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COMMUTATIVE LINEAR DIFFERENTIAL
OPERATORS

S. A. AMITSUR

1 Introduction. Let Ό—d\dx be the operator of differentiation with
respect to a variable x. Let f(D)=a0D

n+ ••• +an, a0Φθ be a differen-
tial operator of degree n. The problem we intend to study in this paper
is to determine the set C[f] of all linear operators which commute with
/. This problem, is old and for a complete discussion of old and new
results see the report of H. Flanders [2]. The most pronounced result
in this subject is the fact that C\f] is a commutative ring and that it
is finitely generated over the algebra of all polynomials in f(D) with
constant coefficients.

In his report [2], Flanders obtains this theorem by algebraic methods
with the aid of a deep theorem of Tsen on division algebras over the
field of all rational functions in one variable. The first part of the
present paper contains a simple algebraic proof of this result which
uses only elementary facts of linear algebra.

In the second part of this paper we obtain necessary and sufficient
conditions for the existence of non-trivial differential operators which
commute with f(D). This is obtained by adjoining a parameter λ to the
domain of definition of the coefficient of f(D) and by considering the
invariant ring [1] of the operator f(D) — λ. It is shown that the struc-
ture of the C[f\ is closely related with the factorization of f(D) — λ.
In this part, use is made of the theory of abstract differential polynomials
as developed in [4], [3] and [1]. All proofs are purely algebraic.

2. The centralizer of f(D). To be more precise we make the following
assumptions : Let if be a field of characteristic zero with a derivation
D : α->α'. Let F denote the field of constants of K. That is : F=
{a; aeK. α'=0}.

Let K[D] be the ring of all formal differential polynomials p(D) =
p0D

n+ +pm. Pi e K with multiplication defined in K\D\ by the relation

Da=aD+a', aeK.

Clearly K[D] can be considered also the ring of linear differential
operators on K.

Let f(D)=aQDn+a1D
n-1+ . . +an, n^l, αo^O be a polynomial of de-

gree n in K[D], We shall denote by C[f] the centralizer of / in K[D],
That is, C[f]={g(D); g(D)eK[Dl gf=fg}. Clearly C[f] is a subring
of K[D] and it contains the ring F[f] of all polynomials in f(D) with
constant coefficients.
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2 S. A. AMITSUR

The main object of the first section is to prove the following.

THEOREM 1. (1) C[f] is a free F[f]-module of dimension p, where
p is a divisior of n ( — the degree of f(D))

(2) C[f] is a commutative ring.
We shall need the following two known lemmas.

LEMMA 1. ([2] Lemma 10.1) If po,Qo (ire respectively the leading
coefficients of two polynomials p(D), q(D) of the same degree which commute
with f(D) then po—cqo for some constant ceF.

LEMMA 2. ([2] Lemma 10.2) The set of all polynomials of C[f] of
degree^m is a finite—dimensional vector space over the field of con-
stants F.

For completeness we include the proof of these lemmas in the
abstract case we are dealing with.

Indeed, if p(D)f(D)=f(D)p(D) and p(D)^pQDm + pιD
m'ι + +Pm>

then by comparing the coefficient of JD
w+m~1 on both sides we obtain :

mάopQ+aQpλ+pQax=npoao+p^

Thus, the leading coefficient pQ satisfies the homogeneous linear differen-
tial equat ion: naQp'0—ma0p0 = 0. Hence if q(D) — qQDm+ +qm also

commutes with /(Z>), q0 satisfies the same differential equation and,
therefore qQ—cpQ for some constant c, which proves Lemma 1.

The proof of Lemma 2 follows immediately from Lemma 1, by
induction on the degree m.

We proceed now with the proof of Theorem 1:

Let Zf be the set of all integers which are the degrees of the

polynomials of C[/]. Since C[f] is a ring, and since deg(p(D)q(D)) =

degp(D)+degq(D), it follows that Zf is closed under addition. Let m

denote the residue class modulo n( = degf(D)) of the integer m, and let

Zf={m',meZf}. Then clearly Zf is a subgroup of the additive cyclic

group of all residue classes mod n. Hence Zf is cyclic of order p and
p is a divisor of n.

Let o=m19 •••, mp be the p classes mod n of Zf and let m^ be the

minimal integer of its class mέ. Let g^D) e C[f] be a polynomial of

degree m% and we can clearly choose # i = l . We shall show that these

polynomials gt are free generators of C[f] over F[f],
Indeed, if g1ψi(f)+ +gPφP(f)=z0 for some polynomials φt(f)e

F(f), then evidently: if φh(f)Φθ, for some h, then

deg [&?>«(/)]=deg \jg3φ3{f) for some iΦj.
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But, since deg [flW«(/)]=deg gt=mt(mod ri) and deg [&&£/)] =m (mod
ri), and πιi^mj (mod ri), we are led to a contradiction. Consequently
y>4(/) = 0 for all i.

It remains now to show that if g e C[/] then g=gιφ1(f)+ . . +gpφp(f)
for some y>*(/) 6 F [ / ] . This is obtained by induction on deg g. It deg
g=0, then it follows by Lemma 1 that g — ceF, and hence g—cg^ Now,
let deg g—k. Since keZf, it follows that k~mi(mod ri) for some i.
By the minimality of mif it follows that fc^m^ Hence k—πii+nq,
which implies that deg # = deg gjq. It follows, therefore, by Lemma 1
that g'—g—cgίpeClf] for some ceF and deg #'<deg g. Hence, by
induction we obtain g—cgίf

q — g1φι(f)+ ••• +gpφp(f), and the proof is
readily completed. This proves the validity of (1) of Theorem 1.

We turn now to the proof of (2). Let g{D) e C\f] be a polynomial

whose residue class of deg g(D) mod n generates the cyclic group Zf.

One readily verifies that in this case, the set of all degrees of the

polynomials of the form

contains all integers of Zf with at most an exception of a finite number
of integers. Hence, we may assume that this set contain all integers
meZf for which m^t, for some fixed t. One then proves as in the
preceding part that every polynomial h(D)eC[f] can be written in the
form h(D)=HQ(g,f)+ho(D), where hoeC[f] and deg ko£t. From Lemma
2 we know that the set of all polynomials h0 is an F-space of dimension
Γ, for some T. Let fvh = RXg,f)+h,, v = 0,l, •• ,Γ, and deg K%t
thus the polynomials h, are F-dependent and, therefore, ΣcvΛv = 0, for
cveF and not all cv = 0. This yield that (ΣΛo^Γ)h=ΣfivH^g9f)f which
proves that for every heC[f~\ there exists polynomials H(g,f) and F(f)
with constant coefficients such t h a t : F(f)h = H(g,f).

Clearly the set of all polynomials H(g,f) commute with each other,
and the polynomials of C[f] commute with the polynomial of F{f]
hence, if F4(/)A4 = fl4(flr,/) for ^ e C [ / ] i = l, 2, then

F1(f)Fi(f)hA=(FΛ)(FA) = HΆ = HΆ = (FA)(FM = F%FλhA

Now KID] is a ring without zero divisors, hence AA=/&Aand the proof
of Theorem 1 is completed.

It was thus shown that C[/] is an integral domain, let C{f) denote
the quotient field of C[/]. If F{f) denotes the field of all rational
functions in / over F, that is the quotient field of F[f], then clearly
F(f)SC(f). Actually, the preceding proof shows that the chosen poly-
nomial g is algebraic of degree p over C(/), since F(f)(f = H(g,f) and
moreover C(f) is an algebraic extension of F(f) generated by g. Thus
we have shown :
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COROLLARY 1. C(f) is an algebraic extension of degree p of F(f) and
if the residue class of a polynomial g e C[f\ generates the group of residue

classes ZFy then g is of degree p over F(f) and C(f)—F{f) [#].
This clearly implies the following.

COROLLARY 2. If heC[f] then h is algebraic over F(f) and its
degree is a divisor of p, that is, there exists a polynomial H(h,f)=O with
constant coefficient and where degree in h is a divisor of p.
This follows from the fact that F{f)^F(f)[h]^F(f)[g].

REMARK. The fact that h is algebraic is well known, but here we
obtained some additional information on its degree. In fact, one can
prove by the previous methods that the degree of the minimal poly-
nomial H(h, f) in h is equal to the order of the subgroup of the additive
group of all residue classes mod n generated by the degree of h.

Additional information on the degree p of C(f) over F(f) will be
obtained in the following section.

3. The field C(/). Let i be a commutative indeterminate over the
field K. We extend the derivation of if to a derivation of the field of
all rational functions K(λ) so that F(λ) will be the field of constants of
the extended derivation. Consider the ring K(λ)\D\ of all differential
polynomials in D with coefficients in K{λ).

LEMMA 3. Every polynomial g(D) e K{λ)\D\ can be expressed in the
form g—a(λ)-χ G[λ, D], where G[Λ, D] — ̂ gv(λ)Dv is of the same degree as
g(D), and gv{λ), a(λ) are relatively prime polynomials in λ. Similarly
g = G1[λy D'jbiλy1 with similar restrictions for Gλ and b{λ).
The proof is evident.

Let ~Fλ be the algebraic closure of F{λ), and let Kλ=K(Fλ) be the

field obtained by adjoining Fλ to K. that is, Kλ is the composition field

of K and Fλ over F(λ). One extends the deviation of K to ^ λ so that Fλ

is the new field of constants. These extended derivations yield the fol-

lowing sequence of rings of differential polynomials

K[D]czK(λ)[D]ciKλ[D] .

If f(D) e K[D\ then f{D)-λ e K{λ){D] and first we show the following.

LEMMA 4. f{D) — λ is an irreducible polynomial in K(λ) [D],

PROOF. Suppose f(D)-λ=f(D)fz(D) and deg / 4 <deg /, f%(D)e
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K(λ)[D\. In view of Lemma 3 we set f1(D)=g1[Df Xja'^X) and ar\λ)fJίD) =
glD, X\b'\λ). Thus (f(D)-φ(λ) = gi[D, X]gJ[D9 X].

We consider now g,[Df X] as a polynomial in λ with coefficients in
the ring K[D], and we obtain by the remainder theorem1

9ilD, X] = (f(D)-λ)H[D, X]+R[D]

where R[Π\eK\D]. Hence, it follows readily that

R\B\glD, X\ = {f{D)-λ)G[D, λ\ .

Let g2[D, X] = Σ*λvh(D). Then the fact that f(D)-λ is a left divisor
of R[D]g2[D, X] implies by the remainder theorem that ΣfvRhv = 0. If

, then we must have that deg (fvRhv) = deg (f Rh^ΦO for some
But suppose v>μ then we have

deg hμ = deg hv + {v-μ) d e g / ^ deg

On the other hand, clearly,

deg ftμ^deg # 2=deg / 2 <deg /

which is impossible. Hence i2=0, which means that gJΪD, X] — (f(D) —
λ)H[D, X\. But this leads to a contradiction since deg Fτ<deg f, and
proof of the lemma is completed.

The polynomial f(D) — λ, when considered as a polynomial in Kλ[D],

may be reducible, and indeed its factorization in the extended field

Kλ is closely connected with the field C(f). This we propose to show

in what follows, and we begin with some preliminary lemmas.
Let K\D, X] be the ring of all polynomials in λ and D, and let K[X]

be the polynomial ring in λ.

LEMMA 5. Let OΦ<peK(λ), A,G,HeK[λ,D] such that AG=Hp,
and A=fQDn+ ••• +fn where fteK[X] and (fo,p) = l, then G=Gτp for
some G.

PROOF. If the lemma is not valid, then let G be a polynomial of
minimum degree in D which is not a left multiple of p and which
satisfies the conditions of the lemma. Let2 G=DmgQ+ ••• +gm. Since
AG—Hp. It follows by comparison of the leading coefficients of both
sides that fogo=hop. Now (/op) = l, hence p divides g0 and we have
gQ = qp for some polynomial qeK(λ). But then G — (Dmq)p is of degree <

1 See, e.g. A. A. Albert, Modern Higher Algebra, Chicago 1937 p. 25.
2 Note that the polynominal G(B) may be written with coefficients either on the right

or on the left of the power of D.
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deg G it is not a left multiple of p, since G is not, but nevertheless
A(G—Dmqp) = (H—FDmq)p, which contradicts the minimality of G.

LEMMA 6. Every polynomial p(λ)eK[X] can be written as p{λ) —
c(λ)q{λ) where c{λ) is a monic polynomial in λ and c\λ) = O, and in the
factorization of q{λ)—aq\ι q\*, aeK, into prime factors, the polynomials
q^λ) are relatively prime to their derivatives qΊ{λ).

Let p{λ) — ap\ι{λ)p\i{λ) pv

n

n{λ) be the factorization of p(λ) into prime
factors. We may assume that each p% is a monic polynomial, i.e. its
leading coefficient is 1. For each pif the polynomial p\(λ) is of lower
degree in λ than pt hence, since pi is prime, it follows that either
(PitPd^l o r Pi divides pu which in the latter case must yield that
pί = 0. Thus, c(λ) is the product of all pt for which pl = 0 and q{λ) is
the product of the rest.

LEMMA 7. Let peK[λ],G,HeK[D, λ] and (p,p') = l, then pG=Hp
implies that G = Gop for some GύeK[D, X\.

PROOF. If the lemma is not true then let G be the polynomial of
minimum degree in D which do not satisfy our lemma.

Let G = Z)»flro+ . . . + 0 n , H=DnhQ+ . +hn, gt and / ^ e i φ ] , and
gJιQφb. Compare the coefficient of Dn of both sides of the equation
pG — Hp. This yields pgQ—hQp which gives go=ho. The coefficient of
Dn~ι yields

Hence, —npfg0=p(hι~g1). Since (p, p') = l it follows that go=kp for some
keK[λ], But then the polynomial G—Dnkp is of lower degree then G
it is not a left multiple of p, but nevertheless p(G—Dnkp) = (H—pDnk)p.
This contradicts the minimality of G.

We can now turn to the main object of this section, and we recall
the notion of the invariant ring of a differential polynomial. ([1 §5
p.260] and [3 §10 p.502]).

Let h(D) be a polynomial in K[D]. The invariant ring & (h) of h
is the ring of all classes g(D)+h(D)K[D] which have a representative
g(D) satisfying g(D)h(D) = h(D)g1(D). It is known [1, Theorem 9] that
&(h) is a finite dimensional algebra over the constant field, and if h is
irreducible, then &(h) is a division ring.

We shall consider the invariant ring &(f(D) — λ) in the ring K(λ)\p].
Since it was shown in Lemma 4 that f(D) — λ is irreducible, it follows
that &(f—λ) is a division ring (e.g. [1, Theorem 10]). First we show
the following.

THEOREM 2. The field C(f) is isomorphic with
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PROOF. This elements of &(f—X) are classes of the form g(D) +
(f-λ)K(λ)[D],geK(λ)[D], and the first part of the proof is to show that
we may choose a representative of this class of the form q{D)c{X)~l,
where q(D) e C[f] and c(λ) is a polynomial in λ with constant coefficients.
The converse, that is : that every class which has a representative of
the form q(D)c(λ)~1 belongs to &{f—X), follows easily since qcι(f—λ) —
q(f-λ)c-'= (f-λ) qc-\

So let g(D) be a representative of a class in &(f—λ), then g(D)
(f-X) = (f-χ)h(D). We set g(D)=a-\λ)G[D, X] and h(D) = H[D, λ]b(λ)-\
in accordance with Lemma 3, we may assume and that a, b and monic
polynomials. Then we have

(3.1) G[D, X\{f-λ)b{λ)=a(λ){f-))HlDy X] .

Suppose b(λ)Φl. Let b{λ) — pxp2 pn be the factorisation of b into
prime factors, then we may assume that (p[, p<) = l. Since if (p[, pt)φl
we have seen that pl = 0, and we may deal with p^D), which also be-
longs to &(f — X), instead of g(D).

It follows by Lemma 3 that H was so chosen that it is not a left
multiple of any prime factor of b(λ) say pv furthermore, clearly a(λ)
(/—λ)—Dna(λ)aQ+ , where/— λ — Dna0+ and a0Φθ. Hence, it follows
by Lemma 5 that pλ divides a(λ). So let d^ — p^. Hence (3.1) yields

plQl(f-λ)H[D, λ] = GlPi, where G1 = G(f-λ)p2 . . . pr .

Since (piy p[) = l, it follows by Lemma 7 that qi(f — λ)H = G2p1. By
similar reasons it follows from Lemma 5 that qι — Pιq^ and thus Piq2(f—
λ)H — G2p1. Again Lemma 7 will yield that q2(f—λ)H=G3pί. This cannot
proceed indefinitely since the degrees of a(λ), q19 q2, in λ are reduced
in each step. Thus we are led to a contradiction, which leads us to the
result that δ(;) = l. Thus (3.1) states that G(f-λ) = a{f-λ)H. The
leading coefficient of f—λ is an element of K, hence if we assume that
aΦl, we must have by a result parallel to Lemma 5, that G—aG1 which
contradicts the way we have chosen G and a by Lemma 3.

We thus have shown that by multiplying g(D) by polynomials c{λ)
(that is the product of the pέ for which pί = 0) we obtained a represen-
tative G[D, λ] which is a polynomial both in λ and D. If G[D, λ~\ =

then the remainder theorem yields that

Thus q(D) = Σfvgv is a representative of the same class mod(f-λ) as
G[D, λ].

Since qe &(f-λ), we have q(D)(f-λ) = (f-λ)Q(D). Let, in view
of Lemma 3, Q(D) = P[D, λ]d(λ)'\ Then q(D)(f-λ)d(λ) = (f-λ)P[D, X].
We must have d(λ) = l. For if the degree of d(λ) in λ is>l, then since
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the leading coefficient of f—λeK, it is relatively prime with d(λ), and
hence Lemma 5 implies that P[D, λ]=Pτd(λ) which contradicts Lemma
3. Thus q(D)(f-λ)=(f-λ)Q(D) and Q(D)eK[D, λ\. By comparing the
coefficients of the powers of λ of both sides, one readily obtains that
Q = q, and qf=fq, that is qeC[f]. Consequently, we obtained that
class of c(λ)g(D) has a representative qeC[f]. Hence

g(D) + (f-λ)K(λ)lD] = c(λr*q(D) + (f-λ)K(i)[D]

which proves our assertion.
We prove now Theorem 2. Clearly every element of C(f) has the

form qiPWf)-1 where qeC[f] and c(f)eF[f], and we map C(f) onto
—λ) by the correspondence

From the previous part of the proof it follows that this mapping is
onto, and one readily verifies that this is an isomorphism. We shall show
here only that it is a one-to-one correspondence namely, that

fY1 if and only if

Indeed, the first hold if and only if q1(D)c2(f)=q2(D)cL(f), and one readily
verifies by the remainder theorem, in view of the fact that c4(/) com-
mute with qif that the latter is eqivalent to the fact that q1(D)c2(λ) —
gra(D)c1(̂ ) = (/-;)fί[;,Z)], and the rest is evident.
We now apply Theorem 2 to show the following.

THEOREM 3. The polynomial f(D) — λ is completely reducible [3, p. 489]

in Kλ\D] if g(D) is an irreducible polynomial which is right (or left)

divisor of f[D\ — λ in Kλ\D] then deg f=μdeg g and μ=ρ = (C(f):F(f)).

PROOF. Let θ be any automorphism of Fλ over F(λ) This auto-
morphism is readily extended to Kλ over i φ ) , and to Kλ[D] over K(λ)
[£>]. Since f-λ = hg, and f-λ e K(λ)[D], one readily verifies that f-λ=
{f—λ)θ=hθgθ. This means that/— λ is a left common multiple of all

gθ, where θ ranges over all automorphisms of Kλ over K{λ).
Let G{D) be the least common left multiple of all gθ whose leading

coefficient is 1. Then, clearly Gφ(D) will also be a least common multiple,
whence one readily obtains that Gφ—G for all automorphisms φ. This
will yield that GeK(λ)\D\. Now f—λ is also a common left multiple,
hence (Ore [4]) f-λ = G1G,G1eKλ[D]. Clearly, one obtains that also
GιeK(λ)\D\, but Lemma 4 states that f—λ is irreducible. Consequently
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f—λ is the least left common multiple of all gθ. From which one obtains
(Ore [4]) that/—/? is completely irreducible, and moreover, f—λ = [gly

"'jQiΔy the least common multiple of all gi — g9^ for some θt. In par-
ticular, this yields that all gi have the same degree as g.

Thus (Ore [4]) μ deg g=deg(f—λ) = n, or deg g=deg gi — n\μ
To prove the second part of the theorem we need the following

lemmas.

LEMMA 8. Let &(f — λ) be the invariant ring of f—λ in Kλ[D], then
A) = &(f—λ)(x)Fλ, where the tensor product is taken with respect

to F{λ).

For let (ca) be a F(Λ)-base of Fλ, then clearly, this set is also
a ΐφ)-base of K as well as a £φ)[X>>base of Kλ[D]. Let g(D) e Kλ[D]
belong to W(f-λ), and let #=Σ&A where gaeK(λ)[D]. One readily
observes that since f—λ eK(λ)[D], the relation g(f—λ) = (f—λ)h implies
that h = ΣA*cΛ,hΛeK(λ)[D] and gΛ(f-λ) = (f-λ)hΛ for a l ia . That is
gae^(f—λ). Conversely, if g^e &(f—λ) and only a finite number of
gΛ is different from 0, then clearly sΣβcίgΛe~^{f— λ) from which one
readily deduces the lemma.

LEMMA 9. If g(D) e l£λ[D~] is irreducible, then ~&(g) is the field of

constants Fλ that is, if hg=gh19 then h — c+gKλ[D] for some constant ce

Fλ.
Indeed, if g is irreducible, then it follows by [1] Theorem 10 that

&(g) is a finite dimensional division algebra over the field of constant

Fκ. But Fλ is algebraically closed, hence the only division algebra over

Fλ is Fλ itself. Thus W(g)=Fλ.
We return now to the proof of Theorem 3.
It follows by [3, Theorem 19] and by the relation between the

invariant ring of differential polynomials and differential linear trans-
formaions ([3, §10 p.503] and [4]) that the invariant ring of a completely
reducible polynomial is a direct sum of complete matrix rings over division
algebra, and each division algebra is isomorphic to the invariant ring of
one of the prime factors of the polynomial considered. In our case,
since &(f—λ) is commutative (by Lemma 8 and Theorem 1), and the
invariant rings of irreducible polynomials are isomorphic with Fλ, it
follows that &(f—λ) = F1(£) φi^μ, where each Ft is a field isomorphic
with Fλ (compare with [3, Theorem 19]), and μ is the number of prime
divisors given in the first part of Theorem 3.

On the other hand &(f—λ) is an algebraic extension of F(λ) and
from Theorem 2 and Theorem 1 it follows that {&{f-λ)\F\X))=.p.
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Hence it is well known that &(f—λ)®Fκ is a direct sum of p fields
isomorphic with the algebraic closed field Fλ. Consequently Lemma 8
implies that &(f—λ) has the same decomposition. Comparing the two
results, we obtain that p—μ.
From Theorem 3 we can conclude the following known result.

COROLLARY 3. If f(D) is a polynomial with constant coefficients then
C[f] is the ring F\D] of all polynomials with constant coefficients.

PROOF. The factorization of f(D) — λ in Kλ[D] is readily obtained.

Indeed, let μι, μn be the roots of f(x) — λ in Fλ where x is a
commutative variable, then it is easily seen that the factorization of

f(D)-λ in Kλ[D] isf(D)-t^nu(D-fr). It follows therefore by Theorem
3 that (C(f): F(f))=n. But the field of all rational functions in D, that is
F(D), is of degree n over F(f) and clearly F(D)cC(f). Hence C(/)==
F(D). The rest is readily obtained.

We can also determine the dimension (C(f): F(f) — p by the methods
°f [1> §5]. In [1] we have introduced the notion of a resultant of two
diίEerential polynomials which was denoted by f(D)xg{D), and the notion
of the nullity of a polynomial f(D) in a field K. We recall here that
the nullity of / in K was the number of independent solutions of the
differential equation f[D)z=O in K.

From Theorem 2 and [1, Theorem 2] we now obtain the following
THEOREM 4. The dimension /o=(C(/): F{f))={&(f-λ): F(λ)) is

equal to the nullity of the polynomial (f(D)—λ)x(f*(D) — λ) in K{λ)
where f*(D) is the adjoint polynomial of f(D).
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