
valent and, in case B=FE,, they are both equivalent to the original
definition of Morrey.

Let X be defined on a Jordan region R into B. There exists a
smallest (separable) subspace B(X)c B which contains range X. A
sequence {f,} of linear functionals of norm one over B is admissible
with respect to X if sup fi(r)=|r| for each re B(X). The transforma-
tion T': B(X)—m defined by T(+)={Sf{r)} is an isometry. It was shown
in [13] that such an admissible sequence always exists.

Let {fi, X}=1{i, TX} and [f;, fe, X1=[¢, k&, TX].

DEFINITION 6. In the notation of the preceding paragraphs, X is
quasi-conformal if X is a D-mapping and if sup {f;, X} =sup [fi, fe X1
almost everywhere in R.

Theorem 11 assures us that this definition is equivalent to that
given earlier for the case B=m.

THEOREM 13. A necessary and sufflcient condition that X be quasi-
conformal is that X be almost-conformal.

Proof. The function TX is isometric with X. If X is quasi-con-
formal then

sup {4, TX} =sup {f;, X}=sup[f; fi, X]=sup[s, k, TX] .

Thus TX is quasi-conformal in m and X is almost-conformal. If X is
almost-conformal there exists a quasi-conformal function y which is iso-
metric with X and, therefore, with 7X. (The function y has the same
domain as X and has range in m.) Thus 7X is also quasi-conformal
and

sup {fi, X} =sup {7, TX}=supli, k, TX]=suplfs, fs X].

Hence X is quasi-conformal.

Now suppose that B is E,. If f is a linear funectional of norm
one then there exists a point p with |p|=1 such that f(r)=p-r for
each reE,. Since {f;} is admissible, sup p;-r=|r|. If r and s are
two points in E, with |r|=|s| and r-s=0, then (r-p)*+(s-p)’<r-r for
any p with |p|=1.

If X is quasi-conformal in the sense of Morrey (almost-conformal
[4]) then X is a D-mapping and E=G, F'=0 almost everywhere (E=X,
-X,, F=X,-X,, G=X,-X,). Where these equations hold, (X,-p)*+(X,-
pP<FE for any p on the unit sphere. Hence sup {f;, X} <FE=area of
the square determined by X, and X,=sup[f;, fx X]=<sup{f;, X}. Thus
X is quasi-conformal in the sense of this paper.
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Now let X be quasi-conformal in the sense of this paper. Since E,
has the property that an absolutely continuous function on an interval
into E, does have a derivative almost everywhere, we can conclude that
X, and X, exist almost everywhere (not only component-wise derivatives).
If sup {fiy X} =0, then E=F=G=0. If X, and X, both exist and sup
{fs, X} >0, it is easy to see that

sup [fo fio X]= max [(@X)b-X)—(a-X)b- X)] =1/ BG—F* ,
sup {fi, X} = max [(a- X, '+ (- X,)]

3 R

clearly these are equal only if E=G, FF=0. We conclude that the defi-
nitions of almost-conformal and quasi-conformal as given in this paper
are equivalent to the original definition of Morrey.
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CERTAIN GENERALIZED HYPERGEOMETRIC IDENTITIES
OF THE ROGERS-RAMANUJAN TYPE (II)

V. N. SINGH

1. Introduction. Nearly two years ago, Alder [1] established the
following generalizations of the well-known Rogers-Ramanujan identities:

( 1 ) ﬁ (1_x(2M+1)n—M)(1__m(zy+l)n—-(}1l+1))(1___.,L.(2M+1)n) _ [ ggltg@

(1-a) % @
p (L@@ )L —aCHbr (1 —a®0r) & G, (@)
SR (1= 27w,

where Gy, (x) are polynomials which reduce to z* for M=2 and
@) =1—-2)1~2"---(1—2), (2)h=1.

In a recent paper [6] I gave a simple alternative proof of (1) and (2).
We used the result

(3) 1 +i (_1)skMsx-21—s{(2M+])s—1](1 — ka*) (k(x))sj-l;
—T (A —kan) S B'Cu. @) M=2,3, -+
=1 i=0 (x),

Alder in his paper states that identities involving the generating
function for the number of partitions into parts not congruent to 0,
+(M—r)(mod 2M+1), where 0 <r < M-1, can be obtained by his
method and indicates the result for r=1.

In the present paper I give a simple method of obtaining the M
identities for each modulus (2M+1). In §4 identities for which »>4M
have been deduced and in §5 those for which »<1IM have been ob-
tained for any » such that 0<r<M-1. The identities given in §5
have not been mentioned by Alder. As a corollary, an interesting
identity between two infinite series is given.

2. Notations. Assuming |z]<[1, let
(O =()s,n=1—a)1—az)---(1—az"),  (ap=1,
(@)-p=(=1y"ad D ar(z]a), ,
T,=1+x+a?+- -+,
Received February 9, 1357.
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( 4 ) Pm,t(:v)—zx%(”l-wm ﬁ)m___(l _xm-zan) ,
(x)&(x)m—t +1

and let

(5) (M, a)=1+ 5; (— 1)sx””x23((“4+1)8—1}(1_xzs V@),

so that (3) can be written as

(6) d(M, a7)= II(l ") Z?L,QM (@)

3. The polynominals u,(x). Before proceeding to deduce the gener-
alized identities, we first give a few properties of a sequence of poly-
nomials with the help of an operator. These we will need in later
sections. Let us define a sequence {u,(x)} of polynomials by the relations

(1) uy(@)=0
(i) U (@) =Up- () + 2", , n=1.

Let <2 be an operator which replaces «,, by u.(x) in any u,(x), that is,
BUy(X)=PBUp-(x)+ 2" U (2) .

Also
RBru,(x)=FB " P uy(x)} .

Then we have

(7) (@a=1—az, + 3 (— Q)fad* =), . (@) .

As can be easily shown

§=2 (x)n
8 % ns+1
(%) e = s

The above polynomials (8) have also recently occurred in a paper by
Carlitz [3].

Comparing the coefficients of ! in

(9) (@)y=(—1)arzdr-D(1 ag"-), ,

we get the relation

(10) ‘%S—Sun-s+2(x)=*-@n_s_lus(w) ' 8 17 R (7’b+1) .

We can thus write (7) as
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(11) (a)n=é ( _a)sw%s(s-l)% /A +1(§17) ’

§=0

where negative indices of 2 are defined by (10). Again comparing the
coefficients of « in

(/2" ), n=()1jz.n »
we get with the help of (11),
(12) B MUy (@) =2 DG Mg (27
In particular
(13) Un(@) =22, (") .
The following values of #™ u,(x) will also be required:

FBr=Sy ()=, , from (10)
uy(x)=1
w(@)=1++22*+ 2+ a*
u(x)=1+x+ 20"+ 22°+ 20+ 2° + 2° = P uy(x) .

4, Now we proceed to deduce identities involving the generating
function for the number of partitions into parts not congruent to O,
+ (M —r)mod 2M +1). From (11), we have

(xn_rﬂ)zr—l(l - mm)

_ [1 + 27‘Z~2 {( _ wn—r+1)sw%s(s—-l)%s—zuw_s(x)} *x(zr-l)n](l -—wZ") ,
5=1

whence
1+x(21‘+l)n
(14) =|:x“’" o pr=Dn__ {izjwns(_ l)sx%s(s-i-l) e Py, (@) }(1 —:172")]
+ (1 _wzn)(xn-ru)zr_l .

And since, because of (8) or (10), the terms equidistant from the two
ends in the sum on the right of (14) have equal coefficients of powers
of x”, the expression in square brackets can be written as

(15) tj—ll(_l)z—lxm{l +x(2r-2o+1)n} Ur,t(x)
where

(16) U, (@)=ad!CD-trgpi-zy, _ (g)—gdC-DC-D=t-Drgpi-ty, . (x)
=P, (x) , using (4) and (8).



1694 V. N. SINGH
The polynomials U, ,(#) may be called “reciprocal” since they are such

that the terms equidistant from the two ends have equal coefficients.
Taking n=0 in (14) we see that

17 z (—1)U, (2)=1.

Also, with the help of (12), we have
(18) U, (x)=U,, (7).
Now from (15)

i (__1)nx%n{(2m+1)n+2r+1)

i( ) 1{?&1)1‘ i {1 +x(7r+1)n}
n=1 wrn
(19) PR
= +Z( 1)U, (m)z( 1) xir :j: Dn-t {1 4 gpCr-ernny
i=

Z( 1)'n. n[(2M+1)n 1}

xn

(1 xm)(xn r+1)“_ .

n=1

For n=s+r, the last series on the right-hand side of (19) becomes
(_1)rwllr2—lr(r+l)¢)(M, :L.Zr)

since the first (r—1) terms of the series vanish because of the factor
(" "*1),,—,. Then using (17) and writing

F(M, ’)")= i (_ 1)nm32~n{(2M+1)n+2r+1}

N=—o00

we obtain for (19) the form

20)  F(M, 1)=3(— 1y U, (2)F(M, r—1t) + (= 1yair -3 (M, o) |
t=1

Thus, using Jacobi’s classical identity

21) Z, (—1)"z"’% —H (1 =a2)(1 —a™fz)(1 —a*)

to express the infinite series in (20) as infinite produects, we could find
for any given 7, such that 0 r<M—1, an expression for the generat-
ing function for the number of partitions into parts not congruent to
0, +(M—r)mod2M+1) in terms of generating functions for the num-
ber of partitions into parts not congruent to 0, -+ (M—s)(mod 2M+1),



(s=0,1,2, «+., r—1).

get

GENERALIZED HYPERGEOMETRIC IDENTITIES

THEOREM 1.

oo 1_x(2M+1)n-(M—r))(1_x(2M +1)n-(M+r+l))(1_m(zMﬂ)n) had A,(GC, t)GM 1(-”)
22) 11 { - )G, &
e 1 =" )

n=1

where

A, (x, t)=§l (—1)%”32'%3(3“)”“U;,sﬂ(x) .
=0

The polynomials U’(x) are of the “reciprocal” kind, with

so that

and

U;, r+1(w)=1
U@ = 3 (= 1T, @)U -, (@) sFET .
U, (x)=1, because of (17)
U, wn(@)=U; (=77, because of (18).

As an example of Theorem 1, taking the case r=1, we have

Therefore

(23)

1+ =a"1+2")+ (1 —a™)(1—a™) .

i (_1)nx%n((zu+1)n+3)=¢(M, 1)_mM—1¢(]u" )

N=-oc0

which is equivalent to equation (23) of Alder [1].
From (28), using (21) and (6), we get the identity

(24)

For r=2,

(25)

ﬁ (1 _w(2M+1)n-(M—1))(1 _w(2ll+1)n—(ﬁl+2))(1 _x(2M+1)n)

z=1 11—z
0 M2t
=3 a_””__)GM, () .
t=0 (x)r
[ (La@nnm D)1 —peHn-Gem)(q — pthmr)
n=1 1—2z")

=5 {(1=Usy(@)a® 7 a3}

@), G @)

Since F(M, 0)=¢(M, 1), the F-series can be suc-
cessively expressed in terms of ¢-series and, with the help of (6), we
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where
U, (x)=2"+1+x.
Similarly for r=3 we get

U, (w)=2+a'+2+2+2°
U, x)=x?+a'+1+a+a?,

and so on for any  such that 0 <r<<M-—1.

5. In this section identities involving the generating function for
the number of partitions into parts not congruent to 0, +» (mod 2M +1)
are obtained.

From (11) we have

(mn-r+2)zr_2(1 _x2n+1)
=|:1 + {272—3 ( __xn—r-bz)sw%s(s—l) %s—zuzr_s_l(x)} 4 pCrrD(r=1) :1(1 _w2n+1) ,
§=1

whence

1 _x(zn +1)r

-3
(26) =|::I}2”+1 — D (=D { s; mns( _ 1)sx%=s(s+3) _Ts%s_qu—-s—l(x)}(l _ mmﬂ)]
+ (1 —_— w2n+1)(wn—r+2)27_2 .

In the expression in square brackets in (26), the terms containing a™
cancel and the other terms can again be grouped in pairs to give

(27) 1 — w(m-{-l)r: El( — l)t—l Vr,t(x)xtn {1 —117(2" +1) (r—t)} + (1 _x:’n-i-l)(xn—r+2)2'__2 ,
t=1

where
(28) Vr,z(w)zw%t(us)_”%t_zuw—z—l(x)_w%t(t_l)-r(b—z)k@t—4u2r—z+1(x)

1
=8Py, (T) .

The polynomials V(x) are less symmetric than U(x). In particular,
corresponding to (17) and (18), they satisfy the relations

(29) S=1Y, (@)=,
and
(30) V. (&)=a'V, (x™") .

Now
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MZ (_1)nx%n{(2M+1)(n+1)}—rn
N=—oc0
2 1
s _1)nx21—n @+ +(M-g)In
-3¢

— pr+)r
P e {1—-=z b

Denoting the left-hand side of the last equation by ¢(M, r) and
using (27) and (5), we get, after slight simplification,

(B1) (M, 1) =5 (=M, 7=V, (&) + (= 1y k7D (M, 7).

Using (21), the generating function for the number of partitions into
parts not congruent to 0, +7 (mod 2M+1) can now be expressed in
terms of the generating function for the number of partitions into parts
not congruent to 0, +s (mod 2M+1), (s=1,2, ---, r—1). Thus, we
finally have

THEOREM 2.

oo 1_x(2M+1)n—7~)(1_w(2M+1)n—(2M+l—r))(1_w(2M+1)n) _ oo B,,.(.’I?, t)GM,f(.’L')
g2) [ (LA et GO 1 -2 _ 5 B, 06w (@)

where
”
B,(m, t) —_ Z (_ l)s—lx%(zlll-l)s(s—l) +(28=-1)¢ V;, s(ﬂU) ,
§=1

and V. (x) are polynomials with

V. (@)=1
V@)= (= 1"V, @) Vi, @) s,
so that
V;‘, l(x)—_— wr
and

Vi (@)y=2""*V, (x7) .
As an illustration, for =2 in Theorem 2, we have
1_m4n+2=wn(1+w)(1_x2n+1)+(1_x2n+1)(1_mn)(1_wn+1) .

Therefore

i ( _ 1)nx%nz(2M+l) +(M=-$n _ (1 + a:)qb(M, w) _sz—-qu(M, .’1/'3) .

n=—a

which gives us the identity
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B (L= g D] —gHR-CHD)(] g0y
(33) (=
- b e2M +3t—1
t=0 (-'L')r

COROLLARY. If r 4s replaced by M—r in Theorem 2 then the left-
hand sides of (22) and (32) become the same and we have

$ A, DG f2) _ $ Buorl@, )G (2)
i=0 (@), i=0 (@),
r=0,1, -+, M=1, M=2,8, ---.

(34)

For M=2 and r=0 and 1 we get respectively the relations

oal 8 {A+a)at — 2?0} 2

R (),
o (A—a) 2 Sattt
)

the truth of which can easily be verified.

Some time ago, Slater ([4] and [5]) gave a very large number of
identities of the Rogers-Ramanujan type using Bailey’s summation theo-
rem [2] for a well-poised &,. It is interesting to note that, as special
cases of our identities, we get some of those given by Slater, differing
only in form as can be easily verified. To mention an example, let us
take equation (90) of Slater [5]:

1—.’1727"‘24)(1—9:27”) 2 (xa)aﬁ, txt(us)

oo (1_w27n—3)(
(85) El 1—a) g}’ (@) (2)s1.42 ’

If we put M=13, r=38 in Theorem 2, we obtain another series for
the product on the left of (35). I propose to study the equivalence of
identities (22) and (32) above and those of Slater in a subsequent paper,
as also identities involving products in which the powers increase by 2.

I would like to express my gratitude to Dr. R. P. Agarwal for
suggesting the present work and for his kind help in the preparation
of this paper.
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Corrigenda. In [6] the following corrections may be noted:
p. 1011. The series for 7, , runs up to

M—n—1 ]
b= Tt
[ M—n bt

p. 1012. In the line immediately preceding (3.3), ®,y,-1 Should be
Qanr 410

In the right hand side of (3.4) a factor (kn ;) should be inserted in
the denominator of the outer series.

p. 1014. In the right hand side of the last identity of the paper,
we should have IT instead of =.
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A DETERMINANT IN CONTINUOUS RINGS
R. J. SmitH

1. Introduction. In the theory, developed by Dieudonné [1], of
determinants of nonsingular square matrices over a noncommutative
field K the determinantal values are cosets modulo the commutator sub-
group of K*, the multiplicative group of K. Since the matrix groups
MX(K) and their commutator subgroups C, have the property that
M¥(K)|C, is independent of n, the latter cosets will serve just as well
for determinantal values, at least for theorems involving only the mul-
tiplication of determinants.

The rings whose principal right ideal lattices form continuous geo-
metries have many resemblances to matrix rings; in fact, the axioms
of Continuous Geometry are satisfied by finite dimensional geometries
over a fleld which are always equivalent to the right ideal lattice of
some matrix ring. Irrespective of questions as to the existence or
otherwise of fields in connection with a general continuous geometry
playing a similar role to that of the field of coordinate values in the
finite dimensional case we will show that multiplicative determinantal
theorems can be obtained for the more general ring; the determinants
will be cosets of the group of invertible ring elements modulo the clo-
sure of its commutator subgroup with respect to the rank-distance to-
pology in the ring.

The definition of a complete rank ring is given by von Neumann
[3, (iv)]. Essential properties of such a ring N and the associated lat-
tice of principal right ideals have been developed by von Neumann [3,
4] and Ehrlich [2]. We will assume throughout that R is a complete
rank ring, of characteristic not 2; and that if the discrete case (matri-
ces over a field) applies, then the order of the matrices is at least 3.

2. Groups in a complete rank ring. Using a notation similar to that
of [2], [3] we denote by € the group of invertible ring elements; that
is, we €N if and only if the rank R(u) of u is 1.

DEFINITION 1. We denote by R the closure of the commutator sub-
group of € in the rank-distance topology and by &' the closure of the
group generated by the elements of class 2 in G.

COROLLARY 1. & and K are groups.

Received June 19, 1957.

1701



1702 R. J. SMITH

Proof. Let {t,; t,€€, n=1,2, ...} be a converging sequence in
R. Then lim R(,—t,)=0 implies

7,m—>c0

im R(&'—&)= lim R{t;'En—t)tn} =0

%,M—>c0

and hence limt;' exists in R. By the continuity of multiplication

n—>o0

(lim ¢,)(lim £;')=1 so that lim¢;'e €. The result then follows routinely

n—>co0

after .the observation that the inverse of a commutator is a commuta-
tor and the inverse of the general class 2 element 147 (*=0) is 1—7,
also of class 2.

LEMMA 1. Let t€ C* (be of class 2), s€ €. Then sts~'e C2.
COROLLARY 2. Let teC? s€@, Then st=ts for some t, e C>

DEFINITION 2. We writh #=s for nonsingular (invertible) u, se R
when u=ts for some ¢e &'.

COROLLARY 8. The relation = is an equivalence relation.

LEMMA 2. Let e be any idempotent of rank 1/2 and s be nonsingu-
lar and otherwise arbitrary in R. Then for some te N

s=e+(1—e)t(1—e).

Proof. The existence of idempotents of rank 1/2 is assumed in
continuous rings, that is, when the range of R is the unit interval. In
the discrete case the result has no meaning if the order of the matrices
is odd.

Now suppose the principal left ideal ((1—e)se),=(g.), where g,=eg,e,
9i=g, [4, Chapter 15]. By the Pierce decomposition, s is the sum of
the quantities in the blocks of

9,80 g:8(e— 1)
es(l—e)

(e—9)89.  (e—g)s(e—g)
(1—e)sg;, (1—e)s(e—g) (1—e)s(1—e)

where a matrix notation is used for clarity and to permit the compari-
son of later processes with standard matrix ones; we will simply equate
such a partitioned array to the sum of its members. We have

g1 =4(1—e)se=y,(1—e)seg, =y,(1—e)sg,
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for some y, € R so that
{1+0(0:—989)y(1—e)} s
% 9:8(e—a,) g5*(1—e)
= | (e—g)s¢y  (e—g)se—g)  (e—g)s(1—e)

(1—e)sy, 0 (1—e)s(1—e)
for some s*e R since

9891+ (9:— 9:89)(1 —€)sg =139, + 01— 9159 =9
and

(1—e)s(e—g)=(1—e)se—(1—e)sg,=(1—e)seg,— (1 —e)sg, =0 .

Multiplying on the left by (1—(1—e)sg,)(1—(¢—g,)s9,) and on the right
by (1—gs(e—g))1—gis*(1—e)) gives

[ 0 0
tis= 0 (e“gl)sl(e—‘gl) (6—91)81(1—8) =8
0  (@A—e)sie—g) (1—e)s(1—e)

for some s, € R and some ¢, € & by Corollary 2.
Define ¢,.1, Sps1, tney for n=1, 2, -+ as follows.

Let (1—e)su(e—g1—+++—0n))=(9gn+1). Where g;.,=g,., and (e—g,—
cor—g)nsi(6—gi—* —0n)=0n+:- We have, similarly to the above, the
existence of a t,.,€ & and an s,.; €N such that

o, o
Lns1S = gngnﬂ (e—g1—*+* —Gne1)Snrr(€—G1—*** —Gns1)
(1= e)sprr(e—g1— =+ —Gns1)
0
(e_gl—"’_gnﬂ)snﬂ(l—e) =S8p+1 -

(1—e)sp+i(1—e)

Now,
L Z Rt ) =Rg)+ -+ R0 =3y R(A=)sle—g,— -+ —0))

so lim R((1—e)s;(e—g,—---—9g,))=0 and in turn
{00
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(1) lim (1—e)si(e—g,—+ -+ —g.)=0
More strongly,

lim R(gpeit e+ Guip)= nliri {R(9pe1)+ s +B(9nep)} =0

7%, P—>o0

Hence, by [3, (iv), Section 3] lim(g,+:--+g.)=g, say, exists in R;

also, by the continuity of multiplication, g=ege and g is idempotent,
being the limit of a sequence of idempotents.
In order to prove that lim¢, exists in R and so belongs to & we

note that o

(2) (1—(1—e)sugne)L—(e—g1—* ** = gps1)80Gns1)
*(1+ Gne(Gune1— Fns180Gn1)Yn+1(1—))t,8
*(I—gpssu(e— 01—+ * = Gns) )1~ GsiSn (1 —€)) =t,018

where s¥eR and y,., is defined by the condition ¢,.;=¥...(1—¢)s.e
The last two factors on the left side of (2) may be transferred after a
similarity transformation to the left of ¢,s, by Corollary 2, giving

1+ @(gni-l))tns =lp+18

where @(g,.,) is an expression involving no more than 2°—1=31 terms,
each containing g¢,., as a factor and so of rank < R(g,.). Hence ¢,
“tn=¢(gn+1)tn and

R(tn-i-l - tn) §R¢(gn+1) é 31R(gn+1) ’

»
R(tn+p_tn) § Z&l R(tn+i_tn+i—1)

<81 3, R(gnei) =0 as 2, p—> oo .
=1

[3, (iv), Equation 3, (iii)]
We conclude that

lim (l—gl '''' "gn)sn(lhgl— tee _gn):%ﬂ (tns—(gx‘l" te +gn))

7~»00

exists in M. It equals (1—g)i(1—g) for some teR. Moreover, (1—e)
«t(e—g)=0 by (1). Then

g9 0 0
s= | 0 (e—g)t(e—g) (e—g)t(1—e)
0 0 (1—e)t(l—e)
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where R((e—9)t(e—g))<1/2 and (¢—g)t(e—g) has an inverse in the
subring R(e—yg).

By the proof of [4, Lemma 3.6], if (1—e)h(1—e)=Ah is an idempo-
tent of rank equal to R(e—g), then e—g, & define quantities x, ye N
such that

zh=(—gx=x, hy=yle—9)=y, wxy=e—g, yxr=h.

We have that 1+x, 1+ye C* since x*=axh(e—g)x=0, ¥=yle—g)hy=0,
and so (1+2)1—y)1+2)=1—(e—g)—h+x—ye & whence

g 0 0
s= | 0 0 (e—g)t*(1—e)
0 —hle—g)t(e—g) Q—e)t*(1—e)

for some t*e R. Since

B(—h(e—g)t(e—9))=R(e—y),
then

(—he—9)t(e—g))=(e—9),,

and by a similar argument to one above we have, for some ¢’ € R,

9 0 0
s= | 0 e—g 0
0 0 (1—et'(1—e)

This useful lemma permits us to obtain an analogue in continuous
rings for a diagonalization theorem of Dieudonné [1, p. 30].

THEOREM 1. In a continuous ring RN, let e¢*=e, R(e)<1 and s be
nonsingular. Then, for some te R,

s=e+(1—e)t(l1—e).

Proof. If R(e)<1/2, a similar proof to that of Lemma 2 yields the
result.
We may suppose then, that

S o< Re)< 32 for p>1
i=1 i=1

Let ¢,=ee,e be an idempotent of rank 1/2. Then, by Lemma 2, ts=e¢,
+(1—e)s;(1—e) for some t, € & and s;,eR. If p>2, we let e,=(e—¢)
-e(¢—e) be an idempotent of rank 1/4; then e, has normalized rank 1/2
in the continuous ring R(1—e,) and (1—e¢)s,(1—¢,) is nonsingular in this
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ring. Hence, there exists ¢, in the group & of R(1—e,) such that
t(l—e)s(1—e)=e,+(1—e—e,)s,(1—e —e,)
where s,e R(1—e)CR. Then
(e, +t)e+(L—e)si(l—e))=¢ +e,+(l—e,—e)s,(1 —e,—e,);

moreover, e, +t,€ & as can be verified simply.
Proceeding in a similar fashion, we have eventually, for some s,_,
and independent idempotents e;=ee;e (1=1, -+, p—1) with R(e;)=2""

s=e+rote+(1—e—--—e, s, (1—g—---—e,_)).
Application of the first statement of the proof to the idempotent e—e,
—+e«+—¢,, in the subring R(1—e¢,— -+ —e,-,) gives

t(l—ey—+vs—ep)sp(l—€— 2+ —e,.)
=e—e—-++—e,+(1—e)s,(1—e)
where

t,eR(l—e—+ee—e,y), 6,+++-+e,+t,€ & and s, e IN.

The result follows.
THEOREM 2. In a continuous ring S=8".

Proof. The equation utu '=t* is satisfied by any te C? for some
ue @ depending on ¢ [2, Theorem 2.12]. Hence the arbitrary ¢e C*
satisfies

(3) t=utu-'t""

and KSR,
By Lemma 2, if a;, a,€6 € and ¢ is an idempotent such that E(e)
=1/2, then a,=bd,, a,=bd, where b, b,e & and

d=e+(1—e)d(l—e¢), d,=e+(l—e)d(l—e).

The commutator a,a,07'a;* has the form bdd,d;*d;* with be & by Corol-
lary 2. It is sufficient to show that dd,d;'d;'e & and we need only
show that d,d,=b0d,d,b® where b®, p® e K. Write (1—e)d(1—e)=1,
(L—e)d(l—e)=p.

Now ¢, 1—e define a matrix basis s;; with s, =e, s,=1—e, s,=es,
=s,(1—e), su=(1—e)s,=s,e [4, Chapter 3]. Then

(L1+8)(1—8,) A +8,)= —8y 81
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and
(—Su+sp)y=—8,—8,=—1

belong to K.

Noticing that 2 has an inverse in 9R(1—e) we obtain without dif-
ficulty

e 0 € SpHM 4 SpH 0 St
(4 ) d,d,= = = =
0 Ap 0 i —2s; 0 —28; 0

and on left multiplying the last member of (4) by —(—s8,-+s:)

S48, 0 0 sl
dd,= = .
0 r —psy 0

Retracting the steps of (4) we obtain the result.

REMARK 1. When 9 is a matrix ring over a field (discrete ring),
&, K are respectively the commutator group and the group generated
by the elements of class 2. Provided the order of the matrices exceeds
two, as we assume, (3) holds and again RICSK; also &' contains the
group generated by the transvections which is shown by Dieudonné [1,
p. 31] to itself contain 8. Hence Theorem 2 holds for rings of matri-
ces of order greater than two.

3. Determinants in a complete rank ring.

DEFINITION 3. Let R be a continuous or discrete ring. We define
the determinant 4(a) (a € €) as the coset &,.

We now proceed to obtain generalizations of some well-known re-
sults in determinants; the restrictions on characteristic and order apply
and the determinants, we note, are defined only for nonsingular ring
elements. Theorem 2, Remark 1 and the commutativity of the cosets
are used freely without additional reference.

(1) A theorem on minors of the inverse.

THEOREM 3. Let ¢ be nonsingular and e any idempotent in R.
Then

d(1—e+ecle)d(c)=d(e+ (1 —e)ec(l—e)) .

Proof. 4(1—e-+ec'e)d(c)=4{(1+ec*(1—e))(1—e+ec 'e)}d(c)
=A4((1—e)c+e)
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=4{(1— (1 —e)ce)((L—e)ce+(1—e)c(l—e)+e)}
=d(e+(1—e)e(l—e)).
(ii) The Laplace development. (Compare [1, p 37].)

THEOREM 4. Let ¢*=e¢, x€R. If R(exe)=K(e), then
A(@)=d(exe+(1—e))d(e+(1—e)x(1—e)—(1—e)xe: eye- ex(1—e))

where eye 1s the inverse of exe in N(e).

Proof. 4M(x)=4{(1—(1—e)xe-eye)x}
= d(exe+ex(l—e)-+(1—e)x(l—e)—(1—e)xe- eye- ex(l—e))
=d{(eve+ex(l1—e)+(1—e)ax(l—e)— (1 —e)xe-eye-ex(l—e))
+(1—eye-ex(l—e))}
= d(ewe+(1—e)a(1—e)—(1—e)ae- eye- ex(1—e))
=d(exe+(1—e))- d(e+(1—e)x(l—e)
—(1—e)xe-eye-ex(l—e)).

(ili) Cramer’s rule.

THEOREM 5. Let ax=b be satisfied by a, b, xe R. Then
d(be+a(1—e))=d(a)d(exe+(1—e))

for any idempotent e.

Proof. ax=>b implies axe=be and so

A(be+a(1—e))=d(axe+a(l—e))
=A(a)d(we+(1—e))
= d(a)d{(exe+ (1—e)xe+ (1 —e))(1—(1—e)xe)}
=A(a)d(exe+ (1 —e)).

REMARK 2. The fact that Theorem 5 includes Cramer’s rule can

be seen as follows.
The matrix equation Ax=b with A=(a;;) an %= xn matrix and @

={x, ++-, x,}, b=1{b, -+, b,}, the components being in a field K, can
be expressed
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) &y b1 bl
@) 2 ... = ...
x, &, b, b,

where each vector is replaced by a ring element with identical columns.

Taking e=e¢;=diag (0, 0, +--, 1, --+) with 1 in the ¢th place, Theorem
b gives

Ay b, Age1,1

4 ettt E ce :A(A)A{diag(ly"'yxivly"°)}'

O b Ggern

If C is the commutator subgroup of K*, the isomorphism of M (K)/C,
and M*/C implies the preceding equation holds when we interpret 4 as
the Dieudonné determinant (K noncommutative) or as the ordinary de-
terminant (X commutative).
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SUB-QUASIGROUPS OF FINITE QUASIGROUPS

DRURY W. WALL

1. Introduction. Lagrange’s theorem for finite groups (that the
order of a sub-group divides the order of the group) does not hold for
finite quasigroups in general. However, certain relationships can be
obtained between the order of the quasigroup and the orders of its sub-
quasigroups. This note will give some of these relationships.

DEFINITION. A set of elements @ and a binary operation “o” form
a quasigroup (@, o) if and only if the following are satisfied :

I. If a, be Q then there exists a unique ce @ such that aob=c.
II. If a,beQ then there exist x, y € Q such that aox=>b and yoa=>.

III. If a,2,ye @ then either aox=aoy or roa=yoa implies x=y.
If (@, o) is a quasigroup and S is a subset of @ then (S, o) is a sub-
quasigroup of (Q, o) if (S, o) is a quasigroup.

Throughout this note the quasigroup operation will be written
multiplicatively, that is, “ab” will be written for “ aob”. Also, “Q”
will be written to denote the quasigroup “(Q, o)”. By quasigroup will
be meant finite quasigroup, since only finite quasigroups will be con-
sidered. The order of a finite set X is the number of elements in X.
For subsets X and Y of @ the symbols XNY, XUY and X\ Y will be
used to denote the point set intersection, union and relative complement
of X with Y, respectively.

The following elementary properties of a finite quasigroup @ will
be of use.

Pl. If XcQ and ae€Q then X, aX and Xa have the same order.

P2. If ScQ and S satisfies I then S is a sub-quasigroup of Q.

Proof. To prove II, let a,be S. Since S satisfies I, aScS and by
P1, aS=S. Thus, since b€ S there exists an xS such that ex=5b. III
is inherited from Q.

P3. If S is a sub-quasigroup of Q then ae€ S and b& S imply abe S.

2. Relationship of the order of any sub-quasigroup to the order of
the quasigroup. The order of a sub-quasigroup need not divide the
order of the quasigroup; in fact, these orders may be relatively prime.
An example is given by Garrison [1, page 476] of a quasigroup of order
5 with a sub-quasigroup of order 2.

Received February 27, 1957, and in revised from June 15, 1957. Presented to the
American Mathematical Society, August, 21, 1956.

1711



1712 DRURY W. WALL

THEOREM 1. If Q is a quasigroup of order n and S is a sub-quasi-
group of order S then 2s<n.

Proof. Let xe@Q\S. If yeS then xye @\ S. Thus 2SCQ\S.
But, by P1, xS has order s and since @\ S has order n—s this implies
that s<n—s or 2s=<n.

This shows that the order of a sub-quasigroup is equal to or less
than one half the order of the quasigroup. The quasigroup with two
elements gives the simplest example in which the equality holds.

3. Relationship between the order of a quasigroup and the orders
of two of its sub-quasigroups. Let @ be a quasigroup of order »# and
R and S be two proper sub-quasigroups of orders r and s, respectively.
Assume that E and S intersect. Then P=RNS is a sub-quasigroup of
Q. Denote the order of P by p. Note that the subsets R\ P, S\P,
and RUS are of orders r—p, s—p, and r-4s—p, respectively.

THEOREM 2. n=r-+s+max(r, s)—2p.

Proof. 1. Suppose SCR. Then RNS=S and hence p=s, s<r and
max (r, s)=r. Thus,

r+s+max (r,s)—2p=2r—s=<2r .
But by Theorem 1, 2r<n and so r+s+max (r, s)—2p=<n.

2. Assume R\ P and S\ P are non-null. If xe R\ P and ye S\ P
then xy¢ RUS. Thus, for xe R\ P, 2(S\P)CQ\(RUS). But z(S\P)
is of order s—p and Q\(RUS) is of order n—(r+s—p). Therefore,
s—p<n—(r+s—p). Similary, if ye SN\ P then y(R \P)c Q\(RUS) and
thus, r—p<n—(r+s—p). Therefore,

n—(r+s—p)=zmax (r—p, s—p)=max (r, s)—p
and so, n=r+s+max (r, s)—2p.

COROLLARY. If r=s then n=3r—2p.

THEOREM 3. If n=r+s+max (r,s)—2p then r=s iof and only if
T=PU[Q\(RUS)] is a sub-quasigronp of Q.

Proof. A. Assume r=s. Then R and S are sub-quasigroups of
order » and T is a subset of order . By P2, to show that 7' is a sub-
quasigroup it suffices to show that if xe T and ye T then xye T,
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(1) Let ze P. Then if ye P then ayec P since P is a sub-quasi-
group. If ye T\ P then ye Q\(RUS) and hence y¢ R and y¢ S. Hence
2yé R, xyé S and so xye Z\(RUS)=T\P. Thus if zeP and yeT
then ayeT.

(2) Let eI\ P and aeR\P. First note that za¢ R. For
beS\ P, bag¢ RUS and so (S\PlacQ\(RUS)=T\P. But (S\ P
and T\ P are both of order r—p. Thus, (S\P)a=T\P and since
x ¢ S\ P this implies xa¢ T\P by III. Thus e is in neither R nor
T\P and so

zae QNJRU(T\P)]=S\ P.

Thus, for ze T\ P it follows that 2(R\ P)C S\ P. But z(R\ P) and S\ P
are both of order r—p and so a(R\ P)=S\ P. Similarly, it can be
shown that z(S\ P)=R\ P. Thus, for

z e T\ P, o{(R\P)U(S\P)=[E\P)U(S\P)] .

By noting that T=Q\[(E\P)U(S\P)] and by use of III, it follows
that if e T\ P and ze T then zzeT. Combining parts (1.) and (2.), it
follows that if e T and ye T then aye T and thus, T is a sub-quasi-
group of Q.

B. Assume that 7' is a sub-quasigroup. 7' is of order max (r, s).
Either r>s, r<s, or r=s. Assume #>s. Then max (r, s)=r and T and
" R are two sub-quasigroups of order ». Thus, by the Corollary to
Theorem 2, n=3r—2p. But, by hypothesis,

n=r+s+max (r, s)—2p=2r+s—2p .

Thus, 2r+4s—2p=3r—2p and so s=r, which is contrary to the assump-
tion that s<<r. Thus r#s. Similarly, s#+ and so r=s.

For the case in which R and S do not intersect the following results
can be obtained.

THEOREM 2'. n=7-+s+ max (v, ).
COROLLARY. If r=s then n=3s.

THEOREM 3. If n=r-+s+max(r,s) then r=s if and only if
AN (RUS) is a sub-quasigroup of Q.

An example of a group satisfying the hypothesis of Theorem 3 is
the four group which has 3 subgroups of order 2 which intersect pairwise
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in the identity element. The following are examples of quasigroups
satisfying the hypothesis of Theorem 3.

a b c d e f g h a b c d e f
a a b c d f e g h a a b ¢ d f e
b b a d c e f h g b b a e foe d
c c d a b g h e c c e d a b f
d d ¢ b a h e f d d f a c e b
e f e h g b a d e e e d VA a c
S| e g h b ¢ d S e b e d a
g h 9 e S 4 d a b Example 2.
h g h f e d c b a

Example 1.

In Example 1, let P=/{a,b}, R={a,b,c,d}, S={a,b,e, f} and
T={a,b,g,h}. The hypothesis of Theorem 3 is satisfied and r=s and
T is a sub-quasigroup.

In Example 2, let P={a}, R={a, b}, S={a,c¢,d} and T={a,e, f}.
In this case r+#s and T is not a sub-quasigroup.

Counterexamples to many of the possible generalizations to more
than two sub-quasigroups can be constructed. For example, it has been
proved that (1) if @ is of order » with a subquasigroup of order s then
n=2s and (2) if @ is of order with two non-intersecting sub-quasigroups
of order s then n>=3s. Thus, it might be conjectured that for any
positive integer m, if @ contains m mutually disjoint sub-quasigroups
of order s then m=(m+1)s. However, this fails for m=3 since it is
possible to construct a quasigroup of order 3s with three disjoint sub-
quasigroups of order s. In another direction, it is possible to construct
a quasigroup of order 4s containing three disjoint sub-quasigroups of
order s, in which the remaining s elements do not form a sub-quasi-
group.
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MONOTONE COMPLETENESS OF NORMED
SEMI-ORDERED LINEAR SPACES

SADAYUKI YAMAMURO

Introduction. Let R be a continuous semi-ordered linear space, name-
ly, a semi-ordered linear space where, for any sequence 2,=0 (»=1,2,--+),

Nz, exists.) R is said to be a normed semi-ordered linear space, if a

v=1

norm |z|(x € R) is defined and satisfies the condition:

o] < |yl implies  fof |yl

in addition to the usual conditions.
A norm |z|(x€ R) on a normed semi-ordered linear space is said to

oo

be monotone complete, if, when 0 ngT and sup ||a,] <+ oo, there exists
1 vl

y=

ER

v=1

A norm on R is said to be continuous, if xyl 0 implies lim |z,| =0
v=1 Vo0

and semi-continuous, if Oé%r 2 implies sup |@,|=|=|. It is clear that
v=1 v=1

continuity implies semi-continuity.

Kantorovitch [4] has proved that, if a norm on R is monotone
complete and continuous, then it is complete, namely, R is a Banach
lattice. Nakano [5; Theorem 31.7] has proved that, if a norm on R is
monotone complete and semi-continuous, then the norm is complete,
and, recently, Amemiya [1] has proved that, if a norm on R is monotone
complete, it is complete.” In this connection, see also [2].

In this paper, we will consider several problems concerning monotone
completeness and completeness of normed semi-ordered linear spaces
and Nakano spaces.

1. Monotone completeness of normed semi-ordered linear spaces.
In this section, we will consider two problems.

As usual, let (¢,) be the set of all null-sequences of real numbers.
This is a normed semi-ordered linear space by the usual ordering and

Received December 12, 1956. In revised form April 22, 1957.

1 Namely, a conditionally o-complete vector lattice. In this paper we use the termi-
nology and notation of [5].

2 In this paper, Amemiya also proved the following lemma: Let R be a monotone
complete normed semi-ordered linear space. Then there exists a number >0 such that

ngvTu’ x implies 7]z||<C sus | .
v=1 vZ1

1715
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the norm: I|a:]|=s;1=1?|6y| for #=(§,)e(¢). The fact that this norm is

complete is well known. But, it is not monotone complete, because,
for the sequence of elements:

91:(1’ 0, 0? "')r 62:(17 1, Oy "')v 632(1, 1, 1; Oy "')7 ctty

we have 0§evr and suple,| =<1, but O e, does not exist in the space
v=1 v=1 v=1

(€)-
Among function spaces, we can also find an example of this type.
Let L, be the set of all measurable functions «(¢) (0=<¢=<1) such that

1
SUIEm(t))‘“ dt< + oo for all £>0.
Then Lj, is a Banach lattice by the norm:

lz|]= inf 1 where m(x):Sllw(t)(”" dt
mitz=1 |€| 0
but this norm is not monotone complete.

In §1.1, we will state a necessary and sufficient condition in order
that a complete norm be monotone complete.

It is well known that every (norm) closed subset of a Banach
lattice is also complete. But, we have a monotone complete semi-ordered
linear space which contains a closed, but not monotone complete sub-
space. Namely, let L;, be the set of all measurable functions x(¢)
(0<¢<1) such that

S]le(t)l”‘ dt< -+  for some  £>0.
0

This is a monotone complete normed semi-ordered linear space and Lj,
is a (norm) closed subspace of L, .

In §1.2, we will state a necessary and sufficient condition in order
that every closed subspace of a monotone complete semi-ordered linear
space be monotone complete.

1.1. Let R be a continuous semi-ordered linear space. A sequence

@, (v=1,2,--.) is said to be bounded, if there exists an element xe R

such that =, (»=1,2,..-). If ngyr and this sequence is not
v=1

oo

bounded, then we write ngv'{ _1+oo .

v

DEFINITION. R is said to be K-bounded (bounded in the sense of

Kantoroviteh), if ngyr 4+ implies we can find a sequence of real
v=1
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numbers &, (v=1, 2, ---) such that Eyl 0 and the sequence &z, (v=
v=1

1,2, .-+) is not bounded.

DEFINITION. R is said to be K*bounded, if Oé%,»r + oo for every
=1

v implies we can find a sequence of indices g, (v=1, 2, ---) such that
the sequence z, , (v=1, 2, ---) is not bounded.

These concepts were introduced by Kantorovitch [4]. It is easily
seen that K*-boundedness implies K-boundedness. If R is reflexive in
the sense of [5] § 24, then it is easily seen that R is K-bounded. There-
fore, for any R, its conjugate space is always K-bounded.

The K-boundedness can be expressed in other ways, namely, the
Jollowing three conditions are mutually equivalent:

(1) R is K-bounded;
@ if 0=z

(&) with 5:‘, |€,|< 4o, then the sequence x, (v=1, 2, --+) is bounded;

and > &x, is order-convergent for all sequences
v=1

3) if 2,=0 and i &x, is order-convergent for all sequences (£,)
v=1

with Eyl 0, then >, x, 1s order-convergent.
y=1 y=1

For example, we will prove that (1) implies (2). Let Ogmyr 4 oo,
y=1

o

Then there exists a sequence of real numbers 5”l 0 such that &, (v=
=1

v

1,2, ...) are not bounded. Since

Ty = VE (xu_xu--l)'*'xlT + o,
=2

oo
y=

and
vavé i Eu(wu'—wy.—l) + Elxl ’
p=2

the sequence:

v

ZI(EM_EMH)xu (v=1,2, ««0)

=
is not bounded and

i1|sp—sﬂ+ll<+oo.

This is inconsistent with the hypothesis of (2).
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THEOREM 1.1. Let R be a normed semi-ordered linear space. Then
the following three conditions are mutually equivalent;

(1) The norm on R is monotone complete;

(2) the morm is complete and R is K-bounded;

(3) the norm is complete and R is K>*-bounded.

Proof. We have only to prove that (2) implies (1).
Let ngvr

and sup|a,| <+ . Then, for any sequence of numbers
v21
£,>0 (v=1, 2, --+) such that i £,< -+ o , we have i || <+ . Since
v=1 v=1

the norm is complete by assumption, > &, is convergent in norm, and
y=1

so, in order convergence. Therefore, @, (v=1, 2, ---) is bounded, because
R is K-bounded.

1.2. Let R be a continuous semi-ordered linear space. For any
element p=0 and for all =0, the projector [p] is defined as

o=\ (2ns) .

[p]1=[q] means [plz=[qlx for any #=0.
Let R be a normed semi-ordered linear space. A norm |z|on R is

continuous if and only if =0 and [p”]r 0 4mplies lim|[pJx| =0
v=1 y—>00
([Nakano] Theorem 30.8) We will call a subset A of R monotone com-
plete, if ngyr and sup |z,| <+ o for x,€ A implies D x,€A.
y=1 =1 vZ1

If a norm on R is monotone complete and continuous, then every
(norm) closed subset is monotone complete in the sense described above.
Here, we will prove the converse. A subset A is said to be semi-normal,
if xe A, |y|<|«| implies ye A.

THEOREM 1.2. Let R be a normed semi-ordered Ilinear space and
suppose every (norm) closed, semi-normal subset of R is monotone complete.
Then the norm is continuous.

Proof. Let us assume that there exist [p,] (v»=1,2,---) and z,e R
such that [py]r 0 and lim|[p,J,|=¢ for some ¢>0. Then the least
closed set A4 covr:ltaining ;ﬁwweR such that lim |[p,]z|=0 is semi-normal
and 1—[»])z,€ A. On the other hand, o

0=(—[pDa| @ and  |A-[pDal<]w] -
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Therefore, since A is monotone complete, a,€ A. This is inconsistent
with the definition of A.

2. Monotone completeness of Nakano spaces. It will be necessary
to state here the definition and several properties of Nakano spaces.

A semi-ordered linear space is said to be wuniversally continuous, if
for any system of positive elements z, (1€ A) there exists A[e\A . A

Nakano space is a universally continuous semi-ordered linear space where
a functional m(x) (x € R) is defined and satisfies the following conditions:
(1) 0=m(z)=+o(xeR);
(2) for any x € R we can find a number £>0 such that m(éx)< + o«
(3) if m(&x)=0 for every £>0, then x=0;
(4) |z|=|y| implies m(z)=m(y);

(5) m(%x)é%{m(&x)%—m(éy)} for numbers &, >0 and for every
element ze R;

(6) |zl ~ly|=0 implies m(z+y)=m(x)+m(y);
(7) 0=Zx\treax implies m(x)zﬁgp m(x)) .
A

This functional m(x) is called a modular on the Nakano space R.
In the Nakano space R, we can define two kinds of norms:

the first norm: lz]= mf 1"‘7?(5%)
the second norm: ||z|= inf L
m(Ex)=1 Iél

It is easily seen that ||z||=|«|<2||«]]. The modular is said to be
complete or monotone complete, if these norms are complete or monotone
complete. Namely, a modular m on R is said to be monotone complete,
if, when ngyr and sup m(z,)< + oo , then there exists U x, .

v=1 vZ1 v=1
A modular m is said to be simple, if m(x)=0 implies =0. If m
is simple, we can define in R a convergence by this modular. Namely,
a sequence x, (v=1,2, ---) is said to be modular-convergent to xe R, if
lim m(z,—x)=0. If a sequence z, (»=1,2,--+) is convergent to xe R

Y—ro0

by the norms defined above, then it is modular-convergent to the same
limit. But the converse is not always true. In order that the modular-
convergence be equivalent to the norm convergence, it is necessary and

sufficient that the modular is uniformly simple: 1nf m( i Iu)>0 for

+#z€ER

any £>0 ([5] Theorem 48.1)
The norms defined above are not always continuous. If the modular
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is finite, namely, m(x)<+o for every x€ R, then the norms are
continuous ([5] Theorem 44.4)

A modular m is said to be uniformly finite, if sup m(é x ->< + oo
0+=€R ([l

for every £>0. It is clear that uniform finiteness is stronger than
finiteness.?

2.1. In this section, we will consider the relations between monotone
completeness and completeness of Nakano spaces. In the sequel, let R
be a Nakano space and m(x) (x € R) be its modular.

The following lemma is a generalization of the essential part of
Kalugyna’s results [3].

LemmA 2.1, If m 4s monotone complete, simple, and its norms ore
continuous, then m is uniformly simple.

Proof. If m is not uniformly simple, we can find a sequence x,=>0
(»=1,2, ---) such that limm(x,)=0 and ||@,|=e>0 for all ». Hence, we
can select a subsequenc:;m (r=1, 2, +-+) such that

m(‘xm)§1/2” .
Then, for the elements:

yM,A::a%M\~ja% .. '\-/ah

Bl T2 N
we have
m(yu,k) = m(xvu) ‘*‘m(xvnﬂ) Feee +7n(xvu+l\)
1 1
ot T

Namely, we have yMT and sup m(y,,)<-+o . Since m is monotone
A=1 AZ1

complete, there exist y, (#=1,2, - - ) such that y,hzg;jlymA and m(y,)<1/2+*.

oo

It is clear that y,Ll . On the other hand, for any =0 such that

m=i
2=y, (#=1,2, ---), we have

m(Y,—x) <m(y,) , thus, lim m(y, —x)=0 .
poseo

3 More details of the theory of Nakano spaces are given in [5]. As examples of Nakano
spaces, we cite two representative types. The first is an Orlicz space. The second is
the space Lyci)(p(t)=1), namely, the set of measurable functions x(¢)(0<t<1) such that

1
S |ex(t)|2¢0)dt is finite for some ¢>0. Here p(f) is a measurable function on 0<t<1.
0
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Therefore,

m( fl):m> = m(—;—(yu —x)+ %%)

< {m—2)+m)} 0 (=),

that is to say, m(%w)zo . Since m is simple, ®=0. This means that

y,kl 0. As the norm is continuous, we have lim|y,|=0, which con-
p=1 p>oo

tradicts the assumption, because

lv.l= |z, 1=

Therefore, m is uniformly simple.
The next two lemmas constitute the converse of the above.

LEMMA 2.2. If m is uniformly simple, then its norms are continuous.

oc

Proof. Let xvl 0. Then there exists a number £>0 such that

m(éx,)< + oo for all v_ For the elements y,=éx,—¢&x,, since y,=>0 and
éx,=0, we have

m(yv +éx,)= m(yv) + m(Exv) ’
S0,

m(éx,) =m(y,+Ex,) —m(y,) =m(Ex) —m(y,) .

On the other hand, we have m(Ea:l):sgp m(y,), because Ogy,r 15901-
Therefore, lim m(éx,)=0, and hence it follows that lim |, =0, because

m is uniformly simple.

LEMMmA 2.3. If m s uniformly simple and its norms are complete,
then m is monotone complete.

Proof. Let 0= x,T and sup m(z,)<+c . Then

V=1
m(@, — &) = mU,) — 1) (vz=p),
and hence, we have

lim m(z,—,)=0 .
Y, —>00
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Since m is uniformly simple, we have

lim |z, —2,| =0,
V, =00
so that there exists an element xe R such that lim|x,—x|=0. For

this z, it is easily seen that x:O x,, which shows that m is monotone
v=1

complete.
From these lemmas, we obtain the following theorem:

THEOREM 2.1. A modular on a Nakano space is monotone complete,
simple, and its norms are continuous, tf and only if it s uniformly
simple and complete.

Next, we will consider the case when m is finite.

DEFINITION. A modular m(x) (xe€ R) is said to be totally finite, if
0§x,,)r

v=1

and sup m(w,)< + oo implies sup m(&x,)<+ o for every £>0 .
vZ1 vzl

LEMMA 2.4. If m is monotone complete and finite, then it is totally
Sfinite.

oo

Proof. Ogm,T and sup m(z,)<+c . Then, since m is monotone
y=1

v=1

complete, there exists e R such that x= O x,. Therefore éx= O Ex,
= v=1

v=1
for every £>0. Hence it follows that m(éx)=sup m(&x,)<+ o , because
vz1
m is finite.
LeEMMA 2.5. If m is totally finite and complete, then it is monotone
complete.

oo

Proof. Let ngvT and supm(x,)<-+c . Then, by the as-
vZ1

sumption, we have sup m(éx,)< 4 for every £>0. Since
v=1

v=1

m(swv - Sxy.) é m(‘ng) —m(Exp«) (V g au) ’

we have lim m(&x,—&x,)=0 for every £>0, therefore we have

VY, pu—r00
lim |@,—x.|=0.
V, l—roo
Hence, there exists an element w e R such that lim |o,—2||=0. There-
Y00

fore, we have x= D w, , which shows that m is monotone complete.
v=1

Thus we obtain the following theorem:
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THEOREM 2.2. A modular on a Nakano space is monotone complete
and finite +f and only if it is totally finite and complete.

REMARK. It is easily seen that uniform finiteness implies total
finiteness and the latter implies finiteness. The converses are not always
true. In fact, L{, is a finite Nakano space by the following modular:

m(x):gzlx(t)l”‘dt for  a(tye Li, .

But, this is not totally finite, because, if it were totally finite, then,
by Theorem 2.2, it would be monotone complete, which is impossible.
Next, let f,(&) (v=1, 2, ---) be a sequence of convex functions such that

ruo={* i 0=esl;
v(E—1)+1 if £>1.

Then, the space* I(f., f3, ---) with the modular

m@)= 56D for  a=()

is totally finite, but not uniformly finite. To see this, we need only
take the elements:

61:(1,0,0,"'), 622(0,1,0,"‘), 63:(0’091701"'), ce

It is easily proved that |le||=1 and m(2e,)=v+1— 4o . But, this
sequence space is uniformly simple by Theorem 2.1. The relations
between uniform simplicity and uniform finiteness were considered by
my colleagues. If a modular on a Nakano space is uniformly finite and
simple, then, by considering the monotone completion and applying
Theorem 2.1, we can prove that it is uniformly simple. On the other
hand, T. Shimogaki has proved in an unpublished paper that, if a
modular is uniformly simple and the space has no atomic elements, then
it is uniformly finite.

2.2. In this section, we will consider relations between monotone
completeness and finiteness.

An element « is said to be finite, if m(éx)< + oo for every £>0.
The set of all finite elements is called a finite manifold of R and
denoted by F. F'is a (norm) closed subspace of R and the norms are
continuous in F' ([5] Theorem 44.5.). If the norms are continuous in
R and m is monotone complete, then F'is universally monotone complete,

that is, if 0=<a,},es and sup m(x,)< 4+ then there exists U z, .
AEA AEA

m is sald to be almost finite, if F' is complete in R (that is, if
|z]|nly|=0 for all ye F, then x=0).

4 For the definition of this sequence space, see [6].
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THEOREM 2.3. If m s almost finite and monotone complete, then m
s finite iof and only if F' is, as a space, universally monotone complete.

Proof. We need only prove the sufficiency. For any x e R, since
m is almost finite, there exists a system of projectors [p,]t.e [2] such
that [p,Jxe F', and there exists a number £>0 such that m(éx)<< 4 o .
Therefore we have

U énlr=éxe F,
AEA
since m is monotone complete. Hence it follows that m is finite.

THEOREM 2.4. If m is almost finite, monotone complete and separable
wn its norm topology, then m is finite.

Proof. It is well known that if m is almost finite and norms are
continuous, then m is finite. Therefore, we need only prove that if m
is monotone complete and separable, then its norms are continuous.

For this purpose, let us suppose that there exists an element =0

and a sequence of projectors [py]l;o such that
1yr;1f I[p,]2z| >e for some e>0.

Then, by Amemiya’s lemma, we can find a number £>0 such that
lim |[p,Ja—[p.Jal Z€lp.Jal & >0,

and here, we can select p, (v=1, 2, -++) such that
(7, Jo—[pa, Jol > e .
Putting p),:[p,kv]w—[ppwl]m v=1,2,---), we see easily that
7,20, p,np=0+4) and |p[>é,

and, for any subsequence Dy, (A1=1,2, .--), we have

Moreover, the set of all such sequences is not denumerable and
“ Z pv,\_ Z pvP“ >S€
A=1 p=1

for different sequences {p,,k} and {pvp} . This contradicts the separability.
Therefore, norms are continuous and the proof is established.
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REMARK. In order that m be finite, it is necessary and sufficient
that its norms be continuous and all atomic elements belong to F.
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SIMPLIFIED PROOFS OF “SOME TAUBERIAN THEOREMS”
OF JAKIMOVSKI: ADDENDUM AND CORRIGENDUM

C. T. RAJAGOPAL

Dr. B. Kuttner has kindly drawn my attention to a paper by F.

Hausdorft, Die Aqm’valenz der Holderschen und Cesaroschen Grenzwerte
negativer Ordnung, Math. Z., 31 (1930), 186-196, which contains a
generalization of Jakimovski’s fundamental theorem discussed in § 2 of
my paper (this volume, pp. 955-960) and Szasz’s product-theorem referred
to in § 3 of my paper, under numbers VI and III respectively in the
list of numbered results I-VIII. There is a close connection between
Hausdorff’s paper and mine, as shown, for instance, by a comparison
of Lemmas 1, 3 in the latter with the interpretation of I'_, and the
result numbered VII in the former (pp. 195-6). It is unfortunate that
I should have been ignorant of Hausdorff’s paper and that the paper
should have escaped mention in the lists of references provided by such
works as G. H. Hardy’s Divergent series and O. Szasz’s Introduction to
the theory of divergent series.

Dr. Kuttner has also been good enough to call my attention to the
fact that my step numbered (6) in p. 958 is not a valid deduction from
my Lemma 2. For the convenience of the reader, I add that my incorrect
argument may be replaced by the following, after the deletion of the
last two lines of p. 957 and the lines 1, 2, 6,7, 8, 9 of p. 958.

Since, if k=1 we infer at once from Lemma 2 that s,=o(1), we
suppose that % =2 and reduce this case to the case k=1. When £ =2,
(7) in p. 958 shows that

i d*s, " =0(1) , x—1—-0,
7=0
that is, that the series 3 4*s,.. is summable (A) to 0. In this series,

the nth term 4%*s,_,=o(n"*), n—oo, by hypothesis, so that the series is
convergent and necessarily to 0. Therefore

7 oo oo
Aoy =—, Mg,y = > A, o= 3, o(r~F)=o(n"**"), n—>o ,
=0 1 r=n+l

r=n+

By repetitions of this argument (if necessary), we reduce k---.
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CORRECTION TO THE PAPER “EXTENSION OF UNIFORMLY
CONTINUOUS TRANSFORMATIONS IN HYPERCONVEX
METRIC SPACES” BY N. ARONSZAJIN AND P.
PANITCHPAKDI, PACIFIC JOURNAL OF
MATHEMATICS, 6 (1956), 405-439.

Due to an oversight the authors make a statement (page 422) which
amounts to saying that every generalized absolute retract is an absolute
G5. This statement is not true, see for instance, Dugundji, Pacific J.
Math., 1951. The authors wish to thank E. Michael for drawing their
attention to this error. The statement as it was made was in the
nature of a side remark and has no influence on the developments of
the paper. However a change is made necessary in Problem V at the
end of the paper where the problem should read “If an absolute G
space & is a generalized absolute retract, is it possible to define a
metric in & which induces the given topology on &, and makes it into
a hyperconvex space?
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CORRECTION TO THE PAPER “ THE REFLECTION
PRINCIPLE FOR POLYHARMONIC FUNCTIONS ”

ALFRED HUBER

Dr. Avner Friedman kindly drew our attention to an error in 7The
reflection principle for polyharmonic function (this Journal 5 (1955), 433-
439). On p. 436 we stated that the operator (2.1) transforms x, iz, « - -
z, into (—1)w) e -+« 2% for p<y,<2p—1. Counterexamples show
that this is not generally true. In our proof we had overlooked the fact
that the formula on p. 437 does not represent o if 2k*>2p—1—y,.

Correction. The statement is valid under the additional hypothesis
that v,+wv,+-+++v,<2p—1. Indeed, then a direct verification yields
=0 in the case 2k* >2p—1—y,.

In order to close the gap which now appears in the proof of the
theorem we first observe that the operator (2.1) transforms x*12,” « - - x,"»
into a sum of terms of degree v,+y,+---+v,. From this and the above
assertion we infer that (3.8) is true if

(A) Py, <2p—1 and yitv e e 4y, <2p—1,
Hence, under the same assumptions,

®) (@ e, @) O (@, e, @),
01,102, « « » 0x,'n 0,102, « » » 02, 'n

’

everywhere on S. We conclude that (B) and (3.8) remain valid if the
second condition (A) is dropped. Now we can follow the previous rea-
soning.

Swiss FEDERAL INSTITUTE OF TECHNOLOGY
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