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1. Introduction. In their study of real quadratic functionals

SZ [r(@)y” -+ 2q(x)yy’ +p(x)y’|de

admitting a singularity at the end-point x=a Morse and Leighton [11]
showed that if x=a is not its own first conjugate point then the
corresponding Euler differential equation

(L.1) (r(@)y +a@)y) —(e(=)y +p(@y) =0, e<lz=b,

possesses a non-trivial solution u(x) such that u(x)/y(x)—0 as az—a* for
each solution y(x) of (1.1) that is independent of u(x). Such a solution
u(z) was termed a focal solution belonging to #=a by Morse and Leighton
[11], but in a subsequent continuation of the study by Leighton [8] the
terminology was changed to principal solution.

If f(t) is a real-valued continuous function on ¢,=<¢<w and

(1.2) "+ fAt)e=0, bh=t<oo ,

is non-oscillatory, Hartman and Wintner [4] have termed a non-trivial
solution a(¢) a principal solution if

(1.3) S;lx(t)\—Zdt:m ,

for t, greater than the largest zero of z(¢), and proved that a non-
oscillatory "equation (1.2) has a principal solution that is unique to an
arbitrary non-zero constant factor ; moreover, if x(¢)=0 is a solution of
(1.2) which is not principal then every solution y(¢) of (1.2) is of the
form y(¢)=Cua(t)+o(|x(t)]) as t—o, where the constant C is or is not
zero according as y(f) is or is not principal. In view of this latter
result, for a non-oscillatory equation (1.2) a solution «x(f) is principal in
the sense of Hartman and Wintner if and only if it is principal in the
sense of Morse and Leighton.

Recently Hartman [5] has considered a self-adjoint vector differential
equation
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(1.4) (R +F(t)a =0, 0=<t<co

where R(t), F(t) are nxn matrices which are continuous and hermitian,
while R(t) is positive definite on the interval of consideration. An nxn
matrix solution of the corresponding matrix differential equation

(1.4 (R)X) +F(HX=0

is termed ‘‘prepared’”’ by Hartman if X*(¢)R(¢)X'(¢) is hermitian. Under
the agssumption that the class T' of solutions X=X(¢) of (1.4) which are
prepared and non-singular on a corresponding interval a,<t<c is non-
empty, Hartman showed that in I there exists a solution which is
principal in the sense that the least proper value 2(¢) of the positive
definite hermitian matrix

(1.5) S (X*X)ds ,  (t sufficiently large; t>t,),
"0

satisfies 14(t)—>c as t—>co, and this principal prepared solution is unique
up to multiplication on the right by an arbitrary non-singular constant
matrix, while there also exist in I' solutions that are non-principal in
the sense that the greatest proper value z.(t) of (1.5) remains finite as
t—oo ; moreover, if Y{(¢) and X(¢) are matrices of [' which are principal
and non-principal, respectively, then X-'(¢)Y(¢)—0 as {—o.

Hartman’s assumption that the above defined class 1" is non-empty
is indeed an hypothesis of non-oscillation, since in view of the results
of a recent paper of Reid [13] the class I' is non-empty if and only if
(1.4) is non-oscillatory for large ¢ in the sense that there exists a ¢,
such that if x(¢) is a solution of (1.4) satisfying «(¢,)=0=x(t,) with ¢,<¢,
<t, then a(t)==0.

It is to be noted that Hartman’s definition of principal solution for
an equation (1.4) which is non-oscillatory for large ¢ has the undesirable
feature of limiting the considered matrix solutions of (1.4’) to the class
T'; indeed, Hartman [5; §11] gives an example of a non-prepared
solution X(¢) of (1.4’) that is non-singular for large ¢, and such that
the least proper value 2,(¢) of the corresponding hermitian matrix (1.5)
satisfies 14(t)>o as t—oc. Moreover, as Hartman points out, his
classification of principal and non-principal solutions does not present a
disjunctive alternative in the class T

For a self-adjoint vector differential equation of somewhat more
general type than that considered by Hartman, and which is non-
oscillatory for large values of the independent variable, the present
paper presents a generalized definition of principal solution that dis-
tinguishes such solutions in the class I, of all matrix solutions which
are non-singular for large values of the independent variable. In
addition, it is shown that principal solutions possess on 1, certain
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properties that are extensions of properties established by Hartman for
the class I. It is to be commented also that the presented determination
of a principal solution is by variational methods and is direct in nature,
in contrast to the indirect character of the proofs of the existence of
a principal solution in the above-cited papers of Hartman, Hartman and
Wintner, and Morse and Leighton ; in this connection it is to be remarked
that although the existence of a principal solution for (1.1) was established
indirectly by Morse and Leighton [11], the properties of principal
solutions derived in their Theorem 2.2 permit a ready direct determination
of such a solution.

Sections 2-8 of the present paper deal with a self-adjoint
n-dimensional vector equation with complex coefficients that is a direct
generalization of the scalar equation (1.1); Section 9 is devoted to a
more general differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type.

Matrix notation is used throughout; in particular, matrices of one
column are termed vectors, and for a vector y=(y.), (¢=1, -+, n), the
norm |y| is given by (Jy [P+ -+« + [4")'"*. The symbol E is used for
the nxn identity matrix, while 0 is used indiscriminately for the zero
matrix of any dimensions; the conjugate transpose of a matrix M is
denoted by M*. Moreover, the notation M=N, (M>N), is used to
signify that M and N are hermitian matrices of the same dimensions
and M—N is a nonnegative (positive) hermitian matrix.

2. Formulation of the problem. For a on a given interval X:
a<x<o let w(x, y, =) denote the hermitian form

(2.1) o(@, y, 7)=a*R@)r+7*Q@)y+y* Q" (@) +y* P(@)y ,

in the 2n variables y, 7=(y,, *++, Yn, 71, +++, 7). It will be assumed
throughout Sections 2 -8 that K(x), Q(x), P(x) are nxn matrices having
complex-valued continuous elements on X, with R(x), P(x) hermitian, and
R(x) non-singular on this interval.

If ¢, d are points of X the symbol I[y; ¢, d] will denote the
hermitian functional

d

2.2) Ity : e, d]=S:w(x, y, ) da .

[

For the functional (2.2) the vector Euler equation is
(2.3) Llu]=(R(x)u +Qxu) —(Q*(@)u’+P(x)u)=0 ,
which may be written in terms of the canonical variables

u(x), v(x)=R@u' (r)+Q@)u(x)
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as the first order system
(2.4) w =Alx)u+B@w, v=C@u—A =),

where the n xn coefficient matrices of (2.4) are continuous on X and
given by A=—R'Q, B=R', C=P—Q*R'Q; in particular, the matrices
B(z), C(x) are hermitian on X and B(x) is non-singular on this interval.

Corresponding to (2.3) and (2.4) are the respective matrix equations

(2.3) LIUI=(R(x)U' + Q@)U) —(Q@*(2)U"+ P(x)U)=0 ,
(2.4') U=A@@)U+B@)V, V=Ca)U-A%x)V .

In [13] the author has discussed various criteria of oscillation and
non-oscillation for an equation (2.3) in which the coefficient matrices
satisfy weaker conditions than those imposed above; although the
results of the present paper hold for equations of the generality discussed
in [13], for simplicity specific attention is restricted to the case described
above.

Throughout the subsequent discussion of Sections 2 -8 we shall deal
consistently with the cononical system (2.4) and associated matrix
system (2.4"), instead of the equivalent respective equations (2.3) and
(2.8"), since in Section 9 there is considered a vector differential system
more general than (2.3), but with associated canonical system still of
the form (2.4).

It U@)=IU @), V@)=|Vaf@)ll, («=1, -+, n; j=1,--+, ) are
nxr matrices, for typographical simplicity the symbol (U(z); V(a))
will be used to denote the 2n x# matrix whose j-th column has elements
Uygx), -+, Uyx), Vifw), +++, Vaufx). In the major portion of the
following discussion we shall be concerned with matrices (U(x); V(x))
which are solutions of the matrix differential system (2.4).

If (Uf(x); Vix)) and (Ufx); V(x)) are individually solutions of
(2.4") then, as noted in Lemma 2.1 of [13], the matrix U*(x)V (z)—
V. *(x)U(z) is a constant. This matrix will be denoted by {U,, U,}; it is
to be remarked that for the problem formulated above there is no
ambiguity in this notation, since the V(z) belonging to a solution (U(z) ;
V(x)) of (2.4’) is uniquely determined as V(z)=R(x)U (z)+Q)U(z). As
in [13], two solutions (u,(x); v (x)) and (ufz); v(x)) of (2.4) are said to
be (mutually) conjoined if {u,, u,}=0. If (U(z); V() is a solution of
(2.4") whose column vectors are conjoined solutions of (2.4), then (Ulx);
V(x)) will be termed a matrix of conjoined solutions. In particular, if
U(z), V(z) are mxn matrices such that (U(z); V(x)) is a matrix of
conjoined solutions of (2.4), then U(x) is a prepared solution of (2.3") in
the sense of Hartman [5]. If the coefficients of (2.1) are real-valued,
then two real-valued solutions of (2.4) are conjoined if and only if they
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are conjugate in the sense introduced originally by von Escherich. The
reader is referred to [13; pp. 737, 743] for comments on the use of
the synonym ‘‘conjoined’” for the case of (2.1) with complex-valued
coefficients.

Two points s, £ of X are said to be (mutually) conjugate, (with
respect to (2.83) or (2.4)), if there exists a solution (u(x); v(x)) with
u(x)#0 on [s, t] and satisfying u(s)=0=wu(¢). The system (2.4) will be
termed non-oscillatory on a given imterval provided no two distinct points
of this interval are conjugate; moreover, (2.4) will be called non-oscillatory
Sor large x if there exists a subinterval a, <ox<o of X on which this
system is non-oscillatory.

3. Related matrix solutions of (2.4). Suppose that (U(xz); V(x))
is a solution of (2.4’) with U(x) non-singular on a given subinterval X,
of X, and denote by K the nxn constant matrix such that {U, U}=K.
If (Ufz); Vix)) is a 2nxr matrix solution of (2.4") on X,, and K, is the
nx7r constant matrix such that {U, U,}=K,, then from this latter
relation it follows that the nxr matrix H(x)=U""(x)Uyx) is such that

(3.1) Uyz)=U(x)H(x), V@)= V(x)H(x)+ U*(x)[K,—KH(x)] ,
and in view of the relation K= —K* it may be verified readily that
(3.2) {U, U,}=—H*(x)KH(z)+H*(x)K,— K*H(z)=K, ,

where K, is a constant »x7» matrix. Moreover, from the differential
equations U/=AU,+BV,, U=AU+BV it follows that

(3.3) H'(z) = U~ ()B(a)U*(x)[K,— KH(x)], x€ X, .

Conversely, if K, is an arbitrary nx» constant matrix, and H(z) is an
nxr matrix satisfying the corresponding matrix differential equation
(8.8), then it follows readily that the 2n x» matrix (Uy(a); V,(x)) defined
by (38.1) is a solution of (2.4") with {U, U,}=K,, and {U, U,} given
by (3.2).

Now if o=s is a point of X and T(x)=T(x, s; U) is the solution
of the matrix differential system

(3.4) T'=—U-"x)B(x)U*Y(«)KT, T(s)=E,

then by the method of variation of parameters it follows immediately
that H(x) is a solution of (8.3) for a given nxr matrix K, if and only
if there is an nx» constant matrix H,=H(s) such that

(3.5) H(z)=T(x, s; U[H,+S(, s; U)K,

where
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3.6) S, s; U):S’fT—l(t, s D\U-(OBHIT ) dt, o, se X, .

The corresponding solution (Uyx); Vi(x)) of (2.4') determined by (3.1)
is such that

B.7)  Ul@)=U@)T(x, s; UNU)Ufs)+S(@, s; UIU, U}l.

In general, if F(x) is a continuous % xn matrix and Y(x) is the
fundamental matrix of Y'=F(x)Y satisfying Y(s)=F, then Z=Y*"'(x)
is the fundamental matrix solution of Z'=—F*(x)Z satisfying Z(s)=FE.
As K={U, U} satisfies K=—K* it follows that T x)=T%"Yx, s; U)
is the solution of (7T*-!)' = — KU~ («)B(x)U*~!(2)T™ " satisfying T '(s)=1F.
Now if H(x) 1s a solution of (3.3) then

[K,— KH(@)]'= — KU (2)B(x)U "~ '(x) K, — KH(x)] ,

and hence K,—KH(x)=T"\x, s; U)[K,—KH,]. Since K={U, U} and
K,={U, U,}, this latter relation may be written as the following identity
for solutions (Uyx); V(x)) and (U(z); V(x)) of (2.4"), with U(x) non-
singular on the interval of consideration X, and «, s arbitrary values
on this interval,

(3.8) (U, U} —{U, UU-(«)Ua)==T* Nz, s; UN{U, U}
—{U, UU(s)Ufs)] .

In particular, if {U, U}=0 then
(3.9) K=0, T(x, s; U)=E, H(x):H(,—FSiU“(t)B(t)U*“(L) dt ,

and the Uyz), V(x) given by (3.1) satisfy {U,, U,}-=0 if and only if
the rxr constant matrix H,*K, is hermitian. In case {U, U} =0 the
formula (3.7) reduces to a relation that may be found in various recent
papers, (see Sternberg and Kaufman [14]; Barrett [1 and 2]; Hartman [5}).
For future reference the above results are collected in the following
theorem.

TueorEM 3.1. Lf (U(x); V(x)) is @ solution of (2.4") with U(a) non-
singular on a subinterval X, of X, and K is the constant nxn wmatric
such that {U, U}=K, then an nxr matriz Ufx) belongs to a solution
(Uyx); V@) of (2.4) on X, iof and only +f Ufx)=U(x)H(x), where H(x)
18 of the form (3.5) with T(x, s; U) and S(x, s; U) determined by (3.4)
and (3.6), respectively, and H,, K, are nxr constant matrices. Moreover,
Jor such a Ufx) the corresponding Vi(x) is given by (8.1), {U, U,} =K,
{U,, Uy} has the value (3.2), and the identities (3.7), (3.8) hold for x, s
e Xy m particular, if K=0 then T(x, s; U)=E and {U,, U,}==0 s
and only uf the constant rxr matric H)*K, s hermition.
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It is to be emphasized that the above theorem is quite independent
of any non-oscillatory character of (2.4). For example, the scalar
equation #”+u=0 has solution u(x)=exp (¢@) which satisfies u(x)=0 on
(—o, =), and with {w, u}==2i, T(w, s; u)=exp(—2i(x—s)), S(z, s; u)
=sin (#—s) exp (¢(x—s)) ; moreover, u,(x)= sin x is a second solution of
this equation for which {u, #,}- 1, and one may verify readily the
identities (3.7) and (3.8).

THEOREM 3.2. Suppose that (U(x); V(z)) is a solution of (2.4') with
U(z) non-singular on a subinterval X, of X. If se X, then for te X,
t+s, the matriz S, s; U) is singular if and only if t is conjugate to
s, In particular, if (2.4) is non-oscillatory on o subinterval X,: ay <o
<o, and (Ux); V(x)) is a solution of (2.4") with U(x) non-singular on
Xy, then for se X, the matria S(t, s; U) is non-singular for teX,,
t#s; moreover, if there exists an se X, such that Sz, s; U)=0 as
x—oo then S™'(z, r; U)—0 as x> for arbitrary re€ X,.

As B(x) is non-singular, if u(x)==0, v(x) is a solution of (2.4) on a
given subinterval of X then v(x)==0 on this subinterval. In view of
this condition, which is a property of ‘‘normality’” of (2.4), it follows
that if (U(x); V(a)) is a solution of (2.4") with U(s)=0 and V(s) non-
singular then ¢ is conjugate to s if and only if Uyt) is singular. Now if
(U(x); V(x)) is a solution of (2.4") with U(x) non-singular on X,, then
for se X, the above-defined (Uj(z); V(z)) is such that {U, U} is the
non-singular matrix U*(s)V(s), and from (3.7) it follows that Ugx)=
U@)I(z, s; U)S(x, s; UYU*(s)V(s) for x € X,, and thus S(¢, s; U) is singular
for a value te X, ¢t+s, if and only if ¢ is conjugate to s. Consequently,
if (2.4) is non-oscillatory on a subinterval X,, and (Ulx); V(x)) is a
solution of (2.4") with U(x) non-singular on X, then S(¢, s; U) is non-
singular for te X, t+s. Now the fundamental matrix T(x, s; U) of
(3.4) satisfies the well-known relation 7(x, s; U)=T(x, r; U)T(r, s; U)
for », se X,, and by direct computation it follows that

(3.10) Sz, s; Uy=T(s, r; U)S(x, r; U)—S(s, r; U)]

for r, s, v€ X,. If for a general non-singular matrix M the supremum
and infimum of |My| on the sphere |y|=1 are denoted by #(M) and A(M),
respectively, then the relation

MM My| =z | M- (My)| =y | =M y)| = (M)IMy|
implies that 1=2(M)#(M-"). As the condition that S-'(a, s; U)—0 as
¥—co is equivalent to u(S-Y(w, s; U))—0 as w— o, this condition holds
if and only if A(S(z, s; U))—w as x—ow. Now in view of the non-
singularity of T'(s, »; U) it follows from (3.10) that for », se X we

have A(S(x, s; U))>w as x—co if and only if 2(S(z, r; U))—cw as
r—oo,
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In view of the result of Theorem 3.2, for an equation (2.4) that is
non-oscillatory for large « a solution (U(z); V(#)) of (2.4) will be termed
a principal solution if U(x) is non-singular for x on some interval X, :
ap<z<oco and Sz, s; U)—0 as v—o for at least one (and consequently
all) se Xy, If (U(z); V(x)) is a matrix of conjoined solutions of (2.4)
with U(x) non-singular for large x this definiton clearly reduces to that
of Hartman [5]. In the following sections it will be shown that if R(x)
is positive definite on X, and (2.4) is non-oscillatory for large x, then
there does exist a principal solution of (2.4’), and this principal solution
is unique up to multiplication on the right by a non-singular constant
matrix. In general, however, one has the following theorem, which
shows that if (2.4) is non-oscillatory for large « then a solution of (2.4")
which is principal in the sense defined above possesses a property
corresponding to that used as a definitive property by Morse and
Leighton [11] for the scalar eqution (1.1).

THEOREM 3.3. If (2.4) is mon-oscillatory for large x, then a solution
(Ux); V() of (2.4') is a principal solution if U(x) is non-singular for
large x and there ewxists a solution (Uyz); Vi) of (2.4") with Ufa)
non-singular for large x and such that for some value s€ X,

(3.11) U (2)U(x)T(x, s; U)y»0 as a—oo

moreover, {U, U,} is non-singular for any such (Ufz); Vyx)). Conversely,
of (2.4) ds mon-oscillatory for large z, and (U(x); V(x)) is a principal
solution of (2.4'), then any solution (Uyx); Viz)) of (2.4") with {U, Uy}
non-singular s such that Ugfx) is non-singular for large x and (3.11)
holds for arbitrary se€ X.

Suppose that (2.4) is non-oscillatory for large z, and that there is
a solution (U(x); V(a)) of (2.4’) with U(x) non-singular on an interval
X, qp<a<oco. If (U(x); Vx)) is also a solution of (2.4') then by (3.7),

(3.12) [U(@)T(x, s; U)"'\Ufx)=U"(s)U(s)+S(z, s; U){U, U} ;

moreover, if Ugx) is non-singular and satisfies (3.11) for some se X,
then A[U(x)T(x, s; U)|"'Ufx))—c as a—c and from (3.12) it follows
that {U, U,} is non-singular and A(S(z, s; U))—w as a—>oo, so that
(U(z) ; V(x)) is a principal solution of (2.4).

On the other hand, if (2.4) is non-oscillatory for large x, and (U(x);
V(x)) is a principal solution of (2.4"), then for s sufficiently large we
have that A(S(z, s; U))—>w~ as x—ow. For such a value s, and (Uys);
V(=) a solution of (2.4) with {U, U,} non-singular, we have A(U~'(s)Us)
+8(=, s; U){U, U})—>w as x—o, and hence from (3.12) it follows
that A([U(x)T(z, s; U)]"'U(x))—>c as a—oo, which is equivalent to the
condition that Uy(x) is non-singular for large  and satisfies (3.11). As
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T(x, s; Uy=T(x, r; U)T(r, s; U), if (3.11) holds for one value s then
this condition holds for arbitrary s ¢ X.

4. Certain basic results of the calculus of variations. For the
functional (2.2) an n-dimensional vector function y(zx) will be termed
differentially admissible on o subinterval of X if on this subinterval y(x)
is continuous and has piecewise continuous derivatives. For brevity, if
[e, d] is a compact subinterval of X the symbol H.[e, d] will signify
the condition that I[y; ¢, d]>0 for arbitrary y(x) differentially admissible
on [¢, d], and such that y(x)%0 on [¢, d], y(c)=0=y(d). We shall also
denote by Hy the condition that R(x)>0 on X; in view of the basic
assumption that R(x) is non-singular on X the condition H, holds
whenever there is a single s of X such that R(s)>0.

For the subsequent discussion the following known variational results
are basic.

THEOREM 4.1. If [e, d] 2s a compact subinterval of X then a necessary
and sufficient condition for H.[c, d] is that Hy hold, together with one
of the following conditions :

(i) (2.4) is non-oscillatory on [c, d];

(ii) there exists a matriz (U); V(x)) of conjoined solutions of (2.4)
with U(x) non-singular on [e, d].

THEOREM 4.2. If [c, d] is a compact subinterval of X such that
H.[e, d] holds, then for arbitrary vectors Y., Y. there is a unique solution
(w(@) ; v(x)) of (2.4) satisfying u(c) =y, W(d)=y,, and I[y; ¢, d]>1[u ; ¢, d]
Jor arbitrary differentially admissible y(x) with y %= w on [c, d], y(c)
=u(c), y(d)=u(d).

THEOREM 4.3. Suppose that [c, d] is a compact subinterval of X
such that H,[c, d] holds. If (UJx); Vi), [(Ufx); Vix))], is the solution
of (2.4") determined by Ufc)=E, U (d)=0, [U(d)=E, U(c)=0], and
(Uz); V(x)) s a solution of (2.4') satisfying U(c)=E, V(e)>Vc),
[U@d)=E, V(d)<V(d)], then (Ux); V(x)) is a matriz of conjoined
solutions of (2.4) with U(x) non-singular on [c, d).

For the case in which the coefficient matrices of (2.1) are real-valued
the results of Theorems 4.1 and 4.2 are classical results in the calculus
of variations, (see, for example, Morse [10; Chapter I], or Bliss [3;
Chapter IV]; for the general case of complex coefficients these results
are contained in Theorems 2.1 and 2.2 of Reid [13]. In connection
with Theorem 4.2 it is to be commented that if

I, u; e d]:S‘:[v*'(Ru'+Qu)+>7*(Q*u'+Pu)]dx
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for differentially admissible 7(2), u(x), then in case (u{x); v()) is a
solution of (2.3) on [¢, d] we have

(4.1) Iy, s e, dl=g*@pa)]| .

A ready consequence of (4.1) is that if (u(ax); ©(@)) and y(a) salisfy the
conditions of Theorem 4.2 then

(4.2) Ily; ¢, d]=1fu; ¢, d]-+1y—u; c, d],

which is the well-known ‘“‘integral formula of Weierstrass”” for the
functional (2.2).

Theorem 4.3 is a comparison theorem of Sturmian type that is a
special case of results of Morse [9; §10, or 10; Chapter IV, 88] in
case the coefficients of (2.1) are real-valued, and Morse’s method may
be extended readily to prove the stated result. The method introduced
by Hestenes [6], (see also Bliss [3; §886-87]), to establish the corresponding
result for variational problems of Bolza type yields the following brief
and elegant proof of the statement of the theorem involving (UJx); V{x));
the statement involving (UJx); V.x)) follows by a similar argument.
By Theorem 4.2 the condition H.[e, d] implies the existence of the
solution (UJx); VAx)) of (2.4") satisfying Ufe)=FE, UJ(d)=0; the end
condition UJ(d)=0 clearly implies that (Ujfx); V.(x)) is a matrix of
conjoined solutions and consequently V(e)=U,*(¢) V.(¢) is hermitian. For
(U(x); V(x)) a solution of (2.4") satisfying U(c)=FE, V(c)>V/c) the
matrix U(d) is non-singular, since if U(d)é=0 then wu(x)=(U(x)— UJla))¢,
v(x)=(V(x)— V()¢ is a solution of (2.4) satisfying u(c)=0=u(d) so
that u(x)=0 by Theorem 4.1, and hence (V{(e)— V.(c))é=0 and £=0.
Moreover, U(z) is non-singular on c¢<xz<d, since if ¢c<b<d and U} =0
then y(x) defined as y(a)=(U(a)—UJx))é, c<e<b, and ylax)=—Ufx),
b=w<d, satisfies y(c)=0=y(d) and is differentially admissible on [¢, d],
while in view of the hermitian character of U,“(b)V.(b) we have

fly; ¢, dl=&"U0) = U OIV(0)— VUb)IE—E* VA B)ULb)E
==& UFOLV()— VO)E-FE* VA O)UBb)— ULb)J
=—¢"{U, U-U,}¢
=—&V)—-Vdo)k ,

and consequently I[y; ¢, d]<0 unless &:==0, so that =0 in view of
H.[e, d).

5. Systems (2. 4) that are non-oscillatory for large x. For a system
satisfying H, and non-oscillatory for large x, the following theorem
determines a particular matrix of conjoined solutions which subsequently
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will be shown to be a principal solution, as defined in Section 3.

THEOREM 5.1. Suppose that (2.4) satisfies H, and is non-oscillatory
on & subinterval X,: a,<z<oo of X. IfseX, and for te X, t=s,
the matriz (U,(x); V.{(2)) is the solution of (2.4") determined by U,(s)
=F, U,(t)=0, then U, . (x)=lim . U,(x), V,(x)=lim_.. V,(x) ewist
and (U, () ; V,,o(®)) is @ matriz of conjoined solutions of (2.4) with
U,,(z) non-singuiar on X,; moreover, U, (x)=U, . (2)U,,.(s) and V,,.(x)
=V, (2)U,,.(s) for r, s, ve X,

As the initial condition U,(t)=0 implies {U,, U,}=0, it follows
that if s, teX,, s#t, then (Uy(z); V(x)) is a matrix of conjoined
solutions, so that the matrix Uj(x)V,(x) is hermitian for xe X; in
particular, V (s) is hermitian. For a given se X, let », ¢ be points of
X, satisfying r<s<#¢, and for an arbitrary non-zero constant vector &
let y(z) denote the vector function defined on [r, ¢] as

(5.1) Y(@)=Uy(w)§ on [r, s]; y(@)=Ux) on [s, t].

Now this vector function y(x) is differentially admissible and y(r)=0
=(t), so that under the hypothesis that (2.4) satisfies H, and is non-
oscillatory on X, it follows from Theorem 4.1 that

0<lly; r, t]=6"Uks)V(8) =5 Uk(s) Vils)s =X Vols) = V() .
As this relation holds for arbitrary non-zero vectors £ we have
(5.2) V()< Vi (s) for r, s, te X,, r<s<t.

TFor s<t<d, and £ an arbitrary non-zero constant vector, let u(x)
=U(2)5, vx)=V.(x)¢ and y(@x)=U,(x)¢ on [s, t], y(x)=0 on [, d].
Then (w(x); v(x)) is a solution of (2.4), while y(x) is differentially
admissible and satisfies y(s)=u(s), y(d)=u(d), y(z)=£u(x) on [s, d], so that

(6.3) —&Vu)E=1u; s, dl<lly; s, dl=1I[y; s, t]=—E"V(s)E
in view of Theorem 4.2; that is,

(5.4) V()< Vy(s) for s, t, de X,, s<t<d .

By a similar argument it follows that

(5.5) V(8)< Vols) for e, v, se X,, c<r<s.

From (5.2), (5.4) it follows that for fixed se X, the one-parameter
family of hermitian matrices V(s), s<t<oo, is monotone increasing and
bounded, so that there is an hermitian matrix V. such that V(s)—
V.. as d—co. Moreover, in view of (5.2), (5.4), (5.5) it follows that

(5.6) Vi®) < Vyu<Vls) for r, s, te X, r<s<t,
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If (U,(2); Vio(z)) is the solution of (2.4") determined by the
initial values U,,.(s)=FE, V,.(s)=V,. then clearly (U, (z); V.(x))—
(Uyyo(2) 5 Vi,(®)), while the hermitian character of V,.=Uf.(s)V;,.(s)
implies that {U,., U,.}=0, and (U,.(2); V,(2)) is a matrix of
conjoined solutions. Moreover, in view of Theorem 4.3, inequality (5.6)
implies that U,,.(z) is non-singular on each subinterval [+, ¢] of X, with
r<s<t, and hence U,,.(«) is non-singular on X.

The final statement of the theorem is an immediate consequence
of the fact that U, (x)=U,(x)U;(s), V(x)=V,(x)U;\(s) for r, s, te X,
r=t, s#t.

If (2.4) is oscillatory on X then there exists a ¢ such that there
are points s of X which precede ¢ and are conjugate to ¢, and consequently
there is a largest such conjugate point s=c(¢) preceding ¢. For a
system (2.4) satisfying H, it follows from Theorem 4.1 that if ¢(¢)
exists for a value t=¢ then c¢(t) exists for £ <#< o and increases with
t. In accordance with the terminology introduced by Morse and Leighton
[11] for a scalar second order linear differential equation, the first
conjugate point (o) of z=o on X is defined as the limit of c(¢) as
t—»co. Clearly such a system (2.4) is non-oscillatory for large x if and
only if either (2.4) is non-oscillatory on X or ¢(eo) exists and is finite.
If ¢() exists and is finite then (2.4) is non-oscillatory on (¢(c0), o)
so that the interval X, of Theorem 5.1 may be chosen as this interval,
and consequently for c¢(eo)<s<o the matrix of conjoined solutions
(Ugyo() 3 Viol)) has U,,.(x) non-singular on (¢(ec), o). On the other
hand, the definition of ¢(cc)implies that (2.4) is oscillatory on an arbitrary
subinterval (@, o) of X with a¢,<c(w), and Theorem 4.1 implies that
U,,.(x) is singular at some point of such a subinterval (a, «), so that
by continuity U,,.(2) is singular for x=c(o). That is, if H, holds and
(2.4) is non-oscillatory for large x then the matrix of conjoined solutions
Uy o) ; V(@) of Theorem 5.1 is such that c(e) exists on X if and
only if U,,.(x) is singular at some point of X, in which case ¢(w) is
the largest value of @ for which U,,.(x) is singular.

6. Principal solutions. From Theorem 5.1 it follows that if (2.4)
satisfies H, and is non-oscillatory on X,: aq,<x<o then there exist
matrix solutions (U(x); V(z)) of (2.4) with U{z) non-singular on X,.
The basic result on principal solutions for such a system (2.4) is contained
in the following theorem.

THEOREM 6.1. Suppose that the equation (2.4) satisfies Hp and is
non-oscillatory on a subinterval X,: a,<z<<oo of X. If (U(x); V(x)) is
a solution of (2.4") with U(z) non-singular on an interval X, : a,<z< o
then for s a point common to X, and X the matriz
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(6.1) M(s; U)=lim,.. S~'(t, s; U)

exists and s finite.  Moreover, M(s; U)=0 and (U(x); V(z)) is a
principal solution of (2.4") if and only if U(x)=U,,.(2)C, V(z)=V,,.(x)C,
where r is any fived value on X,, (U,,.(2); V,,.(2)) is the matrixz of
conjoined solutions as determined by Theorem 5.1, and C is a non-singular
constant matrix.

In view of Theorems 3.2 and 5.1 it clearly suffices to establish the
result of the above theorem for s=#» a point common to X, and X,.
For such a value s it follows from Theorem 3.1 that

Usol(@)=U@)T(x, s; UNU(s)+S(x, s; DU, Uy},
Ui(@)=U@)T (2, s; UJE—-S(x, s; U)S7(t, s; U)U(s),

and since Uy (2)—>U,,.(x), Vu(x)—V,,.(x) as a—oo it follows that M(s; U)
defined by (6.1) exists and has the finite value

(6.2) M(s; U)=—{U, U,.}U(s) .

In particular, (6.2) implies that M(s; U)=0 if and only if {U, U,,.}=0.
As 0={U,,., U,.} =V,.(s) — V¥.(s) it follows that 0={U, U,.}
=U*(8)Vye(8)— V*(8)U,,(s) =U*(s) V¥ (s)— V*(s) if and only if (U(s);
V(s)) satisfies with the non-singular matrix C=U(s) the initial conditions
U(s)=U,,.(s)C, V(8)=V,(x)C, and therefore U(x)=U,.(x)C, V(x)
== s,m(x)C.

In particular, under the hypotheses of Theorem 6.1 it follows that
if (U(z); V(z)) is a principal solution of (2.4') then (U(z); V(x)) is a
matrix of conjoined solutions of (2.4), and therefore T(x, s; U)=LE.
As the first conclusion of Theorem 8.8 with Uyx)=U(x) implies that if
(2.4) has a solution (U(x); V(x)) with U(x) non-singular for large z,
and T(x, s; U)—0 as a—oo, then (U(x); V(x)) is a principal solution,
the following corollary is direct consequence of the results of Theorems
3.3, 6.1, and formula (6.2).

COROLLARY. In case (2.4) satisfies Hp, and s mnon-oscillatory for
large «, then :

(i) of (U(z); V(x)) is a solution of (2.4") with U(x) non-singular on
X, qy<ax<oo, and s€ X,, then it is not true that T(x, s; U)—0 as
r—>o0

(i) of (Ulx); Vix)) s o principal solution of (2.4), then for a
solution (U(z); Viz)) of (2.4') the matriz {U, U,} is non-singular if and
only if Uyzx) is mnon-singular for large x and Ui (x)U(x)—0 as x—co,
moreover, if {U, Uy} is non-singular then, for s sufficiently large, lim,...
S(t, s, U,) exists and is non-singular.

Finally, we shall establish the following result; in particular,
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conclusion (v) generalizes a result of Hartman [5].

THEOREM 6.2. Suppose that (2.4) satisfies H, and is non-oscillatory
on a subinterval X,: a,<ax<ow of X, while (U,.(x); Vy,o(2), scX,, s
the matriz of conjoined solutions as determined by Theorem 5.1. If
(U(x); V(x)) is a solution of (2.4") with U(x) non-singular on X, and
S(co, 17; U)=lim,... S(x, r; U) exists und is finite for some re X, then
Jor arbitrary se X, :

(i) S(eo, s; U) exists, and

(6.3) S(eo, s; U)=T(s, r; U)NS(ee, r; U)=S(s, r; U)| for s, e X,;

(i) {U, U,..} 1s non-singular;

(ili) U '(2)U,,(2)—>0 as z—oo ;

(iv) {U, U,.}—{U, UIU(s) is non-singular, and T(c, s; U)
=lim, ... T(x, s; U) exists and is equal to the non-singular matriz
Uaer U Uy, U =U*"(s){U, U}l;

(v) Usu(z)=—U@)S(e0, @; U1U, U}

Conclusion (i) is an immediate consequence of relation (3.10). Now,
as established in the proof of Theorem 6.1, the matrix M(s; U)=lim, ...
S-(¢, s; U) exists and has the finite value —{U, U,.} U(s), so if
S(e, s; U) exists and is finite we have

(6.4) E=—S(co, s; U){U, U,,.\U(s),

and hence {U, U,.}! is non-singular; in turn it follows from the
Corollary to Theorem 6.1 that (ii) implies (iii).

In order to establish conclusion (iv), it is noted that the non-
singularity of U(x) on X, implies the validity of (8.8) with U,=U,.(x),
so that

(6.5) U, Uy} —{U, ULU(2)U,,(2)
:T*_1(.’13, C U)[{Ur US’“’}_{U’ U}U—I(S)]

for s, € X,. From conclusions (ii), (iii) and relation (6.5) it follows
that if € is a constant vector satisfying [{U, U,.}—{U, U}U7(s)lt=0
then £=0, so that {U, U,.}—{U, U}U"Y(s) is non-singular for se X,.
This result, together with conclusions (ii), (iii) and relation (6.5), imply
that for se X, the matrix 7%z, s; U) approaches the non-singular
matrix {U, U, }[{U, U,.}—{U, UUY(s)]"!, which is equivalent to the
final statement of conclusion (iv).
Finally, it is to be noted that (6.4) is equivalent to

E=—-U@)S(ee, x; UY{U, U,,.}, for z € X,
and as U,,.(t)=U,,.()U,,(2), V,(t)=V,,o(t)U,(x) for s, t, x € X, it
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follows that {U, U,,.}U, ()= {U, U,.} and Ug,(x)=—U@)S(ee, x; U)
{U, U,,.} for a, se X,, thus establishing conclusion (v).

7. An example. In the notation of the preceding sections, the
example of Section 11 of Hartman [5] shows that for an equation (2.4)
which satisfies H,, and is non-oscillatory for large x, there may exist
solutions (U(x); V(x)) of (2.4') with U(x) non-singular for large « and
such that

(7.1) U U"(t)B(t)U*”(t)dt]_l—»O as x—co

while (U(z); V(x)) is not a principal solution. As shown by Theorem
6.1, for general solutions (U(x); V(x)) of (2.4’) with U(x) non-singular
for large @« the diseriminating property for principal solutions is not
(7.1), but rather S-(z, s; U)—0 as a—~>c. We shall proceed to illustrate
the results of the preceding sections by the example of Hartman.

For typographical simplification @ 2x 2 matrix |[My,ll, (a, f=1, 2),
will be displayed as M=(My,; M,; M,; M,). In this notation the
two-dimensional vector equation of Hartman’s example is

(7.2) w’ +P@u=0, 0<ae<o, with P(x)=0; 0; 0; (42°)7").

For (7.2) the matrix solutions (Uy(x); V(x)=U,(x)) of Theorem 5.1
have

Uyx)=((x—t)/(s—t); 0; 0; (z/s)/* (In t—In x)/(In t—1In s)).

and consequently (Ug,.(x); V,o(@) has U, (x)=0; 0; 0; (x/s)).
Hartman’s example involves the principal solution (Ui,.(2); Vi,.(x)) for
which Uj,.(x)=(1; 0; 0; «¥), and the matrix solution (U(x); V(x))
having U(x)=(1; x; 0; a'*). For these matrix solutions one may
compute readily the following quantities ;

S, s; Uyu)=(@—s; 0; 0; s(In 2—1n s)),

{U, U=(0;1; —1;0), {Uy., U}=(0;1;0; 0),
T, 1; O)=Q—-zInz; l-z—xzInz; In z; 1+In a),
S, 1; O)=(r—14+2cInz; ~Inz; —ana; Inx),
M1; U)=(0;0;1; 1); U'@U,«(x)=1; —2; 0;1).

It is to be noted that {U,., U} is singular, so that the corollary
to Theorem 6.1 implies that the matrix U-(x)U,,.(x) does not tend to
0 as x—oo, a fact that is obvious from the specific value of this matrix.

To illustrate further the results of the preceding section, consider
the solution (Ufx); Vix)) of (2.4') with U(x)=(x; 1; 0; & In z).
For this solution U(x) is non-singular for #>1, and one has
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U (@)U (@)=(1)x; —1/(s* @ In x); 0; 1/(s* In @),
U, Ui=(0; —=1;1;0), {Uye, Uj=(1;0; 0; s77),
2(In 2)UT'(@)Ba)UF-(2)=1+a(ln 2); —a; —a; &) .

Moreover, if #=60(x, s)=(1/In 2)—(1/In s), it may be verified that

T(x, s; U)=1—0/z; (x—s—0)/(sz); 0; 1+0]s),
Sz, s; U)y=(z—s—0)/(sx); Ols; Olz; —0),
(z—9)S W, s; U)=(as; x; s; 1—(z—9)/0),

from which one may verify readily that for 1<s< oo,

T(o, s; U)=@1; 1/s; —1/In s; 1—1/(s In 9)),
S(eo, s; U)=(1/s; —1/(s In s); 0; 1/In s),
M(s; U)=(s; 1; 0; In s).

8. Further properties of principal solutions. Suppose that (2.4)
satisfies H,, and is non-oscillatory on a subinterval X,: aq,<ax<o of
X; fors, t e X, s<t, let Y, (2)=U,(x) on <t, and Y (x)=0 on «=¢,
where, as in Theorem 5.1, (Uy(z); V.(z)) is the solution of (2.4")
satisfying U, (s)=FE, U,(t)=0.

For brevity, if y(z), u(2) are differentially admissible vector functions
on [s. o) such that

(8.1) lim Iy, w; s, t]

exists and is finite, the value of (8.1) will be denoted by I[y, u; sl
moreover, for brevity we shall write I[y; s] in place of Iy, ¥; s]. In
particular, for arbitrary constant vectors & we have I[Y,&; s|=I[U,¢;
s, t]. Now from relations (5.3) and (4.2) it follows that

0<E [Viul(s) = Vu()E=I[Y &5 sI—I[YuE;5 s]=1[YE—Y.é; s]

for s<t<d, s € X, and since V,(s)—>V,,. as t— it follows that for
s€ X,, and & an arbitrary constant vector,

(8.2) Y, .-Y.5; s]—0 as ¢, d—w,
It is to be emphasized that in general it is not true that
(8.3) — &V, (8)s=1U,,.5; sl, for s e X,,

although —&*V (s)é=I[Y ¢ ; s] for t>s, and Y (2)6—>U,,.(2)6 as t—oo ;
moreover, in general it is not true that the vector function U,,.(z)¢ is
bounded on [s, o), although Y (x)6=0 for x=t¢. The statements are
illustrated by the well-known scalar second order equation u”+u/(4a”)
=0, which is non-oscillatory on (0, oo); for this equation u,,.(x)=a"*
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and v,,.(1)=1/2, while w(z, %,,., #';,.)==0. However, much more can
be said about the principal solutions (U,,.(x); V,.(x)) in case the
hermitian integrand function « is such that

(8.4) w(x, y, 71)=0 for arbitrary x, y, = with x € X,.

In view of the continued understanding that R(«) is non-singular on X,
it is clear that (8.4) implies Hj;, as well as the result that H.[s, t] holds
for arbitrary compact subintervals [s, ¢] of X,, so that (2.4) is non-
oscillatory on X,.

THEOREM 8.1. If condition (8.4) holds on a subinterval X, : ay<wx< oo
of X then (8.3) is valid ; moreover, U*, (2)V,.(2)<0 on s<x<oo and
U* o Viyo—0 as @— .

Since Vi (s)—V,,(s), and the vector function Y, (x)¢ tends to Us,.(x)E
uniformly on each compact subinterval of [s, ) as t—oco, whenever
condition (8.4) holds on X, it follows readily from the relation —&*V(s)§
=1I[Y,&; s] that I[U..5; s] exists and

— VYV, u(8)6 = I[U,, .6 ; s] .
Now Vi,.(s) is hermitian and by (4.1) we have
— & Vae(8)E=I[Y &, Uyl s, t]=I1[Y €, U,€; s].
Moreover, whenever (8.4) holds we have the Schwarz inequality
Y&, Uyl vIP<I[Y€; 1[UgE; 1] for s<r<o,

and as I[Y§; rI<I[Yué; sISI[Y,£6; s] for t=p>s it follows that for
given p>s, ¢>0 there exists a value r=7,>s such that

=8V, =NULY €, U285 s, r)+e for t=p .

As RU[Y.E, U,.b; s, r))=I[U,6; s, v] as t—, and I[U,.6; s, 7]
<I[U,.%; s] by (8.4), it follows that —&*V,.(s)6<I[U,¢; s], thus
completing the proof of (8.3). Finally, condition (8.4) implies that for
£ a non-zero constant vector the integral I[U,,.£; s, r]|=E*[Ufu(r)Vu(r)
—V,,.(8)]% is a monotone increasing function of = on s<r<o which
tends to I[U,,.t; s]=—&*V,,.(s)§ as r—c, and consequently U.(r)
Vaoe(r)=<0 on (s, ) and UF.(1)V,,.(r)—0 as r—co.

In particular, if R(zx)=FE, Q(x)=0 and P(x)=0 on X, then the above
theorem implies that (|U,,.(2)5]?) =26*Uf.(2)V,(2)§<0, so that for such
an equation (2.4) the norm of the vector function U,,.(x)é tends to a
limit as @—<. This particular result has been established by Wintner
|16].

It is to be emphasized that condition (8.4) does not imply that
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U,,.—0 as z—oo. TFor example, (8.4) holds for the scalar equation
(' [(e"+2)) —2uf(e"+-2)*=0

with general solution wu=c¢(1+¢*)+ce”, and principal solution u,,.(2)
=(1+4¢7%)/2.

THEOREM 8.2. If Hj holds and (2.4) is non-oscillatory on a subinterval
Xy: qy<xz<oo of X then U,,.(2)—0 as x—o if there exists a constant
k>0 and a continuous positive function h(z) such that if s, d € X,
s<d, then

(8.5) Iy; s d1=k| [yl /bt s

Sor arbitrary y(x) which are differentially admissible on [s, dl and satisfy
y(s)=0=y(d).
If the vector function y(x) is differentially admissible on [s, d], and

Y(s)=0=y(d), then

z d

2luoy= o +vmda—| v sra,
d d
=2 lyl o= | )y F-+lut iz

the last inequality holding for arbitrary econtinuous positive functions
h(x). Consequently the hypothesis of Theorem 8.2 implies that there
is a positive constant & such that

(8.6) kly@) =1y ; s, d] for ssx=d

holds if s, d € X, s<d, and y(x) is a differentially admissible vector
funetion on [s, d] with y(s)=0=y(d). In particular, if s<¢t<d and ¢ is
a constant vector, then y(z)=7Y (x)s— Y,(2)S is such a vector function
with y(x)==0 for >d and I[y; s, d]=I[y; s], so that

8.7) 28| Yo (2)6 = Y )52 I[Y, 6 — Y 65 8], sSa<oo.

Inequalities (8.2), (8.7) then imply that as ¢-—>o the convergence of
Y, ()¢ to Us,.(x)s is uniform on s<a<oo. As Y, (2)6=0 for z=t it
then follows that U,,.(x)5—0 as x—o for arbitrary constant vectors &,
so that U,,.(x)—>0 as x—oo.

THEOREM 8.3. If on a subinterval X,: ay<x<oo of X we have Q(x)
=0, R(x) of class C" with R(x)>0, R'(x)=<0, and there is a nmon-negative
continuous function k(x) such that r k(x)dx is divergent and y*P(x)y

=k(x)y*R(x)y for arbitrary vectors y, then U (2)RE(2)U,,.(x)—~0 as z—>co,
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The hypotheses of the theorem clearly imply condition (8.4) on X,.
Now if Q(x)-:0 and R(x) is of class €' we have V,,.(2)=R(@)U ;. (x),
and as {U,., U,.} =0 it follows that (U*.RU,.) =2U*.V,,.
+UjR'U,,., so that in view of the condition R/(x)<0 and the last
conclusion of Theorem 8.1 we have (U;.RU,,.) <0 on X,. Consequently,

~

for an arbitrary constant vector & the non-negative function &*Uj.(x)
R(x)U;, ()¢ is non-increasing on X,, and thus tends to a non-negative
limit as a—oo. Moreover, by Theorem 8.1 the integral I[U,,.¢; s]
exists and is finite, so that in view of the relation

IU,.2; sl= SmE*U;*ijUS,mS dxggmk(x)[E*ijRUs,wE]dx ,

and the divergent character of Sw k(x)dz, it follows that &*Uj.(x)R(x)

U, ()6 =0 as o—oo, for & an arbitrary constant vector.
As a particular instance of the above theorem we have the following
result.

COROLLARY. If om a subinterval X,: a,<z<oo of X we have Q(x)
0, R(x) a constant matric R>0, and there is a non-negative continuous
Junction k(x) such that Sm k(x)dx is divergent and y*P(x)y=k(x)ly|* for

arbitrary vectors y, then for s € X, we have U, .(x)—>0 as x— .
For the case of a scalar equation the result of the above corollary
in essence dates from Kneser [7], as has been pointed out by Wintner [15].
Added November 20, 1957. P. Hartman has pointed out to the
author that the following argument establishes the conclusion of Theorem

8.3 with the hypothesis that Sm k(z)de is divergent replaced by the

weaker condition that Sm ak(x)da is divergent. Since Theorem 8.1 implies

that U¥.V,,.<0, from the condition U}.R'U,.<0 and the expression
given for (U¥.RU,.) in the proof of Theorem 8.3 it follows that the

integral r UtV do exists. From Theorem 8.1 it follows that

HE*U:‘»(H)VMN(“)GZ I[Us,m& 5 u]_ZSwE*U:fwPUswadx

for ay<u<co and arbitrary constant vectors &, and as Uj.PU,,.=0 the
Us.PU,,.de and g B“ U;*j.,,PUs,mdt]do; exist for a,<u<oo ;
an integration by parts then ;ields the existence of the integral
Sma;U;‘fw(w)P(ar)Us,m(x)dx. Consequently the condition that y*P(x)y
;”k(m)y*R(x)y for arbitrary vectors y implies that the integral

oo oo

integrals S

" u
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wak(x)Us*,w(x)R(x)Us,,o(x)dx exists, and in view of the relations U{.RU,,.

=0, (Uf.RU,,..) <0 it follows that Uf.RU,,.—0 whenever Smxk(x)d:): is

divergent.

9. A more general differential system. In this section we shall
consider a differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type, (see, for example, Bliss [3; § 81] and Reid [12]).
As in §2, w(x, y, 7) will denote an hermitian form (2.1) with E(x),
Q(x), P(x) n x n matrices having complex-valued continuous elements on X:

a<x<co, and R(x), P(x) hermitian on this interval. In addition,
consider a vector linear form
9.1) Dz, y, 7)==¢(x)z+0(x)y ,

where ¢(x) and 6(x) are mxn, (m<n), matrices with complex-valued
continuous elements on X. Instead of the hypothesis of Section 2 that
R(x) is non-singular, it is now assumed that the (n-+m) x (n+m) hermitian
matrix

R(x)  ¢*(x)
L o(x) 0

is non-singular on X ; in particular, the non-singularity of (9.2) on X
implies that ¢(x) is of rank m on this interval.

For the variational problem involving the functional (2.2) subject
to the auxiliary m-dimensional vector differential equation

(9.2)

(9.3) D, v, y)=0

the Euler-Lagrange differential equations are in vector form

(9.4) (B’ + Q@)+ ¢*()p) — (Q*(@)u’ -+ Pleyu+ 0% (@)) =0,
d(x, u, u')=0,

where u(z) is an n-dimensional vector function and p(x) is an m-
dimensional ‘‘multiplier’> vector function.
The inverse of the non-singular matrix (9.2) is of the form

T(x) %)

@) @)

where T'(x) and ¢(x) are hermitian matrices of orders » and m,
respectively, and z(x) is an mxn matrix. In terms of the canonical
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variables
w(@), v(x)=R(@)w' (@)+Q@)u()+¢*(x)m(x)

the Euler-Lagrange equations (9.4) become a vector differential system
(2.4), with now

(9.5) A=—TQ+7%0), B=T, C=P—Q*TQ—Q*t*0—0*cQ—0*t0 ;

the matrices B and C of (9.5) are hermitian on X, while B is a non-
negative definite matrix of rank n—m with B¢*=0 throughout this
interval. Throughout this section we shall continue to refer to the
vector equation (2.4) and the corresponding matrix equation (2.4'), with
the understanding that the coefficient matrices are given by (9.5).

As in Section 2, if (Ui(x); Vi(x)) and (Ufx); Vi x)) are solutions
of (2.4") then the matrix U*(x)V(x)— V. *(@)Ufx) is a constant; to
denote this matrix by {U,, U,} now in general involves an ambiguity,
however, since if (U(x); V(«)) is a solution of (2.4") there may exist
other matrices Vy(x)+ V(x) such that (U(x); Viy(x)) is also a solution of
(2.4). This ambiguity does not exist, however, if (2.4) is such that
whenever u(x)=0, v(x) is a solution of this equation on a non-degenerate
subinterval of X then »(x)=0 on this subinterval; if this property
holds the equation (2.4) is said to be identically normal, or to be normal
on every subinterval, on X. It is to be commented that this condition of
normality was used in Section 3 to show that if (2.4) is non-oscillatory
on X,, and (U(x); V(x)) is a solution of (2.4") with U(x) non-singular on
this interval, then S(¢, s; U) is non-singular for s, ¢ € X, s#t.

For the equation (2.4) now under consideration one may define the
concepts of conjugate point, non-oscillation on a subinterval, and non-
oscillation for large x, in precisely the language of Section 2. For the
problem involving the functional (2.2) subject to the differential equation
(9.3) an n-dimensional vector function y(x) will now be said to be
differentially admissible on a subinterval of X if on this subinterval
y(x) is continuous, has piecewise continuous derivatives, and satisfies
(9.8) ; for a compact subinterval [¢, d] of X the symbol H.[c, d] will
again denote the condition that I[y; ¢, d]>0 for arbitrary differentially
admissible y(x) which are not identically zero on [¢, d] and satisfy y(c)
=0=y(d). For the problem now considered the symbol H, signifies the
condition that for all # € X we have z*R(2)=>0 for arbitrary non-zero
vectors = satisfying the restraint ¢(x)z=0; in view of the basic assumption
that (9.2) is non-singular throughout X it follows that H, holds whenever
there is a single s € X such that z*R(s)z>0 for arbitrary non-zero
vectors = satisfying ¢(s)m=0.

With the above definitions, the result of Theorem 4.1 is valid for
the equation (2.4) now under consideration. In this connection, it is to
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be commented that if we write y=(y)+y.), (a=1, .-+, n), and denote
by z the real 2rn-dimensional vector function with components (y!, - -+ ¥},
Yi, ++ ), then w(x, ¥, ¥')is a quadratic form w(x, 2, 2’) in (2, 2’) with
real coefficients, and (9.3) is equivalent to a real 2m-dimensional vector
differential equation ®(a, z, 2')=0. Moreover, H.[c, d] and H, are
individually equivalent to the corresponding conditions HS%[¢, d] and Hj,
for the associated real problem in 2z, and for this latter problem the
conclusion that H%[e, d] implies HY is a well-known result of the calculus
of variations, (see, for example, Bliss [3; Theorem 78.2 and Lemma
81.2]). For a problem of the sort formulated above which satisfies Hp,
the method of proof of Lemma 89.1 of Bliss [3] yields the result that
H.[e, d] holds if and only if there is a matrix (U(x); V(«)) of conjoined
solutions of (2.4) with U(a) non-singular on [¢, d], and the method of
proof of Lemma 89.2 of Bliss [3] establishes that H.[e, d] holds if and
only if (2.4) is non-oscillatory on [e, d].

For a differential system (2.4) of the type now under consideration,
the result of Theorem 4.2 is valid only if this system is normal on the
interval [e, d], since if y(x) is differentially admissible then y(c), ¥(d)
must satisfy v*(d)y(d) —v*(c)y(c)=0 with all vector functions v(z) belong-
ing to abnormal solutions #==0, v(x) of (2.4) on [¢, d]. On the other hand,
if (2.4) is normal on every subinterval of X then Theorems 4.2 and 4.3
hold, as well as relations (4.1) and (4.2) for vector functions that
are differentially admissible for the problem of this section.

From the above remarks it follows that for systems (2.4) with
coefficient matrices given by (9.5), and which are normal on every
subinterval of X, the various theorems of Sections 3-6 remain valid,
with no changes in proofs required. An important illustration of this
class of systems (2.4) is afforded by certain systems (2.4) that are
equivalent to self-adjoint scalar differential equations of even order.
Indeed, suppose that p,(x), (=0, 1, .--, 2n), are real-valued functions
with pu(z)#0 on X and p,(x) of class CU» or C(U*H™ gecording as j
is even or odd, and let R(z), Q(x), P(z) be diagonal matrices with P,.(x)
=(—=1)"""ps-(2), Qaw(x):i(_l)mpzan—l(m)v (=1, -+, n), Ru(x)==0 for
a<n and R (x)=(—1)"p.(x), while P, y, 7)=(s—Yp+), (B=1,---,
n—1). The corresponding vector differential system (2.4) is readily
seen to be normal on every subinterval, and (u(z); v(x)) is a solution
of this system if and only if u,(x)=y®"(x), (=1, ---, n), where y(x)
is a solution of the self-adjoint differential equation

S Py @1 5 (Bramr(2y 21O+ [P 2y 12) =0 .

It is to be noted also that for a system (2.4) normal on every subinterval
the results of Theorems 8.1 and 8.2 are valid, with (8.4) replaced by
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the condition that w(z, y, 7)=0 for arbitrary (x, y; =) with e X,,
and satisfying &(x, y, 7)=0.

Finally, it is to be remarked that for an equation (2.4) with
coefficients given by (9.5), and which is not normal on every subinterval
of X, there do exist suitable modifications of Theorems 4.2 and 4.3
which with an altered definition of principal solution enable one to
establish certain results corresponding to those of Sections 5,6 ; however,
the details of these results will not be presented here.
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