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COMMUTATIVE LINEAR DIFFERENTIAL
OPERATORS

S. A. AMITSUR

1 Introduction. Let Ό—d\dx be the operator of differentiation with
respect to a variable x. Let f(D)=a0D

n+ ••• +an, a0Φθ be a differen-
tial operator of degree n. The problem we intend to study in this paper
is to determine the set C[f] of all linear operators which commute with
/. This problem, is old and for a complete discussion of old and new
results see the report of H. Flanders [2]. The most pronounced result
in this subject is the fact that C\f] is a commutative ring and that it
is finitely generated over the algebra of all polynomials in f(D) with
constant coefficients.

In his report [2], Flanders obtains this theorem by algebraic methods
with the aid of a deep theorem of Tsen on division algebras over the
field of all rational functions in one variable. The first part of the
present paper contains a simple algebraic proof of this result which
uses only elementary facts of linear algebra.

In the second part of this paper we obtain necessary and sufficient
conditions for the existence of non-trivial differential operators which
commute with f(D). This is obtained by adjoining a parameter λ to the
domain of definition of the coefficient of f(D) and by considering the
invariant ring [1] of the operator f(D) — λ. It is shown that the struc-
ture of the C[f\ is closely related with the factorization of f(D) — λ.
In this part, use is made of the theory of abstract differential polynomials
as developed in [4], [3] and [1]. All proofs are purely algebraic.

2. The centralizer of f(D). To be more precise we make the following
assumptions : Let if be a field of characteristic zero with a derivation
D : α->α'. Let F denote the field of constants of K. That is : F=
{a; aeK. α'=0}.

Let K[D] be the ring of all formal differential polynomials p(D) =
p0D

n+ +pm. Pi e K with multiplication defined in K\D\ by the relation

Da=aD+a', aeK.

Clearly K[D] can be considered also the ring of linear differential
operators on K.

Let f(D)=aQDn+a1D
n-1+ . . +an, n^l, αo^O be a polynomial of de-

gree n in K[D], We shall denote by C[f] the centralizer of / in K[D],
That is, C[f]={g(D); g(D)eK[Dl gf=fg}. Clearly C[f] is a subring
of K[D] and it contains the ring F[f] of all polynomials in f(D) with
constant coefficients.

Received November 14, 1957.



2 S. A. AMITSUR

The main object of the first section is to prove the following.

THEOREM 1. (1) C[f] is a free F[f]-module of dimension p, where
p is a divisior of n ( — the degree of f(D))

(2) C[f] is a commutative ring.
We shall need the following two known lemmas.

LEMMA 1. ([2] Lemma 10.1) If po,Qo (ire respectively the leading
coefficients of two polynomials p(D), q(D) of the same degree which commute
with f(D) then po—cqo for some constant ceF.

LEMMA 2. ([2] Lemma 10.2) The set of all polynomials of C[f] of
degree^m is a finite—dimensional vector space over the field of con-
stants F.

For completeness we include the proof of these lemmas in the
abstract case we are dealing with.

Indeed, if p(D)f(D)=f(D)p(D) and p(D)^pQDm + pιD
m'ι + +Pm>

then by comparing the coefficient of JD
w+m~1 on both sides we obtain :

mάopQ+aQpλ+pQax=npoao+p^

Thus, the leading coefficient pQ satisfies the homogeneous linear differen-
tial equat ion: naQp'0—ma0p0 = 0. Hence if q(D) — qQDm+ +qm also

commutes with /(Z>), q0 satisfies the same differential equation and,
therefore qQ—cpQ for some constant c, which proves Lemma 1.

The proof of Lemma 2 follows immediately from Lemma 1, by
induction on the degree m.

We proceed now with the proof of Theorem 1:

Let Zf be the set of all integers which are the degrees of the

polynomials of C[/]. Since C[f] is a ring, and since deg(p(D)q(D)) =

degp(D)+degq(D), it follows that Zf is closed under addition. Let m

denote the residue class modulo n( = degf(D)) of the integer m, and let

Zf={m',meZf}. Then clearly Zf is a subgroup of the additive cyclic

group of all residue classes mod n. Hence Zf is cyclic of order p and
p is a divisor of n.

Let o=m19 •••, mp be the p classes mod n of Zf and let m^ be the

minimal integer of its class mέ. Let g^D) e C[f] be a polynomial of

degree m% and we can clearly choose # i = l . We shall show that these

polynomials gt are free generators of C[f] over F[f],
Indeed, if g1ψi(f)+ +gPφP(f)=z0 for some polynomials φt(f)e

F(f), then evidently: if φh(f)Φθ, for some h, then

deg [&?>«(/)]=deg \jg3φ3{f) for some iΦj.
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But, since deg [flW«(/)]=deg gt=mt(mod ri) and deg [&&£/)] =m (mod
ri), and πιi^mj (mod ri), we are led to a contradiction. Consequently
y>4(/) = 0 for all i.

It remains now to show that if g e C[/] then g=gιφ1(f)+ . . +gpφp(f)
for some y>*(/) 6 F [ / ] . This is obtained by induction on deg g. It deg
g=0, then it follows by Lemma 1 that g — ceF, and hence g—cg^ Now,
let deg g—k. Since keZf, it follows that k~mi(mod ri) for some i.
By the minimality of mif it follows that fc^m^ Hence k—πii+nq,
which implies that deg # = deg gjq. It follows, therefore, by Lemma 1
that g'—g—cgίpeClf] for some ceF and deg #'<deg g. Hence, by
induction we obtain g—cgίf

q — g1φι(f)+ ••• +gpφp(f), and the proof is
readily completed. This proves the validity of (1) of Theorem 1.

We turn now to the proof of (2). Let g{D) e C\f] be a polynomial

whose residue class of deg g(D) mod n generates the cyclic group Zf.

One readily verifies that in this case, the set of all degrees of the

polynomials of the form

contains all integers of Zf with at most an exception of a finite number
of integers. Hence, we may assume that this set contain all integers
meZf for which m^t, for some fixed t. One then proves as in the
preceding part that every polynomial h(D)eC[f] can be written in the
form h(D)=HQ(g,f)+ho(D), where hoeC[f] and deg ko£t. From Lemma
2 we know that the set of all polynomials h0 is an F-space of dimension
Γ, for some T. Let fvh = RXg,f)+h,, v = 0,l, •• ,Γ, and deg K%t
thus the polynomials h, are F-dependent and, therefore, ΣcvΛv = 0, for
cveF and not all cv = 0. This yield that (ΣΛo^Γ)h=ΣfivH^g9f)f which
proves that for every heC[f~\ there exists polynomials H(g,f) and F(f)
with constant coefficients such t h a t : F(f)h = H(g,f).

Clearly the set of all polynomials H(g,f) commute with each other,
and the polynomials of C[f] commute with the polynomial of F{f]
hence, if F4(/)A4 = fl4(flr,/) for ^ e C [ / ] i = l, 2, then

F1(f)Fi(f)hA=(FΛ)(FA) = HΆ = HΆ = (FA)(FM = F%FλhA

Now KID] is a ring without zero divisors, hence AA=/&Aand the proof
of Theorem 1 is completed.

It was thus shown that C[/] is an integral domain, let C{f) denote
the quotient field of C[/]. If F{f) denotes the field of all rational
functions in / over F, that is the quotient field of F[f], then clearly
F(f)SC(f). Actually, the preceding proof shows that the chosen poly-
nomial g is algebraic of degree p over C(/), since F(f)(f = H(g,f) and
moreover C(f) is an algebraic extension of F(f) generated by g. Thus
we have shown :



4 S. A. AMITSUR

COROLLARY 1. C(f) is an algebraic extension of degree p of F(f) and
if the residue class of a polynomial g e C[f\ generates the group of residue

classes ZFy then g is of degree p over F(f) and C(f)—F{f) [#].
This clearly implies the following.

COROLLARY 2. If heC[f] then h is algebraic over F(f) and its
degree is a divisor of p, that is, there exists a polynomial H(h,f)=O with
constant coefficient and where degree in h is a divisor of p.
This follows from the fact that F{f)^F(f)[h]^F(f)[g].

REMARK. The fact that h is algebraic is well known, but here we
obtained some additional information on its degree. In fact, one can
prove by the previous methods that the degree of the minimal poly-
nomial H(h, f) in h is equal to the order of the subgroup of the additive
group of all residue classes mod n generated by the degree of h.

Additional information on the degree p of C(f) over F(f) will be
obtained in the following section.

3. The field C(/). Let i be a commutative indeterminate over the
field K. We extend the derivation of if to a derivation of the field of
all rational functions K(λ) so that F(λ) will be the field of constants of
the extended derivation. Consider the ring K(λ)\D\ of all differential
polynomials in D with coefficients in K{λ).

LEMMA 3. Every polynomial g(D) e K{λ)\D\ can be expressed in the
form g—a(λ)-χ G[λ, D], where G[Λ, D] — ̂ gv(λ)Dv is of the same degree as
g(D), and gv{λ), a(λ) are relatively prime polynomials in λ. Similarly
g = G1[λy D'jbiλy1 with similar restrictions for Gλ and b{λ).
The proof is evident.

Let ~Fλ be the algebraic closure of F{λ), and let Kλ=K(Fλ) be the

field obtained by adjoining Fλ to K. that is, Kλ is the composition field

of K and Fλ over F(λ). One extends the deviation of K to ^ λ so that Fλ

is the new field of constants. These extended derivations yield the fol-

lowing sequence of rings of differential polynomials

K[D]czK(λ)[D]ciKλ[D] .

If f(D) e K[D\ then f{D)-λ e K{λ){D] and first we show the following.

LEMMA 4. f{D) — λ is an irreducible polynomial in K(λ) [D],

PROOF. Suppose f(D)-λ=f(D)fz(D) and deg / 4 <deg /, f%(D)e
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K(λ)[D\. In view of Lemma 3 we set f1(D)=g1[Df Xja'^X) and ar\λ)fJίD) =
glD, X\b'\λ). Thus (f(D)-φ(λ) = gi[D, X]gJ[D9 X].

We consider now g,[Df X] as a polynomial in λ with coefficients in
the ring K[D], and we obtain by the remainder theorem1

9ilD, X] = (f(D)-λ)H[D, X]+R[D]

where R[Π\eK\D]. Hence, it follows readily that

R\B\glD, X\ = {f{D)-λ)G[D, λ\ .

Let g2[D, X] = Σ*λvh(D). Then the fact that f(D)-λ is a left divisor
of R[D]g2[D, X] implies by the remainder theorem that ΣfvRhv = 0. If

, then we must have that deg (fvRhv) = deg (f Rh^ΦO for some
But suppose v>μ then we have

deg hμ = deg hv + {v-μ) d e g / ^ deg

On the other hand, clearly,

deg ftμ^deg # 2=deg / 2 <deg /

which is impossible. Hence i2=0, which means that gJΪD, X] — (f(D) —
λ)H[D, X\. But this leads to a contradiction since deg Fτ<deg f, and
proof of the lemma is completed.

The polynomial f(D) — λ, when considered as a polynomial in Kλ[D],

may be reducible, and indeed its factorization in the extended field

Kλ is closely connected with the field C(f). This we propose to show

in what follows, and we begin with some preliminary lemmas.
Let K\D, X] be the ring of all polynomials in λ and D, and let K[X]

be the polynomial ring in λ.

LEMMA 5. Let OΦ<peK(λ), A,G,HeK[λ,D] such that AG=Hp,
and A=fQDn+ ••• +fn where fteK[X] and (fo,p) = l, then G=Gτp for
some G.

PROOF. If the lemma is not valid, then let G be a polynomial of
minimum degree in D which is not a left multiple of p and which
satisfies the conditions of the lemma. Let2 G=DmgQ+ ••• +gm. Since
AG—Hp. It follows by comparison of the leading coefficients of both
sides that fogo=hop. Now (/op) = l, hence p divides g0 and we have
gQ = qp for some polynomial qeK(λ). But then G — (Dmq)p is of degree <

1 See, e.g. A. A. Albert, Modern Higher Algebra, Chicago 1937 p. 25.
2 Note that the polynominal G(B) may be written with coefficients either on the right

or on the left of the power of D.
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deg G it is not a left multiple of p, since G is not, but nevertheless
A(G—Dmqp) = (H—FDmq)p, which contradicts the minimality of G.

LEMMA 6. Every polynomial p(λ)eK[X] can be written as p{λ) —
c(λ)q{λ) where c{λ) is a monic polynomial in λ and c\λ) = O, and in the
factorization of q{λ)—aq\ι q\*, aeK, into prime factors, the polynomials
q^λ) are relatively prime to their derivatives qΊ{λ).

Let p{λ) — ap\ι{λ)p\i{λ) pv

n

n{λ) be the factorization of p(λ) into prime
factors. We may assume that each p% is a monic polynomial, i.e. its
leading coefficient is 1. For each pif the polynomial p\(λ) is of lower
degree in λ than pt hence, since pi is prime, it follows that either
(PitPd^l o r Pi divides pu which in the latter case must yield that
pί = 0. Thus, c(λ) is the product of all pt for which pl = 0 and q{λ) is
the product of the rest.

LEMMA 7. Let peK[λ],G,HeK[D, λ] and (p,p') = l, then pG=Hp
implies that G = Gop for some GύeK[D, X\.

PROOF. If the lemma is not true then let G be the polynomial of
minimum degree in D which do not satisfy our lemma.

Let G = Z)»flro+ . . . + 0 n , H=DnhQ+ . +hn, gt and / ^ e i φ ] , and
gJιQφb. Compare the coefficient of Dn of both sides of the equation
pG — Hp. This yields pgQ—hQp which gives go=ho. The coefficient of
Dn~ι yields

Hence, —npfg0=p(hι~g1). Since (p, p') = l it follows that go=kp for some
keK[λ], But then the polynomial G—Dnkp is of lower degree then G
it is not a left multiple of p, but nevertheless p(G—Dnkp) = (H—pDnk)p.
This contradicts the minimality of G.

We can now turn to the main object of this section, and we recall
the notion of the invariant ring of a differential polynomial. ([1 §5
p.260] and [3 §10 p.502]).

Let h(D) be a polynomial in K[D]. The invariant ring & (h) of h
is the ring of all classes g(D)+h(D)K[D] which have a representative
g(D) satisfying g(D)h(D) = h(D)g1(D). It is known [1, Theorem 9] that
&(h) is a finite dimensional algebra over the constant field, and if h is
irreducible, then &(h) is a division ring.

We shall consider the invariant ring &(f(D) — λ) in the ring K(λ)\p].
Since it was shown in Lemma 4 that f(D) — λ is irreducible, it follows
that &(f—λ) is a division ring (e.g. [1, Theorem 10]). First we show
the following.

THEOREM 2. The field C(f) is isomorphic with
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PROOF. This elements of &(f—X) are classes of the form g(D) +
(f-λ)K(λ)[D],geK(λ)[D], and the first part of the proof is to show that
we may choose a representative of this class of the form q{D)c{X)~l,
where q(D) e C[f] and c(λ) is a polynomial in λ with constant coefficients.
The converse, that is : that every class which has a representative of
the form q(D)c(λ)~1 belongs to &{f—X), follows easily since qcι(f—λ) —
q(f-λ)c-'= (f-λ) qc-\

So let g(D) be a representative of a class in &(f—λ), then g(D)
(f-X) = (f-χ)h(D). We set g(D)=a-\λ)G[D, X] and h(D) = H[D, λ]b(λ)-\
in accordance with Lemma 3, we may assume and that a, b and monic
polynomials. Then we have

(3.1) G[D, X\{f-λ)b{λ)=a(λ){f-))HlDy X] .

Suppose b(λ)Φl. Let b{λ) — pxp2 pn be the factorisation of b into
prime factors, then we may assume that (p[, p<) = l. Since if (p[, pt)φl
we have seen that pl = 0, and we may deal with p^D), which also be-
longs to &(f — X), instead of g(D).

It follows by Lemma 3 that H was so chosen that it is not a left
multiple of any prime factor of b(λ) say pv furthermore, clearly a(λ)
(/—λ)—Dna(λ)aQ+ , where/— λ — Dna0+ and a0Φθ. Hence, it follows
by Lemma 5 that pλ divides a(λ). So let d^ — p^. Hence (3.1) yields

plQl(f-λ)H[D, λ] = GlPi, where G1 = G(f-λ)p2 . . . pr .

Since (piy p[) = l, it follows by Lemma 7 that qi(f — λ)H = G2p1. By
similar reasons it follows from Lemma 5 that qι — Pιq^ and thus Piq2(f—
λ)H — G2p1. Again Lemma 7 will yield that q2(f—λ)H=G3pί. This cannot
proceed indefinitely since the degrees of a(λ), q19 q2, in λ are reduced
in each step. Thus we are led to a contradiction, which leads us to the
result that δ(;) = l. Thus (3.1) states that G(f-λ) = a{f-λ)H. The
leading coefficient of f—λ is an element of K, hence if we assume that
aΦl, we must have by a result parallel to Lemma 5, that G—aG1 which
contradicts the way we have chosen G and a by Lemma 3.

We thus have shown that by multiplying g(D) by polynomials c{λ)
(that is the product of the pέ for which pί = 0) we obtained a represen-
tative G[D, λ] which is a polynomial both in λ and D. If G[D, λ~\ =

then the remainder theorem yields that

Thus q(D) = Σfvgv is a representative of the same class mod(f-λ) as
G[D, λ].

Since qe &(f-λ), we have q(D)(f-λ) = (f-λ)Q(D). Let, in view
of Lemma 3, Q(D) = P[D, λ]d(λ)'\ Then q(D)(f-λ)d(λ) = (f-λ)P[D, X].
We must have d(λ) = l. For if the degree of d(λ) in λ is>l, then since
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the leading coefficient of f—λeK, it is relatively prime with d(λ), and
hence Lemma 5 implies that P[D, λ]=Pτd(λ) which contradicts Lemma
3. Thus q(D)(f-λ)=(f-λ)Q(D) and Q(D)eK[D, λ\. By comparing the
coefficients of the powers of λ of both sides, one readily obtains that
Q = q, and qf=fq, that is qeC[f]. Consequently, we obtained that
class of c(λ)g(D) has a representative qeC[f]. Hence

g(D) + (f-λ)K(λ)lD] = c(λr*q(D) + (f-λ)K(i)[D]

which proves our assertion.
We prove now Theorem 2. Clearly every element of C(f) has the

form qiPWf)-1 where qeC[f] and c(f)eF[f], and we map C(f) onto
—λ) by the correspondence

From the previous part of the proof it follows that this mapping is
onto, and one readily verifies that this is an isomorphism. We shall show
here only that it is a one-to-one correspondence namely, that

fY1 if and only if

Indeed, the first hold if and only if q1(D)c2(f)=q2(D)cL(f), and one readily
verifies by the remainder theorem, in view of the fact that c4(/) com-
mute with qif that the latter is eqivalent to the fact that q1(D)c2(λ) —
gra(D)c1(̂ ) = (/-;)fί[;,Z)], and the rest is evident.
We now apply Theorem 2 to show the following.

THEOREM 3. The polynomial f(D) — λ is completely reducible [3, p. 489]

in Kλ\D] if g(D) is an irreducible polynomial which is right (or left)

divisor of f[D\ — λ in Kλ\D] then deg f=μdeg g and μ=ρ = (C(f):F(f)).

PROOF. Let θ be any automorphism of Fλ over F(λ) This auto-
morphism is readily extended to Kλ over i φ ) , and to Kλ[D] over K(λ)
[£>]. Since f-λ = hg, and f-λ e K(λ)[D], one readily verifies that f-λ=
{f—λ)θ=hθgθ. This means that/— λ is a left common multiple of all

gθ, where θ ranges over all automorphisms of Kλ over K{λ).
Let G{D) be the least common left multiple of all gθ whose leading

coefficient is 1. Then, clearly Gφ(D) will also be a least common multiple,
whence one readily obtains that Gφ—G for all automorphisms φ. This
will yield that GeK(λ)\D\. Now f—λ is also a common left multiple,
hence (Ore [4]) f-λ = G1G,G1eKλ[D]. Clearly, one obtains that also
GιeK(λ)\D\, but Lemma 4 states that f—λ is irreducible. Consequently
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f—λ is the least left common multiple of all gθ. From which one obtains
(Ore [4]) that/—/? is completely irreducible, and moreover, f—λ = [gly

"'jQiΔy the least common multiple of all gi — g9^ for some θt. In par-
ticular, this yields that all gi have the same degree as g.

Thus (Ore [4]) μ deg g=deg(f—λ) = n, or deg g=deg gi — n\μ
To prove the second part of the theorem we need the following

lemmas.

LEMMA 8. Let &(f — λ) be the invariant ring of f—λ in Kλ[D], then
A) = &(f—λ)(x)Fλ, where the tensor product is taken with respect

to F{λ).

For let (ca) be a F(Λ)-base of Fλ, then clearly, this set is also
a ΐφ)-base of K as well as a £φ)[X>>base of Kλ[D]. Let g(D) e Kλ[D]
belong to W(f-λ), and let #=Σ&A where gaeK(λ)[D]. One readily
observes that since f—λ eK(λ)[D], the relation g(f—λ) = (f—λ)h implies
that h = ΣA*cΛ,hΛeK(λ)[D] and gΛ(f-λ) = (f-λ)hΛ for a l ia . That is
gae^(f—λ). Conversely, if g^e &(f—λ) and only a finite number of
gΛ is different from 0, then clearly sΣβcίgΛe~^{f— λ) from which one
readily deduces the lemma.

LEMMA 9. If g(D) e l£λ[D~] is irreducible, then ~&(g) is the field of

constants Fλ that is, if hg=gh19 then h — c+gKλ[D] for some constant ce

Fλ.
Indeed, if g is irreducible, then it follows by [1] Theorem 10 that

&(g) is a finite dimensional division algebra over the field of constant

Fκ. But Fλ is algebraically closed, hence the only division algebra over

Fλ is Fλ itself. Thus W(g)=Fλ.
We return now to the proof of Theorem 3.
It follows by [3, Theorem 19] and by the relation between the

invariant ring of differential polynomials and differential linear trans-
formaions ([3, §10 p.503] and [4]) that the invariant ring of a completely
reducible polynomial is a direct sum of complete matrix rings over division
algebra, and each division algebra is isomorphic to the invariant ring of
one of the prime factors of the polynomial considered. In our case,
since &(f—λ) is commutative (by Lemma 8 and Theorem 1), and the
invariant rings of irreducible polynomials are isomorphic with Fλ, it
follows that &(f—λ) = F1(£) φi^μ, where each Ft is a field isomorphic
with Fλ (compare with [3, Theorem 19]), and μ is the number of prime
divisors given in the first part of Theorem 3.

On the other hand &(f—λ) is an algebraic extension of F(λ) and
from Theorem 2 and Theorem 1 it follows that {&{f-λ)\F\X))=.p.
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Hence it is well known that &(f—λ)®Fκ is a direct sum of p fields
isomorphic with the algebraic closed field Fλ. Consequently Lemma 8
implies that &(f—λ) has the same decomposition. Comparing the two
results, we obtain that p—μ.
From Theorem 3 we can conclude the following known result.

COROLLARY 3. If f(D) is a polynomial with constant coefficients then
C[f] is the ring F\D] of all polynomials with constant coefficients.

PROOF. The factorization of f(D) — λ in Kλ[D] is readily obtained.

Indeed, let μι, μn be the roots of f(x) — λ in Fλ where x is a
commutative variable, then it is easily seen that the factorization of

f(D)-λ in Kλ[D] isf(D)-t^nu(D-fr). It follows therefore by Theorem
3 that (C(f): F(f))=n. But the field of all rational functions in D, that is
F(D), is of degree n over F(f) and clearly F(D)cC(f). Hence C(/)==
F(D). The rest is readily obtained.

We can also determine the dimension (C(f): F(f) — p by the methods
°f [1> §5]. In [1] we have introduced the notion of a resultant of two
diίEerential polynomials which was denoted by f(D)xg{D), and the notion
of the nullity of a polynomial f(D) in a field K. We recall here that
the nullity of / in K was the number of independent solutions of the
differential equation f[D)z=O in K.

From Theorem 2 and [1, Theorem 2] we now obtain the following
THEOREM 4. The dimension /o=(C(/): F{f))={&(f-λ): F(λ)) is

equal to the nullity of the polynomial (f(D)—λ)x(f*(D) — λ) in K{λ)
where f*(D) is the adjoint polynomial of f(D).
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UNIFORM CONTINUITY OF CONTINUOUS FUNCTIONS

OF METRIC SPACES

MASAHIKO ATSUJI

In this paper we intend to find equivalent conditions under which
continuous functions of a metric space are always uniformly continuous.
Isiwata has attempted to prove a theorem in a recently published paper
[3] by a method that has a close relation with ours. Unfortunately he
does not accomplish his purpose, so we shall give a correct theorem
(Theorem 3) in the last part of this paper and, for this purpose, give
a condition for the existence of a uniformly continuous unbounded
function in a metric space (Theorem 2).

In this paper the space S, unless otherwise specified, is the metric
space with a distance function d(x, y), and, for a positive number a,
the α-sphere about a subset A {x d(A, x)<a} is denoted by S(A, a)
the function is the real valued continuous mapping.

DEFINITION 1. Let us consider a family of neighborhoods Un of xn

such that {xn} is a sequence of distinct points and UmΓ\ Un — φ ( = empty)
for mφn. Let fn(x) be a function such that fn(xn)—n a n d fn{%) — 0 for
xφUn. Then a mapping constructed from the family is a mapping f(x)
defined by f{x)—fn{x) for x belonging to some Un and f(x) = 0 for the
other x.

LEMMA. Consider a family of neighborhoods Un of xn satisfying the
following conditions :

( 1 ) {xn}, which consists of distinct points, has no accumulation point,
( 2 ) UmCiUn=φ, mφn (U a closure of U), and Un c S(xn, ljn),
( 3 ) there is a sequence of points yn such that distances of xn and yn

converge to 0 and yn does not belong to any Um then the mapping
constructed from the family is continuous and not uniformly continuous.
When {xn} is a sequence containing infinitely many distinct points and
has no accumulation point, there is a family of neighborhoods of xn

satisfying (2) if {xn} further contains infinitely many distinct
accumulation points, then the family besides satisfies (3).

Proof. The continuity of the mapping constructed from the family
follows from U Un. — U Un. for any subsequence {nt} of indices the
mapping is not uniformly continuous by (3). Suppose {xn} consists of
distinct accumulation points and has no accumulation point, then, by
an inductive process, we have neighborhood Vn of xn such that Vn

aS(xn, IIn) and VmΓ\ Vn — Φ, and have yn and a neighborhood Un of xn
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such that Unφyne Vn, UnaVn.

DEFINITION 2. Let x be isolated in a metric space, then we write
I(x) for a supremum of positive numbers a such that S(x, a) consists
of x alone.

THEOREM 1. The following conditions on a metric space S are
equivalent

(1) // {xn} is a sequence of points without accumulation point,
then all but finitely many members of xn are isolated and inf I(xn) for
the isolated points is positive.

( 2 ) If a subset A of S has no accumulation point then all but finitely
many points of A are isolated and inf I(x) for all the isolated points of
A is positive.

(3) The set A of all accumulation points in S is compact and inf
I(xn) is positive for any sequence {xn} in S-A which has no accumulation
point (Isiwataj2], Theorem 2).

(4) AΠB—φ implies S(A, a)P[S(B, a) — φ for some a (Nagata [4],
Lemma 1).

oo oo

( 5 ) Π An—φ implies ΓΊ S(An, a) — φ for some a.
n=l n=l

(6) For any function f{x), there is a positive integer n such that
every point of A—{x \f(x)\ ^n} is isolated and inf^^ I(x) is positive.

( 7 ) All functions of S are uniformly continuous.
(8) All continuous mappings of S into an arbitrary uniform space

S' are uniformly continuous.

Proof. Since the equivalence of (1) and (3) is simple, we shall show
(lM8M7)->(6)-(5)-(4)->(2)-(l).
(l)->(8): If a continuous mapping f(x) of S is not uniformly continuous,
there is an "entourage" V (in the sense of Bourbaki) of S' such that
d{xn, yn)<Vn and (f(xn), f(yn)) 0 V for any positive integer n and for
some xn and yn. {xn} contains infinitely many distinct points. If {xn}
has an accumulation point x, there are subsequences {xn. } and {yUi} of
{xn} and {yn} converging to x, and, since f(x) is continuous, (f(x),

f{xn.)) e W and (j\x), f(yn.)) e W for W satisfying TF Wd V (we may
assume W~τ= W) and for all sufficiently large i. Hence we have (f(xn. )>
AVnt)) e V, which is excluded. Consequently {xn} hes no accmulation
point and inf I(χn)—ry0 for all sufficiently large n, which contradicts
the first inequality of / for n satisfying r>ljn.
(8)~>(7) is obvious.
(7)->(6): If, for some function f{x) and every n, there is an accumulation
point xn such that \f{xn)\}>n, {xn} contains infinitely many distinct
elements and has no accumulation point, then, by the Lemma, we have
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a function which is not uniformly continuous. Suppose that every
point of A—{x\ \j\x)\}>n} is isolated and inf I(x) = 0. Then there is a
sequence {xn} in A such that inf 4 = 0, /„=/(#„)• {xn} has no
accumulation point, and we may assume In<ljn. If distances of distinct
points of {xn} are greater than a positive number β, then, for all n
satisfying e>4In, xn and yn {φxn, e S(xn, 2In)) satisfy the conditions
of the Lemma. In the other case, there are arbitrarily large m and n
satisfying d(xm, xn)<e for any positive number e, and we have, by an
inductive process, a subsequence {yt} of {wn} satisfying d(y2i^, y2i)<lli.
Then yn-1 and yit satisfy the conditions of the Lemma.
(6)->(5): Let Π S(An, l\m)Φφ for every m in spite of Π An=φ. We

n n

have a point x± contained in Π S(An, 1) and a point yx distinct from
n

xι satisfying d(xlf 2/1)<1. Suppose Bt={x19 f a?J consists of distinct

points such t h a t x3e Π S(An, 1/i), x5 and y3 are distinct and d(x3, y5)
n

<l/i, i = l, , i. Since, for any points, D S(An, 1/m) does not contain
n

x for a sufficiently large ra, Π S(An, l/(ΐ + l)) contains a point xi+1 being
not contained in Biy and some 4̂W contains yi+1 distinct from xi+1 satisfy-
ing d(xi+1, 2/i+1)<l/(i + l). Thus we have a sequence {#w} of distinct
points and \yn} such that xm e n S(AΛ, 1/m), ^w and 2/n are distinct,

and (Z(α;TC, yn)<l[n. {xn} has no accumulation point because of (Ί An~φ.
The function obtained from the Lemma does not satisfy the condition
(6) whether all but finitely many members of xn are isolated or not.
(5)->(4) is obvious.

(4)->(2): Suppose A has infinitely many accumulation points xn, n =
1, 2, ••• . Since B—{xn] has no accumulation point, there is a sequence
C={yn} having no accumulation point such that d(xn9 2/n)<l/w, Bf)C=φ.
'BC\C^BC]C=φy and S(S, ^ Π ^ C , α) = φ for no α. If every point of
A is isolated and inf /(#) = 0, we have a sequence {xn} such that lim
I(xn) = 0, and have a sequence -f̂ } with the same properties as the
above.
( 2)-»(1) is obvious.

Recently Isiwata has stated a theorem ([3], Theorem 4) which is
related to our Theorem 1. However the first step in his proof is wrong.
We shall give a correct form of the theorem in Theorem 3. Let us
first give a counterexample for the statement "In a connected metric
space which is not totally bounded, there exists a sequence {xn} and a
uniformly continuous function /such that f[xn) — n7\

EXAMPLE. Denoting the points of the plane by polar-coordinate,
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we consider the following subsets of the plane:

Am={{r, θ); Orgr^l , β=n\m),

S=UAm.

We define the distance of the points of S by

d((r, θ), (r\ θ'))=\r-r'\ as θ = θ' or rr' = 0 ,

=r+r' as θφθ' ,

then S is obviously a connected metric space which is not totally
bounded. When j\x), xeS, is a uniformly continuous function of S,
there is a positive integer n such t h a t d(x9 y) <l/n implies \f(x)—Λv)\
< 1 . If a? is contained in Am9 there are points ?/0 = 0=pole , 2/1, ••• , 2/r

, of Am such t h a t d{y^l9 y^)<\\n9 i = l, ••• , r .

namely f(x) is bounded.

DEFINITION 3. Let e be a positive number, then the finite sequence
of points xQ, X19 ••• , a?m satisfying d{x^ιy Xi)<e, i = l, , m, is said
to be an e-chain with length m. If, for any positive number β, there
are finitely many points plf , pi and a positive integer m such that
any point of the space can be bound with some pj9 l^j^iy by an
e-chain with length m, then the space is said to be finitely chainable.

THEOREM 2. A metric space S admits a uniformly continuous
unbounded function if and only if S is not finitely chainable.

Proof. Verification of "only if" part is analogous to that stated
in the above example, hence is passed over. Let S be not finitely
chainable, then there is a positive number e such that, for any finitely
many points and a positive integer n9 there is a point which cannot be
bound with any one of points selected above by an β-chain with length
n. We denote by A% the set of all points which can be bound with a
fixed x0 by an β-chain with length n.

( 1 ) When AoφA%+1 for every n, we put

for x belonging to A" and not to AJ"1, and f{x)—Q for xφA0— uA%(f(x)
n

—d{xQ, x) for xeAl). Since S(A0, e)—A0, f(x) is uniformly continuous
on S if it is so on Ao. Let Aj 9 x 0 A?"1 and d(x, y)<e'<e, then
A?+1 9 y $ AΓ2. (i) When y is in A\~\ then
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and d{x, AΓ 1)<β /, d(y, An

0~
2)<e, hence f(y)^f(x). If d(y, An

0-
2)<e-e',

then d(y, y')<e—e' for some y' of An

0~
2 and d(x, y')^d(x, y)+d(y, yf)<e,

so that x is in AS"1, which is excluded. Therefore d{y> Ao~2)2^e—e' and

(ii) When y is in A% and not in AT1, then

and we have

y)<e

(cf. the proof of Prop. 3 of §2, [1]). (iii) The remaining case for y is
similar to (i). Consequently f(x) is uniformly continuous on Ao.

( 2 ) When An

0=An

0

+ι for some n, then A?=AJ for every m^n, and,
in the similar way to (1), Ax— (jA? is obtained from a point of S—Ao.
If we can make an unbounded function which is uniformly continuous
on Alf our proof will be complete.

( 3 ) When we cannot, for every m(O^m^n), construct a desired
function on Am obtained in the same way as (2), Ao, , An cannot
cover the space, because the space is not finitely chainable namely
we have a sequence of infinitely many subsets Ao, Alf when our
proof is not complete in the similar way to (2). Then we put f(x)=n
for x of An and f(x) = 0 for x which is not in any An. Then, since
S(Am, e)Γ)An=φ for any mψn and S(LJAW, e)={jAn, f(x) is uniformly
continuous.

THEOREM 3. If S is a connected metric space which is not finitely
chainable, then the set of all uniformly continuous functions of S does
not form a ring.

Proof. The following verification is essentially due to Isiwata [3].
There is, by Theorem 2, a uniformly continuous unbounded function
f(x) of the space, and we have a sequence A={xn; n — l} 2, •••} such
that f{xn)—an, an+1—an^l, a ^ l A has no accumulation point. For
some positive number a, d(x, y)<a imlies \f(x)~f(y)\ <l/3, and so S(xm,
a)Γ[S(xn, α)=φ for mφn. We put

h(x) — l~d(A, x)ίa and G={jS(xnf a)
n

and
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for xe

for xύ

G ,

G .

h(x) is uniformly continuous on the space, because d(A, x) is so (cf.
Prop. 3 of §2, [1]). h(x)>0 and k(y)^0 for x of G and y of S-G
respectively, so we have

\h(x)-h(y)\ =h(x)-h(y)^h(x) = \f'(x)-f(y)\ .

Hence f(x) is uniformly continuous on the space. g(x) =f{x)f{x) is not
uniformly continuous. In fact, if it is uniformly continuous, d(xy y)<β
implies

(*) \g{χ)-g{y)\<ι and IΛ»)-Λ»)I<1

for some β (^α). We select a positive integer n such that an is greater
than l+4α//5, and take a point ?/ such that βl2^d(xn, y)<β (it is possible
to take such a point because of the connectedness of the space). Then,
by (*), we have \an—f(y)\<\, f(y)>an — 1^0, and

= \an-f(y)+d(xn, y)f(y)la\

^\d(xn, y)f(y)la\-\an-f(y)\>d(xn, y)f{y)ja-l

which contradicts (*).
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A NUMERICAL CONDITION FOR MODULARITY

OF A LATTICE

S. P. AVANN

1. Introduction. In this note a simple numerical condition (θ) is
presented which is necessary for modularity of a finite lattice L. Though
not sufficient (θ) appears to be a condition imposing a strong tendency
toward modularity.

NOTATION. Covering, proper inclusion, and inclusion will be denoted
by >, 3 , a respectively. N[S] will denote the order of the set S.
The unit and zero elements will be denoted by u and z respectively.

DEFINITION 1. A finite lattice L is upper semi-modular [1: p. 100]
if and only if

(£') a and b>af]b imply aljb>a and b.

L is lower semi-modular if and only if

(ξ") a\jb>a and b imply a and b>af]b.

DEFINITION 2. In a finite lattice let C(a)={xe L\x<x{ja>a} and
D(a) = {x e L\x>x Π a<a}.

2. Tests for modularity An immediate consequence of Definitions
1 and 2 is the following theorem.

THEOREM 1. In a finite lattice L condition (ξ') is equivalent to D(a)

SC(α) for all aeL and both imply N[D(a)]^N[C(a)]. Dually, {ξ") is

equivalent to D(a)^C(a) for all aeL and both imply N[D(a)~\^N[C(a)].

Moreover, modularity, (ξf) and (6"), is equivalent to D(a) = C(a) for all

aeL and both imply the condition (θ):

(θ) N[D(a)] = N[C(a)] for all aeL.

The contrapositive of the last statement of Theorem 1 serves as a

useful test for non-modularity :

THEOREM 2. // there exists aeL for which N[D(a)~\ΦN\U(a)\, then
L is non-modular.

When either (£') or (f") is known to hold in L, the verification of
the condition (θ) is a test often easiest to apply. It merely requires
counting coverings.
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THEOREM 3. In a finite lattice L (ξr) and (θ) together imply modu-
larity and dually (ξfr) and (θ) together likewise imply modularity.

Proof. From Theorem 1 condition (£') implies D(α)gC(α), and
along with (θ) we obtain D(a) — C(a) for all aeL. Hence L is modular.

Condition (θ) appears to be a very strong condition toward modul-
arity. It would be useful to know a much weaker but easily applicable
condition than (£') or (?") to serve along with (θ) as a set of necessary
and sufficient conditions for modularity.

3. Near-modular lattices.

DEFINITION 3. A finite lattice L is near-modular, henceforth ab-
breviated NM, if and only if (θ) is valid and the Jordan-Dedekind chain
condition is satisfied.

REMARK. It is conceivable that the JD chain condition is implied
by (θ), though no proof was readily found. The imposition of the JD
condition seems desirable, since it is satisfied in all finite semi-modular
and modular lattices. Hence each element of a NM lattice L will pos-
sess a uniquely determined rank.

THEOREM 4. In a NM lattice L we have D(x)^C(x) whenever x is a
point (atom) or dual point. Condition (£') is satisfied by all pairs of points
and (ξ") by all pairs of dual points.

Proof. Let p be an arbitrary point of L and q any element in
C(p). By consideration of rank, q is also a point which is distinct from
p. Hence q>qp\p=z, the zero element of L, and qeD(p). Thus C(p)
ξZD(ρ). Equality of orders yields C(p)—D{p). Any pair of points p
and q cover their meet z so that q e D(p). Hence q e C(p) so that (£')
is valid for p and q. The remainder of Theorem 4 follows by duality.

COROLLARY. All NM lattices of rank less than 4 are modular.

THEOREM 5. There exist NM lattices of rank 4 that are non-
modular.

The smaller example L4 of the two examples found was constructed
from the finite projective geometry PG(2, 2) as follows. If the points
of PG(2, 2) are designated by 1, 2, 3, 4, 5, 6, 7, the lines, considered as
sets of points, can be taken as 356, 467, 571, 612, 723, 134, 245, and u=
1234567. For L, take ^ = 1234567, and the 7 dual points as 1247, 2351,
3462, 4573, 5614, 6725, 7136, namely the complementary sets to the dual
points of PG(2, 2). The remaining elements of L4 are generated by
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taking all point set meets of its dual points. The lines of L4 are the

21 = 1 L) pairs of points 12, 13, •••, 67 the points are 1, 2, 3, 4, 5, 6, 7;

and z is the null set.
The automorphism group of L4 is easily seen from the manner of

its construction to be the same as that for PG(2, 2), of order 168. L4

possesses dual automorphisms, one of which carries the planes in the
order indicated above into the points 7, 6, 5, 4, 3, 2, 1 respectively.
Moreover, L4 is a complemented point (atomic) lattice. It possesses no
non-trivial homomorphic images, since all prime quotients are projective.

When the above procedure of construction of L4 from PG(2, 2) was
applied to PG(2, 3), PG(2, 22), PG(3, 2) and other PG(&, pn), the lattices
obtained were all found to violate (θ). Some of them violated also the
JD chain condition.

The structure of L4 suggested a method of obtaining additional ex-
amples of non-modular NM lattices as follows. Let Lt consist of z; n

points pl9 p2, -' ,pn where n^ + i^yo) ϋ n e s consisting of all pairs of

points: PιP2, , Pn-\ ίV> n pl&nes of which the first is the set of t

points ph ph Pιr p.it where i r = l + ί g), (r = l, 2, , t) and the re-

maining planes are obtained from the first by repeated applications of

the cyclic permutation (123 n) to the subscripts; and u—p1p2 ---pn.

This procedure yields for £ = 1,2,3 the Boolean algebras B\B2,B^ re-

spectively. For £ = 4, the lattice L4 described above is obtained. For

ί = 5 a second example, Lδ, of a non-modular NM lattice of length 4 is

obtained. For £^6 one fails to obtain a lattice. It can readily be shown

by consideration of certain congruences that for ί^6 there always exist

at least two pairs of planes, as described in the construction, which

intersect in three or more points and other pairs of planes that inter-

sect in less than two points. When two planes have three points p,

q, r in common, the lines pq, pr, and qr have each of the planes as

upper bound, but fail to have a least upper bound.

4. Extensions, In this section, methods of construction of other
NM lattices from given ones are presented.

THEOREM 6. The direct product of NM lattices is also an NM lattice.

Proof. Let L=LtxL2x ••• xLn where the components are NM
lattices. Represent each aeL in the usual way as the %~tuple (alf •••,
an) with a e Lt (i = l, β ,w), so that a{jb and aΠb are obtained by
taking joins and meets respectively component-wise. Let C(a) and D(a)
be the functions of Definition 2. Define H(a) as the set of elements
covering a e L and K(a) as the set of elements covered by a. Let
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C(a)y D{ai)yH{ai), K(ai) be the corresponding sets with respect to ^ e ^ .
Now a>b in L if and only if a3>b3 for some j and at=bi for iΦj. It
follows readily that

(1) NίC(a)] = Σ iV[C(α4)] + Σ

(2)

The last summations of the two equations are equal. By hypothesis
(0,): iVr[C(αi)]=iV[i?(αί)] for i = l, . . . , rc . Hence (0) is valid in L.

NOTATION. L~aib indicates a lattice with unit element a and zero
element 6. The set sum and product of lattices Lλ and L2, considered
only as sets of elements, will be denoted by Lλ-\-L% and Li L2 re-
spectively.

LEMMA 1. If Lλ—av\z possesses a dual ideal ajbi isomorphic to an
ideal ajb.λ of a second lattice Lz = ulbΛy then by identifying as x each
pair of elements x1 e ajbi and x2 e azjb2 that correspond under the isomor-
phism, a lattice L—ujz can be constructed having L1 as an ideal and Lz

as a dual ideal such that L—Lt+L2 and alb^L0=L1-L2.

The elements of L are taken as the identified elements xea/b and
the remaining elements of Lλ and L2. Join u and meet Π in L are
defined in terms of Ui, ΓU in Lλ and U2> Π2 in L2 according to the
cases :

r [js — r [J

\ reL19seL2.
r Π s=s Πr=r Π τ(aΓϊ 2s))

The verification of the lattice postulate is routine and is omitted. This
method of extension was first employed systematically by M. Hall and
R. P. Dilworth [2; Lemma 4.1].

In Lemmas 2, 3, 4 and Theorem 7 following, let L=ujzf ideal Lλ —
ajZy dual ideal L2 = u[bf and quotient sublattice Lύ=ajb be related as in
Lemma 1: L=Lτ+L.z and LQ = LL-L2. We note that L—L2, LQ, L—L± is
a partitioning of L into disjoint subsets.

LEMMA 2. If s>r in L, then s and r are both in LL or both in L2.

Proof. Obviously impossible is the case s0L 2 , rφLL. Assume that
sφLλJ rφ L2; that is, bξΞ=s<^a,a^2r^b. Then s=sUr=s{j(b{Jr)i)b{jr, oth-
erwise sξΞδUrgΞα, a contradiction. Furthermore b{jr'Dr, otherwise δ £ r ,
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a contradiction. Thus the covering s > r is violated and the only pos-
sible cases are as stated.

LEMMA 3. If D^x), C{(x) are the functions of Definition 2 relative
to Li (i = 0,1, 2), then

(3) A(α) = A(α) A(α)

(30 C0(x) = C2(x)-C2(x)

(4) D(x)=D1(x)+D2(x)

(40 C(x) = C1

Proof. (3) holds since reDQ(x): r>rf}x<x with r, rθx, x all in
Lz—L^Li if and only if r>rΠx<x with r,rf)x,x all in both Lτ and
L2; that is, r e A ( 4 A(#)> A(#) A(#) Next, reA(») : r > r Π ^ < ^ with
r, rίlίc, a? all in Lλ implies reD(x): r>rf]x<x with r,rPiX,x all in L.
Thus A(aθSZ?(α). Similarly D2(x)^D(x) so that A(α)+A(α)S D(#) For
demonstration of the less trivial reverse inclusion let reD(x): r>rΓ\x
<x in L. If rΠ^0L 2 , both r and x are in Lx, along with rΠx19 by
Lemma 2. For this case r e A(^). If rΓ)xeL2, then certainly also are
both r and α. Whence reD2(x). We thus obtain D(x)^D1(x)+D2(x)
and therefore (4). Dually (3r) and (4r) are valid.

LEMMA 4. 2%e following statements of orders are valid :

(5) N[D(x)]+N[DQ(x)]=N[D1(x)']+N[D2(x)]

(50 N\C(x)]+N[CQ(x)l=N[C1(x)-]+N[C2(x)]

This follows immediately from Lemma 3.

THEOREM 7. // any three of L, Llf L2, Lo, related as in Lemmas
1-4, are near-modular, then all are near-modular.

Proof. Equality of three pairs of corresponding members of (5)
and (50 implies equality of the remaining pair.

REMARKS. It is no doubt possible to construct non-modular NM
lattices in other ways for example, by piecing together several NM
lattices to become the ideals of L and several others to become the
dual ideals of L. Such a construction would require perhaps a more
precise knowledge of the basic structure of a NM lattice.

A sublattice, and even a quotient sublattice, of a NM lattice is not
necessarily near-modular. It is an open question whether or not the
homomorphic image of a NM lattice is near-modular.
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A MEAN VALUE THEOREM FOR QUADRATIC FIELDS

RAYMOND G. AYOUB

1. Introduction. Let K be an algebraic extension of the rationale
of degree k, F(n) denote the number of ideals whose norm is the
rational integer n, H(x) = ΣF(n). Let ζ(s, K) denote the Dedekind zeta

function for the field K, that is,

C(βfZ)=Σ--1--=Σ^?
21 N(yt)s n=i ns

and a the residue of ζ(s9 K) at its simple pole at s = l.
It has long been known [8] that

where

Δk{x) = 0(^-1/fc)

and Landau [3] proved that

Δk(x) = 0(α?ι-2/<*+1>)

The precise nature of the error term Δk(x) seems rather intractable
and seems to be intimately related to the behavior of the function
ζ(s, K) in the critical strip. Of considerable interest is the particular
case when K is the Gaussian field R(i), for in that case Δk{x) is the
error term in the classical problem of the number of lattice points in a
circle.

Using some results of class field theory, Suetuna [4] has obtained
an improvement of Landau's result in the case when the field is normal
and has abelian Galois group and k Ξ> 4. For, when the field is abelian*
the theorems of Weber-Takagi tell us that ζ(s, K) is the product of k
Dirichlet L-functions belonging to primitive characters. Applying his
approximate functional equation for the Dirichlet L-f unctions, and using
refined estimates for these in the critical strip, Suetuna then obtains
the desired result.

In the light of more recent techniques for dealing with the Riemann
zeta function, further improvements are possible. The devices for
handing the zeta function are used for the L-functions and the class

Received February 12, 1957.
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field theorems again applied. We omit details.
It is our object here to study the problem of a mean value for

Λ0*0 We are able to obtain a precise result but only for quadratic
fields. Some known results follow as corollaries when the quadratic
field is specified : for example when the field is R(i).

We use as our tools a result of Suetuna [4] and a technique devised
by Titchmarsh [5], [6] for the corresponding results for the closely
allied problem of Σ djji) where dk(n) is the number of solutions of

n = n1n2 nk. We follow closely Titchmarsh's method.

2. Notations and statement of Main theorem. Let k = 2, Δ%(x) = Δ{x),
s = σ+it. Following Hardy [6], we define the mean value of Δ(x) as
the least number β such that

[
xh

It is our object to prove the following.

MAIN THEOREM. β = — .
4

We first relate β to the convergence of an integral.

THEOREM 2.1 Let γ be the lower bound of positive numbers σ for

which

( i ) i

converges. Then β—γ and if <r>β, then

( 2 )

Proof. Using the classical formula for the sum of the coefficients
of a Dirichlet series, we have,

H(x) = Λ [
2m Jc-ί

2πi

We move the line of integration to σ = <5, where 0<<?<l. Using
Cauchy's theorem and taking account of the residue at s = l, we get,
if d is chosen appropriately close to 1,
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' 2πi

The bound on S follows from the implied calculation but we do not
need it since we now prove the validity of (3) for the range f<<5<l.
To do this, we note that by some general theorems of analysis [2],

and taking account of (1), ^--— } tends uniformly to 0 as έ->±oo. With
s

this established, we integrate around the rectangle defined by S'—iT,
δ-iT, δ+iT, δ'+iT with γ<δ'<δ<l, let T->co, and deduce the desired
result.

With Titchmarsh, we now use the theory of Mellin transforms.
The Parseval theorem for the Mellin integral gives [7],

\δ+it\2 Jo \χ

as long as ?-<^<l This implies that /5<Ξj-: by (4)

(* ΔXx^-^dxK C(δ)=Ci

that is,

\XJ2(x)dx<C2x
2δ+1

Jx
2

Replacing x by x/2, α?/4, xj8, and adding, we deduce

[XA\x)dx<C3x
28+1

whence β^δ, that is, β^δ.

To prove the reverse inequality, we have by PlanchereFs form of
the inverse Mellin transform [7],

( 5 ) Cίs^K)^ [A{x)χ-s-1dx
S Jo

where the right hand integral exists in the mean square sense for f<<5<l.
Actually the right hand side is uniformly convergent for the range
βr<<r<β" where β<β'<β"<l. For, using the Schwartz inequality,
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2 ^ 2

putt ing x=2, 4, 8, ••• and adding, we get

[~\4(x)\χ-σ-ιdx<oo

By a similar argument,

converges for β<δ<l. Now

[°J(x)x"'1dx
Jo

is an analytic function for β<σ<l, and hence

If-
2*3 —

for β<δ<l, whence γ^δ that is, γ^β and the theorem is proved.
So far we have not made use of the condition k=2. Indeed

Titchmarsh's method applies in quite a general setting. We require the
condition however in the proof of the main theorem.

LEMMA (Suetuna). If σ> — 9 then

Proof of the Main Theorem. We first prove that β^~. By the
4

above lemma, we have for — < σ < l ,

\ζ{s,K)f<CT

Therefore for 0 < σ < — , Γ>1 and using Hecke's functional equation for

ζ(s, K), (see for example. Landau [3]), we get
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>C*T-iσ[T\ζ(l-σ-it,

The right hand side tends to infinity if σ< , whence β^~--.
4 4

Again by the above lemma, for -—

ζ(σ + ίt, K)\idt = O{T)

Using the functional equation, we get for 0<σ<

Γ|f(o +ίί, K)\*dt=0(Ti-iη[T\ζ(l-o—it, K)\2dt

= O(T3-W)

Hence

provided that σ> +ε. It then follows by a simple argument that
4

\σ+it\λ

for σ> —+ε, and therefore that γ^ that is, that β^--
4 4 4
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SUBALGEBRAS OF FUNCTIONS ON A

RIEMANN SURFACE

ERRETT BISHOP

1. Introduction and preliminaries. A set of problems, which has
attracted much attention in recent years, treats the question of what
functions can be approximated in some given topology by a given
function algebra on a given set of points. The classical Weierstrass
approximation theorem, and its generalization, the Stone-Weierstrass
approximation theorem, are well-known results of this type which have
proved very useful in analysis. Very important work has more recently
been done by Lavrentiev, Keldys, and Mergelyan, and their results
generalize the classical theorem of Runge (see Saks and Zygmund [4]
for Runge's theorem).

The theorem of Mergelyan states that every continuous function on
a compact set C of the complex plane, which is analytic at interior
points, can be uniformly approximated on C by polynomials, if C does
not separate the plane, i.e., if the complement of C is connected. We
prove a theorem which generalizes this result in two respects: the
plane is replaced by an arbitrary separable Riemann surface (without
boundary, but not necessarily connected), and the algebra of all
polynomials is replaced by what we call a total subalgebra of the
algebra R of all functions which are everywhere analytic on the Riemann
surface. The subalgebra R is called total if it contains the constant
functions and if the set {p\pεC and there exists qφp in C, with f(p)
—/(#) for all / in R} (j {p\p e C and no function in R is one-to-one in
any neighborhood of p}, called the singular set of C relative to R', is
finite for all compact sets C. (It can be shown that when R is not
total, but contains the constant functions, one can identify points on
the surface to obtain a new surface on which R is total.)

Our methods are highly measure-theoretic, and we make constant
use of the fact that any bounded linear functional A on the space Ω(C)
of all continuous complex-valued functions on a compact set C of our
surface can be represented as a Borel measure // on C. This means

that [fdμ=Δ(f) for all / in Ω(C). We shall somewhat loosely identify

A and μ, so that by the value of μ on / we shall mean \fdμ, and by

saying that μ is orthogonal to / we shall mean \fdμ=0. For a compact
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set C, Φ(C) will denote the set of all continuous functions on C which
are analytic at interior points. We are actually interested in bounded
linear functionals A on Φ(C), but by means of the Hahn-Banach theorem
every such A can be extended to Ω(C), and therefore can be represented
by a measure μ on C. If R is a subalgebra of R, then R\C) will
denote the set of all continuous functions on C which are uniform limits
on C of functions in R'. Obviously B'(C)c0(C), and the problem,
roughly speaking, is to determine by how much R\C) differs from Φ(C).
We do this via an investigation of those measures μ on C which are
orthogonal to R'(C), that is, we see how much these measures miss
being orthogonal to Φ(C).

We proceed to some definitions, which are necessary to the statement
of the theorem to be proved. If C is a compact set, and if Rr is a
subalgebra of R, then £^(C, R') will denote the set {p\ for each / in
R', there exists q in C with \f(q)\^\f(p)\}. The condition ^ ( C , R') = C
is the natural extension of Mergelyan's condition-that C not separate
the plane-to the more general situation considered here. The bounded
linear functional A on Φ(C) will be called an β'-local differential
operator on Φ(C), of order not exceeding N, if (1) A is orthogonal to
R\C), and (2) there exists a finite subset S of the singular set of C
with respect to R\ such that f(p)=f(q) for all / in Rf and all p and q
in S, and such that A(g) — 0 whenever g is a function in Φ(C) which
vanishes at all points of S and vanishes to order at least N at all points
of S which are interior to C The bounded linear functional A on Φ{C)
will be called a iϋ'-homogeneous differential operator on Φ(C), of order
not exceeding N, if it is a finite sum of iϋ'-local differential operators
on Φ(C), of orders not exceeding N. The result to be proved reads :
If R' is a total subalgebra of R, if C is a compact set with £^(C, Rf)
=C, and if A is a bounded linear functional on Φ(C) which is orthogonal
to R'(C), then A is a ^-homogeneous differential operator on Φ(C), of
order not exceeding N, where N depends only on Rr and C. Since it
will be easy to show that the only β-homogeneous differential operator
on Φ(C) is 0, this will have the corollary that R{C) — Φ{C) whenever
£S(C, R) = C. In general, we shall only be able to conclude that the
vector space R\C) (over the complex field) is of finite codimension in
the vector space Φ(C). It will be possible to describe R\C) exactly in
case C has no interior points.

Of the six preparatory lemmas to be proved, Lemmas 4 and 6 are
of some interest in themselves. Lemma 6, in particular, seems to be a
very useful tool in the theory of approximation by polynomials, and the
author will give other applications of this lemma elsewhere.

We develop more notation for later use. If C is compact, and if
the function f in R generates the subalgebra R\ then £f(C, f) will
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mean £/*(C, R)y so that p will be in the complement S^'(C, f) of
<$^{C, f) if and only if f(p) is in the unbounded component of the
complement of f(C). If CΊ has compact closure and if C2 is compact,
we say that / in R is schlicht on CΊ relative to C2 if there exists a
neighborhood U of the closure of CΊ such that no point in U is identified
with any other point of U{jC2 by /. If C2 is void, we simply say that
/ i s schlicht on Cl9 and if also CΊ is a point {q}, we say that / is
schlicht at q (or that / is one-to-one in some neighborhood of q). Since
a separable Riemann surface is metrizable, we assume the existence of
a metric p on the surface. If S1 and S2 are compact and ISΊZDS ,̂ we
define

P(S19 S2) = sup{inί{P(p, q^qeSJlpeSJ .

An arc is a homeomorphic image of [0, 1], and an open arc is an arc
minus its endpoints. A closed disc is a homeomorphic image of {z\ \z\ ^1},
and a disc is a closed disc minus its boundary.

2. Preparatory lemmas.
LEMMA 1. Let F be a compact set of the complex plane with

connected complementj and let 0 be in the boundary of F. Let N be a
positive integer'. Then the function z can be uniformly approximated on
F by polynomials which vanish at 0 to order at least N.

Proof. If there is a sequence {hn} of polynomials whose derivatives
vanish at 0 and which converge uniformly to z on F, then the sequence
{hn—hJO)} of polynomials vanishes at 0 to order at least 2 and converges
uniformly to z on F. Now assume that z cannot be uniformly
approximated on F by polynomials which vanish at 0 to order at least
2. Then z cannot be uniformly approximated on F by polynomials
whose derivatives vanish at 0. If we let Ω(F) be the Banach space of
all continuous complex-valued functions on F, this means that z is not
in the subspace of Ω{F) generated by the polynomials whose derivatives
vanish at 0. Thus there will exist a bounded linear functional A on
Ω(F) which will vanish on all polynomials whose derivatives vanish at
0, but with Λ(z)=aΦθ. It follows that Λ(h) = ah'(0) for all polynomials
h. We may assume that the bound of A is 1 and that α > 0 . Let U
be a simply connected open set containing F, the distance η of whose
boundary to 0 is less than α/16. Let φ be the conformal map of | z l<l
onto U, with 0(0) = 0 and φ r(0)>0. Since the boundary of U contains
points at a distance v from 0, it is known (see [1], page 75) that
φ'(0)^4ί?. If we let Ψ be the map of U onto | z | < l which is inverse
to φ, then ?Γ/(0) = [φ/(0)]-1^(4^)-1. If we define / o n U to be the
analytic function f—(2 — Ψ)~ι

f we have |/(z)|<^l for z in F, so that
\A(f)\^l. Also
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ΨΛ9)...... _ = λ \W'(0)\> —•

Since / is analytic on U, there will exist a sequence {#w} of polynomials
converging uniformly to / on some neighborhood of F. Therefore g'n(0)
will converge to /'(()). Thus,

This contradiction shows that z is the subspace Γ2 of Ω(F) generated
by polynomials h which vanish at 0 to order at least 2. Thus z^—Z'Z
is in the subspace Td of Ω(F) generated by polynomials z h which
vanish at 0 to order at least 3. Thus all polynomials which vanish to
order at least 2 at 0 are in Γ3, so that T 2 =Γ 3 . Thus ze Γ3. By a
continuation of this process, it can be shown that z is in the subspace
TN consisting of the closure in Ω(F) of all polynomials which vanish at
0 to order at least N. This completes the proof.

LEMMA 2. Let R be a total subalgebra of R, let C be a compact
set with S^{C, R') = C, and let S be the singular set of C relative to R!
(so that S is finite). Then there exists a closed C-neighborhood C of S
and a positive integer N, such that any function in Φ(Cf) which vanishes
at all points of S which are interior to C, to order at least N, and which
vanishes at all points of S, is in R(C'), and such that C is the union
of disjoint closed sets {Cp}, each containing exactly one point p of S.

Proof. Let p and q be any two distinct points of S. Let / be any
non-zero function in R which vanishes on S but which does not vanish
identically in a neighborhood of any point of S. Such a function can
be found because Rr is total. Let n be the exact order to which /
vanishes at p. Then it is easy to find a closed disc U containing p in
its interior, and an analytic function φ which is defined and one-to-one
on some neighborhood of U, which maps U onto {z||2|<:c} for some
c>0, which vanishes at p, and for which [φ{r)]n—f(r) for all r in U.
Since / vanishes on S, we can also find a closed neighborhood H of S
containing U such that f(H)—f(U). Since R! is total, we can in addition
take U and H to be so small that S will be the singular set of H
relative to R. Let q0 be any point in the component of the interior
of H which contains q, except q itself, with f(qQ)φ0, and let pQ be any
point of U with f(Po)=f(qo). Let ζ be a primitive nth root of unity, and
let π be the map of U onto itself defined by φ(πr) = ζφ(r). Obviously
f(r) =f(πr) for all r in U. Since S alone is the singular set of H relative
to R', there exists g in R taking distinct values at the points q0, p0,
and the first n-1 images, Pi = ττ(p0), 2>a=τr(Pi), , Pn-i = ̂ {Pn-%) of p0 under
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π. Note that f(pj)=f(p0) for 1 < ? ^ - 1 .
Now g*, for O^k^n, can be expanded on U as a uniformly

convergent power series in powers of φ, which implies that gk can be
w - 1

written on U in the form gk~ΣfuΦ\ where fu is the sum on U of a

power series in powers of f=φn which converges uniformly on U. The
series defining fkt will actually converge uniformly on H, because f(H)
—f(U). Thus we may extend the definition of fki to H, where it will
be a function in R'{H) which identifies all pairs of points in H that are
identified by/. Therefore fkι(pj)=fkι(p0) for O^j^n—1, O^k^Ln, and
0<^i<Ln — 1, and consequently

This implies that the product of the matrices

and ([φ(pj)]*), O^i^w —1, 0^'^w—1, is the non-singular Vandermonde
matrix ([g(pj)Y), 0^k<^n—l, O^j^n—1. Therefore, the function M in
R{H) defined by Λf=det(ffti), O^fc^w-1, O^i^w-1, does not vanish
at pQ. NOW for each r m U the linear system

has the non-trivial solution xQ~ 1, α?i = l, x>ι~Φ{r),
Thus the function Λ in i2r(iϊ) defined by

1 JOO JO n - l

J l ra-l

g JnQ ' Jn n-

vanishes identically on U. On the other hand, we have just seen that
the coefficient ( — l)n+1 M of gn in this determinant does not vanish at

n

2v We may therefore write h in the form Σ h^, where hk is a function
in R\H) which identifies any pair of points which is identified by /,
and where hn(po)Φθ. By substitution of pQ, , pn^λ into this expression
for h, we obtain
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s i n c e / ident i f ies p5 a n d p 0 . T h u s g(pQ), ••• , g(pn-i) a r e ^ d i s t i n c t r o o t s
n

of the wth degree equation ΣMP0)# fc = 0» so that g(q0), which is distinct
& = 0

from these roots, does not satisfy the equation. Therefore

Thus h does not vanish identically in any neighborhood of q, or it
would vanish in the component of the interior of H containing q, and
therefore it would vanish at qQ.

Thus we see that for distinct points p and q in S there exists a
closed neighborhood H of S and a function h in ϋ!'(i?) such that h
vanishes identically in a neighborhood of p but does not vanish identically
in any neighborhood of q. By multiplying together such functions, we
see that for all points p in S there exists a closed neighborhood K of
S, and a function / in R\K) which does not vanish in any neighborhood
of p, but vanishes in some neighborhood of every other point of S.
With this new function /, whose multiplicity at p we call n, choose
U, φ, π, and H in the same way as they were chosen for the old
function /. In addition, we may assume that H is so small that /
vanishes on H—U. We now extend the definition of φ to all of H by
defining φ to vanish on H—U. Let p0 be any point in U distinct from
p, and define p19 piy , pn^ as above. Choose any function g in R
which takes distinct values at pQ, plf , pn-i Let the functions fιjc be

71-1

defined as before, so that gk = ΣificiΦi o n U, for 0^k<Ln — 1. (We shall
i = 0

not need the equation for gn.) We have seen that the determinant M
defined above is in R(H) and does not vanish identically on U. Apply-
ing Cramer's rule to the set of equations for the gk, we can solve them
for φ, obtaining M in the denominator and some function of R'(U) in
the numerator. It follows that the restriction of the function φ M
to U is in R(U). Now M, being a polynomial in the fH, is equal on
U to the sum of a power series in powers of / which converges
uniformly on U. Let the first non-zero term of this power series be
aj\ Then ft\M will be a uniformly convergent power series on some
neighborhood Όr — {q\q e U,\φ(q)\<zc'<c} of p in powers of /. Since /
vanishes on H—U, the series will converge uniformly on Hr—U{j{H—U)
to a function f0 in R{Hf) which equals p\M on Ur and vanishes on
H' — U'. Since φ-M is in R(U'), it follows that the function (φ ikΓ) /0

= φ./ ί = φ»«+i is in R(W). Since f=φn is also in R(H'), and since the°
exponents n and nt + 1 are relatively prime, the function φi will be in
R(Ή!) if i is sufficiently large, say if ί^N. Therefore, any function
in Φ(H') which vanishes on H — U and which vanishes to order at least
N at p will be in R(H').
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Now let p be a boundary point of C, and we shall show that the
last statement continues to hold with N= 1 if Ή! is replaced by Ή! Π C.
From S^(C, R) = C, it follows that none of the components of V — C
lies interior to U\ since S^(Cf R) would contain such a component.
Therefore every component of U' — C contains boundary points of V.
Since φ is a homeomorphism on U, it follows that the complement of
Φ(U' ΠC)=φ(H' ΓiC) = F is connected. Since φ(p) = 0, the number 0 is in
the boundary of F, By Lemma 1, there exists a sequence {hn} of
polynomials which vanish at 0 to order at least N and which converge
uniformly to z on F. The function hn o φ, for each n, is therefore in
R(Hf), by the last statement of the preceding paragraph, and hn © φ->φ
uniformly on H! Π C as W->OD . Therefore φ e 2ϋ'(iϊ' Π C). By Mergelyan's
theorem, any function which is continuous on φ(H' Π C) and analytic at
interior points can be uniformly approximated by polynomials h.
Therefore, any function in Φ(H'Γ\C) which vanishes at p and vanishes
on (ff'ΓϊC) — U can be uniformly approximated by functions of the form
hoφ, and so belongs to R'(H'Γ\C).

It follows from what we have just proved that there exist disjoint
closed C-neighborhoods {Cv}, one for each point p in S, whose union
we denote by O, and a positive integer Nf such that any function / in
Φ(C') which vanishes on S, which vanishes on C — Cv for some p, and
which vanishes to order at least N at p if p is interior to C, will be
in R\G). Since any function in Φ(C) which satisfies the conditions of
the lemma can be written as a sum of such functions /, the conclusion
of the lemma follows.

LEMMA 3. Let C be compact, and let R' be a total subalgebra of R
with S^(C, Rf)—C. Let A be a bounded linear functional on Φ(C), which
is orthogonal to Rr(C) and which can be represented as a measure on an
arbitrary C-neighborhood of the singular set S of C relative to R\ Then
A is a R-homogeneous differential operator on Φ(C), whose order does
not exceed an integer N depending on R and C but not on A.

Proof Partition S into equivalence classes Si, &,•••, Sn, by
defining p=q to mean g(p) — g(q) for all g in R'. Then there exist
functions flf f2, •• , fn in R such that f(p) = 0 for p in S—Si and
fi(p) = l for p in S. Thus, by Runge's theorem, there exist disjoint
closed C-neighborhoods Ulf U2, , Un, of S19 S2, , Sn respectively,
such that, for l<^i<^n, there exists a sequence of functions in R which
converges uniformly on U— U1 U Z72 U U Un to a function g4 which has
the value 1 on U.t and the value 0 on U—Ui. Since A can be realized
as a measure on U, it can be extended to be a bounded linear functional
A' on Φ(U). Obviously A! will vanish on R'(U). Therefore, if we define
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the functional Al9 , An by Ai(f)=A'(fgι), for all / in <P(C), we obtain
bounded linear functional on Φ(C) which vanish on R\C) and have sum
A. For each i, l<*ii£n, let VΊ be any closed C-neighborhood of St

which is a subset of [7$. By hypothesis, there will exist a measure μ
on V—VΊlJ ••• U Vw which represents A. For each ΐ, l^i^n, let
{̂ ί»}Γ=i be a sequence of functions in R converging uniformly on U to
gt. Then for each / in Φ(C) we have

nm A\fgik) = \im A(fgίk)
fc->oo fc->oo

dμ=ygt ^ =

Therefore Λt is represented by the restriction of // to Vi9 from which
it follows that Ah can be represented as a measure on an arbitrary
C-neighborhood of S^ To finish the proof, it is only necessary to show
that Aι is a B'-local differential operator on Φ(C) of order not exceeding
some positive integer N depending only on R and C. Let the closed
C-neighborhood C of S and the positive integer N have the properties
stated in Lemma 2. If we write C*= U {Cp\peSi}, then Ct is a closed
C-neighborhood of S.t such that any function in Φ(Ci) which vanishes on
Sit and which vanishes at all points of Si which are interior to C, to
order at least N, is in R\C%). Since At can be represented as a measure
on Ci9 and since At is orthogonal to R'(C), we see that At will be
orthogonal to any function in Φ(C) which agrees on C4 with a function
in R'(Ci). Thus ^(/) = 0 whenever / is a function in Φ(C) which vanishes
on S.ι and which vanishes to order at least N at all points of SL which
are interior to C. Since g(p) = g(q) for all p and q in St and all g in /?',
it follows from the definition that A% is a ϋΓ-local differential operator
on Φ(C) of order not exceeding N, as was to be proved.

LEMMA 4. Let C be a compact set whose intersection with a disc U
is an open analytic arc A which divides U—C into components U1 and
Z72. Let Rr be a total subalgebra of R, and let μ be a Borel measure on
C which is orthogonal to R'. Let there exist functions f and g in R'
which are schlicht relative to C on U. Let f(A) be in the outside boundary

of f(C\jU2), where U% is the closure of U2, and let g(A) be in the outside

boundary of g(C\jU^). Then μ vanishes on all subsets of A.

Proof. Consider any open sub-arc B of A, which has endpoints a
and b in A with μ({a}) — μ({b}) = 0. Let Bx be any closed sub-arc of A
which contains the closure of B in its interior. Since the analytic arc

f(A) forms part of the outside boundary of f(C{jU2), we can find a
function φ on f(C\jU2) which is a uniform limit of polynomials, which
maps f(C\jU2—B^ into {z\$(z)>0}, which maps /(Zy in one-to-one
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fashion onto a subset of the real axis, and which maps the endpoints
of f(B) onto 0 and 1. To find φ, let J be a simple closed curve about
the set f(C U U2) which has f{Bτ) as part of its boundary and which has
no other points of f(C\jU2) in its boundary. Let φ1 be the Riemann
map of the interior of J into the unit disc. Then by Bieberbach [1],
it follows that φx can be extended to be continuous on J and to map J
homeomorphically onto {3||s| = l}. By Mergelyan [3], φ1 is the uniform
limit of polynomials. Then we can find a function φ.λ which is analytic
on the unit disc and continuous on the closed unit disc, which maps the
closed unit disc in a one-to-one fashion into {z\$(z)^0}, which maps the
arc φfflBί)) in one-to-one fashion onto a subset of the real axis, and
which maps Φi(/(α)) and φι(f(b)) (but not necessarily in that order) onto
0 and 1. The composite function φ = φ2oφL will have the desired
properties. Thus the function /' = φ o / i s the uniform limit on C[jU2

of functions in R\ maps (C\jUi)—B1 into {z\$(z)>0}, maps BΎ in onet
to-one fashion onto a subset of the real line, and maps B onto the uni-
interval (0, 1). The function /' can be extended to be analytic and
schlicht in some neighborhood of the closure of B because it maps U2

into {z\ί$(z)>0} and maps B± in one-to-one fashion into the real line.
In the same way we can find a function ^ on Cu UΊ which is the

uniform limit of functions in R\ which maps C\jU1—B1 into {z\$(z)<0},
which maps Bλ in one-to-one fashion into the real axis, and which maps
B onto (0, 1). As above, g' can be extended to be schlicht on some
neighborhood of the closure of B, and the values of the extended
function at points of Z72 sufficiently near to B will lie in the set
{z\£$(z)>0}. Thus b o t h / and g' have positive imaginary part at points
of U2 near B. Therefore f and g' increase in the same direction along
B. We may therefore label the endpoints a and b of B in such a way
that f'(a) = g'(a) = 0 and fφ) = g'(b) = l. It is clear that the algebra T
generated on C— {a, b} by f and g' is orthogonal to the measure μ,
because μ({a})=μ({b}) = 0. The function

A,= £ ϊ-λ.,
g' / ' - l

defined on C— {a, b), can be extended to a continuous function hλ on
C, because both numerator and denominator vanish only at a and 6,
about which points they can be extended to be analytic with simple
zeros. For α:>0 consider the function

f 9'-l
g' — oά f — l + ai

defined on C. Its absolute value will be less than the absolute value
of hλ. Therefore, as α->0, it converges boundedly to hx on C— {a, b}.
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Now ll(g' — cά) and l/(/ — 1 + ai) are uniform limits on C of polynomial
functions of gr and f respectively, so that hλ is a bounded limit on
C~ {a, b} of functions in the algebra T. Therefore all powers of hx are
orthogonal to the measure μ. Now f has positive imaginary part on
C~BU so that f\(/' — I) has negative imaginary part on C - β j . Similarly,
{g' — Y)\gr has negative imginary part on C—B^ Thus it is possible to
define the arguments of f!(f — l) and (g' — l)/g' to be continuous on the
set C—B1 and to have values in the interval (—π, 0). Since these
functions are real on Bx — {a, b], we may therefore define the arguments
on C— {a, b} to be continuous and to have values in the interval (—7r,0].
Thus the argument of hu since hL is the product of the functions just
considered, can be defined continuously on C to have values in the
interval ( — 2ττ, 0]. Since C is compact, the values will actually lie in
the interval ( e — 2ττ, 0] for some e > 0 . We may therefore obtain the
function log hL on C as a uniform limit of polynomial functions of hlf

so that the real part of log hγ will be log f(g'-i) and the imaginary

part will have values in ( — 2τr, 0] and will vanish on Bv It follows

that \ log hL dμ=0.

For each α > 0 , by an argument similar to the one just given, the
function

h =
f' — l + ai gf~cά

will be a uniform limit on C of polynomial functions of f and g\ and
will have an argument function with values in the interval ( — 2π, 0).
Thus log hΛ can be defined to be a function on C which is a uniform
limit of polynomial functions of f and g', and whose imaginary part

has values in the interval ( — 2π, 0). Therefore, \ log hΛ dμ = 0. The

real part of log hΛ converges uniformly on C—B1 to log j/^l, as a-+09

because g' and f — 1 are bounded away from 0 on C—Bv. Also the
real part of log ha converges boundedly on By—{a, b] to the same
function, since the reality of f and g' on Bλ implies that the absolute

values of the functions ^-~t_— and g -—-——- are nearer to 1 on Bx

gf — ai f — l+ai

than are and
/-I

respectively. It follows that the real part

of log ha converges boundedly on C— {α, 6} to log (/̂ j = 5R(log hi). The
imaginary part of log ha, on the other hand, must converge boundedly
on C—B1 to ^(log hi), because hω converges to hx on C—B1 and both

hj and £s(log ha) have values in the interval ( —2ττ, 0) on C—Bλ.
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On the sub-arc B of Bu f and g' are positive whereas / ' — I and g' — l
are negative, so that the argument of hx will be a small positive number,
on B, modulo 2π, if a is small, which means the argument of hΛ will
be near — 2π on B. Thus, as α->0, we see that 3(log ha) converges to
— 2π on B. Similarly, we see that $(log hΛ) converges to 0 on B1—B
~ {a, b}. Thus log hΛ converges boundedly as α-^0 to a function h2 on
C— {a, &}, for which log hλ—h2 has the value 2πi on B and the value 0

on C—B— {a, b}. Since 1 log ka dμ — Oy we must have 1 hz dμ = 0.

Therefore 0=1 (log hί—h2)dμ — 2πiμ(B). Since this is true whenever μ

vanishes at the endpoints of B, it follows that μ vanishes on all subsets
of A, as was to be proved.

LEMMA 5. Let Rr be a total subalgebra of R. Let S be a compact
set and C a compact subset of S. Let qQ be a non-isolated point of S—C.
Let gQ be a function in Rf which assumes its maximum modulus for S
at the point q0, and at no points of C. Let g0 be non-constant on every
component of the Riemann surface which contains points of S. Then
there exists a function g in R which assumes its maximum modulus for
S at a unique point q, lying in S—C, and there exists a neighborhood
W of q on which g is schlicht relative to S.

Proof. Let

ΓΊ={p\peSf gQ is not schlicht at p} .

Since, by the hypothesis, the points of S at which g0 is not schlicht
must be isolated, it follows that Γτ is finite. Therefore the set Γ',
defined to be the union of Γx and the singular set of S relative to R\
is finite. Thus gQ(S) is a compact subset of the complex plane, gQ(C) is
a compact subset of go(S), and go(qQ) is a point of maximum modulus of
gQ(S) which is a non-isolated point of gΰ{S) — g0(C). Thus go(qo) is in the
outside boundary of gQ(S), and since g^qo) is a non-isolated point of
OoiS), there must exist points zQ distinct from go(qo) but arbitrarily near
to go(qo) which lie in the outside boundary of gQ(S). By taking zQ

sufficiently close to go(qo), we may assume that zQ is not in gQ(C), nor in
the finite set gQ(Γ). We may therefore find a point w in the unbounded
component of the complement of gQ{S) whose distance to zQ is less than
its distance to gQ(C)\JgQ(Γ). The minimum distance of w to go(S) is
therefore attained at no point of go(C){jgo(Γ). The function (z—w)~J of
z therefore attains its maximum modulus for go(S) at no point of
9Q(C)\J9Q(Γ)- Since w is in the unbounded component of the complement
of go(S), it follows that (z — w)'J can be uniformly approximated on some
neighborhood N of gQ(S) by polynomials h. If the approximation is
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sufficiently good, h will be schlicht on go(S) because (z—w)~ι is schlicht
on N, and h will attain its maximum modulus for gQ(S) at a point zλ in
gQ(S)—gQ(C)—g0(Γ). Therefore the function gλ~h o g0 is in R and attains
its maximum modulus for S at a point qL (any point of S with go(qi) — z^
of S—C—Γ. Since qλ is not in Γ, g0 is schlicht at qλ. Since & is
schlicht on gQ(S), the function ^ will therefore be schlicht at qx.

Let the finite set Sf consist of all those points p in S, except q19

for which g1(p) = g1(q1). By replacing gλ by g^Qiiqi), if necessary, we
may assume that gτ attains its maximum modulus for S only at q1 and
at points of S'. Since qλ is not in Γ, we can find a function g% in R'
with #2(gi) = 0> gJj>)~—gι{Q^ for all p in S'. Let € be a positive
number, and consider the function g — g^eg^oίR, Since gλ is schlicht
at qu there will exist a neighborhood U of <& such that g will be
schlicht on U for all e sufficiently small. Also there will exist a
neighborhood V of the set S' such that \g2{p)+gι(p)\<\gι(qι)\ for all p in
V, because we have 0 2 ( P ) + 0 I ( P ) = & ( P ) + 0 I ( 0 I ) = O for all p in S'. Thus
for all p in VΓ\S we have

= | ( l - e)gi(p)+ e(g2(p)+g1(p))\<(l- e)\gi(p)\

^ sup

Thus g does not attain its maximum modulus for S on the set V. If
e is sufficiently small, on the other hand, g can attain its maximum

modulus for S only near S' or near q19 since gλ attains its maximum
modulus only at S' and at qλ. Therefore g can attain its maximum
modulus for S only at points of U, if € is sufficiently small. The
point q of U where this happens may not be unique, but if we take
such a point q and replace g by g+g{q), then q will be the unique
point where g attains its maximum modulus for S, because g is schlicht
on U. Since g assumes its maximum modulus at the unique point q in
S and is schlicht on U, there will exist a disc W in U containing q on
which g is schlicht relative to S. This completes the proof of the
lemma.

LEMMA 6. If F is a compact subset of the complex plane, and v is
a measure on F which is orthogonal to all polynomials, then for almost
all real numbers x0 there exists a measure β on the set L={z\?H(z)=x0

and z is not in the unbounded component of the complement of F}, such
that

h dv=-[ h dv=[h dβ

for all polynomials h, where
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F1 = Ff]{z\<3i(z)^xΰ} and F* = F Γi {z\3i(z)^xQ} .

Proof, There will exist a measure μ on F which assumes non-negative
values and which dominates the complex-valued measure v in the sense
that \v(s)\i£μ(s) for all Borel sets S. Let φ be the non-negative,
non-decreasing function of the real variable x0 defined by φ(x0)
= μ({x+iy\x^x0}). Then φ'(x0) will exist for almost all χQ. Assume

x0 is such that φ'(xa) exists. Then the equation 1 h dv— — \ h dv is a

consequence of the equation I h dp — 0 and the fact that v, because

Φ'(x0) exists, vanishes on all subsets of F1ΓiF2. By Runge's

theorem, we will then have I g dv= — \ g dv, whenever g is any
JF1 }F^

function analytic on some neighborhood of the set consisting of the
union of F and the bounded components of the complement of F.
Choose 6 with 0< e < 1 . Write T— {z=xo+iy\ the distance from z to L
does not exceed e } , and V—{y\xo+ίye T}. Let h be any polynomial,
and write ||A|| = sup {\h(z)\\ze T}. For $i(z)>x0, define

where the direction of integration along T is upward. For (3\(z)<xQf let

Then it is well known and easy to see that both hx and h2 have
continuous boundary values at points z0 of T which are interior points
of Γ, relative to the line {z\^R(z) = xo}y and that the difference of those
boundary values, h1(z0)—h2(zQ), is h(zQ). Therefore, if we define hλ{z)
=h(z)+k2(z) for 9ΐ(z)O 0, and h2(z)=h1(z)—h(z) for (3\(z)>x0y then by
extending to the interior of T by continuity, we obtain analytic
functions hx and h2 on some neighborhood of the set consisting of the
union of F and the bounded components of the complement of F9 such
that h—hλ—h2.

Thus we have

h(z)dv(z) = [ h^d^-l h2(z)dv(z)

= ( hλ(z)dv{z) + \ hz{z)dv{z) .

We consider the first term of this sum, and obtain



42 ERRETT BISHOP
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Since φ'(x0) exists, the difference quotient [φ(x)-~φ(xo)~\(x—%o)~ι will be
bounded, so that there will exist a constant η such that φ(x)—φ(x0)
<7](X—XQ) for all x>xQ. Thus the function ψ defined for all x>xQ by
ψ(x)=η(x—xQ) — [φ(x)—Φ(xo)l is positive. Also

is a positive decreasing function of x for x>x0, and

Ψ(x)f[x)^v(x—Xo)f(x)—^0 as x—>x0 .

It follows by integration by parts that

\Kfix)dψ(x)^09 or

Therefore

Now the last integral is finite, as may be seen by transforming to polar
coordinates. Now since a similar estimate can be obtained for

fφ)dv(z)\ ,

we see that there exists a constant Q, not depending on 6 , such that

h{z)dv{z) , for all polynomials h. Since Q does not depend on

G , we see that
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If h(z)dv{z) ^Q sup {\h(z)\\zeL} ,

for all polynomials h. Since the linear functional h-A h(z)dv(z) can be

extended, by the Hahn-Banach theorem, to a linear functional of bound
Q on Φ(L), we see that the measure β exists, as was required to prove.

LEMMA 7. Let C be compact, and μ a measure on C orthogonal to
the total subalgebra R\ Let £^(C, R') = C. Let f be a function in R'.
Let a and c be real numbers, a<c, and let D be a closed disc containing
the sets CD {q\ίΛ(f(g))^a} and <9"(C, /)Π {g|3ί(/(<7))^α} ΠD in its interior,
such that f is schlicht on D relative to C, and such that DΓ\ {q\^(f[q))=b}
is non-void whenever a<b<c. Then, for every b with a<b<c, there

exists a measure μ' on CΓΊ {q\^(f(q))^b} such that \gdμ=\gdμ' for all g

in Φ(C).

Proof Define a measure v on F=J\C) by v(S) = μ(f-\S)). Then if

h is any polynomial, we have \hdv=\hofdμ=0, since hofeff. Now let

xQ be chosen as in Lemma 6, where we may impose the additional
requirement that a<xo<b. It follows that the sets

E=£*{C, /)n {g\W(q))=χo} n o

and Cι=CΠ {qffiifiq^^Xo} are contained in the interior of D. Write
C.z=CC\{q\W(q))^Xo}> so that/(C 1) = F 1 and f(C2) = F2, in the notation

of Lemma 6. By the definition of v, we see that \ hofdμ— \ hdv for

all polynomials h. Consider the complex number z0 not in f(E) with
^(ZQJ^XQ. There are two cases to consider, depending on whether z0 is
in f(D) or not. In case zdef(D), then zo=f[qQ) for qQ in

(D-E)f] {q\W(q)) = Xo}cz^(C, f) ,

by definition of E. Therefore, z0 is in the unbounded component of the
complement of F~f(C). In case zQ is not in f(D), then z0 can be joined
to a point zι in the boundary of f(D) by a closed interval / whose
interior lies in {z\3\(z) = x0}—f(D), because {z\3i(z)—x0} Π / φ ) is non-void
by the hypotheses of the theorem. Now Ff] {z\$ϊ(z) = x0} is contained in
the interior of f(D), because Cf) {q\^(f(q))—Xo} is contained in the
interior of Zλ It follows that the interval / lies in the complement of
F. Since we have already seen that a point z1 with 3i(z1)=x0 and
zLef(D)—f(E) must lie in the unbounded component of the complement
of F, it follows that zQ lies in the unbounded component of the complement
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of F. Thus, from a consideration of the two possible cases, we see
that the set {%\ϊR(z) = Xo}—f(E) is a subset of the unbounded component
of the complement of F. It follows that Laf(E), where the set L is
defined in Lemma 6. Thus, since / is schlicht on Z), we may define
the measure a on E by a(S) — β(f(S))f where β is the measure on L

defined in Lemma 6, and obtain \hdβ=\hofda for all polynomials h.

Thus

[ hofdμ= \hdv= [fιdβ=

for all polynomials h. Since both E and C1 are subsets of D, and since
any analytic function on D can be uniformly approximated on D by
polynomial functions of / (because / is schlicht on D), we therefore see

that 1 gdμ=\gda for all g in R. Since v vanishes on all subsets of

Ex Π F2, then μ will vanish on all subsets of Cτ Π C2, so that

I gdμ=-\ igdμ

for all g in R'. We therefore see that \ gdμ— — \gda for all g in R'.
Jc 2 J

Thus if H is the carrier of the measure a and if g is in Rf, we see
that \ gd(μ — α) = 0, and \ #d(μ+α:) = 0.

J^uiί Jc2u//

We now show that α, which we know is a measure on E, is actually a
measure on EΓ\C, that is, that the carrier iϊof a is a subset of C. Assume
first that H—C contains an isolated point r. Then r is isolated point
of H\jC19 and since / is schlicht on the subset H[jC1 of D, the point
f(r) is an isolated point of /(HuCJ. Also 9ΐ(/(r))=α;0^3ΐ(z) for all z in
/(iϊUCΊ). It follows that the function θ on J\H\jCτ) which has value
1 at f(r) and vanishes elsewhere is a uniform limit of polynomials.
Thus θof is in R/(H[jC1). By the equation derived at the end of the
last paragraph, it follows that α({r})= — I θofd(μ—a) — 0. This

contradicts the fact that r is an isolated point of the carrier H of a,
and hence H—C has no isolated points. There exists a function g0 in
22' which assumes its maximum modulus for H\jC at no point of C, if
H—C is non-void, because S^(C, R') = C. Since H\J C is compact, there
are only a finite number of components of the Riemann surface which
intersect H[jC.

Since Rr is total, we can find gλ in R! which is non-constant on each
component of the surface which intersects H(jC Therefore, if e is
sufficiently small, the function g2—gQ-\- egλ in R' will be non-constant on
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each component of the surface which intersects H\jC, and will assume
its maximum modulus for H\jC at no point of C. Therefore, by
Lemma 5, there exists g in R assuming its maximum modulus for
H\J C at a unique point q of H—C which has a neighborhood on which
g is schlicht relative to H\JC. Since qeE—C, we can find an arc B
of {r\Si(f{r))—χQ} Γ\D which contains q in its interior, which is disjoint
from C, and which lies in some disc NaD — C on which g is schlicht
relative to H\JC. We may choose N and B so that Nf] {r|5R(/(r))>#0}
and NΓ\ {r\ϊR(f(r))<x0} are connected. Write S=H{jC{jB. Then we
can find a point q0 in N such that

\g(qo)\> max {\g(r)\\r e B}=max {\g(r)\\r e S} .

By moving q0 slightly, we may actually assume that

Let U be a disc contained in N and containing g0 and q such that
Uf)S is an open sub-arc A of B dividing U—A into components

C71-ί/n{r|9ί(/(r))>^} and U, = UΠ {r\m(f(r))<xΰ} ,

with UΓ\S = A, where ί7 is the closure of Z7. Since / is schlicht on D
relative to C, and since UaD and S c D u C , then / is schlicht on U
relative to S.

Let qL be any point of S{jU, at which # assumes its maximum

modulus. Since \g(qι)\^\g(qo)\> max {\g(r)\reS}, we have qj^eU—S.

Thus either qιeUi or qιeU2y but ĝ  is not in E/ifΊ ί/aCAcS. Assume

qιeUi. Then ^(gj is in the boundary of the unbounded component of

the complement of g{S\jU), since it is a point of maximum modulus

of g(S{jU). Since g{qλ) is not in g(S{jU2), it is therefore in the

unbounded component of the complement of g{S\jU2). The set

g{U1—B) is connected and disjoint from g(S{jU2), because U1—B

is disjoint from S\jU2 and g is schlicht on U relative to S. Since

giq^e g(Π1—B)J it follows that g{U1—B) is in the unbounded component

of the complement of g(S[jU2). Since g(A)—g(BΓ[ U) is in the boundary

of g(Uι—B)1 it follows that g(A) is in the outside boundary of g(S\jU2),

in this case. In case q1eU2, it similarly follows that g(A) is in the

outside boundary of giSliUJ.
First consider the case in which g(A) is in the outside boundary of

0(SuC7j). Then g(A) is in the outside boundary of g{H{J C2USU Oj).
Since the real part of / equals #0 on A and is less than or equal to x0

on H{jC2\JU2, the open arc f(A) is in the outside boundary of
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Since i hd{μ + a)~ 0 for all h in R, we can apply Lemma 4, to the

compact set H\jC2\jB, to the measure μ + a, to the disc U, and to the
functions / and g in R, to conclude that the measure μ + oc, and
therefore a itself, vanishes on all subsets of U. Next consider the

case in which g(A) is in the outside boundary of g(Sϋ Z72) Then g(A) is

in the outside boundary of g{H[j CΊU BU U2). Since the real part of /

equals x0 on A and is greater than or equal to xQ on JHΊj CX\JB\J U19 in

this case/(A) is in the outside boundary of f(H\J CΊU-Bl) Uτ). Since

I hd(μ — a) — 0 for all h in R', we see by Lemma 4 again that the
J#UC1U£

measure μ — a, and therefore α, vanishes on all subsets of U. Thus,
in either case, we see that a vanishes on all subsets of U. This
contradicts the fact that the point q in U is in the carrier Hoi a. This
contradiction shows that H—C is void, so that a is a measure on

Enc.
Now SS(Cly R)cz<9*(C, Rf)=C. Moreover, if qe C-Cλ then

qe£"(Cu R) because ^(f(q))<xo^W(qΊ) for all qr in Cλ. Hence
£S(CU JB/) = C1. If D — Cx were not connected, there would exist a
component of D — Cx containing only interior points of D (because Cx is
a subset of the interior of D), so that ^(CΊ, R) would contain all
points of this component, contradicting the fact that 45^(C1,β

/) = C1.
Thus Ό — Cλ is connected. Since / is schlicht on Z>, it follows that
F1=f(C1) has a connected complement. By the theorem of Mergelyan,
every continuous function on Fλ which is analytic at interior points can
therefore be uniformly approximated by polynomials. From this it
follows that every continuous function on Cλ which is analytic at
interior points can be uniformly approximated by polynomial functions
of/, so that (P(C1) = β/(C1). Since HaEf]Cc:Cl9 and since we have
already seen that 1 gdμ— \ gda for all g in R, it follows that

=\ gda

for all g in Φ{C^). If we define the measure μ' on

by μ'(S)=μ(S-C1)+a(S)9 we obtain

\9dμ'=\ gdμ+\ gda=\ gdμ+\ gdμ=\gdμ
J JC-C1 JH JC-Cι JCι J

for all g in Φ(C), as was to be proved.
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3. The main theorem and its consequences.

THEOREM 1. Let R be a total subalgebra of R. Let C be a compact
set with S^(C, R) — C. Let Λ be a bounded linear functional on Φ{C)
which is orthogonal to R(C). Then A is a Rr-homogeneous differential
operator on Φ(C), whose order does not exceed some positive integer N
depending only on Rr and C.

Proof. We know that A can be represented as a measure on C.
Therefore the class Γ, consisting of all compact subsets S of C for
which A can be represented as a measure on S and for which £f{S> Rr)
= S, is non-void, because CeΓ. We construct a sequence {Sn} of sets
from Γ by taking Sι — CJ and choosing Sn+ι such that S ^ c S ^ and

P{Sn, Sn+1)^l sup {p(Sn, S)\SczSn, SeΓ} .
Li

Then p(Sn, Sn+1)-^0 as w-^co, because otherwise the compact set C would
contain an infinite set of points whose mutual distances were larger
than some fixed positive number. Write S— Π Sn, and assume that
there exists a point q0 in S not in the singular set T of C relative to
R''. Then there exists a function gQ in Rr which vanishes on T but
does not vanish on qQ. Since S is compact, there exist only a finite
number of components of the surface which intersect S. Since R is
total, there exists a function gλ in R which is non-constant on every
component of the surface which intersects S. Thus, if e is sufficiently
small, 02 = 0o+e 0i will be non-constant on every component of the
surface which intersects S, and the set K consisting of those points of
S where g2 attains its maximum modulus will not intersect T. If there
exists a point in K which is a non-isolated point of S, then by Lemma
5 there exists a function / in R which attains its maximum modulus
for S at a unique point p, and which is schlicht relative to £ on some
closed disc D containing p in its interior. On the other hand, if all
points of K are isolated, then Kis finite, and since K does not intersect
T, there exists a function g3 in R which has the value g2(p) at some
point p of K, which has the value —g2(r) at all other points r of K,
and which is schlicht at p. For a sufficiently small positive number 6 ,
it follows that the function f=g2+ e g3 will attain its maximum modulus
for S at the unique point p and will be schlicht relative to S on some
closed disc D containing p in its interior. Thus, if we assume that £
is not a subset of the singular set of C relative to R', we may find /,
p, and D which have the properties described. We may assume also
that/(p)>0.

Let α0 be some real number less than f(p) such that the set
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is non-void whenever aQ<a<f(p). For each real number a with aQ<a
<j\v), consider the compact sets Fα = ̂ ( S , f)f] {q\$l(f(q))^a} f]D and
Wa=Sn{q\(SiU\g))^^}' T h e intersection of the Va is VfCp)={p}, and
the intersection of the Wa is W/(p) = {p}. Thus, if a is sufficiently near
to f(p), the sets Va and TFα will be contained in the interior of D.
Having chosen such a value of α, define the compact sets

and Wn = SnΓ\{q\9l(f(q))^a}, for each positive integer n. Since n £?„=£,
we have Π Vn—Va and Π Wn—Wa. Thus, if w is sufficiently large, the
sets yw and Wn will be contained in the interior of Zλ Let δ be any
number with α<δ</(p), and choose a value of n for which Vn and TFW

are contained in the interior of D, for which / is schlicht on D relative
to Sn, and for which 2p(Sn, Sn+ι) is less than the distance d of p to
{q\ΪR(f(q))<Lb}. Then by Lemma 7, we see that there exists a measure
von SnΠ {<7|3l(/(<7))^δ}=Sή which represents A, because there exists
such a measure on Sn. Now £f(S'n, R)a,9^(Sn, R') = Sn. Also, if
qeSn-S'n, then 3ϊ(/fo))>^ sup {^(/(gO)!^ e Sή}, so that qe&"(Sή, R').
Thus ..^(S;, β') = S;, and so S'neΓ. Also />(SW, S;)^d>2 io(Sw, Sn+1).
This contradicts the choice of Sn+ι. Therefore S is a subset of the
singular set of C relative to R!'. Since Γ\Sn=S and since A can be
represented as a measure on Sn, then A can be represented as a measure
on an arbitrary C-neighborhood of S. It follows from Lemma 3 that A
is a i^-homogeneous differential operator on Φ(C), of order not exceed-
ing N, as was to be proved.

COROLLARY 1. If C is compact, and if R! is a total subalgebra of
Ry with S*(C, Rf) — Cy then there exists a positive integer N such that
R\C) contains the ideal I{C, R!, N) of Φ{C) consisting of those functions
in Φ{C) which vanish on the singular set S of C relative to R and which
vanish to order at least N at those points of S which are interior to C.
The ideal I(C, R\ N)9 and therefore R'(C) itself, has finite codimension
when considered as a vector subspace of Φ(C).

Proof. Choose N as in Theorem 1. Then, by Theorem 1, it follows
that every bounded linear functional on Φ(C) which vanishes on R(C)
will vanish on I(C, R', N). It follows from the Hahn-Banach theorom
that I(C, R, N)aR(C). The last statement of the corollary is obvious.

COROLLARY 2. // C is compact, if R is a total subalgebra of R
with S^(C, R) — C, and if the singular set of C relative to R is void,
then R(C) = φ(C).
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Proof. This corollary is in immediate consequence of Corollary 1.
This corollary applies to R itself, if no component of the surface is
compact, since then it is known that R is total, and that the singular
set of R relative to C is void, for all C.

COROLLARY 3. Let C be compact and without interior points. Let
Rr be a total subalgebra of R with S/^(Cf R

f) — C. Let f be a continuous
function on C for which f(p)=f(q) whenever p and q are points in C
for which h(p) = h(q) for all h in Rf. Then feR'(C).

Proof. Let A be a bounded linear functional on Φ(C) which is
orthogonal to R\C). We must show that Λ(f) = 0, and the Hahn-Banach
theorem will do the rest. Since A, by Theorem 1, is a ^-homogeneous
differential operator on Φ{C), and since C has no interior points, we see
that A is a finite sum A=ΣAiy where A.L is orthogonal to R'{C) and has

the form Λ(flr) = Σc&uflr(ίPΐj)> w ^ h pi5 in C and with h(piJ)=h(pil) for

l^j^ni and all h in Rf. Thus f(Vι3)=f{vώ for l^j^nt. Since the

function 1 is in R', this implies Σ α u=0 Thus we have

j=ι 3=ι j=ι

This completes the proof.
The hypothesis that Rf contain the constant functions, which is

made in Theorem 1 (because R' is required to be total), is undesirable,
since, for instance, it rules out the case of an ideal R'. We now show
that this hypothesis is not necessary to the validity of Theorem 1. To
this end, let Rf and C satisfy the hypotheses of Theorem 1, except
that we weaken the word "total" by dropping the requirement that
Rr contain the constant functions. Let A be any bounded linear
functional on Φ(C) which is orthogonal to R\C). Let the original
Riemann surface be enlarged by the addition of the extra disc {s||3|<l}
as a new component, and let the algebra T on the new surface consist
of all functions of the form c+f, where c is a constant, and where /
is any analytic function on the new surface which vanishes at the
center #=0 of the extra disc and which agrees on the original surface
with some function in R'. Let H be the union of C and the subset

. ι^ 1 , of the extra disc. Then A can be considered as a bounded

linear functional on Φ(H), and obviously the functional A' on Φ(H)
defined by A'(g) = A(g-g(0)) will vanish on T\H). By Theorem 1, we
see that A' is a T'-homogeneous differential operator on Φ(H) of order
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not exceeding some constant N depending on T and H (and, therefore,
depending on R' and C). It follows that J is a i^-homogeneous
differential operator on Φ(C) of order not exceeding N, as was to be
proved.
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THE RELATIONS BETWEEN A SPECTRAL

OPERATOR AND ITS SCALAR PART

S. R. FOGUEL

1. Introduction. It is shown in Dunford's theory of spectral
operators, that every spectral operator T can be decomposed into the
sum of a scalar operator S, and a generalized nilpotent JV [1]. We study
here properties which are inherited by S from T. The main results are :

1. If the spectral operator T is compact, weakly compact, or has
a closed range, then respectively S is compact, weakly compact, or has
a closed range.

2. The relations between the point spectra, continuous spectra, and
residual spectra of S and T are investigated.

3. If the sum of two commuting spectral operators is spectral,
then the sum of their scalar parts is scalar.

2. Notation. Most of the notation is taken from [1]. Let X be
a complex Banach space. A spectral measure is a set function £*(•)>
defined on Borel sets in the complex plane, whose values are projections
on X, which satisfy :
(a) For any two Borel sets σ and δ E{σ)E{d) = E{σ n S).
(β) Let Φ be the void set and p the complex plane.
Then

E(Φ)^0 and E(p)=I.

(γ ) There exists a constant M such that \E(<r)\<LM, for every Borel
set σ.
(δ) The vector valued set function E( )x is countable additive for
each xe X.

The operator T is a spectral operator, whose resolution of the identity
is the spectral measure E(-) if
( a ) for every Borel set σ E(σ)T^TE(σ).
(b) Let Ta denote the restriction of T to the subspace E(a)X, (Ta

= T\E(a)X) then

Received March 13, 1957, in revised form August 19, 1957. This paper is a part of
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where a (A) is the spectrum of A.

Throughout the paper T denotes a spectral operator, E(-) its reso-

lution of the identity, S its scalar part given by S= I λE{dλ), N its

radical given by N=T—S. The operator N is a generalized nilpotent,
and the operators N, S, T, E(a) commute [1]. A spectral operator is
of finite type, if for some integer n, Nn+1=0. We shall denote iV 2£«0»
by N09 hence N0=TE«0»=E«0»T.

3. Topological properties. In this section, several topological pro-
perties will be shown to be valid for S whenever they are valid for T.
The following lemma will be used.

LEMMA 1. S is in the uniformly closed operator algebra generated
by the projections E(a) with O0α.

Proof. S—\ λE{dλ) and <τ(T) is bounded, see [1] Theorem 1. Given
Jσ(r)

ε>0 let σ(T) be divided into the disjoint sets α0, alf , an with

0 e a0 , 0 φ

diam(α:ί) < e

Let λo — O and λteat. Then

i = l, 2, , n and

i=0, 1, 2, , n .

= |t
I J<

(r)

If λ 6 σ(Γ) then

Σ

Now by [1], p. 330, for every bounded measurable function defined on σ(T)

I ( f{λ)E{dλ)
)

λ e σ(Γ)} 4M .

Hence

S- <4Mε .

THEOREM 1. Let % be a uniformly closed right (left) ideal in the
algebra of operators on X. If T belongs to 91 so do S, N, and E(a) with

Proof. By condition b of § 2 TΛ with 0 0 a possesses a bounded
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everywhere defined inverse T"1. Let us define PΛ by Potx=Ta1E(a)xf

xeX, 0$ά. PΛ is a bounded everywhere defined operator. Now

TPΛx = T{T-ιE(a)x)=

Also

Hence if 0 0 a then Z?(α) e SI. Note that this fact remains true even if
3ί is not uniformly closed. Now by Lemma 1 SeSΐ and therefore
iVeSί too.

COROLLARY 1. If T is compact then so are S, N and E(a) (O0α).

COROLLARY 2. If T is weakly compact then so are S, N and E(a)
with 0 $ a.

COROLLARY 3. If TXa Y ivhere Y is a closed subspace of X, then
SXcz Y and NX a Y and E(a)Xa Y, 0 0 a. Hence

and if the range of T is separable so are the ranges of S, N and E(a),

COROLLARY 4. // AQT=0 (TAQ=0) then A0S=A0N=0 and A0E(ά) = 0,
0 0 a (SA0=NA0=E(a)A0=0 if O0α). In particular T is a spectral
operator of finite type if and only if some power of N annihilates T.

COROLLARY 5. If Tx=0 then Nx^Sχ—E(ά)x=0 where a does not
contain 0.

COROLLARY 6. // (xn) is a bounded sequence of vectors, and the
sequence {Txn) has a limit then the sequences (Sxn), (Nxn) and (E(a)xn)
with 0 0 a have limits.

To prove these corollaries one has to note that:
( a ) The classes of compact and weakly compact operators are uniformly
closed two-sided ideals. (See [3] Chapter 6).
(b) The classes of operators A satisfying AXaY or A0A=0 are uni-
formly closed right ideals.
( c) The classes of operators A satisfying A E = 0 or AAQ—0 or the limit
of Axn exists are uniformly closed left ideals.

REMARK TO COROLLARY 6. By the proof of Theorem 1 the sequence
(E(a)xn), O0α, has a limit whenever the sequence (Txn) has, even if
the sequence (xn) is not bounded.
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THEOREM 2. AT=0 if and only if AE(p-<0» = 0 (A=AE«0») and
AN»=0. Similarly TA=0 if and only if E(p-<0»A = NQA=0.

Proof If ANQ=AE(p-<p» = 0 then AE(a) = AE(p-<fl>)E(a) = O if
O^α, thus by Lemma 1 AS=0. Now

AN= ANE(φy)+ANE(p - <0» = AN0 + (AE(p - <0»)iV= 0 .

Thus AT=AS+AN=0. Conversely if AT=0 then
and AE(a) = 0 if 0$~a. Now for each xeX

AE(p-<ϋy)x=\\m AE\z
n

;=0

by countable additivity.
The second half of the theorem is proved in the same way.
Using Corollary 5 one can prove in the same way that Tx — Q if

and only if Nύx=E(p-<Qy)x=0.

COROLLARY 1. // £ « 0 » = 0 , then AT=0 or TA=0 if and only if
A=0.

Proof. By Theorem 2 if AT=0 or TA = 0 then A=AE«θy) or

COROLLARY 2. If £ τ «0»=0 then ΨX=X.

Proof. If TXψX then there exists a bounded functional x*Φ§ such
that #*(JPX) = 0. Let Ax—x^(x)x1 where x1 is any vector different from
0. AT—0 and AφO which contradicts Corollary 1.

THEOREM 3. If T has a closed range so does S.

1. Proof Let JE'«O» = O then Corollary 2 of Theorem 2 shows that
TX=X. But by assumption TX=TX, thus TX=X. Also, the operator
T is one-to-one by [1] p. 327 and thus T possesses a bounded every-
where defined inverse. Thus 0φσ(S) = σ(T) and SX=X.

2. Let E(ζθy)Φθ. The operator Tp-<d> is a spectral operator whose
resolution of the identity F( ) is given by F(a)—E(a)E(p—(θy)=E(a
-<0», hence F « 0 » = 0. Now if Tp-<Q>xn-+y(ye JE(p-<0»X), then, there
exists a vector x in X such that Tx—yy because T has a closed range.
Therefore
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Hence Tp.<0> satisfies the same conditions assumed for T in the first part
and therefore 0$ σ(Γp_<a>) and

Sp-<Q>X=E(p-<0»X, but SP-<Q>X=SX,

so S has a closed range.
By the proof of the last theorem it follows that if T has a closed

range then 0 0 σ-(Tp_<0>), hence 0 is an isolated point of the spectrum
of T.

THEOREM 4. The operator T has a closed range if and only if
1. 0 is an isolated point of o (T).
2. The operator NQ has a closed range.

Proof. We proved that Condition 1 is necessary. Now if NQxn-+y
then E«O»Noxn-+E«θy)y but #«0»iV0=iV0 thus E«θy)y=y. Also No

= Γ£'«0>) and T has a closed range, thus if T(E«0>)xn)-^y then for
some x, Tx=y. Hence TE(<θy)x=Nox=E(ζϋ))y=y. Conversely if 1.
and 2. are satisfied let Txn-*y. Then

TE(p - <0>K+TE«0»x n =TE(p - <0»a?n

Multiplying this equation by E(p—(θy) and JS7«0» one gets the following
two equations

-» E(p-<θy)y

NQxn -> E«θy)y

By 1. 2V<0> possesses a bounded everywhere defined inverse. Hence,
for some x1 in E(p -<0»X, Tx1=E(p-<θy)y.
By 2. for some vector x2, Nox2=E((θy)y. Thus

T(x1+E«0y)x2) = Tx1+N&9=y.

4. Properties of spectral points. Let A be a bounded linear operator
on Xy define

σp{A)—{λ\λI—A is not one-to-one}

σc(A)—{λ\λl—A is one-to-one and {λl—A)X is dense in X, but not
equal to X}.

σr(A)={λ\λI-A is one-to-one and {λI-A)XφX}.

(See [6] p. 292.)

The sets <rp(A), <rc(A) and o r(A) are disjoint and

σ(A) = σp(A) U σc(il) U σ r(il) .
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THEOREM 1. // T is a spectral operator of finite type, then λ e σp(T)
if and only if E«λ»Φθ, and λβσc(T) if and only if E(φ) = 0, and
λ 6 σ{T). Thus σ(T) = σp{T) u σc(T).

Proof. If E(φ)Φ0 let xeE«λy)X, x<£0, then

Sx = [ μE{dμ)x = [ μE(dμ)E(φ)x = λx .
Jσ(ϊO Jσ(r)

Let v be the first integer such that Nvx=0, then

therefore λeσp(T). If S«A» = 0 then Corollary 2 of Theorem 2, §3,
applied to λl—T, shows that (λI-T)X=X. Also, by [1] Lemma 1, λl—T
is one-to-one and thus λ e σc(T).

THEOREM 2. σc(S)cσc(Γ) αwcZ ^

Proo/. If λ e σc(S) then £'«^» = 0, and by the last part of the proof
of Theorem 1, λeσc(T). Thus σc(S)dσc(T) and

σ,(Γ) U σ r(Γ) = σ(Γ) - σβ(Γ) C σ(3P) - σβ(S) = σ(S) - σβ(S) = σp(S) .

If ^«^» = 0 then i6σβ(Γ). Let us examine therefore the case
where JS«Λ»:£θ. To simplify notation assume that Λ = 0.

THEOREM 3. Lei £;«0»^0 then

1. θ€ίjp(Γ) i/ No is not one-to-one on E«fly)X.

2. Oeσc(Γ) if No is one-to-one on E(ζθy)X and iV0(£'«0»X)=

3. Oe σr(Γ) ί/ Λ̂ o is o^e-ίo-o^e on

Proo/.

1. If there exists a vector a; such that xΦO, x—E((θy)x and
Nox=O then

Γα=TE«θy)x=Nox=O

2. The operator 7V<0> is one-to-one on E(p—<0»Z by [1] Lemma
1. Now if iV0 is one-to-one on E((θy)X then T is one-to-one on X : If
Tx = 0 then £;«0»Γ^=iV0^=:iV0ί;(<0»^=0 and TE(p-<Oy)x=Tp..<o>E(P
-<0»£=0. Thus ί;«0»^=:0 and S(p-<0»α?=0, but then α=
+E(p-<0y)x=0. Now by Corollary 2 of Theorem 2, §3
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and by assumption

but

and

therefore

TXziX .

3. By Part 2, T is one-to-one. Let x be a vector in E((θy)X whose
distance from N0X is greater than some positive number r. Let y be
any vector in X. Then

Hence

Mι N ' M

Hence

The next theorem is valid for separable spaces only.

THEOREM 4. // X is separable, then σp(T){jσr(T) is countable.

Proof. Theorems 1 and 2 show that σp(T)Uσr(T)czσp(S)= {λ\E(ζλ»

. For any λ in σp(S) let xλ be a vector satisfying |α?λ| = l and
E{<sλy)xλ=xλ. Now if λxΦλ2 then

The set {a J i e σ ^ S ) } is separable because X is, hence the set is
countable.

We conclude this discussion by studying another subset of the
spectrum.

DEFINITION. Let A be a bounded linear operator on X, then σQ(A)
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= {λ I there exists a sequence (xn) such that | # J = 1 and {λl—A)xn->0}.
See [5] p. 51.

LEMMA 1. σp(S)czσ{)(T).

Proof, Let xΦO satisfy Sx — λx. If for some n, Nnx=0, let us
take the first such integer. Then

and thus λeσp(T)aσQ(T). If for every n, NnxΦθ then

T ^(S \-N) Nnχ -λ +
\Nnx\ \Nnx\ \Nnx\ \Nnx\

It is enough to show that for some subsequence nt

\m^χl _> 0
\Nnιχ\

Let us assume, to the contrary, that for some ε>0 \Nn+ιx\^ε\Nnx\ for
all n, then

but this would imply that

lim ί/]W\ = lim V\W\ ΐ/\^\ ^lim sup

= e .

But N is a generalized nilpotent and thus limy/\~Nn\ = 0.

THEOREM 5. σ(27)=σ0(27).

Proof. By Theorem 2 and Lemma 1 σp(T)υ σr(T)czσp(S)<zσQ(T).
Thus it is enough to show that σc(Γ)cσβ(Γ). Let λ e σc(T) we may
assume that λ = 0. If 0^σ-0(T) then \Tx\^e\x\, xeX, for some positive
ε. This implies that TX has a closed range, but TX=X hence TX=X,
which contradicts the assumption that 0 e ac(T).

Let us conclude this section with a few examples.
1. Define in lΎ the generalized nilpotent operator N by

N(xlf x2, x3, -) = (x2, 0, xi9 0, •)

and let ^ = 0 . S is compact while T is not weakly compact.
2. Let X be the space of continuous functions on [0, 1] vanishing



THE RELATIONS BETWEEN A SPECTRAL OPERATOR 59

at the point 0. Define N by Nf=g, g(x)=\f(s) ds, and let S=0. S
Jo

has a closed range while T does not. 0e<τp(S) but 0e<rc(T).
3. Let N be defined as in 2, and S=I. T and S have closed

ranges but the range of N is not closed.

5. Decompositions of spectral operators. Let T19 , Tn be n com-
muting operators. There exists a minimal algebra of operators 2ί, with
the properties :

1. 2^6 21, i = l , 2 , ••• ,n.
2. If Ue 21 and U~λ is a bounded everywhere defined operator then

3. The algebra SI is uniformly closed.
This algebra will be called the full algebra generated by Tlf , Tn,

and it is a commutativealgebra. Let Δ^ denote the space of homomor-
phisms from 31 to the algebra of complex numbers. By Condition 2,
and the Gelfand theory [4], if Ue% then σ(U)={μ(U)\μe Δ%} thus if
μ(JJ)—0 for each μeA% then U is a generalized nilpotent.

LEMMA 1. Every scalar operator S is the sum S^iS ^ where Sλ and
S2 are scalar operators and

2. σ(S1) and cr(Sz) are sets of real numbers.
3. The Boolean algebra of projections generated by the resolutions

of the identity of Sτ and S2 is bounded.

Proof Let E{ ) be the resolution of the identity of S then

S= [zE(dz)=

where

E1(a) = E{z\z=x+iy and xea}

E2(a)=E{z\z=x+iy and yea}

Conditions 1, 2, and 3 are readily verified.

THEOREM 1. Let T be a spectral operator. Then there exist two
operators R and J such that

1. T=R+iJ and RJ=JR
2. The sets σ{R) and σ(J) are real sets.
3. R is a scalar operator and J is a spectral operator.
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4. The Boolean algebra of projections generated by the resolutions
of the identity of R and J is bounded.

If R1 and J1 satisfy Conditions 1 and 2, then they are spectral
operators and there exists a generalized nilpotent M such that

R^R+M, Jτ=J+iM .

REMARK. By the last assertion and Theorem 8 of [1] Conditions 1,
2, and 3 insure uniqueness. We shall call R the real part of T and
J the imaginary part of T.

Proof. Let T=S+N. Using the notation of Lemma 1, put R=SU

J—S2—iN, and Conditions 1., 2., 3., and 4. follow by Lemma 1. Now,
if Rx and Jλ satisfy 1., and 2., then by Theorem 5 of [1], the operators
R, J, Rly Jλ commute. Let Sί be the full algebra generated by these
operators, if / / e % then

but μ(R—R1) and μiJ—J^ are real numbers by Condition 2. Hence

Thus if M—R—Rλ then M is a generalized nilpotent and J—J1—iM.

LEMMA 2. Every scalar operator S can be written as the product of
two scalar operators 2\ and T2 which satisfy

1. T^^TzT^S.
2. o(T^) is a set of non-negative numbers and σ(Γ2) is a subset of

the unit circle.
3. The Boolean algebra of projections generated by the resolutions of

the identity of Tλ and T2 is bounded.

Proof. It follows from the multiplicative property of the spectral
measure £"(•) of S that

S=[λE(dλ)=[\λ\E(dλ)[*gnλE(dλ) .

Thus S=TτT2 where

T1=^\λ\E(dλ) = ̂ μE1(dμ) if E1(')

is defined by

E1(a)=E{λ\\λ\ea}

and
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TA= fsgn λE(dλ)=\μEt(dμ)

where

It is easy to verify Conditions 1, 2, and 3.

THEOREM 2. Let T be a spectral operator. Then there exist two
operators P and U such that

1. T=PU=UP.
2. σ(P) is a set of non-negative numbers and σ(U) is a subset of

the unit circle.
3. U is a scalar operator and P is spectral.
4. The Boolean algebra of projections generated by the resolutions of

the identity of P and U is bounded.
If Px and Ux satisfy 1. and 2., then they are spectral operators and

i P1=P+Ni where NL ond N2 are generalized nίlpotents and

REMARK. By the last assertion Conditions 1, 2, and 3 insure
uniqueness. The operator P will be called the absolute value of T and
U the argument of T.

Proof Let T=S+N. Using the notation of Lemma 2 put P—(Tι

+ T^N) and U=T2, then PU= T because T,N=NT2 (Theorem 8 of [1]).
Now, Conditions 1, 2, 3, and 4 follow by Lemma 2. Let Pλ and Uι

satisfy 1 and 2 then by Theorem 8 of [1], Plf U19 P, U commute.
Let 2ί be the full algebra generated by these operators. If μeΔ^ then
μ(T)=μ(P)μ(U) = μ(P1)μ(U1) and by Condition 2 μ(P)=μ(Pλ) and μ(U)
—μ{U^). Thus N1—U1 — U and N2=Pι—P are generalized nilpotents.
Now

or

hence

In order to apply these theorems we need the following result.
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THEOREM 3. A spectral operator T is a scalar operator whose
spectrum lies on the unit circle if and only if: T'1 is a bounded every-
where defined operator, and there exists a constant M such that

n=±l, ±2,

Proof If T=\ λE(dλ) then
J l λ | = i

λnE{dλ) ^4 sup {\E(a)\ \a a Borel set} ,

b y [1], p . 3 4 1 . C o n v e r s e l y a s s u m e t h a t \Tn\^M n— ± 1 , ± 2 , ••• t h e n

because that two series converge. Thus σ{T)d{λ\ U| = l} and \R(λ;T)\
^Λf/ | l-U| | if \λ\Φl. By Lemma 3.16 of [2] if T=S+N, where S is
scalar and N is a generalized nilpotent, then iV2=0. Hence

Therefore nN=(Tn-Sn)S-^n'1K
Thus %iV is a bounded sequence of operators and therefore N—0.

LEMMA 3. Let Sτ and S.z be two commuting scalar operators with
real spectra, if S1+S2 is spectral then it is scalar.

Proof. Let S1+S2=S+N where S is scalar and N is a generalized
nilpotent. By Theorem 3 the operator etcs+N) = etsι eis* is a scalar
operator, but

hence

but the operator ieisΣ——— possesses an inverse and thus N=0.

THEOREM 4. Let S1 and S2 be two commuting scalar operators, if
S1 + S2 is spectral then

1. Sι+S2 is a scalar operator.
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2. The real {imaginary) part of S1 + S2 is the sum of the real
{imaginary) parts of Sλ and S2.

Proof. Let Slf S2 and ASΊ+AŜ  be decomposed into real and imaginary
parts as in Theorem 1. Then

SL+S2=R+iJ

where Rlf Jlf R2, J2 and R are scalar operators, while J is spectral, and
would be scalar if and only if S^+S* is a scalar operator. The operators
Rif J\y R%J J% commute and thus by the Gelfand theory [4] Rλ+R2 and
Jλ+J2 have real spectra. By Theorem 1 R1+R2 = R+M and J1+J1 = J
+iM, where M is a generalized nilpotent. By Lemma 3 the operator
Rλ+R2 is a scalar operator, but R is scalar too, thus by Theorem 8 of
[1] ikΓ=O. Now JX+J%=J which is a spectral operator and, again, by
Lemma 3, J is scalar. Thus S x +S 2 is scalar and R1+R2=Rf J1+J2=J.

THEOREM 5. Let S1 and S2 be two commuting scalar operators. If
SλS2 is spectral then

1. Sβz is a scalar operator.
2. The absolute value {argument) of SΊ£2 is the product of the ab-

solute values {arguments) of S1 and S2.

Proof. Let S19 S2 and SJ32 be decomposed as in Theorem 2.

S1=P1U1 , SΛ=PtU% S1S1=PU.

The operators Ulf U2, U, Pτ and P2 are scalar, and P is a spectral
operator, which is scalar if and only if S& is scalar. Using commuta-
tivity of the operators in question and Theorem 2 we derive that

PXP2=P+N2 , U±U,= U+Nλ ,

where Nλ and N2 are generalized nilpotents and iV2= Σ£=o(—iV1?7"1)w+1-P.

By Theorem 3, JVi = O and hence iV2=0 too, which proves the second

assertion. In order to complete the proof it remains to show that P^

is scalar. Now P is spectral, let P=P1P2—S+M where S is scalar and

M a generalized nilpotent. Let E( ) and F( ) be the resolutions of the

identity of P1 and P2 respectively. Denote E{λ\λ>ε1}=Eil and F{λ\λ

>ε2}=FH, then the spectrum of E.P^JP^SE^F^+ME^F^ on EεFhX
is contained in the set {λlλ^ε^} by the Gelfand theory. The operator

log (2£8lPi2?8aP2) is thus well defined and it is not difficult to show that

it is equal to log {E^PJ + log {EHP2). This sum is spectral by [1], p. 340,

and by Theorem 4 it is scalar. Thus EZίPλFHP2 is scalar and therefore

MEζFS2=0. By countable additivity MEQFQ=0 but P1EQ=P1 and P2F0

= P 2 . Thus
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but P1P2=S+Mf hence S+M=SEQF0, therefore S=SE0FQ and M = 0 by
Theorem 8 of [1]. Hence PτP2=S is a scalar operator.

REMARK. From Theorems 4 and 5 it follows that the sum or pro-
duct of two commuting spectral operators is spectral, if and only if, the
sum or product of their scalar parts is scalar.

A decomposition of a non-spectral operator A into real and imagi-
nary parts is possible in some cases.

THEOREM 6. Let A be an operator and σ(A)aK where K satisfies
1. There exists a function f which is analytic and one-to-one in a

neighborhood of K.
2. The image of K is a subset of the unit circle.
3. The inverse function of f exists and is analytic in a neighborhood

of the unit circle, let us denote this function by g.

4. g@)=g(z) if \z\ = l.
Then A—A^iA^ where σ{Aλ) and σ{A2) are sets of real numbers and
A1ila=il2il1. // A=B1+iB2 where Bλ and B2 satisfy the same conditions
then B1=A1+N and B2—A2+iN and N is a generalized nilpotent.

Proof. Let φ(z)=g(l/f(z)) then φ is analytic in a neighborhood of
K and for zeK, φ(z) = z. Define

d A-φ(A)
2 2 Ϊ ~ " 'A

A l 2
If SI is the full algebra generated by A and

is the real part of μ(A), and μ{Az) is the imaginary part of μ(̂ 4). Thus
the first part of the theorem is proved. The second part is proved as
in Theorem 1.

We conclude this section by a study of roots of operators. The
operator B is said to be an nth. root of A if Bn—A. The operators A
and B commute AB=BA=Bn+1. Let SI be the full algebra generated
by B. If μeΔ% then μ{B)n=μ{A) thus

Thus if Bn = I then σ(B)a {λ\λn=l} and hence is a finite set. By
Theorem VII. 3.20 of [3], B is spectral and by Theorem 3, B is a scalar
operator. Thus
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n-l

if kφj, and Σ£=J-E^ =/.

THEOREM 7. Let S be a scalar operator with real spectrum whose

resolution of the identity is E('). Let S1=\λ1/nE(dλ) where arg λι/n

= (arg λ)ln. If S2 satisfies S?=S, then σ(S2)a(σ(S))ι/n, and if σ(S2)c {λι/n\λ
eσ(S) and arg Λ1/W = (arg λ)fn} then

S2=Sτ+N and N=NE«β» and Nn=0 .

Proof The operators Sλ and S.z commute by [1] p. 329. Let 3ί be the
full algebra generated by them. If μeΔs^ then μ{Sι) — μ(S.^) and thus
S2—S1—N\^ a generalized nilpotent. Now

therefore

but by Corollary 4 of Theorem 1, Section 3, JS7S -̂1=O. Thus by Theorem
2 of §3, N=NE(ζθy)9 but then NSϊ=0 for every integer q. Instead of
(1) we have, therefore,

S=Sn

1+Nn or Nn = 0

which completes the proof.
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EUCLIDEAN AND WEAK UNIFORMITIES

J. R. ISBELL

Introduction. This paper is a study in the structure of some special
classes of uniform spaces. In outline, machinery is developed in suc-
cessive stages, roughly two stages. The first stage is illustrated by an
unsuccessful attack on the characterization of subspaces of Euclidean
spaces, in the usual uniform structure. The second stage leads to a
characterization of those uniform spaces which are subspaces of Eucli-
dean spaces in the finest structure consistent with the topology.

The main tool in the second stage is a covariant functor on uniform
spaces to uniform spaces which is closely analogous to the derivative,
the main tool employed by Ginsburg and the author in [4]. It yields
also a number of results which complement, and a couple which improve,
results of [4] and of [5].

That tool is inapplicable to the study of the usual Euclidean uniform
structure. The approach attempted is to get a subspace of En as the
inverse limit of the nerves of its uniform covering, or of any basis of
uniform coverings. Indeed there is a basis of coverings whose nerves
are uniformly equivalent to subspaces of En—Euclidean coverings, let us
say, and the nerves, Euclidean complexes—and in some sense one can
set up an inverse system of mappings on these nerves "uniformly"
within En. The contribution of this paper is to formalize this approach
and clear away imaginary difficulties, leaving the very real difficulties
of characterizing Euclidean complexes and formulating reasonable cri-
teria for a whole sequence of complexes connected by mappings to fit
smoothly in En. Beyond this, it is shown that for a simplicial complex
to be Euclidean, it is sufficient that its 1-skeleton should be Euclidean.

The author has profited from discussions of this material with Er-
nest Michael, G. D. Mostow, and Edward Nelson.

1. Coverings. We follow the usual practice of designating a topo-
logical space (X, T) by the abbreviation X. For a uniform space (X, μ)
we write μX. As is fairly well known, the uniformity is determined
by a knowledge of

(a) which relations in X are entourages, or
(b) which coverings of X are uniform, or
(c) which pseudometrics on X are uniformly continuous. In this
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paper we are concerned mostly with coverings, and therefore we adopt
the convention that μ is the family of all uniform coverings. It is
convenient to choose the convention according to which a uniform cover-
ing need not consist of open sets. Let us recall the defining conditions :
X is a completely regular topological space and μ is a family of cover-
ings of the set X such that

( i ) If u e μ and u is a refinement of v, then v e μ
(ii) The intersection u/w of two coverings in μ is in μ
(iii) Every covering in μ has a star-refinement in μ
(iv) If {Ua} e μ then the interiors UJ* form a covering and this

covering is in μ
(v) For any point x the stars of x with respect to coverings in μ

form a neighborhood basis at x. (The reader who is unfamiliar with
the terminology should consult Tukey. [10])

Recall the notation u<*v for " u is a star-refinement of v", and
St(A, u) for the star of a set A with respect to a covering u. A normal
sequence of coverings is a sequence (un) satisfying un+1*<un for all n.
Recall that a function is uniformly continuous if and only if the inverse
image of every uniform covering is uniform.

We need the fundamental result

1.0. For every uniform covering u of a uniform space μX there is
a uniformly continuous pseudometric d on μX such that for each x in X,
the set of all y such that d(x,y)<l is a subset of some element of u.
Exactly this result does not seem to be in print, though Bourbaki has
a proof [3] of the corresponding statement connecting entourages with
pseudometrics. It will suffice to sketch the similar proof of 1.0. Take
a normal sequence (un) of uniform coverings, with u°—u. For each x,
y, in X, let g(x, y) be 0 if St(x9 un) contains y for all n, 2 if St(x, un)
never contains y, and otherwise 2ι~n, where n is the largest index for
which yeSt(x,un). Let d(x>y) be the infimum of 1 and all the various
finite sums Σ 0GPί> Pί+i)> where pλ — x and pn—y. By the form of the
definition, d is a pseudometric. To see that d is uniformly continuous
on μXxμX, it suffices to observe that unxun is a uniform covering on
each element of which d varies no more than 2ι~n. Finally, suppose
Σι9(Pi> Pi+i)^l> Pi=x, Pn—y- If we pick p and q respectively so that

(1) p is the last p% such that g(p19 p2)+ +g(Vi-\> P*)^l/2, and
(2) q is the last p5 such that g(pif pi+1)H [-#(^-1,^)^1/2, then

computation shows that also g(pjf pj+ι)-\ Yg{pn-i, 2V)^l/2. If x and y
are not both in some element of uι, then one of the pairs (x, p), (p, q),
(q, y)j fails to be contained in any element of ιι\ Then induction leads
to a contradiction which completes the proof.

A family of functions fΛ all defined on one uniform space μX into
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one uniform space vY is equiuniformly continuous if for each uniform
covering v of vY there is a uniform covering u of μX which is at once
a refinement of all fa~\v). We wish to regard the nerve of a covering,
or any simplicial complex, as a uniform space in the structure in which
a mapping / into the complex is uniformly continuous if and only
if the functions fΛ, into the real line, which are the barycentric
coordinates of /, form an equiuniformly continuous family. This dictates
the following definition. A uniform complex μX is a simplicial complex
X consisting of points x with bary centric coordinates xΛ, provided with
the distance function d(x, y) = ma,x\xΛ —ya\, and the uniformity μ induced
by d.

In this paper the nerve N(u) of a covering u is always regarded as
a uniform complex. The general vertex of the nerve of {UΛ} is called
a. The star of a vertex ct0 is the union of the incident simplexes, that
is, the set of all points q in N({Ua}) with nonzero aoth coordinate. Note
that the stars of vertices always form an open covering {St(a)}f but this
covering is uniform if and only if the complex is finite-dimensional. For
any function h with values in a uniform complex, the coordinate func-
tions hΛ constitute a partition of unity. If {hΛ} is a partition of unity
subordinated to the covering {C7Λ}, this means precisely that for all a,
h'Ί(St(a))czUΛ. In the finite-dimensional case we may summarise as
follows. A covering w is realized by a mapping into a uniform space
if it is refined by the inverse image of some uniform covering. We
have

1.1. An equiuniformly continuous partition of unity subordinated to
a finite-dimensional uniform covering of a uniform space determines a
realization of the covering by a uniformly continuous mapping into its
nerve.

It should be noted that for infinite-dimensional complexes it might
well be desirable to employ a different uniformity, and perhaps even a
different topology. In this paper we shall be concerned only with finite-
dimensional complexes, and the choice of definitions is partially justified
by

1.2. THEOREM. TO every finite-dimensional uniform covering of a
uniform space there is subordinated an equiuniformly continuous parti-
tion of unity.

Proof. For every uniform covering u of μX there is a uniformly
continuous pseudometric cZ, as given by 1.0, such that each point x is
in at least one Uaeu which contains the sphere of <i-radius 1 about
x. If u is finite-dimensional, so that each x is in at most n sets UΛ,
consider the functions dΛ(x) — d(x, Y — Ua). For each x, ΣdΛ(x) is a
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finite sum and hence a definite real number e(x)*zl. Let fω{x)=dx{x)
!e(x). The functions fa form a partition of unity subordinated to u.
For any ε>0, the covering of X consisting of all apheres of d-radius e
is uniform and on such a sphere no fΛ varies more than Anε (by a com-
putation). Thus {fa,} is equiuniformly continuous.

It follows, of course, that a uniform covering can be realized by a
mapping into a Euclidean space if its nerve is uniformly equivalent to
a subspace of a Euclidean space. Let us call such a uniform complex
a Euclidean complex, and such a covering a Euclidean covering.

Smirnov has defined [9] a " uniform complex" as a geometric com-
plex if in a Euclidean space En such that the diameters of the simplexes
of K are bounded above and the distances between pairs of disjoint
simplexes of K are bounded away from zero. Because of the overlap-
ping terminology, it should be observed that an abstract complex K is
Euclidean, as defined above, if and only if it can be embedded in some En

as a uniform complex in the sense of Smirnov. The proof of " i f " is
trivial the converse is an exercise which we may omit, since it will
follow from 1.8.

A covering u is star-bounded, of density at most n, if each element
of u meets at most n other elements of u. (The term " star-bounded "
is due to Mostow [8], " d e n s i t y " to Boltyanski [1].) Obviously a star-
bounded covering is star-finite and finite-dimensional, but not conversely.
A collection v of sets is said to be discrete relative to a covering u if
no element of u meets two different elements of v. (Note that a subs-
pace of μX is discrete in the induced uniformity if and only if it is a
discrete collection of points relative to some covering in μ.) A covering
u may be a finite union of collections, u1, u2, , each of which is dis-
crete relative to u. Clearly such a covering is starbounded conversely.

1.3. Every star-bounded covering u is the union of finitely many
subcollections each of which is discrete relative to u.

Proof. In u={UΛ} let {U\} be a maximal subset such that no set
Ua meets more than one Uβ. Evidently {G]

β} is discrete relative to u.
Now in {£/*}, for each UQ, there are at most m sets UΛ meeting Uo,
and each of these meets at most m — 1 more sets Uy let this family of
l + m + ( m 2 — m ) or fewer sets be called Fo. Each Fa meets {Uβ}, since
otherwise Ua could be added to the supposedly maximal family. Having
u1— {Uβ},u\ ••• ,uk, let uk+ι be a maximal subset of {Ua} disjoint from
u1, • ••,%*, and such that no element of {Ua} meets more than one ele-
ment of nk+1. For each Ua which is not in u\ ---,uk, necessarily uk+1

meets FΛ (as above). Therefore if UΛ is not in u1, , u™\ then F# is
exhausted and TJΛ is in um*+1.
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REMARK. The properties just shown to be equivalent are graph-
theoretic, that is, they depend only on the 1-skeleton of the nerve of
the covering.

Tukey has defined a star-finite collection of coverings as a collection,
the union of any two of whose members is star-finite [9]. He proved
(though he states less) that a uniform star-finite covering has a uniform
star-refinement such that the union of the two coverings is star-finite,
and hence by induction one has a normal sequence which is a star-finite
collection [10, pp. 49-50]. Similarly we define a star-bounded collection
of coverings as a collection, the union of any two of whose members is
star-bounded the corresponding result is given below (1.6).

A Euclidean covering is star-bounded, and more. Let us say that
the covering u is of polynomial growth if there is a real polynomial P
such that, for each Ueu, for all natural numbers k, the number of
elements V of u such that there is a chain U=U0, Uu •••, Uk=V, all
Ui in u, UtnUi+1 nonempty for all i, is bounded by P(k).

1.4. Every Euclidean covering is of polynomial growth.

Proof Suppose the nerve N(u) is embedded in En by a uniform
equivalence. Let d be the distance function in N(u) and e(x, y) the
Euclidean distance between the images of x and y. There is ε>0 such
that d(x, y)^l implies e(x,y)^ε; and there is <5>0 such that d(x,y)^δ
implies e(x, y)^l. If x and y are vertices of N(u) corresponding to
members of u which are joined by a chain of length k, then e(x, y)^kjδ.
Then for each vertex x, the set of all such y is a set of points whose
mutual e-distances are all at least e, packed in a Euclidean sphere of
radius kfδ hence their number is bounded by a polynomial in k.

Call a covering linear if its nerve is uniformly equivalent to a sub-
space of the real line R.

1.5. A covering u is linear if and only if it can be indexed with
integers, %={Z74}, so that Um meets Un only if \n—m\^l. This is equi-
valent to the conditions that u is,

(a) countable,
(b) one-dimensional,
(c) acyclic,
(d) atriodic, that is, of density 2 or less, and
(e): ( i ) the nerve of u does not contain three disjoint half-lines

( i i ) if the nerve contains a whole line then it is connected
(iii) if the nerve contains two disjoint half-lines then it has only

finitely many components.
The proof is omitted. Note that connectedness implies (e).
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By a standard argument (cf. 1.1 of [4]) we obtain

1.6. Let the covering v be a star-refinement of u, that is, v<*u.
If u is

(a) star-bounded, or.
(b) of polynomial growth, or.
(c) linear, then there exists a covering w which also satisfies (a),

(b), or (c) such that v<w*<u. Further, u^w is star-bounded) thus if u
is a uniform star-bounded covering of a uniform space then there is a
star-bounded normal sequence of uniform coverings un such that uλ—u.

Proof. Let C be the set of all subsets γ of u such that there is at
least one point common to all the members of γ. For each ordered pair
(γ, δ) of elements of C, let Wy3 be the union of all Vev such that the
set of all elements of u which contain V is precisely γ, and the set of
all elements of u which contain St(V, v) is precisely δ. Let w={Wy8}.

Clearly v<w. For any nonempty Wyδ, δ is nonempty, and any V
which meets Wy8 is contained in every member of δ. Thus St( Wy8, w)a U
for any member U of δ, and w<*u.

If u is star-bounded of density m, then for each Wy8 choose Ue δ.
No Waβ can meet Wy8 unless every element of a and of β meets U;
therefore there are at most 22m such WΛβ, and w is star-bounded. Clearly
uυw is star-bounded, and the last statement of the theorem follows by
induction.

If the growth of u is bounded by a polynomial P{n), then u is star-
bounded of density m^P(l), and the growth of w is bounded by 22mp. It
may be of interest to note that this is a polynomial of the same degree
as P.

Now suppose u is linear. We must modify the above covering
{Wy5}. Observe that if WyB is not empty then each of γ and δ consists
of one or two elements. If u is indexed as in 1.5, u — {Un}, then
there are four possibilities :

(a) γ = δ={n}, for some n;
(b) r = - K n + l], δ=n
(c) γ = δ={n, n + 1}
(d) γ—{n, n + 1}, δ={n + l}. For each n, replace the two sets des-

cribed under (b) and (c) with their union. One readily verifies that the
modified w is a linear covering satisfying v<w<*u.

From 1.6 we may deduce that, for any uniformity μ, the set of all
star-bounded coverings in μ forms a basis for a uniformity, say bμ.
The axioms on coarsening ( i ) , intersection (ii), and interiors (iv) are
obvious star-refinement (iii) follows from 1.6, and the neighborhood
basis axiom (v) from the fact that every finite covering is star-bounded.
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Since the inverse image of a star-bounded covering, under any function,
is star-bounded, therefore when / : μX->γY is uniformly continuous,
/ : bμX-^bγY is also uniformly continuous. We summarize this (as in
[4]) in the slightly elliptical statement that 6 is a functor. All this
is true also for coverings of polynomial growth. However, linear cover-
ings do not in general suffice, for the set of all linear coverings in μ is
not closed under finite intersection. The finite intersections of linear
coverings in μ do form a basis for a uniformity, which is the familiar
uniformity cμ induced by real-valued uniformly continuous functions. To
see this it suffices to observe that, by 1.2 and 1.1, to every linear uni-
form covering u one may asssciate a mapping into N(u)aR which rea-
lizes u.

1.7. For any uniform space μX, the star-bounded coverings in μ, as
well as those of polynomial growth, form a basis for a uniformity con-
sistent with the topology. Both of these transformations are functors.
The weak uniformity cμ induced by the real-valued uniformly continuous
functions on μX has a basis consisting of all the Euclidean coverings in μ,
and a sub-basis consisting of all the linear coverings in μ.

The proof that Euclidean coverings from a basis for cμ is again by
1.2 and 1.1. Whether any purely combinatorial result sudh as 1.6 is
valid for Euclidean coverings is not known. (Of course 1.6 applies if
it is true that every countable covering of polynomial growth is Eucli-
dean.)

Let mEn denote Euclidean ^-space, mR the line, in the usual uni-
formity. Note that mEn is the product of n copies of mR. Beyond
this we may omit the " m" for the present, since no other uniformities
on these spaces are being considered.

1.8. THEOREM. A necessary and sufficient condition that a uniform
complex X be Euclidean is that the vertices of X may be identified with
a set of points in some En, any two of which are at distance greater than
1, so that the distances between pairs of vertices which are joined by an
edge (1—simplex) of X are bounded. In fact, this is the necessary and
sufficient condition that there exist a uniform equivalence φ of X into the
product of En and a cell of some dimension and φ may be taken to be
semilinear.

Proof. The necessity (both statements) is evident. Suppose con-
versely that / maps the vertices a of X into En, with the distance
from f(a) to f(β) greater than 1 for all aΦβ, and less than M when a
and β are joined by an edge. For any x = (xΛ) in X, define (φλ(x)9•••,

g(x) = nΣiXΛf(ά)e En. Evidently g is uniformly continuous.
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Let CΛ be the sphere of radius 2M+1 about g(a) let KΛ be the
least subcomplex of X which contains g~\Ca). The vertices of KΛ are
mapped by / into points of distance 1 or more from each other in a
sphere of radius 3M+1, and hence their number has a bound q+1.
Then each KΛ may be embedded by an isometry ka in the abstract q-
dimensional simplex embedding the simplex in a cell in Eq, we obtain
mappings hΛ : KΛ->Eq which are semilinear uniform equivalences, having
a common modulus of continuity, and such that the mappings ha,'1 have
a common modulus of continuity. Define an extension ia of ha over X
as follows : every x in X can be expressed uniquely as a convex com-
bination ty+(l — i)z, where y is in the subcomplex KΛ and z has coor-
dinate £β = 0 for all β in KΛ let ia(x) = thoύ(y). Then {i*} is an equiuni-
formly continuous family of semilinear mappings. Further, there is a
cell in Eq which contains all their ranges.

Finally, {g(KΛ)} is a star-bounded covering of g(X)9 and thus, by
1.3, it is a union of subcollections vι, ", v8, each discrete relative to
the whole covering. For i = l , « ,s, let d3= ^[ialgiK^ev1]. Observe
that on each star St(β) in X, d3 coincides with one iΛ (that is, at most
one fails to vanish; for St(β)aKβ, and g(Kβ) meets at most one g{KΛ)
in vj). Therefore d3: X-^Eq is uniformly continuous. The definition of
φ : X-+En+qs is completed by putting (φk(x))f n + (j—l)q+l ^ k <Ln+ jq,
equal to the vector dό{x), for each j=l, « ,s.

We have a uniformly continuous semilinear mapping <p of X into
the product of En and a gs-dimensional cell. Uniform continuity of ψ~x

means that for each ε>0 there is £>0 such that two points at distance
>ε in X are mapped by φ into points at distance >d. For any two
points, x,y, in X, either g maps them into points at distance > 1 (and
so does <p), or they lie in a common KΛ. But then some d5 coincides on
KΛ with the embedding ha. Thus φ is a uniform equivalence.

1.9. COROLLARY. // the 1-skelton of a uniform complex X is Eu-
clidean then X is Euclidean.

1.10. THEOREM. The following conditions on a uniform complex X
are equivalent.

(a) X is a countable, star-finite, finite-dimensional complex.
(b) X is a locally compact, σ -compact, finite-dimensional space.
(c) X is homeomorphic with a closed subset of a Euclidean space.
(d) There is a distance-increasing homeomorphism of X into a Eu-

clidean space.
(e) There is a uniformly continuous homeomorphism of X upon a

closed subset of a Euclidean space.



EUCLIDEAN AND WEAK UNIFORMITIES 75

Proof. The implications (e)=Φ(c), (d)=Φ(c), and (c)=φ(b)=^(a), are evi-
dent. From the hypothesis (a) that X is a countable star-finite uniform
complex of dimension n, we shall construct the mappings of X into
E2n+3 required for (d) and (e). Clearly it suffices to construct such a
mapping into E2n+2 for each component of X. Let Y be a component
of X, and let φ be a one-to-one semilinear mapping of Y into E2n+1.
(To construct φ it suffices to map the vertices of Y upon a set of points
in general position in E2n+1.) Since Y is star-finite, φ is continuous.

Choose a vertex Yo of the complex Y and let f0 be a one-to-one
semilinear mapping of Y into E2n+2 which sends Yo to the origin and all
of Y into the hyperplane ^ = 0. Let Yx be the subcomplex which is the
closure of the star of Yo inductively let Yk+ι be the subcomplex span-
ned by Yk and the vertices which are joined to Yk by 1-cells of Y.
Since Y is star-finite, each Yk is a finite complex and since Y is con-
nected, the union of all Yk is Y. Let Zk be the span of the vertices
not in Yk. For each k, each point p of Y can be written uniquely (in
barycentric coordinates) as λp1+(\ — λ)p29 with λ and 1 — λ nonnegative,
pτ in Yk9 p.λ in Zk% Inductively, let fk be a piecewise linear one-to-one
mapping of Y into E2n+2, sending Y into the half space x^ck and Zk.x

into the hyperplane xλ — ck and increasing distances in Yk. Write fk(p)
=9(P) + HP)> where g(p) is the projection of fk(p) on the #L-axis, h(p)
the projection on a?1 = 0. For p in ZΛ, fk+ι(p) is to be <xg(p)+βh(p), where
α and /9 are large constants to be determined. For p in Yk,fk+ι(p)
=fk(p)'> a n d f ° r general ? 9 = ^ + (1 — )̂̂ 2 (as above), fk+ι(p) must be
/̂fc+i(Pi) + (l~~^)/fc+ife) On Zjct 9 ίs constant, and Λ is one-to-one, piece-

wise linear, and continuous. The common part of Zk and Yk+ι is a
finite complex, and hence there exists β so large that βh increases dis-
tances on this complex. Similarly, if a and β are large enough, fk+1

will increase distances on Yk+1, and the induction runs. Finally we have
a sequence (fk) of continuous mappings of Y into E2n+2, converging locally
uniformly to a limit ψ. Then ψ is continuous and ψ increases distances,
which implies that φ"1 is continuous. Thus (a) implies (d).

Since each Yk is compact, one can go back and modify the constants
a and β at each step so as to end with a uniformly continuous homeo-
morphism g upon an image which is not necessarily a closed set. De-
fine a real-valued function h on Γ a s follows. For the distinguished
vertex Yo, h(Y0) = 0. For any other point y there is just one k such that
y is in Yk+ι but not in yk and there is a unique relation y = λpι + (l — λ)p2y

pιeYk1p2eZk. Let h(y) = k+l — λ. Evidently h is uniformly continuous.
Let h'{y) be the point in E2n+2 whose first coordinate is h(y), with all
other coordinates zero then g + h' is a uniformly continuous homeomor-
phism upon a closed set. This completes the proof.

The complexes satisfying (d) (in slightly different words) are called
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Lebesgue complexes by Smirnov. [9] Evidently in any fixed En, (d) and
(e) are not equivalent (if n>l).

2. Bases. This section is primarily a discussion of the subspaces
of the line mR, including a characterization it concludes with a formu-
lation of the same approach to subspaces of mEn.

Let us first suppose given the topological space R, and characterize
m among its uniformities. Evidently m is

(a) metric, that is, it has a countable basis of coverings. It has
(b) a star-bounded basis, and it is
(c) uniformly locally connected, that is, there is a basis of cover-

ings whose elements are connected sets. We shall see that these pro-
perties are shared by m only with the uniformities induced by metrizing
R as (0,1) or as a half-infinite interval thus m can be characterized
by adding the condition (d): the space is complete.

These are evidently not the conditions to apply to subspaces of mR,
(c) being invalid. We shall have to replace (c) with some sort of con-
ditions on the nerves of the coverings. It is not enough to say (c')
there is a basis of linear coverings, even on the topological space R.
This is shown by the following subspace of πiE2. Take the half-line
consisting of all points (%, 0), x<3, and for % = 3, 4, •••, take the four
line segments running successively from (n,0) to (n+l — 3ln,l) to (n
+ 1—2/rc, 0) to (rc + l-l/w, 1) to (rc + 1, 0). A sketch shows that this
metric space satisfies conditions (a), (b), (c')> and (d), but not (c) it is
homeomorphic but not uniformly equivalent to mR.

We have indicated some uniformities on R satisfying (a), (b), and
(c), but not (d). For (a), (c), and (d), consider the following distance
function/. For notational convenience let e indicate e(x,y)—\x—y\;
let min (x1y) — m. If β^l, or if m^gl, then f(x,y) = e; otherwise f(x,
y) — eι/m. Finally, to construct a nonmetric uniformity on R satisfying
(b), (c), and (d), let (an) designate a (variable) sequence of positive num-
bers coverging to zero. For each natural number m, define the covering
n{m, (an)) to consist of the following intervals.

( 1 ) For every integer t such that neither t — l,t, nor ί + 1 is a
positive integral multiple of m, the interval (t~ 1/m, ί + l/m).

(2) For each positive integer n, the intervals (n+an, n + 2lm) and
(n — 2/m, n—an).

( 3 ) For —πi^t^πiy and for all n, the intervals (n+(t — ljm)an, n
+ (ί + l/m)αn). Consider the collection of all u(m, (an)) such that m^4
and an<llm+l for all n. One readily verifies that this collection is a
basis of a uniformity having the required properties. One may note
also that all the above examples have bases consisting of linear coverings.
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2.1. Every uniformly locally connected metric space which is homeo-
morphic to the real line R and has a star-bounded basis of uniform cover-
ings is uniformly equivalent either to mR or to an open interval of mR.

Proof. We may call the space μR it is required to construct a
uniform equivalence of μR into mR. We are given a countable basis
{un\ for μ, a star-bounded basis {v*}, and also a basis consisting of
coverings with connected elements. The interiors of these connected
sets are open intervals, still forming uniform coverings, which still con-
stitute a basis {w3}. If for each n we choose wn refining un, we have
a countable basis of coverings with open intervals. Evidently we may
suppose each wn+1 is a star-refinement of vf (since some wn+k is), and
we may suppose wι<vct> for some a. Next we interpolate linear cover-
ings zn consisting of open intervals, wn+1<zn<wn, as follows. Choose
a point p and let Zo

n be St(p, wn+1). Evidently Zo

n is an open interval
(pL, (ft). Having points pk and qk, define Zl as St(qk, wn+ι) and Z71^ as
St(pk, wn+1). At some stage an improper interval may be obtained, so
that pk or qk does not exist in that case omit so much of the construc-
tion as involves the missing points. Evidently the union of all zϊ* n

fixed, k = 0, ± 1 , ••• , is a nonempty open and closed subset of R, hence
all of R. Since every intervel in wn+

τ contains at most one of the
points p, pk, qky wn+1<zn={Zt} and since wn+λ<*wn, hence zn<wn.
Clearly zn is linear.

To see that {zn} is a star-bounded family, consider any m<n. Each
element of zn meets at most two other elements of zn and at most three
elements of zm. Thus if zmuzn is not star-bounded then there exist sets
Z in zm meeting arbitrarily many elements of zn. A fortiori there exist
sets V in va meeting arbitrarily many elements of zn. Since zn is linear,
one can find for each positive integer r a set Vev" countaining r points,
no two of which lie in a common element of zn. But there is a cover-
ing vβ<zn such that v*uvβ is star-bounded, since the v's form a star-
bounded basis. The contradiction establishes that zmuzn is star-bounded
and the family {zn} is a countable star-bounded basis consisting of linear
coverings each of which consists of open intervals.

Now index the elements of zn with rational numbers s, zn—{Zn

s}, as
follows. For n — 1, the values of s are the integers k assigned above;
thus Zn

s does not meet Zn

t if \s — t\>l. Having indexed zn, consider each
Zf. There is a next rational number t>s such that some element of zn

is called Zn

t, except possibly for one (greatest) value of s if there is
such en exceptional s, assign to it the value t=s + 2~n. There are fini-
tely many elements Z of zn+1 such that s is the least index such that
ZaZn

&\ and the number of them, h(s) is a bounded function of s (n
fixed). Furthermore, exactly one of them meets an element of zn+1
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which is contained in the next Z\ before Zn

s (with a possible exception
if there is no such q) and exactly one meets an element of zn+1 which
is contained in Zf but not in Z™. Index these elements of zn+1 in order
from Zn

q toward Zn

t as Z?+1, for i=s, s+(t-s,lh(s)), . ,t-(t~s)/h(s) (equal
steps). This completes the indexing. Then routine computation shows
that for each point x in μR, the numbers gn(%) = max [s\xeZ™] converge
to a limit g(x), and that g is a uniformly continuous function realizing
all of the coverings zn. Since {zn} is a basis, g is one-to-one and g is a
uniform equivalence.

If one tries to carry out the construction of 2.1 on the example
given previously of a complete metric space homeomorphic to R having
a star-bounded basis of linear uniform coverings, it breaks down because
ultimately zn+1 must be " crooked " in zn. It is not crooked in the strong
sense familiar from the construction of the pseudo-arc indeed, with a
suitable choice, one can arrange that near any point in the space almost
all zn+1 are " s t ra ight " in zn. Up to some critical value N the chains
zn follow an approximating smooth path then zN+1 and all subsequent
zn follow the kinds in the curve. This means that we must impose a
very strong straightness condition in order to characterize the subspaces
of mR. Let us use the term chain in u for a subset of a covering u
whose elements correspond to the vertices of a chain of edges in N(u).

2.2. The following conditions on a uniform space μX are necessary
and sufficient in order that μX should be uniformly equivalent to a sub-
space of mR.

(a) μ has a basis which is a countable sequence of linear coverings
un, with un+1<un, such that (1) if (U19 , Up) is a chain in un+1, with
U1 and Up both contained in one element U of un, then all Ut are contained
in U and (2) if (Uly , Up) and (Vi, , Vq) are two chains in un+1

having no common elements, some element U of un contains both Uι and
V19 and some element V of un contains both Up and Vq, then U meets V.

(b) μ has a star-bounded basis.
The necessity of the conditions is obvious, and the proof of suffi-

ciency is an easy modification of 2.1. However, the proof as given
above does not look ready to be generalized to En. We conclude this
section with some easily proved remarks outlining another version which
might have brighter prospects.

First, it suffices to work with the completion. Second, if a complete
uniform space has a countable basis consisting of finite-dimensional
coverings, (a) there is a natural inverse system of semilinear mappings
on the nerves of these coverings, and (b) the space is the inverse limit
of this system. I have in mind the mappings defined, for a sequence
{un}, un+1<*un, as follows. Since un is finite-dimensional, each element
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UΛ of un+1 is contained in only finitely many elements of un, and the
corresponding vertices in N(un) span a simplex the vertex a of N(un+1)
can be taken to the center of gravity of that simplex, in a uniformly
continuous semilinear mapping. Third, if all the nerves can be em-
bedded in one complete space in such a way that the mappings
N(un+ι)-^N(un) move no point more than en, where en-^0, then of course
the inverse limit space is embedded in the same containing space. This
is clearly possible under the hypotheses of 2.2.

3. The weak derivative. In this section we describe an operation
on uniformities which generalizes the passage from the usual uniformity
m on a Euclidean space to the finest uniformity a. It is not known
whether this operation is applicable to general uniformities1 the main
results of this section apply only to weak uniformities induced by fami-
lies of real-valued functions.

For any weak uniformity //ona space X, we define the weak de-
rivative wμ of μ as the family of all coverings of X which have a
refinement of the form {U*Γ\V?}, where {£/*} is a covering in μ and
the families F"={F?}, for each α, are finite coverings in μ of bounded
dimension. (This is a modification of an operation called the derivative in
[4]. We might as well have required v* only to cover the subspace
UΛ the equivalence follows from the simple proposition 3.6 below.) If
we recall that since μ is a weak uniformity, the covering {UΛ} may be
supposed Euclidean, we see that the typical covering {UΛ{λV°ί} is (1)
uniformly locally uniform (on μX), (2) uniformly locally finite, and (3)
finite-dimensional.

The proof that wμ is a uniformity will be a demonstration that wμ
is the weak uniformity induced by a certain family of functions. Let
C(μX) denote the family of all real-valued uniformly continuous functions
on μX (uniformly continuous into wfi). The term composition will be
used with the specific meaning of a functional composition #C/i ,jQ,
where f19 , fnj are in C(μX) and g is any continuous real-valued func-
tion on En. In particular, the family of all such functions on X to R
is the closure, under composition, of C(μX). (Cf. [5].)

3.1. For each Euclidean space En, the weak derivative of the usual
metric uniformity, m, is the finest uniformity consistent with the topology

1. Specifically, applying the definition of wμ in the next paragraph to a general

uniformity μ, it is not known wheter wμ is always a uniformity in the present sense.

The referee points out that it is certainly a regular uniformity in the sense of Morita and

[7]; and there is a non-trivial theory of such structures. In that theory, the referee

observes, 3.5 is valid without restriction on μ.
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that is, the uniformity a defined by all open coverings.

Proof Evidently any covering in wm has an open refinement.
Conversely, for any open covering { Wy} of En, consider a uniform cover-
ing {Uro} consisting of closed metric spheres. Since each Ua is a com-
pact space, there is a finite uniform covering {G"\ of UΛ refining the
open covering {UaΠ TΓ7|all γ). We may take {Gf} ^-dimensional. Let
pa be the center of the sphere UΛ, and for each Gf meeting the bound-
ary B of Ua, let V* consist of G? together with all points q outside Ua

such that the intersection of the segment pq with B is a point of G?
otherwise let Vf — Gf. Evidently {V*} is a uniform finite ^-dimensional
covering of mEn, and {UaΓ\ V*} is a refinement of {Wy}. Thus wmEn

3.2. For any open covering u of a Euclidean space En, there is a
homeomorphism of En onto itself which takes u onto a uniform covering
of mEn.

This is obvious.

3.3. THEOREM. The weak derivative of a weak uniformity is a weak
uniformity. Specifically, if μ is weak, then wμ is the weak uniformity
induced by the closure under composition of C(μX).

Proof. If f19 •••,/„, are in C(μX)y g : En-*R is continuous, and u
is any uniform (even any open) covering of R, then the inverse image
of u under g is uniform in aEn — wmEn and hence the inverse image of
u under g(f19 ffn) is in the family of coverings wμ' Evidently wμ is
closed under intersection therefore wμ contains the weak uniformity
induced by the closure under composition of C(μX).

Conversely, since μ is weak, each covering {Z7ΛΠ V"} in wμ may be
refined by a covering {U3Γ\ V{} so that the following is true. There is
a uniformly continuous function / : μX-+mEn realizing {U3}. Each vj

= {V{} is finite and at most fc-dimensional and is realized by a bounded
uniformly continuous function gό\ μX->mEq (here q = 2h+l). Also, {U3}
is star-bounded and can be written as the union of p relatively discrete
subcollections ur and finally, {Uj} is countable. We shall construct a
mapping h of μX into (n+pq) — space.

Choose positive numbers c3 such that Cj\gj(x)\<2~j for all x. For
each j , let dό be a uniformly continuous real-valued function on μX with
values in [0, c j , vanishing outside the star of Uj and having the constant
value Cj on U5. For each x, define the first n coordinates of h(x) to be
the coordinates of f(x). Let the q coordinates of h(x) from the (n + q(r — l)
+ l)th through the (n + qr)th be JL\dj{x)gj{x)\Ujenr'\.
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Since the series Σ ^ I I Λ I I converges (absolutely), h: μX-+mEs(s=n
+pq) is uniformly continuous. It is clear from the construction that h :
X->aEs realizes {UjΠ V{}=z, that is, z is refined by the inverse image
of some open covering. By 3.2, there is a continuous function T: ES->ES

such that T(h): X->mEs realizes z. But each coordinate of T(h) is a
composition of a continuous coordinate projection of T with the uni-
formly continuous coordinates of h, and the proof is complete.

From an approximation theorem proved in [5, Theorem 1.7] we have

3.4. COROLLARY. C(wμX) contains all the compositions g(f, ,/ w ),
g continuous and ft in C(μX), and consists of all uniform limits of such
compositions.

In [5] there is an example of a family of functions A such that the
uniform closure of the closure under composition of A is not itself closed
under composition. That example A is not C(μX) for any μ, but this
is inessential. We describe an example of a uniform space μX such that
μ is weak and w(wμ)Φwμ, omitting the details of the verification.

Example. Let X be the set of all ordered triples (i, j, k) of posi-
tive integers, with the discrete topology. Let μ be the set of all cover-
ings u of X such that (1) for some n', for each n>nf, there is an
element Un of u which contains all (n,j,k); and (2) for each n (tin'),
for some m\ for each m>mf there is an element Unm of u which con-
tains all (n, m, k,). Observe that μ has a basis consisting of discrete
coverings thus μ is weak, and wμ and wwμ can be computed without
worrying about dimension. One may verify that a covering u is in wμ
if and only if (a) for each n there is m!—m!(n) such that for each m
>m' there are finitely many elements of u whose union contains all (n,
m, k), and (b) for some n\ for each n>n\ ( i ) there are finitely many
elements of u whose union contains all (n, j, k), and (ii) for each m
>m\ri) all points (n, m, k) are in one element of u. Then wwμ is deter-
mined by the conditions (a) and (b), ( i ) ; in particular, wwμΦwμ.

Powers of w are defined by w^^ — ww0" for limit ordinals ayw
Λμ is

the union of the increasing sequence of families of coverings wβμ, β<a.
Since the uniformities wΛμ are successively finer, there must be an a
such that wΛ+1μ = w*μ. (By 3.4, the first uncountable ordinal is such
an a.)

3.5. Applied to uniform spaces with weak uniformities, the weak
derivative and all its powers are functors commuting with completion.

Proof If / : μX->vY is uniformly continuous then, since f~λ pre-
serves finiteness and dimension of coverings, / : wμX-^wvY is uniformly
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continuous thus w is a functor. If F is a Cauchy filter in μX and
{UaPi Vϊ} a typical covering in wμ, then JP7 contains some Ua and, for
that a, some V? being a filter, i'1 contains Z7β n V*. Thus the same
filters are Cauchy in μ and in wμ, and the completions πμX and πwμX
have the same points. Obviously every covering in wπμ is in πwμ the
converse is a routine application of Morita's demonstration [7 Lemma
7, Th. 3, Th. 9] that every uniform covering {Vβ} of μX can be ex-
tended to a uniform covering {Vβ} of πμX such that F β = F | i l l and
the correspondence Fβ<—>Vβ preserves the nerve. Thus πw = WTΓ.
Therefore if w* is a functor commuting with π, so is w*+1. The proof
is completed by the observation that every covering inw*, for a a limit
ordinal, is already in some wβ for β<a.

The next four propositions amount to a closer analysis of the theo-
rem of [5] that if C(μX) is closed under composition then for any sub-
space Y of X, in the induced uniformity μ%, C(μ*Y) contains only the
restrictions of function in C(μX).

3.6. Let μ*Y be a subspace of μX, and {Ϊ7J a finite uniform cover-
ing of μ*Y of dimension k. There is a finite uniform covering {Vό} of
μX, of dimension 2&+1 or less, such that {VόΓ\Y} is a refinement of

{£>,}.

3.7. The weak derivative preserves subspaces that is, if μ*Y is a
subspace of μX (and μ is weak) then the uniformity induced on Y by wμ
is wμ%.

3.8. If f is a real-valued function on Xy μ a iveak uniformity on
X, and {Ua} a uniform covering of μX such that on each UΛ, f is bounded
and uniformly continuous, then f is uniformly continuous on wμX.

3.9. If μ*Y is a subspace of μX (μ a weak uniformity) and f a uni-
formly continuous real-valued function on μ* Y, then f has an extension
in C(wμX).

Proof of 3.6. This is a corollary of a theorem of Katetov [6]:
every bounded real-valued uniformly continuous function on a subspace
of any uniform space has a bounded uniformly continuous extension over
the whole space. If {Z7J is a finite ^-dimensional covering of μ*YaμX,
then {Ut} cen be realized by a mapping into a compact subset of E''k+1

each coordinate can be extended, by Katetov's theorem, and the con-
clusion follows.

Proof of 3.7. If μ*Y is a subspace of μX and {UaΠ Vf} a typical
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covering in wμ, then {UΛΓ\Y} is in μ*9 the coverings y*={VϊΓ\Y} are
finite coverings in /** of bounded dimension, and hence {Uaf)VΐΓ[Y} is
in wμ*. The converse is clear in the light of 3.6.

Proof of 3.8. If / is bounded and uniformly continuous on each
element of the uniform covering {[7a,}, then the inverse image of any
uniform covering of mR is refined by a covering {Z7αn F?}, where for
each a9 {Vf} is a uniform finite 1-dimensional covering of the subspace
UΛ. By 3.6, each {Vf} may be extended to a uniform finite 3-dimen-
sional covering of μX, and hence / is uniformly continuous on wμX.
(Actually, by the method of 3.6, these coverings {Ff} maybe extended
so as to remain 1-dimensional.)

We may note that the hypothesis that μ is weak was not needed
for these proofs thus if w can be satisfactorily interpreted for more
general spaces, 3.7 and 3.8 will carry over. (Cf. the footnote.1) The
hypothesis will be used for 3.9, though one could avoid it by a use of
results of [4]. It should be noted that the proof of 3.9 is almost the
same as the proof of a similar extension theorem in [4].

Proof of 3.9. Note first (*) that a function h which is defined on
a uniform space pA into a uniform space σB, and uniformly continuous
on each of a finite family of subspaces of pA which make up a uniform
covering, is uniformly continuous on pA. Now consider the given hypo-
thesis, / : μ*Y-+mR uniformly continuous, μ*Y a subspace of μX. Let
Vn=f-1((n-l,n + l)) in Y, and let Un= Vnυ(X~ Y). Since {Vn} is in
μ*, therefore {Un} is in μ. Since μ is weak, {Un} has a countable uni-
form star-refinement {Wι}=w.

The function / is defined, in particular, on the subspace YnSt(W19

w) of the space St(Wl9w)n(YuW^). On that subspace / is uniformly
continuous and, since St(Wl9w)czUn for some n, f is bounded there.
By Katetov's theorem [6] there is a bounded uniformly continuous func-
tion gλ on St(W19 w)n(YuW1) to mR, such that g1 and / agree on their
common domain YnSt(Wl9 w). Therefore, by (*), the function f on
YuWi whose values are those of / and of gx is uniformity induced by

μ)
Having extended / to fn, defined on the union of Y and Wlf •••,

Wn, uniformly continuous there, and bounded on each Wni1 one con-
structs by the same argument an extension fn+1 which is defined on
Wn+1 also. By induction one has a well-defined function / extending /
over all of X. On each Wi9 f agrees with ft and thus is bounded and
uniformly continuous. By 3.8, / is uniformly continuous on wμX.

The next result is also based on a similar theorem in [4]. Let us



84 J. R. ISBELL

quote a lemma [4, proposition 2.3]: every uniform space which is not
precompact has an infinite uniformly discrete subspace.

3.10. For a metric space μX, μ can be finer than the weak deriva-
tive of some weak uniformity v on X only if ( 1 ) the set C of all non-
isolated points of X forms a precompact subspace of μX, and ( 2) for any
complete subset S of X—C, the distances of different points of S are
bounded away from zero. Unless X has uncountably many isolated points,
these conditions imply that μ is a weak uniformity and μ—wμ.

Proof First suppose that μX satisfies ( 1 ) and ( 2 ) and has only
countably many isolated points. Then every uniform covering has a
uniform refinement which consists of a finite covering of an ε-neighbor-
hood of C and a countable discrete covering of the rest of X; thus μ
is a weak uniformity. Consider the completion πμX of μX. If πμ is
not the finest uniformity consistent with the topology, then there is a
non-uniform open covering {Ua}. This means that there is a sequence
of points zn such that for each n, no Ua contains the sphere of radius
2~n about zn. Since X is a dense subspace, we may choose xn in X
within distance 2rn of zΛ, so that no Ua contains the 21~w-sphere about
xn. Since {Ua} is an open covering, the sequence (xn) can have no ac-
cumulation point in πμX. Since C is precompact, it is not possible that
infinitely many xn are in C. Then we may choose a subsequence—to
simplify notation, suppose it is the whole sequence—so that {xn} is an
infinite subset of X— C, which is closed in πμX and thus complete, but
such that no Ua contains the 21~w-sphere about xn. This means that we
can choose yn in X within distance 2}~n of xn, so that no UΛ contains
the 22~w-sphere about yn. It is therefore impossible (as before) that in-
finitely many yn are in C. But now we have a complete subset of X
— C, consisting of all the xn and all but finitely many yn, in which dis-
tances are not bounded from zero. The contradiction proves the unte-
nability of the hypothesis that πμ is not the finest uniformity consistent
with the topology of πμX. It follows that wπμ—πμ, and since w preser-
ves subspaces, wμ — μ.

Suppose next that μ is finer than wv for some v, but C is not pre-
compact in the uniformity induced by μ. Since w preserves subspaces,
it is clear that C is not precompact in vX either. Therefore C has an
infinite uniformly discrete (in vX) subspace, by the proposition 2.3 of
[4] which was pointed out above. This means there are an infinite sub-
set {Xi} of C and a covering u in v such that the sets St(xi9 u) are
disjoint. Choose v<*u in v, so that the sets St = St(xifv) form a uni-
formly discrete collection. Choose points zt in Sif z%Φxu such that for
some metric d inducing the uniformity μ, d(zίy #$) converges to zero. For
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each i9 there is a bounded uniformly continuous real-valued function f
on vX such that/ ΐ(a? ΐ) = 0>/*(2Jί) = l> a n d on X~Sίyft is identically 1. De-
fine the real-valued function g on X as follows : if x is in some Si9 g(x)
=ft(x); if x is in no Sl9 g(x) = l. Then on every element of v, g coin-
cides with some ft therefore by 3.8, g is uniformly continuous on wvX.
Supposedly wv is coarser than the metric uniformity μ but since (dzu

xt) converges to zero while g{zi)—g{xi) — l, this is absurd. There re-
mains the possibility that μ~Dwv and X contains a complete set of iso-
lated points S which contains a sequence of pairs (xit yt) such that d(xi9

2/ί) converges to zero but evidently the above argument can be repeated
in the set consisting of all x% and yi9 to lead to the same contradiction.

A corollary of 3.10 is that in the sequence of uniformities μ9 wμ9

w2μ, •••, at most two can be metric, the first and the last.

3.11. // / : μX->mEn is a uniformly continuous homeomorphism
upon a closed set, and μ is weak, then f: ιvμX->aEn is a uniform equi-
valence.

Proof We have that / : ιvμX->aEn is uniformly continuous. Let
v7 be the image of X, regarded as a subspace of aEn. Since / is a
homeomorphism, every open covering of X is the inverse image of an
open covering of Y; since Y is closed in En, every open covering of Y
is in v. Therefore every open covering of X (a fortiori, every uniform
covering of wμX) is realized by / : wμX—>vY. Thus / is a uniform
equivalence.

3.12. THEOREM. A uniform space μX is uniformly equivalent to a
[closed] subspace of aEn, for some n, if and only if ( 1 ) μ is a weak uni-
formity, ( 2 ) μ — wμ, and ( 3 ) μX has a uniform covering whose elements
are precompact [compact] metric speces which have finite-dimensional com-
pletions of bounded dimension.

Proof. Since w preserves subspaces, the necessity of the conditions
is evident. Since w commutes with completion, it suffices to prove the
sufficiency in case μX is complete and by 3.11, it suffices to construct
a uniformly continuous homeomorphism upon a closed set. We may
replace the covering given by ( 3 ) with a Euclidean refinement u={Ut}9

realized by a uniformly continuous mapping / : μX-*mEn, and parti-
tioned into p discrete subcollections ur. Each Ut is a compact ά-dimen-
sional metric space and hence is homeomorphic to a bounded subset of
Eq,q = 2k+1. It remains to build a mapping into (n+pq) — space, as in
3.3.

Let ei be a homeomorphism of Ui into Eq

9 gh a bounded uniformly



86 J. R. ISBELL

continuous extension of e% over μX. Let d% be a uniformly continuous
function on μX with values in [0,1], vanishing outside the star of Uί

and identically 1 on f/j. For each x, let the first n coordinates of h(x)
be those of f{x) let the (n + q(i—l) + l)th through (n + qr)th coordinates
form the vector 'Σldi(x)gί(x)\Uίeur]. On each Ui9 h is a finite sum and
thus is uniformly continuous therefore by 3.8, h is uniformly continu-
ous on μX. On each Uif hence on X, h is a homeomorphism. Finally,
since / realizes u, the sets h(Ui) form a locally finite collection of com-
pact sets, and therefore their union is closed. By 3.11, the proof is
complete.
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MANY SERVER QUEUEING PROCESSES WITH

POISSON INPUT AND EXPONENTIAL

SERVICE TIMES

SAMUEL KARLIN and JAMES MCGREGOR

1. Introduction. A birth and death process is a stationary Markoff
process whose state space is the non-negative integers and whose transi-
tion probability matrix

(1.1) PtJ(t) = Pτ{x(t)=j\x(O)=i}

satisfies the conditions (as £-»0)

ntt+o(t) if i = i + l ,

(1.2) pίj(t)= μίt+o(t) if j=i-l ,

ll-(Λi+Λ)ί+o(ί) if j=i,

where ^ > 0 for i^O, μt>0 for i ^ l , and μύ^0. The process is called
a queueing process if μQ — 0 and l~λ for all i. The state of the system
is then interpreted as the length of a queue for which the inter-arrival
times have a negative exponential distribution with parameter λ, and
for which the service times have a negative exponential distribution
whose parameter μn depends on the length of the line. The classical
case of a single server queue corresponds to μn—μ, n^l, and has been
discussed by Reuter and Lederman [9] and Bailey [1].

The so-called telephone trunking problem (Feller [3]) arises from
a queueing process with infinitely many servers, each of whose service
time distribution has the same parameter μ, so that μn — nμ, n^l. Be-
sides these two special cases, we discuss a queue with n servers, each
of whose service time has a negative exponential distribution with the
same parameter μ, so that μk — kμ for l<^k^n, μk — nμ for k^n. Our
methods can also be used to study queueing processes with several
servers whose service times have negative exponential distributions not
all with the same parameter.

A sample of the type of problems treated is as follows :
(1) to obtain a usable formula for the transition probability PiΛ{t) \
(2) to compute the distribution of the length of a busy period
(3) to compute the distribution of the number of customers served

during a busy period
(4) to compute the distribution of the maximum length of the

queue during a busy period and similar questions.

Received May 29, 1957.
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At this point it would be of some interest to tie the investigations
of this paper together with the other work in this field. It is impor-
tant to emphasize that we are concerned primarily with the analysis of
non-stationary problems associated with the n server queuing process.
The equilibrium distribution of length of line for the case of exponential
service time and Poisson input is trivial to determine. The equilibrium
situation for the general input process with exponential service time and
n servers was completely resolved by Kendall [7] who, in addition,
evaluated explicitly the distribution of waiting time for a randomly ar-
riving customer. A non-constructive existence theorem for the stationary
distribution of a general input process and a general service time distri-
bution was given in [8]. In contrast, a considerable amount of insight
regarding transient behavior has been attained in the case of the one
server queue. For an elegant treatment of this case the reader is re-
ferred to the work of Takacs [10].

Part of the significance in resolving the problems related to the n
server queue even subject to the special assumptions of exponential
service time and Poisson input, in addition to its independent interest,
rests on the following two observations :

(1) the general queueing process with the corresponding appropriate
parameters behaves on an average like the exponential case, and

(2) the solution for the exponential case may be suggestive as to
the nature of the answers in the general case.

Our detailed analysis regarding queueing processes with exponential
service time, Poisson input, and many servers derives from our know-
ledge of the refined structure of birth and death processes developed in
[4] and [5]. We rely primarily on the theory of recurrence and absorp-
tion for a birth and death process as spelled out in [5].

In this connection, although the parameter μ0 is zero for a queue-
ing process it is convenient to consider, along with a queueing process,
related birth and death processes for which μ0 is positive. Such a pro-
cess has an ignored absorbing state at -1, a state in which the system
remains forever once it arrives there. When the system is in the zero
state and a transition occurs, the system moves to state 1 with pro-
bability λQl(λ0+μQ) and is absorbed with probability /Ό/^O+ZV

The infinitesimal matrix of the general birth and death process is
of the form

-M>+A>) Λo 0

(1.3) A - "0 ~°""Λ

This matrix determines a system of polynomials by means of the re-
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cursion relations

(1.4)

It is shown in [4] that there is a positive regular measure ψ on 0<LX<QO

for which the orthogonality relations

(1.5)

where 7ro=l, 7rn = -5-ί-̂ --—"-1- , are valid. In the case of a queueing
μiμi μn

process, the measure ψ is unique [4J, and moreover the transition pro-
bability matrix P(£) = (£*«/£)) of the process is uniquely determined by A.
It has the representation

(1.6)

This is an extremely useful form of expression for the transition pro-
bability function, and our first task will be to compute the polynomials
{Qn(x)} and the spectral measure ψ belonging to the various queueing
processes.

This is accomplished in the following section based on a formula
which connects the Stieltjes transform of the spectral measure of the
process and the Stieltjes transform of the spectral measure of the
associated process. Once the Stieltjes transform of the spectral measure
is known, then recourse to the classical inversion formulas of Stieltjes
transforms enables us to determine the spectral measure itself. This is
done in § 4. Previous to that in § 3 a discussion of the infinite server
queueing process is made. Here we recognize the corresponding poly-
nomials as the classical Poisson-Charlier polynomials which are known
to be orthogonal with respect to an appropriate Poisson distribution.
Some remarks are appended describing the nature of first passage dis-
tributions of the states of the system in this case.

In the following section the spectral measure and the polynomials
of the n server queueing process are explicitly determined. The poly-
nomials are found to be expressible as combinations of the familiar
Chebycheff polynomials of the first and second kind and Poisson-Charlier
polynomials.

In § 5 the previous theory is specialized to the one and two server
process. Further detailed information regarding these processes is
collected.
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§ 6 is devoted to a complete study of various probability dis-
tributions associated with queueing problems of one and two servers.
The transition probabilities of the Markov process describing the wait-
ing line are explicitly determined. The distribution to the length of
the busy period, the distribution of the number of customers served
during a busy period, and other such distributions are exhibited. In
the following section the corresponding results for the n server queue
are written out. The proofs of these assertions for the general case,
exceedingly more complicated in detail, are carried out in the discussion
of Appendix A. In § 8 we derive the distribution of the maximum length
of line during a busy period. The second appendix summarizes the
properties of a new system of polynomials related to the Poisson-Charlier
polynomials.

2. The related processes. From a given birth and death process
with infinitesimal matrix (1.3) a new process is obtained by stopping
the given process whenever the state 0 is reached. For this new pro-
cess the state 0 is an absorbing state, and if we ignore this state the
process is a birth and death process for which the parameter μQ is posi-
tive. The waiting time in any state Ί ' ^ 1 has the same distribution for
both the original and the new process, and moreover both processes have
the same post exit distributions for each state i ^ l . Consequently the
infinitesimal matrix of the new process (with the state 0 ignored) is

(2.1)

0 0

Λ2 0

which is obtained from (1.3) by removing the zero row and zero column.
The polynomials defined by

(2.2)

are called the associated polynomials of the system {Qn(x)}. It is seen

that, except for the constant factor — — , they are the polynomials be-

longing to the new birth and death process. Consequently the transi-
tion probability matrix (Pυ(t)), i, i^>l, of the new process is given by

(2.3)
λ0 Jo



MANY SERVER QUEUEING PROCESSES WITH POISSON INPUT 91

where a is the spectral measure of the new process. In [5, § 8] it is
shown that the Stieltjes transforms of the spectral measures ψ and a
of the two processes,

(2.4) 5(
f ()

Jo X — S J° X — S

are related by the identity

(2.5) B(8) = - — 1— - — • • .

^ + /̂ o — S — λoμιC{s)

This identity is the basic tool used in calculating the spectral measure
of the n server queueing process. Once the function B(s) has been
found the measure can be computed by means of known formulas for
inverting the Stieltjes transform. See [5] for a discussion of this in-
version relative to the identity (2.5), and [12], [11] for the general in-
version problem.

By iterating (2.5) a relation will be obtained between the spectral
measure of the original process and the spectral measure of the process
obtained from the original one by stopping it whenever the state n is
reached. Denote the spectral measure of the original process by ψQJ

and the spectral measure of the process obtained from the original one
by stopping it whenever the nth state is reached, by ψn+1. Then if

Jo x—s

(2.5) gives
1

(2.7) Bn(8) = λ

It is clear that

(2.8)
rJBn(8)+δn

where an, βn, γnj Sn are (not uniquely determined) functions of s. Per-
missible choices for ra = 0, 1 are αo = l, βQ = γo = Of δo = l and ^ = 0, β1 = l!λ0J

Ti^—Pu δ1 = (λ0+μQ—8)lλ0=Q1(8). Substituting (2.7) into (2.8) it is found
that the coefficient functions can be determined by the relations
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λJn+l = ϊn + {λn+ μn-s)δn ,

and hence

(2.9) ^-"ψψ&fff^

3. The queue with infinitely many servers. The polynomials be-
longing to this process will be denoted by pJjή — Pnix, Λ> μ). They satify

(po(x)=l,

(3.1) xp(x)λp(x) + λp(x)

{ -xpn(x) = nμpn-τ(x) — (λ+nμ)pn{x) + λpn+1(x),

They can be identified in terms of the Poisson-Charlier polynomials
Cn(Xf a), [2, Vol. 2, p. 226], which satisfy

(3.2) I —xcQ(x, a)— —acQ(xf a)+ac1{x, a),

— xcn(x, a) = ncn-1(x, a) — (n-\-a)cn(x, a)+acn+1(x, α),

Thus

(3.3) { μ )
\μ μ

The measure with respect to which the Poisson-Charlier polynomials are
orthogonal consists of masses

j(x)=e-aaX

r at a?=0,l,2, . . . .
xl

Hence the spectral measure ψ of the infinite server queue consists of

masses

(3.4) dψ(x) = ̂ fL at xn=nμ, n=0, 1,
n !

where α = — . From well-known properties of the Poisson-Charlier poly-
μ

nomials [2] it is found that

(3.5)
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(3.6) a=
a / μ

The representation of the transition probability matrix is

°n^t) = πΛ e-χtpn(x)pk(x)dφ(x)
Jo

r !

(3.7)

In particular

(3.8)

and

(3.9)

The last two formulas are well-known and can be found by generating
function techniques [3, p. 396].

Now consider the spectral measure a of the process obtained by
stopping the infinitely many server process when the zero state is reached.
Writing (2.5) in the form

(3.10)

and noting that

C ( g ) r ~ φ φ o =
Jo X—S λμ

λ-s--
f • dψ{ί

Jo X —

x)

(3.11)
l(nμ —ϊ(nμ

we see that C(s) is a metomorphic function whose poles are simple poles
at the zeros of B(s). Thus a is a discrete distribution whose masses
are located at the zeros of B(s). The zeros so<s1<s2< of B(s) are
all simple, nμ<sn<(n+l)μ, and the mass an of the distribution a which
is located at sn is

(3.12)
< * « = - •

+ 1



94 S. KARLIN AND J. McGREGOR

(See [5] for a more complete discussion. The function here denoted by
B(s) is there denoted by B(—s)). For many purposes it is sufficient to
know sn and an for only the first few values of n. For example the
first passage time distribution

F10(t) = Pr{X(τ) — 0 for some r,

of the original process is

(3.13) F10(ί) = μ \ "—-----
Jo x

n-0 Sn

and for large t only the first few terms are important.
For purposes of numerical computation the following facts, stated

for the case μ — lf are useful:

(i) for all α>0, aSn<0, and
da

(ii) sn<sn+1 — 1.

To prove (i) it is noted that

Σ— =0, α>o,

^=0 /c .[fΰ sn(a)j

and hence

(3.14) Σ γϊfl~-^ΫΪ+ ^Jj—TZ^ί^)^

Consequently it is sufficient to show that

Now w < s w θ + l so

and

00 ^ffc W —1 /-ίfc

Σ = — X > 0

fc=o kl(k—sn) k=ir=kr i(r—sn) *=n+i k l(k—sn)

To prove (ii) it is observed that
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£ ( 8 , α ) = β Σ - - ? _ —
fc=o k \\k~s)

satisfies the functional equation

(3.15) 92?(?'__α_)_= _[B( 8, α ) - J 3 ( s - l , a)].

Because of (i) and (3.14) dBisra)
da

> 0 which, together with (3.15),

gives B(sn— 1,
in each interval

w, α) = 0. Now S(s, α) = S(s) is monotone increasing
^ = 0,1,2, ••-. Consequently

The following table gives sn and B'(sn) for w = 0, 1,2 and several values
of a.

si B'(si) s2 β / Λ v
First root At first root Second root v '

S3 B'(s3)

.5

1.0

1.5

2.0

.65116 6.54006 1.88388 10.21023 2.97092 25.00957

.45027 8.47902 1.72376 8.90911 2.88131 12.91379

.31745 13.63762 1.58297 11.60410 2.77136 13.41379

.22517 23.92535 1.46574 17.38949 2.66252 17.55924

4. The spectral measure and the polynomials of the n server queue.
For the n server process

(4.1)

Hence

(4.2)

( kμ,

\ nμ,

, μ) ,

where pn is given by (3.3). The polynomials for k^n will be determined
presently. As in § 2 we denote the spectral measure of the process by
φ0 and the spectral measure of the process obtained if the given process
is stopped whenever the state k (k^0) is reached by ψk+1. If

(4.3)

then from (2.9)

o X — S

(A A
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Because of (4.1), Bn(s)—Bn+1(s) and hence (2.7) gives

(4.5) p ^
2nλμ

where, in accordance with (4.3), the square root is taken positive for
s<0. Substituting (4.5) into (4.4) and rationalizing we obtain, with

the use of the identity 4-i^»-i[Q»Qn02i-Qn0)Q»-i] = l, where λnπn=λ(λX - 1 -,

(4.6) BQ(s) ± MBQ(s)
Kn(s)

where

(4.7) LM^^2

(4.8)

It is seen that Kn(s) is a polynomial in s of exact degree 2n—1, with
a root at # = 0 , and that the polynomial part of Ln(s) is of degree 2n —2.
The Stieltjes inversion formula

(4.9) φQ(x)=him

gives ψ0 at all of its points of continuity. The above formulas show
that $ B(x+iij) converges uniformly to zero as ^-^0+ if x is in any
closed interval containing no zeros of Kn(x) and disjoint from the interval
\λ-\-nμ—X\SΛ/knλμ Consequently over the interval

(4.10)

the measure ψQ has a continuous density ψ'0(x) given by

(4.11) φ'Q(x)= {n~1

2πλ*
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In addition ψQ may have discrete masses at some or all of the zeros of
Kn(x). This possibility is discussed in § 7, and treated in detail in the
appendix.

To determine the polynomials Qk(x) for k^n, let Rk(x) — Qn+Jc(x),
-1. Then

(4.12) R0(x) = Qn(x), R-ι

and

(4.13) -xRk(x)=nμRJC-1(x)-(λ+nμ)Rk(x

which is a recurrence formula in which the coefficients are independent
of k. The {Rk(x)} can be expressed in terms of the Chebycheff poly-
nomials {Tk(x)}, {Uk(x)} which satisfy

(4.14) xPk(x) = lpk^(x) + ^Pk+ι

Δ Δ

and

(4.15) T0(x) = l , T^(x)=x9 U0(

In fact, since

and

are solutions of (4.13) for which

V0(x) = l, V^x)

we have

(4.16) ϋ?t(a;)= 2 w ^ Q.-1(x)Vt(x)
λ + nμ — x

— x

Hence for &:>

(4Λ7,
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where

sin θ

The system of polynomials {Qk(x)} is completely determined by (4.2) and
(4.17).

A similar argument shows that the associated polynomials {QS\x)}
satisfy

for k^O.

5. The spectral measure of the one server and two server processes.
For the case of one server

(5.1) « . ) = ! , C,(x, = -l i i . _,.., χ χ χ

(5.2) QSo)(α;) = 0 , Q«>(a?)= —— ,

Using these values in (4.7), (4.8) gives

(5.3) 5 i(8)=__2(AίljL-H

The only possible pole of B0(s) is at s—0, and

lim —s.Bn(s)=---Γ(;"

fθ if μ£

''=*- if

Thus the spectral measure ψ has the continuous density

1 ~\/Λ.jt ft i j? —I— // —— o * V

y^ytί±j (p \X) — -

2πμ X

on the interval \λ+μ—x\<V//ίJμ and has in addition a mass of amount
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μ — λ

— located at x=0 if μ>λ, but has no extra mass if μ<λ. The

polynomials are given by

(5.5) Q , ^

The associated polynomials are given by

(5.6) QPUχ)QPU)
λ

and using (4.5) the function Bx{&) is

(5.7) B^ 2λμ

Hence the spectral measure ψλ of the associated process consists simply
of the continuous density

(5.8) ψ[{x)--^-VUμ-iprμ-xf , \λ+μ-χ\^VIλμ'.
2πλμ

We now turn to the two server case. The polynomials Qk, Q^ are
again given by (5.1) and (5.2) for fc —0,1, 2 and a straightforward com-
putation gives

L,{s) = ̂ [(λ~s)(2μ-λ-2s) + ?V(λ+2μ-sJ^
A.

and hence

ί5 9) B(s)=- ^-

Consequently the spectral measure ψ of the two server queue has the
density

(5.10) Φ'ίx)=
2π
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on the interval \λ + 2μ—x\<^V8λμ, and in addition may have jumps at
one or more of the zeros of the denominator of (5.9). Considering first
the zero at s=0, we find that

Km s B ^ ^

if 2μ>λ ,

if 2μ^λ .
=

[ μ
Hence ψ has a jump of magnitude f1—— at x = 0 if 2μ>λ, but no jump

2μ+λ
at x~0 if 2μ^λ. The other zeros of the denominator are

These two roots are non-real if μ<£λ. Since BQ(s) has no non-real poles
we assume μ^4:λ. If μ — iλ the denominator has a double zero at s=3Λ.
A simple computation shows that in this case the numerator also has
a double zero at s = 3Λ, and hence no jump of ψ is involved. If
the residue at s2 is easily computed. In fact

2 J '

and hence

^ —4-1) -\μ-3Vμ(μ-4λ)
Li

\ 0 if μ^

-4:λ)-μ-\ if fϊμ

The condition ZVμ{μ—Aλ) >μ is equivalent to -^ > --. Consequently ψ
A 2ι

has a jump at x—s3 of magnitude
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if μ->- , but no jump there if μ <, . A similar calculation shows
λ Δ λ Δ

that ψ never has a jump at x = sι. If μ>4λ then

e x c e p t t h a t e q u a l i t y h o l d s w h e n μ~^% T h e p o l y n o m i a l s a r e g i v e n b y
Λ Δ

~ λ+2μ-x

for &^0.

6. Probability distributions of various random quantities Associated
with the one and two server processes.

In this section we compute the distributions of some interesting
random variables connected with the one and two server processes.
The transition probability function of the one server process is

where Y(z) is 0 if z^l, 1 if z>l, and the polynomials are given by
(5.5). The explicit expression for the distribution of waiting time,
W(t, ξ), of a customer arriving at time t in the case of the one server
queue may be readily derived from the integral representation (6.1).
This is accomplished as follows : If at time t the length of line (state
of the process) consists of n people with n ^ l then the density of the
waiting time of a person arriving at the moment t is the gamma density
of order n whose scale parameter is μ. The probability that at time
t the length of line is n where initially the state of the process was i
is given by Pin(t). Consequently, for ?>0

(6.2) cW(ί, *) = Σ Pi,»(ί) ̂ ~ γ "Γ dξ '

Inserting the detailed formula (6.1) into the summation of (6.2) and
performing the calculation, we obtain the formula

(6.3) dWi(t, ξ) = -λ{μ-λ)e-{iχ-
μ
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/

~]~ 1 Γλ + μ+V/4λ/x n-xt Γ Λ~|

— — I β- -Qt(xm {{λ-x)ew-VTμ}e^G \dxdξ
μ π Jλ + μ-^λjU X L J

where cos#=: —~f ~~x- and $ stands for the imaginary part. We have
VAλ

tacitly assumed that -^->1 which of course is the interesting and prac-
A

tical case.
The evaluation of the sum is direct once it is realized that Qn{x)

can'be expressed according to (5.5) in terms of Chebycheff polynomials.

K •ί-M
and

sin θ sin θ

Of course P00(t) evaluates the probability that a person arriving at time
t doesn't have to wait for his service to begin.

For computational purposes it might be remarked that the integrals
of (6.1) and (6.3) may be expressed in terms of combinations of Bessel
functions with imaginary arguments. This follows from the familiar

fact that the Laplace transform of i/ϊ — t2 for — l ^ ί ^ l involves Bessel
functions [9]. This indeed is true of the majority of formulas connected
with queueing. However, from the point of view of an understanding
of the theory, and also for many practical purposes, we prefer the answer
in the form of the integral representation.

The integral representation also enables us to determine directly the
rate of approach to equilibrium in the ergodic case. The conclusion is
immediate from relation (6.1) which implies the inequality

• Y

The asymptotic behavior of PtJ(t) for large t is easily obtained from
formula (6.1). For example, for the case when λ — μ

= \ e~xV———dx ,
2ττ//Jo Y x2πμ

and when t is large the main contribution to this integral is from the
immediate neighborhood of x=0. In fact

π



MANY SERVER QUEUEING PROCESSES WITH POISSON INPUT 103

and hence

Poo(ί)~-7-?^τ as ί->oo .
Vπμt

The cases when λ>μ or λ<μ can be dealt with in a similar way.
Now consider the distribution of the length of a busy period, or

what is the same thing, the distribution of the first passage time from
state 1 to state 0, or what is the same again, the distribution of the
time of absorption into the zero state for the related process (§2), given
that the related process starts in state 1. If PtJ(t) is the transition
probability function of the related process, and ψL is its spectral mea-
sure, then the probability F1Q(t) that absorption occurs before time t is

x

The Stieltjes transform of φ1 is given by (4.5) with n = l, and hence
consists of the density

v 2πλμ

on the interval \λ + μ — x\<^~\/ίλμ . Consequently

(6.4) F1Q(t)= Λ Λ „_.-—-—V 4^-(^+/i-x)' 2 cfo
•μ — ^ • ί λ μ X

is the probability that the length of a busy period for the one server
queue is ^t. In a similar way the probability Fjjfi) that the queue
will become idle before time t when there are k customers at time zero
can be computed. Using the fact that the associated polynomials are
given by

(6.5)

one obtains

(6.6) FJjk) =
X

It is also possible to compute the distribution of the number N of cus-
tomers arriving during a busy period, or more generally the number Nk

of customers arriving before the queue becomes idle given that initially
there were k customers in the queue. For this purpose we consider the
random walk whose possible states are the integers 1, 2, 3, and an
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ignored absorbing state at 0. The one step transition probabilities of
the random walk are

if j=i + l ,

if j—i or \j—i\>l ,

where

λt λ μi μ

These quantities are independent of ί and we denote then by p, q.
When the particle executing the random walk is in state 1 and a
transition occurs, the particle goes to state 2 with probability p and is
absorbed into the zero state with probability q.

Each sample function of the associated queueing process generates
in an obvious way a sample function of the random walk process, and
it is clear that the random variable Nk, which is the number of customers
arriving before the queue becomes idle, is the same as the total number
of steps to the right made by the random walk before absorption at
zero occurs. The total number of transitions of the random walk pro-
cess which occur before absorption is a random variable Mk related to
Nk and the initial state k in such a way that

(6.7)

If Pfi denotes the n step transition probability of the random walk, then

(6.8)

and hence

(6.9)

Thus the distribution of Nk is known if Pfj is known.
An integral representation for P* is obtained as follows. The

random walk determines a system of polynomials by means of the
recursion relations

C6 10)

It is seen that Rn(x) is a polynomial in x of exact degree n. It can be
shown that the polynomials RJx) are orthogonal on — l ^ α ^ l with
respect to a uniquely determined measure a of total mass 1. A proof
of this fact which covers not merely the queueing case, but also the
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random walk arising in a similar way from a general birth and death
process, is outlined in [5]. It is rather obvious that when xnRi{x) is
written as a linear combination of the polynomials {Rk(x)} the coefficient
of Rj(x) is Pΐj. Since it can be shown from the recurrence formulas
that

Rl(x)da(x)=~\ ,

( n- \ n-\
y 1 , it follows that
q)

(6.11) Ήj = *jΓjl xnRi(x)Rj(x) da{x) ,

which is the desired representation of P^ . Combining (6.9) and (6.11)
we get an expression for the probability distribution of Nk in terms of
the measure a. In particular the distribution of N=Nlf the number of
customers arriving during a busy period, is

(6.12) Έ>r{N=n} =q[1 x2n da(x) .

The polynomials which satisfy the recurrence relation (6.10) are easily
found to be

(6.13) * «

from which it follows that the measure a consists of the density

(6.14) α'(ar) = - 2 ^ + f

π Vteμ

on the interval \x\ ̂ ^—-^-. Consequently

(6.15) Fr{N=n}=-''~ 2 -ψl (^ ^ΐ-(-λ^xΐdx
Viλμ

We now turn to the two server queue. The transition probability
function is

(6.16) PΛt) =

(2μ\ *&V(tμ~-ti)_-μ\ 2 . ( l . Y\
-4/i) [2/1 + /< + V"μ{μ-4/1) ] V 2// /
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2μ

ί λ V
(unless j — 0 in which case 2 ) is to be replaced by 1), where Y(z)

\2μ/

is 1 if £>1, 0 if 2^1, and

(6.17)

and where the polynomials Qι(x) are given by (5.11). Once again the
asymptotic behavior of Pi5(t) for large t is clearly exhibited by (6.16).
In fact the first term on the right is either zero or else the largest
term, and the second term, if not zero, is the second largest term.
Finally the asymptotic behavior of the third term is a simple matter to
investigate. For example if λ — 2μ it is found that

4 Vπt

By arguments entirely analogous to those used in the derivation
of (6.3), we may obtain the form of the distribution of waiting time
for a customer arriving at time t in the two server queue. In fact, if
Wi(tf ξ) represents the cumulative distribution of waiting time for a
person arriving at time t where at time zero the state of the process
was if then

dWt(t, c)= ΣP<,»(ί)-^~β"* dξ , ξ>0 ,
n- i (n — 2)!

with PiiB(ί) given by (6.16). We restrict attention only to the ergodic
case when 2μ>λ. Use of (6.16) in conjunction with (5.11) establishes
the ultimate formula

(6.18) dWi(t,ξ)dξ=2μ~λ - iV<*»-*«

/2μ~n-8t\-UΛ/iίa:j*'\

2 — (2λ + fl)X + λ{λ + 2//)]
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where c o s ^ ^ + ^ - s , and cos 0 = ^ + ^ 1 *
V8λμ VSλ

A busy period of the two server queue can now mean either a time
interval during which both servers are busy, or else a time interval
during which at least one server is busy.

Considering first the busy period for both servers, suppose the pro-
cess is initially in state 2, and let T be the time at which the process
first reaches state 1. Then Fr{T<t} is the probability of absorption
before time t for the second associated process. Now the second asso-
ciated process is similar to the first associated process of a one server
queue in which the parameter μ has been replaced by 2μ. Hence using
(6.4),

(6.19) Pr{Γ<ί} = -± Λ _±-~e—V8λμ-(λ + 2μ-xγ dx .
2 λ Jλ 2μ-Vδλμ X

The distribution of the time before state 1 is reached when the initial
state is k (k^2) can be obtained from (6.6) in a similar way. By another
argument of this kind it is seen that the distribution of the number N
of customers arriving during the busy period T is obtained by replacing
μ with 2μ in (6.15). Thus

(6.20) Pr{N=n] = ~-%*-
λ + 2μ

Next let us study the time during which at least one server is busy.
Thus we suppose the initial state of the process is 1 and we denote by
T* the time when the zero state is first reached. If ψx is the spectral
measure of the associated process, then by our previous argument

(6.21)
X

Now the Stieltjes transforms Bλ(s) and B2(s) of the spectral measures
of the first and second associated processes are related by

(6.22) B1(s) =

and from (4.5)

(6.23)

Hence
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(6.24) BAs)^1- t-s-V(λ + 2μ-sy~
2μ S-(μ-λ)

It follows that ψ^x) has the continuous density

ψι\X) _

2πμ

on the interval \λ+2μ—x\^VSλμ 9 and in addition has a jump of

magnitude at x—μ — λ if μ>2λ, but has no jump if μ^2λ. Thus

(6.21) becomes

v " / i— ^ * ~ J ~~ \ n. •< ]\r~ — / .

μ-λ
1 Γ^μWδλμ ^ _ ^xt ^ VSλμ "—(λ + 2μ~

2π J λ+2μ- Vβλμ a; a?—(/>«—Λ)

where, as usual, Y(z) = l if z>l, 0 if z ^ l .
It is natural to next ask for the distribution of the number N* of

customers arriving during the busy period T*. This again leads to the
study of a random walk on the integers 1,2, with an ignored
absorbing state at 0. The polynomials of the random walk satisfy the
recursion relations

(6.26)

where

To compute the spectral measure a of this random walk we consider
also the associated random walk obtained if the given one is stopped
whenever state 1 is reached. Denoting the spectral measure of the
associated random walk by β we look for a relation between the Stieltjes
transforms

f1 da(x) f1 dβ{p
J- i X — Z ' J- i X — Z

analogous to the relation (2.5) for the spectral measures of a birth and
death process and its associated process. Such a relation, applicable to
a general random walk and its associated process, is proved in [6] and
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may be stated as follows. If the state space of the random walk is
0, 1, 2, and the one step transition probabilities are

'qt if j=i-l ,

(6.27) p;,=f !' 'Γ'.

10 if | j - i | > l ,

where p*>0, qt>0, r ^ O , then the spectral measure a of the process
and the spectral measure β of the associated process are connected by
the identity

(6.28) Γ * * * ) =
J-i x—s rQ —Q s I

~Qι\
pQ J - i X — S

Now let a0 denote the spectral measure of the random walk determined
by the polynomials (6.26) let aλ denote the spectral measure of the
associated process and a% the spectral measure of the second associated
process. First applying (6.28) with a — aQf β=au we get

(6.29) Γ ̂ ( ^ ^
J-i X — S

- 1

s + p1q\ lΛ }

J-i X — S

Then applying (6.28) with a — aλ, β = a,, we get

(6.30) Γ **M= ~\

J-i X — S

But clearly aL = a2 so from (6.30)

(6 31) Γ ^^X1^~S+Ϋ^~^W
J-i x—s 2pq

where the radical must be determined by analytic continuation from
positive values for s > l . Now (6.31) and (6.29) give

(6 32) f' d a ^ = r (r-J-)s~
J-i x-s {l-(j-

where T = 2plp1 = 2(λ+μ)l(λ + 2μ) and γ — l = λl(λ + 2μ) is positive and less
than one. The Stieltjes inversion formula giving aQ at all of its points
of continuity is

(6.33) a4z)=± Km [ d[ ^ .
7Γ >?->o+J-i-ε L J - i y — ξ — %Ύ]
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and of course a has a jump at a point x0 if and only if its Stieltjes
transform has a pole there. A simple computation shows that the right
side of (6.32) has no poles if l ^ r < 2 , which is the case in our problem.
Thus aQ consists of the continuous density

(6.34) a'J(x)=l-
π

on the interval \x\<Z,vΆpq , with γ — 2p[p1. It is easy to express the
probability distribution of iV* in terms of aQ, the result being

(6.35) Pr(iV* = n) = —C-_l _x™ dao(x)

2 μ I V OΛμ \ \ pn_

π

7. Results concerning the n server queue. The method used in § 5
to compute the spectral measures for the one and two server queues
can be used in the same way to compute the spectral measure of a
queue with three or more servers. Although the description of the
spectral measure ψ in terms of the parameters λ, μ, and the number n
of servers becomes more and more complicated as n increases, it is
nevertheless possible to deduce certain general features of ψ. These
general features are stated without proof in the next paragraph, and
the proofs are supplied in the appendix.

The spectral measure ψ of the n server queue consists of a continu-
ous density φ\x) on the interval

λ + nμ—Vknλμ <x<λ+nμ-\-V

and in addition there may be a finite number of isolated jumps. The
number of such isolated jumps is one of the integers 0, 1, 2, « ,?ι and
these jumps all lie in the half-open interval

If nμ>λ there is a jump at x—0 of magnitude p given by

(7.i) j i ) + )
P rlo rWμ/ nWμJ nμ — λ

but if nμ^λ there is no jump at x—0. We form the polynomial

(7.2)
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which is of degree 2n in V b . It has a zero of order n at V b = 0
and n simple zeros i/&i,l/6a, •••,]/&» with 1 = 61<62< •• <δn. The
spectral measure of the w server queueing process has exactly k jumps
to the left of x—λ+nμ—VAnλμ if and only if

where we take δo=O and bn+1= + c&.
For the case n = S the three critical values bk occur at 6 = 1/3 and

the two roots of 12δ2-112δ +147 = 0.
In discussing the busy period distributions for an n server queue,

one has to distinguish n different cases. In the simplest case, one
observes the time interval T during which all n servers are busy—that
is, at time zero the process is in state n and T is the first time at which
the process is in state nΛ. The distribution of T is of course obtained
from (6.4) by replacing μ with nμ, so that

(7.3) Pr {T^t} = i - Γ * ^ l—e— V ±nλμ-{λ+nμ~xfdx

is the distribution of a busy period for all n servers. Similarly, the
distribution of the number N of customers arriving during a busy period
for all n servers is obtained from (6.15):

(7.4)

In the next simplest case one observes the time interval T* during
which at least n — 1 servers are busy—that is, at time zero the process
is in state n—1 and Γ* is the first time at which the process is in state
n—2. After a computation similar to that in (6.21)—(6.25) we find

(
nλ

1
2π

where Y(z) has its usual significance. If now iV* is the number of cus-
tomers arriving during a busy period for (n—1) of the servers, then
from (6.34) with

p =

 λ

λ+nμ ' λ+nμ ' λ+nμ

we obtain
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(7.6) Pr{^ =fc}==-?.ίn--1-W^MΓ

π λ+nμ V λ+nμ
{λ+nμY

Using the same kind of techniques it is possible to find the distri-
bution of the length of a busy period for m of the n servers, and the
distribution of the number of customers arriving during such a busy
period.

8. Maximum length of the queue during a busy period.

Consider for the moment a general birth and death process with
parameter λn, μn and with μQ>0. Suppose the initial state is i and let
j>i. It was shown in [5] that the probability that absorption at zero
occurs without the state j ever being visited is

(8.D Λ (

Jo x

1
μ° Σ y

where ψv> is the spectral measure of the process on the states 0,1, 2,
•• ,i—1 which is obtained from the original process by stopping it
whenever the j state is reached.

We first use this result to compute the probability ζnj that during
a busy period for all servers in an n-server queue the maximum length
of the queue is always less than n+j. This of course is just the pro-
bability that when the wth associated process starts out in its zero state,
absorption occurs before it ever visits the /th state, and hence (8.1)
gives

_ nμ
(T)'-1

Y
τ)

A similar application of (8.1) to the (n — 1) st associated process gives
the probability C*j that for the n server queue during a busy period
for at least n — 1 of the servers the length of the queue is always less
than n—1+j. The result is
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λ )

nμ - 1

Vl
J

Appendix A. The nature of the spectral measure for the n server queue.

In this section we present the proofs of the statements made con-
cerning the structure of the spectral measure for the n server queue.

Let ψQ be the spectral measure of the n server queue, ψk be the
spectral measure of the kth associated process, and let Bk(s) be the Stielt-
jes transform defined by (4.3). The relation between Bk and Bk+1 is

(A.I) #*(*)
-s-(k + l)λμBk+1(s)

and Bn(s) is given by (4.5). In the interval so=λ+nμ—V~inλμ <s<λ
+nμ+y~inλμ —sλ the imaginary part of Bn(s+iτ) converges to a positive
limit as τ->0+. Consequently ψn(x), and by induction each ψk(x), Ot^k^n,
has a continuous spectrum in this interval. From (A.I) it is seen that
ψk has a jump at each point x=s where the denominator λ+kμ~s
— (k + l)λμBk+1(s) has a simple zero. These jumps cannot occur in the
interior of the interval of the continuous spectrum because there the
imaginary part of the denominator is negative, and they cannot occur
at the ends of the interval because there Bn(s), and by induction each
Bk(s), has singularities which are not poles. From (4.5) it is found that
φn has no jumps; in fact Bn(s) increases steadily from zero at s= — oo
to the value (nλμYy% at s=sQ and increases steadily from the value
— {nλμYyi at s=s1 to zero at s=+oo.

To locate the jumps, if any, of ψn-u consider the places where the
graph of the straight line y—λ + {n—l)μ—x intersects the graph of
y — nλμBn(x). No intersection occurs for x>s1 because

Moreover, since

(s0)=~μ+V'nλμ

and in view of the monotonicity of the two graphs, there is one inter-
section to the left of x—sQ if —μ+Vnλμ <0, or equivalently if μ>nλ,
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and no intersection if μ<Lnλ. Thus φn-λ never has a jump to the right
of the continuous spectrum and has one jump to the left of the conti-
nuous spectrum if μ>nλ, no jump if μ<nλ. The jump, if μ>nλ, is
easily found to be at x=(n—l)(μ — X).

It will be shown that none of the measures ψh have any jumps to
the right of the continuous spectrum. This has already been verified
for φn and ψn-u and we proceed by induction. Suppose it has been
established for k + l<,r^n — 1 that ψr has no jumps to the right of s±

and that Z?r(Si) is finite, negative, and greater than — (nλμ)"y'\ Since
Bn-i(s1)=— {μ+Vnλμ)-\ the inequality is certainly valid for r — n — 1-
From (A.I) we get

and by virtue of the assumed inequality for r—k + 1 it follows that
J3*(si) is finite, negative, and greater than —{nλμYy\ Since Bk+ι(s) in-
creases steadily from its finite negative value at s—sL to zero at s—^y

it follows that the denominator of (A.I) is not zero for s>s1 and ψh has
no jump to the right of sλ. This completes the induction.

Now suppose it has been established that for some k, l^k + l^n — 1,
and some choice of λ and μ, the measure ψk+1 has exactly r jumps. Let
these jumps be at a?i<α?a< <ίcr. Then xr<s0 and in each of the r
intervals — oo <s<Xi, # 1 <s<# 2 , , xr^1<s<xr, the function (k + l)λμBJC+i

increases steadily to + oo, and thus in each interval its graph intersects
the graph of λ+kμ—s exactly once. Consequently ψk has exactly one
jump in each of these intervals. In the interval ^ ;.<s<s 0 the function
(k+l)λμBk+1 increases steadily from — c» to its possibly finite value at
s0, and in this interval ψk has either one or no jumps. Thus ψk has at
least r and at most r + 1 jumps. It follows that for any λ, μ the num-
ber of jumps of ψk is at most n—k.

Setting S—SQ in (A.I)

( .2) B^^^/nλ^{n^k^μ{k + l)λμB^

The necessary and sufficient condition that ψk have one jump more than
φk+1 is that this expression be negative. Now it follows by induction
starting from

that for k^n—1,

B»-i(**)=,.._1

t_μ

-,-Λ r
{n—κ)μ
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as μ->oo with λ fixed. Consequently, for any fixed λ,ψk has exactly
n—k jumps for all sufficiently large μ. On the other hand it follows
by induction that for each k<,n — 1,

lim VμBk(80), λ fixed ,
μ-» 0

exists and is positive but less than (nλ)'J/'\ Consequently, for any fixed
λ, φk has no jumps for all sufficiently small μ.

In order to make a more careful study of the number of jumps of
ψh we introduce the associated families of polynomials {Qm\x)} defined
for k— —1 by

and for fcS O by the recursion formulas

Qi*\x)=Q for r^k,

Λ

It is seen that except for the constant factor — (1/Λ), the polynomials
Qm\x) with k fixed are the polynomials belonging to the (& + l)th as-
sociated process and are orthogonal with respect to ^fc+1. Applying (2.9)
to the feth associated process we obtain

B (s) = X nμQΆ(s)Bn(s)- QJ*\s)
λ nQ^\s)B{s)Qr'\s

In terms of the variable b=μjλ we have SQ — λ(l — Vnbf, nμBn{sQ)—Vnb.
If we let

i-Vnbf)
Λ

then

(A.3) 2 W - ~ y - ^

The quantities P<.s)(f) satisfy

(A.4)

for k+l^r^n. By virtue of the form of this recurrence formula it
follows that for each fixed k the polynomials PCrkJ(ξ), k+l^r^n, form
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a finite system of orthogonal polynomials and that the polynomials
P(

r

k+Ό(ξ), k+2^r^n, are the corresponding associated polynomials. Wri-
ting (A.4) in the form

PCΛ\ (f) - V~nP?\ξ)=V~n[P(k\ξ) - VΈPc

r

k]

it is easily shown by induction that all of the polynomials

/ ξ), k + l<,r<,n, are strictly positive for ξ^O.

Now the polynomial

is a quasi-orthogonal polynomial, of exact degree n — k, belonging to the
system of polynomials P(

7

k~ι\ and the corresponding associated polynomi-
al is G(

n

k\$). Consequently G{k"1\ξ) has exactly (n — k) distinct positive
roots, say ξ^Kξ^K. - <f*:1

fc, and the n — k—1 roots of G(

n

k\ξ) lie one
in each of the open intervals fj:"1 <£<?*:;}.

The quantities Bk(s0) can be computed by using the recurrence for-
mulas for the polynomials P^ }(ί). In particular

(21/7z — Vb )— i / ^

~ Wb^Vn-Vb)

which checks with an earlier computation. Thus we see that the root
ξ"-2 of Gl~\ξ) is V~n, and we already know that ψn-γ has no jump if
Vb ^ff"2 and has one jump if Vb >ί?~2. Suppose it has been esta-
blished that φk+1 has no jump if Vb ^<ff, has r jumps if ξk<Vb ^ξk

r+ι

for r = l , 2 , •••, n — k—2, and has n—k—1 jumps it Vb >£$-»-i. This
property is easily extended to φ^ by induction. In fact ψk always has
either the same number of jumps or else one more jump than ψk+1, and
it has one more jump than ψk+1 if and only if the expression

is finite and negative. The result follows because of the interlacing of
the roots of G^-^ξ) and Gc

n

k\ξ).
Summarizing, the number of jumps of ψk to the left of the conti-

nuous spectrum is equal to the number of roots of GQk~ι)(ξ) which are
less than V b . In particular the number of jumps of ψQ, the spectral
measure of the n server process, is equal to the number of roots of
the polynomial



MANY SERVER QUEUEING PROCESSES WITH POISSON INPUT 117

= ξ - nlQn{λ{l -

which are less than Vb .

Appendix B. The random walk polynomials derived from the infinitely
many server queue.

In § 6 we had occasion to consider, along with a birth and death
process, the imbedded random walk. A system of polynomials, which
are useful in a variety of problems, arises in this way from the infinitely
many server process. These polynomials depend on a parameter a—λjμ
>0 and will be denoted by rn(x, a) or sometimes by rn(x). The purpose
of this appendix is to list their useful properties.

The polynomials are defined by the recursion formulas

ro(x,a) = l ,

xro(x, a)=rλ(x, a) ,

(n+a)xrn{x, a)=nrn-1(x, a)+arn+1(x, a), n^l .

They are orthogonal on the interval —1^#<:1 with respect to a mea-
sure ψ which consists entirely of jumps. If we let

k+a

then ψ has equal jumps at xk and at —xk of magnitude

fc 2 k+a klek+a ' ' '

and these have been normalized so the sum of all the jumps is one.
The orthogonality relation is

oo oo n

where

n+a an

πn — — .

a nl

A generating function is

n\ \ a

and from this explicit representations of the polynomials can be ob-
tained. For example
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where cn(x, a) are the Poisson-Charlier polynomials.
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CURVATURE IN HILBERT GEOMETRIES

PAUL KELLY AND ERNST STRAUS

For every pair of points, p and q, interior to a simple, closed,
convex curve C in the Euclidean plane, the line ξ—pχq cuts C in a pair
of points u and v. If C has at most one segment then the Hubert
distance from p to q, defined by

h(p, q) = log up vq
uq vp

is a proper metric (where up denotes the Euclidean distance from u to
p), and is invariant under projective transformations. The geometry
induced on the interior of C is a Hubert geometry, and the Hubert lines
are carried by Euclidean lines [2].

We shall be concerned here with curvature at a point defined in
a qualitative rather than a quantitative sense (cf. [1, p 237]).

DEFINITION 1. The curvature at p is positive or negative if there
exists a neighborhood U of p such that for every x, y in U we have

2 h(x,y)~^h(x, y) ,

respectively

2 k(x, y)^h(x, y) ,

where x, y are the Hubert midpoints respectively of the segments from
p to x and p to y. If there is neither positive nor negative curvature
at a point then the curvature is indeterminate at that point. This
qualitative curvature is clearly a projective invariant.

In order to state our result we need one more concept.

DEFINITION 2. A point p is a projective center of C if there exists
a projective transformation, π, of the plane so that πp is the affine
center of πC.

A projective center is characterized by the following. Let ξ be
a line through p, and let fnC={w, v}, and let p\ be the harmonic con-
jugate of p with respect to u and v. Finally, let Lp be the locus of
all p'ξ. Then p is a projective center if and only if Lp is a straight line.

Conic sections are characterized by the fact that every point in their
interior is a projective center [3]. We can now state our main result,
which solves a problem of H. Busemann [1, Problem 34, p. 406].

THEOREM. If p is a point of determinate curvature then it is

119
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a protective center of C. In particular, if the curvature is determinate
everywhere then C is an ellipse and the Hilbert geometry is hyperbolic.

We first establish some lemmas.

LEMMA 1. For any point p, interior to C, there exists a line η
(possibly the line at infinity) which intersects Lp in at least two points
and does not intersect C.

Proof There is at least one chord of C which is bisected by p.
If ?! is the line of such a chord then ξτ intersects Lp at qx on the line
at infinity. If Lp has a second point at infinity then the line at infinity
satisfies the lemma. If Lp has only one point at infinity then Lp is
a connected curve. It cannot lie within the strip formed by the two
supporting lines of C which are parallel to ξL for then it would intersect
C. There is therefore a point q2 of Lp outside this strip and the line
y — qiXq* satisfies the lemma.

COROLLARY. For every p in the interior of C there exists a protective
transformation, π, so that πC is a closed, convex curve, and so that πp
is the midpoint of two mutually perpendicular chords of πC whose end-
points are points of differentiability of πC.

Proof Since all but a denumerable set of points of C are points of
differentiability, we may choose the line η of Lemma 1 so that r]t\Lp

contains p^ and p\t and so that C is differentiate at its points of
intersection with ξτ and ξ2. Now let πt be a protective transformation
which maps η into the line at infinity, and let π2 be an affine transfor-
mation which maps π1ξι a n d ^ ^ into perpendicular lines. Then π — π%πx

has the required properties.

LEMMA 2. // a chord of C, of (Euclidean) length 2k, has p for its
midpoint and if q is a neighboring point on the chord at (Euclidean)
distance ds from p, then dS=(2jk) ds + O(ds3), where dS—h{p, q).

Proof If the endpoints of the chord are u and v, and the order
of the points on the chords is u, p, q, v, then, by definition,

)
up /\vp—pq/ V k Λh—ds

k 2\ k ' 3V k

Ύ ~2\k
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k

LEMMA 3. Let (r, θ) be polar coordinates whose pole p is an interior
point of C at which the curvature is determinate. If C is differentiate
at the ends of two perpendicular chords which bisect each other at p,
then C satisfies the "one-sided" differential relations

( 1 )

for all θ0.

d ,
dθ '

d ,
dθ

( esc 2Θ \
V r 2 /

ί esc 2Θ \

L = -̂ ..ι

\ = d \

( esc 2Θ

t r3

( esc 2Θ
(θo -fπ)"

Proof We first introduce Cartesian coordinates, with origin p, so
that the ?/-axis intersects C at points of second order differentiability,
and so that the axes do not coincide with the two given chords bisected
by p. The curve C is then given by an " upper" arc y=yL(x) and
a " l o w e r " arc y——y%{χ). Let the bisected chords lie on the lines
?!: y — ax and £ 2 : y — {Ha)x respectively. Let bL = (dx, adx) and d = (2dxf

2a dx) on ξ19 and bΛ = (dx, —(l/a)dx) and α2 = (2cZa?, ~{2la)dx) on ξ2, where
dx is positive and chosen so that bLfbzyclf and c2 lie inside C. Assume
that p is a point of negative curvature. Then.

( 2 ) 2 h(mly m2) ^ A(Ci, c2).

where m« is the Hubert midpoint of the segment from p to ct.
To show that h{mί1bi) — O(da?)y we define dSι=h(p, cτ) and dsι—pc1.

With 2& representing the Euclidean length of the chord on ξ19 it follows
from Lemma 2 that dSι — (2jk)dsι + O{dsι)f and hence that

( 3 ) h(p, mj = 1 dS, = 1 d* + O(dSl

3) .

Also, from Lemma 2 and the relation dsι~2pbι, it follows that

( 4 ) A(pf 6,)= I Λ I

Since λ(m!, 60= |Λ(p, m^)—h(p, 6α) |, equations (3) and (4) imply that Λ(m!, 60
= O(ώ1

s). But ώ 1 =ώ?(l+α ϊ ) 1 / a = O(ώ?), hence % 1 ; 60 = O(cZα;3). Similarly,
h(m2,b2) — O(dx3), and therefore

( 5 ) h(mu b1)+h(τni9 62) =

From the triangle inequality,
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( 6 ) h(mu m^hfa b2)—h(mv, b^)~

This, together with (5), yields

( 7) h(mlf m 2 )^h(b l f b2) -O(dx3) ,

and from (1) and (7) we obtain

( 8 ) 2 hφ19 b%)<h(cl9 cJ + O(dx3) .

We now wish to calculate the distances in (8). First, we have

( 9 ) h(blf bj = h[(dx, a dx), (dx, - -- dx)]

= log[l +

yx(dx) + dx
a

Vi(dx)-adx y2(dx)~1dx
a J

a dx Ί
α 2/χ(ίte) J ' '^ L~ ' 2 / 2 ^ ) -I

tt^

α y2(dx) J

Using the Maclaurin expansion of the logarithms, and collecting first
and second degree terms, we obtain

(10) h(bu h)=dx(a+ -
\ aa / L y^dx) y%(dx)

μ_ _±_

Because both of the functions yλ{x) and 2/2(α?) are convex and have second
derivatives at x=0, they can be represented in the form

(11)

and hence

(12) JL = A _ »ί(°)
2/i(άc) yt(0) 2/1(0)
_ 1 _ = 1
^(ώ?Y y!(O)

The substitution of (12) in (10) gives

(13) , b.i)=dx(α+ i-ϊ-1-. _ yψ- + J - li*u Ί
V α/L 2/ϊ 2/5 y\ J

2
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where 2/4=2/*(θ) Hence

(14) 2A(61,6a) =
a A 11 11 lί1 iiι

2 V α Λ 2/J 2/5

By the substitution of 2 dx for dx we obtain

(15) ( ^ ( ) \ ^ ^
V a/Ly1 yλ y\ y\

a A y\ y\

Substituting this and (14) in (8) we have

(16) 2dx(a+1

y\
<2ώjfα+lϊ L + .L-^^-M

V a/Lyι yt y\ y\
+dx(a- X Y - V - AΛΊ+O(dx3) .

V aJ\y{ y\ /J

By dividing both sides of this inequality by 2dx(a+lja), and then rear-
ranging the terms, we obtain

(17)
^ 2 / ι 2/2

Division of both sides of (17) by dx yields a new inequality whose right
side is O(dx) but whose left side is independent of dx. From this it
follows that

(18) Vi+ -»L- -Ua— MfJ--Ju
2/i 2/2 2 V α / V 2/J 2/2

Consider now a reflection in the 2/-axis taking C into a curve C which
is divided by the x-axis into an " u p p e r " arc z=zL(x) and a " l o w e r "
arc z—— zz(x). With the lines s = (l/α) and 2:=—αx playing the roles of
ξλ and f2, and with blf clf 62, c2 defined respectively by (cZα;, (1/&) dx), (2 tZa?,
{2fa)dx)1 {dxy—adx), and ( 2 ώ , — 2αcte), a repetition of the former argu-
ment leads to

(19) + ( a ) (

Since zι=yι and z\=—y\, (19) is also
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(20) - J £ __»L+ α

Combining the opposite inequalities (18) and (20), we obtain

(2i) Λ+JL_!(α_lV_I___IΛ=O .
V\ Vl 2 V a/\yl yι J

Since (21) is an equality, it is clear t h a t the same result would have

been obtained if all preceding inequalities has been reversed. In other

words (21) holds if p is a point of determinate curvature.

To express (21) in polar coordinates, let the polar axis be ξλ and let

0O designate the angle between the polar axis and the upper half-line

of the ?/-axis. The angles of inclination to the #-axis of the tangent

lines to C a t (0, yλ) and (0, y2) are aτ and α 2 respectively and the clock-

wise angles from the radius vectors to the tangent lines a t these points

are ω1 and ω%. From the standard relationships between polar and

Cartesian coordinates, it follows t h a t

(22) 3//

1(0) = tan a,= - c o t ω ^ \ - 1 ^
L r do

2/ί(0)= - t a n α 2 = c o t ω%=\-- ~d^\+
Lr do Λ

Also, by definition, α = c o t # 0 so •- (a— ) = cot 2θ0. Substituting this and
2 V a J

(22) in (21) we obtain

(23) Γ—L A ' ] +Γ_1... drl _{cot2θI 1

and hence

(24) Γ-1- *T~+ X cot2#Ί =ΓJ: .A. + .1 . .2
L r 3 d^ r2 >o L r 3 d<? r 2 >o+π

Multiplying both sides of (24) by 2 csc2#0—2csc2(^0+τz ) we have

C25) — (csc2θ)
K ' dθ r 2

= j ^ (csc2θ)

θo~ dθ " r2

Since (25) involves only first derivatives, it holds for all 0O for which

r is di f ferentiate a t both θ0 and 0o+7r. Since the one-sided derivative

exists everywhere, we get the desired relations in (1), for all 0O, from

the semi-continuity of the one sided derivative.

Proof of the Theorem. According to the corollary of Lemma 1 there

is always a projective transformation such that , after the transformation,
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p satisfies the conditions of Lemma 3. From (1) we obtain

(26)

where the integrals are Stieltjes intergrals and the interval (0O, θ) does
not contain a multiple of π/2. Hence

(27) 1 • • = - + kisin2θ, fe, = constant

where 0*-l) J -gfl^/J-,0'=l, 2, 3, 4) .

Since r is differentiable at the points for which # = 0,π/2, π,37r/2, we
obtain from (27), upon differentiation at these points, the relations
Λ1 = fc2=fc3 = fc4. On the other hand, if we replace θ by # + π in (27) we
obtain the relations kι=—k3f and foλ~—k±. In other words, ^ = 0 and
r(θ) = r{θ + π). Since this shows p to be a metric center, it was initially
a protective center.

The last statement in the theorem is well known (see [3] and e.g.
[2, p.164]).

If a Hubert metric is defined in the interior of an ^-dimensional,
convex surface S, the definitions for curvature and protective centers
are unchanged. The metric for the space induces, on any plane through
an interior point p, a two-dimensional Hubert geometry. If p is a point
of determinate curvature, it is a two-dimensional protective center for
every plane through it. Since the Lp locus for every plane section is
a line, it is easily seen that the total Lp locus must be a plane and
hence that p is a projective center of S. If curvature is determinate
everywhere then S is an ellipsoid and the geometry is hyperbolic.

It seems probable that a Hubert geometry can contain no points
of positive curvature.

REFERENCES

1. H. Busemann, The geometry of geodesies, Academic Press, N.Y. 1957.

2. - — , and P. Kelly, Projective geometry and projective metrics, Academic

Press, N.Y. 1953.

3. T. Kajima, On a characteristic property of the conic and the quadric,, Sci. Rep.,

Tohoku Univ. 8, 1919

UNIVERSITY O F CALIFORNIA, SANTA BARBARA AND LOS ANGELES.





STATIONARY MEASURES FOR CERTAIN

STOCHASTIC PROCESSES

JOHN LAMPERTI

Introduction. In a recent paper [1], T.E. Harris has studied stationary
processes {Zn} with a finite number of states, taken to be the integers
0, 1, , D-l. His technique is to map the half-infinite sample sequences
Znf Zn-lf onto the unit interval by means of the correspondence

( 1 ) Xn+1 = ZnID+Zn-1ID*+ . . . .

The Xn then form a stationary Markov process. In § 5 of [1] Harris
shows (Theorem 7) that if the process {Zn\ is of mixing type, then
either the stationary distribution G(x)~Pr(Xn<,x) has a unit step, or is
the uniform distribution, or G(x) is continuous and totally singular.

The purpose of this paper is to investigate correspondences such as

(1) in general, using two simple lemmas in ergodic theory which are
given in the next section. If g({io,ilf •••}) is any essentially one-to-one
and measurable mapping of the space of sequences {iOfilf'

 Λ} onto
another measurable space X, then a correspondence similar to (1) may
be defined between stochastic processes with states i and processes on X:

( 2 ) Xn+1 = g({Zn,Zn-l9.- }).

Theorem 1 describes the resulting distributions on X Theorem 2 is
a specialization to the case of (1). Finally an additional application
(Theorem 3) is made to certain of the processes studied by Karlin in
[3]. Theorem 2 contains Theorem 7 of [1], and Theorem 3 overlaps
with § 7 of [3]. In addition to a unified approach, some extension of
the previous results is obtained in both cases.

2. Ergodic theory lemmas.

LEMMA 1. Let (O, W) be a measurable space and T a measurable
transformation of Ω onto itself. Let μγ and μ% be two sigma-finite measures
on (Ω, W) such that for each, T is a measure preserving, metrically-
transitive transformation. Then if μx and μ2 are not proportional, they
are orthogonal {i.e., have their positive mass on disjoint sets).

Proof. Suppose μ1 and μ2 are both finite measures, and assume they
have been normalized. Let A be a set such that μλ{A) Φ μ2(A). Define

j=l

Received July 8, 1957. This paper is based on a technical report prepared under contract
Nonr 220 (16) with the Office of Naval Research.
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where φ 4 ( ) is the characteristic function of the set A. By the in-
dividual ergodic theorem, μt(Bt)==l. Hence Bλ and BC

ΪZDB2 are a decom-
position of ί2 demonstrating the orthogonality of μx and μ2. In the case
where one or both of the measures are infinite, the same idea may be
carried out using Hopf's ratio ergodic theorem (see, for instance, [2]).

Now let ί2 be the Π Y« of sequences {<*>«} where ωieYi with each
i—~ oo

Yt=Y, Y a measurable space. Let W be the Borel field generated by
the "cylinder se t s " of X2\ Denote by S the " s h i f t " transformation

( 3 ) S{o>i} = {pi} where ^ = ωi+ι .

LEMMA 2. Let μ be a measure on (12, W) such that S is measure
preserving and metrically-transitive and μ (12) = 1. Then one of the
following is the case :

(a) there is a finite sequence aίy α2, , am of points of Y such that

μ has mass on each of the m points of 12 given by
m

ωi~ai for i=j+k mod m; & = 0, 1, , m —1.

(b) μ{ω e Ω,\ωo=aQ,ω-1~a1, •••}=() for any sequence {an} of points

ofY.

Proof. Suppose that case (a) does not hold. Then we shall show
that μ(A)~0, where

CO

A= U An,An={ω6Ω\ωn = aoωn-1 = alf •••} .
n~ — oo

Now A is invariant under S, and so μ(A) = 0 or 1. Assume μ(A) = l.
It is not hard to see that if {αj were a periodic sequence, case (a) would
hold. But if {αj is not periodic, a value of n such that ωn~aQ, ωn^λ

=θi, must be unique, and so the An are disjoint. Since S is measure
preserving, μ(An) are all equal. This contradicts the assumption that

μ(A) = l.
Finally we remark that, speaking somewhat less precisely, Lemma

2, may be re-expressed as : A stationary ergodic stochastic process either
executes deterministically a certain periodic motion, or else each path
function has probability 0. We shall refer to these alternatives as case
a and 6.

3. Induced Markov processes. In this section we continue to use

the notation Ω= Π Yi9 but Y is restricted to be a fixed (not necessarily
i=-oo

2 In the applications we shall make of this lemma, Y will be restricted (in fact, will
be denumerable), so that the Kolmogorov extension theorem will hold.
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finite) set of integers. Let X20 denote the space of half-infinite sequences
{%, ilf } where ine Y the measurable sets of both Ω and Ωo are
again those belonging to the Borel fields generated by the cylinder sets.
If ω^ — {i09ilf •••} is an element of ί20, the notation {i, ω(0)} will mean
the sequence {i,io,ilf •••}.

Let (X, F) be a measurable space, and suppose that there exists
a mapping gr(ω(0)) of Γ20 onto X which is one to one if sets at most
denumerable are deleted from Ωo and from X; suppose also that both
g and g'1 are measurable. Let μ be any probability measure on the
space Ω, and let {Zn} mean the stochastic process consisting of the
random variables

( 4 ) Zn(ω) = in.

A new process {Xn}, with state-space X, may be defined by (2) and (4).

LEMMA 3. Assume that for each particular sequence α>(0) in Ωo, and

for each n,

( 5 ) P r ( Z n = i 0 , Z n - 1 = i 1 , - .-) = 0 .

Then {Xn} is a Markov process whose (not necessarily stationary) transi-
tion probabilities are given with probability one by

^n+i = g[{i9 g~\Xn)}] with probability
( 6 )

/ ( Z ) P [ Z i | { Z 1 , Z f t - a , .-.}=g-\Xn)} .

Proof Let EaΩ denote the set of all " p a t h functions" for the
{Zn} process such that some segment {Zni Zn-13 } belongs to the
(denumerable) set which must be deleted from O0 in order to secure
a one-to-one map onto X; it follows from (5) that μ(E) = 0. Therefore
with probability one, knowledge of Xn determines the sequence {Zn~i,
Zn_2, } —g-\Xn) uniquely. Then Xn also determines Xn-i, Xn-^ -and so
the process is Markovian. That (6) gives the transition law is clear.
There are, of course, many cases where the Markov property and (6)
hold even though (5) does not.

Consider now measures μ such that the shift operation (3) s measure
preserving and metrically-transitive in other words, measures such that
{Zn} is a stationary, ergodic stochastic process. In this case, {Xn} will
also be stationary let Qμ denote the stationary probability measure of
(each) Xn.

THEOREM 1. // {Zn} executes deterministically a cycle of period m
(case α), then Qμ concentrates its mass upon at most m points of X.
Otherwise (case b) {Xn} is a Markov process, the measure Q^ is non-atomic,
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and any two measures of this type resulting from different μ*s are or-
thogonal.

Proof. In case a, the measure μ concentrates on m points, and so
Qμ will concentrate on the images of these points, which may or may
not all be distinct. (If they are distinct, then [Xn] must be a Markov
process.) Otherwise, (case b), it follows from Lemma 2 that (5) holds,
and hence that Qμ is non-atomic. Lemma 3 then implies that {Xn} is
a Markov process. Under the mapping g the relation of orthogonality
of non-atomic measures is preserved, and so Lemma 1 yields the remaining
assertion of the theorem.

A remark about infinite measures will conclude this section. Suppose
the shift operation is measure-preserving and metrically-transitive for
sigma-finite measures / / o n Ω which have the property (b) of Lemma
2. Let Qμ denote the perhaps infinite measures which are then induced
by g on (X, F). Lemma 1 is still available, and so the conclusion of
orthogonality of distinct Qμ's remains valid.

4. Applications.

EXAMPLE 1. We now consider the particular case studied in [1].
The set Y will consist of the intergers 0, 1, , D-l, and (X, F) will be
the unit interval and the field of Borel sets. Let

(7) 9({%,ii, •• })=ΐo/Z)+ΐ1/Z)'2+ .

Then the correspondence between a process {Zn} with states Y and
a process {Xn} is given by (1). In this situation we have

THEOREM 2. Let {Zn} be a metrically-transitive, stationary process
with state-space Y; let G(x) = Fΐ(Xn^x) be the stationary distribution
function of Xn. Then {Xn} is always a Markov process, and one of the
following holds :

( i ) {Zn} executes deterministically a cycle of period m in this
case, G(x) has m discontinuities each of leap IIm.

(ii) Each Zn is independently uniformly distributed {0, 1, , D-l}.
In this case G(x) —x, O^#rgl.

(iii) G(x) is continuous and singular with respect to Lebesgue measure.
Finally, any two continuous distributions G(x) are orthogonal.

Proof. The fact that {Xn} is always a Markov process, and the
statement (i), follow since the mapping (7) cannot map two sequences
of ί20 having positive measure into the same point. Statement (ii) is
easily verified, and then the remainder of the theorem follows from
Theorem 1.
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EXAMPLE 2. In this application, the {Xn} process is the primary
object of interest it is a type of learning model [3]. Let Y consist
of the integers 0 and 1, and again take (X, F) as the unit interval and
Borel field. Let σ and a be two numbers between 0 and 1 such that
σ + α ^ l . (The present approach does not seem to apply when σ + α > l . )
Define inductively a family of subintervals of the unit interval as follows :

and if ω°m= {i0, iL, •• ,iw_1}, then

ω°m}) = σA(ω°m) and A({1, ω°m}) = l-a+aA(ωQ

m).

Now since both σ < l and α < l , for any sequence ω(ϋ) the A(ω°m) are
a sequence of nested intervals of length approaching zero. Therefore
the following definition is meaningful:

( 8 ) g({io,iι, ~ })=Γ\ A(ω°m).

Let {Zn} be a stationary stochastic process with states Y, and define
{Xn} by (2) and (8). Let G(x) again denote the stationary distribution
of the Xn.

THEOREM 3. {Xn} is a Markov process with transition law

( 9 ) X«+i = Γ n with probability ° n

ί 1 — a+aXn jι\Xn) — 1 —Λ(^«)

Any stationary Markov process of this form is induced by some process
{Zn}: If {Zn} is in addition metrically transitive, one of the following
cases must hold:

( i ) {Zn} executes deterministically a cycle of period m G(x) has m
discontinuities each of leap 1/m.

(i i) G(x)=x this occurs if and only if σ+a = l and fz{x)==σ, fΎ(x)

(iii) G(x) is continuous and singular with respect to Lebesque measure.
Any two continuous distributions G{x) arising from different metri-

cally-transitive processes {Zn} but the same mapping g (that is, the same
σ and a) are orthogonal.

Proof If σ + α < l , then the mapping g is not onto the whole unit
interval, but onto a cantor-like subset of measure zero it is precisely
one-to-one onto this set. Therefore Xn must be a Markov process, and
the transition law (9) is obtained from (6) and (8). The continuity of
G(x) if (i) does not hold follows from Lemma 2. Since G(x) is a distri-
bution on a set of measure zero, it must automatically be a singular
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distribution for any process {Zn}.
Now suppose σ + a = l. In this case there are some points x corre-

sponding under g'1 to two points of Ωo however, just as in Theorem 2
the ambiguities of the mapping do not affect either the Markov property
or the m distinct discontinuities of statement (i). Statement (ii) is readily
verified, and then (iii) follows from Theorem 1. Whether σ + a — lf or
<1, the last statement of the theorem also follows from Theorem 1.

If {Xn} is a stationary Markov process of the form (9), the dis-
tribution G(x) = Pr(Xn^x) concentrates positive mass only on the domain
of g'1 hence a stationary measure is induced by g'1 on ί20, which
extends to a measure μ on Ω. The process {Zn} inducing {Xn} is then
defined by (4). This completes the proof.
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DISTRIBUTIVITY AND THE NORMAL COMPLETION

OF BOOLEAN ALGEBRAS

R. S. PIERCE

1. Introduction. In a recent paper, [4], Smith and Tarski studied
the interrelations between completeness and distributivity properties of
a Boolean algebra. Independently, the author also obtained some of the
results of Smith and Tarski. This work was reported in [2]. The present
paper continues the study of distributivity in Boolean algebras. Specifi-
cally, it deals with the problem of imbedding a Boolean algebra B in
an α-distributive, /^-complete algebra, a and β being infinite cardinal
numbers. If it is required that the imbedding be regular, that is, preserve
existing joins and meets, then (see [3]) the problem is equivalent to the
question of when the normal completion of B (or a subalgebra of the
completion) is α-distributive. Our two main results can be briefly stated
as follows :

THEOREM 3.1. Every a-distributive Boolean algebra can be regularly
imbedded in an a-complete, a-distributive Boolean algebra.

THEOREM 5.1. There exists an a-field of sets whose normal com-
pletion is not a-distributive.

Between these principal results, we obtain two simple conditions,
one of which is necessary, the other sufficient for the normal completion
of a Boolean algebra to be α-distributive. These appear naturally as
particular cases of more general facts relating properties which are
similar to, but not identical with α-distributivity and ^-completeness.

2. Preliminary results. The notation of this paper will be the same
as that of [2]. The Greek letters α, β and γ always denote cardinal
numbers, while p, <? and τ are used as indices belonging to sets R, S
and T respectively. The symbol oo will be used as though it were
a largest cardinal. This is a notational convenience, and in no case in-
volves questionable logic. As in [2], a subset A of an arbitrary Boolean
algebra B is called a covering (of B) if the least upper bound of A in
B is the unit u of B. If the elements of the covering A are disjoint,
then A is termed a partition. Finally, if the covering ^partition) A is
of cardinality less than, or equal to a, symbolically A^α, then A is
called an α-covering (respectively, α-partition). If A and A are sub-
sets of B, then A is said to refine A when every aeA is<£some aeA.
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DEFINITION 2.1 (Smith-Tarski). A Boolean algebra B is called (a,
β) -distributive if

Λ V b = \ / Λ b ί ) F = T

holds identically when S^a, T^β and the bounds are assumed to exist
in B.

Some elementary consequences of this definition are worth noting :

(2.2) If B is (α, /^-distributive and a'-^a, βf^βy then B is (a\ β')~
distributive. Any regular1 subalgebra of an (a, β)-distributive Boolean
algebra is (a, β)-distributive. Every Boolean algebra is (n, β)-distributive,
where n is finite and β is arbitrary.

The last assertion of (2.2) is a variant of the Tarski-von Neumann
theorem (see [1], p. 165). This infinite distributivity is a property of
Boolean algebras which we use repeatedly and without mention.

A useful characterization of (α, /^-distributive Boolean algebras is
given by the following theorem, which, in somewhat different terms,
appears in [4]. Since this characterization is used often in the sequal,
we sketch a proof.

THEOREM 2.3. Let a and β be arbitrary cardinal numbers. A Boolean
algebra B is (a, β)-distributive if and only if, for any family {Aσ\σ e S} of β-
coverings of B with S^af there is a covering of B which refines every Aσ.

Proof Suppose B is (^/^-distributive. Let {AJσ-eS} be a given
family of /5-coverings with S^a. It can be assumed that every Aσ is
indexed by the same set T: Aσ={aστ\τ^T}. Let A~{aeB\{a} refines
every Aσ). Clearly A refines every Aσ. If A is not a covering of B, there
exists bφO (the zero of B) which is disjoint from every as A. Setting
bστ=aστΛb, it is easy to see that AaVAT=&>0= VψΛAψoo T h ί s c o n "
tradicts (α, β)-distributivity. Thus A is a covering.

Conversely, let B satisfy the condition of the theorem. Suppose
Vrerbσr, ΛσesVτ6ϊ*crr=& and Λσ€A< (̂σ) exist for all & G S Siπd all ψ e F
= TS. Let ω be a symbol not in T. Put T = T[j{ω}, 6^=6', Aσ={bστ\
τeT'},bφ= ΛaeΦσφ(σ) for all φeF. Then each Aσ is a /9-covering, so by
assumption there is a covering A which refines every Άσ. If a e A, then
either a<^bφ for some φeF, or else a<^b\ Thus, if c^>bφ for all φ>
cVδ'^l.u.b. A^u (the unit of B). Hence, c^b. Since b is obviously
an upper bound of all bψ1 it follows that b=/\φeFbφ.

For simplicity, an (a, α)-distributive B. A. is just called α-distribu-
tive.

1 A subalgebra B of a Boolean algebra B is called regular (see [3]) if, whenever a
— l.u.b. A in B (a£B, A^B), then α=l.u.b. A in B also. Of course, in a Boolean al-
gebra, this property implies its dual and conversely.
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COROLLARY 2.4. A Boolean algebra B is a-distributive if and only
if every family {Aσ\σ e S) of binary partitions with S^La has a common
refining covering.

Indeed, if {Aσ\<r e S} (S^a) is a family of α-coverings, say Aσ

= {aστ\τeT}9 then, setting A σ τ =[α σ τ , ( O ' ] , the set {Aστ\σeS, reT} is
a family of no more than a binary partitions of B and any covering which
refines all Aσr is a common refinement of all Aσ (because /\7{aστy — 0.

For future reference, we list some of the well known properties of
the normal completion (or completion by " cuts " ) of a Boolean algebra.
The Stone-Glivenko theorem ((2.5) below) is proved in the standard re-
ference [1], The proofs of (2.6) to (2.8) are conveniently collected
in [3].

(2.5) (Stone-Glivenko) The normal completion of a Boolean algebra
is a Boolean algebra.

(2.6) Let B be the normal completion of the Boolean algebra B.
Then B is a regular subalgebra of B.

(2.7) Any Boolean algebra B is dense in its normal completion B.
That is, if OΦbeB, then there exists beB with k

(2.8) If the Boolean algebra B is a dense subset of the complete
Boolean algebra B, then B is isomorphic to the normal completion of
B. Moreover, if BaBaB and B is complete, then B—B.

DEFINITION 2.9. Let B be a Boolean algebra. Let B be the normal
completion of B. Let a be an infinite cardinal number. The normal a-
completion of B is the intersection of all α-cornplete subalgebras of B
which contain B. Denote this algebra BΛ. It will also be convenient
to write B°° for B.

Clearly, BΛ is the smallest α:-complete subalgebra of B°° containing
B. Moreover, B is dense in B* and is regularly imbedded in B*.

3. The imbedding theorem. The primary purpose of this section
is to prove Theorem 3.1 (stated in the introduction). However, the
method of the proof is used several times in the following sections, so
it behooves us to present it in a form which is sufficiently general to
cover all future needs.

LEMMA 3.2. Let B be a complete Boolean algebra. Let %_be a non-
empty family of partition of B such that if {Aσ\σ e S} gSί and S ^ α , then
some A e 2ί refines every Aσ. Let B be the set of all joins of subsets of
the partitions A in Si. Then B is an ct-complete Boolean algebra such



136 R. S. PIERCE

that A^B for every A 6 Si and every a-covering of B is refined by some
Ae3ί. Hence, B is a-distribittive.

Proof If C g A e 31, then (l.u.b. C)' = Lu.b. (A-C), since A is
a partition. Hence B is closed under complementation. Suppose {cσ\σ e S}
is a subset of B with S<^a. By definition of B, for each σ e S , there
exists a partition A^eSI and a subset Cσ^Aσ such that c σ=l.u.b. Cσ.
Then Aσ refines the binary partition {cσ, (cσ)'}. Let A e 2ί be a common
refinement of all Aσ. Then A is a common refinement of all {cσ, (cσ)'}
and g.l.b. {cσ |σ-eS}=l.u.b. {aeA\a<Zcσ all o eSjeB. Indeed, c = l.u.b.
{αeA|α<^cσ, all σ e S J ^ v ^ σ is clear. But also, c' = l.u.b. {αeA|α<;
(Co)', seme <reS}^ΛσeιJίCσ)':=(ΛσeίPo)'- Hence, B is an α-complete B.A.
Obviously, A^B for all A 6 St. If A is an α:-covering of B, then, as
proved above, every binary partition {c, c'} with c e A is refined by some
Ac e St. Choosing A e §ί to be a refinement of all these Ac gives a refine-
ment of A. In fact, any aeA satisfies either α<^c, or a<Lc' for all
e e l If a^c' for every c, than α^Λ c e2C / = (l.u.b. A)' = 0, since A is
a covering. Thus every aeA satisfies a<^c for some e e l

Proof of (3.1). Let 5 be the normal completion of B. Let 3ί be
the set of all partitions of B, which are of the form Π σ € ) SA σ= {bφ\φe 2s},
where the Aσ~ {aσ0, ασl} are binary partitions of B and bφ= Λσe,$Ar<κo ) 6 J?.
The fact that Π ê̂ Ao- is a partition follows directly from the assumed
distributivity of B. If Aτ=UσesωAσre^L for all r e ϊ 7 with T^a, then
A=Π τ e r Π σ e s C τ )A < n .e Sί is a common refinement of all Aτ. Thus, the
hypotheses of (3.2) are satisfied. Consequently, there is an α:-complete,
α-distributive Boolean algebra B with Bξ^BξΞ^B. Since B is a regular
subalgebra of B, it is also a regular subalgebra of B.

4 Conditions for distributivity. In this section, we will examine
the following five properties of a Boolean algebra B :
( IΛ ) B is α-complete
( IIa ) every subset of an ^-partition of B has a l.u.b. in B
(IΠβ) every /3-covering of B can be refined by a /^-partition
(7FΛ β) B is (α, /^-distributive
( VΛβ ) If {Aσ\o-eS} is a set of /9-partitions of B with S^a, then there

is a covering of B which is a common refinement of every Aσ.
Certain relations between these properties are more or less evident.

(4.1) (a) Ia and IIΛ are hereditary in a, that is, I,, implies Iy and
II"Λ implies Πy for all γ<^a

(b) IVΛβ and V̂ β are hereditary in both a and /3
(c) Ia implies Πa

(d) IVΛβ implies VΛβ
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(e) VΛβ and IΠβ together imply IVΛβ

(f) if IΛ holds for all a<β, then ΠIβ, is satisfied
(g) IVaΛ is equivalent to Va2 and hence to VΛΛ

(h) III"oo is always satisfied, so IV^ is equivalent to F̂ oo.

Proofs. The statements (a)-(e) are obvious. If Z? is α-complete for
all a<β, and A—{aξ} is a ^-covering of B indexed by the set of all
ordinals ξ of cardinality less than β, then {cξ\ξ<β} will be a/3-partition
refining A if Cξ=aξA(Vv<^aηy. The assertion of (g) is a restatement of
(2.4). Finally, with the help of Zorn's lemma, it is always possible to
construct a partition to refine any covering. This construction, the de-
tails of which we omit, proves (h).

It appears from (4.1) (e)-(h) that the condition VΛβ is only slightly
weaker than IVaβ. On the other hand, the condition IIa is substantially
weaker than IΛ, as the following example indicates. Let X be a set of
cardinality β let B be the Boolean algebra of finite subsets of X and
their complements. If a is any cardinal number less than β, then any
α-partition of B is finite. Consequently, B satisfies IIΛ. In one case
however, the properties IΛ and IIΛ are equivalent, namely :

(4.2) //«, is equivalent to Zoo.

Proof. Let C be an arbitrary subset of B. Let C'={deB\d*c = Q,
all ceC}. Then clearly, u is the only upper bound of the set CuC,
that is, CuC" is a cover. By (4.1) (h), there is a partition A refining
CuC. If D={aeA\{a} refines C}, then A-D= {ae A|αΛC = 0, all ceC}.
Hence l.u.b. C=l.u.b. D exists by //«,.

It is appropriate now to explain the object of studying the various
properties listed above. Our main interest, of course, is the relation
between /«, and IVΛoύ, and specifically we would like to find simple neces-
sary and sufficient conditions for the normal completion of a Boolean
algebra to satisfy IVΛΛ. It is rather easy to prove that IVaoo is sufficient
and /FΛθχP(αθ is necessary for α-distributivity in Z?°°. The effort to fit
these two facts into a broader pattern leads to consideration of conditions
Πβ and Vaβ. It turns out that properties IIβ and Vaβ are tied together
rather closely. Unfortunately Iβ and IVaβ do not enjoy such an intimate
relationship and the two conditions mentioned above are the more or less
accidental offspring of Πβ and Vaβ rather than the progeny of Iβ and
IVΛβ.

THEOREM 4.3. // the Boolean algebra B satisfies VΛβ and Z77, where
y—βΛ, then B satisfies Vay.

Proof. The theorem is trivial if a is finite, so it will be assumed
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that a is an infinite cardinal number. Let A be a ^-partition of B.
Then A can be indexed by a subset of Ts, where T=β and ~S=a, say
A={aφ}. Since B satisfies Πy, it is meaningful to define 6στ = l.u.b.
{aψ\φ(σ-) = τ} for each σeS, τeT. Then Aσ={bσr\τeT} is a β-partition
of B and it is easy to see that any common refinement of all Aσ is also
a refinement of A, Now suppose {Ap\peR} is a set of ^-partitions of
B and R<^a. For each p in β, define (as above) a set of /^-partitions
{Apσ\σeSp} with the property that a common refinement of every Apσ

with o e Sp is also a refinement of Ap. Consider the set of all ^-parti-
tions {Apσ.\σ-eSp, peR). There are at most a2-a of these, so by pro-
perty Vaβ, there is a covering A which refines every Apσ. But then A
refines every Ap. Thus, B satisfies Vay.

COROLLARY 4.4 (Smith-Tarski [4]). IfB is a-distributive and ^-com-
plete, then B is (a, ^-distributive.

COROLLARY 4.5. A necessary condition that Bβ be a-distributive,
where β^2Λ, is that B be (a, ^-distributive.

Indeed, if Bβ is ^-distributive, then by (4.4) it is (a, 2*)-distributive.
But B is a regular subalgebra of Bβ and hence (by (2.2)) B is also (a,
2")-distributive.

We do not know whether the converse of 4.5 holds. That is, if

B is (α, 2*)-distributive, does it follow that B%Λ is α-distributive ? This
seems doubtful, but if the goal of 2*-completeness (that is, property I2<Λ)
is replaced by the property IIι0L, then a positive result is obtained (in
Corollary 4.8 below).

THEOREM 4.6. Let B be an arbitrary Boolean algebra. Define B to
be the intersection of all algebras B with the property Πβ such that
B^BQB00. Then B satisfies IIβ. Moreover, B has property VΛβ if and
only if B has property F Λ β . Also, if B is a-complete and satisfies Vaβ,
where βΛ—β, then B is a-complete.

Proof. Clearly B satisfies Πβ. Since B is a regular subalgebra of
By the property VΛβ for B implies the same property for B. To estab-
lish the converse, it is sufficient to show that every β-partition of B can
be refined by a β-partition of B.

Let SI be the set of all β-partitions of B. By (2.5), every A e Si can
be considered as a partition of B°°. By (2.2), every finite subset of 31
has a common refinement in SI. Let B be the set of all joins in B°° of
a subset of some A e 31. By (3.2), B is a Boolean algebra containing B.
Clearly B^B. Suppose A is a /5-partition of B, say A— {aτ\τ e T]. Then
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aT=Vi&«rrkeSv} with bσreB, b^b^^O for σψσ\ and Sr^β. Con-
sequently, A— {bσr\σ- e Sτ, reT} is a /^-partition of B which refines A.
The join of any subset of A is also the join of a subset of A and
therefore in B. Since A was an arbitrary /^-partition, B has property
//β. Consequently, B^B. Thus every /9-partition of B=B can be re-
fined by a ^-partition of B.

Finally, suppose B is ^-complete and satisfies VΛβ, with βΛ~β. If
{ΛrKeS}, S^α: is a set of β-partitions of B, then ΠσesΛr={ΛσeA-l
δσ6^4σ} is a βΛ=/3-partition. Hence, by (3.2), Z?=J3 is α-complete.

COROLLARY 4.7. The normal completion of a Boolean algebra B is
(<%, oo )-distributive if and only if B is (a, ^-distributive.

Proof By (4.6), (4.1) and (4.2).

COROLLARY 4.8. // the continuum hypothesis is true for the infinite
cardinal a (that is, 2a covers α), then an a-complete Boolean algebra B
can be regularly imbedded in an a-complete, a-distributive algebra satis-
fying IIzΛ if and only if B is (a, ^-distributive.

Proof. The sufficiency of (α, 2α)-distributivity is a consequence of
(4.6) and (4.1). The necessity follows from (4.3), (4.1) and (2.2).

5. An example. Because of (4.5), the Theorem (5.1) of the intro-
duction can be proved by constructing an α-field which is not (α, 2*)-
distributive.

Let X be a set of cardinality 2*. Denote by Y the set of all ordinal
numbers of cardinality less than a. Let Z be the set of all bounded func-
tions in Yx, that is, functions / for which there is an η e Y such that
f[x)<η for all x in X. Let £? be the collection of all sets of the form

where WQX, W^a and ψ e Yw. It is obvious that -^contains the empty
set and is closed under α-intersections.

Let ^ be the a -field generated by ^ . It is to be shown that S^
is not (a, 2*)-distributive. The proof hinges on a lemma, which is useful
in its own right.

LEMMA 5.2. Let Z be a set. Suppose J5f is a nonempty family of sub-
sets of Z with the following properties :
(i) every a-intersection of sets in J2^ is in 5^;
(ii) the complement of any set of Jzf is a union of sets of JSf.
Let ά^ be the a-field generated by ~Sf. Then Jίf is dense in κ^

r.
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Proof. Let lδ be the complete B. A. of all subsets of Z. Let SI be
the collection of all partitions A of 58 with AgΞ-2^. If {Aσ|σeS}£Ξ2l,

and say Aσ={Lσr\τeTσ}y then by (i), UσesAσ= {C\σesLσφM\φ
sTV} is in 21 and refines every Aσ. Let 58 consist of all sets
such that both V and VG are disjoint unions of set of J*f. By

(3.2) and (ii), j£fS&+7& and 8̂ is an α-field. Thus, j ^ ^ J ^ g ί ? . . Since
every set of 23 is a union of sets of jSr̂ , the same is true of ^~ and
in particular, ^f is dense in

We now proceed to prove that ^ is not (a, 2*)-distributive. For
each pair (x, η) with xeX and ηe Y, define T(Xt^ — {feZ\f(x) = η}.
Clearly TiXtΎ)^ e £?. For each η e Y, let Av={TCx>^\xe X}. The argument
is completed by showing
( 1 ) Av is a 2*-covering of ^
(2 ) no covering of J^ refines every A,.

Proof of (1). Evidently, Z^ = 2Λ, so the only thing to prove is that
the l.u.b. of Av in J^~ is Z. The first step is to show that the conditions
(i) and (ii) of (5.2) are fulfilled, so that ^ is dense in ^ . Condition
(i) is clear. For condition (ii), let L=Lw>(pe S^. Then L°=\Jxew{f e Z\
f(x)Φφ(x)}=\Jxew(V{T(XlV')\ηΦφ(x)}) is a union of sets of jSf7.

Since jSf is dense in . J S it is enough, in proving (1), to show that
if L e ^ satisfies LΓiT(Xtη )=φ for all x, then L—φ. Suppose LΦφ and
say L=Lw>φ. Pick / e L and let # e X — TΓ. Define geZ hy g{x) = η,
9(y):=zf(y) if ^ ^ ^ . Then ^ e Γ(aj>^ and geL. Hence, Lf]T(x,^Φφ, which
is the required conclusion.

Proof of (2). First note that Π , € F ( U Λ ) = Φ
 F o r otherwise there

would be a n / e Z whose range included every ηeY, contray to the bounded-
ness of the functions of Z. But if A is a subset of S^ which refines
every Aη, then i M s u A , for all η. Hence, (J AgΞ ΓUeF( U ^ ) = Φ, so A
cannot be a covering.
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TRANSCENDENTAL ADDITION THEOREMS FOR THE

HYPERGEOMETRIC FUNCTION OF GAUSS

F. M. RAGAB

1. Introduction. In this paper, integrals involving products of
two Gauss functions, regarded as functions of their parameters, are
evaluated it terms of other functions of the same kind. In all these
integrals it is assumed that |a?|<l. Also the integrals are taken up the
entire length of the imaginary axis with loops, if necessary, to separate
the increasing and decreasing sequences of poles. These formulae are :

β' r + a ; x ) m ' - ° β' • r'~3 '• •> *

where γ + f-lφθ, -1, -2, ••• γ-αΦO, -1, -2, •• and γ'-α'ΦQ,

-1,-2,-"

( 2 } h\rr^tS\rr%~S\F^-a' r 'β+s; x)F(β'-a', / β's x) ds2m J Γ(β+s)Γ(β'—s)
_Γ(a+a')Γ(β+β'-a-g'-l) -
-Γ(βa)Γ{β'^)T(f^β^Λ)ψ+ί ι,r+r ,

where β-aΦθ, -1, -2, •- β'-a'ΦO, - 1 , -2, and β+β'-lΦO,
- 1 , - 2 , •••;

( 3 ) -^\r(a+s)Γ(a'+s)Γ(β-s)Γ(β'-s)F(a+s, β-s lα+1/9+1 a,)
2π% J V 2 2 2 /

xF(a'+s, β'-s λa' + Lβ' + l.; xλds
\ Lt Li £ /

= Γ(a+β')Γ(a'+β)Γ(a+β)Γ(a'+β'){Γ(a+a'+β+β'}-ι

xF(a+β', a'+β λa + λa'+±β+λβ'+λ ») ,

where «+α'+/3+/3'^O, -1, -2, •••

(4)

xF(α+s, β α+r' a;)F(α'-s, β', a'+γ ar) (is

= Γ{r+γ')Γ{a+a')Γ{a+γ')Γ{a'+r){Γ{a+a'+γ+f)}-'

xF(a+a', β+β' α+α'+r+r ' a?) ,
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w h e r e a + af+r+γ'φ0, — 1 , — 2 , ••• a n d

( 5 } αMvF" Ϋ\ίr',T*}F(<*+*> P+s ' r+s x)Έ\a'-8, β'-s r ' - β x)ds2m i I (r+s)l (γ —s)

where γ-βΦO, - 1 , - 2 , - γ'-β'φO, - 1 , - 2 , - - and γ + γ'-lφO, - 1 ,
- 2 , . . . .

All we need is the following two formulae [E. C. Titchmarch, Fourier
integrals, p. 194] :

6 ) 1-, \Γ(a+s)Γ(β+s)Γ(r-s)r(d-s) ds
2m J

where ( — a<k, —β<h,γ>k,d>k)\ and

s)ds= Γ(a
8) Γ(β-a)Γ(δ~r)Γ(β + d-

where (-α<fc, —β<Jc,r>k,δ>k).
It may be noted that the restrictions, needed for (6) and (7), on

the parameters in formulae (1)—(5), can be removed later on by the
theory of analytical continuation. The proofs and two other formulae
will be given in §2., while some confluent forms of addition theorems
will be deduced, as a limiting case, in §3.

2. Proof. On expanding each hypergeometric function on the left
hand side of (1) and changing the order of integration and summation
it becomes

| i | i (β j\m)(β'j, _nlχm+n m I f ^ _ r

m=o«=o m ! n\ 2πί) Γ(γ+m+s)Γ(γ' +n —

From (7), it follows that the last integral is equal to

Γ(a + af+m±n)Γ{r + γr - a- a!_ -A)

Thus the left hand side of (1) becomes

r(a + af)Γ(r±f -a-a' -1)
^ 7

ml n\{γ + γf — 1 m+n)
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= Γ(a+_a')Γ(r+r'-a-_a'-l)
Γ(r' -a')Γ(7

:-a)Γ(j+f -1)

x Σ (a+^βμ^x»F(β', -v l-β-V 1) ,

and from this formula (1) follows by applying Gauss's theorem. The
proof of (2) is the same as the proof of (1).

To prove (3), expand each hypergeometric function on the left hand
side of (3) and change the order of integration and summation then it
becomes

ΣΣ

x \Γ(a+m+s)Γ(a' + n+s)Γ(β+m — s)Γ(β' + n — s) ds

2πi J

From (6), it follows that the last integral is equal to

τ\af + β+m + n) Γ(a' + βf + 2ri)

Thus the left hand side of (3) becomes

=, {
ml nl ( | α + α +

)Γ(α'+β)Γ(a+β)Γ(af+β'

(a+β' p)(β+a' p ) ( l α ' +A/3' p

χ
y

xr\ —

and from this, formula (3) follows by applying Gauss's theorem. From
the proof of (3), the following formula can be deduced :
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(8) ±\r(a+8)Γ(fl-8)Γ(a'+8)Γ{β'-8)
2m J

xF(a+s, β-s;1a+1-β α W α ' + s , β'—s — α ' + — β' ;x\ds

= Γ(a+β)Γ(a'+β')Γ(a+β')Γ(a'+β){Γ(a+a'+β+β')}-'

x F
a+β',a'+β, ~ '+β+β'+2); x

where α + α ' + /? + /3'^0, - 1 , - 2 , — .
The proof of (4) is the same as the proof of (3), while formula (5)

can be deduced by substituting for each hypergeometric function on
the left hand side an integral of Barnes's type and changing the order
of integration.

Finally, I may mention the following formula which involves a
generalized hypergeometric function,

9

xF(a+s, β + s γ \x)F(af-s, β'-s γ' ;x)ds

ct+cc',
f, β+a\ β + β', hγ+f-1), Uγ+f) x

Li Δi

'), λ(a+a'+β+β'
Δ

where γ+γ'-lφO, - 1 , - 2 , , a+a' + β + β'ΦO, - 1 , - 2 , and either
γ or γf is not zero or a negative integer.

3. Confluent forms of addition theorems. In (1) take β' = β, write
xlβ for x and let /9->oo to get

(10) - ^

2m
r+s; x)F(a'-s f-s; x) ds

Γ(r+r'-i)Γ(r-a)Γ(f-a')
-a-a'-l) , ,_χ

a)Γ(fa') κ

where 2(k+a)>0, 2(k+r)>0, 2(a'-k)>0, 2(γ'-k)>0,
- 2 , ••• γ-ctΦO, - 1 , - 2 , ••• and γ'-a'ΦO, - 1 , - 2 , ••• .

In (2), take y' — y, write xjy for x and let y-^-oo, to get

, - 1 ,

(11)
Γ(β+s —s)
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β + β'-a-a'-l) F{β + β,_a_a>_χ β+β'^! ; 2χ) ,
Γ(f3-a)Γ(β'-a')Γ(β+β'-l) W ^'

where SR(/c+α)>0, M(k + β)>0, 3t(α'-fc)>0, 3ΐ(/?'-fc)>0, β-aΦO, -I,
- 2 , ••• β'-a'ΦO, - 1 , - 2 , and /?+/9-1^0, - 1 , - 2 , ••• .

Finally in (4), take /ί' = /5 write .τ//9 for α- and let /?—>oo, to get

(12) - ^ • r f Λ

x F ( α + s a+f ^^(α:'—s af+ γ a?)

where 9ί(Λ+r)>0, 3ΐ(α+A:)>0, dl(γ'-k)>0, dϊ(af-k)>0, and
^0, - 1 , - 2 , . . . .
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PRINCIPAL SOLUTIONS OF NON-OSCILLATORY SELF-

ADJOINT LINEAR DIFFERENTIAL SYSTEMS

WILLIAM T. REID

l Introduction, Tn their study of real quadratic functionals

Ja

admitting a singularity at the end-point x — a Morse and Leighton [11]
showed that if χ — a is not its own first conjugate point then the
corresponding Euler differential equation

(1.1) (r(x}y' + q(x)y)'-(q(x)y'+p(xyy) = O, a<x^b ,

possesses a non-trivial solution u(x) such that ιι(x)]y(x)-*Q as x-*a+ for
each solution y(x) of (1.1) that is independent of u(x). Such a solution
u(x) was termed a focal solution belonging to x—a by Morse and Leighton
[11], but in a subsequent continuation of the study by Leighton [8] the
terminology was changed to principal solution.

If j\t) is a real-valued continuous function on to^t<oo and

(1.2) x"+f(t)x = 0 , tQ^t<cv ,

is non-oscillatory, Hartman and Wintner [4] have termed a non-trivial
solution x(t) a principal solution if

(1.3)

for U greater than the largest zero of x(t), and proved that a non-
oscillatory equation (1.2) has a principal solution that is unique to an
arbitrary non-zero constant factor; moreover, if x(t)^0 is a solution of
(1.2) which is not principal then every solution y(t) of (1.2) is of the
form y(t)—Cx(t) + o(\x(t)\) as £->oo, where the constant C is or is not
zero according as y(t) is or is not principal. In view of this latter
result, for a non-oscillatory equation (1.2) a solution x(t) is principal in
the sense of Hartman and Wintner if and only if it is principal in the
sense of Morse and Leighton.

Recently Hartman [5] has considered a self-ad joint vector differential
equation

Received August 12, 1957. This research was supported by the United States Air
Force through the Air Force Office of Scientific Research of the Air Research and
Development Command, under Contract No. AF 18(603)-8β. Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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(1.4) (R(t)x')'+F(t)z = O ,

where R(t), F(t) are nxn matrices which are continuous and hermitian,
while R(t) is positive definite on the interval of consideration. An nxn
matrix solution of the corresponding matrix differential equation

(1.4') (R(t)X')'+F(t)X=0

is termed "prepared" by Hartman if X*(t)R(t)X'(t) is hermitian. Under
the assumption that the class Γ of solutions X—X(t) of (1.4') which are
prepared and non-singular on a corresponding interval ax<t<oo is non-
empty, Hartman showed that in Γ there exists a solution which is
principal in the sense that the least proper value λΛ(t) of the positive
definite hermitian matrix

(1.5) [ (X*X)~ιds , (to sufficiently large t>t()),

satisfies λx(t)->°o as £->oo, and this principal prepared solution is unique
up to multiplication on the right by an arbitrary non-singular constant
matrix, while there also exist in Γ solutions that are non-principal in
the sense that the greatest proper value μx(t) of (1.5) remains finite as
£->oo moreover, if Y(t) and X(t) are matrices of Γ which are principal
and non-principal, respectively, then X~\t)Y(t)-*§ as t—>oo.

Hartman's assumption that the above defined class Γ is non-empty
is indeed an hypothesis of non-oscillation, since in view of the results
of a recent paper of Reid [13] the class Γ is non-empty if and only if
(1.4) is non-oscillatory for large t in the sense that there exists a t{)

such that if x(t) is a solution of (1.4) satisfying χ(t1) — 0=x(tI) with t{)<tι

<t2 then x(t)=0.
It is to be noted that Hartman's definition of principal solution for

an equation (1.4) which is non-oscillatory for large t has the undesirable
feature of limiting the considered matrix solutions of (1.4') to the class
Γ indeed, Hartman [5 §11] gives an example of a non-prepared
solution X(t) of (1.4') that is non-singular for large t, and such that
the least proper value λx(t) of the corresponding hermitian matrix (1.5)
satisfies Λχ(£)->oo as £->oo. Moreover, as Hartman points out, his
classification of principal and non-principal solutions does not present a
disjunctive alternative in the class Γ.

For a self-adjoint vector differential equation of somewhat more
general type than that considered by Hartman, and which is non-
oscillatory for large values of the independent variable, the present
paper presents a generalized definition of principal solution that dis-
tinguishes such solutions in the class Γo of all matrix solutions which
are non-singular for large values of the independent variable. In
addition, it is shown that principal solutions possess on Γ,, certain
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properties that are extensions of properties established by Hartman for
the class Γ. It is to be commented also that the presented determination
of a principal solution is by variational methods and is direct in nature,
in contrast to the indirect character of the proofs of the existence of
a principal solution in the above-cited papers of Hartman, Hartman and
Wintner, and Morse and Leighton in this connection it is to be remarked
that although the existence of a principal solution for (1.1) was established
indirectly by Morse and Leighton [11], the properties of principal
solutions derived in their Theorem 2.2 permit a ready direct determination
of such a solution.

Sections 2 - 8 of the present paper deal with a self-ad joint
^-dimensional vector equation with complex coefficients that is a direct
generalization of the scalar equation (1.1) Section 9 is devoted to a
more general differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type.

Matrix notation is used throughout in particular, matrices of one
column are termed vectors, and for a vector y = (y«), (α = l, ••• , ri), the
norm \y\ is given by (\yΎ\z+ ••• +\yn\')112* The symbol E is used for
the nxn identity matrix, while 0 is used indiscriminately for the zero
matrix of any dimensions the conjugate transpose of a matrix M is
denoted by M*. Moreover, the notation M^>N, (M>N), is used to
signify that M and N are hermitian matrices of the same dimensions
and M—N is a nonnegative (positive) hermitian matrix.

2. Formulation of the problem. For x on a given interval X:
a<x<oo let ω(x, y, π) denote the hermitian form

(2.1) ω(x, y, π) = π*R{x)π + π*Q{x)y + y*Q*{x)π + ιβP{x)y ,

in the 2n variables y, π = (ylf ••• , yn, πlf , πn). It will be assumed
throughout Sections 2-8 that R(x), Q(x), P(x) are nxn matrices having
complex-valued continuous elements on X, with R(x), P(x) hermitian, and
R(x) non-singular on this interval.

If c, d are points of X the symbol I[y c, d] will denote the
hermitian functional

(2.2) I{y; c, d] = ^ω(x, y, yr)dx .

For the functional (2.2) the vector Euler equation is

(2.3) L[u]=(R(x)uf + Q(x)uY-{Q*{x)u;+P{x)u)-0 ,

which may be written in terms of the canonical variables

u(x), v(x)=R(x)u'(x)
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as the first order system

(2.4) u' = A(x)u+B(x)v , v' = C(x)u~

where the nxn coefficient matrices of (2.4) are continuous on X and

given by A~— R^Q, B=R~ι, C=P—Q*R~ιQ in particular, the matrices
B(x), C{x) are hermitian on X and B(x) is non-singular on this interval.

Corresponding to (2.3) and (2.4) are the respective matrix equations

(2.30

(2.4r) lΓ=A(x)U+B(x)V, V = C(x)U-A*(x)V.

In [13] the author has discussed various criteria of oscillation and
non-oscillation for an equation (2.3) in which the coefficient matrices
satisfy weaker conditions than those imposed above although the
results of the present paper hold for equations of the generality discussed
in [13], for simplicity specific attention is restricted to the case described
above.

Throughout the subsequent discussion of Sections 2-8 we shall deal
consistently with the cononical system (2.4) and associated matrix
system (2.40, instead of the equivalent respective equations (2.3) and
(2.3r)> since in Section 9 there is considered a vector differential system
more general than (2.3), but with associated canonical system still of
the form (2.4).

If U(x)=\\UΛ£x)\\, V(x) = \\VΛJ(x)\\, (α = l, , n j = l , , r) are
nxr matrices, for typographical simplicity the symbol (U(x) V(x))
will be used to denote the 2nxr matrix whose j-th column has elements
Uυ(x), , Unj(x), Vυ(x), , Vnj(x). In the major portion of the
following discussion we shall be concerned with matrices (U(x) V(x))
which are solutions of the matrix differential system (2.4;).

If (ϋΊ(x) VΊ(x)) and (U2(x) V2(x)) are individually solutions of
(2.4r) then, as noted in Lemma 2.1 of [13], the matrix U1

:¥(x)V2(x)~
VΊ*(x)U.χx) is a constant. This matrix will be denoted by {Ulf U2} it is
to be remarked that for the problem formulated above there is no
ambiguity in this notation, since the V(x) belonging to a solution (U(x)
V(x)) of (2.4') is uniquely determined as V(x)=R(x)U'(x) + Q(x)U(x). As
in [13], two solutions (u^x) vλ(x)) and (u2(x) v.£x)) of (2.4) are said to
be (mutually) conjoined if {u19 u2}—0. If (U(x) V(x)) is a solution of
(2.40 whose column vectors are conjoined solutions of (2.4), then (U(x);
V(x)) will be termed a matrix of conjoined solutions. In particular, if
U(x), V(x) are nxn matrices such that (U(x) V{x)) is a matrix of
conjoined solutions of (2.4), then U(x) is a prepared solution of (2.30 i n

the sense of Hartman [5]. If the coefficients of (2.1) are real-valued,
then two real-valued solutions of (2.4) are conjoined if and only if they
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are conjugate in the sense introduced originally by von Escherich. The
reader is referred to [13 pp. 737, 743] for comments on the use of
the synonym ' 'conjoined" for the case of (2.1) with complex-valued
coefficients.

Two points s, t of X are said to be (mutually) conjugate, (with
respect to (2.3) or (2.4)), if there exists a solution (u(x) v(x)) with
U(X)3ΞO on [s, t] and satisfying u(s) = 0=u(t). The system (2.4) will be
termed non-oscillatory on a given interval provided no two distinct points
of this interval are conjugate; moreover, (2.4) will be called non-oscillatory
for large x if there exists a subinterval a0 <#<oo of X on which this
system is non-oscillatory.

3. Related matrix solutions of (2.4'). Suppose that (U(x) V(x))
is a solution of (2.4') with U(x) non-singular on a given subinterval XQ

of Xy and denote by K the nxn constant matrix such that {U, U) ==K.
If (UQ(x) V0(x)) is a 2nxr matrix solution of (2.4') on XQ9 and Ko is the
nxr constant matrix such that {U, U0}=K0, then from this latter
relation it follows that the nxr matrix H(x)=^U~1(x)U0(x) is such that

(3.1) U0(x) = U(x)H(x), V0(x)=V(x)H(x)+U*-ι(x)[K0~-KH(x)] ,

and in view of the relation K=—K* it may be verified readily that

(3.2) {Uo, U0}^-H^

where Kτ is a constant rxr matrix. Moreover, from the differential
equations UQ' = AU0+BVΰ9 U' = AU+BV it follows that

(3.3) H\x)^U-\x)B{x)W-λ{x){K,~KH{x)l xeX0.

Conversely, if KQ is an arbitrary nxr constant matrix, and H{x) is an
nxr matrix satisfying the corresponding matrix differential equation
(3.3), then it follows readily that the 2nxr matrix (U0(x) V0(x)) defined
by (3.1) is a solution of (2Λf) with {U, U0}~Kϋ, and {Uoy Uo} given
by (3.2).

Now if x = s is a point of X and T(x) = T(x, s U) is the solution
of the matrix differential system

(3.4) T= - Ό-ι{x)B{x)U*-\x)KTy T(s) = E ,

then by the method of variation of parameters it follows immediately
that H(x) is a solution of (3.3) for a given nxr matrix Ko if and only
if there is an nxr constant matrix Hϋ—H{s) such that

(3.5) H(x) = T(x, s U)[HQ+S(x, s U)KQ] ,

where
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(3.6) S ( x , s ; U) = \ * T - ι ( t , s ; U ) U ~ \ t ) B { t ) U * - \ t ) dt, x , seXό.

The corresponding solution (UQ(x) V0(x)) of (2.4') determined by (3.1)
is such that

(3.7) U0(x)=U(x)T(x, s ; U)\U-χs)UQ(s) + S(x, β U){U, Γ/J | .

In general, if F(x) is a continuous nxn matrix and Y(x) is the
fundamental matrix of Y'=F(x)Y satisfying Y(s)=E, then Z=Y*~ι(x)
is the fundamental matrix solution of Z'=—F*(x)Z satisfying Z(s) = E.
As K={U, U} satisfies K=-K* it follows that T*-ι(x)^T*-ι(x, s; U)
is the solution of (T*-1)'^ -KU'^BWU^WT*-1 satisfying T*-ι(s) = E.
Now if H(x) is a solution of (3.3) then

[K0-KH(x)J = ~Kσ-\x)B(x)U"-\x)[K,-KH(x)] ,

and hence K0-KH(x) = TM-{(x, s U)[KQ-KHQ]. Since ίΓ={ί7, £7} and
Ko~ {U, Uo}, this latter relation may be written as the following identity
for solutions (U^x) VQ(x)) and (U(x) V(x)) of (2.47), with U{x) non-
singular on the interval of consideration XQ and x, s arbitrary values
on this interval,

(3.8) {U,U0}-{U, U}U-\x)Ulx)^T*-\x, s; U)[{U, Uo}

-{U, U}U-\s)U0(s)].

In particular, if {U, ?7}=0 then

(3.9) K=0, T(x, s) U)=E, H(x) = H0+[KU-ι(t)B(t)U*-\ί)dt ,

and the UQ(x), Vt(x) given by (3.1) satisfy {UOf UQ}--0 if and only if
the rxr constant matrix H0*K0 is hermitian. In case {U, U}—0 the
formula (3.7) reduces to a relation that may be found in various recent
papers, (see Sternberg and Kaufman [14]; Barrett [1 and 2]; Hartman [5]).
For future reference the above results are collected in the following
theorem.

THEOREM 3.1. // (U(x) V(x)) is a solution of (2.4/) with U(x) non-
singular on a subinterval Xo of X, and K is the constant nxn matrix
such that {U, U}==K, then an nxr matrix Uϋ{x) belongs to a solution
(U^x); V0(x)) of (2.4;) on X, if and only if Uΰ(x) = U(x)H(x), where H(x)
is of the form (3.5) with T(x, s U) and S(x, s U) determined by (3.4)
and (3.6), respectively, and HΰJ KQ are nxr constant matrices. Moreover,
for such a U^x) the corresponding V0(x) is given by (3.1), {U, U0}=Kΰf

{Z70, C70} has the value (3.2), and the identities (3.7), (3.8) hold for x, s
e l o ; in particular, if K=0 then T(x, s; U)=E and {Z70, J70}ΞΞ0 if

and only if the constant rxr matrix HQ*K0 is hermitian.
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It is to be emphasized that the above theorem is quite independent
of any non-oscillatory character of (2.4). For example, the scalar
equation u"+u = 0 has solution u(x) = exj)(ix) which satisfies u(x)Φθ on
( — 00, 00), and with {u, u}~2i, T(x, s; u)~exp( — 2i(x~s))f S(x, s; u)
= sin(#—s)exp(i(#—s)) moreover, un(x)= sin x is a second solution of
this equation for which \u, u{)) •-.1, and one may verify readily the
identities (3.7) and (3.8).

THEOREM 3.2. Suppose that (U(x) V(x)) is a solution of (2.4) with
U(x) non-singular on a subinterval Xo of X. If se Xo then for t e Xΰy

tΦ-Sj the matrix S(t, s U) is singular if and only if t is conjugate to
s. In particular, if (2.4) is non-oscillatory on a subinterval X o : a0 <x
<oo, and (U(x) V(x)) is a solution of (2A') tυith U(x) non-singular on
Xo, then for s e Xo the matrix S(t, s U) is non-singular for t e Xo,
tφs; moreover, if there exists an seX0 such that S~\x, s; U)->0 as
X-+OO then S-[(x, r; U)->0 as x-^oo for arbitrary reXQ.

As B(x) is non-singular, if u(x)=0, v(x) is a solution of (2.4) on a
given subinterval of X then (̂̂ )ΞΞΞΞO on this subinterval. In view of
this condition, which is a property of "normality" of (2.4), it follows
that if (U,(x); V{]{x)) is a solution of (2A') with U0{s) = 0 and V0(s) non-
singular then t is conjugate to s if and only if U0(t) is singular. Now if
(U(x) V(x)) is a solution of (2.4') with U(x) non-singular on Xo, then
for seX0 the above-defined (U0(x) VQ(x)) is such that {U, UQ} is the
non-singular matrix C/*(s)F0(s), and from (3.7) it follows that U0(x)^
U(x)T(x, s; U)S(x, s; U)UM(s)V0(s) for xe Xo, and thus S(t, s; U) is singular
for a value te Xo, tΦs, if and only if t is conjugate to s. Consequently,
if (2.4) is non-oscillatory on a subinterval XQ, and (U(x) V(x)) is a
solution of (2.4') with U(x) non-singular on XQ, then S(t, s U) is non-
singular for teXQ, tΦs. Now the fundamental matrix T(x, s; U) of
(3.4) satisfies the well-known relation T(a;, s; U) = T(x, r; U)T(r, s; U)
for r, s 6 Xo, and by direct computation it follows that

(3.10) S(x, s; U) = T(8, r; U)[S(x, r ; U)-S(s, r; U)]

for r, s, xe XQ. If for a general non-singular matrix M the supremum
and infimum of \My\ on the sphere \y\ = l are denoted by μ(M) and λ{M),
respectively, then the relation

μ(M'1)\My\ ^ IM

implies that l~λ{M)μ(M-γ). As the condition that S'\x, s; Z7)->0 as

eτ->oo is equivalent to μ(S'1(x9 s; t/))->0 as ^->oo, this condition holds
if and only if λ(S(x, s ; C7))->oo as α;->oo. Now in view of the non-
singularity of T(s, r; U) it follows from (3.10) that for r, seX{] we
have λ(S(x, s ί7))-^oo as a;->oo if and only if λ(S(x, r; Z7))->oo as
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In view of the result of Theorem 3.2, for an equation (2.4) that is
non-oscillatory for large x a solution (U(x) V(x)) of (2.4') will be termed
a principal solution if U(x) is non-singular for x on some interval Xσ:
av<x<co and S~\xy s Z7)-+0 as #->oo for at least one (and consequently
all) seXu. If (U(x) V(x)) is a matrix of conjoined solutions of (2.4)
with U(x) non-singular for large x this deίiniton clearly reduces to that
of Hartman [5]. In the following sections it will be shown that if R(x)
is positive definite on X, and (2.4) is non-oscillatory for large x, then
there does exist a principal solution of (2.4'), and this principal solution
is unique up to multiplication on the right by a non-singular constant
matrix. In general, however, one has the following theorem, which
shows that if (2.4) is non-oscillatory for large x then a solution of (2.4/)
which is principal in the sense defined above possesses a property
corresponding to that used as a definitive property by Morse and
Leighton [11] for the scalar eqution (1.1).

THEOREM 3.3. // (2.4) is non-oscillatory for large x, then a solution
(U(x) V(x)) of (2.4') is a principal solution if U(x) is non-singular for
large x and there exists a solution (U^x) V0(x)) of (2.4') with U0(<x)
non-singular for large x and such that for some value s e X,

(3.11) U<r\x)U{x)T{xy s ; I7)->0 as α->oo

moreover, {U, Uo} is non-singular for any such (UQ(x) VQ(x)). Conversely,
if (2.4) is non-oscillatory for large x, and (U(x) V(x)) is a principal
solution of (2.4'), then any solution (UQ(x) VQ(x)) of (2.4') with {U, Uo}
non-singular is such that UQ(x) is non-singular for large x and (3.11)
holds for arbitrary s e X.

Suppose that (2.4) is non-oscillatory for large x, and that there is
a solution (U(x) V(x)) of (2.4') with U(x) non-singular on an interval
XQ: ao<x<<^. If (U0(x) VG(x)) is also a solution of (2.4') then by (3.7),

(3.12) [U(x)T(x, s ; U)YιUJίx) = υ-\s)U0(8) + S(x, s; U){U, UQ}

moreover, if U0(x) is non-singular and satisfies (3.11) for some seX n ,
then λ([U(x)T(x, s C/)]-1f70(^))->co as ίr->oo and from (3.12) it follows
that {U, Uo} is non-singular and λ(S(x, s; C7))->co as x->co, so that
(U(x) V(x)) is a principal solution of (2.4').

On the other hand, if (2.4) is non-oscillatory for large x, and (U(x);
V(x)) is a principal solution of (2.4'), then for s sufficiently large we
have that λ(S(x, s U))-+m as ίr->oo. For such a value s, and (U0(s)
V^x)) a solution of (2.4') with {U, Uo} non-singular, we have ^(U-^U^s)
+S(x, s; U){U, Z70})->oo as ^->co, and hence from (3.12) it follows
that λ(\U(x)T(x, s; UJl^U^x))-*oo as -̂>c>o, which is equivalent to the
condition that UQ(x) is non-singular for large x and satisfies (3.11). As



PRINCIPAL SOLUTIONS OF NON-OSCILLATORY SYSTEMS 155

T(x, s; U) = T(x, r; U)T(r, s; U), if (3.11) holds for one value s then
this condition holds for arbitrary s ε X.

4. Certain basic results of the calculus of variations. For the
functional (2.2) an ^-dimensional vector function y(x) will be termed
differentially admissible on a subinterval of X if on this subinterval y(x)
is continuous and has piecewise continuous derivatives. For brevity, if
[c, d] is a compact subinterval of X the symbol H+[c, d] will signify
the condition that I[y c, d]>0 for arbitrary y(x) differentially admissible
on [c, d], and such that y(x)^0 on [c, d], y(c) = 0 = y(d). We shall also
denote by HR the condition that R(x) > 0 on X in view of the basic
assumption that R(x) is non-singular on X the condition HR holds
whenever there is a single s of I such that .R(s)>0.

For the subsequent discussion the following known variational results
are basic.

THEOREM 4.1. // [c, d] is a compact subinterval of X then a necessary
and sufficient condition for H+[c, d\ is that HR hold, together with one
of the following conditions :

(i) (2.4) is non-oscillatory on [c, d]
(ii) there exists a matrix (U(x) V{x)) of conjoined solutions of (2.4)

with U(x) non-singular on [c, d].

THEOREM 4.2. If [c, d] is a compact subinterval of X such that
TJ+[Cj d] holds, then for arbitrary vectors yCJ yd there is a unique solution
(u(x) v(x)) of (2.4) satisfying u(c)=ye9 u(d)=yd, and I[y c, d]>I[u c, d]
for arbitrary differentially admissible y(x) with y ^ u on [c, d], y(c)

— u{d).

THEOREM 4.3. Suppose that [c, d] is a compact subinterval of X
such that H+[c, d] holds. If (Uc(x) Ve(x))f [(Ud(x) Vd(x))], is the solution
of (2.4r) determined by Uc(c) = E, Uc(d) = 0, [Ud(d)=E, Ud(c) = O], and
(U(x); V(x)) is a solution of (2.4') satisfying U(c)=E, V(c)>Ve(c),
[U(d) = E, V{d)<Vd(d)}, then (U(x) V(x)) is a matrix of conjoined
solutions of (2.4) with U(x) non-singular on [c, d].

For the case in which the coefficient matrices of (2.1) are real-valued
the results of Theorems 4.1 and 4.2 are classical results in the calculus
of variations, (see, for example, Morse [10 Chapter I], or Bliss [3
Chapter IV] for the general case of complex coefficients these results
are contained in Theorems 2.1 and 2.2 of Reid [13]. In connection
with Theorem 4.2 it is to be commented that if

u; c, d]=
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for differentially admissible r/{χ)y u(x), then in case (u(x) v(x)) is a
solution of (2.3) on [e, d] we have

(4.1) Ify, u; c, d] =

A ready consequence of (4.1) is that if (u(x) v(x)) and y(x) satisfy the
conditions of Theorem 4.2 then

(4.2) I[y c, d] = I[u c, d] + I[y-u c, d] ,

which is the well-known ' 'integral formula of Weierstrass" for the
functional (2.2).

Theorem 4.3 is a comparison theorem of Sturmian type that is a
special case of results of Morse [9 §10, or 10 Chapter IV, §8] in
case the coefficients of (2.1) are real-valued, and Morse's method may
be extended readily to prove the stated result. The method introduced
by Hestenes [6], (see also Bliss [3 §§86-87]), to establish the corresponding
result for variational problems of Bolza type yields the following brief
and elegant proof of the statement of the theorem involving (Uc(x) Vc(x))
the statement involving (Ud(x) Vd(x)) follows by a similar argument.
By Theorem 4.2 the condition H+\c, d] implies the existence of the
solution (Ue(x); Vc(x)) of (2.4') satisfying Ue(c)=E, Ue(d) = 0 the end
condition Uc(d) — 0 clearly implies that (Uc(x) Vc(x)) is a matrix of
conjoined solutions and consequently V<(c)=Uc*(c) Vr(c) is hermitian. For
(U(x); V(x)) a solution of (2.4;) satisfying U(c) = E, V(c)>Vc(c) the
matrix U(d) is non-singular, since if U(d)ς = 0 then u(x) — (U(x)~Uc(x))ξy

v(x) — (V(x)—Vc(x))ξ is a solution of (2.4) satisfying u(c) — 0—u(d) so
that U(X)ΞΞQ by Theorem 4.1, and hence (V(c)- Vc(c))ξ = 0 and 6^0.
Moreover, U(x) is non-singular on c<x<d, since if c<b<d and U(b)ξ—0
then y(x) defined as y(x) — (U(x)—Uc(x))ξ, c<,x<,b, and y(x)— — Uc{x)ς,
b<,x^d, satisfies y(c) — 0 — y(d) and is differentially admissible on [c, d],
while in view of the hermitίan character of U^(b)Vc(b) we have

c, d]^ξ^[U^b)-U

= -ς*U*(b)[V(b)~

= -ξ*{Uc, U-Uc)ξ

and consequently ΐ[y c, cZ]<0 unless ?=0, so that ς — 0 in view of

H+[c, d\.

5. Systems (2. 4) that are non-oscillatory for large x. For a system
satisfying HE and non-oscillatory for large x, the following theorem
determines a particular matrix of conjoined solutions which subsequently
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will be shown to be a principal solution, as defined in Section 3.

THEOREM 5.1. Suppose that (2.4) satisfies HR and is non-oscillatory
on a subinterval XQ: α 0 <#<oo of X. IfseXQ and for teX0, tΦs,
the matrix (Ust{x) Vsf{x)) is the solution of (2.4') determined by USύ(s)
= E, Ugt(t) = 0, then [7s,oo(^) = lim,,_ Ust(x), Fs,βo(aτ) = lim/._0O V8(x) exist

and (Usfoo(x) Vsfoo(x)) is a matrix of conjoined solutions of (2.4) with
Usfoo(x) non-singular on Xo; moreover, Ur,0O(x)=U8,O0(x)Ur,00(s) and Vrtoo(x)
= Vsfeo{x)Urfco(s) for r, s, xeX0.

As the initial condition Ust(t) = 0 implies {Ust, Ust}=0, it follows
that if s, teX0, sΦt, then (Ust(x) V8t(x)) is a matrix of conjoined
solutions, so that the matrix Uft(x)Vst(x) is hermitian for xe X in
particular, Vst(s) is hermitian. For a given seXQ let r, t be points of
Xn satisfying r<s<t, and for an arbitrary non-zero constant vector ξ
let y(x) denote the vector function defined on [r, t] as

(5.1) y(x)=U8r(x)ζ on [ r , s]; y(x)=Ust(x)ξ on [s, t] .

Now this vector function y(x) is differentially admissible and y(r) — 0
= y(t)> so that under the hypothesis that (2.4) satisfies Hn and is non-
oscillatory on X() it follows from Theorem 4.1 that

r, ί] = f*^*(β)^r(s)6-f*Z72(β)F ίe(β)f===^ .

As this relation holds for arbitrary non-zero vectors ξ we have

(5.2) Vst(s)<Vsr(s) for r, s, te XQ, r<s<t .

For s<t<d, and ς an arbitrary non-zero constant vector, let u(x)
= Usd(x)ξ, v(x)=V8d{x)ζ and y(x)=U8t(x)ξ on [s, t], y(x)=0 on [t, d].
Then (u(x) v(x)) is a solution of (2.4), while y(x) is differentially
admissible and satisfies y(s)=u(s), y{d) — u{d), y(x)^u(x) on [s, d], so that

(5.3) -ξ*Vsd(8)ξ = I[u; 8, d]<I[y; s, d] = /[i/ s, t]= -ξ*

in view of Theorem 4.2 that is,

(5.4) Vst(s)<Vsd(s) for s, t, de X,, s<t<d .

By a similar argument it follows that

(5.5) Vsc(s)< Vsr(s) for c, r, seXQ, c<r<s .

From (5.2), (5.4) it follows that for fixed s e X 0 the one-parameter
family of hermitian matrices Vst(s), s<t<oz, is monotone increasing and
bounded, so that there is an hermitian matrix VS}OO such that Vsd{s)->
Vs.* as d-^oo. Moreover, in view of (5.2), (5.4), (5.5) it follows that

(5.6) Vs,{8)<Vg,~<Vβr(8) for r, s, teX0, r<s<t ,
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If (Us1oo(x) Vs,oo(x)) is the solution of (2.4') determined by the
initial values Us100(s)=E, Vs,0O(s)=Vsf00 then clearly (Usί(x) Vst(x))->
(Usfco(x); V8too(x)), while the hermitian character of V^oo^Uf^s^sy^s)
implies that {U89eo, Usfoΰ}—0, and (U890O(x) V89Jjx)) is a matrix of
conjoined solutions. Moreover, in view of Theorem 4.3, inequality (5.6)
implies that US9oo{x) is non-singular on each subinterval [r, t\ of XQ with
r<s<t, and hence US900(x) is non-singular on Xo.

The final statement of the theorem is an immediate consequence
of the fact that Ust(x) = Urί(x)U7t

Ί(s), Vst(x)=Vrt(x)U;?{s) for r, s, teX0,
rφt9 sΦt.

If (2.4) is oscillatory on X then there exists a t such that there
are points s of X which precede t and are conjugate to t9 and consequently
there is a largest such conjugate point s—c{t) preceding t. For a
system (2.4) satisfying HR it follows from Theorem 4.1 that if c(t)
exists for a value t = t1 then c(t) exists for tλ<t<oo and increases with
t. In accordance with the terminology introduced by Morse and Leighton
[11] for a scalar second order linear differential equation, the first
conjugate point c(oo) of x~co on X is defined as the limit of c(t) as
ί-^oo. Clearly such a system (2.4) is non-oscillatory for large x if and
only if either (2.4) is non-oscillatory on X or c(co) exists and is finite-
If c(oo) exists and is finite then (2.4) is non-oscillatory on (c(<χ>), oo)>
so that the interval Xo of Theorem 5.1 may be chosen as this interval,
and consequently for c(oo)<s<oo the matrix of conjoined solutions
(U89oo(x); V8fco(x)) has U89co(x) non-singular on (c(oo), oo). On the other
hand, the definition of c(oo) implies that (2.4) is oscillatory on an arbitrary
subinterval (α0, oo) of X with αo<c(<χ>)> a n ( i Theorem 4.1 implies that
Us,oo(x) is singular at some point of such a subinterval (a0, oo), so that
by continuity UsfOc(x) is singular for χ=c(co). That is, if HR holds and
(2.4) is non-oscillatory for large x then the matrix of conjoined solutions
(US9oo(x)\ Vs,oo(x)) of Theorem 5.1 is such that c(oo) exists on X if and
only if ί7s,co(^) is singular at some point of X, in which case c(co) is
the largest value of x for which Usfoo(x) is singular.

6. Principal solutions. From Theorem 5.1 it follows that if (2.4)
satisfies HR and is non-oscillatory on Xo: α 0 0 < o o then there exist
matrix solutions (U(x) V(x)) of (2.4r) with U(x) non-singular on XQ.
The basic result on principal solutions for such a system (2.4) is contained
in the following theorem.

THEOREM 6.1. Suppose that the equation (2.4) satisfies HR and is
non-oscillatory on a subinterval Xo: aQ<x<co of X. If (U(x) V(x)) is
a solution of (2A') with U(x) non-singular on an interval Xv: aTI<x<,oQ
then for s a point common to Xo and Xπ the
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(6.1) M(s; tO-lim^oo S~ι(t, s; U)

exists and is finite. Moreover, M(s U) — 0 and (U(x) V{x)) is a
principal solution of (2A') if and only if U(x) = Ur9eo(x)C9 V(x)=Vr,0O(x)C,
where r is any fixed value on XQ, (Ur9βo(x) Vr9co(x)) is the matrix of
conjoined solutions as determined by Theorem 5.1, and C is a non-singular
constant matrix.

In view of Theorems 3.2 and 5.1 it clearly suffices to establish the
result of the above theorem for s — r a point common to Xo and XΌ.
For such a value s it follows from Theorem 3.1 that

Usfβo(x)=U(x)T(x, s; U)[U-\s)+S(x, s; U){U, Usyoa}] ,

U8t(x) = U(x)T(x, s; U)[E-S(x, s ; U)S~\t, s ;

and since U8t(x)-+U89oo(x)9 Vst(x)->Vsfoo(x) as x-+<χ> it follows t h a t M(s U)

defined by (6.1) exists and has the finite value

(6.2) . M(s; U)=-{U, US9Oΰ}U(s) .

In particular, (6.2) implies that M(s Z7) = 0 if and only if {Z7, Z7s)oo}=0.
As 0={Usfoo, U89OO} = V89βo(s) - V*ιOO(s) it follows t h a t θ = { ί 7 , Usyoa]
= U^s)Vs,4s)-V*(s)Us,4s) = U*(s)V*oo(s)-V*(s) if and only if (U(s)
V(s)) satisfies with the non-singular matrix C— U(s) the initial conditions
U(8) = U89β.(8)C, V(8)=V8,»(x)C9 and therefore U(x)=U89βo(x)C9 V(x)
= Vs^{x)C.

In particular, under the hypotheses of Theorem 6.1 it follows that
if (U(x) V(x)) is a principal solution of (2.4') then (J7(α?) F(a?)) is a
matrix of conjoined solutions of (2.4), and therefore T(x, s U)Ξ=E.

As the first conclusion of Theorem 3.3 with UQ{x)—U{x) implies that if
(2.4) has a solution (U(x) V(x)) with J7(a?) non-singular for large x9

and T(x, s; U)~>0 as a -^oo, then (U(x) F(a?)) is a principal solution,
the following corollary is direct consequence of the results of Theorems
3.3, 6.1, and formula (6.2).

COROLLARY. In case (2.4) satisfies HR1 and is non-oscillatory for
large x9 then :

(i) if(U(x); V(x)) is a solution of (2A') with U(x) non-singular on
Xo: α 0 <#<oo, and seXQ, then it is not true that T(x, s ; U)->0 as
X~>OD

(ii) if (U(x) V(x)) is a principal solution of (2.4r), then for a
solution (U0(x); VQ(x)) of (2.4r) the matrix {U, UQ} is non-singular if and
only if U0(x) is non-singular for large x and U^1(x)U(x)-^0 as #—>oo,
moreover, if {U, Uo} is non-singular then, for s sufficiently large, lim^oo
S(t, s, UQ) exists and is non-singular.

Finally, we shall establish the following result in particular,
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conclusion (v) generalizes a result of Hartman [5].

THEOREM 6.2. Suppose that (2.4) satisfies HR and is non-oscillatory
on a subinterval X o : α 0 <#<oo of X, while (Us}oo(x); Vsteo(x))9 seX0, is
the matrix of conjoined solutions as determined by Theorem 5.1. If
(U(x) V(x)) is a solution of (2.4') with U(x) non-singular on XQ9 and
S(co, r U) = l i m ^ S(x, r U) exists and is finite for some reX01 then
for arbitrary s e X{):

(i) S(CXD, s; U) exists, and

(6.3) S(oo, s; U) = T(8, r; U)[S(<χ>, r U)-S(s, r ; U)\ for s, xeX,;

(ii) {Uj USJOO\ is non-singular]
(iii) U~\x)Us,oΰ(x)-^0 as x-±cx>
(iv) {U, US)00} — {U, U)U~\s) is non-singular, and Γ(oo, s U)

= lim^oo T(x, s U) exists and is equal to the non-singular matrix
[U^, U}-ι[{U8W U}-U*-ι(8){U, U}];

(v) U89eo(x)=-U(x)S(oo, x; U){U, t/,,4
Conclusion (i) is an immediate consequence of relation (3.10). Now,

as established in the proof of Theorem 6.1, the matrix M(s Z7) = Hindoo
S~\t, s; U) exists and has the finite value -{Ϊ7, Usfoo] U(s), so if
S(oo, s; U) exists and is finite we have

(6.4) # = - S ( c o , s; U){U, Ugfβa\U(8),

and hence {£7, Usfoo} is non-singular; in turn it follows from the
Corollary to Theorem 6.1 that (ii) implies (iii).

In order to establish conclusion (iv), it is noted that the non-
singularity of U(x) on Xo implies the validity of (3.8) with UQ—Usfoo(x)f

so that

(6.5) {U, US^}-{U, U}U-\x)UsUx)

= T*-1(a?, s; U)[{U, U899O}-{U, U}U~\s)]

for s, xeX0. From conclusions (ii), (iii) and relation (6.5) it follows
that if ξ is a constant vector satisfying [{U, Us90O} — {U9 U}U-\s)]ξ=Q
then f = 0, so that {U9 Usίoΰ}-{Uy U}U-\s) is non-singular for seX0.
This result, together with conclusions (ii), (iii) and relation (6.5), imply
that for seX0 the matrix T*~\x9 s; U) approaches the non-singular
matrix {U, Us}ΰO}[{Uf Usyoo}~{U, U}U"ι(s)Y\ which is equivalent to the
final statement of conclusion (iv).

Finally, it is to be noted that (6.4) is equivalent to

E=-U(x)S(oo, x; U){U, UX1OO}, for x e X(),

and as Us9βo(t) = Ux9βo(t)US9oo(x)9 V,,4t)=Vx10O(t)Us,4x) for s9 t9 x e X() it



PRINCIPAL SOLUTIONS OF NON-OSCILLATORY SYSTEMS 161

follows that {U9 Ux9~)UΛ9Jx)-^{U9 U89CB} and U89»(x)=--U(x)S(oo, x; U)
{Uy Usyoo) for xf $eX0, thus establishing conclusion (v).

7. An example. In the notation of the preceding sections, the
example of Section 11 of Hartman [5] shows that for an equation (2.4)
which satisfies HR, and is non-oscillatory for large x, there may exist
solutions (U(x) V(a )) of (2.4') with U(x) non-singular for large x and
such that

(7.1) Γf" U-\t)B(t)U*-\t)dtV^O as a;->co ,

while (U(x) V(x)) is not a principal solution. As shown by Theorem
6.1, for general solutions (U(x) V(x)) of (2.4') with U(x) non-singular
for large x the discriminating property for principal solutions is not
(7.1), but rather S~\x, s Z7)-»0 as a?-*oo. We shall proceed to illustrate
the results of the preceding sections by the example of Hartman.

For typographical simplification α 2 x 2 matrix ||ΛfΛβ||, {a9 β — l, 2),
will be displayed as M=(MU; M12; M21; M22). In this notation the
two-dimensional vector equation of Hartman's example is

(7.2) u" + P{x)u = Q9 0<a?<°°, with P(a?) = (0 0; 0; (4af)-χ).

For (7.2) the matrix solutions (Ust(x) Vst(x) = U8t(x)) of Theorem 5.1
have

Zjst(jx) = ((x--fyl(s—.fy 0 0 (a?/s)1/2 (In t—In #)/(ln t—In s)) .

and consequently (U89co(x) Vsyoo(x)) has Z7s,«x,(a?) = (l 0 0 (a;/s)1/2).
Hartman's example involves the principal solution (Σ7i,oo(a?) Vl900(x)) for
which U19co(x) = (1 0; 0; xι/i)9 and the matrix solution (U(x)', V(x))
having Z7(a?) = (l x 0; x11'1). For these matrix solutions one may
compute readily the following quantities

Six, s U89eo) = (x—s 0 0 s(ln x—\n s)) ,

{C7, U}=(0; 1; - 1 ; 0), {Ulfeo, U}=(0; 1 0 0) ,

T(x9 1 Z7) = (l— x In a? 1—x~x In a? In a? 1 + ln a?) ,

S(a?, 1 U) = (x—1+x In x —In a? —x In a; In x) ,

M(l Z7) = (0 0 1 1) U-\x)Ul9OΛ(x) = (l -a? 0 1) .

It is to be noted that {Ul9oo, U\ is singular, so that the corollary
to Theorem 6.1 implies that the matrix U~\x)U19eo(x) does not tend to
0 as #->co, a fact that is obvious from the specific value of this matrix.

To illustrate further the results of the preceding section, consider
the solution {Uλ{x)'9 V^x)) of (2.4;) with £7^) = (x 1; 0 ; xV2 \n x).
For this solution U^x) is non-singular for x>l9 and one has
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,,co(a?) = (l/a?; - l / ( s 1 / 2 x In χ)\ 0 ; l/(s1/2 In x)) ,

{£Λ, £Λ}=(0; - 1 ; 1 ; 0), {Usfoo, ^ } = ( 1 ; 0 ; 0 ; s"1'3) ,

^3(ln a?)aC^rI(a?)fi(a?)Z7*-|(a;) = ( l+a<ln x)£ - a ? ; - a ? ; of) .

Moreover, if θ — θ(x, s) = (l/ln a?) —(1/ln s), it may be verified t h a t

T(x, s; UΛ) = (l-θlx; (x-s-θ)l(sx) 0; l + θ!s) ,

S(a?, s ; Σ71) = ((^~s~W(sa?); 0/s 0/a? -0) ,

(a - s ) ^ - 1 ^ , s; £Λ) = ( ^ ; a? s; l-(a?--s)/0) ,

from which one may verify readily that for 1< s < oo,

T(co, s; ί/1) = ( l ; 1/8 -1/ln s; l - l / ( s In s)) ,

S(oo, s; Z7t) = (l/s; ~l/(s In s) 0 1/ln s) ,

J|f(s; J70 = (β; 1; 0; In β) .

8. Further properties of principal solutions. Suppose that (2.4)
satisfies HR, and is non-oscillatory on a subinterval Xo: α 0 0 < c o of
X ; for s, t ε XQ, s<t, let Yst{x)—Ust{x) on a?^ί, and F5,(X)ΞΞΞ0 on x^t,
where, as in Theorem 5.1, (Usl(x) Vst(x)) is the solution of (2.4r)
satisfying U8t(s) = Ef Ust(t) = 0.

For brevity, if y(x), u(x) are differentially admissible vector functions
on [s. oo) such that

(8.1) lim,_/[2/, ?fc s, ί]

exists and is finite, the value of (8.1) will be denoted by I[y, u s],
moreover, for brevity we shall write I[y s] in place of I[y, y s]. In
particular, for arbitrary constant vectors ξ we have I[Ystξ s] — I[Ustξ;
s, t\. Now from relations (5.3) and (4.2) it follows that

0<ξ*[Vs^)-Vst(s)]ξ = I[Ystξ s]~I[Ysdξ; s] = I[YJ~YS(£ s]

for s<t<d, s e XQ, and since Vst(s)-+Vs,oo as t-*oo it follows that for
s e XQ, and ξ an arbitrary constant vector,

(8.2) I[Ystξ-Ysdξ; s ] -0 as *, d->co.

It is to be emphasized that in general it is not true that

(8.3) -f*Vβ,0O(s)f = /[Z7β,βof si for s e XQ ,

although - f * F β t ( s ) f = / [ y Λ t f β] for ί > s , and Y,H(x)ξ->Us,4x)ς as ί->co ;

moreover, in general it is not true t h a t the vector function Us,00(x)ξ is
bounded on [s, oo), although Y8t(x)ξ=0 for a ̂ ί . The statements are
illustrated by the well-known scalar second order equation %"+%/(4a;2)
= 0, which is non-oscillatory on (0, oo); for this equation ιιΛ^{x) — xι/λ
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and ^ ^ ( l ) = 1/2, while ω(x, ultoo, u\foo)-^~0. However, much more can
be said about the principal solutions (USJOO(x) Vsioo(x)) in case the
hermitian integrand function ω is such that

(8.4) ω(x, y, rr)^O for arbitrary x, y, π with x e XQ .

In view of the continued understanding that R(x) is non-singular on X,
it is clear that (8.4) implies HR, as well as the result that H+[s, t\ holds
for arbitrary compact subintervals [s, t] of Xo, so that (2.4) is non-
oscillatory on Xo.

THEOREM 8.1. // condition (8.4) holds on a subίnterval Xo: α o < # < oo
of X then (8.3) is valid; moreover, U*s^(x)Vs,o,(x)S0 on s^x<oo and
^*.9>ooFs,oo->0 a s x-+oD.

Since V8t(s)-+Vs,co(8), and the vector function Yst(x)ξ tends to Usfoo(x)ξ
uniformly on each compact subinterval of [s, oo) as £-»oo, whenever
condition (8.4) holds on Xo it follows readily from the relation — ?*Fίt(s)6
= I[Ysti s] that I[Us10Oξ s] exists and

Now VSJO0(s) is hermitian and by (4.1) we have

- ξ * V 8 , » ( 8 ) ξ = I l Y , t ξ , US,J; s , t] = I l Y 8 t ξ , U89βoξ; 8 ] .

Moreover, whenever (8.4) holds we have the Schwarz inequality

, U89βoξ; r-}\*^I[Y8tξ; r]I[Us,J r] for

and as I\YJ r\^I\Y8tξ s]^I[Yspξ s] for t^p>s it follows that for
given p>s, ε>0 there exists a value r = rξ>s such that

As SR(iirβίf, C^,^; s, r])^I[Us,J; β, r] as ί-»co, and /[ίT,,^ s, r\
^I[Us,J;s] by (8.4), it follows that - P F s ) M ( s ) ^ ί [ ί / s , i β], thus
completing the proof of (8.3). Finally, condition (8.4) implies that for
ξ a non-zero constant vector the integral I[Usfooξ s, r] = f*[Z7£oo(r)F,,ee(r)
— ys,oo(s)]f is a monotone increasing function of r on s < r < o o which
tends to I[U8fαoξ s]~ — ξ^Vsyoΰ(s)ξ as r->co, and consequently Z7s%(r)
Fs,oo(r)^0 on (s, oo) and C/s*4r)Fs,4r)->0 as r->co.

In particular, if R{x)=E, Q(#)EΞΞO and P(a?)^0 on X, then the above
theorem implies that (\Us,^(x)ξ\2y = 2ξ*U*<x>(x)Vs,Co(x)ξ^0, so that for such
an equation (2.4) the norm of the vector function U89oo(x)ξ tends to a
limit as a?->oo. This particular result has been established by Wintner
[16].

It is to be emphasized that condition (8.4) does not imply that
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Usfoo-*0 as X-+O3. For example, (8.4) holds for the scalar equation

(u'l(ex + 2))' - 2uj{ex + 2)1 = 0

with general solution u~cx(l + e~x) + c>ex, and principal solution uΰyoo(x)

= (l + e~*)l2.

THEOREM 8.2. // HR holds and (2.4) is non-oscillatory on a siώinterval
Xo: aύ<.x<oo of X then Us,Oΰ(x)-+0 as #->oo if there exists a constant
kyO and a continuous positive function h(x) such that if s, d e Xo,
s<d, then

(8.5) I[y; s, d\^k^[h(x)\y'\*+\y\ψι(x)]dz

for arbitrary y(x) which are differentially admissible on [s, d] and satisfy

If the vector function y(x) is differentially admissible on [s, d], and

= 0 = y(d), then

2|2/(α?)|a =

the last inequality holding for arbitrary continuous positive functions
h(x). Consequently the hypothesis of Theorem 8.2 implies that there
is a positive constant k such that

(8.6) 2k\y(x)\^Ily; s, d] for s^x^d

holds if 8, d 6 Xo, s<d, and y(x) is a differentially admissible vector
function on [s, d] with y(s) = 0 = y(d). In particular, if s<t<d and ξ is
a constant vector, then y(x) = Ysι(x)ξ — Ysd(x)ξ is such a vector function
with 2/(#)=0 for a ̂ eZ and /[?y s, d] — I[y; s], so that

(8.7) 2k\Yst(x)ξ-Ysd(x)ξ\2^I[Ysβ-Ysdξ s], s^x<™.

Inequalities (8.2), (8.7) then imply that as t->oo the convergence of
Ys(x)ξ to USJOO(x)ς is uniform on s^x<oo. As Ysfc(̂ )ςΞΞΞθ for x^t it
then follows that Us,oo{x)ξ—>0 as .τ~>oo for arbitrary constant vectors f,
so that Usyoo(x)-^0 as

THEOREM 8.3. // on a subinterval XQ: ao<x<c& of X we have Q(x)
Ξ^O, R(x) of class C with R(x)>0, R/(x)^0J and there is a non-negative

continuous function k(x) such that \ k(x)dx is divergent and y*P(x)y

yΛR(x)y for arbitrary vectors y, then Uf^(x)R(x)Us,oΰ(x)~^0 as x->oo.
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The hypotheses of the theorem clearly imply condition (8.4) on XQ.
Now if Q(ar)=-0 and R(x) is of class C" we have V89βo(x) = R(x)U/

89βo(x)9

and as {U89CO9 U890O} = 0 it follows that (U*»RUΛ9J)' = 2Dr*ββyβ,ββ

+ Z7;;;ooJR
/t/s,co, so that in view of the condition β'(#)^0 and the last

conclusion of Theorem 8.1 we have (^*eo#ϊ7s,oo)'^0 on Xo. Consequently,
for an arbitrary constant vector ξ the non-negative function ξ^Uf^x)
R(x)Us,Oΰ(x)ξ is non-increasing on Xo, and thus tends to a non-negative
limit as #->oo. Moreover, by Theorem 8.1 the integral I[U89ooξ s]
exists and is finite, so that in view of the relation

and the divergent character of \ k(x)dx, it follows that ς*UTt0O(x)R(x)

Usfco(x)ς->0 as #-*oo, for ξ an arbitrary constant vector.
As a particular instance of the above theorem we have the following

result.

COROLLARY. If on a subinterval XQ: αu<α;<oo of X we have Q(x)
J), R(x) a constant matrix 12>0, and there is a non-negative continuous

function kL(x) such that I kL(x)dx is divergent and y:¥P(x)y^:k1(x)\y\2 for

arbitrary vectors y, then for s e XQ we have Usyo2(x)~>0 as #->oo.
For the case of a scalar equation the result of the above corollary

in essence dates from Kneser [7], as has been pointed out by Wintner [15].
Added November 20, 1957. P. Hartman has pointed out to the

author that the following argument establishes the conclusion of Theorem

8.3 with the hypothesis that \ k{x)dx is divergent replaced by the

xk(x)dx is divergent. Since Theorem 8.1 implies

that Z7β*ooVs,oô 0, from the condition UfιOORfUS9oo^0 and the expression
given for (Uf^RU^)' in the proof of Theorem 8.3 it follows that the

integral I Uf^Vsyoΰ dx exists. From Theorem 8.1 it follows that

f/ίco"Fs,oo->0 and

for α0<O^<oo and arbitrary constant vectors ξ, and as U8

¥

tJPU8,O0'*tto the

integrals ί°° U^PU^dx and fTί°° Uft00PU8fΌOdt]dx exist for aQ<u<oo

an integration by parts then yields the existence of the integral

\xU;4x)P(x)Us,ΰΰ(x)dx. Consequently the condition that y*P(x)y

^>k(x)y*R{x)y for arbitrary vectors y implies that the integral
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I xk(x)Ufoΰ(x)R(x)Us,co(x)dx exists, and in view of the relations U?ooRUsfoo

^0, (U*«RU8foo)'^0 it follows that Uf^RU^-^Q whenever [°°xk(x)dx is

divergent.

9. A more general differential system. In this section we shall
consider a differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type, (see, for example, Bliss [3 §81] and Reid [12]).
As in § 2, ω(x, y, π) will denote an hermitian form (2.1) with R(x),
Q(x), P(x) nxn matrices having complex-valued continuous elements on X:
a<x<oo, and R{x), P(x) hermitian on this interval. In addition,
consider a vector linear form

(9.1) Φ(a?, y, π)=φ{x)π + θ(x)y ,

where φ(x) and θ(x) are mxn, (m<n), matrices with complex-valued
continuous elements on X. Instead of the hypothesis of Section 2 that
R(x) is non-singular, it is now assumed that the (n + m) x (n + m) hermitian
matrix

R(χ) φ*(χ)
(9.2)

ϋ φ{x) 0

is non-singular on X; in particular, the non-singularity of (9.2) on X
implies that ψ(x) is of rank m on this interval.

For the variational problem involving the functional (2.2) subject
to the auxiliary m-dimensional vector differential equation

(9.3) Φ(x, y, y') = Q

the Euler-Lagrange differential equations are in vector form

(9.4) (R(x)ur + Q(x)u + φ*{x)μ)f - (Q*(a?K+P(Φ + θ*{x)μ) - 0 ,

Φ(x, u, u') = 0 ,

where u(x) is an ^-dimensional vector function and μ(x) is an m-
dimensional "multiplier" vector function.

The inverse of the non-singular matrix (9.2) is of the form

! T(x) τ*(x)

lτ(x) t(x) Γ

where T(x) and t(x) are hermitian matrices of orders n and m,
respectively, and τ(x) is an mxn matrix. In terms of the canonical
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variables

u(x), v(x) = R(x)u\x) + Q(x)u(x) + <p*(x)μ(x)

the Euler-Lagrange equations (9.4) become a vector differential system
(2.4), with now

(9.5) A=-(TQ + τ*θ), B = T, C=P-Q*TQ-Q*τ*θ-θ*τQ-θ*tθ

the matrices B and C of (9.5) are hermitian on X, while B is a non-
negative definite matrix of rank n — m with Bφ^ — 0 throughout this
interval. Throughout this section we shall continue to refer to the
vector equation (2.4) and the corresponding matrix equation (2.4'), with
the understanding that the coefficient matrices are given by (9.5).

As in Section 2, if (U^x) Vx(x)) and (U2(x) V%(x)) are solutions
of (2.40 then the matrix U^(x)V2(x)-V1"(x)U2(x) is a constant; to
denote this matrix by {Ulf U2} now in general involves an ambiguity,
however, since if (U(x) V(x)) is a solution of (2.40 there may exist
other matrices VQ(x)ΦV(x) such that (U(x) VQ(x)) is also a solution of
(2.40- This ambiguity does not exist, however, if (2.4) is such that
whenever U(X)^ΞΞQ, V(X) is a solution of this equation on a non-degenerate
subinterval of X then v(x)=0 on this subinterval if this property
holds the equation (2.4) is said to be identically normal, or to be normal
on every subinterval, on X. It is to be commented that this condition of
normality was used in Section 3 to show that if (2.4) is non-oscillatory
on Xo, and (U(x) V{x)) is a solution of (2.40 with U(x) non-singular on
this interval, then S(t, s; U) is non-singular for s, t e Xo, sΦt.

For the equation (2.4) now under consideration one may define the
concepts of conjugate point, non-oscillation on a subinterval, and non-
oscillation for large x, in precisely the language of Section 2. For the
problem involving the functional (2.2) subject to the differential equation
(9.3) an ^-dimensional vector function y(x) will now be said to be
differentially admissible on a subinterval of X if on this subinterval
y(x) is continuous, has piecewise continuous derivatives, and satisfies
(9.3) for a compact subinterval [c, d] of X the symbol H+[c, d] will
again denote the condition that I[y c, d]>0 for arbitrary differentially
admissible y(x) which are not identically zero on [c, d] and satisfy y(c)
— 0 — y(d). For the problem now considered the symbol HR signifies the
condition that for all x e X we have π*R(x)π>0 for arbitrary non-zero
vectors π satisfying the restraint φ(x)π~0; in view of the basic assumption
that (9.2) is non-singular throughout X it follows that HR holds whenever
there is a single s e X such that π*R(s)π>0 for arbitrary non-zero
vectors π satisfying φ(s)π — 0.

With the above definitions, the result of Theorem 4.1 is valid for
the equation (2.4) now under consideration. In this connection, it is to
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be commented that if we write y~(yl+iyl), (cv — 1, ••• , ri), and denote
by z the real 2%-dimensional vector function with components (y\, •• ,y\n

y\> * * >2/«)» ^hen ω(x, y, yf) is a quadratic form ωo(x, z, zf) in (z, z') with
real coefficients, and (9.3) is equivalent to a real 2m-dimensional vector
differential equation Φ0(a?, z, 2') = 0. Moreover, 22+[c, d] and HB are
individually equivalent to the corresponding conditions H\\cy d] and H°R

for the associated real problem in z, and for this latter problem the
conclusion that 22+[c, d] implies EPR is a well-known result of the calculus
of variations, (see, for example, Bliss [3 Theorem 78.2 and Lemma
81.2]). For a problem of the sort formulated above which satisfies HR,
the method of proof of Lemma 89.1 of Bliss [3] yields the result that
22+[c, d] holds if and only if there is a matrix (U(x) V(x)) of conjoined
solutions of (2.4) with U(x) non-singular on [c, d], and the method of
proof of Lemma 89.2 of Bliss [3] establishes that 22+[c, d] holds if and
only if (2.4) is non-oscillatory on [c, d].

For a differential system (2.4) of the type now under consideration,
the result of Theorem 4.2 is valid only if this system is normal on the
interval [c, d], since if y(x) is differentially admissible then y(c), y(d)
must satisfy v*(d)y(d) — v*(c)y(c) = O with all vector functions ^(^belong-
ing to abnormal solutions WΞΞO, V(X) of (2.4) on [c, d]. On the other hand,
if (2.4) is normal on every subinterval of X then Theorems 4.2 and 4.3
hold, as well as relations (4.1) and (4.2) for vector functions that
are differentially admissible for the problem of this section.

From the above remarks it follows that for systems (2,4) with
coefficient matrices given by (9.5), and which are normal on every
subinterval of X, the various theorems of Sections 3-6 remain valid,
with no changes in proofs required. An important illustration of this
class of systems (2.4) is afforded by certain systems (2.4) that are
equivalent to self-adjoint scalar differential equations of even order.
Indeed, suppose that Pj(x)f (j = 0, 1, ••• , 2ri), are real-valued functions
with p.in(x)r£θ on X and Pj(x) of class Ca/2) or C ( c j + 1 ) ί 2 ) according as j
is even or odd, and let R(x), Q(x), P(x) be diagonal matrices with PΛoί{x)
= (~l)-1p a^3(aj), QΛ«(a?) = i(-l)*paβ-i(aj), (α = l, •••, n), RJίx)=Q for

a < n a n d R n n ( x ) = { — l)np27t(x), w h i l e Φ(x, y , π) = (πβ — y β + 1 ) , ( β = l , •••,
71 — 1). The corresponding vector differential system (2.4) is readily
seen to be normal on every subinterval, and (u(x) v(x)) is a solution
of this system if and only if ua(x) = y^~l)(x), (a — I, ••• , n), where y(x)
is a solution of the self-adjoint differential equation

It is to be noted also that for a system (2.4) normal on every subinterval
the results of Theorems 8.1 and 8.2 are valid, with (8.4) replaced by
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the condition that ω(x, y, π)Ξ>0 for arbitrary (x, y; π) with x e Xo,
and satisfying Φ(x, y, τr) = O.

Finally, it is to be remarked that for an equation (2,4) with
coefficients given by (9.5), and which is not normal on every subinterval
of X, there do exist suitable modifications of Theorems 4.2 and 4.3
which with an altered definition of principal solution enable one to
establish certain results corresponding to those of Sections 5,6 however,
the details of these results will not be presented here.
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ON GENERAL MINIMAX THEOREMS

MAURICE SION

1. Introduction, von Neumann's minimax theorem [10] can be
stated as follows : if M and N are finite dimensional simplices and /
is a bilinear function on MxN, then / has a saddle point, i. e.

max min f(μ, v) = min max f(μ, v) .
M VβN V6Λ' μβ M

There have been several generalizations of this theorem. J. Ville [9],
A. Wald [11], and others [1] variously extended von Neumann's result
to cases where M and N were allowed to be subsets of certain infinite
dimensional linear spaces. The functions / they considered, however,
were still linear. M. Shiffman [8] seems to have been the first to have
considered concave-convex functions in a minimax theorem. H. Kne-
ser [6], K. Fan [3], and C. Berge [2] (using induction and the method
of separating two disjoint convex sets in Euclidean space by a hyper-
plane) got minimax theorems for concave-convex functions that are ap-
propriately semi-continuous in one of the two variables. Although these
theorems include the previous results as special cases, they can also be
shown to be rather direct consequences of von Neumann's theorem. H.
Nikaidό [7], on the other hand, using Brouwer's fixed point theorem,
proved the existence of a saddle point for functions satisfying the
weaker algebraic condition of being quasi-concave-convex, but the strong-
er topological condition of being continuous in each variable.

Thus, there seem to be essentially two types of argument: one
uses some form of separation of disjoint convex sets by a hyperplane
and yields the theorem of Kneser-Fan (see 4.2), and the other uses a
fixed point theorem and yields Nikaidό's result.

ΐn this paper, we unify the two streams of thought by proving a
minimax theorem for a function that is quasi-concave-convex and appro-
priately semi-continuous in each variable. The method of proof differs
radically from any used previously. The difficulty lies in the fact that
we cannot use a fixed point theorem (due to lack of continuity) nor the
separation of disjoint convex sets by a hyperplane (due to lack of con-
vexity). The key tool used is a theorem due to Knaster, Kuratowski,
Mazurkiewicz based on Sperner's lemma.

It may be of some interest to point out that, in all the minimax
theorems, the crucial argument is carried out on spaces M and N that

Received June 26, 1957. This research was supported by the United States Air Force,
Office of Scientific Research and Development Command, under contract No. AF 18(600)-1109
[Supplemental Agreement No. 4 (56-339)].
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are finite dimensional simplices. When concave-convexlike functions are

considered, the topological conditions of compactness and semi-continuity
are used only in reducing the problem to the finite dimensional case.
For quasi-concave-convex functions, however, semi-continuity is needed
in a more crucial way, as can be seen from the example in 3.6.

2. Fundamental notions and definitions. The following definitions
of concavelike and convexlike functions were first considered by K.
Fan [3]. They generalize the concepts of concavity and convexity and
are valid for spaces without linear structure.

2.1. A function / o n MxN is concavelike in M if for every
μLi μ2eM and O^ί^l , there is a /̂ eΛf such that

tf(μi, v) + (l-t)f{μ2, v) ^ f(μ, v) for all v e N .

2.2. A function / on MxN is convexlike in TV if for every

lf vt e N and 0 <; t ^ 1, there is a v e N such

v) for all /* e M .

2.3. A function / on MxN is concave-convexlike if it is concave-
like in M and convexlike in JV.

2.4. A function / on MxN is quasi-concave in Λί if {/; : f{μ,v)
>̂ c} is a convex set for any v e N and real c.

2.5. A function / on MxN is quasi-convex in JV if {v : /(//, v) <J c}
is a convex set for any μ e M and real c.

2.6. A function / on MxN is quasi-concavc-convex if it is quasi-
concave in M and quasi-convex in N.

2.7. A function / on MxN is u. s. c.-l. s. c. if /(//, u) is upper
semi-continuous in μ for each v e JV and lower semi-continuous in v for
each μe M.

2.8. For a function / on MxN, we set

supinf/ = sup inf

inf sup f — mΐ sup /(^, v) .

2.9. The convex hull of X will be denoted by ΓX\

2.10. The closure of X will be denoted by X.
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3. Minimax theorems for quasi-concave-convex functions. The aim
of this section is Theorem 3.4. The method of proof, making use of
3.1, 3.2, and 3.3, is very different from any argument used previously
in obtaining minimax theorems.

3.1. THEOREM. Let S be an n-dimensional simplex with vertices
n

a{), , an. If A{), , An are open sets such that S c U AL, S—A , is
i = ΰ

n

convex, and atφ Aj for iφj(i,j, =0 « ,ra), then Π A^O.

Proof. We can set A~ U Bitk where the Biyk are open and

Bi1k c Bίfkι+i. Since S is compact, there is an integer N such that

S c U Bίfλ. By a theorem of Knaster, Kuratowski, Mazurkiewicz [5],
ΐ 0

we have n At D Π BifNφ0.
i=0 ϊ=0

3.2. THEOREM. Let 3ΐ={α0, •• , α j consist of n + 1 points in a li-
n

near space of dimension k < n. Then Π Γ(?t— {αz}
ΐ

Proof. n Γ (9Ϊ- {αj)"1 3 {α,} ̂ 0 for i = 0 , , rc.
i = 0

Hence by Helly's Theorem [14], we have the desired result.

3.3. LEMMA. Let M be a convex set, Y a finite set, and f a func-
tion on MxYy quasi-concave and upper semi-continuous in M. Suppose,
in addition, that Y is minimal with respect to the property : for each
μeM there is a ye Y with f{μ,y)<c. Then there exists μΰeM such
that f(μύf y)<c for all yeY.

Proof Let Y= {y0, , yn} and set At={μ: f(μ,yL)<c} for i = 0,
"',n. Then the Ah are open and M-AL convex. By hypothesis, for
each i, there exists ateM such that a^eM—Aj for jΦi. Let s2t={α0,

n

• , an). Then Γ(SI— {α,})1 c M—At and, since M e U -44, we must have
ί = 0

n

Π Γ(?l— {at})Ί = 0. Hence, by 3.2., ?ϊ spans an Tί-dimensional simplex in
i = o

Λf and, by 3.1, there exists a ^ e Π 4
ί = 0

3.3r. LEMMA. Let N be a convex set, X a finite set, and f a func-
tion on X x N, quasi-convex and lower semi-continuous in N. Suppose, in
addition, that X is minimal tvith respect to the property : for each v e N
there is an xeX with f(x,v)>c. Then there exists v{)eN such that
f(x, vύ)>c for all xe X,
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3.4. THEOREM. Let M and N he convex, compact spaces, and f a
function on MxN, quasi-concave-convex and u . s .c .- l . s .c Then sup inf
/ = inf sup /.

Proof. Suppose sup inf /<<?<inf sup / . Let Aμ—{v\ f{μ,v)>c]
and Bv—{μ: f(μ,v)<c}. The Aμ are open and cover N. Since N is
compact, a finite number of the Aμ cover N. Similarly, a finite num-
ber of the Bv cover M. We can therefore choose finite subsets X1 c M
and Yι c N such that for each v e N, and hence for each v e ΓΓΛ there
is an x e Xx with f(x, v) >c and for each μ e M, and hence for each μ e ΓXΛ
there is a ye Yλ with f{μ, y)< c.

Let X.λ be a minimal subset of XΛ such that for each u e Γ FT

Ί there
is an xeXλ with f(x,v)>c. Next, let YΛ be a minimal subset of Yτ

such that for each μeΓX>? there is a y e Y > with f(μ,y)<c.
Thus, by repeating this process of alternately reducing the Xt and

Yί, after a finite number of steps, we can choose finite subsets XaM
and 7 c N such that X is minimal with respect to the property : for
each ueΓY1 there is an x e X with f(x,v)>c, and Y is minimal with
respect to the property : for each μe VXΊ there is a ye Y with f(μ,y)<c.
By 3.3, there exists μQ e ΓX1 such that f(μ0, y)<c for sillyeY and hence
(by quasi-convexity) f(μΌ,v)<c for all ve Γ 7 Ί . By 3.3', there exists
voe

ΓYΊ such that /(a?, vo)>c for all xeX and hence (by quasi-concavity)
for all μeΓXΊ. Then c<f(μ0, vo)<c, which is impossible.

3.3. COROLLARY. Let M and N be convex spaces one of ivhich is
compact, and f a function on MxN, quasi-concave-convex and u. s. c.
-1. s. c Then sup inf / =inf sup /.

Proof. Suppose M is compact and sup inf / < c < inf sup /. Then
there exists a finite set Ya N such that for any μe M there is a y e Y
with f(μ, y)<c. Taking f=fl(Mx ryi), we get sup inf / / <c<inf sup/'
in contradiction to 3.4 with N replaced by ΓY] and / by / ' .

3.6. REMARK. In Theorem 3.4, the condition that / be u. s. c.-l s. c.
cannot be removed nor appreciably weakened even if the spaces M, N
are finite dimensional. To see this, we consider the following example.
Let M=N=[0, 1] and f(μ, u) = 0 for 0 ^ < l / 2 and v = 0 or 1/2^/^1 and
v=l f(μ, v) = l otherwise. We easily check that / is quasi-concave-con-
vex for each μ, f(μ, v) is lower semi-continuous in v however f(μ, 1)
is not upper semi-continuous in μ. We also have : sup inf /—0 and inf
sup f=l.

4. Minimax theorems for con cave-con vexlike functions. For con-
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cave-convexlike functions, the topology for the spaces on which they
are defined plays only a secondary role. Theorem 4.2 (4.2') below, which
is the generalization of Kneser's theorem to concave-convexlike functions
due to K. Fan [3], is not a special case of 3.4 since the concepts of
concave-convexlike and quasi-concave-convex are independent of each
other (see [7]). It is however a special case of 4.Γ (4.1), which is it-
self an immediate consequence of 3.4 (actually, von Neumann's theorem).

4.1. THEOREM. Let M and N be any spaces, f a function on MxN
that is concave-convexlike. If for any c<inf sup / there exists a finite
subset XdM such that for any veN there is an xeX with f(x,u)>cy

then sup inf / = inf sup /.

4.1 7. T H E O R E M . Let M,N be any spaces, f a function on MxN

that is concave-convexlike. If for any c > s u p inf / there exists a finite

set YCLN such that for any μe M there is a yeY with f(μ, y)<c, then

sup inf /=inf sup /.

4.2. THEOREM. (Kneser, Fan). Let M be compact, N any space, f
a junction on MxN that is concave-convexlike. If f{μ, v) is upper semi-
continuous in μ for each v, then sup inf /=inf sup f.

Proof. If c>supinf/, let A^={μ: f{μ,v)<c] for each veN. The
Av are open and cover M, hence a finite number of them cover M.
We may therefore apply 4.1'.

4.2' THEOREM. Let M be any space, N compact, f a function on
MxN that is concave-convexlike. If f(μ, v) is lower semi-continuous in v
for each μ, then sup inf /=inf sup/.
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ON SEMI-NORMED *-ALGEBRAS

CHIEN WENJEN

1. Introduction. The notion of semi-normed algebras was introduced
by Arens as a generalization of Banach algebras [2, 5]. They are called
locally multiplically-convex algebras by Michael [16]. Various properties
of Banach algebras have been generalized to semi-normed algebras [5,
16,21,22,23].

We repeat here a few definitions. Let A be a linear algebra over the
field K of complex or real numbers. A nonnegative real-valued func-
tion V defined on A is called a semi-norm if it satisfies the following
conditions :

V(x+y)£ V(x)+ V(y), V(xy)^ V(x)V(y), V(λx)=\λ\V(x). Suppose there
is a family Ύ^ of semi-norms such that V(x) —0 for all Ve y only if
x=0. A is a semi-normed algebra if all the translations of the sets on
which V(x)<e, where e is real and Ve Ψ\ are taken as a subbase of
topology, and is complete if it is complete with respect to the uniform
structure defined by the various relations V(x — y)<e. A is called_an
*-algebra if there is a semi-linear operation * such that (λx—yz)* = λx*
—z%y^jX%if—x. A subset U of A is called idempotent if UU c U; it is
called multiplicatively convex (m-convex) if it is convex and idempotent.
A is locally m-convex if there exists a basis for the neighbourhoods
of the origin consisting of sets which are m-convex and symmetric.

The present paper is devoted to generalizing the representation theo-
rems for commutative and noncommutative Banach algebras to semi-
normed algebras. An application of the Gelfand-Neumark-Arens
representation theorem for commutative Banach algebras yields a simple
proof of the spectral theorem for bounded self-adjoint operators in
Hubert space [14, p. 95], Our generalized representation theorem for
commutative semi-normed algebras gives rise to a similar proof of the
spectral theorem for unbounded self-ad joint operators.

The characterization of the algebra C(T, K) of all complex-valued con-
tinuous functions on a locally compact, paracompact Hausdorff space T
has been treated by Arens [5, p. 469]. We have a characterization
theorem for C{T, K) where T is a locally compact completely regular
space and also a uniqueness theorem for the space T [cf. the Banach-
Stone theorem, 6, p. 170, 20, p. 469]: If C(Tl9 K), C(Γ2, K) are topo-

Received July 19, 1954, and in revised form September 1, 1957. This paper is part of
a thesis submitted by the writer to the graduate division of the University of California,
Los Angeles, (Summer, 1953) in partial satisfaction for the Ph. D. degree. The writer is
indebted to Professor Richard Arens for his encouragement and valuable advice.
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logically isomorphic, then T1 and T2 are homeomorphic. If T19 T2 are
Hewitt's Q-spaces [11, p. 85], the topological equivalence between the
spaces follows from the algebraic isomorphism between C(T19 K) and
C(T2, K), but not in general.

2. Functional representation*

2.1. THEOREM. Let A be a complete commutative semi-normed
^-algebra (with or without a unit) over the complex numbers K such that

2.2. V(xx*)^kvV(x*), for all Ve ^\kv>0). Then A is topologically
isomorphic to a complete self-adjoint subalgebra S of the algebra C(T, K)
of all continuous complex-valued functions (vanishing at infinity if A
has no unit) on T with k-topology, where T is the union of the mem-
bers of a family of pairwise disconnected and closed-open sets, (compact
if A has a unit, otherwise locally compact).

Proof. The elements x in A satisfying V(x) — 0 form an ideal Zv, a
kernel ideal of A. The quotient algebra A\ZV is a normed algebra when
V is used to define a norm, and the completion Bv of A\ZV is a com-
mutative Banach *-algebra. By Gelfand-Neumark-Arens representation
theorem [3, Theorem 1, p. 278], there exists a Hausdorff space (compact
if A has a unit, otherwise locally compact) Qv= ^-neighbourhood homo-
morphism, for which Bv is the class of all complex-valued continuous
functions (vanishing at infinity if A has no unit) on Qv such that

xv*(q)=xv(q) (q eQv,xe Bv).

and

(2.3) kvV(xv)^ sup \xv(q)\^ V(xv) .

Let

T= U Qr
ve

Retaining the original weak* topology for Qv and regarding all Qv as
pairwise disconnected and closed-open subsets, we have a locally compact
completely regular space Γ. The complex-valued continuous functions
on T are of the form /(*)= {fv}, where f,(t) e C(QV, K) and f(t)=fv(t) if
teQv.

The mapping

P : x 6 A->x(t)^ {xγ(t)} e C(T, K)

maps A onto a subalgebra S of C(T, K). P is isomorphic for, if x
maps to zero functional, then V(x) — 0 for all Ve *-/>" and x is the zero
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element of A.
In fact, P is a homeomorphism. Denote the open set in A consisting

of all x such that V(x)<e by 0(V, e) and the open set in C(T, K) defined
by sup \f(q)\<kre by O'(QF, e). It follows from the inequalities 2.3 that

QβQv

P maps 0(F, e) onto a subset of C(T, K) containing O'(QF, e). This pro-
ves the continuity of the inverse mapping of P from S onto A.

Let W be a compact subset in Γ contained in the union of QVi, ,
QVn. It is clear that P maps the intersection of 0(Vu e), , 0(Fn, e)
onto a subset in C(Γ, i£) contained in the intersection of O'(Vlf ejkv)r ,
O(Vn9e/kv)9 and S, that is, in the intersection of O'(W, e\kv) and S.
P is therefore continuous.

The completeness of S is an immediate consequence of the complete-
ness of A and inequalities 2.3.

2.4. COROLLARY. Let Mv be a maximal ideal in Bv (the completion
of the quotient ring Av—AjZv) and let f(t) be a complex-valued continuous
function on the space T. Then f(t) belongs to S if fr(Mu)=fϋ(Mu) when-
ever U^ V.

Proof Mv is actually a point in Qv and/F(M"^) belongs to C(QV, K).
Let ΓI uv be the natural mapping of Bv into Bυ when U^ V. Then
Πuv(fv)=fu whenever U^ V if fv(Mυ)=fjiML). Hence the corollary [16,
Theorem 5.1].

This immediately yields the following result [cf. 5, p. 471].

2.5. THEOREM. Let Abe a commutative complete semi-normed * — al-
gebra with a unit (without unit) satisfying 2.2. Then an element x in A
has an inverse (reverse) if x(M)Φθ (x(M)Φ—l) for each closed maximal
ideal M in A.

3. Spectrum. An element h in a complete semi-normed *-algebra
A satisfying 2.2 is called Hermitian, if h*=h; and an Hermitian ele-
ment h is called positive, if its spectrum consists of nonnegative numbers.

3.1. THEOREM. The spectrum of every Hermitian element h is real.

Proof. Suppose A has a unit. Let A1 be the minimal complete
*-subalgebra of A containing h. Then Aλ is commutative. By Theorem
2,1 Aj is equivalent to a closed subalgebra S of C(Γ, K). The corres-
ponding function h(M) of the element h in A is real-valued. For any
nonreal number λ, the function h(M)~ λ is not equal to zero anywhere.
The theorem follows from Theorem 2,5.



180 CHIEN WENJEN

3.2. THEOREM. Every closed self-adjoint subalgebra Ao of a complete
semi-normed ^-algebra A with a unit (without unit) satisfying 2.2 contains
inverses (reverses).

Proof Rickart has proved that xv e Aov (the completion of AQυ=AJZv)
has an inverse (reverse) iff both xv*xv and xvxv* have inverses (reverses)
and that the inverse (reverse) of xv is contained in Aov iff the inverses
(reverses) of xv*xv and xvxv* are contained in Aov [18, pp. 531-532].
Since every closed maximal ideal in A contains a kernel ideal [5, p. 466],
it follows from Theorem 2.5 that AQ contains inverses (reverses) of its
Hermitian elements, and hence of all its elements which have inverses
(reverses) in A.

3.3. COROLLARY. Let Ao be any closed self-adjoint subalgebra of A.
Then the spectrum of xe Ao relative to AQ is identical with the spectrum
relative to A.

3.4. THEOREM. Let x be a normal element, that is, xx*=x*x, of A
(with or without a unit) and let f(λ) be a complex-valued continuous func-
tion (vanishing at infinity, if A has no unit) defined on the spectrum &
of x. Then f{x) defines an element contained in every commutative closed
self-adjoint subalgebra of A which contains x.

Moreover if s{λ) = f{λ) + g{λ),p{λ) = f(λ)g(λ)iq{λ) = f(λ),r{λ) = λ, then
) = f(x)g(x)9 g(a?) = /(<&)*, r(x)=x.

Proof Let Ao be a commutative closed self-adjoint subalgebra of
A containing x and let Mv be a maximal ideal in AQV. Then Ao is equi-
valent to a closed self-ad joint subalgebra S of the algebra C(T, K) of
all complex-valued continuous functions on a locally compact completely
regular space Γand /(xviM^^fix^Mu)) whenever U^V. By Corollary
2.4, f(x{M)) determines a unique element, denoted by f(x), contained in
Ao. The first part of the theorem is proved.

The second part of the theorem is obvious.

3.5. THEOREM. The sum of two positive elements is positive.

Proof Suppose A has a unit. Let h and k be two positive elements
in A and let Ao be the minimal closed self-adjoint subalgebra of A con-
taining h+k. Since the inverse of hv+kv+λe for any nonnegative num-
ber λ and each Ve >Λ [13, p. 52] the function h(M) + k(M) + λ does not
vanish at any M. The theorem follows from Theorem 2.5.

3.6. THEOREM. The Hermitian elements of a complete seminormed
*-algebra satisfying the condition 2,2 constitute a lattice,
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Proof. To any Hermitian h, there is a positive element \h\ corres-
ponding to the function \λ\ by Theorem 3.4. Let h and k be arbitrary
Hermitian elements and define.

hvk=i(h+k+\h-k\), hΛk=i(h+k-\h-k\). Then the Hermitian ele-
ments constitutes a lattice.

4. Closed self-ad joint subalgebras.

4.1. THEOREM. A commutative complete semi-normed *-algebra A
satisfying the condition 2.2 is equivalent to a closed, separating self-ad-
joint subalgebra S of the algebra C(T0, K) of all complex-valued continuous
functions (vanishing at infinity, if A has no unit) on a completely regular
space Tfl with a topology which has at most the open sets of the k-topology,
that is, with a topology p^k.

Proof. By Theorem 2.1, A is equivalent to a closed self-ad joint
subalgebra £ of C(T, K), where T is a union of pairwise disconnected
and closed-open sets (compact if A has a unit, otherwise locally compact).
Let x(t) be the corresponding function in S of the element x in A. De-
note by TQ the class of all subsets of T:

La—{t; x(t)—x(a) for each xeA} .

Following Cech's notation, Let p denote the mapping :

a e T-*La

and let [/, /] denote those elements p(t) of To such that f[t) e I, where
f(i) is a continuous real function belonging to S end / is an open inter-
val. The topology generated by considering all these [/, /] as a subbase
is called £>-topology.

It is easy to see that p is a continuous mapping and that for any
aeT, there is an [/, /] containing p(a). Let [f, /J and [/2, J2] be any
two open sets in To containing p(a). If both fλ{ά) and /2(α) are different
from zero, we can assume without loss of generality that fι{a)—fz{a)
and that I, and /2 are identical. We define gt(t)=ft(t) if /4(ί)^/t(α), and
gί(t)=2f^a)-fi(t) if ft(t)>ft(a), i = l, 2. Then gλ{t) and gtf) are continu-
ous functions. Let g(t)=gλ{t)/\gt(t). It is clear that [g, I](z[f, /]Π [/2,
/ ] . In case f(a)~0 and //α)=£θ, we can assume that fλ(t) and fλ{t) are
nonnegative. Let g{t)~fλ{t)—f{t). An interval / can be so chosen that
[g, /]c[/ τ, /](Ί[/2, / ] . Hence Tΰ is a topological space. Cech has proved
that To is Hausdorff and completely regular [8, p. 827].

Now the closed subalgebra S of C(T, K) is a closed, separating sub-
algebra of C(Γ0, iη.
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4.2. REMARK. It is clear that the elements in the space To are the
closed maximal ideals in the algebra A and the jO-topology is the weak*
topology. Professor Arens has constructed examples to show that TQ is
not necessarily locally compact. He has also constructed a completely
regular space T such that C(T, K) with A> topology is not complete. [4,
p. 234]. We have, however, the following.

4.3. THEOREM. The necessary and sufficient condition that a com-
mutative complete semi-normed ^-algebra A satisfying the condition 2.2
be equivalent to C(T, K), with k-topology, of all complex-valued continuous
functions on a locally compact completely regular space T is :

To any closed maximal ideal MQ in A, there are an xeA and an
ε>0 such that the intersection of the maximal ideals M satisfying the
relation \x(MQ)—x(M)\^ε contains a kernel ideal.

Proof. The necessity is obvious. The sufficiency follows from
Theorem 4.1 and Corollary 2.4.

4.4. REMARK. Theorem 4.3 generalizes the theorem of Arens
characterizing the algebra C(T, K), where T is a locally compact, para-
compact Hausdorff space. [5, p. 469]. Let A be an algebra with a
locally finite partition of unity. (For definition and notation, see 5, p.
463) To any maximal closed ideal MQ, there exists an uv such that
uv(Mo) — dΦθ, since MQ contains a kernel ideal. There are only a finite
number of W such that W(ur)Φθ, say, Wlf ••• , Wn. Let FF0 = max.
(WΊr * Ί Wn). The intersection of the closed maximal ideals M satisfying
\uv{MQ)—uv(M)\^L dj2 evidently contains ZWΰ.

4.5. THEOREM. For the algebra C(T, K) of all complex-valued conti-
nuous functions (vanishing at infinity) on a locally compact completely
regular space T with k-topology, there is one-to-one correspondence between
closed ideals in C(T, K) and the closed subsets of T.

This is a generalization of a theorem due to Stone [20, Theorem 85]
and the proof is straightforward.

4.6. COROLLARY. For the glgebra of all complex-valued continuous
functions (vanishing at infinity) on a locally compact completely regular
space with k-topology, there is one-to-one correspondence between the closed
maximal (regular) ideals of the algebra and the points of the space (the
point at infinity is not included).

4.7. THEOREM. The necessary and sufficient condition tivo locally
compact completely regular spaces T and T' be homeomorphic is that the
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algebras C(T, K) and C(T, K) of all complex-valued continuous functions
(vanishing at infinity) on the spaces ivith k-topology be topologically iso-
morphic.

Proof. Following Stone's idea, we define the closure of a family of
closed maximal (regular) ideals in C(T, K) as the hull of the kernel of
the family [14, p. 56]. It is clear that a subset of the space T is closed
iff it is equal to the hull of its kernel when it is considered as a set of
the maximal (regular) ideals in C(T, K).

4.8. REMARK. The homeomorphism between the spaces T and T
does not follow from the algebraic isomorphism between C(T, K) and
C(T',K). For example, the space Γϋ+1(g)Γω+J-(ί2, ω) [11, p. 69] is
pseudo-compact, completely regular, locally compact, and C(T, K) and
C(βT, K) are algebraically isormorphic, while T and βT are not homeo-
morphic.

5. Spectral theorem for unbounded self-ad joint operators in Hilbert
space.

5.1. Let L be the algebra of all real-valued continuous functions
defined on a locally compact Hausdorff space T and vanishing off compact
sets. It is well-known that every nonnegative linear functional on L is
an integral [14, p. 44].

A family of real-valued functions on a space is called monotone if
it is closed under the operations of taking monotone increasing and de-
creasing limits. The functions belonging to the smallest monotone
family including L are called Baire functions.

A topological space T is called hemi-compact by Arens [1, p. 486]

if there exists a sequence T% of compact subsets of T such that \j Tt = T

and every compact subset of T is contained in some Tt. Every topo-
logical space which is both ^--compact and locally compact is hemi-com-
pact.

5.2. LEMMA. Let G be a *-representation of the algebra C0(T, K) of
all complex-valued continuous functions vanishing outside compact sets on
a hemi-compact Hausdorff space T, which is a union of painvise discon-
nected, closed-open compact sets Tlf T2, , by a family 55 of operators
in a Hilbert space H. Let H be spanned by a sequence of closed linear
manifolds H19 H,, , orthogonal in pairs, such that each operator of %$
is blinded on Hi and G is a bounded *-representation of the algebra
C(Tt, K) of all complex-valued continuous functions on Ti by a family of
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operators on H^ Then G can be extented to a * representation of the
algebra B(T, K) of all Baire functions bounded on compact subsets of T,
and the extension is unique, subject to the condition that Jxy(f) — (Gfx,y)
is a complex-valued integral for every xe H,ye iϊ*.

Proof. The function F(fif x, y) = (Gfix, y), defined for f e C(Γ4), x e Hίf

yeHf, is a bounded integral on C(Tt) and thus is uniquely extensible
to BiTi). [14, p. 93]. Hence the lemma [17, p. 312].

5.3. THEOREM. TO any self-adjoint operator R in a Hilbert space
H, there exists a unique family of projections {Eλ} depending on the
parameter λ, satisfying

(a) Eλ<E» or Eλ=EλEμ for λ<μ ,

(b) #Λ + 0 = #Λ >

(c) lim Eλ — 0 and lim Eλ = I,
Λ—> — c o λ—>co

such that

# = ( ME, .

Proof Let bt be a set of real numbers, i = 0, ± 1 , ± 2 , ••• , such
that

( 1 ) for all i.b^b^;

( 2 ) lim bt = co

( 3 ) lim bi— — oo .

Then there exists a set of closed linear manifolds \Hi},i = l,2, ••• ,
orthogonal in pairs, spanning i ί , and such t h a t R is defined on Ht and
satisfies the relation [15, 17]

Let Pi be a projection on H such that Pix=x if xeHif and P t# = 0
otherwise. Now Px, P2, , and R generate a commutative semi-normed
*-algebra A, the semi-norms of its elements being the norms of the
operators in H^ By Theorem 2.1, A is equivalent to a closed self-adjoint
subalgebra S of the algebra C(T, K) of all complex-valued continuous
functions on a hemi-compact Hausdorff space T, which is a union of a
sequence of pairwise disconnected, closed-open compact subsets Tlf T2, •-.
S is, in fact, the algebra C(T, K) itself.
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Any real continuous function f(t) on the space T is a Baire func-
tion. Define a continuous function /„ such that fn(t)—f{t) if ί6 3\u...
uTn and /„(£) = 0 otherwise. Let #™eL so that gnϊmfn, where #™
vanish outside the sets 2\, , Γnf and let gn=g\V vg%. Then #wf/
and / is a Baire function. Also the characteristic functions of closed
subsets in T are Baire functions.

Let R be the image of the operator R. Given ε>0, we can choose
χu i = 0, ± 1 , ±2, such that Jlt->oo,L(->-ooas i->oo and, for all i,
^ > ^ _ : , ?H — ^_!<ε. Let ^ be the characteristic function of the closed
set where R^λ, and choose λt

r from the interval [̂ _i, ̂ ] .
Then

and hence

! - Σ W λ . - E λ . )ll <ε for each F e ^ .

The theorem is proved.

6. Imbedding algebras into rings of operators in Hubert space.

6.1. THEOREM. Every complete semi-normed *-algebra A with or
without a unit, satisfying the condition V{xx*) — V{x)V{x*) for each
V 6 5^, can be isomorphically mapped onto a closed self-adjoint subalgebra
Aλ of the algebra of all linear operators in a Hilbert space H— Σ Hv

suck that if xeA maps to XeAlf then X is bounded in each Hv and
V{x) = \\x\\v for each Ve "̂*, where \\x\\v denotes the norm of X in Hv.

Proof By Gelfand-Neumark representation theorem [10, Theorem 1
12, p. 409], the completed quotient algebra Av can be isometrically mapped
onto a closed self-adjoint subalgebra of the algebra of all bounded
operators in Hilbert space i?F.

Let

H= Σ Hv

veψ

be the set of all complexes h~{hv] ,hve Hv, with

Σ IWIV<~

The algebraic operations and inner products are defined as follows :

λh={λhr}, K + h^ih.y + h.y] , (h19 Λ,)= Σ (hιr-h2V) .
veψ
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Let ki={hiV}. Then \\ht—hj\\z — Σ Whv—hjvW2- ll^4 —Aj||->0 implies

\\hiv—hjV\\~->0 for each V. For any fixed V9 hiV approaches to an ele-
ment hoV in Hv as a limit when i approaches infinity. Then ht->hQ= {hov}
which belongs to H, and H is complete.

The corresponding operator X in H of an element α e i is defined

as X—{XV), where Xv is the operator in Hv corresponding to xveAv.

Now Xh={Xyhr} with

The domain of X is dense in H, for it contains all those elements {hv}
where hv are 0 except for a finite number of them. It is clear that
X(H)aH and X(Hv)aHv.
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