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COMMUTATIVE LINEAR DIFFERENTIAL
OPERATORS

S. A. AMITSUR

1 Introduction. Let D=d/dx be the operator of differentiation with
respect to a variable x. Let f(D)=a,D"+ --+ +a,, a,#0 be a differen-
tial operator of degree n. The problem we intend to study in this paper
is to determine the set C[f] of all linear operators which commute with
f. This problem, is old and for a complete discussion of old and new
results see the report of H. Flanders [2]. The most pronounced result
in this subject is the fact that C[f] is a commutative ring and that it
is finitely generated over the algebra of all polynomials in f(D) with
constant coefficients.

In his report [2], Flanders obtains this theorem by algebraic methods
with the aid of a deep theorem of Tgen on division algebras over the
field of all rational functions in one variable. The first part of the
present paper contains a simple algebraic proof of this result which
uses only elementary facts of linear algebra.

In the second part of this paper we obtain necessary and sufficient
conditions for the existence of non-trivial differential operators which
commute with f(D). This is obtained by adjoining a parameter 2 to the
domain of definition of the coefficient of f(D) and by considering the
invariant ring [1] of the operator f(D)—2. It is shown that the struc-
ture of the C[f] is closely related with the factorization of f(D)—A.
In this part, use is made of the theory of abstract differential polynomials
as developed in [4],[3] and [1]. All proofs are purely algebraic.

2. The centralizer of f(D). To be more precise we make the following
assumptions : Let K be a field of characteristic zero with a derivation
D: a—a’. Let F denote the field of constants of K. That is: F=
{o; ae K. a'=0}.

Let K[D] be the ring of all formal differential polynomials p(D)=
0 D"+ ¢+« +Dn, 0, € K with multiplication defined in K[D] by the relation

Da=aD+a', aec K.

Clearly K[D] can be considered also the ring of linear differential
operators on K.

Let f(D)=a,D"+a D" '+ «+« +a,, n=1, 4,0 be a polynomial of de-
gree » in K[D]. We shall denote by C[f] the centralizer of f in K[D].
That is, C[f1={9(D); ¢g(D)e K[D], gf=fg}. Clearly C[f] is a subring
of K[D] and it contains the ring F'[f] of all polynomials in f(D) with
constant coefficients.

Receive(i November 14, 1957.



2 S. A. AMITSUR
The main object of the first section is to prove the following.

THEOREM 1. (1) C[f] is & free F[f]-module of dimension p, where
P 18 o divisior of n (=the degree of f(D))
(2) CLf] is a commutative ring.
We shall need the following two known lemmas.

LemMMA 1. ([2] Lemma 10.1) If p,q, are trespectively the leading
coefficients of two polynomials p(D), ¢(D) of the same degree which commute
with f(D) then p,=cq, for some constant c¢€ F.

LemmA 2. ([2] Lemma 10.2) The set of all polynomials of C[f] of
degree<m 1s a finite—dimensional wvector space over the field of con-
stants F.

For completeness we include the proof of these lemmas in the
abstract case we are dealing with.

Indeed, it p(DW(D)=S(D)p(D) and p(D)y=p,D"+p D" '+ -+ +pp,
then by comparing the coefficient of D**™! on both sides we obtain :

MUy QP - Doy = NP+ Dol D1

Thus, the leading coefficient p, satisfies the homogeneous linear differen-
tial equation: napw,—map,=0. Hence if ¢(D)=¢, D™+ -+ +¢. also
commutes with f(D), ¢, satisfies the same differential equation and,
therefore g,=cp, for some constant ¢, which proves Lemma 1.

The proof of Lemma 2 follows immediately from Lemma 1, by
induction on the degree m.

We proceed now with the proof of Theorem 1:

Let Z; be the set of all integers which are the degrees of the
polynomials of C[f]. Since C[f] is a ring, and since deg(p(D)q¢(D))=
degp(D)+degg(D), it follows that Z, is closed under addition. Let m
denote the residue class modulo n(=degf(D)) of the integer m, and let

Z,={m;meZ}. Then clearly Z, is a subgroup of the additive eyclic

group of all residue classes mod n. Hence Z, is cyclic of order p and
p is a divisor of n.

Let o=m,, -+, m, be the p classes mod n of Z, and let m; be the
minimal integer of its class m,. Let g¢(D)eC[f] be a polynomial of
degree m,; and we can clearly choose g;,—=1. We shall show that these
polynomials ¢, are free generators of C[f] over F[f].

Indeed, if g, (f)+ - +g.0.(f)=0 for some polynomials ¢,(f)e
F(f), then evidently : if ¢,(f)+#0, for some %, then

deg [g:¢i(f)]=deg [g,0,(f) for some v#j.
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But, since deg [¢,¢:(f)]=deg g=m;(mod ») and deg [g,¢,(f)]=m; (mod
n), and m,Zm; (mod n), we are led to a contradiction. Consequently
¢(f)=0 for all 2.

It remains now to show that if g e C[f] then g=g,0,(f)+ --- +g.2:(f)
for some ¢(f)e F[f]. This is obtained by induction on deg g. It deg
g=0, then it follows by Lemma 1 that g=c e F, and hence g—cg,. Now,
let deg g=k. Since keZ, it follows that k=m,(mod n) for some z.
By the minimality of m,, it follows that k>m, Hence k=m,+nq,
which implies that deg g=deg ¢,f? It follows, therefore, by Lemma 1
that ¢'=g—cg.f* e C[f] for some ce F and deg g'<deg g. Hence, by
induction we obtain g—ecg; =g (f)+ +-+ +g.0.(f), and the proof is
readily completed. This proves the validity of (1) of Theorem 1.

We turn now to the proof of (2). Let g(D)eC[f] be a polynomial

whose residue class of deg g(D) mod n generates the cyclic group Z,.
One readily verifies that in this case, the set of all degrees of the
polynomials of the form

H(gr f):¢0(f)+g§p1(f)+ ce +gp_190p—l(f), (fa‘(f)e C[f] ’

contains all integers of Z, with at most an exception of a finite number
of integers. Hence, we may assume that this set contain all integers
meZ, for which m=t, for some fixed {. One then proves as in the
preceding part that every polynomial A(D)e C[f] can be written in the
form A(D)=Hyg, f)+7(D), where ke C[f] and deg %,<t. From Lemma
2 we know that the set of all polynomials %, is an F-space of dimension
T, for some 7. Let f"h=HJ(g,f)+h,, »=0,1,---, T, and deg Ah,=<t;
thus the polynomials %, are F-dependent and, therefore, >.¢.h,=0, for
¢, € F and not all ¢,=0. This yield that (3le,f*)h=>\c.H, (g, f), which
proves that for every % e C[f] there exists polynomials H(g, f) and F(f)
with constant coefficients such that: F(f)A=H(g, f).

Clearly the set of all polynomials H(g,f) commute with each other,
and the polynomials of C[f] commute with the polynomial of F[f];
hence, if Fy(f)h;=Hy(g,f) for h,;e C[f] i=1, 2, then

F(NF(Dhhy=(Fh)(Fyh) = H H,= H,H, = (F,h,)(F\l) = F.Fhsh,

Now K[D] is a ring without zero divisors, hence A,h,=h.h, and the proof
of Theorem 1 is completed.

It was thus shown that C[f] is an integral domain, let C(f) denote
the quotient field of C[f]. If F(f) denotes the field of all rational
functions in f over F, that is the quotient field of F[f], then clearly
F(f)SC(f). Actually, the preceding proof shows that the chosen poly-
nomial ¢ is algebraic of degree p over C(f), since F(f)¢*=H(g,f) and
moreover C(f) is an algebraic extension of F(f) generated by g. Thus
we have shown :



4 S. A. AMITSUR

COROLLARY 1. C(f) is an algebraic extension of degree p of F(f) and
iof the residue class of o polynomial g € C[f] generates the group of residue

classes Zy, then g is of degree p over F(f) and C(f)=F(f) [g].
This clearly implies the following.

COROLLARY 2. If heC[f] then h is algebraic over F(f) and its
degree is a divisor of p, that is, there exists a polynomial H(h, f)=0 with
constant coefficient and where degree in h is a divisor of p.

This follows from the fact that F(f)SF (kIS F(f)lgl.

REMARK. The fact that 2 is algebraic is well known, but here we
obtained some additional information on its degree. In fact, one can
prove by the previous methods that the degree of the minimal poly-
nomial H(x, f) in % is equal to the order of the subgroup of the additive
group of all residue classes mod n generated by the degree of %.

Additional information on the degree p of C(f) over F(f) will be
obtained in the following section.

3. The field C(f). Let 2 be a commutative indeterminate over the
field K. We extend the derivation of K to a derivation of the field of
all rational functions K(4) so that F(1) will be the field of constants of
the extended derivation. Consider the ring K(2)[D] of all differential
polynomials in D with coefficients in K(2).

LEMMA 3. Ewvery polynomial g(D)e K(A)[D] can be expressed in the
Jorm g=a(2)~" G2, D], where G[1, D1=>9,()D" is of the same degree as
9(D), and ¢,2), () are relatively prime polynomials in A. Similarly
g=G[4, DI(A)~ with simelar restrictions for G, and b(1).

The proof is evident.

Let F, be the algebraic closure of F(2), and let K,=K(F,) be the

field obtained by adjoining F) to K. that is, K, is the composition field
of K and F, over F(4). One extends the deviation of K to K, so that F,

is the new field of constants. These extended derivations yield the fol-
lowing sequence of rings of differential polynomials
K[D]c K(A)[D]c K,[D] .
If f(D)e K[D] then f(D)— e K(A)[D] and first we show the following.
LEMMA 4. f(D)—2 is an irreducible polynomial in K(2) [D].

PROOF. Suppose f(D)—2=f(D)f(D) and deg fi<deg f, fUD)e
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K()[D]. In view of Lemma 3 we set f{(D)=g¢[D, 1Ja (%) and a '(3)f(D)=
@.[D, 267(2). Thus (fAD)—)b()=g[D, Alg.[D, 2].

We consider now g¢,[D, 1] as a polynomial in 1 with coefficients in
the ring K[D], and we obtain by the remainder theorem®

oD, 1=(A(D)—HH[D, 1]+ E[D]
where R[D]e K[D]. Hence, it follows readily that
R[D]g.[D, 2]=(AD)—AG[D, 1] .

Let ¢[D, 21=222,(D). Then the fact that f(D)—1 is a left divisor
of R[D]g,[D, 2] implies by the remainder theorem that > f*Rr,=0. If
R+0, then we must have that deg (f*Rh,)=deg (f*Rh,)#0 for some
v#p. But suppose v>p then we have

deg %,=deg h,+(r—p) deg f=deg f.
On the other hand, clearly,
deg h.=deg g,=deg f,<deg f

which is impossible. Hence R=0, which means that ¢,[D, 1]=(A(D)—
A)H[D, 2]. But this leads to a contradiction since deg F,<deg f, and
proof of the lemma is completed.

The polynomial f(D)—2A, when considered as a polynomial in K,[D],
may be reducible, and indeed its factorization in the extended field

K, is closely connected with the field C(f). This we propose to show
in what follows, and we begin with some preliminary lemmas.

Let K[D, 1] be the ring of all polynomials in 2 and D, and let K[A]
be the polynomial ring in 2.

LEMMA 5. Let O#pe KQ), A,G,HeK[2, D] such that AG=Hp,
and A=fD"+ -+ +f, where f,e K[A] and (f,, p)=1, then G=Gp for
some G,€ K[, D].

PRrRoOOF. If the lemma is not valid, then let G be a polynomial of
minimum degree in D which is not a left multiple of p and which
satisfies the conditions of the lemma. Let* G=D"gy+ --+ +g,. Since
AG=Hp. 1t follows by comparison of the leading coefficients of both
sides that fig,=hw. Now (fyp)=1, hence p divides g, and we have
go=qp for some polynomial ge K(2). But then G—(D™q)p is of degree<

1 See, e.g. A. A. Albert, Modern Higher Algebra, Chicago 1937 p. 25.
2 Note that the polynominal G(D) may be written with coefficients either on the right
or on the left of the power of D.
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deg G ; it is not a left multiple of p, since G is not, but nevertheless
A(G—D™gp)=(H—FD™q)p, which contradicts the minimality of G.

LEMMA 6. Ewery polynomial p(2)e K[2] can be written as p(d)=
c(N)q(A) where ¢(2) s a monic polynomial in 2 and ¢ ()=0, and in the
Jactorization of q(A)=aqr - -+ qi*, a € K, into prime factors, the polynomials
q:(2) are relatively prime to their derivatives gy(1).

Let p()=api(A)ps(R) - - - pi»(2) be the factorization of p(2) into prime
factors. We may assume that each p, is a monic polynomial, i.e. its
leading coefficient is 1. For each p,;, the polynomial pj(2) is of lower
degree in 1 than p,; hence, since p, is prime, it follows that either
(p;, p;)=1 or p, divides p;, which in the latter case must yield that
p;=0. Thus, ¢(2) is the product of all p, for which p;=0 and ¢(2) is
the product of the rest.

LEMMA 7. Let pe K[A], G,He K[D, 2] and (p, p')=1, then pG=Hp
implies that G=G,p for some G,e K|[D, ].

Proor. If the lemma is not true then let G be the polynomial of
minimum degree in D which do not satisfy our lemma.

Let G=D"gy+ ++- 4+9,, H=D"hy+ +++ +h,, ¢; and h,e K[1], and
9h,#0. Compare the coefficient of D" of both sides of the equation
pG=Hp. This yields pg,=h,p which gives ¢g,=h,. The coefficient of
D! yields

—np'g+pgi=hp.

Hence, —np'g,=p(h,—g,). Since (p, p')=1 it follows that g,=kp for some
ke K[A]. But then the polynomial G—D"kp is of lower degree then G ;
it is not a left multiple of p, but nevertheless p(G—D"kp)=(H—pD"k)p.
This contradicts the minimality of G.

We can now turn to the main object of this section, and we recall
the notion of the invariant ring of a differential polynomial. ([1 §5
p.260] and [3 §10 p.502]).

Let #(D) be a polynomial in K[D]. The invariant ring <2 (k) of A
is the ring of all classes g(D)+A2(D)K[D] which have a representative
9(D) satisfying g(D)a(D)=h(D)g(D). It is known [1, Theorem 9] that
Z(h) is a finite dimensional algebra over the constant field, and if 4 is
irreducible, then .ZZ (k) is a division ring.

We shall consider the invariant ring & (f(D)—2) in the ring K(2)[D].
Since it was shown in Lemma 4 that f(D)—41 is irreducible, it follows
that “#(f—2) is a division ring (e.g. [1, Theorem 10]). First we show
the following.

THEOREM 2. The field C(f) is isomorphic with Z (f—2).
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Proor. This elements of “#(f—4) are classes of the form ¢(D)+
(f—DKN)[D], g e K(A)[D], and the first part of the proof is to show that
we may choose a representative of this class of the form g(D)e(d)7?,
where ¢(D)e C[f] and ¢(1) is a polynomial in 2 with constant coefficients.
The converse, that is: that every class which has a representative of
the form ¢(D)e(2)* belongs to .2 (f—1), follows easily since ge'(f— )=
qo(f —=Ne'= (f—12) ge™.

So let g(D) be a representative of a class in #(f—1), then ¢g(D)
(f—N=(f— (D). We set g(D)=a(A)G[D, 4] and k(D) = H[D, 21b(2)7,
in accordance with Lemma 8, we may assume and that a, b and monic
polynomials. Then we have

(3.1) GLD, 21(f = Dp()=a()(f — HH[D, 1] .

Suppose b(2)=1. Let B())=pp, --- p, be the factorisation of b into
prime factors, then we may assume that (p;, p;)=1. Since if (p;, p;)#1
we have seen that p;=0, and we may deal with p,g(D), which also be-
longs to .2 (f—1), instead of g(D).

It follows by Lemma 3 that H was so chosen that it is not a left
multiple of any prime factor of (1) say p,; furthermore, clearly a(l)
(f—)=D"a(Da,+ -, where f— A=D"a,, --- and a,#0. Hence, it follows
by Lemma 5 that p, divides a(l). So let a(A)=p,q,. Hence (3.1) yields

v:(f—DH[D, 1]=G,p,, where G,=G(f—)p, -+ p, .

Since (p, p)=1, it follows by Lemma 7 that ¢(f —2)H=G,p,. By
similar reasons it follows from Lemma 5 that ¢,=p,q,, and thus pq,(f—
NH=G,p,. Again Lemma 7 will yield that ¢,(f—2)H=Gp,. This cannot
proceed indefinitely since the degrees of a(2), q;, ¢, --- in 1 are reduced
in each step. Thus we are led to a contradiction, which leads us to the
result that b(1)=1. Thus (3.1) states that G(f—2A)=a(f—A)H. The
leading coefficient of f— 1 is an element of K, hence if we assume that
a+1, we must have by a result parallel to Lemma 5, that G=aG, which
contradicts the way we have chosen G and a by Lemma 8.

We thus have shown that by multiplying ¢(D) by polynomials ¢(42)
(that is the product of the p; for which p;=0) we obtained a represen-
tative G[D, 2] which is a polynomial both in 2 and D. If G[D, 1]=
>SW2g,(D), then the remainder theorem yields that

GID, ]=3.9.+(f—AHH[D, 1] .

Thus ¢(D)=>.s"¢9, is a representative of the same class mod(f—21) as
G[D, 1].

Since ge .ZZ(f—12), we have ¢(D)(f—1)=(f—2)Q(D). Let, in view
of Lemma 3, Q(D)=P[D, ]d(2)"'. Then ¢(D)(f—2)d(})=(f—A)P[D, 2].
We must have d(1)=1. For if the degree of d(2) in 2 is>1, then since
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the leading coefficient of f—2e K, it is relatively prime with d(1), and
hence Lemma 5 implies that P[D, A]=Pd(2) which contradicts Lemma
3. Thus ¢(D)(f—A)=(f—)QD) and QD)< K[D, 2]. By comparing the
coefficients of the powers of 1 of both sides, one readily obtains that
Q=q, and qf=fq, that is ¢eC[f]. Consequently, we obtained that
class of ¢(2)g(D) has a representative ge C[f]. Hence

9(D)+(f = HKAID]=c()'q(D) +(f —HK (Y[D]

which proves our assertion.
We prove now Theorem 2. Clearly every element of C(f) has the

form q(D)e(f)~! where ¢e C[f] and ¢(f) e F[f], and we map C(f) onto
A (f—2) by the correspondence

9D)e(f)™* = q(D)e()™+(f —HKALD] .

From the previous part of the proof it follows that this mapping is
onto, and one readily verifies that this is an isomorphism. We shall show
here only that it is a one-to-one correspondence ; namely, that ¢,(D)e,(f)?
=q,(D)e,(f)™* if and only if

a(D)ex(D) 7+ (f = DKND[D]=q(D)e(D) ™+ (f = HKA[D] .

Indeed, the first hold if and only if ¢,(D)c.(f)=g.(D)c.(f), and one readily
verifies by the remainder theorem, in view of the fact that ¢,(f) com-
mute with ¢,;, that the latter is egivalent to the fact that ¢;(D)c,(1)—
q:(D)e(D)=(f—A)H[4, D], and the rest is evident.
We now apply Theorem 2 to show the following.

THEOREM 3. The polynomial f(D)—2 is completely reducible [3, p. 489]
in K\[D]; if g(D) is an trreducible polynomial which is right (or left)
divisor of f[D]—2 in K,[D] then deg f=pdeg g and p=p=(C(f):F(f)).

PROOF. Let 6 be any automorphism of F, over F(2) This auto-

morphism is readily extended to K, over K(%), and to K,[D] over K(A)
[D]. Since f—Ai=hg, and f—ie K()[D], one readily verifies that f—1=
(f—2)°=h%"’. This means that f—21 is a left common multiple of all
¢°, where 6 ranges over all automorphisms of K, over K(J).

Let G(D) be the least common left multiple of all ¢° whose leading
coefficient is 1. Then, clearly G*(D) will also be a least common multiple,
whence one readily obtains that G*=G for all automorphisms ¢. This
will yield that G e K()[D]. Now f—2 is also a common left multiple,

hence (Ore [4]) f—1=G.G, G,e K,[D]. Clearly, one obtains that also
G, e K()[D], but Lemma 4 states that f—2 is irreducible. Consequently
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f—2 is the least left common multiple of all ¢°. From which one obtains
(Ore [4]) that f—21 is completely irreducible, and moreover, f—2i1=[g,,
+++, 9.], the least common multiple of all g,=¢% for some ¢, In par-
ticular, this yields that all g, have the same degree as g.

Thus (Ore [4]) ¢ deg g=deg (f—1)=n, or deg g=deg g,=n/p

To prove the second part of the theorem we need the following
lemmas.

LEMMA 8. Let Z2(f —2) be the invariant ring of f—2A in K,\[D], then
F(f— = (f—)RF\, where the tensor product is taken with respect
to F(2).

For let (c,) be a F(l)-base of F,, then clearly, this set is also
a K(2)-base of K as well as a K(A)[D]-base of K,[D]. Let g(D)e K,[D]
belong to 2 (f—1), and let g=Sg.c, where g,e K()[D]. One readily
observes that since f—21e K(A)[D], the relation g(f—2)=(f—2)h implies
that 2=3.c,, ko€ K()[D] and g, (f—A)=(f—2h, for all «. That is
9. € F#(f—2). Conversely, if g,e . (f—2) and only a finite number of
gs is different from 0, then clearly S'c.g.e€ 2 (f—2); from which one
readily deduces the lemma.

LEMMA 9. If g(D)e K,[D] is irreducible, then 2 (g) is the field of

constants F that s, if hg=gh,, then h=c+gK,[D] for some constant ¢ e
F..

Indeed, if ¢ is irreducible, then it follows by [1] Theorem 10 that
‘Z (g) is a finite dimensional division algebra over the field of constant
F,.. But F, is algebraically closed, hence the only division algebra over
F, is F, itself. Thus .2 (g)=F,.

We return now to the proof of Theorem 3.

It follows by [3, Theorem 19] and by the relation between the
invariant ring of differential polynomials and differential linear trans-
formaions ([3, 810 p.503] and [4]) that the invariant ring of a completely
reducible polynomial is a direct sum of complete matrix rings over division
algebra, and each division algebra is isomorphic to the invariant ring of
one of the prime factors of the polynomial considered. In our -case,
since .2 (f —4) is commutative (by Lemma 8 and Theorem 1), and the

invariant rings of irreducible polynomials are isomorphic with F, it
follows that 2 (f—2)=F@ --- ®F,, where each F) is a field isomorphic

with F', (compare with [3, Theorem 19]), and z is the number of prime
divisors given in the first part of Theorem 3.

On the other hand <Z(f—1) is an algebraic extension of F(1); and
from Theorem 2 and Theorem 1 it follows that (ZZ(f—2): F(2))=p.
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Hence it is well known that .22 (f—2)®F, is a direct sum of p fields
isomorphic with the algebraic closed field F,. Consequently Lemma 8
implies that .22 (f—21) has the same decomposition. Comparing the two

results, we obtain that p=p.
From Theorem 8 we can conclude the following known result.

COROLLARY 3. If f(D) is a polynomial with constant coefficients then
CLf] @s the ring F[D] of all polynomials with constant coefficients.

PRroOF. The factorization of f(D)—2 in K,[D] is readily obtained.

Indeed, let g, --- p, be the roots of f(x)—a in F, where x is a
commutative variable, then it is easily seen that the factorization of

f(D)—=2in K,[D] is f(D)— 2=1I"-.(D—p;). It follows therefore by Theorem
3 that (C(f): F(f))=n. But the field of all rational functions in D, that is
F(D), is of degree n over F(f) and clearly F(D)c C(f). Hence C(f)=
F(D). The rest is readily obtained.

We can also determine the dimension (C(f): F(f)=p by the methods
of [1, §56]. In [1] we have introduced the notion of a resultant of two
differential polynomials which was denoted by f(D) x g(D), and the notion
of the nullity of a polynomial f(D) in a field K. We recall here that
the nullity of f in K was the number of independent solutions of the
differential equation f(D)z=O in K.

From Theorem 2 and [1, Theorem 2] we now obtain the following

THEOREM 4. The dimension p=(C(f): F(f)=(Z(f—21): F(Q)) is
equal to the mullity of the polynomial (f(D)—2)x(f*(D)—21) wn K(Q)
where f*(D) is the adjoint polynomial of f(D).
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UNIFORM CONTINUITY OF CONTINUOUS FUNCTIONS
OF METRIC SPACES

MASAHIKO ATSUJI

In this paper we intend to find equivalent conditions under which
continuous functions of a metric space are always uniformly continuous.
Isiwata has attempted to prove a theorem in a recently published paper
[3] by a method that has a close relation with ours. Unfortunately he
does not accomplish his purpose, so we shall give a correct theorem
(Theorem 8) in the last part of this paper and, for this purpose, give
a condition for the existence of a uniformly continuous unbounded
function in a metric space (Theorem 2).

In this paper the space S, unless otherwise specified, is the metric
space with a distance function d(z«, y), and, for a positive number «,
the a-sphere about a subset A4 {z; d(4, x)<a} is denoted by S(4, «);
the function is the real valued continuous mapping.

DEFINITION 1. Let us consider a family of neighborhoods U, of z,
such that {x,} is a sequence of distinct points and U,,N U,=¢ (=empty)
for m+#mn. Let f,(x) be a function such that f(x,)=n and f,(x)=0 for
x¢ U,. Then a mapping constructed from the family is a mapping f(x)
defined by flx)=f(x) for = belonging to some U, and flx)=0 for the
other w.

LeEmMA. Consider a family of neighborhoods U, of x. satisfying the
following conditions :

(1) {wa}, which consists of distinct points, has no accumulation point,

(2) U.nU,=¢, m#=n (U a closure of U), and U, < S(@,, 1/n),

(8) there is @ sequence of points y, such that distances of x, and Y
converge to 0 and y, does mot belong to any U, ; then the mapping
constructed from the family is continuous and not uniformly continuous.
When {2,} is a sequence containing infinitely many distinct points and
has no accumulation point, there is o family of neighborhoods of x,
satisfying (2); f {w.} JSurther contains infinitely wmany distinct
accumulation points, then the family besides satisfies (3).

Proof. The continuity of the mapping constructed from the family
follows from LTUniZUUni for any subsequence {n;} of indices; the
mapping is not uniformly continuous by (3). Suppose {z,} consists of
distinet accumulation points and has no accumulation point, then, by
an inductive process, we have neighborhood V, of 2, such that V,
cS(x,, 1/n) and V,,N V,=¢, and have y, and a neighborhood U, of =,
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12 MASAHIKO ATSUJI
such that U, 3%y, V,, U,CV,.

DEFINITION 2. Let x be isolated in a metric space, then we write
I(x) for a supremum of positive numbers « such that S(x, «) consists
of x alone.

THEOREM 1. The following conditions on a wmetric space S are
equivalent

(1) If {x,} is a sequence of points without accumulation point,
then all but finitely many members of x, are isolated and inf I(x,) for
the isolated points is positive.

(2) If asubset A of S has no accumulation point then all but finitely
many points of A are isolated and inf I(x) for all the isolated points of
A is positive.

(38) The set A of all accumulation points in S is compact and inf
I(x,) is positive for any sequemce {w,} in S-A which has no accumulation
point (Isiwata [2], Theorem 2).

(4) ANB=¢ implies S(A, a)NS(B, a)=¢ for some a (Nagata [4],
Lemma 1).

(5) 6 A.=¢ implies Fj S(A,, a)=¢ for some «.

(6) For any function f(x), there is a positive integer n such that
every point of A={x; |fx)| =n} is isolated and inf,., I(x) is positive.

(7)) Al functions of S are uniformly continuous.

(8) All continuous mappings of S into an arbitrary uniform space
S’ are uniformly continuous.

Proof. Since the equivalence of (1) and (3) is simple, we shall show
(D)—>(8)=>(7)—(6)—(5)—>(4)—(2)—(1).
(1)—(8): If a continuous mapping f(x) of S is not uniformly continuous,
there is an ‘“‘entourage” V (in the sense of Bourbaki) of S’ such that
d(z,, ¥,)<1/n and (A(x,), fy,) €V for any positive integer n» and for
some x, and ¥,. {x,} contains infinitely many distinct points. If {x,}
has an accumulation point z, there are subsequences {xni} and {yni} of
{x,} and {y,} converging to @, and, since f{x) is continuous, (f(x),
S, ) € W and (f(z), Ay, )) € W for W satisfying W-WcV (we may
assume W-'=W) and for all sufficiently large ¢. Hence we have (A=, ),
f(yni )) €V, which is excluded. Consequently {x,} hes no accmulation
point and inf I(x,)=7>0 for all sufficiently large %, which contradicts
the first inequality of f for n satisfying »>1/n.
(8)—(7) is obvious.
(7)—(6): 1If, for some function flz) and every n, there is an accumulation
point x, such that |f(x,)|=n, {x,}] contains infinitely many distinct
elements and has no accumulation point, then, by the Lemma, we have
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a function which is not uniformly continuous. Suppose that every
point of A={x; |A(w)|=n} is isolated and inf I(x)=0. Then there is a
sequence {x,} in A such that inf [,=0, [,=Iw,). {x,} has no
accumulation point, and we may assume I,<1/n. If distances of distinct
points of {z,} are greater than a positive number e, then, for all n
satisfying e>4I,, =, and y. (#®, €S(x, 2I,)) satisfy the conditions
of the Lemma. In the other case, there are arbitrarily large m and n
satisfying d(#,, x.)<e for any positive number ¢, and we have, by an
inductive process, a subsequence {y,} of {&,} satisfying d(yu_1, ¥..)<1/4.
Then y,;,_, and y,, satisfy the conditions of the Lemma.

(6)—>(5): Let N S(A,, 1/m)+¢ for every m in spite of N A,=¢. We

have a point &, contained in N S(4,, 1) and a point y, distinet from

x, satisfying d(z,, ¥)<1l. Suppose B,={a,---, «;} consists of distinet
points such that z;¢ N S(4,, 1/j), «; and y, are distinct and d(x;, y;)

<1/j, j=1,---, i. Since, for any point @, N S(4,, 1/m) does not contain
z for a sufficiently large m, N S(4,, 1/(¢+1)) contains a point «,,, being

not contained in B,;, and some A, contains y,., distinet from z,., satisfy-
ing d(2;1, ¥:+1)<1/(¢+1). Thus we have a sequence {z,} of distinct
points and {y.} such that =, € N S(4,, 1/m), «, and y, are distinct,

and d(x., ¥.)<1l/n. {x,} has no accumulation point because of N A,=o.
The function obtained from the Lemma does not satisfy the condition
(6) whether all but finitely many members of a, are isolated or not.
(5)—(4) is obvious.

(4)-(2): Suppose A has infinitely many accumulation points z,, n=
1, 2, ... . Since B={x,} has no accumulation point, there is a sequence
C={y,} having no accumulation point such that d(x,, ¥.)<1ljn, BNC=¢.
BNC=Bn C=¢, and S(B, a)NS(C, a)=¢ for no «. If every point of
A is isolated and inf I(x)=0, we have a sequence {w,} such that lim
I(z.)=0, and have a sequence {y,} with the same properties as the
above.

(2)—(1) is obvious.

Recently Isiwata has stated a theorem ([3], Theorem 4) which is
related to our Theorem 1. However the first step in his proof is wrong.
We shall give a correct form of the theorem in Theorem 3. Let us
first give a counterexample for the statement ‘‘In a connected metric
space which is not totally bounded, there exists a sequence {x,} and a
uniformly continuous function f such that fla.)=»n".

ExamMpPLE. Denoting the points of the plane by polar-coordinate,
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we congider the following subsets of the plane:
A,=1{(r, 0); 0=r<l, 0=n/m},

S=UA4, .

m=

We define the distance of the points of S by
a((r, 0), (', ¢))=|r—r"| as 0=60 or rr'=0,
=p+7 as 0+0',

then S is obviously a connected metric space which is not totally
bounded. When fiz), z€ S, is a uniformly continuous function of S,
there is a positive integer n such that d(z, y) <1/n implies |f(z)—AY)|
<1. If z is contained in A4,, there are points y,=0=pole, ¥, *-+, ¥,
=z, r<n-+1, of A, such that d(y,_,, y;)<1l/n, t=1, ---, 7.

|A(0)— @) = 1A0) Ay + « -+ + [fAy)—S@)| =n+1;
namely f(x) is bounded.

DErINITION 8. Let ¢ be a positive number, then the finite sequence
of points =, «;, ---, z, satisfying d(z,_,, x,)<e, i=1, ---, m, is said
to be an e-chain with length m. If, for any positive number e, there
are finitely many points p, ---, p;, and a positive integer m such that
any point of the space can be bound with some p;, 1=<j7=4, by an
e-chain with length m, then the space is said to be finstely chainable.

THEOREM 2. A metric space S admits o uniformly continuous
unbounded function if and only if S is not finitely chainable.

Proof. Verification of ‘‘only if”> part is analogous to that stated
in the above example, hence is passed over. Let S be not finitely
chainable, then there is a positive number ¢ such that, for any finitely
many points and a positive integer n, there is a point which cannot be
bound with any one of points selected above by an e-chain with length
n. We denote by A7 the set of all points which can be bound with a
fixed z, by an e-chain with length =.

(1) When Ar£A2+ for every n, we put

fl@)=(n—"Le+d(=, Aj™)
for = belonging to A7 and not to A%, and flx)=0 for «¢ A,= U A} (f(x)

=d(x,, @) for xze A}). Since S(4,, ¢)=A,, f(z) is uniformly continuous
on Sif it is so on A4, Let Ars x ¢ Ay~' and d(w, y)<é'<e, then
At oyé A7~%. (i) When y is in 477, then
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Sy)=(n—2)e+d(y, A5™?)

and d(z, A77")<e', d(y, Ai™*)<e, hence fly)<flx). If d(y, Ay *H)<e—¢,
then d(y, y')<e—eé' for some y’ of A;~* and d(z, ¥)<d(x, v)+d(y, ¥)<e,
so that « is in A§~', which is excluded. Therefore d(y, A?-*)=e—e and

@) =)l =fle)—Ay)=e+d(x, A7")—d(y, A7)
<e+e —(e—e)=2¢ .

(ii) When y is in A} and not in A§~!, then
Sy)=(n—De+d(y, A7),

and we have

@)=l = ld@, Ay)—dly, A7) =d(w, y)<e

(cf. the proof of Prop. 3 of §2, [1]). (iii) The remaining case for y is
similar to (i). Consequently f(x) is uniformly continuous on A,.

(2) When A}=A3* for some n, then A=A’ for every m=n, and,
in the similar way to (1), 4,= U A? is obtained from a point of S—A,.
If we can make an unbounded function which is uniformly continuous
on A;, our proof will be complete.

(3) When we cannot, for every m(0<m=n), construct a desired
function on A, obtained in the same way as (2), 4, ---, 4, cannot
cover the space, because the space is not finitely chainable; namely
we have a sequence of infinitely many subsets 4, A4,, --- when our
proof is not complete in the similar way to (2). Then we put flz)=n
for @ of A, and f(x)=0 for & which is not in any A,. Then, since
S(A.., e)NA4,=¢ for any m=n and S(UA., ¢)= U4, flz) is uniformly
continuous.

THEOREM 3. If S is a connected metric space which is not finitely
chainable, then the set of all uniformly continuous functions of S does
not form a ring.

Proof. The following verification is essentially due to Isiwata [3].
There is, by Theorem 2, a uniformly continuous unbounded function
f(z) of the space, and we have a sequence A={z,; n=1, 2, .--} such
that f(@n)=0Gn, Au—a,=1, 8,=1; A has no accumulation point. For
some positive number «, d(x, y)<« imlies |Az)—f(y)| <1/3, and so S(x,,
a)NS(x,, a)=¢ for m#n. We put

he)=1—d(4, z)la and G=US@s «)

and
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f () for xe G,

f/(x): \

| 0 for xa¢ G .

R(x) is uniformly continuous on the space, because d(4, x) is so (cf.
Prop. 8 of §2, [1]). Mx)>0 and A(y)<0 for  of G and y of S—G
respectively, so we have

| 7o) — h()| =P(@) — l(y) = I@) = |.f" () =S ()] -

Hence f'(x) is uniformly continuous on the space. ¢g(z)=S(z)f'(x) is not
uniformly continuous. In fact, if it is uniformly continuous, d(x, y)<pB
implies

(%) lg(x)—g(y)| <1 and |Ax)—Aw) <1

for some 8 (Z«a). We select a positive integer n such that a, is greater
than 1-+4«/f, and take a point y such that 3/2<d(x., y)<<B (it is possible
to take such a point because of the connectedness of the space). Then,
by (*), we have |a,—Ay)| <1, fly)>a,—1=0, and

[9(@n) — 9| = |an— (1 —d(A, p)/a)fiy)l =|a—fy)+d(xe, YY)l
= |d(@n, W) al—la—fY)] >d@n, YY) a—1
> pB(a,—1)2a—1>p(1+4a/f—1)2a—1=1,

which contradicts (x).
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A NUMERICAL CONDITION FOR MODULARITY
OF A LATTICE

S. P. AvaNN

1. Introduction. In this note a simple numerical condition () is
presented which is necessary for modularity of a finite lattice L. Though
not sufficient (6) appears to be a condition imposing a strong tendency
toward modularity.

NortaTioN. Covering, proper inclusion, and inclusion will be denoted
by >, D, 2 respectively. N[S] will denote the order of the set S.
The unit and zero elements will be denoted by # and z respectively.

DEFINITION 1. A finite lattice L is upper semi-modular [1: p. 100]
if and only if

&) a and b>anb imply a Ub>a and b.
L is lower semi-modular if and only if
(58] aUb>a and b imply ¢ and b>anb.

DEFINITION 2. In a finite lattice let C(a)={re Ljz<xUa>a} and
D(a)={ze Lz>xzNa<a}.

2. Tests for modularity An immediate consequence of Definitions
1 and 2 is the following theorem.

THEOREM 1. In a finite lattice L condition (£') is equivalent to D(a)
SC(a) for all ae L and both imply N[D(@)]<NI[C(@)]. Dually, (£”) is
equivalent to D(a)=2C(a) for all ae L and both imply N[D(a)]=N[C(a)].
Moreover, modularity, (§) and (§”), is equivalent to D(a)=C(a) for all
a €L and both imply the condition (0):

@ N[D(@)]=N[C(a)] for all ae L.

The contrapositive of the last statement of Theorem 1 serves as a
useful test for non-modularity :

THEOREM 2. If there exists a e L for which N[D(a)]=N[U(a)], then
L is non-modulor.

When either (¢') or (§”) is known to hold in L, the verification of
the condition (0) is a test often easiest to apply. It merely requires
counting coverings.

Receiv.eerecember 5, 1957.
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THEOREM 3. In a finite lattice L (§') and () together imply modu-
larity and dually (§”) and (0) together likewise imply modularity.

Proof. From Theorem 1 condition (§') implies D(a)=C(a), and
along with () we obtain D(a)=C(a) for all ac L. Hence L is modular.

Condition (0) appears to be a very strong condition toward modul-
arity. It would be useful to know a much weaker but easily applicable
condition than (¢) or (§”) to serve along with (0) as a set of necessary
and suffiicient conditions for modularity.

3. Near-modular lattices.

DEFINITION 3. A finite lattice L is near-modular, henceforth ab-

breviated NM, if and only if (0) is valid and the Jordan-Dedekind chain
condition is satisfied.

REMARK. It is conceivable that the JD chain condition is implied
by (), though no proof was readily found. The imposition of the JD
condition seems desirable, since it is satisfied in all finite semi-modular
and modular lattices. Hence each element of a NM lattice L will pos-
sess a uniquely determined rank.

THEOREM 4. In a NM lattice L we have D(x)=C(x) whenever x is a
point (atom) or dual point. Condition (£) is satisfied by all pairs of points
and (§') by all pairs of dual points.

Proof. Let p be an arbitrary point of L and ¢ any element in
C(p). By consideration of rank, ¢ is also a point which is distinct from
p. Hence ¢>¢gNp=z, the zero element of L, and ¢e D(p). Thus C(p)
S D(p). Equality of orders yields C(p)=D(p). Any pair of points p
and ¢ cover their meet z so that ge D(p). Hence ge C(p) so that (&)
is valid for p and q. The remainder of Theorem 4 follows by duality.

COROLLARY. All NM lattices of rank less than 4 are modular.

THEOREM 5. There exist NM lattices of rank 4 that are non-
modular.

The smaller example L, of the two examples found was constructed
from the finite projective geometry PG(2, 2) as follows. If the points
of PG(2, 2) are designated by 1, 2, 3, 4, 5,6, 7, the lines, considered as
sets of points, can be taken as 356, 467, 571, 612, 723, 134, 245, and u=
1234567. For L, take u=1234567, and the 7 dual points as 1247, 2351,
3462, 4573, 5614, 6725, 7136, namely the complementary sets to the dual
points of PG(2, 2). The remaining elements of L, are generated by
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taking all point set meets of its dual points. The lines of L, are the
21:(;) pairs of points 12, 18, ..., 67 ; the points are 1, 2, 3, 4, 5,6, 7;

and z is the null set.

The automorphism group of L, is easily seen from the manner of
its construction to be the same as that for PG(2, 2), of order 168. L,
possesses dual automorphisms, one of which carries the planes in the
order indicated above into the points 7, 6,5, 4, 8, 2, 1 respectively.
Moreover, L, is a complemented point (atomic) lattice. It possesses no
non-trivial homomorphic images, since all prime quotients are projective.

When the above procedure of construction of L, from PG(2, 2) was
applied to PG(2, 3), PG(2, 2%, PG(3, 2) and other PG(k, p*), the lattices
obtained were all found to violate (6). Some of them violated also the
JD chain condition.

The structure of L, suggested a method of obtaining additional ex-
amples of non-modular NM lattices as follows. Let L, consist of z; n
points p,, p,, -+, », Where n:1+<t2>;<g> lines consisting of all pairs of
points: ©, Py, =+, Doy Py 1 Planes of which the first is the set of ¢
points Dy Py Di, =t Dy, where i,.:1+<£), (r=1,2,---,%¢) and the re-
maining planes are obtained from the first by repeated applications of
the cyclic permutation (123 --- n) to the subsecripts; and u=p, p, *- - D,.
This procedure yields for ¢=1, 2,3 the Boolean algebras B', B* B‘ re-
spectively. For t=4, the lattice L, described above is obtained. For
t=5 a second example, L;, of a non-modular NM lattice of length 4 is
obtained. For t=6 one fails to obtain a lattice. It can readily be shown
by consideration of certain congruences that for ¢=6 there always exist
at least two pairs of planes, as described in the construction, which
intersect in three or more points and other pairs of planes that inter-
sect in less than two points. When two planes have three points p,

g, r in common, the lines pq, pr, and ¢r have each of the planes as
upper bound, but fail to have a least upper bound.

4. Extensions, In this section, methods of construction of other
NM lattices from given ones are presented.

THEOREM 6. The direct product of NM lattices is also an NM lattice.

Proof. Let L=L,xL,x --- xL, where the components are NM
lattices. Represent each ae L in the usual way as the n-tuple (a,, ---,
a,) with ¢ e L, (i=1, ---,n), so that aUb and aNbd are obtained by
taking joins and meets respectively component-wise. Let C(a) and D(a)
be the functions of Definition 2. Define H(a) as the set of elements
covering aeL and K(a) as the set of elements covered by a. Let
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C(a;), D(a,), H(e;), K(a;) be the corresponding sets with respect to a,e L.
Now a>b in L if and only if a,>b, for some j and a,=b, for i=j. It
follows readily that

M NIC@I=E NIC(@)]+ 3, NIH(@)]- NIK(@)]

(2)  N[D(@)]= li NID(@)]+ 2, N[K(a)]- N[ H(a)]

The last summations of the two equations are equal. By hypothesis
(0): N[C(a)]=N[D(«;))] for =1, --., n. Hence (0) is valid in L.

NoOTATION. L=a/b indicates a lattice with unit element a and zero
element b. The set sum and product of lattices L, and L,, considered
only as sets of elements, will be denoted by L,+L, and L,-L, re-
spectively.

LeMmA 1. If Li=a,/z possesses a dual ideal a,/b, isomorphic to an
ideal a,/b, of & second lattice L,=ulb,, then by identifying as x each
pawr of elements x, € a,/b, and x, € a,/b, that correspond wnder the tsomor-
phism, o lattice L=ulz can be constructed having L, as an ideal and L,
as a dual ideal such that L=L,+L, and ajb=L,=L,-L,.

The elements of I are taken as the identified elements x € a/b and
the remaining elements of L, and L,. Join U and meet N in L are
defined in terms of U, N;in L, and U, N, in L, according to the
cases :

rus=ru;s
rNs=rN,;s

rUs=sUr=(ruUb)U.s
rNs=sNr=rnan.s)

} r,sel;, (1=1,2)

} rel,sel,.

The verification of the lattice postulate is routine and is omitted. This
method of extension was first employed systematically by M. Hall and
R. P. Dilworth [2; Lemma 4.1].

In Lemmas 2, 3, 4 and Theorem 7 following, let L=u/z, ideal L,=
ajz, dual ideal L,=wu[b, and quotient sublattice L,=a[b be related as in
Lemma 1: L=L+L, and L,=L,-L,., We note that L—L,, L,, L—L, is
a partitioning of L into disjoint subsets.

LEMMA 2. If s>r n L, then s and r are both in L, or both in L.,.
Progf. Obviously impossible is the case s¢ L,, € L,. Assume that

s¢ L, ré& L,; thatis, bSsZa,a2r2b. Then s=sUr=sJ®Ur)DbUr, oth-
erwise s€bUrSa, a contradiction. Furthermore b r D, otherwise b&r,
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a contradiction. Thus the covering s> is violated and the only pos-
sible cases are as stated.

LEMMA 3. If Dy(x), C(z) are the functions of Definition 2 relative
to L, (t=0,1, 2), then

(3) Dy(a)=D\(2) Dy(x)
(3) Cx)=C\()- Cy(x)
(4) D(x)=D(x)+Dy()
(4) C@)=Cy(x)+Cyx)

Proof. (3) holds since re Dy(x): r>rNa<a with =, rNz,  all in
L,=L,-L, if and only if »r>rNae<x with »,rNz,« all in both L, and
L,; that is, r e D,(z), D,(x), D(x)-Dy(z). Next, re D,(x): r>rNz<z with
r,rNa,z all in L, implies 7 e D(z): »>rNaz<a with »,rNz,z all in L.
Thus Dy(x)SD(x). Similarly Dy(x)S D(x) so that D,(x)+ D, (x)=SD(xz). For
demonstration of the less trivial reverse inclusion let »e D(x): r>rNx
<z in L. If rNa¢ L, both » and « are in L,, along with N, by
Lemma 2. For this case re D,(x). If rNze L, then certainly also are
both = and x. Whence re D,(x). We thus obtain D(z)= Dy(x)+Dy(x)
and therefore (4). Dually (3') and (4’) are valid.

LEMMA 4. The following statements of orders are valid :

(5)  NID@)]+N[Dy(x)]=N[D(2)]+N[D,()]
(5)  NIC@)]+N[Cyx)]=N[Ci(2)]+N[Cya)]

This follows immediately from Lemma 3.

THEOREM 7. If any three of L, L., L,, L,, related as in Lemmas
1-4, are near-modular, then all are near-modular.

Proof. Equality of three pairs of corresponding members of (5)
and (5') implies equality of the remaining pair.

REMARKS. It is no doubt possible to construct non-modular NM
lattices in other ways; for example, by piecing together several NM
lattices to become the ideals of L and several others to become the
dual ideals of L. Such a construction would require perhaps a more
precise knowledge of the basic structure of a NM Ilattice.

A sublattice, and even a quotient sublattice, of a NM lattice is not
necessarily near-modular. It is an open question whether or not the
homomorphic image of a NM lattice is near-modular.
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A MEAN VALUE THEOREM FOR QUADRATIC FIELDS
RAYMOND G. AYOUB

1. Introduction. Let K be an algebraic extension of the rationals
of degree k, F(n) denote the number of ideals whose norm is the
rational integer n, H(x)=>.F(n). Let {(s, K) denote the Dedekind zeta

n=x

function for the field K, that is,

=5 1 _Fm)
e K= N 2 e

and « the residue of ¢(s, K) at its simple pole at s=1.
It has long been known [8] that

H(x)=ax+ 44(x)
where
A (x) = O(x'~V%)
and Landau [3] proved that
(@) = O(z' =¥ **D)

The precise nature of the error term 4,(x) seems rather intractable
and seems to be intimately related to the behavior of the function
¢(s, K) in the critical strip. Of considerable interest is the particular
case when K is the Gaussian field E(2), for in that case 4.(z) is the
error term in the classical problem of the number of lattice points ina
circle.

Using some results of class field theory, Suetuna [4] has obtained
an improvement of Landau’s result in the case when the field is normal
and has abelian Galois group and % = 4. For, when the field is abelian;
the theorems of Weber-Takagi tell us that ¢(s, K) is the product of &
Dirichlet L-functions belonging to primitive characters. Applying his
approximate functional equation for the Dirichlet L-functions, and using
refined estimates for these in the critical strip, Suetuna then obtains
the desired result.

In the light of more recent techniques for dealing with the Riemann
zeta function, further improvements are possible. The devices for
handing the zeta function are used for the L-functions and the class

Received; February 12, 1957.
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field theorems again applied. We omit details.

It is our object here to study the problem of a mean value for
Ax). We are able to obtain a precise result but only for quadratic
flelds. Some known results follow as corollaries when the quadratic
field is specified : for example when the field is R(3).

We use as our tools a result of Suetuna [4] and a technique devised
by Titechmarsh [5], [6] for the corresponding results for the closely
allied problem of 3 d.(n) where d.(n) is the number of solutions of

nsx

n=nm,-+n,. We follow closely Titchmarsh’s method.

2. Notations and statement of Main theorem. Let k=2, 4,(x)=4(x),
s=o+it. Following Hardy [6], we define the mean value of A(x) as
the least number  such that

_I_Szdz(t)dt:O(x””)
2 Jo

It is our object to prove the following.

MAIN THEOREM. ﬂ:% .

We first relate f to the convergence of an integral.

THEOREM 2.1 Let v be the lower bound of positive numbers o for
which

(1) I:S‘” (e +it, K)F 5,
—c0 lo 2t
converges. Then =7 and if >, then

(2) 27rrdz(m)x"2"‘1dwzl

Proof. Using the classical formula for the sum of the coefficients
of a Dirichlet series, we have,

C+ioo
Ha)= L[ By >1)
2wy Je-to g

c+iT

= —rlflimg C—(gl-@wsds
27y TowJe-ir 8

We move the line of integration to o=48, where 0<d8<1. Using
Cauchy’s theorem and taking account of the residue at s=1, we get,
if ¢ is chosen appropriately close to 1,
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A(x)Z?l.—lim S“”Q(Sa K) s

Ty T>ee JS§—IiT 8

The bound on ¢ follows from the implied ecalculation but we do not
need it since we now prove the validity of (8) for the range y<o<1.
To do this, we note that by some general theorems of analysis [2],

and taking account of (1), s, K) tends uniformly to 0 as t— 4 . With
S

this established, we integrate around the rectangle defined by & —:T,
o0—1iT, 0+iT, &' +¢T with y<d0’<6<1, let T—, and deduce the desired
result.

With Titchmarsh, we now use the theory of Mellin transforms.
The Parseval theorem for the Mellin integral gives [7],

B AR (e

= rdz(w)x‘%‘ldx
0
as long as y<<d<1. This implies that 3<7r: by (4)

[[#@a-de<c@)=c,

)

that is,

Sxdz(w)dm < Cy®+t

2

Replacing = by z/2, z/4, x/8,--- and adding, we deduce
Sxdz(x)dx<03x“'5“
1

whence #<¢, that is, #<o.

To prove the reverse inequality, we have by Plancherel’s form of
the inverse Mellin transform [7],

(5) S
S 0

where the right hand integral exists in the mean square sense for y <o<1.
Actually the right hand side is uniformly convergent for the range
B'<o<f’" where < <fF"<1. For, using the Schwartz inequality,
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[a@le-do=({"s@)s ) ([ o) "= 0@y (o) = 0fap-o+)
2 210 216

putting =2, 4, 8, --- and adding, we get
Sjld(x)lw“"ldx< =
By a similar argument,
S:AZ(x)x‘”‘l
converges for f<d<1. Now
S:A(x)x‘s'ldx

is an analytic function for f<s<1, and hence

- Yeo—it, KO 5,
271&*@ l(?-l—?;tlz d<

for f<06<1, whence y<¢ thatis, y<p and the theorem is proved.

So far we have not made use of the condition £=2. Indeed
Titchmarsh’s method applies in quite a general setting. We require the
condition however in the proof of the main theorem.

LemMA (Suetuna). If 0'>;—, then
.1 2 F” (%)
lim ZTE (¢G5, Kypdt=3,"")

Proof of the Main Theorem. We first prove that ﬁ> =-. By the

p[:.

above lemma, we have for ~%<o‘<1,

S:lC(s, K)<CT

1

Therefore for 0<o< 5 T>1 and using Hecke’s functional equation for

¢(s, K), (see for example. Landau [3]), we get

" KGokit, KOF g (7 Il tit, )P i 2
S‘“ lo+at]? dt>ST lo 4 t[z de> S IC( +1t, K)l dt
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>CzT‘“’SZIC(1—o—it, K)Pdt>C,T -

The right hand side tends to infinity if o< i, whence A= i

Again by the above lemma, for ; <o<1

SIT[C(oquit, K)dt=0(T)

Using the functional equation, we get for 0<o< ;

SITIC(U—H't, K)]”dt:O(T—’“")S:VIC(l—<r-—it, Kt

:O(TS—M')
Hence
ST,‘Q(F‘,ﬂ%{{)JZdt:O(T—n) 7>0
r lo+it)?

provided that o> i 4-¢. It then follows by a simple argument that

dt—0

S”K(Lﬂé_@ﬁ
7 |o+et]

for a>i~+e, and therefore that y< i that is, that < i

REFERENCES

1. G. H. Hardy, The average order of the arithmetical functions P(x) and 4(x), Proc.
London Math. Soc. Series 2, 15 (1916), 192-213.
2. -————, A. Ingham, and G. Polya, Theorem concerning mean values of analytic
Sfunctions, Proc. Royal Soc A, 113 (1926) 542-569.
3. Landau, Einfuhrung in die elementare und analyische Theorie der algebrischen
Zahlen und der Ideale, (Gottingen 1917).
Z. Suetuna, On the product of L-functiom, Japanese J. Math. 2, (1925), 1937
E. C. Titchmarsh, On divisor problems, Quarterly J. Math. (Oxford) 9. (1938) 216-220.

——, The theory of the Riemann zeta function, (Oxford, 1951).

, Imtroduction to the thoery of Fouwrier integrals, (Oxford, 1931).

H. Weber, Lehrbuch der Algebra 2, (Braunschweig, 1908).

00 3 O Ul

PENNSYLVANIA STATE UNIVERSITY






SUBALGEBRAS OF FUNCTIONS ON A
RIEMANN SURFACE

ERRETT BISHOP

1. Introduction and preliminaries. A set of problems, which has
attracted much attention in recent years, treats the question of what
funetions can be approximated in some given topology by a given
function algebra on a given set of points. The classical Weierstrass
approximation theorem, and its generalization, the Stone-Weierstrass
approximation theorem, are well-known results of this type which have
proved very useful in analysis. Very important work has more recently
been done by Lavrentiev, Keldys, and Mergelyan, and their results
generalize the classical theorem of Runge (see Saks and Zygmund [4]
for Runge’s theorem).

The theorem of Mergelyan states that every continuous function on
a compact set C of the complex plane, which is analytic at interior
points, can be uniformly approximated on C by polynomials, if C does
not separate the plane, i.e., if the complement of C is connected. We
prove a theorem which generalizes this result in two respects: the
plane is replaced by an arbitrary separable Riemann surface (without
boundary, but not necessarily connected), and the algebra of all
polynomials is replaced by what we call a total subalgebra of the
algebra R of all functions which are everywhere analytic on the Riemann
surface. The subalgebra R’ is called total if it contains the constant
funections and if the set {p|lpe C and there exists g+#p in C, with f(p)
=f(q) for all fin R’} U{plpeC and no function in R is one-to-one in
any neighborhood of p}, called the singular set of C relative to R/, is
finite for all compact sets C. (It can be shown that when R is not
total, but contains the constant functions, one can identify points on
the surface to obtain a new surface on which R’ is total.)

Our methods are highly measure-theoretic, and we make constant
use of the fact that any bounded linear funectional 4 on the space 2(C)
of all continuous complex-valued functions on a compact set C of our
surface can be represented as a Borel measure # on C. This means

that S fdp=A(f) for all £ in &C). We shall somewhat loosely identify
A and g, so that by the value of # on f we shall mean S fdp, and by

saying that g is orthogonal to f we shall mean S Fdp=0. For a compact

Received October 25, 1957. The author wishes to express his thanks to the Office of
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set C, @®(C) will denote the set of all continuous functions on C which
are analytic at interior points. We are actually interested in bounded
linear functionals 4 on @(C), but by means of the Hahn-Banach theorem
every such 4 can be extended to 2(C), and therefore can be represented
by a measure ¢ on C. If R’ is a subalgebra of R, then R'(C) will
denote the set of all continuous functions on C which are uniform limits
on C of functions in R'. Obviously R'(C)c@(C), and the problem,
roughly speaking, is to determine by how much R'(C) differs from &(C).
We do this via an investigation of those measures gz on C which are
orthogonal to R'(C), that is, we see how much these measures miss
being orthogonal to @(C).

We proceed to some definitions, which are necessary to the statement
of the theorem to be proved. If C is a compact set, and if R is a
subalgebra of R, then .99(C, R') will denote the set {p| for each f in
R, there exists ¢ in C with |fA(¢)|=|f(p)|}. The condition (C, R)=C
is the natural extension of Mergelyan’s condition-that C not separate
the plane-to the more general situation considered here. The bounded
linear functional 4 on @(C) will be called an R'-local differential
operator on @(C), of order not exceeding N, if (1) 4 is orthogonal to
R'(C), and (2) there exists a finite subset S of the singular set of C
with respect to R’, such that f(p)=f(¢q) for all f in R’ and all p and ¢
in S, and such that 4(g)=0 whenever g is a function in @(C) which
vanishes at all points of S and vanishes to order at least N at all points
of S which are interior to C. The bounded linear functional 4 on @(C)
will be called a R’-homogeneous differential operator on @(C), of order
not exceeding N, if it is a finite sum of R’-local differential operators
on @(C), of orders not exceeding N. The result to be proved reads :
If R is a total subalgebra of R, if C is a compact set with &(C, R')
=C, and if 4 is a bounded linear functional on @(C) which is orthogonal
to R'(C), then 4 is a R-homogeneous differential operator on @(C), of
order not exceeding N, where N depends only on KB’ and C. Since it
will be easy to show that the only R-homogeneous differential operator
on @(C) is 0, this will have the corollary that R(C)=¢(C) whenever
F(C, R)=C. In general, we shall only be able to conclude that the
vector space R'(C) (over the complex field) is of finite codimension in
the vector space @(C). It will be possible to describe R'(C) exactly in
case C has no interior points.

Of the six preparatory lemmas to be proved, Lemmas 4 and 6 are
of some interest in themselves. Lemma 6, in particular, seems to be a
very useful tool in the theory of approximation by polynomials, and the
author will give other applications of this lemma elsewhere.

We develop more notation for later use. If C is compact, and if
the function f in R generates the subalgebra R’, then S4(C, f) will
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mean .&“(C, R’), so that p will be in the complement &(C, f) of
F(C, f) if and only if f(p) is in the unbounded component of the
complement of f(C). If C, has compact closure and if C, is compact,
we say that f in R is schlicht on C; relative to C, if there exists a
neighborhood U of the closure of C, such that no point in U is identified
with any other point of UUC, by f. If C, is void, we simply say that
f is schlicht on C,, and if also C, is a point {¢}, we say that f is
schlicht at ¢ (or that f is one-to-one in some neighborhood of ¢). Since
a separable Riemann surface is metrizable, we assume the existence of
a metric p on the surface. If S, and S, are compact and S,DS,, we
define

o(S,, S:)=sup{inf{p(p, ¢)lge S.}|lpe S} .

An arc is a homeomorphic image of [0, 1], and an open arc is an arc
minus its endpoints. A closed disc is a homeomorphic image of {z||z| <1},
and a disc is a closed disc minus its boundary.

2. Preparatory lemmas.

LEMMA 1. Let F be a compact set of the complex plane with
connected complement, and let 0 be in the boundary of F. Let N be a
positive integer. Then the function z can be uniformly approximated on
F' by polynomials which vanish at 0 to order at least N.

Proof. 1f there is a sequence {%,} of polynomials whose derivatives
vanish at 0 and which converge uniformly to z on F', then the sequence
{h,—h,(0)} of polynomials vanishes at 0 to order at least 2 and converges
uniformly to z on F. Now assume that 2z cannot be uniformly
approximated on F' by polynomials which vanish at 0 to order at least
2. Then 2z cannot be uniformly approximated on F by polynomials
whose derivatives vanish at 0. If we let 2(F) be the Banach space of
all continuous complex-valued functions on F, this means that z is not
in the subspace of Q(F) generated by the polynomials whose derivatives
vanish at 0. Thus there will exist a bounded linear functional 4 on
2(F) which will vanish on all polynomials whose derivatives vanish at
0, but with 4(z)=a+0. It follows that A(h)=ah’'(0) for all polynomials
h. We may assume that the bound of 4 is 1 and that ¢>0. Let U
be a simply connected open set containing F', the distance 7 of whose
boundary to 0 is less than a/16. Let ¢ be the conformal map of |¢|<1
onto U, with ¢(0)=0 and ¢'(0)>0. Since the boundary of U contains
points at a distance » from 0, it is known (see [1], page 75) that
¢'(0)<4y. If we let ¥ be the map of U onto |z|<1 which is inverse
to ¢, then ¥'(0)=[¢'(0)]*'=(47n)"t. If we define f on U to be the
analytic function f=(2—¥%)"', we have |f(2)|]<1 for z in F, so that
411, Also
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o= YO _1

_ Y _ 1 1 1
2—7O) 4

T0) = =
I(Nh1®>a

Since f is analytic on U, there will exist a sequence {g,} of polynomials
converging uniformly to f on some neighborhood of F. Therefore g,(0)
will converge to f/(0). Thus,

1<alf"(0)|=a lim,|g,(0)|=lim,|4(g,)|=|4(F) =1 .

This contradiction shows that z is the subspace 7, of Q(F) generated
by polynomials ~ which vanish at 0 to order at least 2. Thus #Z#==z-z
is in the subspace T; of Q(F) generated by polynomials z:%4 which
vanish at 0 to order at least 3. Thus all polynomials which vanish to
order at least 2 at 0 are in 7T, so that T,=7,. Thus zeT,. By a
continuation of this process, it can be shown that z is in the subspace
Ty consisting of the closure in 2(F) of all polynomials which vanish at
0 to order at least N. This completes the proof.

LEMMA 2. Let R’ be a total subalgebra of R, let C be a compact
set with £ (C, R)=C, and let S be the singular set of C relative to R’
(so that S is finite). Then there exists a closed C-neighborhood C' of S
and a positive integer N, such that any function in @(C’) which vanishes
at all points of S which are interior to C, to order at least N, and which
vanishes at all points of S, s in R'(C'), and such that C' is the union
of disjoint closed sets {C,}, each containing exactly one point p of S.

Proof. Let p and ¢ be any two distinct points of S. Let f be any
non-zero function in R’ which vanishes on S but which does not vanish
identically in a neighborhood of any point of S. Such a function can
be found because R’ is total. Let n be the exact order to which f
vanishes at p. Then it is easy to find a closed disec U containing p in
its interior, and an analytic function ¢ which is defined and one-to-one
on some neighborhood of U, which maps U onto {z|[z|<c¢} for some
¢>0, which vanishes at p, and for which [¢(r)]*=f(r) for all + in U.
Since f vanishes on S, we can also find a closed neighborhood H of S
containing U such that f(H)=f(U). Since R’ is total, we can in addition
take U and H to be so small that S will be the singular set of H
relative to R’. Let ¢, be any point in the component of the interior
of H which contains ¢, except ¢ itself, with f(g,)#0, and let p, be any
point of U with f(p)=f(¢,). Let ¢ be a primitive nth root of unity, and
let 7 be the map of U onto itself defined by ¢(zr)=C¢(r). Obviously
S@)=f(zr) for all » in U. Since S alone is the singular set of H relative
to R’, there exists g in R’ taking distinct values at the points ¢, s,
and the first -1 images, p,=7(p,), .=7(P), ***  Pu-1=7(Pn-s) of p, under
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7. Note that f(p,)=f(p) for 1=j<n—1.
Now ¢*, for 0<k=<mn, can be expanded on U as a uniformly
convergent power series in powers of ¢, which implies that ¢* can be

n—1
written on U in the form ¢*=>) fi..¢', where fi; is the sum on U of a
i=0

power series in powers of f=¢" which converges uniformly on U. The
series defining f;; will actually converge uniformly on H, because f(H)
=f(U). Thus we may extend the definition of f;; to H, where it will
be a function in R'(H) which identifies all pairs of points in H that are
identified by f. Therefore fi:(p,)=fu(py) for 0=<j=<n—1, 0<k<m, and
0<i<n-—1, and consequently

o)) = S b )]
This implies that the product of the matrices
(fm(pu))a 0=k<n—1, 0=i=<n—1,

and ([¢p(p))]), 0Zi<n—1, 0<j<n—1, is the non-singular Vandermonde
matrix ([9(p)]F), 0=k=<n—1, 0=j<n—1. Therefore, the function M in
R'(H) defined by M=det(f;), 0<k=<n—1, 0=<:<n—1, does not vanish
at p,. Now for each 7 in U the linear system

n-l
~[g(r)]’“xu+%Ofm(r)wz+1=0 , 0<k<n,

has the non-trivial solution w,=1, =1, &,=¢(), -+, x,=[d(r)]"
Thus the function 4 in R/(H) defined by

-1 f:)() b j;) n-1
—g Jio Jion

___gn fnﬂ M fn n-1

vanishes identically on U. On the other hand, we have just seen that
the coefficient (—1)"** M of ¢g® in this determinant does not vanish at

p,. We may therefore write % in the form i h.g*, where A, is a function
k=0

in R'(H) which identifies any pair of points which is identified by f,
and where %,(p,)#0. By substitution of p,, ---, p,-; into this expression
for h, we obtain

0=h(p)= 3 (@ )lg®)F= 3 hi@)o(,)T*
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since f identifies p, and p,. Thus g(m), +-*, 9(p.-1) are n distinct roots
of the nth degree equation §7L_] h(p")a*=0, so that g(g,), which is distinct
k=0

from these roots, does not satisfy the equation. Therefore

M(qn)= éﬁo P ) 9(q0) 1 :éf) (@) g(@) F#0 .

Thus % does not vanish identically in any neighborhood of ¢, or it
would vanish in the component of the interior of H containing ¢, and
therefore it would vanish at g,.

Thus we see that for distinct points p and ¢ in S there exists a
closed neighborhood H of S and a function % in R'(H) such that %
vanishes identically in a neighborhood of p but does not vanish identically
in any neighborhood of ¢. By multiplying together such functions, we
see that for all points p in S there exists a closed neighborhood K of
S, and a function f in R'(K) which does not vanish in any neighborhood
of p, but vanishes in some neighborhood of every other point of S.
With this new function f, whose multiplicity at » we call », choose
U, ¢, =, and H in the same way as they were chosen for the old
function f. In addition, we may assume that H is so small that f
vanishes on H—U. We now extend the definition of ¢ to all of H by
defining ¢ to vanish on H—U. Let p, be any point in U distinct from
p, and define p,, P, -+, Pn-: as above. Choose any function ¢ in R’
which takes distinet values at p,, », -+, P.-;. Let the functions f, be

defined as before, so that g":nifm ¢ on U, for 0<k<n—1. (We shall
i=0

not need the equation for g».) We have seen that the determinant M
defined above is in R'(H) and does not vanish identically on U. Apply-
ing Cramer’s rule to the set of equations for the g*, we can solve them
for ¢, obtaining M in the denominator and some function of R'(U) in
the numerator. It follows that the restriction of the function ¢-M
to U is in R'(U). Now M, being a polynomial in the f;;, is equal on
U to the sum of a power series in powers of f which converges
uniformly on U. Let the first non-zero term of this power series be
aoft. Then f!/M will be a uniformly convergent power series on some
neighborhood U'={¢|q¢ e U,|¢p(Q)|<¢'<c} of p in powers of f. Since f
vanishes on H—U, the series will converge uniformly on H'=U"U(H—U)
to a function f, in K'(H’) which equals f'/M on U’ and vanishes on
H'—U'. Since ¢-M is in R'(U’), it follows that the function (¢-M)-f,
=¢-fil=¢™* is in R'(H'). Since f=¢" is also in R'(H’), and since the
exponents n and nt+1 are relatively prime, the function ¢* will be in
R'(H') if ¢ is sufficiently large, say if ¢=N. Therefore, any function
in @(H') which vanishes on H'—U’ and which vanishes to order at least
N at p will be in R'(H').



SUBALGEBRAS OF FUNCTIONS ON A RIEMANN SURFACE 35

Now let p be a boundary point of C, and we shall show that the
last statement continues to hold with N=1 if H' is replaced by H'NC.
From <7(C, R)=C, it follows that none of the components of U'—C
lies interior to U’, since S“(C, R’) would contain such a component.
Therefore every component of U’'—C contains boundary points of U’.
Since ¢ is a homeomorphism on U’, it follows that the complement of
U NC)=p(H' NC)=F is connected. Since ¢(p)=0, the number 0 is in
the boundary of F, By Lemma 1, there exists a sequence {%,} of
polynomials which vanish at 0 to order at least N and which converge
uniformly to z on F. The function %, o ¢, for each n, is therefore in
R(H'), by the last statement of the preceding paragraph, and %, o ¢p—¢
uniformly on H'NC as n—co. Therefore ¢p ¢ R'(H'NC). By Mergelyan’s
theorem, any function which is continuous on ¢(H N C) and analytic at
interior points can be uniformly approximated by polynomials 4.
Therefore, any function in @(H'NC) which vanishes at p and vanishesg
on (H'NC)—U' can be uniformly approximated by functions of the form
ho¢, and so belongs to K'(H NC).

It follows from what we have just proved that there exist disjoint
closed C-neighborhoods {C,}, one for each point p in S, whose union
we denote by C’, and a positive integer N, such that any function f in
@(C’) which vanishes on S, which vanishes on C'—C, for some p, and
which vanishes to order at least N at p if p is interior to C, will be
in R(C’). Since any function in @¢(C’) which satisfies the conditions of
the lemma can be written as a sum of such functions f, the conclusion
of the lemma follows.

LeMMA 3. Let C be compact, and let R be a total subalgebra of R
with &7 (C, R)Y=C. Let A be a bounded linear functional on @(C), which
is orthogonal to K'(C) and which can be represented as a measure on an
arbitrary C-neighborhood of the singular set S of C relative to R'. Then
A is a R'-homogeneous differential operator on @(C), whose order does
not exceed am integer N depending on E and C but not on A.

Proof. Partition S into equivalence classes S, S, ---, S, by
defining p=¢ to mean ¢g(p)=g(q) for all ¢ in R’. Then there exist
functions fi, /3 +--, fu In R such that fi(p)=0 for p in S—S, and
filp)=1 for p in S. Thus, by Runge’s theorem, there exist disjoint
closed C-neighborhoods U, U,, ---, U,, of S, S,, ---, S, respectively,
such that, for 1<¢<n, there exists a sequence of functions in R’ which
converges uniformly on U=U,uU,U---UU, to a function g, which has
the value 1 on U, and the value 0 on U—U,. Since A can be realized
as a measure on U, it can be extended to be a bounded linear funectional
A" on @(U). Obviously 4" will vanish on R'(U). Therefore, if we define
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the functionals 4,, «--, 4, by 4(f)=A(fyg,), for all f in @(C), we obtain
bounded linear functionals on @(C) which vanish on R'(C) and have sum
A. For each ¢, 1<¢=<n, let V, be any closed C-neighborhood of S,
which is a subset of U,. By hypothesis, there will exist a measure g
on V=V,U --- UV, which represents 4. For each ¢, 1<i<n, let
{gu}io: be a sequence of functions in R’ converging uniformly on U to
¢;- Then for each f in @(C) we have

A=A (g)=lim A(fyg)=lim A(fa)
—tim sy du=\so. dn={,, rap={, rap.

Therefore A, is represented by the restriction of g to V;, from which
it follows that 4, can be represented as a measure on an arbitrary
C-neighborhood of S;. To finish the proof, it is only necessary to show
that 4, is a R’-local differential operator on @(C) of order not exceeding
some positive integer N depending only on R and C. Let the closed
C-neighborhood €’ of S and the positive integer N have the properties
stated in Lemma 2. If we write C,= U {C,lveS,}, then C, is a closed
C-neighborhood of S; such that any function in @(C;) which vanishes on
S,, and which vanishes at all points of S, which are interior to C, to
order at least N, is in R/(C;). Since A, can be represented as a measure
on C;,, and since 4, is orthogonal to R'(C), we see that A, will be
orthogonal to any function in @(C) which agrees on C, with a function
in R/(C;). Thus A(f)=0 whenever f is a function in ¢(C) which vanishes
on S; and which vanishes to order at least N at all points of S, which
are interior to C. Since g(p)=g(q) for all p and ¢ in S;and all ¢ in R/,
it follows from the definition that 4, is a R’-local differential operator
on @(C) of order not exceeding N, as was to be proved.

LEMMA 4. Let C be a compact set whose intersection with a disc U
18 an open analytic arc A which divides U—C into components U, and
U,. Let R be a total subalgebra of R, and let p be a Borel measure on
C which is orthogonal to R'. Let there exist functions f and ¢ in R
which are schlicht relative to C on U. Let f(A) be in the outside boundary

of f(CU Uj), where U, is the closure of U,, and let g(A4) be in the outside
boundary of g(CU U). Then © vanishes on all subsets of A.

Proof. Consider any open sub-arc B of A, which has endpoints «
and b in A with g({a})=p({b})=0. Let B, be any closed sub-arc of A
which contains the closure of B in its interior. Since the analytic arc
f(A) forms part of the outside boundary of ACUU,), we can find a
function ¢ on fACUU, which is a uniform limit of polynomials, which
maps f(CUU,—B,) into {2J(®)>0}, which maps f(B,) in one-to-one
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fashion onto a subset of the real axis, and which maps the endpoints
of f(B) onto 0 and 1. To find ¢, let J be a simple closed curve about
the set f(C U U,) which has f(B;) as part of its boundary and which has
no other points of A(CUU,) in its boundary. Let ¢, be the Riemann
map of the interior of J into the unit disc. Then by Bieberbach [1],
it follows that ¢, can be extended to be continuous on J and to map J
homeomorphically onto {z{lz|=1}. By Mergelyan [3], ¢, is the uniform
limit of polynomials. Then we can find a function ¢, which is analytic
on the unit disec and continuous on the closed unit dise, which maps the
closed unit dise in a one-to-one faghion into {2|(z)=>0}, which maps the
arc ¢,(f(B)) in one-to-one fashion onto a subset of the real axis, and
which maps ¢,(f(@)) and ¢,(f(b)) (but not necessarily in that order) onto
0 and 1. The composite function ¢p=¢,0o ¢, will have the desired
properties. Thus the function f/=¢ o f is the uniform limit on Cy U,
of functions in R/, maps (CUU,)—B, into {2|X(2)>0}, maps B, in onet
to-one fashion onto a subset of the real line, and maps B onto the uni-
interval (0, 1). The function f/ can be extended to be analytic and
schlicht in some neighborhood of the closure of B because it maps U,
into {2|3(2)>0} and maps B, in one-to-one fashion into the real line.

In the same way we can find a function ¢" on CUU, which is the
uniform limit of functions in K’, which maps C U U,— B, into {z|J(z)<0},
which maps B, in one-to-one fashion into the real axis, and which maps
B onto (0, 1). As above, ¢ can be extended to be schlicht on some
neighborhood of the closure of B, and the values of the extended
function at points of U, sufficiently near to B will lie in the set
{21%(2)>0}. Thus both f and ¢’ have positive imaginary part at points
of U, near B. Therefore f” and g  increase in the same direction along
B. We may therefore label the endpoints @ and b of B in such a way
that f(a)=¢'(a)=0 and f'(b)=g'(b)=1. It is clear that the algebra T
generated on C—{a, b} by /' and g’ is orthogonal to the measure g,
because p({a})=p({b})=0. The function

e d 01
g f—1

defined on C—{a, b}, can be extended to a continuous function %, on
C, because both numerator and denominator vanish only at o and b,
about which points they can be extended to be analytic with simple
zeros. For «>0 consider the function

J g1

J—ai f—1+tai

defined on C. Its absolute value will be less than the absolute value
of A;. Therefore, as a—0, it converges boundedly to %2, on C—{a, b}.
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Now 1/(¢'—ai) and 1/(f—1+«i) are uniform limits on C of polynomial
funections of ¢ and f” respectively, so that A, is a bounded limit on
C—{a, b} of functions in the algebra 7. Therefore all powers of %, are
orthogonal to the measure p. Now f” has positive imaginary part on
C—B, so that f//(f'—1) has negative imaginary part on C—B,. Similarly,
(¢’ —1)/g’ has negative imginary part on C—B,. Thus it is possible to
define the arguments of f/(f'—1) and (9'—1)/g’ to be continuous on the
set C—B, and to have values in the interval (—=, 0). Since these
functions are real on B,— {a, b}, we may therefore define the arguments
on C— {a, b} to be continuous and to have values in the interval (—=,0].
Thus the argument of A4,, since A, is the product of the functions just
considered, can be defined continuously on C to have values in the
interval (—2r, 0]. Since C is compact, the values will actually lie in
the interval (e —2z, 0] for some e >0. We may therefore obtain the
function log %, on C as a uniform limit of polynomial functions of 4,
flg'=1)
g(r=1)

part will have values in (—2=, 0] and will vanish on B}. It follows
that S log %, dp=0.

so that the real part of log A, will be log and the imaginary

For each a>0, by an argument similar to the one just given, the
funection

h= o tat

e

g—1—ai

f—14+ai g —ai

will be a uniform limit on C of polynomial functions of f and ¢/, and
will have an argument function with values in the interval (—2z, 0).
Thus log %, can be defined to be a funection on C which is a uniform
limit of polynomial functions of f/ and g¢’, and whose imaginary part

has values in the interval (—2rz, 0). Therefore, S log h, dp=0. The

real part of log %, converges uniformly on C—B; to log |A|, as a—0,
because ¢ and f'—1 are bounded away from 0 on C—B,. Also the
real part of log &, converges boundedly on B,—{a, b} to the same
function, since the reality of f and ¢ on B, implies that the absolute
f ,—i:qz: and gfflfﬁ%, are nearer to 1 on B,

values of the functions Yy T
g —ai S —=14+ai

f/

4

J

S =1
of log A, converges boundedly on C—{a, b} to log |h|=R(og A~,). The
imaginary part of log %,, on the other hand, must converge boundedly
on C—B, to J(log A, because h, converges to s, on C—B; and both

J(og %,) and J(log %,) have values in the interval (—2rz, 0) on C—B,.

than are and respectively. It follows that the real part
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On the sub-arc B of B, /" and ¢’ are positive whereas f'—1 and ¢'—1
are negative, so that the argument of %, will be a small positive number,
on B, modulo 2=, if « is small, which means the argument of %, will
be near —2r on B. Thus, as a—0, we see that J(log k,) converges to
—27 on B. Similarly, we see that J(log h,) converges to 0 on B,—B
—{a, b}. Thus log h, converges boundedly as a—0 to a function A, on
C—{a, b}, for which log 4 ,—h, has the value 27i on B and the value 0

on C—B—{a, b}. Since S log &, dr=0, we must have Slzl dp=0.

Therefore Ozg (log h,—h,)dp=2mip(B). Since this is true whenever p

vanishes at the endpoints of B, it follows that g vanishes on all subsets
of A, as was to be proved.

LEMMA 5. Let R be a total subalgebra of R. Let S be a compact
set and C a compact subset of S. Let q, be a non-isolated point of S—C.
Let g, be a function in R which assumes its maximum modulus for S
at the point q, and at no points of C. Let g, be non-constant on every
component of the Riemann surface which contains points of S. Then
there exists a function g in R which assumes its maximum modulus for
S at a unique point q, lying in S—C, and there exists a neighborhood
W of q on which g is schlicht relative to S.

Proof. Let
I''={plpe S, ¢, is not schlicht at p} .

Since, by the hypothesis, the points of S at which g, is not schlicht
must be isolated, it follows that /', is finite. Therefore the set I,
defined to be the union of /", and the singular set of S relative to R/,
is finite. Thus ¢«(S) is a compact subset of the complex plane, g,(C) is
a compact subset of ¢,(S), and g¢q,) is a point of maximum modulus of
9(S) which is a non-isolated point of g,(S)—g(C). Thus g,(q,) is in the
outside boundary of ¢,S), and since g¢,g,) is a mnon-isolated point of
,(S), there must exist points z, distinet from g¢,g,) but arbitrarily near
to ¢o(¢,) which lie in the outside boundary of ¢(S). By taking z,
sufficiently close to ¢,(q,), we may assume that z, is not in ¢,(C), nor in
the finite set g(/’). We may therefore find a point w in the unbounded
component of the complement of g,(S) whose distance to z, is less than
its distance to g(C)Ug,(I). The minimum distance of w to g,(S) is
therefore attained at no point of ¢(C)Ug{l"). The function (z—w)* of
2 therefore attains its maximum modulus for ¢(S) at no point of
I(CYUg(L"). Since w is in the unbounded component of the complement
of g,S), it follows that (z—w)~' can be uniformly approximated on some
neighborhood N of g¢(S) by polynomials 4. If the approximation ig
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sufficiently good, A will be schlicht on g,(S) because (z—w)~! is schlicht
on N, and 2 will attain its maximum modulus for ¢,(S) at a point 2, in
9o(S)—9(C)—gy(I"). Therefore the function g,=h o g, is in R’ and attains
its maximum modulus for S at a point ¢, (any point of S with g,(¢,)=2)
of S—C—1I'. Since ¢, is not in I", g, is schlicht at ¢. Since % is
schlicht on ¢(S), the function g, will therefore be schlicht at ¢,.

Let the finite set S’ consist of all those points » in S, except ¢,
for which ¢(p)=9.(¢;). By replacing g, by g.+g¢.(q), if necessary, we
may assume that g, attains its maximum modulus for S only at ¢, and
at points of S’. Since ¢, is not in I", we can find a function g, in R’
with ¢.(¢)=0, 9.(p)=—9(q)) for all p in §. Let e be a positive
number, and consider the function g=g,+ e g, of R’. Since g, is schlicht
at ¢,, there will exist a neighborhood U of ¢, such that g will be
schlicht on U for all e sufficiently small. Also there will exist a
neighborhood V of the set S’ such that |g,(p)+g.(p)<lg:«(q)l for all p in
V, because we have g¢,(p)+g:(p)=9.p)+9.(q,)=0 for all p in §'. Thus
for all p in VNS we have

lo(p) =19.(P)+ € g.(P)| =11 — €)gu(D)+ € () + (PN <L — €)lgu(D)]
+ elg@) =gl = sup {lg(r)llr e S} .

Thus ¢ does not attain its maximum modulus for S on the set V. If
¢ is sufficiently small, on the other hand, g can attain its maximum
modulus for S only near S’ or near ¢,, since g, attains its maximum
modulus only at S and at ¢,. Therefore g can attain its maximum
modulus for S only at points of U, if e is sufficiently small. The
point ¢ of U where this happens may not be unique, but if we take
such a point ¢ and replace ¢ by g¢g+9(q), then ¢ will be the unique
point where g attains its maximum modulus for S, because g is schlicht
on U. Since g assumes its maximum modulus at the unique point ¢ in
S and is schlicht on U, there will exist a disc W in U containing ¢ on
which ¢ is schlicht relative to S. This completes the proof of the
lemma.

LEMMA 6. If F is a compact subset of the complex plane, and v 1is
a measure on F' which is orthogonal to all polynomials, then for almost
all real numbers w», there exists a measure P on the set L= {z|R(z)=a,
and z is not in the unbounded component of the complement of F'}, such
that

S h du:—g h du:Sh dp
Fl F2

for all polynomials h, where
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F=FN{zR@)=x) and F,=FN R <z} .

Proof. There will exist a measure ¢# on F' which assumes non-negative
values and which dominates the complex-valued measure v in the sense
that |v(s)|<p(s) for all Borel sets S. ILet ¢ be the non-negative,
non-decreaging function of the real variable a, defined by ()
=p({e+iylz=<z}). Then ¢'(x,) will exist for almost all z,, Assume

2, is such that ¢'(x,) exists. Then the equation S h du:—g h dv is a
Fy

y
consequence of the equation S h dv=0 and the fact that », because
F
¢'(w,) exists, vanishes on all subsets of F\NF,. By Runge’s
theorem, we will then haveS g d»::—g g dv, whenever g is any
y Fy

function analytic on some neighborhood of the set consisting of the
union of F' and the bounded components of the complement of F.
Choose e with 0< e <1. Write T= {z=x,+1%y| the distance from z to L
does not exceed e}, and V={y|z,+iyeT}. Let ~ be any polynomial,
and write ||A||=sup {|k(z)/lze T}. For R(z)>x, define

@)= | moe-aa,

)

where the direction of integration along T is upward. For R(z)<x,, let

@)= | MOE—2de .

)

Then it is well known and easy to see that both %, and A, have
continuous boundary values at points z, of T which are interior points
of T, relative to the line {2|R(z)=w,}, and that the difference of those
boundary values, %.(2))—hy(2), is h(2). Therefore, if we define #A,(2)
=h(z)+hy(z) for R(@)<wz, and h,(2)=h.(2)—nh(z) for R(z)>x, then by
extending to the interior of T by continuity, we obtain analytic
functions A, and %, on some neighborhood of the set consisting of the
union of F' and the bounded components of the complement of F, such
that A=h,—h,.
Thus we have

[, Hoae=], hene | o
= [, )+ neae .

We consider the first term of this sum, and obtain
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I,

T

@)= | roe-ara ae

-

F Sve V]:(xo—w)2 +—y)1" ; dv dp(z)

F Ste V—y[(x"_x)g"f’tz]_ ilidt dp(z)

[ 1oy +e1-iat duo

1

|” [@—or+e1-tat dpeo)

e ey, e ey
5 x4 N >

0

where M is some constant not depending on € and where
K=sup{x|R(z)=x, z€ F\} .

Since ¢'(w,) exists, the difference quotient [¢p(x)—p(we)](x—x)~t will be
bounded, so that there will exist a constant 7 such that ¢(x)—¢(a,)
<p(x—x,) for all z>x,. Thus the function ¢ defined for all x>z, by
dx)=n(x—x) —[P(x)—P(x,)] is positive. Also

M
fo=\" [e—ay+er-ia
-M
is a positive decreasing function of = for x>z, and

P(@)f(@) <y(x—x)f(x)—0 as z—u, .

It follows by integration by parts that

SKf(w)dsb(:v)%O, or

SZf(x) d¢(w)§7782f($)dx .

Therefore

[ ot

SKS”_I (&o—af -+ S dt dos .

o

Now the last integral is finite, as may be seen by transforming to polar
coordinates. Now since a similar estimate can be obtained for

|, m@a)

we see that there exists a constant @, not depending on €, such that

H h(z)du(z)‘gQHk
1

€, we see that

iE for all polynomials #. Since @ does not depend on

1
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‘{SF/z(z) du(z)ng sup {|h(2)llze L} ,

for all polynomials %. Since the linear functional h—»S h(z) d(z) can be

1
extended, by the Hahn-Banach theorem, to a linear functional of bound
Q on @(L), we see that the measure S exists, as was required to prove.

LEMMA 7. Let C be compact, and p a measure on C orthogonal to
the total subalgebra R'. Let “(C, R')=C. Let f be a function in R'.
Let a and ¢ be real numbers, a<ec, and let D be a closed disc containing
the sets CN {qIR(f(@))=a} and & (C, /)N {q|N(f(@))=a} N D in its interior,
such that f is schlicht on D relative to C, and such that DN {q|R(f(q))=b}
18 non-void whenever a<<b<c. Then, for every b with a<b<e, there

exists a measure ¢ on CN {qNR(fq))=b} such that Sgdyzggd/u’ for all g
in O(C).

Proof. Define a measure v on F'=f(C) by »(S)=p(f"'(S)). Then if
b is any polynomial, we have Skdyzgkofdpzo, since hofe R'. Now let

xz, be chosen as in Lemma 6, where we may impose the additional
requirement that a<z,<b. It follows that the sets

E=.(C, NN {adR(fl@)=x}ND

and C,=Cn {g|R(f(@))=x,} are contained in the interior of D. Write
C,=CnN {g|N(Aq))=w}, so that f(C))=F, and f(C,)=F,, in the notation

of Lemma 6. By the definition of », we see thatS hofd;zzg hdy for
¢ F

all polynomials ~. Consider the complex number z, ;101; in f(E) with

R(z)=wx, There are two cases to consider, depending on whether z, is

in f(D) or not. In case z,ef(D), then z,=f(q,) for ¢, in
D—-E)N {gR(f(@) =z} <. (C, [),

by definition of E. Therefore, z, is in the unbounded component of the
complement of F'=f(C). In case z, is not in f(D), then z, can be joined
to a point 2z, in the boundary of f(D) by a closed interval I whose
interior lies in {2R(z)=x} —f(D), because {z|N(z)=wx,} NF(D) is non-void
by the hypotheses of the theorem. Now FN {z|R(z)==x,} is contained in
the interior of f(D), because CnN {q|R(f(¢))=w=,} is contained in the
interior of D. It follows that the interval I lies in the complement of
F. Since we have already seen that a point 2, with R(z,)==z, and
2, € f(D)—f(E) must lie in the unbounded component of the complement
of F, it follows that z, lies in the unbounded component of the complement
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of F. Thus, from a consideration of the two possible cases, we see
that the set {2|{N(z)=w,} —f(£) is a subset of the unbounded component
of the complement of F. It follows that LCf(F), where the set L is
defined in Lemma 6. Thus, since f is schlicht on D, we may define
the measure a on E by «a(S)=p(f(S)), where / is the measure on L

defined in Lemma 6, and obtain Shdﬁ:Shofda for all polynomials #2.
Thus

SO hofdp= SFlhdu - Shdﬂ - Sh fie

for all polynomials ~. Since both E and C, are subsets of D, and since
any analytic function on D can be uniformly approximated on D by
polynomial functions of f (because f is schlicht on D), we therefore see

that S gd,uzggda for all g in R. Since v vanishes on all subsets of
C
F.NF, then # will vanish on all subsets of C,NC,, so that

S gdp= —S gdp
o, Cy

for all ¢ in R'. We therefore see thatg gd/x:—ggda for all g in K.
Oy

Thus if H is the carrier of the measure a and if g is in R/, we see

that S gd(z—a)=0, and S gd(z+a)=0.
C UH 2UIT
We now show that «, which we know is a measure on F, is actually a

measure on £ NC, that is, that the carrier H of « is a subset of C. Assume
first that H—C contains an isolated point . Then # is isolated point
of HUC,, and since f is schlicht on the subset HUC,; of D, the point
J(r) is an isolated point of fAIHUC,). Also R(f(r))=a,<R(2) for all 2z in
AHUC,). Tt follows that the function 4 on f(HUC,) which has value
1 at f(r) and vanishes elsewhere is a uniform limit of polynomials.
Thus fof is in R(HUC,). By the equation derived at the end of the
last paragraph, it follows that a({fr}):—S(w Hﬁofd(/z—a):o. This
7 U

contradicts the fact that » is an isolated point c1>f the carrier H of «,
and hence H—C has no isolated points. There exists a function g, in
R’ which assumes its maximum modulus for HUC at no point of C, if
H—C is non-void, because &(C, R)=C. Since HU C is compact, there
are only a finite number of components of the Riemann surface which
intersect HUC.

Since R’ is total, we can find g, in R’ which is non-constant on each
component of the surface which intersects HUC. Therefore, if e is
sufficiently small, the function ¢,=g¢,+ € ¢, in R’ will be non-constant on
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each component of the surface which intersects HU C, and will assume
its maximum modulus for HUC at no point of C. Therefore, by
Lemma 5, there exists ¢ in R assuming its maximum modulus for
HUC at a unique point ¢ of H—C which has a neighborhood on which
¢ is schlicht relative to HUC. Since ge E—C, we can find an arc B
of {r|R(f(r))==,} ND which contains ¢ in its interior, which is disjoint
from C, and which lies in some disce NCD—C on which g is schlicht
relative to HUC. We may choose N and B so that NN {r|R(f(r)) >z}
and NN {r|R(f(r))<w,} are connected. Write S=HUCUB. Then we
can find a point ¢, in N such that

l9(q0)] > max {|g(r)||r € B} =max {lg(r)||r € S} .
By moving ¢, slightly, we may actually assume that
@e N—{r|h()=uz,} .

Let U be a disc contained in N and containing ¢, and ¢ such that
UNS is an open sub-arc A of B dividing U—A4 into components

U=Un{rR() >} and U,=UN {rRAr) <z} ,

with UNS=A, where U is the closure of U. Since f is schlicht on D
relative to C, and since UcD and ScDyC, then f is schlicht on U
relative to S.

Let ¢, be any point of SUU, at which g assumes its maximum
modulus.  Since |g(q))|=|9(q,)|> max {|g(r)}re S}, we have ¢ e U-S.
Thus either ¢,e U, or ¢, e U,, but ¢, is not in U N0U,cAcS. Assume
g€ U,. Then g(q,) is in the boundary of the unbounded component of
the complement of ¢(SUU), since it is a point of maximum modulus
of g(SUU). Since 9(¢,) is not in g(SUU,), it is therefore in the
unbounded component of the complement of ¢g(SUU,). The set
o(U,—B) is connected and disjoint from ¢(SUU,), because U,—B
1s disjoint from SUU, and ¢ is schlicht on U relative to S. Since
9(q) € g(U,—B), it follows that g(U,—B) is in the unbounded component
of the complement of g(SUU,). Since g(4)=g¢g(BNU) is in the boundary
of g(U,—B), it follows that g(A) is in the outside boundary of g(SUU,),
in this case. In case ¢, e U,, it similarly follows that g(4) is in the
outside boundary of g(SUU,).

First consider the case in which g(A) is in the outside boundary of
g(SUU,)). Then g(4) is in the outside boundary of g(HUC,UBU U).
Since the real part of f equals 2, on A and is less than or equal to z,
on HUC,UU,, the open arc f(A) is in the outside boundary of
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AHUC,UBUU,) .

Since SH Bh d(r+a)=0 for all 2 in R, we can apply Lemma 4, to the
uc,u

compact set HUC,UB, to the measure y;+«, to the dise U, and to the
functions f and ¢ in R’, to conclude that the measure g+«, and
therefore « itself, vanishes on all subsets of U. Next consider the

case in which g(A) is in the outside boundary of g(SUU,). Then g(A4) is
in the outside boundary of g(HUC,UBUU,). Since the real part of f
equals x, on A and is greater than or equal to 2, on HUC,UBUU,, in
this case f(4) is in the outside boundary of fIHUC,UBUU,). Since

hd(p—a)=0 for all 2 in R, we see by Lemma 4 again that the

HUC;UB
measure p—«, and therefore «, vanishes on all subsets of U. Thus,

in either case, we see that a vanishes on all subsets of U. This
contradicts the fact that the point ¢ in U is in the carrier H of «. This
contradiction shows that H—C is void, so that « is a measure on
ENnC.

Now < (C, R)c.<(C, R)=C. Moreover, if ge C—C, then
ge &’'(C;, R') because R(f(q))<x,<NR(f(¢)) for all ¢ in C,. Hence
& (C, R)=C,. If D—C, were not connected, there would exist a
component of D— C, containing only interior points of D (because C, is
a subset of the interior of D), so that .&(C,, R’) would contain all
points of this component, contradicting the fact that &(C,R')=C..
Thus D—C, is connected. Since [ is schlicht on D, it follows that
F,=f(C)) has a connected complement. By the theorem of Mergelyan,
every continuous function on F, which is analytic at interior points can
therefore be uniformly approximated by polynomials. From this it
follows that every continuous function on C, which is analytic at
interior points can be uniformly approximated by polynomial functions
of f, so that @(C)=R'(C)). Since HCENCcC, and since we have

already seen that S gd,u:S gda for all g in R’, it follows that
oA H

S gdﬂ=g gdo
(o H
for all g in @(C,). If we define the measure ¢ on

(C—C)U Hc C,c Cn {qIN(f(g)) <b}
by ¢ (S)=u(S—C)+a(S), we obtain

Sgd/z’= S gd/1+g gda=S
-0y H c

for all g in @(C), as was to be proved.

gd/l+g gdﬂ=Sgdﬂ
cy A
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3. The main theorem and its consequences.

THEOREM 1. Let R be a total subalgebra of R. Let C be a compact
set with <7(C, R)=C. Let A be a bounded linear functional on @(C)
which +s orthogonal to R'(C). Then A is a R'-homogeneous differential
operator on @(C), whose order does not exceed some positive integer N
depending only on R and C.

Proof. We know that 4 can be represented as a measure on C.
Therefore the class /', consisting of all compact subsets S of C for
which 4 can be represented as a measure on S and for which ./ (S, R’)
=S, is non-void, because CeI’. We construct a sequence {S,} of sets
from I" by taking S,=C, and choosing S,., such that S,.,cS, and

(S, S,m)g; sup {p(S,, S)ScS,, Sel’} .

Then p(S,, S,..)—0 as n—c, because otherwise the compact set C would
contain an infinite set of points whose mutual distances were larger
than some fixed positive number. Write S=NS,, and assume that
there exists a point ¢, in S not in the singular set T of C relative to
R'. Then there exists a function g, in R’ which vanishes on T but
does not vanish on ¢,. Since S is compact, there exist only a finite
number of components of the surface which intersect S. Since R’ is
total, there exists a function g, in R’ which is non-constant on every
component of the surface which intersects S. Thus, if e is sufficiently
small, ¢g,=g,+ e¢g, will be non-constant on every component of the
surface which intersects S, and the set K consisting of those points of
S where g, attains its maximum modulus will not intersect 7. If there
exists a point in K which is a non-isolated point of S, then by Lemma
5 there exists a function f in R’ which attains its maximum modulus
for S at a unique point p, and which is schlicht relative to S on some
closed disc D containing p in its interior. On the other hand, if all
points of K are isolated, then K is finite, and since K does not intersect
T, there exists a function ¢g; in R which has the value g,(p) at some
point p of K, which has the value —g,(r) at all other points 7 of K,
and which is schlicht at p. For a sufficiently small positive number e,
it follows that the funection f=g,+ € g, will attain its maximum modulus
for S at the unique point p and will be schlicht relative to S on some
closed disc D containing p in its interior. Thus, if we assume that S
is not a subset of the singular set of C relative to R, we may find f,
p, and D which have the properties described. We may assume also
that f(p)>0.
Let @, be some real number less than f(p) such that the set
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DN {gN(fg))=a}

is non-void whenever a,<a<f(p). For each real number a with a,<a
<f(p), consider the compact sets V,=.S7(S, /)N {¢/R(f¢)=a} ND and
W,=SnN {¢R(f(¢))=a}. The intersection of the V, is V,, ={p}, and
the intersection of the W, is Wy, ={p}. Thus, if a is sufficiently near
to f(p), the sets V, and W, will be contained in the interior of D.
Having chosen such a value of a, define the compact sets

and W,=8,N {¢|N(f(g))=a}, for each positive integer n. Since NS,=S,
we have NV,=V, and N W,=W,. Thus, if »n is sufficiently large, the
sets V, and W, will be contained in the interior of D. Let b be any
number with a<b<f(p), and choose a value of n for which V, and W,
are contained in the interior of D, for which f is schlicht on D relative
to S,, and for which 2o(S,, S,.;) is less than the distance d of p to
{gIR(flq)<b}. Then by Lemma 7, we see that there exists a measure
v on S,N {¢|R(f(¢))<b} =S, which represents A, because there exists
such a measure on S,. Now .%(S,, R)cC.“(S,, R)=S,. Also, if
ge S,—S,, then N(/(@)>b= sup {R¢)))¢ €S,}, so that ge .&(S,, R).
Thus (S, R)=S,, and so S,el’. Also p(S,, S))=d>20(S,, Sy.1)-
This contradicts the choice of S,.,. Therefore S is a subset of the
singular set of C relative to R’. Since NS,=S and since 4 can be
represented as a measure on S,, then 4 can be represented as a measure
on an arbitrary C-neighborhood of S. It follows from Lemma 3 that 4
is a R’-homogeneous differential operator on @(C), of order not exceed-
ing N, as was to be proved.

COROLLARY 1. If C s compact, and +f R is o total subalgebra of
R, with &7 (C, R)=C, then there ewists a positive integer N such that
R(C) contains the ideal I(C, R, N) of @(C) consisting of those fumnctions
in Q(C) which vanish on the singular set S of C relative to R and which
vanish to order at least N at those points of S which are interior to C.
The ideal I(C, R', N), and therefore R'(C) itself, has finite codimension
when considered as a wvector subspace of @(C).

Proof. Choose N as in Theorem 1. Then, by Theorem 1, it follows
that every bounded linear functional on @(C) which vanishes on R'(C)
will vanish on I(C, R’, N). It follows from the Hahn-Banach theorom
that I(C, R, N)CR'(C). The last statement of the corollary is obvious.

COROLLARY 2. If C s compact, if R is a total subalgebra of R
with (C, R)=C, and if the singular set of C relative to R’ is void,
then R (C)=g(C).
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Proof. This corollary is in immediate consequence of Corollary 1.
This corollary applies to R itself, if no component of the surface is
compact, since then it is known that R is total, and that the singular
set of R relative to C is void, for all C.

COROLLARY 3. Let C be compact and without interior points. Let
R be a total subalgebra of R with <4(C, R)=C. Let [ be a continuous
Sunction on C for which f(p)=s(q) whenever p and q are points in C
Jor which h(p)=h(q) for all h in RE'. Then fe R'(C).

Proof. Let 4 be a bounded linear functional on @(C) which is
orthogonal to R'(C). We must show that 4(f)=0, and the Hahn-Banach
theorem will do the rest. Since 4, by Theorem 1, is a R’-homogeneous
differential operator on @(C), and since C has no interior points, we see
that 4 is a finite sum 4=234,, where 4, is orthogonal to R'(C) and hasg

the form Ai(g):i & 9(py), with p; in C and with A(p,)=n(p,) for
j=1
1<j=n, and all 2 in R'. Thus flp,)=Ff(p,) for 1<j<n, Since the

funection 11isin R/, this implies ZLZOLU:O. Thus we have
j=1

A,(f)= Jz:flaijf(pij) = g @,/ (P1) :f(pn)g a;;=0 .

This completes the proof.

The hypothesis that R’ contain the constant functions, which is
made in Theorem 1 (because R’ is required to be total), is undesirable,
since, for instance, it rules out the case of an ideal . We now show
that this hypothesis is not necessary to the validity of Theorem 1. To
this end, let R’ and C satisfy the hypotheses of Theorem 1, except
that we weaken the word ‘‘total” by dropping the requirement that
R’ contain the constant functions. Let 4 be any bounded linear
functional on @(C) which is orthogonal to R'(C). Let the original
Riemann surface be enlarged by the addition of the extra disc {z||z|<1}
as a new component, and let the algebra 7" on the new surface consist
of all functions of the form c¢-f, where ¢ is a constant, and where f
is any analytic function on the new surface which vanishes at the
center z=0 of the extra disc and which agrees on the original surface
with some function in R’. Let H be the union of C and the subset

{szlgé} of the extra disc. Then 4 can be considered as a bounded

linear functional on @(H), and obviously the functional 4" on @(H)
defined by A'(9)=A(9—g(0)) will vanish on 7"(H). By Theorem 1, we
see that A’ is a 7"-homogeneous differential operator on @(H) of order
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not exceeding some constant N depending on 7" and H (and, therefore,
depending on R and C). It follows that 4 is a R’-homogeneous
differential operator on @(C) of order not exceeding N, as was to be
proved.
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THE RELATIONS BETWEEN A SPECTRAL
OPERATOR AND ITS SCALAR PART

S. R. FOGUEL

1. Introduction. It is shown in Dunford’s theory of spectral
operators, that every spectral operator 7' can be decomposed into the
sum of a scalar operator S, and a generalized nilpotent N [1]. We study
here properties which are inherited by S from 7. The main results are :

1. If the spectral operator T is compact, weakly compact, or has

a closed range, then respectively S is compact, weakly compact, or has
a closed range.

2. The relations between the point spectra, continuous spectra, and
residual spectra of S and 7' are investigated.

3. If the sum of two commuting spectral operators is spectral,
then the sum of their scalar parts is scalar.

2. Notation. Most of the notation is taken from [1]. Let X be
a complex Banach space. A spectral measure is a set function E(-),
defined on Borel sets in the complex plane, whose values are projections
on X, which satisfy :
(a) For any two Borel sets o and ¢ E(o)E(0)=E(s n o).
() Let @ be the void set and p the complex plane.
Then

E(®#)=0 and E(p)=I .

(7 ) There exists a constant M such that |E(c)! <M, for every Borel
set o.

(0) The vector valued set function E(:-)z is countable additive for
each ve X.

The operator T is a spectral operator, whose resolution of the identity
is the spectral measure E(-) if
(a) for every Borel set o E(o)T=TE(s).
(b) Let T, denote the restriction of 7 to the subspace E(x)X, (T,
=T|E(x)X) then

7 R;aceived March 13, 1957, in revised form August 19, 1957. This paper is a part of
a dissertation presented for the degree of Doctor of Philosophy in Yale University. The

author wishes to express his gratitude to Professor N. Dunford for his guidance and kind
encouragement.
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o(T)C&

where o(A4) is the spectrum of A.
Throughout the paper 7' denotes a spectral operator, E(-) its reso-

lution of the identity, S its secalar part given by S:S AE(dY), N its
»

radical given by N=T—S. The operator N is a generalized nilpotent,
and the operators N, S, T, E(«a) commute [1]. A spectral operator is
of finite type, if for some integer n, N**'=0. We shall denote N-E({0))
by N,, hence N,=TE({0>)=E((0))T.

3. Topological properties. In this section, several topological pro-
perties will be shown to be valid for S whenever they are valid for 7.
The following lemma will be used.

LEMMA 1. S is in the uniformly closed operator algebra generated
by the projections E(a) with 0¢ «.

Proof. S:S (@) and o(T) is bounded, see [1] Theorem 1. Given
o (T
e>0 let o(7T) be divided into the disjoint sets «y, ay, <++ , @, with

Oeaoy 0¢ai7 7::172;"';77' and
diam(a,)<e 1=0,1,2,---,n

Let 4,=0 and 2, € «;. Then
s—Saba)|=|| (1= S w)Ea)|.
If 2ea(T) then
1= L@z
Now by [1], p. 330, for every bounded measurable function defined on o(7)
|| fB@D | sswlisdl,  des(Dy} - 40
Hence
‘S— 3 1) | <4Ms

THEOREM 1. Let A be a uniformly closed right (left) ideal in the
algebra of operators on X. If T belongs to A so do S, N, and E(a) with
0O¢a.

Proof. By condition b of §2 T, with 0€a possesses a bounded
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everywhere defined inverse 7.'. Let us define P, by P,x=T;'E(a)zx,
zeX, 0éw. P, is a bounded everywhere defined operator. Now

TPua=T(T;'E(c)x)=(TT; "\ E(a)x)=E(x)x .
Also
PTe=T;'"E(«)Tz=T;'TE(«)x=(T;'T)E(a)x=E(a)x .

Hence if 0¢ a then E(a)e 2. Note that this fact remains true even if
9l is not uniformly closed. Now by Lemma 1 Se? and therefore
Ne? too.

COROLLARY 1. If T is compact then so are S, N and E(x) (0¢ a).

COROLLARY 2. If T is weakly compact then so are S, N and E(a)
with 0€ a.

COROLLARY 3. If TXCY where Y is a closed subspace of X, then
SXcY and NXCY and E()Xc Y, 0¢«. Hence

SXUNXU U(E(@)X]0¢ &) cTX

and if the range of T is separable so are the ranges of S, N and E(«),
0éa.

COROLLARY 4. If AT=0 (TA,=0) then AS=AN=0 and 4A,E(x)=0,
0¢a (SA=NA,=E(@A,=0 if 0¢x). In particular T s a spectral
operator of finite type if and only if some power of N annihilates T.

COROLLARY 5. If Ta=0 then Nx=Sx=E(a)x=0 where o does not
contain 0.

COROLLARY 6. If (x,) 4s a bounded sequence of wvectors, and the
sequence (Tx,) has a limit then the sequences (Sz,), (Nw,) and (E(x)x,)
with 0€ @ have limits.

To prove these corollaries one has to note that:

(a) The classes of compact and weakly compact operators are uniformly
closed two-sided ideals. (See [3] Chapter 6).

(b) The classes of operators A satisfying AXcY or 4,A=0 are uni-
formly closed right ideals.

(c¢) The classes of operators A satisfying Az=0 or AA4,=0 or the limit
of Aux, exists are uniformly closed left ideals.

REMARK TO COROLLARY 6. By the proof of Theorem 1 the sequence
(E(@)z,), 0¢ «, has a limit whenever the sequence (7Tx,) has, even if
the sequence (x,) is not bounded.
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THEOREM 2. AT=0 if and only if AE(p—{0>)=0 (A=AE(0>)) and
AN,=0. Similorly TA=0 ¢f and only if E(p—<0>)A=N,A=0.

Proof. If AN,=AE(p—<{0>)=0 then AE(x)=AE(p—{0>)E(@)=0 if
0¢ «, thus by Lemma 1 4S=0. Now
AN=ANE(0>)+ANE(p—<0>)=AN,+(AE(p—<0>))N=0 .

Thus AT=AS+AN=0. Conversely if AT=0 then AN,=ATE(0>)=0,
and AE(x)=0 if 0¢a. Now for each ze X

1

AE(p—{0>)z=lim AE{z ,,,,,g|z|}x:o
n

by countable additivity.

The second half of the theorem is proved in the same way.

Using Corollary 5 one can prove in the same way that Tx=0 if
and only if Nag=E(p-—<{0>)x=0.

COROLLARY 1. If E({0>)=0, then AT=0 or TA=0 if and only if
A=0.

Proof. By Theorem 2 if AT=0 or TA=0 then A=AFE(0>) or
A=FE(0>)A.

COROLLARY 2. If E(0>)=0 then TX=X.

Proof. If TX=+X then there exists a bounded functional z*=0 such
that 2*(7X)=0. Let Az=x*(x)x, where @, is any vector different from
0. AT=0 and A+0 which contradicts Corollary 1.

THEOREM 3. If T has a closed range so does S.

1. Proof. Let E({0>)=0 then Corollary 2 of Theorem 2 shows that
TX=X. But by assumption TX=TX, thus 7X=X. Also, the operator

T is one-to-one by [1] p. 327 and thus T possesses a bounded every-
where defined inverse. Thus 0¢ o(S)=0(T) and SX=X.

2. Let E({0>)#0. The operator T,_, is a spectral operator whose
resolution of the identity F(.) is given by F(a)=E(a)E(p—<0>)=E(x
—<{0>), hence F({0>)=0. Now if T,_,x.=—y(ye E(p—<0>)X), then, there
exists a vector « in X such that Taw—=y, because T has a closed range.
Therefore

T, o(E(p—{0p))=TE(p— 0y =E(p—0y)Tz=E(p—O0My=y .
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Hence T,.., satisfies the same conditions assumed for T in the first part
and therefore 0¢ o(T,-.,) and

Sp—<O>X:E(p_<O>)X ’ but Sp-((])X:SX y

so S has a closed range.

By the proof of the last theorem it follows that if 7" has a closed
range then 0¢o(T,_,), hence 0 is an isolated point of the spectrum
of T.

THEOREM 4. The operator T has a closed range if and only if
1. 0 4s an 1isolated point of o(T).
2. The operator N, has a closed range.

Proof. We proved that Condition 1 is necessary. Now if Nz,—vy
then E(K0>)Nyw,—E({0>)y but E((0>)N,=N, thus E(0>)y=y. Also N,
=TE(0) and T has a closed range, thus if 7(E({0>)x,)—y then for
some x, Tx=y. Hence TE(0>)rx=Nax=E({0>)y=y. Conversely if 1.
and 2. are satisfied let Tx,—y. Then

TE(p—0>)x,+TEK0>)x,=TE(p—{0D)2,+ Nen
— y=E(p—<0p)y+E(K0D)y .
Multiplying this equation by E(p—<0>) and E({0>) one gets the following
two equations

TE(p—<0>)x, — E(p—<0>)y
Nz - E(0>)y
By 1. T, possesses a bounded everywhere defined inverse. Hence,

for some a; in E(p—<{0>)X, Ta,=E(p—<{0>)w.
By 2. for some vector x,, Ny,=FE({0>)y. Thus

T(x,+ E(0>)2) =T, + Ny, =y.
4. Properties of spectral points. Let A be a bounded linear operator
on X, define

o, (A)={2|AI—A is not one-to-one}
o(A)={21|1I—A is one-to-one and (A/—A)X is dense in X, but not
equal to X}.

o (A)={2|1I—A is one-to-one and (AI—A)X+X}.
(See [6] p. 292.)

The sets o,(A4), 0(A4) and o,(A4) are disjoint and
o(A)=0,(A) Uo(A)Uo,(4) .
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THEOREM 1. If T s a spectral operator of finite type, then 2 € o, (T)
if and only if E({D)+0, and 1€ oT) if and only if E((2D)=0, and
2eo(T). Thus o(T)=c(T) v o(T).

Proof. If E((2)+#0 let xe E((D)X, ¢ 0, then

Sa= rBapa=|  pBa)E@W=ia .

Let v be the first integer such that N’x=0, then
TN z=SN* 2+ Nx=N""'Se=IN"""x ,

therefore 1eo(T). If E((2>)=0 then Corollary 2 of Theorem 2, §3,
applied to AI—1T, shows that (A[—T)X=X. Also, by [1] Lemma 1, 2/—-T
is one-to-one and thus 1€ o (7).

THEOREM 2. o (S)CTa(T) and o, (T)u o (T)T o ,(S).

Proof. If 2€0,(S) then E({2>)=0, and by the last part of the proof
of Theorem 1, 1€ o (T). Thus ¢(S)C e (T) and

o(T) Uo(T)=o(T)—o(T)Co(T)— o S)=0(5)—ou(S)=0(S) .

If EK2D)=0 then 2€o,(T). Let us examine therefore the case
where E((2>)+#0. To simplify notation assume that 1=0.

THEOREM 3. Let E(K0>)=#0 then
1. 0eo,(T) if N, is not one-to-one on E({0>)X.
. 0eco(T) if N, is one-to-one on E({0>)X and N(E(0)X)=E(0>)X.
3. 0eco (T) if N, is one-to-one on FE({0>)X and N(E(0>)X=+E(0>)X.

Proof.

1. If there exists a vector z such that 2+0, x=FE(0>)x and
Nz=0 then

Tex=TE(0>)x=Nxz=0

2. The operator T,_,, is one-to-one on E(p—<{0>)X by [1] Lemma
1. Now if N, is one-to-one on FE(<0>)X then T is one-to-one on X: If
Tzx=0 then E((0))Tz=Nax=N,E(0>)x=0 and TE(®»—0)x=T,_E(»
—{0>)x=0. Thus E(0>)x=0 and E(p—<0>)x=0, but then ax=E«(0>)x
+E(p—<0>)x=0. Now by Corollary 2 of Theorem 2, §3

Ty E(p—<00)X=E(p—0))X
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and by assumption

NX=E(0»)X

but
TXoT, o Ep—{00)X
and
TX>N,X
therefore
TX-oX.

3. By Part 2, T is one-to-one. Let 2 be a vector in E({0>)X whose
distance from N, X is greater than some positive number #. Let y be
any vector in X. Then

lo—Ty|=|v—Ny—TEP—L0>W! .

Hence
|0 —Ty| 2% | EOY)[z— Ny — TE(®—<0>)]|
= lo— NECOW 121

Hence
xeéTX.

The next theorem is valid for separable spaces only.
THEOREM 4. If X is separable, then o, (T)Ua(T) is countable.

Proof. Theorems 1 and 2 show that «,(T)Uc(T)Ta(S)={2|EKD)
#0}. For any 21 in o,(S) let x, be a vector satisfying |z,|=1 and
E({D)ye,=x,. Now if 2,1, then

|2
|x,\l—w,\2|g—1ﬂ-flE((/h))(xM—xl\z)]: ﬂ;l _]‘17 _

The set {wx,|1€o,(S)} is separable because X is, hence the set is
countable.

We conclude this discussion by studying another subset of the
spectrum.

DEFINITION. Let A be a bounded linear operator on X, then s,(A4)
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= {2|there exists a sequence (z,) such that |z,|=1 and (AI—A)x,—0}.
See [5] p. 51.

LEMMA 1. o,(S)cal(T).

Proof. Let x+0 satisfy Sx=ax. If for some n, N*x=0, let us
take the first such integer. Then
TN '2=(S+N)N*'z=N""'Sx=IN""x ,
and thus 1€ o, (T)cao(T). If for every n, N*xz+0 then
N”o:v_/z Ny N+

(N"2) _ (g4 Ny NT
T]N"a:l 5+ )[N”ml [N?z| | N™x|

It is enough to show that for some subsequence %,

| N"iz |
Let us assume, to the contrary, that for some ¢>0 | N**'w|=¢|N"z| for
all n, then

lz|< | Na| §JNZ“" < ... gi\]@,{, ,

but this would imply that
lim /' [N*|=1lim /| N*| ' [&| Zlim sup /| N*z|

n—oo n—>co n~>oo

>lim sup &/ |z =« .

n—>o0

But N is a generalized nilpotent and thus lim7*/|N"|=0.

n~»oco

THEOREM 5. o(T)=ay(T).

Proof. By Theorem 2 and Lemma 1 o,(7)vu o (T)Co,(S)Cal(T).
Thus it is enough to show that o (T)co(T). Let 1€ o,(T) we may
assume that 1=0. If 0¢ oy(T) then |Tx|=¢|xz|, v € X, for some positive
¢. This implies that 7X has a closed range, but 7X=X hence TX=X,
which contradicts the assumption that 0e o, (7).

Let us conclude this section with a few examples.

1. Define in [, the generalized nilpotent operator N by

N(xly Lyy Xzy *° '):(xzy Oy Ly, Of i ')

and let S=0. S is compact while T is not weakly compact.
2. Let X be the space of continuous functions on [0, 1] vanishing
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at the point 0. Define N by Nf=yg, g(w):gxf(s) ds, and let S=0. S

has a closed range while 7' does not. 0e€o,(S) but 0¢ o (7).
3. Let N be defined as in 2, and S=I. T and S have closed
ranges but the range of N is not closed.

5. Decompositions of spectral operators. Let T4, ---, T, be n com-
muting operators. There exists a minimal algebra of operators A, with
the properties :

1. T,e¥, i=1,2,---,n.

2. If UeN and U-' is a bounded everywhere defined operator then
Ute .

3. The algebra A is uniformly closed.

This algebra will be called the full algebra generated by T4, ---, T,,
and it is a commutativealgebra. Let 4y denote the space of homomor-
phisms from U to the algebra of complex numbers. By Condition 2,
and the Gelfand theory [4], if Ue U then o(U)={u(U)|pe 4y} ; thus if
#U)=0 for each pe 4y then U is a generalized nilpotent.

LEMMA 1. Every scalar operator S is the sum S,+1iS, where S, and
S, are scalar operators and

1. S.S8,=8.S.

2. o(S) and o(S,) are sets of real numbers.

3. The Boolean algebra of projections generated by the resolutions
of the identity of S, and S, is bounded.

Proof. Let E(-) be the resolution of the identity of S; then

S= SzE(dz) - S(w i) E(dR) = SxE(dz) +iSyE(dz)

:SzEl(d/l)—i—iSzE._,(dz)
where
E(x)=FE{z|z=x+1iy and z¢c a}
E(a)=E{z|z=x+1y and y e a}
Conditions 1, 2, and 3 are readily verified.
THEOREM 1. Let T be a spectral operator. Then there exist two
operators R and J such that
1. T=R-44J and RI=JR

2. The sets o(RK) and o(J) are real sets.
3. R is a scalar operator and J is a spectral operator.
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4. The Boolean algebra of projections generated by the resolutions
of the identity of R and J is bounded.

If R, and J, satisfy Condittons 1 and 2, then they are spectral
operators and there exists a generalized milpotent M such that

R=R+M, Ji=J+iM .

REMARK. By the last assertion and Theorem 8 of [1] Conditions 1,
2, and 8 insure uniqueness. We shall call R the real part of T and
J the imaginary part of T.

Proof. Let T=S+N. Using the notation of Lemma 1, put R=S,,
J=8,—iN, and Conditions 1., 2., 3., and 4. follow by Lemma 1. Now,
if R, and J, satisfy 1., and 2., then by Theorem 5 of [1], the operators
R,J, R, J, commute. Let % be the full algebra generated by these
operators, if pe 4y then

0=(T—T)=p(R—R)+ip(J—J,)
but p(R—R,)) and p(J—.J,) are real numbers by Condition 2. Hence
HR—R)=p(J—~J)=0 .
Thus if M=R—R, then M is a generalized nilpotent and J—J,=¢M.

LEMMA 2. Ewvery scalar operator S can be written as the product of
two scalar operators T, and T, which satisfy

1. T\T,=T,T,=S.

2. o(TY) is a set of mon-negative numbers and «(T,) is a subset of
the unit circle.

3. The Boolean algebra of projections generated by the resolutions of
the identity of T, and T, s bounded.

Proof. It follows from the multiplicative property of the spectral
measure E(-) of S that

S:SlE(dk):S 12 lE(dZ)Ssgn AE(d2) .
Thus S=T.T, where
7= {121 B = [eEan it B

is defined by
E()=E{| 12| ea}

and
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T,— Ssgn 2E(d2)= S,uEz(d/t)

where
E(a)=E{2|sgnieca} .

It is easy to verify Conditions 1, 2, and 3.

THEOREM 2. Let T be a spectral operator. Then there exist two
operators P and U such that

1. T=PU=UP.

2. o(P) 18 a set of mnom-negative numbers and o(U) is a subset of
the unit circle.

3. U s a scalar operator and P is spectral.

4. The Boolean algebra of projections generated by the resolutions of
the identity of P and U 1is bounded.

If P, and U, satisfy 1. and 2., then they are spectral operators and
U=U+N, P,=P+N, where N, ond N, are generalized wnilpotents and

N= 3 (- NU)P .

REMARK. By the last assertion Conditions 1, 2, and 38 insure
uniqueness. The operator P will be called the absolute value of T and
U the argument of T.

Proof. Let T=S-+N. Using the notation of Lemma 2 put P=(T}
+T5'N) and U=T,, then PU=T because T, N=NT, (Theorem 8 of [1]).
Now, Conditions 1, 2, 3, and 4 follow by Lemma 2. Let P, and U,
satisfy 1 and 2; then by Theorem 8 of [1], P, U,, P, U commute.
Let A be the full algebra generated by these operators. If uze 4y then
wT)=pP)(U)=mP)(U,) and by Condition 2 p(P)=p(P;) and (U)
=p(U,)). Thus N,=U,—U and N,=P,—P are generalized nilpotents.
Now

T=UP=(U+ N,)(P+N,)=UP+ N,P+UN,+ N,N,
or
—PN,=(U+N)N,

hence
N,=—(U-+N,))'NP

=~ (S (1@ NNP= 3 (~ U Ny P

In order to apply these theorems we need the following result.
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THEOREM 3. A spectral operator T s a scalar operator whose
spectrum lies on the unit circle if and only of : T* is a bounded every-
where defined operator, and there exists a constant M such that

[T <M n=-+1, +2, -+ .

Proof. 1t T:S  1E(d7) then

Al

]T"l:” :l,i"E(dz)'gzl sup {|E(«)| |a a Borel set}

1Al

by [1], p. 341. Conversely assume that |T"|<M n=+1, +£2, --- then

j oj~T 121>1
R(A; T)=
l__ ;}jn(T—l)nM , H I<1

because that two series converge. Thus o«(T)cC {1| |A|=1} and |R(1; T)|
<M/|1—|4l| if |A}#1. By Lemma 3.16 of [2] if T=S-+N, where S is
scalar and N is a generalized nilpotent, then N*=0. Hence

Tn: Sn+nNSn~1 .
Therefore nN=(T"—S")S~-®",

Thus »N is a bounded sequence of operators and therefore N=0.

LEMMA 8. Let S, and S, be two commuting scalar operators with
real spectra, if S,+S, is spectral then it is scalar.

Proof. Let S,+S,=S-+N where S is scalar and N is a generalized
nilpotent. By Theorem 3 the operator ¢'S*M=¢"%1.¢"% is a scalar
operator, but

) o 3 . ® 7/ n-1
¢ = giSgV = gi5 L { N's S LL\P,
n=l N

y
hence

iNews 3 N g
n!

n=1

hd > n—1
but the operator e Z(LN-)'—»-— possesses an inverse and thus N=0.
n=1 n.

THEOREM 4. Let S, and S, be two commuting scalar operators, if
S.+ S, is spectral then
1. S,+8S; %8 a scalar operator.
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2. The real (vmaginary) part of S,+S, is the sum of the real
(imaginary) parts of S, and S,.

Proof. Let S, S, and S,+S, be decomposed into real and imaginary
parts as in Theorem 1. Then

S,;=R,+id, , S,=R,~+1J, , S,+S,=R+1iJ

where R, J,, R,, J, and R are scalar operators, while J is spectral, and
would be scalar if and only if S,+.S, is a scalar operator. The operators
R, J,, R,, J, commute and thus by the Gelfand theory [4] R,+R, and
J,+J; have real spectra. By Theorem 1 R, +R,=R-+M and J,+J,=J
+4M, where M is a generalized nilpotent. By Lemma 3 the operator
R, + R, is a scalar operator, but R is scalar too, thus by Theorem 8 of
[1] M=0. Now J,+J,=J which is a spectral operator and, again, by
Lemma 3, J is scalar. Thus S,+S, is scalar and B+ R,=R, J,+J,=/J.

THEOREM 5. Let S, and S, be two commuting scalor operators. If
S.S, is spectral then
1. 8.8, 48 a scalar operator.
2. The absolute value (argument) of S.S, is the product of the ab-
solute values (arguments) of S, and S,.

Proof. Let S, S, and S.S, be decomposed as in Theorem 2.
S1:P1Ul ) S2:P2U2 SISZZPU .

The operators U,, U,, U, P, and P, are scalar, and P is a spectral
operator, which is scalar if and only if S,S, is scalar. Using commuta-
tivity of the operators in question and Theorem 2 we derive that

PIPZ:P‘{—M ’ U1Uz:U+N1 ’

where N, and N, are generalized nilpotents and N,= 37 (—N,U)**'P,
By Theorem 3, N,=0 and hence N,=0 too, which proves the second
assertion. In order to complete the proof it remains to show that PP,
is scalar. Now P is spectral, let P=P,P,=S+M where S is scalar and
M a generalized nilpotent. Let E(-) and F(-) be the resolutions of the
identity of P, and P, respectively. Denote E{1{1>¢}=E, and F{1|2
>e¢,} =F,, then the spectrum of E, P.F. P,=SE, F, +ME, F, on E.F, X
is contained in the set {1|1=ee¢,} by the Gelfand theory. The operator
log (E. P.E, P, is thus well defined and it is not difficult to show that
it is equal to log (ESIPI)—{—log (EP,)- This sum is spectral by [1], p. 340,
and by Theorem 4 it is scalar. Thus E. P,F. P, is scalar and therefore
ME, F,=0. By countable additivity MEF,=0 but P,E,=P, and P,F,
=P,. Thus
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PP,=PEPF,=SEF,+MEF,=SEF,,

but P,P,=S+M, hence S+ M=SE,F,, therefore S=SEF, and M=0 by
Theorem 8 of [1]. Hence P,P,=S is a scalar operator.

REMARK. From Theorems 4 and 5 it follows that the sum or pro-
duct of two commuting spectral operators is spectral, if and only if, the
sum or product of their scalar parts is scalar.

A decomposition of a non-spectral operator 4 into real and imagi-
nary parts is possible in some cases.

THEOREM 6. Let A be an operator and o(A)C K where K satisfies

1. There exists a function f which is analytic and one-to-one in «
netghborhood of K.

2. The image of K is a subset of the unit circle.

3. The inverse function of f exists and is analytic in a neighborhood
of the unit circle, let us denote this function by g.

4. 9@)=g() if |z|=1.
Then A=A,+1A, where o(4,) and «(A,) are sets of real numbers and
AA,=A,A,. If A=B,+1B, where B, and B, satisfy the same conditions
then B,=A,-+N and B,=A,+iN and N is a generalized nilpotent.

Proof. Let ¢(z)=g(1/f(z)) then ¢ is analytic in a neighborhood of
K and for ze K, ¢(z)=z. Define

A :éﬂ(A) and A, _A- (A) .
! 2 : 2i

If A is the full algebra generated by 4 and pe dy,
(A= HA) T #((4)
2

is the real part of x(A), and p(4,) is the imaginary part of p(A4). Thus
the first part of the theorem is proved. The second part is proved as
in Theorem 1.

We conclude this section by a study of roots of operators. The
operator B is said to be an nth root of 4 if B*=A. The operators A
and B commute AB=BA=B"*'. Let A be the full algebra generated
by B. If pe 4y then p(B)"=p(A) thus

o(B)C (o(A))"

Thus if B"=I then o(B)c {2|4"=1} and hence is a finite set. By
Theorem VII. 3.20 of [3], B is spectral and by Theorem 3, B is a scalar
operator. Thus
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n—1

B= Y ¢/ E, where Ei=F,, E.E,=0

k=0

if k=j, and >z  E.=1.

THEOREM 7. Let S be a scalar operator with real spectrum whose
resolution of the identity is E(-). Let SlzngnE(dz) where arg IV

=(arg A)/n. If S, satisfies Sp=S, then o(S,)cC (a(S))'", and if o(S,)c {2*|2
€ o(S) and arg 2'/"=(arg A)[n} then

S,=S,+N and N=NE0>) and N"=0.
Proof. The operators S; and S, commute by [1] p. 329. Let U be the

full algebra generated by them. If pgedy then g(S)=px(S,) and thus
S,—S,=N is a generalized nilpotent. Now

(1) S=Si=St+aNSy D gty o NSy
therefore
N(nsq—1+_?%§7},2f D NS4 oo 1N =0

but by Corollary 4 of Theorem 1, Section 3, NS?-'=0. Thus by Theorem
2 of §3, N=NE({0>), but then NS{=0 for every integer ¢. Instead of
(1) we have, therefore,

S=87+N* or N*=0
which completes the proof.
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EUCLIDEAN AND WEAK UNIFORMITIES

J. R. ISBELL

Introduction. This paper is a study in the structure of some special
classes of uniform spaces. In outline, machinery is developed in suec-
cessive stages, roughly two stages. The first stage is illustrated by an
unsuccessful attack on the characterization of subspaces of Euclidean
spaces, in the usual uniform structure. The second stage leads to a
characterization of those uniform spaces which are subspaces of Eucli-
dean spaces in the finest structure consistent with the topology.

The main tool in the second stage is a covariant functor on uniform
spaces to uniform spaces which is closely analogous to the derivative,
the main tool employed by Ginsburg and the author in [4]. It yields
also a number of results which complement, and a couple which improve,
results of [4] and of [5].

That tool is inapplicable to the study of the usual Euclidean uniform
structure. The approach attempted is to get a subspace of E™ as the
inverse limit of the nerves of its uniform covering, or of any basis of
uniform coverings. Indeed there is a basis of coverings whose nerves
are uniformly equivalent to subspaces of E"—FRuclidean coverings, let us
say, and the nerves, FEuclidean complexes—and in some sense one can
set up an inverse system of mappings on these nerves ‘‘uniformly ”’
within £”. The contribution of this paper is to formalize this approach
and clear away imaginary difficulties, leaving the very real difficulties
of characterizing Euclidean complexes and formulating reasonable ecri-
teria for a whole sequence of complexes connected by mappings to fit
smoothly in £”. Beyond this, it is shown that for a simplicial complex
to be Euclidean, it is sufficient that its 1-skeleton should be Euclidean.

The author has profited from discussions of this material with Er-
nest Michael, G. D. Mostow, and Edward Nelson.

1. Coverings. We follow the usual practice of designating a topo-
logical space (X, T') by the abbreviation X. For a uniform space (X, )
we write pX. As is fairly well known, the uniformity is determined
by a knowledge of

(a) which relations in X are entourages, or

(b) which coverings of X are uniform, or

{¢) which pseudometrics on X are uniformly continuous. In this
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paper we are concerned mostly with coverings, and therefore we adopt
the convention that g is the family of all uniform coverings. It is
convenient to choose the convention according to which a uniform cover-
ing need not consist of open sets. Let us recall the defining conditions :
X is a completely regular topological space and ¢ is a family of cover-
ings of the set X such that

(i) If uep and u is a refinement of », then ve p;

(ii) The intersection uAv of two coverings in # is in ¢ ;

(iii) Every covering in p has a star-refinement in g ;

(iv) If {U,}ep then the interiors U,” form a covering and this
covering is in p¢;

(v) For any point & the stars of x with respect to coverings in ¢
form a neighborhood basis at z. (The reader who is unfamiliar with
the terminology should consult Tukey. [10])

Recall the notation u<*v for ‘““u is a star-refinement of v’’, and
St(A, u) for the star of a set A with respect to a covering u. A normal
sequence of coverings is a sequence (u") satisfying w"*"*<u" for all =.
Recall that a function is uniformly continuous if and only if the inverse
image of every uniform covering is uniform.

We need the fundamental result

1.0, For every uniform covering uw of a uniform space pX there is
a uniformly continuous pseudometric d on pX such that for each x in X,
the set of all y such that d(z,y)<1 is a subset of some element of wu.
Exactly this result does not seem to be in print, though Bourbaki has
a proof [3] of the corresponding statement connecting entourages with
pseudometries. It will suffice to sketch the similar proof of 1.0. Take
a normal sequence («") of uniform coverings, with #°=u. For each =z,
y, in X, let g(x, y) be 0 if St(x, w") contains y for all », 2 if St(x, u™)
never containg y, and otherwise 2'-", where » is the largest index for
which ye Si(z, u*). Let d(w, y) be the infimum of 1 and all the various
finite sums 3 g(v;, 2;+1), where p,=2 and p,=y. By the form of the
definition, d is a pseudometric. To see that d is uniformly continuous
on X x pX, it suffices to observe that u"xu™ is a uniform covering on
each element of which d varies no more than 2'-". Finally, suppose
S 0:1) <1, =2, po—=y. If we pick p and ¢ respectively so that

(1) p is the last p; such that g(p, )+ +g(®i_, ;)<1/2, and

(2) q is the last p, such that g(p;, pie))+ -+~ +9(0;-1, ) <1/2, then
computation shows that also g(p;, ;1) + -+ +9(Pny, P)<1/2. If x and y
are not both in some element of ', then one of the pairs (x, p), (v, q),
(¢, y), fails to be contained in any element of »°. Then induction leads
to a contradiction which completes the proof.

A family of functions f, all defined on one uniform space #X into
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one uniform space vY is equiuniformly continuous if for each uniform
covering v of vY there is a uniform covering » of X which is at once
a refinement of all f,7%(v). We wish to regard the nerve of a covering,
or any simplicial complex, as a uniform space in the structure in which
a mapping f into the complex is uniformly econtinuous if and only
if the functions f,, into the real line, which are the barycentric
coordinates of f, form an equiuniformly continuous family. This dictates
the following definition. A wumniform complex pX is a simplicial complex
X consisting of points x with barycentric coordinates x,, provided with
the distance function d(z, ¥)=max|z,—y,|, and the uniformity ¢ induced
by d.

In this paper the nerve N(u) of a covering u is always regarded as
a uniform complex. The general vertex of the nerve of {U,} is called
a. The star of a vertex «, is the union of the incident simplexes, that
is, the set of all points ¢ in N({U,}) with nonzero a,th coordinate. Note
that the stars of vertices always form an open covering {St(«)}, but this
covering is uniform if and only if the complex is finite-dimensional. For
any function % with values in a uniform complex, the ecoordinate func-
tions %, constitute a partition of unity. If {A,} is a partition of unity
subordinated to the covering {U,}, this means precisely that for all «,
h7(S{a))c U,. In the finite-dimensional case we may summarise as
follows. A covering w is realized by a mapping into a uniform space
if it is refined by the inverse image of some uniform covering. We
have

1.1. An equiuniformly continuous partition of unity subordinated to
a finite-dimensional uniform covering of a uniform space determines a
realization of the covering by a uniformly continuwous mapping into its
nerve.

It should be noted that for infinite-dimensional complexes it might
well be desirable to employ a different uniformity, and perhaps even a
different topology. In this paper we shall be concerned only with finite-
dimensional complexes, and the choice of definitions is partially justified
by

1.2, THEOREM. To every finite-dimensional uniform covering of
uniform space there is subordinated an equiuniformly continuous porti-
tion of unity.

Proof. For every uniform covering » of pX there is a uniformly
continuous pseudometric d, as given by 1.0, such that each point x is
in at least one U,eu which contains the sphere of d-radius 1 about
z. If wu is finite-dimensional, so that each « is in at most » sets U,,
consider the functions d.(x) = d(x, Y — U,). For each @, > d.(x) is a
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finite sum and hence a definite real number e¢(r)=1. Let f(x)=d(x)
le(x). The functions f, form a partition of unity subordinated to u.
For any >0, the covering of X consisting of all apheres of d-radius e
is uniform ; and on such a sphere no f, varies more than 4ne (by a com-
putation). Thus {f,} is equiuniformly continuous.

It follows, of course, that a uniform covering can be realized by a
mapping into a Euclidean space if its nerve is uniformly equivalent to
a subspace of a Euclidean space. Let us call such a uniform complex
a Euclidean complex, and such a covering a Fuclidean covering.

Smirnov has defined [9] a ‘‘ uniform complex’’ as a geometric com-
plex K in a Euclidean space E" such that the diameters of the simplexes
of K are bounded above and the distances between pairs of disjoint
simplexes of K are bounded away from zero. Because of the overlap-
ping terminology, it should be observed that an abstract complex K is
Euclidean, as defined above, if and only if it can be embedded in some E™
as a uniform complex in the sense of Smirnov. The proof of ““if >’ is
trivial ; the converse is an exercise which we may omit, since it will
follow from 1.8.

A covering u is star-bounded, of density at most n, if each element
of # meets at most n other elements of #. (The term ‘‘ star-bounded >’
is due to Mostow [8], ¢ density’’ to Boltyanski [1].) Obviously a star-
bounded covering is star-finite and finite-dimensional, but not conversely.
A collection v of sets is said to be discrete relative to a covering u if
no element of u# meets two different elements of ». (Note that a subs-
pace of p#X is discrete in the induced uniformity if and only if it is a
discrete collection of points relative to some covering in #.) A covering
% may be a finite union of collections, u', u?% -.-, each of which is dis-
crete relative to u. Clearly such a covering is starbounded ; conversely.

1.3. Ewvery star-bounded covering w is the union of finitely many
subcollections each of which is discrete relative to u.

Proof. In u={U,} let {U;} be a maximal subset such that no set
U, meets more than one Uj. Evidently {G}} is discrete relative to .
Now in {U,}, for each U,, there are at most m sets U, meeting U,
and each of these meets at most m—1 more sets U, ; let this family of
1+m+(m*—m) or fewer sets be called F,. Each F, meets {Uj}, since
otherwise U, could be added to the supposedly maximal family. Having
w'={Upg}, u* ---,u" let u**' be a maximal subset of {U,} disjoint from
u', -+, u*, and such that no element of {U,} meets more than one ele-
ment of #**'. For each U, which is not in %!, --., u*, necessarily u**!
meets F, (as above). Therefore if U, is not in u!, ---, %™, then F, is
exhausted and U, is in u™*'.
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REMARK. The properties just shown to be equivalent are graph-
theoretic, that is, they depend only on the 1-skeleton of the nerve of
the covering.

Tukey has defined a star-finite collection of coverings as a collection,
the union of any two of whose members is star-finite [9]. He proved
(though he states less) that a uniform star-finite covering has a uniform
star-refinement such that the union of the two coverings is star-finite,
and hence by induction one has a normal sequence which is a star-finite
collection [10, pp. 49-50]. Similarly we define a star-bounded -collection
of coverings as a collection, the union of any two of whose members is
star-bounded ; the corresponding result is given below (1.6).

A Euclidean covering is star-bounded, and more. Let us say that
the covering u is of polynomial growth if there is a real polynomial P
such that, for each Uewu, for all natural numbers %, the number of
elements V of wu such that there is a chain U=U,, U,, ---, U,=V, all
U, in u, UnU,., nonempty for all ¢, is bounded by P(k).

1.4. Ewvery Euclidean covering is of polynomial growth.

Proof. Suppose the nerve N(u) is embedded in E™ by a uniform
equivalence. Let d be the distance function in N(u) and e(x,y) the
Euclidean distance between the images of # and y. There is ¢>0 such
that d(«, y)=1 implies e(x, y)=e; and there is 6>0 such that d(z, y)<¢
implies e(x, y)<1. If « and y are vertices of N(u) corresponding to
members of » which are joined by a chain of length %, then e(x, y)<k/s.
Then for each vertex x, the set of all such y is a set of points whose
mutual e-distances are all at least ¢, packed in a Euclidean sphere of
radius k/J; hence their number is bounded by a polynomial in k.

Call a covering lirear if its nerve is uniformly equivalent to a sub-
space of the real line R.

1.5. A covering w is linear if and only if it can be indexed with
integers, u={U,}, so that U, meets U, only if |n—m|=1. This is equi-
valent to the conditions that u s,

(&) countable,

(b) one-dimensional,

(c) acyclic,

(d) atriodic, that is, of density 2 or less, and ;

(e): (1) the nerve of u does not contain three disjoint half-lines ;

(ii) <4f the merve contains a whole line then it is connected ;
(iii) 4f the merve contains two disjoint half-lines then it has only
Sinitely many components.
The proof is omitted. Note that connectedness implies (e).
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By a standard argument (ef. 1.1 of [4]) we obtain

1.6. Let the covering v be o star-refinement of w, that is, v<*u.
If u s

(a) star-bounded, or.

(b) of polynomial growth, or.

(c) linear, then there exists a covering w which also satisfies (a),
(b), or (¢) such that v<w*<<wu. Further, uvw is star-bounded ; thus if u
s a uniform star-bounded covering of a uniform space then there is «
star-bounded normal sequence of uniform coverings u™ such that u'=u.

Proof. Let C be the set of all subsets y of w such that there is at
least one point common to all the members of y. For each ordered pair
(1, 8) of elements of C, let W.,; be the union of all Vewv such that the
set of all elements of # which contain V is precisely 7, and the set of
all elements of » which contain S#(V, v) is precisely 6. Let w={W,}.

Clearly v<<w. For any nonempty W, § is nonempty, and any V
which meets W.,; is contained in every member of 6. Thus Si( W, w)c U
for any member U of ¢, and w<*u.

If u is star-bounded of density m, then for each W.,; choose Ue .
No W,s can meet W,; unless every element of « and of 8 meets U;
therefore there are at most 2*™ such W, and w is star-bounded. Clearly
uvw is star-bounded, and the last statement of the theorem follows by
induction.

If the growth of » is bounded by a polynomial P(n), then u is star-
bounded of density m<P(1), and the growth of w is bounded by 2"p. It
may be of interest to note that this is a polynomial of the same degree
as P.

Now suppose u is linear. We must modify the above covering
{Wy,}. Observe that if W,; is not empty then each of y and J consists
of one or two elements. If u is indexed as in 1.5, v = {U,}, then
there are four possibilities :

(a) r=06={n}, for some % ;

(b) r={n,n+1}, 6=n;

(¢) r=o0={n,n+1};

(d) y={n,n+1},0={n+1}. For each n, replace the two sets des-
cribed under (b) and (c¢) with their union. One readily verifies that the
modified w is a linear covering satisfying v<w<*u.

From 1.6 we may deduce that, for any uniformity g, the set of all
star-bounded coverings in p forms a basis for a uniformity, say bg.
The axioms on coarsening (i), intersection (ii), and interiors (iv) are
obvious ; star-refinement (iii) follows from 1.6, and the neighborhood
basis axiom (v) from the fact that every finite covering is star-bounded.
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Since the inverse image of a star-bounded covering, under any function,
is star-bounded, therefore when f: #X—7Y is uniformly continuous,
S bpX—brY is also uniformly continuous. We summarize this (as in
[4]) in the slightly elliptical statement that b is a functor. All this
is true also for coverings of polynomial growth. However, linear cover-
ings do not in general suffice, for the set of all linear coverings in g is
not closed under finite intersection. The finite intersections of linear
coverings in ¢ do form a basis for a uniformity, which is the familiar
uniformity cp induced by real-valued uniformly continuous functions. To
see this it suffices to observe that, by 1.2 and 1.1, to every linear uni-
form covering u one may asssciate a mapping into N(u)c R which rea-
lizes u.

1.7. For any uniform space pX, the star-bounded coverings in p, as
well as those of polynomial growth, form a basis for a uniformity con-
sistent with the topology. Both of these transformations are functors.
The weak uniformity cp induced by the real-valued uniformly continuous
Junctions on pX has a basis consisting of all the Euclidean coverings in g,
and o sub-basis consisting of all the linear coverings in p.

The proof that Euclidean coverings from a basis for cy is again by
1.2 and 1.1. Whether any purely combinatorial result suc¢h as 1.6 is
valid for Euclidean coverings is not known. (Of course 1.6 applies if
it is true that every countable covering of polynomial growth is Eucli-
dean.)

Let mE™ denote Euclidean n-space, mR the line, in the usual uni-
formity. Note that mE™ is the product of n copies of mR. Beyond
this we may omit the ‘“m >’ for the present, since no other uniformities
on these spaces are being considered.

1.8. THEOREM. A necessary and sufficient condition that o uniform
complex X be Euclidean is that the vertices of X may be identified with
a set of points in some K", any two of which are at distance greater than
1, so that the distances between pairs of wvertices which are joined by an
edge (1—simplex) of X are bounded. In fact, this is the necessary and
sufficient condition thot there exist a uniform equivalence ¢ of X into the
product of E™ and a cell of some dimension ; and ¢ may be taken to be
semilinear.

Proof. The necessity (both statements) is evident. Suppose con-
versely that f maps the vertices « of X into E™", with the distance
from fla) to f(f) greater than 1 for all @73, and less than M when «
and 3 are joined by an edge. For any z=(z,) in X, define (¢(x),---,
e ))=g(x)=Sx. (a)e E". Evidently ¢ is uniformly continuous.
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Let C, be the sphere of radius 2M+1 about g(a); let K, be the
least subcomplex of X which contains ¢='(C,). The vertices of K, are
mapped by f into points of distance 1 or more from each other in a
sphere of radius 3M+1, and hence their number has a bound ¢--1.
Then each K, may be embedded by an isometry %, in the abstract g¢-
dimensional simplex ; embedding the simplex in a cell in E?9, we obtain
mappings A, : K,—E? which are semilinear uniform equivalences, having
a common modulus of continuity, and such that the mappings A,* have
a common modulus of continuity. Define an extension %, of %, over X
as follows: every x in X can be expressed uniquely as a convex com-
bination #y-+(1—t)z, where y is in the subcomplex K, and z has coor-
dinate z,=0 for all # in K, ; let i.(x)=th(y). Then {i,} is an equiuni-
formly continuous family of semilinear mappings. Further, there is a
cell in E? which containg all their ranges.

Finally, {g(K,)! is a star-bounded covering of ¢(X), and thus, by
1.8, it is a union of subcollections #',---, v°, each discrete relative to
the whole covering. For j=1, ---,s, let d,= > [i.|9(K,)€v’]. Observe
that on each star St(8) in X, d, coincides with one %, (that is, at most
one fails to vanish; for S#(f)c K, and ¢g(K,) meets at most one ¢(K,)
in »’). Therefore d,: X—E“ is uniformly continuous. The definition of
¢: X—>E"+* ig completed by putting (¢u(@)), n+(GF—1g+1 < k <n+ jq,
equal to the vector d(«), for each j=1, ---,s.

We have a uniformly continuous semilinear mapping ¢ of X into
the product of E” and a ¢gs-dimensional cell. Uniform continuity of ¢!
means that for each >0 there is 6>0 such that two points at distance
>e¢ in X are mapped by ¢ into points at distance >J. For any two
points, @, y, in X, either g maps them into points at distance >1 (and
so does ¢), or they lie in a common K,. But then some d, coincides on
K, with the embedding %,. Thus ¢ is a uniform equivalence.

1.9. COROLLARY. If the 1-skelton of a uniform complex X is Eu-
clidean then X is EKuclidean.

1.10. THEOREM. The following conditions on & uniform complex X
are equivalent.

(a) X is a countable, star-finite, finite-dimensional complex.

(b) X s a locally compact, o-compact, finite-dimensional space.

(¢) X is homeomorphic with a closed subset of a Euclidean space.

(d) There is a distance-increasing homeomorphism of X into a Eu-
clidean space.

(e) There is a uniformly continuous homeomorphism of X upon a
closed subset of a Euclidean space.
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Proof. The implications (e)=(c), (d)=(c), and (c)=>(b)=x(a), are evi-
dent. From the hypothesis (a) that X is a countable star-finite uniform
complex of dimension 7, we shall construct the mappings of X into
En+® required for (d) and (e). Clearly it suffices to construct such a
mapping into E*** for each component of X. Let Y be a component
of X, and let ¢ be a one-to-one semilinear mapping of Y into E**.
(To construct ¢ it suffices to map the vertices of Y upon a set of points
in general position in E**'.) Since Y is star-finite, ¢ is continuous.

Choose a vertex Y, of the complex Y and let f, be a one-to-one
semilinear mapping of Y into E**** which sends Y, to the origin and all
of Y into the hyperplane a,=0. Let Y, be the subcomplex which is the
closure of the star of Y,; inductively let Y,., be the subcomplex span-
ned by Y, and the vertices which are joined to Y, by 1l-cells of Y.
Since Y is star-finite, each Y, is a finite complex ; and since Y is con-
nected, the union of all Y, is Y. Let Z, be the span of the vertices
not in Y,. For each %, each point p of Y can be written uniquely (in
barycentric coordinates) as Ap,+(1—2)p,, with 1 and 1—2 nonnegative,
p, in Y., p, in Z,. Inductively, let f, be a piecewise linear one-to-one
mapping of Y into E**? sending Y into the halfspace z,<¢, and Z,_,
into the hyperplane x,=¢, and increasing distances in Y,. Write fu.(p)
=g(p)+(p), where g¢g(p) is the projection of fi(p) on the =z,-axis, A(p)
the projection on 2,=0. For p in Z,, fi..(p) is to be ag(p)+ Bh(p), where
a and f are large constants to be determined. For p in Y, firi(D)
=f{p); and for general p=Ip,+(1—2)p, (as above), fi..(p) must be
(@) F+A =D fir(p). On Z,, g is constant, and 4 is one-to-one, piece-
wise linear, and continuous. The common part of Z, and Y,., is a
finite complex, and hence there exists /5 so large that 7 increases dis-
tances on this complex. Similarly, if « and 8 are large enough, f..
will increase distances on Y,.,, and the induction runs. Finally we have
a sequence (f;) of continuous mappings of Y into E™*% converging locally
uniformly to a limit ¢. Then ¢ is continuous ; and ¢ increases distances,
which implies that ¢~* is continuous. Thus (2) implies (d).

Since each Y, is compact, one can go back and modify the constants
« and S at each step so as to end with a uniformly continuous homeo-
morphism g upon an image which is not necessarily a closed set. De-
fine a real-valued function 2 on Y as follows. For the distinguished
vertex Y,, /(Y;)=0. For any other point y there is just one k£ such that
y is in Y,,, but not in y, ; and there is a unique relation y=2p,+(1—2)p,,
0. €Y, mm€Z,. Let My)=k+1—2. Evidently A is uniformly continuous.
Let A/(y) be the point in E*** whose first coordinate is Z(y), with all
other coordinates zero; then g2’ is a uniformly continuous homeomor-
phism upon a closed set. This completes the proof.

The complexes satisfying (d) (in slightly different words) are called
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Lebesgue complexes by Smirnov. [9] Evidently in any fixed E”, (d) and
(e) are not equivalent (if n>1).

2. Bases. This section is primarily a discussion of the subspaces
of the line mR, including a characterization ; it concludes with a formu-
lation of the same approach to subspaces of mE™".

Let us first suppose given the topological space R, and characterize
m among its uniformities. Evidently m is

(a) metric, that is, it has a countable basis of coverings. It has

(b) a star-bounded basis, and it is

(¢) uniformly locally connected, that is, there is a basis of cover-
ings whose elements are connected sets. We shall see that these pro-
perties are shared by m only with the uniformities induced by metrizing
R as (0,1) or as a half-infinite interval; thus m can be characterized
by adding the condition (d): the space is complete.

These are evidently not the conditions to apply to subspaces of mR,
(c) being invalid. We shall have to replace (¢) with some sort of con-
ditions on the nerves of the coverings. It is not enough to say (c¢')
there is a basis of linear coverings, even on the topological space R.
This is shown by the following subspace of mE®?. Take the half-line
consisting of all points (z, 0), <8, and for »=3, 4, ---, take the four
line segments running successively from (n, 0) to (n+1—38/n,1) to (n
+1—2/n,0) to (n+1—1/n,1) to (r+1,0). A sketch shows that this
metric space satisfies conditions (a), (b), (¢), and (d), but not (c); it is
homeomorphic but not uniformly equivalent to mR.

We have indicated some uniformities on R satisfying (a), (b), and
(c), but not (d). For (a), (¢), and (d), consider the following distance
function f. For notational convenience let ¢ indicate e(x, y)=|xv—y|;
let min (z, y)=m. If ex=1, or if m=1, then f(x,y)=¢; otherwise f(=,
y)=eY™. Finally, to construct a nonmetric uniformity on R satisfying
(b), (¢), and (d), let (a,) designate a (variable) sequence of positive num-
bers coverging to zero. For each natural number m, define the covering
w(m, (a,)) to consist of the following intervals.

(1) For every integer ¢ such that neither ¢—1,¢ nor ¢+1is a
positive integral multiple of m, the interval (¢—1/m, ¢ +1/m).

(2) For each positive integer =, the intervals (n+a,, n-+2/m) and
(n—2/m, n—ay,).

(8) For —m=t=m, and for all n, the intervals (n+(t—1/m)a,, n
+(t+1/m)a,). Consider the collection of all u(m, (a,)) such that m=>4
and a,<1/m+1 for all n. One readily verifies that this collection is a
basis of a uniformity having the required properties. One may note
also that all the above examples have bases consisting of linear coverings.



EUCLIDEAN AND WEAK UNIFORMITIES 77

2.1. FEvery uniformly locally connected metric space which is homeo-
morphic to the real line R and has a star-bounded basis of uniform cover-
wmngs 18 uniformly equivalent either to mRE or to an open interval of mR.

Proof. We may call the space pR; it is required to construct a
uniform equivalence of pR into mE. We are given a countable basis
{u} for p, a star-bounded basis {v*}, and also a basis consisting of
coverings with connected elements. The interiors of these connected
sets are open intervals, still forming uniform coverings, which still con-
stitute a basis {w®}. If for each » we choose w” refining u”, we have
a countable basis of coverings with open intervals. Evidently we may
suppose each w"*! is a star-refinement of w”® (since some w"™** is), and
we may suppose w'<<v* for some «. Next we interpolate linear cover-
ings 2* consisting of open intervals, w"*'<z*<<w", as follows. Choose
a point p and let Z* be St(p, w**'). Evidently Z is an open interval
(p, ¢1). Having points p, and ¢,, define Z% as St(g,, w**') and Z", as
St(pg, w"*'). At some stage an improper interval may be obtained, so
that p, or ¢, does not exist; in that case omit so much of the construe-
tion as involves the missing points. Evidently the union of all 77, »
fixed, k=0, +1, .-, is a nonempty open and closed subset of R, hence
all of R. Since every intervel in w”*, contains at most one of the
points  p, Dy, Qp, W <2"={Z%}; and since w"T<*w", hence F<w".
Clearly z* is linear.

To see that {z"} is a star-bounded family, consider any m<n. Each
element of z* meets at most two other elements of 2z* and at most three
elements of z*. Thus if z™uz" is not star-bounded then there exist sets
Z in 2™ meeting arbitrarily many elements of z”. A fortiori there exist
sets V in v* meeting arbitrarily many elements of z”. Since 2" is linear,
one can find for each positive integer 7 a set ¥V € v® countaining 7 points,
no two of which lie in a common element of z*. But there is a cover-
ing v*<z* such that v*uv® is star-bounded, since the v's form a star-
bounded basis. The contradiction establishes that z™uz” is star-bounded ;
and the family {z"} is a countable star-bounded basis consisting of linear
coverings each of which consists of open intervals.

Now index the elements of z* with rational numbers s, 2"={Z}}, as
follows. For m=1, the values of s are the integers & assigned above;
thus Z? does not meet Z? if |s—¢|>1. Having indexed 2", consider each
Z*. There is a next rational number ¢>s such that some element of 2”
is called Z?, except possibly for one (greatest) value of s; if there is
such en exceptional s, assign to it the value t=s-+2-". There are fini-
tely many elements Z of z"*! such that s is the least index such that
ZcZ"; and the number of them, %(s) is a bounded function of s (n
fixed). Furthermore, exactly one of them meets an element of 2**!
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which is contained in the next Z7 before Z? (with a possible exception
if there is no such ¢) and exactly one meets an element of z**' which
is contained in Z? but not in Z”. Index these elements of z**' in order
from Zj; toward Z} as Z7*', for i=s, s+ (t—s/Ms)), - - -, t—(t—s)/h(s) (equal
steps). This completes the indexing. Then routine computation shows
that for each point « in R, the numbers g,(x)=max [s|z € Z"] converge
to a limit g(x), and that ¢ is a uniformly continuous function realizing
all of the coverings z". Since {#"} is a basis, g is one-to-one and g is a
uniform equivalence.

If one tries to carry out the construction of 2.1 on the example
given previously of a complete metric space homeomorphic to R having
a star-bounded basis of linear uniform coverings, it breaks down because
ultimately 2**' must be ‘‘ crooked ” in z". It is not crooked in the strong
sense familiar from the construction of the pseudo-arc; indeed, with a
suitable choice, one can arrange that near any point in the space almost
all z°*! are ‘‘straight’ in 2*. Up to some critical value N the chains
¢ follow an approximating smooth path; then z"*! and all subsequent
z* follow the kinds in the curve. This means that we must impose a
very strong straightness condition in order to characterize the subspaces
of mR. Let us use the term chain in u for a subset of a covering u
whose elements correspond to the vertices of a chain of edges in N(u).

2.2. The following conditions on a uniform space pX are mnecessory
and sufficient in order that pX should be uniformly equivalent to a sub-
space of mR.

(a) ¢ has a basis which is a countable sequence of linear coverings
w", with w*'<u®, such that (1) if (U, ---, U,) is a chain in u"*', with
U, and U, both contained in one element U of u", then all U, are contained
in U; and (2) of (U, ---,U,) and (Vy, -+, V,) are two chains in u™*
having no common elements, some element U of u™ contains both U, and
V., and some element V of u™ contains both U, and V,, then U meets V.

(b) p has a star-bounded basis.

The necessity of the conditions is obvious, and the proof of suffi-
ciency is an easy modification of 2.1. However, the proof as given
above does not look ready to be generalized to E*. We conclude this
section with some easily proved remarks outlining another version which
might have brighter prospects.

First, it suffices to work with the completion. Second, if a complete
uniform space has a countable basis consisting of finite-dimensional
coverings, (a) there is a natural inverse system of semilinear mappings
on the nerves of these coverings, and (b) the space is the inverse limit
of this system. I have in mind the mappings defined, for a sequence
{u"}, wr'<*u», as follows. Since u" is finite-dimensional, each element
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U, of u"' is contained in only finitely many elements of »”, and the
corresponding vertices in N(u") span a simplex ; the vertex a of N(u"*)
can be taken to the center of gravity of that simplex, in a uniformly
continuous semilinear mapping. Third, if all the nerves can be em-
bedded in one complete space in such a way that the mappings
Nu"*")—N(u") move no point more than e,, where ¢,—0, then of course
the inverse limit space is embedded in the same containing space. This
is clearly possible under the hypotheses of 2.2.

3. The weak derivative. In this section we describe an operation
on uniformities which generalizes the passage from the usual uniformity
m on a Euclidean space to the finest uniformity @. It is not known
whether this operation is applicable to general uniformities'; the main
results of this section apply only to weak umiformities induced by fami-
lies of real-valued functions.

For any weak uniformity # on a space X, we define the weak de-
rivative wp of p as the family of all coverings of X which have a
refinement of the form {U*N V%}, where {U*} is a covering in ¢ and
the families V*={V¥}, for each «, are finite coverings in ¢ of bounded
dimension. (This is a modification of an operation called the derivative in
[4]. We might as well have required »* only to cover the subspace
U, ; the equivalence follows from the simple proposition 3.6 below.) If
we recall that since ¢ is a weak uniformity, the covering {U,} may be
supposed Euclidean, we see that the typical covering {U,N V%} is (1)
uniformly locally uniform (on £X), (2) uniformly locally finite, and (3)
finite-dimensional.

The proof that wp is a uniformity will be a demonstration that wp
is the weak uniformity induced by a certain family of functions. Let
C(¢2X) denote the family of all real-valued uniformly continuous functions
on pX (uniformly continuous into mR). The term composition will be
used with the specific meaning of a functional composition g(fi---, fa),
where fi,+++, fn, are in C(zX) and ¢ is any continuous real-valued func-
tion on E”. In particular, the family of all such functions on X to R
is the closure, under composition, of C(pxX). (Cf. [5].)

3.1. For each Euclidean space E", the weak derivative of the usual
metric uniformity, m, is the finest uniformity consistent with the topology ;

1. Specifically, applying the definition of wp in the next paragraph to a general
uniformity g, it is not known wheter wu is always a uniformity in the present sense.
The referee points out that it is certainly a regular uniformity in the sense of Morita and
[7]; and there is a non-trivial theory of such structures. In that theory, the referee

observes, 3.5 is valid without restriction on u.
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thut is, the uniformity o defined by all open coverings.

Proof. Evidently any covering in wm has an open refinement.
Conversely, for any open covering { W,} of E", consider a uniform cover-
ing {U,} consisting of closed metric spheres. Since each U, is a com-
pact space, there is a finite uniform covering {G¥} of U, refining the
open covering {U,N W,lall y}. We may take {G?} n-dimensional. Let
D, be the center of the sphere U,, and for each G* meeting the bound-
ary B of U,, let V¢ consist of G} together with all points ¢ outside U,
such that the intersection of the segment pg with B is a point of G¢;
otherwise let V¢=G¢. Evidently {V?} is a uniform finite n-dimensional
covering of mE", and {U,N V¢{} is a refinement of {W,}. Thus wmE"
=ak".

3.2, For any open covering w of ¢ Euclidean space E", there is a
homeomorphism of E™ onto itself which takes w onto a umiform covering
of mE™.

This is obvious.

3.3. THEOREM. The weak derivative of a weak uniformity is a weak
uniformity. Specifically, of p is weak, then wy is the weak uniformity
induced by the closure under composition of C(uX).

Proof. 1If fi, «-+,fn are in C(zX), g: E"—R is continuous, and
is any uniform (even any open) covering of R, then the inverse image
of 4 under g is uniform in aE"=wmE" and hence the inverse image of
u under g(fi,---,fn) is in the family of coverings wg Evidently wp is
closed under intersection; therefore wy contains the weak uniformity
induced by the closure under composition of C(zX).

Conversely, since p is weak, each covering {U,N V¥} in wg may be
refined by a covering {U,N Vi} so that the following is true. There is
a uniformly continuous function f: pX—mE" realizing {U,}. Each v’
={VJ} is finite and at most k-dimensional and is realized by a bounded
uniformly continuous function g,: pX—>mE* (here ¢=2k+1). Also, {U,}
is star-bounded and can be written as the union of p relatively discrete
subcollections #”; and finally, {U,} is countable. We shall construct a
mapping A of pX into (n-+pg)—space.

Choose positive numbers ¢, such that ¢,|g(x){<27/ for all . For
each j, let d; be a uniformly continuous real-valued function on X with
values in [0, ¢;], vanishing outside the star of U, and having the constant
value ¢, on U,. For each x, define the first n coordinates of Z(x) to be
the coordinates of f(x). Let the ¢ coordinates of z(x) from the (n-+q(r—1)
+1)th through the (n-+gr)th be 3 [d{(x)g(x)|U, € n"].
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Since the series >¢;llg;|| converges (absolutely), %: pX—>mE(s=n
+pq) is uniformly continuous. It is clear from the construction that % :
X—aFE* realizes {U,N Vi} =z, that is, z is refined by the inverse image
of some open covering. By 3.2, there is a continuous function 7' : E*—E*
such that T(2): X-—mkE* realizes z. But each coordinate of T(2) is a
composition of a continuous coordinate projection of 7' with the uni-
formly continuous coordinates of 4, and the proof is complete.

From an approximation theorem proved in [5, Theorem 1.7] we have

3.4. COROLLARY. C(wpX) contains all the compositions g(fy, +++, fu)s
g continuous and f; in C(eX), and consists of all uniform limits of such
COMPOSIELONS.

In [5] there is an example of a family of functions A such that the
uniform closure of the closure under composition of A is not itself closed
under composition. That example A is not C(xX) for any p, but this
is inessential. We describe an example of a uniform space pX such that
¢ is weak and w(wp)+#wy, omitting the details of the verification.

Ezample. Let X be the set of all ordered triples (4,7, k) of posi-
tive integers, with the discrete topology. Let ¢ be the set of all cover-
ings # of X such that (1) for some »’, for each n>n/, there is an
element U, of w which contains all (n, 7, k); and (2) for each n (=n'),
for some m’/, for each m>m’ there is an element U,, of ¥ which con-
tains all (n, m, k,). Observe that z has a basis consisting of discrete
coverings ; thus g is weak, and wy and wwpy can be computed without
worrying about dimension. One may verify that a covering u is in wp
if and only if (a) for each n there is m'=m/(n) such that for each m
>m’ there are finitely many elements of « whose union contains all (z,
m, k), and (b) for some #»/, for each n>n’, (i) there are finitely many
elements of % whose union contains all (n,7, k), and (ii) for each m
>m'(n) all points (n, m, k) are in one element of u. Then wwy is deter-
mined by the conditions (a) and (b), (i); in particular, wwe+we.

Powers of w are defined by w**'==ww®; for limit ordinals «, w*u is
the union of the increasing sequence of families of coverings wfy, f<a.
Since the uniformities w*x are successively finer, there must be an «
such that w**'p=w*p. (By 3.4, the first uncountable ordinal is such
an «.)

3.5. Applied to uniform spaces with weak uniformities, the weak
derivative and all its powers are functors commuting with completion.

Proof. If f: pX—vY is uniformly continuous then, since f~' pre-
serves finiteness and dimension of coverings, f: wpX—uwrY is uniformly
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continuous ; thus w is a functor. If F is a Cauchy filter in pX and
{U,N V¢ a typical covering in wp, then F' contains some U, and, for
that «, some V?; being a filter, F' contains U,N V¥. Thus the same
filters are Cauchy in ¢ and in wgy, and the completions 7pX and mwpX
have the same points. Obviously every covering in wry is in 7wy ; the
converse is a routine application of Morita’s demonstration [7 ; Lemma
7, Th. 8, Th. 9] that every uniform covering {V;} of pX can be ex-
tended to a uniform covering {Vj} of npX such that V,=ViNX and
the correspondence Vz——V} preserves the nerve. Thus 7w = wr.
Therefore if w* is a functor commuting with =, so is w**'. The proof
is completed by the observation that every covering in w?*, for « a limit
ordinal, is already in some w® for f<«.

The next four propositions amount to a closer analysis of the theo-
rem of [5] that if C(uX) is closed under composition then for any sub-
space Y of X, in the induced uniformity g*, C(#*Y) contains only the
restrictions of funection in C(uzX).

3.6. Let p*Y be a subspace of pX, and {U,;} @ finite uniform cover-
g of p*Y of dimension k. There is a fimite uniform covering {V,} of
pX, of dimension 2k+1 or less, such that {V,NY} is a refinement of
{U}.

3.7. The weak derivative preserves subspaces ; that is, if p*Y is a
subspace of pX (and p is weak) then the uniformity induced on Y by wp
is wy*.

3.8. If [ is a real-valued function on X, p a weak uniformity on
X, and {U,} o uniform covering of pX such that on each U,, [ is bounded
and uniformly continucus, then f is uniformly continuous on wpX.

3.9. If p*Y is a subspace of pX (¢ a weak uniformily) and f o uni-
Jormly continucus real-valued function cn p*Y, then f has an extensicn
in ClwpX).

Proof of 8.6. This is a corollary of a theorem of Katétov [6]:
every bounded real-valued uniformly continucus function on a subspace
of any uniform space has a bounded uniformly continuous extension over
the whole space. If {U,} is a finite k-dimensional covering of p#*YcC pX,
then {U,} cen be realized by a mapping into a compact subset of E*+';
each coordinate can be extended, by Katétov’s theorem, and the con-
clusion follows.

Proof of 38.7. If p*Y is a subspace of p¢X and {U,N V?} a typical
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covering in wy, then {U,NY} is in g*, the coverings y*={V?N Y} are
finite coverings in g* of bounded dimension, and hence {U,NV¢NY} is
in wg*. The converse is clear in the light of 3.6.

Proof of 8.8. If f is bounded and uniformly continuous on each
element of the uniform covering {U,}, then the inverse image of any
uniform covering of mR is refined by a covering {U,N Vi}, where for
each «, {V?¥} is a uniform finite 1-dimensional covering of the subspace
U,. By 3.6, each {V{} may be extended to a uniform finite 3-dimen-
sional covering of X, and hence f is uniformly continuous on wgX.
(Actually, by the method of 3.6, these coverings {V%} may be extended
so as to remain 1-dimensional.)

We may note that the hypothesis that z# is weak was not needed
for these proofs; thus if w can be satisfactorily interpreted for more
general spaces, 3.7 and 3.8 will carry over. (Cf. the footnote.!) The
hypothesis will be used for 3.9, though one could avoid it by a use of
results of [4]. It should be noted that the proof of 3.9 is almost the
same as the proof of a similar extension theorem in [4].

Proof of 3.9. Note first (*) that a function .~ which is defined on
a uniform space pA into a uniform space oB, and uniformly continuous
on each of a finite family of subspaces of pA which make up a uniform
covering, is uniformly continuous on pA. Now consider the given hypo-
thesis, f: p¢*Y—->mR uniformly continuous, #*Y a subspace of #X. Let
Veo=Ff"((n—1,n+1)) in Y, and let U,=V,u(X—Y). Since {V,} is in
¢*, therefore {U,} is in p. Since p is weak, {U.} has a countable uni-
form star-refinement {W,}=w.

The function f is defined, in particular, on the subspace YnSt(W,,
w) of the space St(Wy, w)n(YuW,;). On that subspace f is uniformly
continuous and, since Sy W, w)c U, for some %, f is bounded there.
By Katétov’s theorem [6] there is a bounded uniformly continuous func-
tion ¢, on St(W,, w)n(YuW,) to mR, such that g, and f agree on their
common domain YnSt(W,, w). Therefore, by (*), the function f; on
YuW,; whose values are those of f and of g, is uniformity induced by
).

Having extended f to f,, defined on the union of Y and Wi, .-,
W,, uniformly continuous there, and bounded on each W,, one con-
structs by the same argument an extension f,.; which is defined on
W.,.. also. By induction one has a well-defined function f extending f
over all of X. On each W, f agrees with f, and thus is bounded and
uniformly continuous. By 3.8, f is uniformly continuous on wgX.

The next result is also based on a similar theorem in [4]. Let us
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quote a lemma [4, proposition 2.83]: every uniform space which is not
precompact has an infinite uniformly discrete subspace.

3.10. For a metric space pX, p can be finer than the weak deriva-
tive of some weak uniformity v on X only of (1) the set C of all non-
isolated points of X forms a precompact subspace of pX, and (2) for any
complete subset S of X—C, the distances of different points of S are
bounded away from zero. Unless X has uncountably many isolated points,
these conditions imply that p is a weak uniformity and p=wp.

Proof. TFirst suppose that #X satisfies (1) and (2) and has only
countably many isolated points. Then every uniform covering has a
uniform refinement which consists of a finite covering of an e-neighbor-
hood of C and a countable discrete covering of the rest of X; thus g
is a weak uniformity. Consider the completion zpX of pX. If zp is
not the finest uniformity consistent with the topology, then there is a
non-uniform open covering {U,}. This means that there is a sequence
of points z, such that for each %, no U, contains the sphere of radius
277 about z,. Since X is a dense subspace, we may choose «, in X
within distance 2-" of 2,, so that no U, contains the 2'-"-sphere about
x,. Since {U,} is an open covering, the sequence (x,) can have no ac-
cumulation point in 7xX. Since C is precompact, it is not possible that
infinitely many z, are in C. Then we may choose a subsequence—to
simplify notation, suppose it is the whole sequence—so that {x,} is an
infinite subset of X—C, which is closed in =X and thus complete, but
such that no U, contains the 2'-"-sphere about x,. This means that we
can choose 7, in X within distance 2!* of x,, so that no U, contains
the 2*-"-sphere about y,. It is therefore impossible (as before) that in-
finitely many ¢, are in C. But now we have a complete subset of X
—C, consisting of all the =, and all but finitely many y,, in which dis-
tances are not bounded from zero. The contradiction proves the unte-
nability of the hypothesis that =z is not the finest uniformity consistent
with the topology of =pX. It follows that wrp—rp, and since w preser-
ves subspaces, wy=p.

Suppose next that g is finer than wy for some », but C is not pre-
compact in the uniformity induced by z. Since w preserves subspaces,
it is clear that C is not precompact in vX either. Therefore C has an
infinite uniformly discrete (in »X) subspace, by the proposition 2.3 of
[4] which was pointed out above. This means there are an infinite sub-
set {x;} of C and a covering u in v such that the sets St(x;, u) are
disjoint. Choose v<*u in v, so that the sets S, = St(x;, v) form a uni-
formly discrete collection. Choose points z, in S|, 2,#x;, such that for
some metric d inducing the uniformity g, d(z;, ;) converges to zero. For
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each 4, there is a bounded uniformly continuous real-valued function f;
on vX such that f(x)=0, fi(z)=1, and on X—S8,, f; is identically 1. De-
fine the real-valued function ¢ on X as follows: if z is in some S,, g(z)
=fix); if « is in no S,, g(x)=1. Then on every element of v, g coin-
cides with some f;; therefore by 3.8, ¢ is uniformly continuous on wvX.
Supposedly wv is coarser than the metric uniformity x; but since (dz,
x;) converges to zero while ¢g(z)—g(x;)=1, this is absurd. There re-
mains the possibility that zDwy and X contains a complete set of iso-
lated points S which contains a sequence of pairs (z;, ¥;) such that d(x,,
;) converges to zero; but evidently the above argument can be repeated
in the set consisting of all «; and ¥,, to lead to the same contradiction.

A corollary of 38.10 is that in the sequence of uniformities g, we,
wy, ---, at most two can be metric, the first and the last.

3.11. If f: pX->mE" is a uniformly continuous homeomorphism
upon a closed set, and p is weak, then f: wpX—aE™ is a uniform equi-
valence.

Proof. We have that f: weX—aE” is uniformly continuous. Let
vY be the image of X, regarded as a subspace of aE". Since f is a
homeomorphism, every open covering of X is the inverse image of an
open covering of Y'; since Y is closed in K", every open covering of Y
is in v. Therefore every open covering of X (a fortiori, every uniform
covering of wpX) is realized by f: wpgX—vY. Thus f is a uniform
equivalence.

3.12. THEOREM. A uniform space pX is uniformly equivalent to a
[closed] subspace of aE™, for some n, if and only if (1) p is a weak uni-
Jormity, (2) p=wpy, and (3) pX has a uniform covering whose elements
are precompact [compact] metric speces which have finite-dimensional com-
pletions of bounded dimension.

Proof. Since w preserves subspaces, the necessity of the conditions
is evident. Since w commutes with completion, it suffices to prove the
sufficiency in case pX is complete ; and by 3.11, it suffices to construct
a uniformly continuous homeomorphism upon a closed set. We may
replace the covering given by (3) with a Euclidean refinement u={U,},
realized by a uniformly continuous mapping f: pX—>mE", and parti-
tioned into p discrete subeollections %”. Each U, is a compact k-dimen-
sional metric space and hence is homeomorphic to a bounded subset of
E*, g=2k+1. It remains to build a mapping into (n--pg)—space, as in
3.8.

Let e, be @ homeomorphism of U, into E% g, a bounded uniformly
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continuous extension of ¢; over p#X. Let d;, be a uniformly continuous
function on #X with values in [0, 1], vanishing outside the star of U,
and identically 1 on U,. For each z, let the first » coordinates of A(x)
be those of f(x); let the (n+q(r—1)+1)th through (n+ ¢r)th coordinates
form the vector >[d,(x)g/(2)|U,e«”]. On each U, h is a finite sum and
thus is uniformly continuous; therefore by 3.8, %# is uniformly continu-
ous on #X. On each U, hence on X, % is a homeomorphism. Finally,
since f realizes u, the sets 2(U;) form a locally finite collection of com-
pact sets, and therefore their union is closed. By 38.11, the proof is
complete.
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MANY SERVER QUEUEING PROCESSES WITH
POISSON INPUT AND EXPONENTIAL
SERVICE TIMES

SAMUEL KARLIN and JAMES MCcGREGOR

1. Introduction. A birth and death process is a stationary Markoff
process whose state space is the non-negative integers and whose transi-
tion probability matrix

(1.1) P, (8)="Pr{a(t)=j|x(0)=1}
satisfies the conditions (as £—0)

At+o(t) if j=441,
(1.2) pi(t)= < pt+o(t) if j=i—1,
1—(A+p)t+o(t) if j=1,

where 2,>0 for ¢=0, ¢#,>0 for 4=1, and z,>0. The process is called
a queueing process if p,=0 and A,=21 for all <. The state of the system
is then interpreted as the length of a queue for which the inter-arrival
times have a negative exponential distribution with parameter 1, and
for which the service times have a negative exponential distribution
whose parameter g, depends on the length of the line. The classical
case of a single server queue corresponds to g,=pg, n=1, and has been
diseussed by Reuter and Lederman [9] and Bailey [1].

The so-called telephone trunking problem (Feller [3]) arises from
a queueing process with infinitely many servers, each of whose service
time distribution has the same parameter p, so that g,=ng, n=1. Be-
sides these two special cases, we discuss a queue with n servers, each
of whose service time has a negative exponential distribution with the
same parameter p, so that g,=ky for 1<k<n, p,=ng for k=n. Our
methods can also be used to study queueing processes with several
servers whose service times have negative exponential distributions not
all with the same parameter.

A sample of the type of problems treated is as follows:

(1) to obtain a usable formula for the transition probability P;,(t);

(2) to compute the distribution of the length of a busy period ;

(8) to compute the distribution of the number of customers served
during a busy period ;

(4) to compute the distribution of the maximum length of the
queue during a busy period ; and similar questions.

Received May 29, 1957.
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At this point it would be of some interest to tie the investigations
of this paper together with the other work in this field. It is impor-
tant to emphasize that we are concerned primarily with the analysis of
non-stationary problems associated with the » server queuing process.
The equilibrium distribution of length of line for the case of exponential
service time and Poisson input is trivial to determine. The equilibrium
situation for the general input process with exponential service time and
n servers was completely resolved by Kendall [7] who, in addition,
evaluated explicitly the distribution of waiting time for a randomly ar-
riving customer. A non-constructive existence theorem for the stationary
distribution of a general input process and a general service time distri-
bution was given in [8]. In contrast, a considerable amount of insight
regarding transient behavior has been attained in the case of the one
server queue. For an elegant treatment of this case the reader is re-
ferred to the work of Takacs [10].

Part of the significance in resolving the problems related to the =
server queue even subject to the special assumptions of exponential
service time and Poisson input, in addition to its independent interest,
rests on the following two observations :

(1) the general queueing process with the corresponding appropriate
parameters behaves on an average like the exponential case, and

(2) the solution for the exponential case may be suggestive as to
the nature of the answers in the general case.

Our detailed analysis regarding queueing processes with exponential
service time, Poisson input, and many servers derives from our know-
ledge of the refined structure of birth and death processes developed in
[4] and [5]. We rely primarily on the theory of recurrence and absorp-
tion for a birth and death process as spelled out in [5].

In this connection, although the parameter p, is zero for a queue-
ing process it is convenient to consider, along with a queueing process,
related birth and death processes for which p, is positive. Such a pro-
cess has an ignored absorbing state at -1, a state in which the system
remains forever once it arrives there. When the system is in the zero
state and a transition occurs, the system moves to state 1 with pro-
bability 2,/(4,-+ ) and is absorbed with probability r/4,+ .

The infinitesimal matrix of the general birth and death process is
of the form

— (20 + #u) Ay 0
(1 3) A= H “(11 ‘I‘/ul) 21
0 Ha —(A+m)

This matrix determines a system of polynomials by means of the re-
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cursion relations
Qo(x) = 1 ’
(14) —2Qy(@) = — (4 + ) Q(@) + 4R\ ()
—2Qu(X) = 1@ —1(%) — (A + £2,) Q@) + 2, Q1 1() -

It is shown in [4] that there is a positive regular measure ¢ on 0w <o
for which the orthogonality relations

(1.5) [[e@e@a@=2 =01,
3
where m,=1, nn:}"ﬂ 'f%”i, are valid. In the case of a queueing

Pals * o My
process, the measure ¢ is unique [4], and moreover the transition pro-
bability matrix P(¢)=(P,,(¢)) of the process is uniquely determined by A.
It has the representation
1.6) Pt)=r,| QDA (@)
This is an extremely useful form of expression for the transition pro-
bability function, and our first task will be to compute the polynomials
{Q.(x)} and the spectral measure ¢ belonging to the various queueing
processes.

This is accomplished in the following section based on a formula
which connects the Stieltjes transform of the spectral measure of the
process and the Stieltjes transform of the spectral measure of the
associated process. Once the Stieltjes transform of the spectral measure
is known, then recourse to the classical inversion formulas of Stieltjes
transforms enables us to determine the spectral measure itself. This is
done in § 4. Previous to that in § 3 a discussion of the infinite server
queueing process is made. Here we recognize the corresponding poly-
nomials as the classical Poisson-Charlier polynomials which are known
to be orthogonal with respect to an appropriate Poisson distribution.
Some remarks are appended describing the nature of first passage dis-
tributions of the states of the system in this case.

In the following section the spectral measure and the polynomials
of the n server queueing process are explicitly determined. The poly-
nomials are found to be expressible as combinations of the familiar
Chebycheff polynomials of the first and second kind and Poisson-Charlier
polynomials.

In §5 the previous theory is specialized to the one and two server
process. Further detailed information regarding these processes is
collected.
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§6 is devoted to a complete study of various probability dis-
tributions associated with queueing problems of one and two servers.
The transition probabilities of the Markov process describing the wait-
ing line are explicitly determined. The distribution to the length of
the busy period, the distribution of the number of customers served
during a busy period, and other such distributions are exhibited. In
the following section the corresponding results for the n server queue
are written out. The proofs of these assertions for the general case,
exceedingly more complicated in detail, are carried out in the discussion
of Appendix A. In §8 we derive the distribution of the maximum length
of line during a busy period. The second appendix summarizes the
properties of a new system of polynomials related to the Poisson-Charlier
polynomials.

2. The related processes. From a given birth and death process
with infinitesimal matrix (1.8) a new process is obtained by stopping
the given process whenever the state 0 is reached. For this new pro-
cess the state 0 is an absorbing state, and if we ignore this state the
process is a birth and death process for which the parameter p, is posi-
tive. The waiting time in any state ¢=1 has the same distribution for
both the original and the new process, and moreover both processes have
the same post exit distributions for each state ¢=1. Consequently the
infinitesimal matrix of the new process (with the state 0 ignored) is

—(4+m) A 0 0
(2.1) P — (A1) Ay 0

’

which is obtained from (1.8) by removing the zero row and zero column.
The polynomials defined by

I Q"(«)=0, Q"(2)= _3} .

0

(2.2)
l-wQ‘yb"’(w):/—tn P21(@) — (A + 1) QP(2) + 2,Q0(x), n=1

are called the associated polynomials of the system {Q.(x)}. It is seen

that, except for the constant factor ~21 , they are the polynomials be-
0

longing to the new birt}l and death process. Consequently the transi-

tion probability matrix (P;,(t)), ¢, =1, of the new process is given by

23 Put)= 1| e 1@~ 1@ @) dao)

0
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where « is the spectral measure of the new process. In [5, §8] it is
shown that the Stieltjes transforms of the spectral measures ¢ and «
of the two processes,

(2.4) B(s)= Sw W s)= Sm da

0 r—s§ 0 X—s8

are related by the identity

1

(2.5) Ble) Ao po—8— A C(s) .

This identity is the basic tool used in calculating the spectral measure
of the » server queueing process. Once the function B(s) has been
found the measure can be computed by means of known formulas for
inverting the Stieltjes transform. See [5] for a discussion of this in-
version relative to the identity (2.5), and [12], [11] for the general in-
version problem.

By iterating (2.5) a relation will be obtained between the spectral
measure of the original process and the spectral measure of the process
obtained from the original one by stopping it whenever the state = is
reached. Denote the spectral measure of the original process by ¢,
and the spectral measure of the process obtained from the original one
by stopping it whenever the nth state is reached, by ¢,.,. Then if

(2.6) Bi(s)= S:%_(? ,
(2.5) gives
1
2
(2.7) B@s)=—— —
zn—l_llun—s'_pn+1Bn+1(S)

It is clear that

ABul(8) + P

(2:8) B= )+,

where «,, 8., 7», 6, are (not uniquely determined) functions of s. Per-
missible choices for n=0, 1 are a,=1, f,=7,=0, 6,=1 and «,=0, B,=1/2,,
11=—ty, 6, =(L+1—3)/,=Q(s). Substituting (2.7) into (2.8) it is found
that the coefficient functions can be determined by the relations

Ope1 = '—lun+11@n ’
'znﬁnﬂzan'l"(zn'i‘ﬁn—s)ﬁn ’
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Tne1= _ﬂn+16n ’
2n8n+1zrn+(2n +f’n"—3)5n ’

and hence

2.9 ()= — Q2 (8)Bo(s) —Q(s)
&9 B P Qn-1(8)B(8) — Qu(8)

3. The queue with infinitely many servers. The polynomials Dbe-
longing to this process will be denoted by p.(x)=p.(x, 2, #). They satify

[ po(w) = 1,
(3.1) —apy(x)=— Apo(x) + Apy(),
1 —TPy(X) = 1ptPp (%) — (A +0p)Dp(@) + ADpr (@),  m=1.

They can be identified in terms of the Poisson-Charlier polynomials
ez, @), [2, Vol. 2, p. 226], which satisfy

ez, @)=1,
3.2) { —zey(z, )= —ac(x, a)+ac,(z, a),

—xc,(x, a)=mnc,_(x, &) —(n+a)c,(x, a)+ac,..(x, a), n=1.
Thus
(3.3) pule, 2, ) =c,( 2, L),
I

The measure with respect to which the Poisson-Charlier polynomials are
orthogonal consists of masses

j@)=e% at £=0,1,2, - .
!
Hence the spectral measure ¢ of the infinite server queue consists of
masses

e—(l n
n?k at x,=ny, n=0,1, ---

(3.4) d¢(x)=

where a,-:-—&. From well-known properties of the Poisson-Charlier poly-
;l

nomials [2] it is found that



MANY SERVER QUEUEING PROCESSES WITH POISSON INPUT 93

(3.6) S pn(/zw)—zi—:e{l— Z) a=" .
n=0 n! a Yz

The representation of the transition probability matrix is

3.7) n,C(t)—nkS o p()py(@)de (@)
= ; Eﬂ e M (re)p(rp)e =
In particular
(3:8) Patt)=e* 3 pio) @
:e—a(l—e—ﬂ")(l _e—ut)n ,
and
(3.9) 3 Pult=e- 5 p(np) U S () 92 z)

—g-a(-2) (1—e-#5)[1 _ (1 _z)e—m]n .

The last two formulas are well-known and can be found by generating
funection techniques [3, p. 396].
Now consider the spectral measure « of the process obtained by

stopping the infinitely many server process when the zero state is reached.
Writing (2.5) in the form

(3.10) C(S)ZSS%‘%): 21# p _S—Swtiiﬁ(x)
0 m—Sﬁ

and noting that

(3.11) B(s)= S @) S @

—s i m \(np—s)

we see that C(s) is a metomorphic function whose poles are simple poles
at the zeros of B(s). Thus « is a discrete distribution whose masses
are located at the zeros of B(s). The zeros s,<s;<s,<-+- of B(s) are

all simple, np<s,<(n+1)z, and the mass «, of the distribution « which
is located at s, is

(3.12) =1
ApB'(s,)
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(See [5] for a more complete discussion. The function here denoted by
B(s) is there denoted by B(—s)). For many purposes it is sufficient to
know s, and «, for only the first few values of n. For example the
first passage time distribution

Fy(t)=Pr{X(z)=0 for some z, 0<r<¢t|X(0)=1}

of the original process is

(3.13) Pu®)=p| 17 data)
&x
=1—p > Mo
n=0 Sn

and for large ¢ only the first few terms are important.
For purposes of numerical computation the following facts, stated
for the case p#=1, are useful:

(i) for all >0, —d—s"<0, and
da

(i) s, <sp—1.

To prove (i) it is noted that

s a® _
2 ks 0
and hence
- ka*-! o a dsy
(3.14) g« ke l[k— sn(a)]+ IcZIOk [k — Sn(a)]z< )

Consequently it is sufficient to show that

Now n<s,<n-+1 so

M3

o ak a/k
— >l >0
Z‘ (k sn) k=0 k l(kk—s,)

and
Ic

éhm 82) =22

% (B—n)a”

- = >0
'(7' sn) kn+1 ko l(k—s,)

To prove (ii) it is observed that



MANY SERVER QUEUEING PROCESSES WITH POISSON INPUT 95

Bls, aj=e ak>“o k'(k—s)

satisfies the functional equation

(3.15) aBg;“) — _[B(s, &)~ B(s—1, a)] .

Because of (i) and (3.14) _6Bgs, a)

>0 which, together with (3.15),

gives B(s,—1, a)>B(s,, a)=0. Now B(s, a)=DB(s) is monotone increasing
in each interval n<s<n-1, n=0,1,2, ---. Consequently

Sp1<8Sp—1.

The following table gives s, and B'(s,) for =0, 1,2 and several values
of a.

- I B} - e
\ S1 B'(s) S oA A .
a | First root At first root Second root b (52 S3 B'(ss)
; .5 ; .65116 6.54006 1.88388 10.21023 2.97092 25.00957
2 1.0 .45027 8.47902 1.72376 8.90911 2.88131 12.91379
i 1.5 .31745 13.63762 1.58297 11.60410 2.77136 13.41379
1‘ 2.0 ‘ .22517 23.92535 1.46574 17.38949 2.66252 17.55924

4. The spectral measure and the polynomials of the n server queue.
For the n server process

=2,
(4'1) . ]C,U, kén ’
He= { 7o, k=zn
Hence
(4'2) Qk(w):pk(x’ A’ IU) ’ kgn ’

where p, is given by (3.3). The polynomials for £=n will be determined
presently. As in § 2 we denote the spectral measure of the process by
¢, and the spectral measure of the process obtained if the given process
is stopped whenever the state k& (k=0) is reached by ¢..,. If

(4.3) Byts)= | 4H®

then from (2.9)
(4.4) By(s)= — npQu21(8)B.(s) — Q(O)(S)

111Qy-1(8)Bo(5)—Quls)
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Because of (4.1), B,(s)=2PB,..(s) and hence (2.7) gives

(4.5) By(s)=2Tm=8=V (A+np—s)~dnip
2niy

where, in accordance with (4.3), the square root is taken positive for
s<0. Substituting (4.5) into (4.4) and rationalizing we obtain, with

the use of the identity 4,_,7,-,[@,Q%; —QPQ,._]=1, where anrn:ﬂ<,'{ )n ”1' ,
r’ n!

(4.6) Bo(s):_%g,

where

(4.7)  Ly(s)=42Qu(s)Q"(8) +4ndpQ,-1(s)Q2x(s)
— 22 +np— ) Qu()Qi2,(8) + @57(5)Qu-1(5)]

+2m-1) (% V"V sy — i,
(4.8) K (8)=42[Q%3)— Qu-1(8)Qn+:(s)]
=4ndp[Q5_1(8) — Qu(8)Qy-(8)] — 42Q(8)[Q-1(8) — Qr-5(8)]-
Ln(s)=4zz[Qn(s)Qz(s)—;{ 9 (8@ 1(5) + Qu1(5) ;@l(s)}}

n-1 . o .
+2(n—1) (’;) V' (A+np—sy—4niy .
It is seen that K,(s) is a polynomial in s of exact degree 2n—1, with

a root at =0, and that the polynomial part of L,(s)is of degree 2n—2.
The Stieltjes inversion formula

(4.9) pw)=" hm S X By(&+in)de

gives ¢, at all of its points of continuity. The above formulas show
that I B(x+iy) converges uniformly to zero as 7—0+ if « is in any
closed interval containing no zeros of K,(x) and disjoint from the interval
|A+npu—x|<1/4nip . Consequently over the interval

(4.10) | +np—a| <1/ dnip

the measure ¢, has a continuous density ¢'(x) given by

=D g\ Vidnip—Q+np—a)
4.11 i e
(4.11) Y@= o <z> Q) Qs () Quas()
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In addition ¢, may have discrete masses at some or all of the zeros of
K, (x). This possibility is discussed in §7, and treated in detail in the
appendix.

To determine the polynomials Q. (x) for k=n, let Ry(x)=Q,..(x),
k=-1. Then

(4.12) B@)=Q,x), R (¢)=Q. ()
and
(4.13) — 2R (x)=npR, _(x) —(A+np)By(x)+ AR;..(x) , k=0,

which is a recurrence formula in which the coefficients are independent
of k. The {R,(x)} can be expressed in terms of the Chebycheff poly-
nomials {T%(x)}, {U,(x)} which satisfy

(4.14) xP,G(x):%P,G_I(x)Jr;Pkﬂ(x), k=1,
and
(4.15) Ty@)=1, T@)=z, Ufz)=1, U.(@)=0.

In faet, since

e=(7) (i)

and

(N (Ane—e
wia=(")" U Vinin )
are solutions of (4.13) for which

Vi@)=1, V@="T""0  w@=1, W.(#)=0,
2np

we have

(4.16) k<w)—f— USOLAC)
— any
+[Qn(w) L Qu@) W)
=Qn(w)W,c(w)—%Qn-l(w)wk-l(x) , k=0,

Hence for £=0

(4.17) Quente)=("22)" | @u@U(4 A ,”)
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Y Que) U HHI ) |

where U_,(§)=¢ and
U )= EtD0 e _osg, k20,
sin 6

The system of polynomials {Q.(x)} is completely determined by (4.2) and
4.17).

A similar argument shows that the associated polynomials {Q(x)}
satisfy

(4.18) Outa)=("1)" [Q;°>(m)u(ﬂy5,,,,w)

—]/'n/lQ(“)J(:v)Uk 1(1’1]‘/755 x):l

for £=0.

5. The spectral measure of the one server and two server processes.
For the case of one server

G.1) Qx)=1, Ql(x):i%?{, Qz(x):ii/;f;x, .}%?v,_ g{

’

(5.2) Q(x)=0, ng(x):_%, Q)= — gtéi o

Using these values in (4.7), (4.8) gives

(5.3) Bys)=— 2#— 2;+S)"l”214:/;l(;.+/‘_fs)if Ly

The only possible pole of By(s) is at s=0, and
lim ——SB(,(s):L[(p— A+lp—21]
520 2u
( 0 if p<2

lf’i it p>2.
ILl

Thus the spectral measure ¢ has the continuous density

(5.4) gb(x)—fl Vap— A+ p— x)*
2rp x

on the interval |2+p—a|<1V/42p and has in addition a mass of amount
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r=A located at x=0 if x>2, but has no extra mass if #<A. The

l[l
polynomials are given by

WM —w Ap—x
5.5 ” :<ﬁ [_U< p— )
(5.5) Qete)=(4 ) IO
—Jry, (At F’”“‘] k=0 .
]/2 ( Vi ) T
The associated polynomials are given by

(5.6) O (@)= — ——(’;\) (AT gz,

and using (4.5) the function B(s) is

(5.7) B(S)“vx+/l_s— (X“‘F S) 41)“ .
2y

Hence the spectral measure ¢, of the associated process consists simply
of the continuous density

(5.8) W):5;1251/4@_(1;#_5)2’, |t gz =V g .

We now turn to the two server case. The polynomials @,, Q® are
again given by (5.1) and (5.2) for £=0,1,2 and a straightforward com-
putation gives

(GO

_ 4/;3 [s*— (224 p)s-+A(A+2p)]

Le)= 21 [(1—s)(2p—1—28) + 1V (1 2p—sF — 8] ,

and hence

25[s" — (24-+ )5+ A(A+209)]

(5.9) Bys)=— (A=9)@r—2— 28)+ 2/ (1 21— sy 8l

Consequently the spectral measure ¢ of the two server queue has the
density

(5.10) Pa)= o VE— (2 ~a)*
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on the interval |14+2p—a|<1/81;, and in addition may have jumps at
one or more of the zeros of the denominator of (5.9). Considering first
the zero at s=0, we find that

_sBs)= Cr=N+V eI

lim
0 224+ 2)

[»2”::& it 2p>a,
+

0 if 2p<2.

2p—2
PEwY
at =0 if 2¢<2. The other zeros of the denominator are

Hence ¢ has a jump of magnitude at =0 if 2¢>4, but no jump

o= HEE L i — ),

_ 24 1oy
s=""yt3 p(p—A42) .

These two roots are non-real if x#<41. Since By(s) has no non-real poles
we assume p=>42. If p=42 the denominator has a double zero at s=34.
A simple computation shows that in this case the numerator also has
a double zero at s=31, and hence no jump of ¢ is involved. If p>42
the residue at s, is easily computed. In fact

(14 21— —83p= " [107 672/ (11— 41) =361/

:[ﬁ: 3Z§EEET :

and hence
(A—8,)2u— 2 —28,)+ 2V (A+2p—s,) —8ip
= — o {18V ) — | =3V 4D |
f 0 it p=3V p(p—42)
A8V p(u—42) —p] it BV p(p—4) >pt .
9

The condition 3V u(z—41) >p is equivalent to —’;l> 5 Consequently ¢

has a jump at x=s, of magnitude

ABV p(p—42) — ]

Vp—42) [204p+V p(p—41) ]
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. 9 . . 9
if ’U—> , but no mp there if <.
172 Jamp B =

that ¢ never has a jump at x=s,. If p>44 then

A similar calculation shows

8, <A4+2p—1V8ip

except that equality holds when ';’ :g The polynomials are given by
2y "/‘[(,H—,u—a:)(l x) (2—}—2/1—«
5.11 " (
(1) Qua@=() AL A Gy
2p  d-zy (HZ/I— )]
2 PR VE YV
for £=0.

6. Probability distributions of various random quantities Associated
with the one and two server processes.

In this section we compute the distributions of some interesting
random variables connected with the one and two server processes.
The transition probability function of the one server process is

6 Po=7(7)(4)(” ;j )

AV ey o) VA L =) g

yz At p—ViAR 2 y7

where Y(z2) is 0 if z<1, 1 if 2>1, and the polynomials are given by
(5.5). The explicit expression for the distribution of waiting time,
Wi, €), of a customer arriving at time ¢ in the case of the one server
queue may be readily derived from the integral representation (6.1).
This is accomplished as follows: If at time ¢ the length of line (state
of the process) consists of n people with n>1 then the density of the
waiting time of a person arriving at the moment ¢ is the gamma density
of order n whose scale parameter is p#. The probability that at time
t the length of line is » where initially the state of the process was <
is given by P,,(t). Consequently, for £>0

/.l En 1 .
(6.2) deWi(t, 5)—2Pm(t) (n _1), “

Inserting the detailed formula (6.1) into the summation of (6.2) and
performing the calculation, we obtain the formula

(6.3) dW.(t, S):J,2 (r— e~ B-NEdE -
]
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B A+ +V AL -zt S —
+ent ils e 'AQz(x)ﬁ[{(l——x)ew—VX#}eg“"ee] da dé
Y2 A+p—ViAn Q0
Y o 4 imagi
where cos ="~ Vi and ¥ stands for the imaginary part. We have
/l

tacitly assumed that /;~>1 which of course is the interesting and prac-

tical case.
The evaluation of the sum is direct once it is realized that Q,(x)
can ‘be expressed according to (5.5) in terms of Chebycheff polynomials.

o= [ ) ) {0 ) o

and

3 AT IS
Uk(z):sm(k—kl)({: (&%)

. . where cos 0=z .
sin 0 sin 0

Of course P,(t) evaluates the probability that a person arriving at time
t doesn’t have to wait for his service to begin.

For computational purposes it might be remarked that the integrals
of (6.1) and (6.3) may be expressed in terms of combinations of Bessel
functions with imaginary arguments. This follows from the familiar

functions [9]. This indeed is true of the majority of formulas connected
with queueing. However, from the point of view of an understanding
of the theory, and also for many practical purposes, we prefer the answer
in the form of the integral representation.

The integral representation also enables us to determine directly the
rate of approach to equilibrium in the ergodic case. The conclusion is
immediate from relation (6.1) which implies the inequality

QPU(t)h<ff,:,'{,>< A )j‘\ < Me-tO+r=Virn)
! H Y

The asymptotic behavior of P,(¢) for large ¢ is easily obtained from
formula (6.1). For example, for the case when 1=y

2N A A
Py(t)= 271# So e—”}/%idx ,

and when t is large the main contribution to this integral is from the
immediate neighborhood of x=0. In fact

1 (e 1 (tetde
POO t N_,M.:S B —_— S IR s
(®) VTR IRV d Vtp o V' E
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and hence

Pot)~—1t  as t—oo .

1/7r/h‘,
The cases when A>p or A<z can be dealt with in a similar way.

Now consider the distribution of the length of a busy period, or
what is the same thing, the distribution of the first passage time from
state 1 to state 0, or what is the same again, the distribution of the
time of absorption into the zero state for the related process (§2), given

that the related process starts in state 1. If P,(t) is the transition
probability function of the related process, and ¢, is its spectral mea-
sure, then the probability Fy(¢) that absorption occurs before time ¢ is

b~ 1 _—g-at
Ful®)=r| Po(@) de=p| 20" g (e
0 0 X
The Stieltjes transform of ¢, is given by (4.5) with n=1, and hence ¢,
consists of the density

i@ =5 VA= (=)
2mip
on the interval |14 p—a|<V/44r. Consequently

(6.4) )= 1

=0 Vg — QA+ p—2x) da
27

A +V AR 1—g 2t
A+ p—VIAp fid

is the probability that the length of a busy period for the one server
queue is =<t. In a similar way the probability F(t) that the queue
will become idle before time ¢ when there are %k customers at time zero
can be computed. Using the fact that the associated polynomials are
given by

1/ e\ Adp—a
6.5 o@)=—> (LY g (dtro2),
(65 @) A\ Vi
one obtains

+ 1+ VX -z
(6,6) Fot)=- 1 SA pHViAL T oot
2rA

At p— VIAR x

k—1
: (é’) ’ Uk_l<%§{;%)1/4m_(x+p-x)z d .
It is also possible to compute the distribution of the number N of cus-
tomers arriving during a busy period, or more generally the number N,
of customers arriving before the queue becomes idle given that initially
there were &k customers in the queue. For this purpose we consider the
random walk whose possible states are the integers 1,2,3,.-- and an
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ignored absorbing state at 0. The one step transition probabilities of
the random walk are

p, if j=<+1,
Py=q if j=i—1,
LO if j=¢or |j—i|>1,

where

A; A )
s i Y o T L .
A+ p

11’,——}_ H

- Zi—l—/l,-;— /H—r/zw ’
These quantities are independent of ¢ and we denote then by p, q.
When the particle executing the random walk is in state 1 and a
transition occurs, the particle goes to state 2 with probability p and is
absorbed into the zero state with probability q.

Each sample function of the associated queueing process generates
in an obvious way a sample function of the random walk process, and
it is clear that the random variable N,, which is the number of customers
arriving before the queue becomes idle, is the same as the total number
of steps to the right made by the random walk before absorption at
zero occurs. The total number of transitions of the random walk pro-
cess which occur before absorption is a random variable M, related to
N, and the initial state k£ in such a way that

(6.7) M,=k+2N, .
If P, denotes the n step transition probability of the random walk, then

(6.8) Pr{M,=m}=qP};7"

and hence

(6.9) Pr{N,=n}=Pr{M,=k+2n}
=qPyrt .

Thus the distribution of N, is known if P}, is known.

An integral representation for P} is obtained as follows. The
random walk determines a system of polynomials by means of the
recursion relations

{Rl(x) =1, Ryx)=0

(6.10) oR(2) =qR,-(x)+DRyr(x) , m=1.

It is seen that R,(x) is a polynomial in x of exact degree n. It can be
shown that the polynomials R,(x) are orthogonal on —1=<ax<1 with
respect to a uniquely determined measure « of total mass 1. A proof
of this fact which covers not merely the queueing case, but also the
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random walk arising in a similar way from a general birth and death
process, is outlined in [5]. It is rather obvious that when a"R(2) is
written as a linear combination of the polynomials {R.(x)} the coefficient

of Ryx) is Py. Since it can be shown from the recurrence formulas
that

Sl Ri(x) da(x)= 71* , n=1,
. .

n

where nj:(,p )n—l, it follows that
q

(6.11) - S SRR (@) da(a) ,

which is the desired representation of Py. Combining (6.9) and (6.11)
we get an expression for the probability distribution of N, in terms of
the measure «. In particular the distribution of N=N,, the number of
customers arriving during a busy period, is

(6.12) Pr{N=n} = qS " da(z) .

The polynomials which satisfy the recurrence relation (6.10) are easily
found to be

n—1

(6.13) R(x)= <%’)U U,. ((Z + 1) )

Vdip

from which it follows that the measure « consists of the density

/ 2 2+p ( e )
.14 =% _ 1— -
(6.14) (@)= x V4 ]/ Vi
on the interval lxlé—‘f/flﬂi. Consequently
+p
ViRE _ _\_
2 2ty SH# 2 ( Aty )”
1 A 1— d
(6.15)  PriN=nj= A+,u g 1/42/1 “’VLw / 1/42/1 v

— ;.<1/,i1£/4 )ZS en/T-E ds .
Atp Aty w1

We now turn to the two server queue. The transition probability
function is

6.16) Pyp=Y(2). 2l (LY

2 2442 24
24 X[?ﬂ/,u(p 42) —p] .9 RN 5,00 (s,
i Y< > Vp(p—42) [224 p+V p(p—42) ] ( 2/1) Q)@ s)+
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A\ A A e - V8 —(A+2p—x)
] - . v
t ( 2/l> 2r SA+2¢L—- ~/8)\;L Q (x)QJ( ) [ 3 (21"{"#)&7"“1(1"“‘2/1)]

(unless =0 in which case 2(; )] is to be replaced by 1), where Y(z)

/l
is 1if z2>1, 0 if 2<1, and

(6.17) 8,= 21;‘/‘ + ;1/#(;;_43) ,

and where the polynomials Q,(x) are given by (5.11). Once again the
asymptotic behavior of P;,(¢) for large ¢ is clearly exhibited by (6.16).
In fact the first term on the right is either zero or else the largest
term, and the second term, if not zero, is the second largest term.
Finally the asymptotic behavior of the third term is a simple matter to
investigate. For example if 21=2p it is found that

1
4Vt '

By arguments entirely analogous to those used in the derivation
of (6.3), we may obtain the form of the distribution of waiting time
for a customer arriving at time ¢ in the two server queue. In fact, if
Wi(t, §) represents the cumulative distribution of waiting time for a
person arriving at time ¢ where at time zero the state of the process

was ¢, then

Puo(t)"’

— (2/‘) o
AW, &)= ZPM(t) ( -2)' de, >0,

with P;.(t) given by (6.16). We restrict attention only to the ergodic
case when 2/1>1. Use of (6.16) in conjunction with (5.11) establishes
the ultimate formula

2p— 2 au—ni
6.18) dW, dé= . SemwN
( ) d z(t’ E) 6 2 2 /te

=S, —oué
+Y< 2/1)2)3 Qusn)e =/ 8ip e

pV p(p— A 20+ p+V p(p—42) ]

“s’{ [;(H/t—sz),(l—sz)e“* _ 2/{,( =S, )'leg Jz-,zxcw*}
b e 7 /]

A2+ VEAL e—szi(x)
nem— Vi gt — (22+ )+ A2 +2¢)]

3{[7(%?5&,,—}20)(&@ ew_}/ 2;1 (Jz_%xﬂeymdg} i

3 S
et /T |
2ur
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x_ A+2p—s, _ A 2u—z
where cos §* =" V8l and cosf="- Vein

A busy period of the two server queue can now mean either a time
interval during which both servers are busy, or else a time interval
during which at least one server is busy.

Considering first the busy period for both servers, suppose the pro-
cess is initially in state 2, and let T be the time at which the process
first reaches state 1. Then Pr{T'<t} is the probability of absorption
before time ¢ for the second associated process. Now the second asso-
ciated process is similar to the first associated process of a one server
queue in which the parameter p# has been replaced by 2x. Hence using
(6.4),

6.19)  Pri{T<t}= 1 Sm'”m” 1= Rip—(+2p—a) da .

A+2m— VBN x

The distribution of the time before state 1 is reached when the initial
state is & (5=2) can be obtained from (6.6) in a similar way. By another
argument of this kind it is seen that the distribution of the number N
of customers arriving during the busy period 7 is obtained by replacing
p with 2¢ in (6.15). Thus

PriN 2 (V' 8ip 2"51 P —
6-20 = = . N _ 27 1 2 d .
( ) 2 & Z+2p<2+2,u> -15 Vi-&d

Next let us study the time during which at least one server is busy.
Thus we suppose the initial state of the process is 1 and we denote by
T* the time when the zero state is first reached. If ¢, is the speectral
measure of the associated process, then by our previous argument

(6.21) Pr{T*<t}= "r 1= 19 @) .
oz
Now the Stieltjes transforms By(s) and B,(s) of the spectral measures

of the first and second associated processes are related by

1

6.22 By(s)=
(6.22) = e 22Bs)

and from (4.5)

(6.23) BZ(S):M:K%@/:EE;W& ,
/l

Hence
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(6.24) Bs)= L . Ams=V(+2p—s)—8ip
2p s—(pu—12)
It follows that ¢,(x) has the continuous density

. V8ip—(A+2p—a)
x—(px—2)

a1

on the interval |142x—x|<1V/81x, and in addition has a jump of
magnitude '#:;[2‘1’ at x=p—2 if #>22, but has no jump if #<2). Thus
(6.21) becomes

625  Pr{T*<ep=Y( [ )u-20 70
22 p—2
1 S*”’”W 1—e  VBip—(+2u—a) g
o JAwvap—vene x—(u—2) ’

where, as usual, Y(z)=1 if z>1, 0 if z<1.

It is natural to next ask for the distribution of the number N* of
customers arriving during the busy period 7*. This again leads to the
study of a random walk on the integers 1,2,.-. with an ignored
absorbing state at 0. The polynomials of the random walk satisfy the
recursion relations

[R,(x) —1, Ryz)=0
2 R,(x)=p.Ryx)

(6.26)
len(w)=an-l(w)erRnﬂ(x) , n=2,

where

A g= = A
42’ A2n T T a4

To compute the spectral measure « of this random walk we consider
also the associated random walk obtained if the given one is stopped
whenever state 1 is reached. Denoting the spectral measure of the
associated random walk by 2 we look for a relation between the Stieltjes
transforms

[ daw) [ dite)

-1 r—=2 -1 x—7%

analogous to the relation (2.5) for the spectral measures of a birth and
death process and its associated process. Such a relation, applicable to
a general random walk and its associated process, is proved in [6] and
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may be stated as follows. If the state space of the random walk is
0,1,2, --- and the one step transition probabilities are

q; if j=i—-1,

i i
(6.27) p,=t
[pi if j=1+1,
0 if [j—ei>1,

where p,>0, ¢,>0, r,=0, then the spectral measure « of the process
and the spectral measure B of the associated process are connected by
the identity

(6.28) Sl da(z) _ ,,,1/1’10,,, e,
-1 £—8§ 7y—8 __qg dB(x)
p J-z—s
Now let «, denote the spectral measure of the random walk determined
by the polynomials (6.26); let a; denote the spectral measure of the

associated process and «, the spectral measure of the second associated
process. First applying (6.28) with a=«,, f=a,, we get

(6.29) S day(x) _ —11
ETSs s—f—pl(lg gal(t)“)
-1 -8

Then applying (6.28) with a=«,, g=«a., we get

Uoda(x) -1

(6.30) S_liw_*;—— ' day(x)
s+pqg R

-1 p—8

But clearly «,=a, so from (6.30)

(6.31) S don(z) _ —s+V's'—4dpg
' -1 x—s§ 2pq

where the radical must be determined by analytic continuation from
positive values for s>1. Now (6.31) and (6.29) give

(6.32) Sl dan(m):r(r—l)s—v s—4pg
1 X8 1—(—1)}s*—4pq ’

where y=2p[p,=2(A+)/(A+2y) and y—1=4/(24+2¢) is positive and less
than one. The Stieltjes inversion formula giving «, at all of its points
of continuity is

@ wwr= i T e
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and of course « has a jump at a point x, if and only if its Stieltjes
transform has a pole there. A simple computation shows that the right
side of (6.32) has no poles if 1<y<2, which is the case in our problem.
Thus «, consists of the continuous density

NN =
(639 A -G

on the interval |x|<V'4pg, with y=2p/p,. It is easy to express the
probability distribution of N* in terms of «, the result being

Vapq
6.35 Pr(N*=n}=-*_ S o g
( ) r( n} R —@E‘x ()
2 (VEIEY] e VIE
7 Af2p N 2p/ Iy 4pQtp)
(A+2p)"

7. Results concerning the n server queue. The method used in § 5
to compute the spectral measures for the one and two server queues
can be used in the same way to compute the spectral measure of a
queue with three or more servers. Although the description of the
spectral measure ¢ in terms of the parameters 2, g, and the number n
of servers becomes more and more complicated as # increases, it is
nevertheless possible to deduce certain general features of ¢. These
general features are stated without proof in the next paragraph, and
the proofs are supplied in the appendix.

The spectral measure ¢ of the n server queue consists of a continu-
ous density ¢’(x) on the interval

Atnp—V dndp <z <l+np+V dnip

and in addition there may be a finite number of isolated jumps. The
number of such isolated jumps is one of the integers 0,1,2, ---, » and
these jumps all lie in the half-open interval

0Sa<A+np—1 4dnip .

If np>2 there is a jump at =0 of magnitude p given by

e LB

but if npe=<21 there is no jump at z=0. We form the polynomial

(7.2) F(V 0)=Q(A(V'nb—1)) =V nb Q,-(2(1/nb—1))
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which is of degree 2n in /b . It has a zero of order n at 1/ b =0
and n simple zeros Vb,V b, -+, VD, with 1=b<b< -+ -<b,. The
spectral measure of the » server queueing process has exactly k¥ jumps
to the left of x=A+nx—1 4nip if and only if

bk<fgi < by

where we take b,=0 and b,.,;= +co.

For the case n=3 the three critical values b, occur at b=1/3 and
the two roots of 12p*—112b+147=0.

In discussing the busy period distributions for an n server queue,
one has to distinguish #» different cases. In the simplest case, one
observes the time interval 7' during which all » servers are busy—that
is, at time zero the process is in state n and T'is the first time at which
the process is in state m-1. The distribution of 7' is of course obtained
from (6.4) by replacing g with ng, so that

(7.8) Pr{T<t} =

1 §A+nw+~/m 1—et ——

,,,,,, N _ /{ — 2

2mA A+np—V dnap X 1/4721# ( —}—’)’l,ll (17) dw

is the distribution of a busy period for all » servers. Similarly, the
distribution of the number N of customers arriving during a busy period
for all n servers is obtained from (6.15):

(7.4)  Pr{N=k}= ﬁﬁL(J(.‘l,??!L)”@Y e/ T E dt
A+np\ 2+np TJ-

In the next simplest case one observes the time interval T* during
which at least »—1 servers are busy—that is, at time zero the process
is in state »—1 and T* is the first time at which the process is in state
n—2, After a computation similar to that in (6.21)—(6.25) we find

1 — e——t(n—l) (H—=X)

(@5 PriT*<ty=Y(-* J@—npt=

(n—1)(z—12)
o L[ 1o Vi np—a) g,
27 JA+np- Vinag € w—(n—l)(;z~2)

where Y(2) has its usual significance. If now N* is the number of cus-
tomers arriving during a busy period for (n—1) of the servers, then
from (6.34) with

A —
= ’ Qzl'u—“; T=2 ****** -
At+np A4np At+np

we obtain
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1 2 =Dyl vV Anip N e VITE

.6 *—— et S ) i

(7.6) Pr {N*=Ek} x /1-]—92#( g ) S_lé 1_4[%:@)&152
(A+np)y

Using the same kind of techniques it is possible to find the distri-
bution of the length of a busy period for m of the n servers, and the
distribution of the number of customers arriving during such a busy
period.

8. Maximum length of the queue during a busy period.

Consider for the moment a general birth and death process with
parameter A,, #, and with g#,>0. Suppose the initial state is ¢ and let
j>4. It was shown in [5] that the probability that absorption at zero

occurs without the state 7 ever being visited is
(8.1) A=

&

where ¢ is the spectral measure of the process on the states 0,1, 2,
«++,7—1 which is obtained from the original process by stopping it
whenever the j state is reached.

We first use this result to compute the probability ¢, ; that during
a busy period for all servers in an n-server queue the maximum length
of the queue is always less than n+j. This of course is just the pro-
bability that when the nth associated process starts out in its zero state,
absorption occurs before it ever visits the jth state, and hence (8.1)

gives
()
ny A

T (e
A

A similar application of (8.1) to the (n—1) st associated process gives
the probability (7 ; that for the n server queue during a busy period
for at least n—1 of the servers the length of the queue is always less
than n—1-+j. The result is
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(n—1)p SO

A n/l_i

o —

= e (

Appendix A. The nature of the spectral measure for the n server queue.

In this section we present the proofs of the statements made con-
cerning the structure of the spectral measure for the n server queue.

Let ¢, be the spectral measure of the n server queue, ¢, be the
spectral measure of the kth associated process, and let B,(s) be the Stielt-
jes transform defined by (4.3). The relation between B, and B,., is

—_— 1 N
(A1) B = hp—s—(o 4 DiBun(s)

and B,(s) is given by (4.5). In the interval s,=21-4nuz—1 dniy <s<1
+np+1 4ndp =s, the imaginary part of B,(s+ir) converges to a positive
limit as r—0+. Consequently ¢, (x), and by induction each ¢,(z), 0k <=,
has a continuous spectrum in this interval. From (A.1l) it is seen that
¢, has a jump at each point z=s where the denominator 1+kp—s
—(k+1)ApB,..(s) has a simple zero. These jumps cannot occur in the
interior of the interval of the continuous spectrum because there the
imaginary part of the denominator is negative, and they cannot occur
at the ends of the interval because there B,(s), and by induction each
B,(s), has singularities which are not poles. From (4.5) it is found that
¢, has no jumps; in fact B,(s) increases steadily from zero at s=—c
to the value (nip)~'? at s=s, and increases steadily from the value
—(nAp)~'* at s=s, to zero at s=-+oco.

To locate the jumps, if any, of ¢,_,, consider the places where the
graph of the straight line y=i1+(n—1)#—az intersects the graph of
y=nlyB,(x). No intersection occurs for x>s, because

A+ (n—1)p—s,—nipB,(s)= —p—1 nip<0 .
Moreover, since
A+ (n—1)p—8—napB,(s)= —p+1 nlp

and in view of the monotonicity of the two graphs, there is one inter-
section to the left of x=s, if —p+1 nipx <0, or equivalently if g>n2,
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and no intersection if y<ni. Thus ¢, , never has a jump to the right
of the continuous spectrum and has one jump to the left of the conti-
nuous spectrum if g>ni, no jump if x=<nl. The jump, if pg>ni, is
easily found to be at z=(n—1)(z—12).

It will be shown that none of the measures ¢, have any jumps to
the right of the continuous spectrum. This has already been verified
for ¢, and ¢,.,, and we proceed by induction. Suppose it has been
established for k+1<r<n—1 that ¢, has no jumps to the right of s,
and that B,(s;) is finite, negative, and greater than —(nig)~"%. Since
B, _(s))=—(#+V'nip)™", the inequality is certainly valid for r=n-—1.
From (A.1) we get

-1
B = o by oV et (et DigeBn(e)
and by virtue of the assumed inequality for r=£Kk-+1 it follows that
B(s,) is finite, negative, and greater than —(ndz)~'% Since B..(s) in-
creases steadily from its finite negative value at s=s, to zero at s=oo,
it follows that the denominator of (A.1) is not zero for s>s, and ¢, has
no jump to the right of s,. This completes the induction.

Now suppose it has been established that for some &, 1<k+1<n—1,
and some choice of 1 and g, the measure ¢,,, has exactly » jumps. Let
these jumps be at ay<w,<-.-<w,. Then z,<s, and in each of the r
intervals —oo <s<w;, £, <s<&y,++-, x,1<s<x,, the function (k+1)ipB;.
increases steadily to 4o, and thus in each interval its graph intersects
the graph of A+kp—s exactly once. Consequently ¢, has exactly one
jump in each of these intervals. In the interval z,.<s<s, the function
(k+1)ApB,., increases steadily from — oo to its possibly finite value at
s, and in this interval ¢, has either one or no jumps. Thus ¢, has at
least » and at most »+1 jumps. It follows that for any 4, ¢ the num-
ber of jumps of ¢, is at most n—=k.

Setting s=s, in (A.1)

1
A2 B.(S)=— e L,
(8.2) s) 2V nip—(m—k)p—(k+1)2pB;.(s))
The necessary and sufficient condition that ¢, have one jump more than

¢e: is that this expression be negative. Now it follows by induction
starting from

1
Bn—1 e I
(80) 1/%2/1 .
that for k<n—1,
Bi(s))~ 1 -
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as p—oco with 2 fixed. Consequently, for any fixed 4, ¢, has exactly
n—k jumps for all sufficiently large #. On the other hand it follows
by induction that for each k<n—1,

lim 1V ¢B(s,), 2 fixed ,
=0

exists and is positive but less than (r2)-"2. Consequently, for any fixed
2, ¢, has no jumps for all sufficiently small p.

In order to make a more careful study of the number of jumps of
¢, we introduce the associated families of polynomials {Q¥(x)} defined
for k=—1 by

Q)= — % Qulz)

and for k=0 by the recursion formulas
Q¥ (@)=0 for r=<k,

B@)=—1,

— 2@ (@)=, Q2:(x) — (A + )@ (@) + Q% (), r=k+1 .

It is seen that except for the constant factor —(1/1), the polynomials
Q) (x) with k fixed are the polynomials belonging to the (k+1)th as-
sociated process and are orthogonal with respect to ¢.,. Applying (2.9)
to the kth associated process we obtain

_1 . mQREB6—-Q0)
B Q@B Q)

In terms of the variable b=pg/1 we have s,=A1—1"nb)’, nuB,(s,)=1"nb.
If we let

P b )= = L oo~y )

then

_1 PP b)—V 0 PP b)
A.3 B Sp)=—* n—1
49 K= PEOW b))~V n PEPW )
The quantities P*(¢) satisfy

{szm(s):o, PERy(6)=1,
— (n—1)EPP () =1rP¥(E)— 2V 1 PE(E) +- PE(E)

for k+1<r<n. By virtue of the form of this recurrence formula it
follows that for each fixed % the polynomials P® (&), k+1<r<mn, form

(A.4)



116 S. KARLIN AND J. McGREGOR

a finite system of orthogonal polynomials and that the polynomials
PE(E), k+2<r<m, are the corresponding associated polynomials. Wri-
ting (A.4) in the form

PEE)—V n PPE)=1V n[PPE)—V n P ()]
+(n—7)[P2(§) —EP(€)]

it is easily shown by induction that all of the polynomials P%(§),
P®(E)—V 0 PP (E), k+1=r<n, are strictly positive for £=<0.

Now the polynomial
G(Ic 1)(5) P(k 1)(5) ‘/,np(k 1)(5)

is a quasi-orthogonal polynomial, of exact degree n—1Fk, belonging to the
system of polynomials P{~, and the corresponding associated polynomi-
al is G®(8). Consequently GE-D(£) has exactly (n—Fk) distinet positive
roots, say & '<CéF<... <&k, and the n—k—1 roots of G¥(¢) lie one
in each of the open 1ntervals EF1CECERLLL

The quantities By(s,) can be computed by using the recurrence for-
mulas for the polynomials P#(§). In particular

— o 1 -
N @V —vVb)—vn

-1

VbW n—1'b)

which checks with an earlier computation. Thus we see that the root
g2 of G2%€) is V' n, and we already know that ¢,_, has no jump if
vV b <& and has one jump if Vb >&* Suppose it has been esta-
blished that ¢,., has no jump if Vb <&, has » jumps if &<V b <&,
for r=1,2, ---, n—k—2, and has n—%—1 jumps if Vb >¢&_,_,. This
property is easily extended to ¢, by induction. In fact ¢, always has
either the same number of jumps or else one more jump than ¢,.,, and
it has one more jump than ¢,., if and only if the expression

Bys)= ., GP0D)

57 G B
is finite and negative. The result follows because of the interlacing of
the roots of GJ~2(§) and GPF(€).

Summarizing, the number of jumps of ¢, to the left of the conti-
nuous spectrum is equal to the number of roots of G¢¥-V(£§) which are
less than /b . In particular the number of jumps of ¢, the spectral
measure of the n server process, is equal to the number of roots of
the polynomial
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G V(&) =PS(E)—V n PSY(8)
=& QA1—EV 1)) —EV 1 Quos(A(1—EV 0 ))]

which are less than /b .

Appendix B. The random walk polynomials derived from the infinitely
many server queue.

In §6 we had occasion to consider, along with a birth and death
process, the imbedded random walk. A system of polynomials, which
are useful in a variety of problems, arises in this way from the infinitely
many server process. These polynomials depend on a parameter a=21/p
>0 and will be denoted by 7.(x, @) or sometimes by r.(x). The purpose
of this appendix is to list their useful properties.

The polynomials are defined by the recursion formulas

ro(@, a)=1,
ary(x, a)=r(z, a) ,
(n+a)rr,(x, @) =nr,_,(z, @) +or,.(z, a), n=1.

They are orthogonal on the interval —1<x<1 with respect to a mea-
sure ¢ which consists entirely of jumps. If we let

zo=4 . ,k=0,1,2,---
k+a

then ¢ has equal jumps at =, and at —=«, of magnitude

0= 1 @ (]£+a)k_’ k:(); 1! e
2k+a kleb+e

and these have been normalized so the sum of all the jumps is one.
The orthogonality relation is

nm

Pa(@e) ()7 +- gorn( — T (— ) = ﬁn'n

18

k=0

where

n+a a”

M= * .

a n!

A generating function is

’

L Z"_ Z/Z< _ xi>a(1_z‘z)/x2
Tgom(x, a)m—e 1

and from this explicit representations of the polynomials can be ob-
tained. For example
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2

rn(x, a,): L cn( a }:x“ , @ )
" e 2

where ¢,(x, @) are the Poisson-Charlier polynomials.
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CURVATURE IN HILBERT GEOMETRIES

PAuL KELLY AND ERNST STRAUS

For every pair of points, p and ¢, interior to a simple, closed,
convex curve C in the Euclidean plane, the line £=px ¢ cuts C in a pair
of points # and v. If C has at most one segment then the Hilbert
distance from p to ¢, defined by

h(p, q):‘log< u ”q>| ,
uqg vp

is a proper metric (where up denotes the Euclidean distance from u to
p), and is invariant under projective transformations. The geometry
induced on the interior of C is a Hilbert geometry, and the Hilbert lines
are carried by Euclidean lines [2].

We shall be concerned here with curvature at a point defined in
a qualitative rather than a quantitative sense (cf. [1, p 237)).

DEFINITION 1. The curvature at p is positive or mnegative if there
exists a neighborhood U of p such that for every «, ¥ in U we have

2 h(f, @)zh(% Y)
respectively
2 WzZ, y) <k, y),

where Z, y are the Hilbert midpoints respectively of the segments from
p to x and p to y. If there is neither positive nor negative curvature
at a point then the curvature is indeterminate at that point. This
qualitative curvature is clearly a projective invariant.

In order to state our result we need one more concept.

DEFINITION 2. A point p is a projective center of C if there exists
a projective transformation, =, of the plane so that zp is the affine
center of =C.

A projective center is characterized by the following. Let & be
a line through p, and let &nC={u, v}, and let p; be the harmonic con-
jugate of p with respect to » and ». Finally, let L, be the locus of
all p;. Then p is a projective center if and only if L, is a straight line.

Conice sections are characterized by the fact that every point in their
interior is a projective center [3]. We can now state our main result,
which solves a problem of H. Busemann [1, Problem 34, p. 406].

THEOREM. If p is a point of determinate curvature then it is

119
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a projective center of C. In particular, if the curvature s determinate
everywhere then C is an ellipse and the Hilbert geometry is hyperbolic.
We first establish some lemmas.

LEMMA 1. For any point p, interior to C, there exists a line 7
(possibly the line at infinity) which intersects L, in at least two points
and does not intersect C.

Proof. There is at least one chord of C which is bisected by p.
If & is the line of such a chord then &, intersects L, at ¢, on the line
at infinity. If L, has a second point at infinity then the line at infinity
satisfles the lemma. If L, has only one point at infinity then L, is
a connected curve. It cannot lie within the strip formed by the two
supporting lines of C which are parallel to & for then it would intersect
C. There is therefore a point ¢, of L, outside this strip and the line
N=q,; X ¢, satisfies the lemma.

COROLLARY. For every p in the interior of C there exists a projective
transformation, =, so that =C is a closed, convex curve, and so that =p
18 the midpoint of two mutually perpendicular chords of =C whose end-
points are points of differentiability of =C.

Proof. Since all but a denumerable set of points of C are points of
differentiability, we may choose the line » of Lemma 1 so that ynL,
contains pe, and py, and so that C is differentiable at its points of
intersection with & and &. Now let 7, be a projective transformation
which maps 7 into the line at infinity, and let 7, be an affine transfor-
mation which maps =, &, and m, & into perpendicular lines. Then n=n.m;
has the required properties.

LEMMA 2. If a chord of C, of (Euclidean) length 2k, has p for its
midpoint and if ¢ s a neighboring point on the chord at (Euclidean)
distance ds from p, then dS=(2/k)ds+O(ds®), where dS=h(p, q).

Proof. If the endpoints of the chord are # and v, and the order
of the points on the chords is u, p, ¢, v, then, by definition,

as=log(“PIPL)( ) =tog(FEEN E )
=1og<1+ %‘j—) —log<1 - %{)
[ -3 ]
. )
I IS
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- 2ds+0(dss) :

LEMMA 3. Let (v, 0) be polar coordinates whose pole p is an interior
point of C at which the curvature is determinate. ILf C is differentiable
at the ends of two perpendicular chords which bisect each other at p,
then C satisfies the ‘‘ one-sided’’ differential relations

d <csc 20) _ d <CSVC"2(9>
ag r %  qf r?

d<@@g ::dgw%>
AN L VAN

(Bo-+m)*

(1)

(80 +7)~
for all 4,.

Proof. We first introduce Cartesian coordinates, with origin p, so
that the y-axis intersects C at points of second order differentiability,
and so that the axes do not coincide with the two given chords bisected
by p. The curve C is then given by an ‘‘upper’ arc y—y(x) and
a ‘“lower” arc y= —y(x). Let the bisected chords lie on the lines
& 1 y=ax and &,: y=(1/a)x respectively. Let b,=(dz, a dx) and ¢,=(2dz,
2a dx) on &, and b,=(dx, —(1/a) dz) and ¢,=(2dwx, —(2/a)dzx) on &, where
dx is positive and chosen so that b, b,, ¢;, and ¢, lie inside C. Assume
that p is a point of negative curvature. Then.

(2) 2 h(mi, my) = ey, 6).

where m,; is the Hilbert midpoint of the segment from » to ¢;.

To show that A(m,, b,)=0(dz’), we define dS,=n(p, ¢,) and ds,=pc,.
With 2k representing the Euclidean length of the chord on &, it follows
from Lemma 2 that dS,=(2/k) ds,-+0(ds,®), and hence that

(3) (p, my)= éd&: %dsl+0(dsl3) .

Also, from Lemma 2 and the relation ds,=2 pb,, it follows that

(4) I(p, b)= %plerO[(pr)z] = ]15 (ds))+0(ds/’) .

Since A(m,, b)) = |h(p, m,) —h(p, b)|, equations (3) and (4) imply that A(m,, b))
=0(ds?®). But ds,=dx(1+a?)"*=0(dx), hence h(m,, b,)=0(dz*). Similarly,
M(m,, b,)=0(da?), and therefore

(5) h(m, by)+R(m, b,)=0(da’) .

From the triangle inequality,
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(6) My, my) = (b, b)) —h(my, b)) —h{m., b)) .
This, together with (5), yields
(7) h(my, m,)=h(b,, b,) —O(da?) ,

and from (1) and (7) we obtain
(8) 2 h(by, b)) <h(cy, ¢,)+0(da?) .

We now wish to calculate the distances in (8). First, we have

(9) I(b,, b,)=h[(dw, a dz), (dx,—»(—llfdm)]
u(dw)+<]'dw
. a y{de)tadz
y(de)—ade y(dz)— L da
- a

dx adx
:log[lJr ]—Hog[l-{- - ]
a yl(dw) y:(dx)

~log [1‘ ;f&ii)}bg[l— audézm] '

Using the Maclaurin expansion of the logarithms, and colloeting first
and second degree terms, we obtain

=log

(10) (b, b)=def a+ %)[ - ((11%) o (izx)]
+ (= ~ v )0

Because both of the functions y,(x) and y.(«) are convex and have second
derivatives at =0, they can be represented in the form

(11) yi(dx) =y,(0) +yi(0)dx +O(dz?) , =
and hence
1 1 :(0) 2
12 dw) ~ w0 o) ©TOC
(12) wdn) w0 gio) O
1 ] 1 +0(dzx)

The substitution of (12) in (10) gives

(13) by b)=dofa+ * )[1 _wde g 1 yi‘fw]
a Y 'R Y Y

B (o 1YL 1Y, o

+ (o= N ) rous,
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where y,=v,(0). Hence

(14) 2 h(by,bs) = 2d$<a+ )[; +Ef y;fx*— y;i:b
a1 - D]rown.

By the substitution of 2 dx for da we obtain

W) Meer=2dfar D 1y 1 2ide 2iide
Y, Y., Yi Y
+dx<a—~ 1)( 1 _,,_1T>}+O(dx3) .
a Y Ya
Substituting this and (14) in (8) we have
(16) 2dw<a+ )[ 11 _wde _yide
Y Y. Yi Y

)
AN Y y§>
<2dx<a+ )U + y,l,‘_%y;gz_ Zyydﬂe

i 1) o

2

By dividing both sides of this inequality by 2dxz(a+1/a), and then rear-
ranging the terms, we obtain

(17) dx(%% + ;’ ) - ,‘?2”” (a—};)( yl _ yl) <O(da) .

Division of both sides of (17) by dx yields a new inequality whose right
side is O(dx) but whose left side is independent of de. From this it
follows that

a1

Consider now a reflection in the y-axis taking C into a curve C which
is divided by the w-axis into an “ upper’’ arc z==z/(x) and a ‘ lower”’
arc z= —2z,(x). With the lines 2=(1/a) and z= —ax playing the roles of
¢ and &, and with b, ¢, b,, ¢, defined respectively by (dz, (1/a) dx), (2 du,
(2/a) dx), (dx,—a dx), and (2 dx,—2a dx), a repetition of the former argu-
ment leads to

(19) .ﬁi‘_‘_;fg,_ dx,(,,l\__a)(,l _ ,1,>§0_

2 23 2 \a 2 24

Since z;=y, and z;=—yi, (19) is also
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A yz Y Y2

Combining the opposite inequalities (18) and (20), we obtain

(21) A _f_%/a _1 <a—} )(,,1,, _ 1 ):0 .
yi oy 2 ¥ v

Since (21) is an equality, it is clear that the same result would have
been obtained if all preceding inequalities has been reversed. In other
words (21) holds if p is a point of determinate curvature.

To express (21) in polar coordinates, let the polar axis be & and let
0, designate the angle between the polar axis and the upper half-line
of the y-axis. The angles of inclination to the z-axis of the tangent
lines to C at (0, ¥, and (0, ¥, are «, and «, respectively and the clock-
wise angles from the radius vectors to the tangent lines at these points
are w; and w, From the standard relationships between polar and
Cartesian coordinates, it follows that

(22) y(0)=tan a,= —cot w,= [ 1 dr ‘J(J
r do
#:(0)= —tan a,=cot w}_[}f dr :lﬁo—}—n
r df
Also, by definition, a=-cotf, so % (a— 1 >:cot 260,. Substituting this and
o

(22) in (21) we obtain

1 dr 1 dr 1
23 [—7] [ ] £ 20 [ 1 ]:0,
@) = gL e ao e T ) T
and hence
1 dr 1 dr
24 [ t20jl { , 20] .
@) r do + ¢ r df + r? B0+

Multiplying both sides of (24) by 2 ¢sc20,—2 ¢sc2(6,+7) we have
d (csc 26) ’

~d (csc 26)
60 r? [Bo+m )

25
(25) dag

Since (25) involves only first derivatives, it holds for all d, for which
r is differentiable at both 6, and 6,+=. Since the one-sided derivative
exists everywhere, we get the desired relations in (1), for all 6, from
the semi-continuity of the one sided derivative.

Proof of the Theorem. According to the corollary of Lemma 1 there
is always a projective transformation such that, after the transformation,
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p satisfles the conditions of Lemma 3. From (1) we obtain
()] a2
0y P? (" 72 ’

where the integrals are Stieltjes intergrals and the interval (d4,, 8) does
not contain a multiple of z/2. Hence

1 1 .
(27) () ~ 0 1n )~+kj sin26, k,=constant
where (G—1) ggagjg,(jzl, 2,3,4).

Since 7 is differentiable at the points for which 0=0,7/2, 7,37/2, we
obtain from (27), upon differentiation at these points, the relations
k,=k,=k,=k, On the other hand, if we replace ¢ by 04z in (27) we
obtain the relations k= —Fk,, and k,= —%,. In other words, k,=0 and
r(@)=r(@+=). Since this shows p to be a metric center, it was initially
a projective center.

The last statement in the theorem is well known (see [3] and e.g.
[2, p.164]).

If a Hilbert metric is defined in the interior of an n-dimensional,
convex surface S, the definitions for curvature and projective centers
are unchanged. The metric for the space induces, on any plane through
an interior point p, a two-dimensional Hilbert geometry. If p is a point
of determinate curvature, it is a two-dimensional projective center for
every plane through it. Since the L, locus for every plane section is
a line, it is easily seen that the total I, locus must be a plane and
hence that p is a projective center of S. If curvature is determinate
everywhere then S is an ellipsoid and the geometry is hyperbolic.

It seems probable that a Hilbert geometry can contain no points
of positive curvature.
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STATIONARY MEASURES FOR CERTAIN
STOCHASTIC PROCESSES

JOHN LAMPERTI

Introduction. In arecent paper [1], T.E. Harris has studied stationary
processes {Z,} with a finite number of states, taken to be the integers
0, 1, ---, D-1. His technique is to map the half-infinite sample sequences
Zy, Zy_y, --+ onto the unit interval by means of the correspondence

(1) Xpir=Zp|D-+Zyo[D* 4 «+- .

The X, then form a stationary Markov process. In §5 of [1] Harris
shows (Theorem 7) that if the process {Z,} is of mixing type, then
either the stationary distribution G(x)=Pr(X,<z) has a unit step, or is
the uniform distribution, or G(x) is continuous and totally singular.
The purpose of this paper is to investigate correspondences such as
(1) in general, using two simple lemmas in ergodic theory which are
given in the next section. If g({4, %, ---}) is any essentially one-to-one
and measurable mapping of the space of sequences {4, 4, ---} onto
another measurable space X, then a correspondence similar to (1) may
be defined between stochastic processes with states ¢ and processes on X :

(2) Xn+1:g({Zn’ Zn~1; "'}) .

Theorem 1 describes the resulting distributions on X ; Theorem 2 is
a specialization to the case of (1). Finally an additional application
(Theorem 3) is made to certain of the processes studied by Karlin in
[3]. Theorem 2 contains Theorem 7 of [1], and Theorem 3 overlaps
with § 7 of [3]. In addition to a unified approach, some extension of
the previous results is obtained in both cases.

2. Ergodic theory lemmas.

LeMMA 1. Let (Q, W) be a measurable space and T o measurable
transformation of Q onto itself. Let p, and p, be two sigma-finite measures
on (Q, W) such that for each, T 1is a measure preserving, metrically-
transitive transformation. Then if p, and p, are not proportional, they
are orthogonal (t.e., have their positive mass on disjoint sets).

Proof. Suppose y; and p, are both finite measures, and assume they
have been normalized. Let 4 be a set such that p,(A4) # g(A4). Define

Bi:{w e oflim L i@(m):mm)} , i=1,2,
n—oo 9] j=1

Receisg July 8, 1957. This paper is based on a technical report prepared under contract
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where ¢,(-) is the characteristic function of the set 4. By the in-
dividual ergodic theorem, g, (B;)=1. Hence B, and BiDB, are a decom-
position of Q demonstrating the orthogonality of g, and g,. In the case
where one or both of the measures are infinite, the same idea may be
carried out using Hopf’s ratio ergodic theorem (see, for instance, [2]).

Now let Q be the cf[ Y, of sequences {w;} where w;eY; with each

{=—o0

Y,=Y,Y a measurable space. Let W be the Borel field generated by
the “‘ cylinder sets”> of Q* Denote by S the ¢ shift” transformation

(3) S{w;} ={v;} where y;=w;.. .

LEMMA 2. Let p be a measure on (Q, W) such that S is measure
preserving and metrically-transitive and p (2)=1. Then one of the
Sollowing is the case:

() there is a finite sequence @y, &, -+, &, of points of Y such that

M has mass 1 on each of the m points of Q given by
m

w;=a, for i=j+k mod m; k=0,1, ---, m—1.

(b) ploweQlw=ayw_ =0, +--}=0 for any sequence {a,} of points
of Y.

Proof. Suppose that case (a) does not hold. Then we shall show
that #(A4)=0, where

A= G A, A,={weQlo,=dw,_=a, -- 1.

Now A is invariant under S, and so p(4)=0 or 1. Assume p(4)=1.
It is not hard to see that if {a;} were a periodic sequence, case (a) would
hold. But if {a,} is not periodic, a value of n such that w,=d, o,
=a,, - -+ must be unique, and so the 4, are disjoint. Since S is measure
preserving, #(A4,) are all equal. This contradicts the assumption that
p(A)=1.

Finally we remark that, speaking somewhat less precisely, Lemma
2, may be re-expressed as : A stationary ergodic stochastic process either
executes deterministically a certain periodic motion, or else each path
function has probability 0. We shall refer to these alternatives as case
a and b.

3. Induced Markov processes. In this section we continue to use

the notation Q= II Y,, but Y is restricted to be a fixed (not necessarily
j=—o0

2 In the applications we shall make of this lemma, Y will be restricted (in fact, will
be denumerable), so that the Kolmogorov extension theorem will hold.
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finite) set of integers. Let Q, denote the space of half-infinite sequences
{4y, 4y, ---} where 4, Y; the measurable sets of both Q and Q, are
again those belonging to the Borel fields generated by the cylinder sets.
If o®={4,1, - --} is an element of Q,, the notation {7, »®} will mean
the sequence {7, 4, %, *--}.

Let (X, F) be a measurable space, and suppose that there exists
a mapping g(o®) of Q, onto X which is one to one if sets at most
denumerable are deleted from Q, and from X ; suppose also that both
g and g are measurable. Let g be any probability measure on the
space Q, and let {Z,}] mean the stochastic process consisting of the
random variables

(4) Zfw)=1i, .

A new process {X,}, with state-space X, may be defined by (2) and (4).

LEMMA 3. Assume that for each particular sequence «® in Q,, and
Jor each n,

(5) PY(Z, =10, Zyr=fy, +++)=0 .

Then {X,} is a Markov process whose (not necessarily stationary) transi-
tion probabilities are given with probability one by

6) Xno=g[ {2, g7(X,)}] with probability
(
j;(Xfﬂ):Pr[an?il {Zn—l, Zn-—zv b '} :g—l(Xn)] .

Proof. Let Ec ) denote the set of all “ path functions’ for the
{Z,} process such that some segment {Z,, Z,.;, ---} belongs to the
(denumerable) set which must be deleted from Q, in order to secure
a one-to-one map onto X ; it follows from (b) that #(£)=0. Therefore
with probability one, knowledge of X, determines the sequence {Z,.,,
sy ++} =g~ (X,) uniquely. Then X, also determines X,_;, X,_,,+--and so
the process is Markovian. That (6) gives the transition law is clear.
There are, of course, many cases where the Markov property and (6)
hold even though (5) does not.

Consider now measures g such that the shift operation (3) s measure
preserving and metrically-transitive ; in other words, measures such that
{Z,} is a stationary, ergodic stochastic process. In this case, {X,} will
also be stationary ; let @, denote the stationary probability measure of
(each) X,.

THEOREM 1. If {Z,} ewxecutes deterministically a cycle of period m
(case a), them €, concentrates its mass upon at most m points of X.
Otherwise (case b) {X.} is a Markov process, the measure Q, is non-atomic,
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and any two wmeasures of this type resulting from different p’s are or-
thogonal.

Proof. In case a, the measure p concentrates on m points, and so
@, will concentrate on the images of these points, which may or may
not all be distinct. (If they are distinct, then {X,} must be a Markov
process.) Otherwise, (case b), it follows from Lemma 2 that (5) holds,
and hence that @, is non-atomic. Lemma 3 then implies that {X,} is
a Markov process. Under the mapping ¢ the relation of orthogonality
of non-atomic measures is preserved, and so Lemma 1 yields the remaining
assertion of the theorem.

A remark about infinite measures will conclude this section. Suppose
the shift operation is measure-preserving and metrically-transitive for
sigma-finite measures x# on  which have the property (b) of Lemma
2. Let @, denote the perhaps infinite measures which are then induced
by g on (X, F). Lemma 1 is still available, and so the conclusion of
orthogonality of distinet Q,’s remains valid.

4. Applications.

ExampLE 1. We now consider the particular case studied in [1].
The set Y will consist of the intergers 0,1, ---, D-1, and (X, F') will be
the unit interval and the field of Borel sets. Let

(7) 9{igy Gy -} ) =i DA i) D+ e e

Then the correspondence between a process {Z,} with states Y and
a process {X,} is given by (1). In this situation we have

THEOREM 2. Let {Z,} be a metrically-transitive, stationary process
with state-space Y ; lot G(x)=Pr(X,<x) be the stationary distribution
Sunction of X,. Then {X,} s always a Markov process, and one of the
Jollowing holds :

(1) {Z,} ewecutes deterministically a cycle of period m; in this
case, G(x) has m discontinuities each of leap 1jm.

(ii) FEach Z, is independently uniformly distributed {0,1, ---, D-1}.
In this case G(x) =z, 021,

(ili) G(zx) is continuous and singular with respect to Lebesgue measure.
Finally, any two continuous distributions G(x) are orthogonal.

Proof. The fact that {X,} is always a Markov process, and the
statement (i), follow since the mapping (7) cannot map two sequences
of Q, having positive measure into the same point. Statement (ii) is
easily verified, and then the remainder of the theorem follows from
Theorem 1.
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ExAMPLE 2. In this application, the {X,} process is the primary
object of interest; it is a type of learning model [3]. Let Y consist
of the integers 0 and 1, and again take (X, F') as the unit interval and
Borel field. Let o and a be two numbers between 0 and 1 such that
oc+a<l. (The present approach does not seem to apply when ¢+a>1.)
Define inductively a family of subintervals of the unit interval as follows :

A({O}):[O’ ‘T]’ A({l}):[l——a’ 1]!
and if wp,={i, i, -, 1,1}, then
A{0, o)) = A(wt) and A({1, wb})=1—a+aA(wt).

Now since both o<1 and a<1, for any sequence ™ the A(w)) are
a sequence of nested intervals of length approaching zero. Therefore
the following definition is meaningful :

(8) !]({’50; ?;L! ° "}):7i1A(w?n) .

Let {Z,} be a stationary stochastic process with states Y, and define
{X.} by (2) and (8). Let G(x) again denote the stationary distribution
of the X..

THEOREM 3. {X,} is a Markov process with tramsition law

(9) X ~{”X"’ with probability /"
“TUeatax, 0P VA =1-(X)

Any stationary Markov process of this form is induced by some process
{Z.}: If {Z,) is in addition metrically transitive, one of the following
cases must hold :

(1) {Z.} ewecutes deterministically a cycle of period m; G(x) has m
discontinuities each of leap 1/m.

(ii) G(xy=z; this occurs if and only if o+a=1 and f(r)=0, fi(x)
=l—o.

(ili) G(x) is continuous and singular with respect to Lebesque measure.

Any two continuous distributions G(x) arising from different metri-
cally-tramsitive processes {Z,} but the same mapping g (that is, the same
o and «) are orthogonal.

Proof. 1If o4+a<1, then the mapping ¢ is not onto the whole unit
interval, but onto a cantor-like subset of measure zero; it is precisely
one-to-one onto this set. Therefore X, must be a Markov process, and
the transition law (9) is obtained from (6) and (8). The continuity of
G(z) if (i) does not hold follows from Lemma 2. Since G(x) is a distri-
bution on a set of measure zero, it must automatically be a singular
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distribution for any process {Z,}.

Now suppose o+a=1. In this case there are some points x corre-
sponding under g~' to two points of Q,; however, just as in Theorem 2
the ambiguities of the mapping do not affect either the Markov property
or the m distinet discontinuities of statement (i). Statement (ii) is readily
verified, and then (iii) follows from Theorem 1. Whether o+a=1, or
<1, the last statement of the theorem also follows from Theorem 1.

If {X,} is a stationary Markov process of the form (9), the dis-
tribution G(x)=Pr(X,<x) concentrates positive mass only on the domain
of ¢g7*; hence a stationary measure is induced by ¢! on Q, which
extends to a measure ¢ on Q. The process {Z,} inducing {X,} is then
defined by (4). This completes the proof.
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DISTRIBUTIVITY AND THE NORMAL COMPLETION
OF BOOLEAN ALGEBRAS

R. S. PIERCE

1. Introduction. In a recent paper, [4], Smith and Tarski studied
the interrelations between completeness and distributivity properties of
a Boolean algebra. Independently, the author also obtained some of the
results of Smith and Tarski. This work was reported in [2]. The present
paper continues the study of distributivity in Boolean algebras. Specifi-
cally, it deals with the problem of imbedding a Boolean algebra B in
an «-distributive, S-complete algebra, « and j being infinite cardinal
numbers. If it is required that the imbedding be regular, that is, preserve
existing joins and meets, then (see [3]) the problem is equivalent to the
question of when the normal completion of B (or a subalgebra of the
completion) is a-distributive. Our two main results can be briefly stated
as follows :

THEOREM 3.1. Ewery a-distributive Boolean algebra can be regularly
wmbedded in an a-complete, a-distributive Boolean algebra.

THEOREM 5.1. There exists an a-field of sets whose normal com-
pletion is not a-distributive.

Between these principal results, we obtain two simple conditions,
one of which is necessary, the other sufficient for the normal completion
of a Boolean algebra to be a-distributive. These appear naturally as
particular cases of more general facts relating properties which are
similar to, but not identical with a-distributivity and p-completeness.

2. Preliminary results. The notation of this paper will be the same
as that of [2]. The Greek letters «, 8 and y always denote cardinal
numbers, while p, o and r are used as indices belonging to sets R, S
and T respectively. The symbol « will be used as though it were
a largest cardinal. This is a notational convenience, and in no case in-
volves questionable logic. As in [2], a subset A of an arbitrary Boolean
algebra B is called a covering (of B) if the least upper bound of A in
B is the unit # of B. If the elements of the covering A are disjoint,
then A is termed a partition. Finally, if the covering (partition) 4 is
of cardinality less than, or equal to «, symbolically A<«, then 4 is
called an a-covering (respectively, a—partition). If 4 and A are sub-
sets of B, then A is said to refine A when every ae A is<some ac A.
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DEFINITION 2.1 (Smith-Tarski). A Boolean algebra B is called («,
f)-distributive if

/\UES\/TEwa:theF/\aeSbogo(tr) ’ F=T5

holds identically when S<a, T<p and the bounds are assumed to exist
in B.
Some elementary consequences of this definition are worth noting :

(2.2) If B is (a, p)-distributive and «'<«, '<f, then Bis («/, f')-
distributive. Any regular' subalgebra of an («, f)-distributive Boolean
algebra is («, B)-distributive. Every Boolean algebra is (n, 5)-distributive,
where n is finite and S is arbitrary.

The last assertion of (2.2) is a variant of the Tarski-von Neumann
theorem (see [1], p. 165). This infinite distributivity is a property of
Boolean algebras which we use repeatedly and without mention.

A useful characterization of («, B)-distributive Boolean algebras is
given by the following theorem, which, in somewhat different terms,
appears in [4]. Since this characterization is used often in the sequal,
we sketch a proof.

THEOREM 2.3. Let a and f be arbitrary cardinal numbers. A Boolean
algebra B is («, f)-distributive if and only if, for any family {A,|o € S} of f-
coverings of B with SZa, there is a covering of B which refines every A,.

Proof. Suppose B is («, f)-distributive. Let {A,loe S} be a given
family of f-coverings with S<a. It can be assumed that every A, is
indexed by the same set 7': A,={a,.[reT}. Let A={ac B|{a} refines
every A,}. Clearly A refines every A4,. If A is not a covering of B, there
exists b0 (the zero of B) which is disjoint from every ae A. Setting
b,,=a,.A\b, it is easy to see that A,V.b,.=b>0=V,Ab,4. This con-
tradicts («, f)-distributivity. Thus A is a covering.

Conversely, let B satisfy the condition of the theorem. Suppose
Vrerbar » NoesVrerbe;=b and Aedop(or €xist for all ce S and all e F
=T%. Let o be a symbol not in T'. Put T"=TU{w}, bs=0, Zuz{bml
€T}, by= Asesboocor for all e F. Then each 4, is a f-covering, so by
assumption there is a covering A which refines every A4,. If ac A4, then
either a<b, for some ¢eF, or else a<?d'. Thus, if ¢=b, for all ¢,
cvb' =lub. A=wu (the unit of B). Hence, ¢=b. Since b is obviously
an upper bound of all b,, it follows that b= A ,csb,.

For simplicity, an («, a)-distributive B. A. is just called a-distribu-
tive.

)-717713; é\fl)zllgﬁbra B of a Boolean algebra B is called regular (see [3]) if, whenever a

=lub. 4 in B (a€B, A<B), then a=Lu.b. 4 in B also. Of course, in a Boolean al-
gebra, this property implies its dual and conversely.
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COROLLARY 2.4. A Boolean algebra B is a-distributive if and only
if every family {A,\oc €S} of binary partitions with §§a has a common
refining covering. B

Indeed, if {A,|l0eS} (S<a) is a family of a-coverings, say A,
={a,,lreT}, then, setting A,,=[a,, (a,.)], the set {4,,|lceS, reT} is
a family of no more than « binary partitions of § and any covering which
refines all A4,,is a common refinement of all A, (because A (a.,) =0.

For future reference, we list some of the well known properties of
the normal completion (or completion by ‘‘ cuts’’) of a Boolean algebra.
The Stone-Glivenko theorem ((2.5) below) is proved in the standard re-
ference [1]. The proofs of (2.6) to (2.8) are conveniently collected
in [3].

(2.5) (Stone-Glivenko) The normal completion of a Boolean algebra
is a Boolean algebra.

(2.6) Let B be the normal completion of the Boolean algebra B.
Then B is a regular subalgebra of B.

(2.7) Any Boolean algebra B is dense in its normal completion B.
That is, if 0#be B, then there exists be B with 0£5<b.

(2.8) If the Boolean algebra B is a dense subset of the complete
Boolean algebra B, then B is 1s0morph1c to the normal completion of
B. Moreover, if BCBc B and B is complete, then B=B.

DEFINITION 2.9. Let B be a Boolean algebra. Let B be the normal
completion of B. Let a be an infinite cardinal number. The normal a-
completion of B is the intersection of all @-complete subalgebras of B
which contain B. Denote this algebra B*. It will also be convenient
to write B> for B.

Clearly, B* is the smallest a—complete subalgebra of B* containing
B. Moreover, B is dense in B® and is regularly imbedded in B-.

3. The imbedding theorem. The primary purpose of this section
is to prove Theorem 3.1 (stated in the introduction). However, the
method of the proof is used several times in the following sections, so
it behooves us to present it in a form which is sufficiently general to
cover all future needs.

LEMMA 3.2. Let B be a complete Boolean algebra. Let A be a non-
empty family of partition of B such that if {A,lc e S} and S<a, then
some Ae N refines every A,. Let B be the set of all joins of subsets of
the partitions A in A. Then B is an a-complete Boolean algebra such
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that ASB Jor every Aed and every a-covering of B s refined by some
AeU. Hence, B is a-distributive.

Proof. If C<AeA, then (lL.u.b. C)y=lu.b. (A—C), since A is
a partition. Hence B is closed under complementation. Suppose {c,|o € S}
is a subset of B with S<a. By definition of B, for each o€ S, there
exists a partition A,e? and a subset C,=A4, such that ¢,=l.u.b. C,.
Then A, refines the binary partition {c,, (¢,)’}. Let A€ A be a common
refinement of all A,. Then A is a common refinement of all {c,, (c,)’}
and g.Lb. {c,JceS}=Lub. {acAdla=<ec, all ceS} e B. Indeed, ¢=1.u.b.
{acAla<e,, all o€ S} <V, e, is clear. But also, ¢'=lu.b. {aedla<
(c,), seme o€ S} < Aves(Cs) =(Asests). Hence, B is an a—complete B.A.
Obviously, A<B for all Ae9. If A is an a-covering of B, then, as
proved above, every binary partition {c, ¢’} withce A is refined by some
A,eUA. Choosing A € U to be a refinement of all these A, gives a refine-
ment of A. In fact, any ae A satisfies either a<e, or a<¢ for all
ceA. If a<c¢ for every e, than a< A.i¢'=(lL.u.b. A)Y=0, since A4 is
a covering. Thus every ae A satisfies a<c¢ for some ce A.

Proof of (3.1). Let B be the normal completion of B. Let A be
the set of all partitions of B, which are of the form IT,es4,= {b,|¢ € 25},
where the A,= {ay, @1} are binary partitions of B and b,= A esllepo) € B.
The fact that Il,es4, is a partition follows directly from the assumed
distributivity of B. If A,=Il,esmnA,, €U for all re T with T<«, then
A=, e50nAr-€U is a common refinement of all A,. Thus, the
hypotheses of (3.2) are satisfied. Consequently, there is an a—complete,
a—distributive Boolean algebra B with B€B<B. Since B is a regular
subalgebra of B, it is also a regular subalgebra of B.

4, Conditions for distributivity. In this section, we will examine
the following five properties of a Boolean algebra B:
( I, ) B is a-complete;
( II, ) every subset of an a-partition of B has a Lu.b. in B;
(IIl;) every [-covering of B can be refined by a f-partition ;
(IV,) B is («, f)-distributive ; _
(Vus) If {A,lceS} is a set of f-partitions of B with S<a, then there
is a covering of B which is a common refinement of every A..
Certain relations between these properties are more or less evident.

(4.1) (a) I, and II, are hereditary in «, that is, I, implies I, and
I1, implies II, for all y=<«;

(b) IV,s and V,; are hereditary in both « and §;

(¢) I, implies 11, ;

(d) IV, implies Ve
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(e) Va.s and III, together imply IV, ;

(f) if I, holds for all a<p, then III,, is satisfied;

(g) IV,, is equivalent to V,, and hence to V,,;

(h) I1I.. is always satisfied, so IV,. is equivalent to V...

Proofs. The statements (a)-(e) are obvious. If B is a-complete for
all «a<f, and A={as} is a f—covering of B indexed by the set of all
ordinals ¢ of cardinality less than /3, then {cg[=5<,8} will be a f-partition
refining 4 if ce=a;A\(V,«a,)’. The assertion of (g) is a restatement of
(2.4). Finally, with the help of Zorn’s lemma, it is always possible to
construct a partition to refine any covering. This construction, the de-
tails of which we omit, proves (h).

It appears from (4.1) (e)-(h) that the condition V, is only slightly
weaker than IV,;. On the other hand, the condition II, is substantially
weaker than I,, as the following example indicates. Let X be a set of
cardinality £ ; let B be the Boolean algebra of finite subsets of X and
their complements. If « is any cardinal number less than (8, then any
a-partition of B is finite. Consequently, B satisfies II,. In one case
however, the properties I, and II, are equivalent, namely :

(4.2) II, is equivalent to L.

Proof. Let C be an arbitrary subset of B. Let C'={de B|drc=0,
all ce C}. Then clearly, u is the only upper bound of the set Cu(’,
that is, CuC’ is a cover. By (4.1) (h), there is a partition A refining
CuC'. If D={ae Al{a} refines C}, then A—D={a e Alarc=0, all ce C}.
Hence l.u.b. C=l.u.b. D exists by II..

It is appropriate now to explain the object of studying the various
properties listed above. Our main interest, of course, is the relation
between I, and IV,,, and specifically we would like to find simple neces-
sary and sufficient conditions for the normal completion of a Boolean
algebra to satisfy IV,,. It is rather easy to prove that IV,.. is sufficient
and IV, . is necessary for a-distributivity in B=. The effort to fit
these two facts into a broader pattern leads to consideration of conditions
II, and V.. It turns out that properties II, and V,, are tied together
rather closely. Unfortunately I; and IV, do not enjoy such an intimate
relationship and the two conditions mentioned above are the more or less
accidental offspring of II; and V,, rather than the progeny of I, and
IV .

THEOREM 4.3. If the Boolean algebra B satisfies V. and II,, where
r=p", then B satisfies V,,.

Proof. The theorem is trivial if « is finite, so it will be assumed



138 R. S. PIERCE

that « is an infinite cardinal number. Let A be a r-partition of B.
Then A can be indexed by a subset of 7, where T— B and S=a, say
A={a,}. Since B satisfles II,, it is meaningful to define b,,=1.u.b.
{ayl¢(0)=r} for each o€ S, reT. Then A,={b,|reT} is a p-partition
of B and it is easy to see that any common refinement of all 4, is also
a refinement of A. Now suppose {A4,|pe R} is a set of y-partitions of
B and R<a. For each p in R, define (as above) a set of S-partitions
{A,.lc€S,} with the property that a common refinement of every A,,
with oe S, is also a refinement of A,. Consider the set of all j-parti-
tions {4,,l0c €S, peR}. There are at most a*=« of these, so by pro-
perty V,, there is a covering A which refines every A4,,. But then 4
refines every A,. Thus, B satisfies V.

COROLLARY 4.4 (Smith-Tarski [4]). If B is a-distributive and 2°-com-
plete, then B is («, 2%)-distributive.

COROLLARY 4.5. A necessary condition that BP be a-distributive,
where 5=2%, is that B be (a, 2%)-distributive.

Indeed, if Bf is a~distributive, then by (4.4) it is («, 2%)-distributive.
But B is a regular subalgebra of Bf and hence (by (2.2)) B is also («a,
2%)-distributive.

We do not know whether the converse of 4.5 holds. That is, if
B is (a, 2*)-distributive, does it follow that B* is a-distributive? This
seems doubtful, but if the goal of 2*-completeness (that is, property I,,)
is replaced by the property II,, then a positive result is obtained (in
Corollary 4.8 below).

THEOREM 4.6. Let B be an arbitrary Boolean algebra. Define B to
be the intersection of all algebras B with the property 1, such that
B<=B<B~., Then B satisfies Ilz. Moreover, B has property Vag of and
only if B has property V.. Also, if B is a-complete and satisfies Vg,
where §*=j, then B is a-complete.

Proof. Clearly B satisfies II,. Since B is a regular subalgebra of
B, the property Vs for B implies the same property for B. To estab-
lish the converse, it is sufficient to show that every f-partition of B can
be refined by a p-partition of B.

Let 2 be the set of all S-partitions of B. By (2.5), every Ae 2 can
be considered as a partition of B~. By (2.2), every finite subset of 2
has a common refinement in 9. Let B be the set of all joins in B> of
a subset of some A4 ¢ . By (3.2), B is a Boolean algebra containing B.
Clearly BSB. Suppose A is a f-partition of B, say A={alre T}. Then
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@,=V {b,.lo€S,} with b, eB, b,b,,=0 for o#o’, and S,<B. Con-
sequently, A=/{b,.|ceS,, reT} is a F-partition of B which refines A.
The join of any subset of A is also the join of a subset of A4 and
therefore in B. Since A was an arbitrary /-partition, B has property
II;. Consequently, B<B. Thus every f-partition of B=B can be re-
fined by a SB-partition of B.

Finally, suppose B is a-complete and satisfles V5 with p*=p5. If
{A,lce S}, S=a is a set of S-partitions of B, then T,esdo={ Asesbs!
b€ A,} is a #*=p-partition. Hence, by (3.2), B=B is a—complete.

COROLLARY 4.7. The normal completion of & Boolean algebra B is
(a, o )-distributive if and only iof B is («, o -distributive.

Proof. By (4.6), (4.1) and (4.2).

COROLLARY 4.8. If the continuum hypothesis is true for the infinite
cardinal « (that is, 2% covers «), then am a-complete Boolean algebra B
can be regularly imbedded in an a—complete, a—distributive algebra satis-
Sying IL, iof and only of B is (a, 2*)-distributive.

Proof. The sufficiency of («, 2%)-distributivity is a consequence of
(4.6) and (4.1). The necessity follows from (4.3), (4.1) and (2.2).

5. An example. Because of (4.5), the Theorem (5.1) of the intro-
duction can be proved by constructing an a-field which is not («, 2%)-
distributive.

Let X be a set of cardinality 2. Denote by Y the set of all ordinal
numbers of cardinality less than «. Let Z be the set of all bounded fune-
tions in Y¥% that is, functions f for which there is an 7€ Y such that
Ax)<7n for all  in X. Let & be the collection of all sets of the form

L=Ly,={feZiflv=¢},

where WS X, W<a and ¢ ¢ Y". It is obvious that .&” contains the empty
set and is closed under a-intersections.

Let % be the a-field generated by &°. It is to be shown that .7
is not (a, 2%)-distributive. The proof hinges on a lemma, which is useful
in its own right.

LEMMA 5.2. Let Z be a set. Suppose . 1is a nonempty family of sub-
sets of Z with the following properties :
(i) every a—intersection of sets in & isin <
(i) the complement of any set of & is a union of sels of .
Let 7 be the a-field generated by <. Then & is dense in 7 .
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Proof. Let B be the complete B. A. of all subsets of Z. Let U be
the collection of all partitions A of B with Ac.«. If {A,lee S},
S<a and say A,={L,lreT,}, then by (i), Ioesdo=1{Nveshopw|®
€ [ToesT,} is in A and refines every A,. Let B consist of all sets
V&Z such that both V and V* are disjoint unions of set of .. By
(3.2) and (ii), " =B+B and B is an a-field. Thus, <" <.7% <B. Since

every set of B is a union of sets of &7, the same is true of & and
in particular, . is dense in & .

We now proceed to prove that & is not («, 2%)-distributive. For
each pair (v,7) with xeX and 7e?, define T ,={feZf(x)=7}.
Clearly T, , e .~". Foreach ye?, let 4,={T plve X}. The argument
is completed by showing
(1) A4, is a 2*-covering of &7 ;

(2) no covering of 7 refines every A,.

Proof of (1). Evidently, Z,,:Z“, so the only thing to prove is that
the L.u.b. of 4, in . is Z. The first step is to show that the conditions
(i) and (ii) of (5.2) are fulfilled, so that & is dense in % . Condition
(i) is clear. For condition (ii), let L=Ly ,e .%. Then L'= U,ew{f € Z
F@)#9@)} = Usen( U {Tpln¢(@)}) is a union of sets of 2.

Since .&7 is dense in &, it is enough, in proving (1), to show that
if Le &~ satisfies LNT(, . =¢ for all x, then L=¢. Suppose L+*¢ and
say L=Ly,,. Pick feL and let ae X—W. Define geZ by gx)=7,
9(¥)=1y) if y+«. Then ge T, and ge L. Hence, LNT, ,+*¢, which
is the required conclusion.

Proof of (2). First note that N,cx(UA,)=¢. For otherwise there
would be an f'e Z whose range included every 7 e Y, contray to the bounded-
ness of the functions of Z. But if A is a subset of &% which refines
every A,, then UAS U4, for all 7. Hence, UAS N, e(U4,)=¢, s0o A
cannot be a covering.
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TRANSCENDENTAL ADDITION THEOREMS FOR THE
HYPERGEOMETRIC FUNCTION OF GAUSS

F. M. RaGAB

1. Introduction. In this paper, integrals involving products of
two Gauss functions, regarded as functions of their parameters, are
evaluated it terms of other functions of the same kind. In all these
integrals it is assumed that |x|<1. Also the integrals are taken up the
entire length of the imaginary axis with loops, if necessary, to separate
the increasing and decreasing sequences of poles. These formulae are :
(1) ! ”S I'a+s)l (& —s)

2r0d I'(r+8)(r' —s)
_la+a )V +r—a—a' —

+r'—a—a'-1)pn _
= oy DG —a) [ —a) Flata, f+p85r+7—152),

where 747 —1+#0, -1, —2, ««+; 7—a+0, —1, -2, -+ and 7 —a’+#0,
—1, =2, -

INa+s)(a'—s)
(2) ”ST(/J—%)P@ SEE—a T prs (75 B s @) ds

_ L(a+a) (- —a—a'=1) po o

Fla+s, B;r+s;a)F(a'—s, 5 ;17 —s ;o) ds

- (F—a)(B+F 1)

where f—a+0, -1, —-2,.--; f—a’+0, -1, —2,--- and B+ —1+0,
_1’ _2, oo}

—a—a' =1L, 747 8+F —1;2),

(3) -21?73—Sf(a+s)1“(a’+S)F(19—S)F(,B’—3)F<a+s, f—s; ,;,,a+%ﬂ+é . x)
X F(“’-Fs, B'—s; —‘}Za’+%ﬁ’+ ; ; m)ds
:”“*f@')”“’+5>P(“+ﬂ)1“(a’+ﬂ’){1”(a+a’+ﬁ+ﬂ’}“1
XF(a+ﬁ a—{—ﬁ *a—{—f,a _{_77 + ‘Ql ) ,

where a+o'+5+6'#0, —1, —2, -+« ;

(4) EL{SF(T—}—S)F(W—s)F(a+s)I’(a’—s)
7T
xFla+s, B;a+7 ; x)F(a'—s, 8/, a' +7;x)ds
=I'(+7)(a+a) (a+1) @+ @+ +7+7)}
xFla+a, f+F 5 a+a +r+7 5 %),
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where a+a’+7+7"'#0, —1, —2, -+ ; and

(5) I'(B+s)'(8 —s) o ~
27‘['&5[(7’—{—3)[ G — )F(a+s JB+sirtssa)F(a—s, B —s; 7 —s; x)ds

O+ —A=F=DCE+F) gy g iy -
A ,«)f(r —ﬁ)l(7+ YFE R a1 74y~ 152)

where y—f3+0, -1, -2, ---; —p +0, -1, -2, .-« and v+ —1+0, —1,
—2 ...

All we need is the following two formulae [E. C. Titchmarch, Fourier
integrals, p. 194]:

1

2mi,

=l(a+n)(a+0) B+ (B+0){ (@+F+1+0)}

(6) | r o @)= (0—9) ds

where (—a<k, —f<k,r>k,0>k); and

(7) 1 S”*iwf(a~8)l’(r-s) o a+n) ' (F+o—a—r—1)
270 Ji-ie L'(B43)[(0—s) L(F—a)[(6—7)[(F+6—1)"

where (—a<k, —B<k,r>k, 0>k).

It may be noted that the restrictions, needed for (6) and (7), on
the parameters in formulae (1)—(5), can be removed later on by the
theory of analytical continuation. The proofs and two other formulae
will be given in §2., while some confluent forms of addition theorems
will be deduced, as a limiting case, in §3.

2. Proof. On expanding each hypergeometric function on the left
hand side of (1) and changing the order of integration and summation
it becomes

s i (&5 m) B 5 1) pim . S (a+m+s)[(a +n—s) 4o
m=on=0  m! n! 27 ) ['(r+m+s)[ (G +n—s)

From (7), it follows that the last integral is equal to

T(a+d'+m+n)(1+7—a—a —1)

IG—a) G =) G+7 +mt+n—1)"

Thus the left hand side of (1) becomes

I'a+a ) (47 —a—a'—1)
re'—a)lG—a)(r+7'—1)
(3;m)B 5 n)a+a ;s mtn) L
g go m!nl(r+7'—1;m+n)
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_ at+a)(r+1'—a—a’~1)
L'y =) (r—a)(r+7'—1)

& (a+a’ 5 )P 5 p) / o1 .
><>_J T Lt B H _pyl_g—pyl ’
= plr+71'—1; ) @ } )

and from this formula (1) follows by applying Gauss’s theorem. The
proof of (2) is the same as the proof of (1).

To prove (3), expand each hypergeometric function on the left hand
side of (8) and change the order of integration and summation ; then it
becomes

wm +n

= INITS UV BRI SOV VIR SN )
nuvb<2a+2ﬁ+—2,WQ<2a~%2ﬁ%42,n

18

-
=

T

X 21_S[‘(a+m—|—s)F(a’+n+s)l‘(ﬁ+m~s)F([3’+n~8) ds .

T

From (6), it follows that the last integral is equal to

I'a+a' +34+5 +2m-+2n)
Thus the left hand side of (3) becomes

1

QV%TV<2a+;ﬂ+;>F<;d+;ﬂ“F;)

1, 1, )
2a—l—2ﬁ+n

1 -
2

2 2
1 1,1
N

. r< 1a+éﬂ+m>ﬁ(,

>< — -
*m!n! ]’(~

ﬁ+;+m+@

e

Il

n

77777 i 1 /7 1 1 !

=I(a+p) (@ +p)I (at P& + )M et +5+F))
/. 2 1 7 1 /AN

(- s ) B+ s PN o+ S5 )

)

x S - - T — P
= 1 .1, 1 1,><1 1, 1, 1., 1
- : B - i B el . el - . .
p.(2a+2a+2ﬁ+2ﬁ,p 2a+2a+2ﬁ+2ﬂ+2,p)
11 1, 1
(et i1 tws Lo pin)s
X 2a+2ﬁ Y 5% 2/9 P

and from this, formula (3) follows by applying Gauss’s theorem. From
the proof of (8), the following formula can be deduced :
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(8) L \r@sor@-sr@oreg-s)
7T
X F(a+s, B—s; ; a+;—,8 ; x)F‘(ac’—l—s, g —s; %a’qt%ﬁ’ ; x) ds

=+ (' + ) (a+B) (@ + A (a+a'++F)}

atf,d+p, Latarprp12); e
2
P 8

S @A), Lt a + o +D)

where a+a'+5+5+0, =1, =2, --.

The proof of (4) is the same as the proof of (3), while formula (5)
can be deduced by substituting for each hypergeometric function on
the left hand side an integral of Barnes’s type and changing the order
of integration.

Finally, I may mention the following formula which involves a
generalized hypergeometric function,

(9) zimj F(a+8)(f+s)0 (@ —s)[(F —s)

X Fla+s, f+s;r;0)F(a'—s, B —s ;7 ;x)ds
=I'(a+a)(a+F)(B+a)(F+ T (@t+o/+F4F))
a+ad,a+p, p+a, f+7, l—(r+r’—1), v1~(r+r’) ;@

X oI5 2 2

)

-1, ; (ata'+B+4), »'%—(a+a’+.@+ﬁ’+1)

where y4+7y'—1+£0, -1, —2, -+- , a4+’ +5+7 #0, —1, —2, - -+ and either
7 or 7’ is not zero or a negative integer.

3. Confluent forms of addition theorems. In (1) take f'=pf, write
z/f for « and let S—co to get

1 (B Ma+s)(a'—s) . . , o .

10 »——S SNETIE AT VR (ats;rds; o) —s;; v —s; ) ds

A0 T et v F @ —s 730
_Iat+a)'+r —a—a’'—1)

= Fla+ad ;7+7—1;22),
I'o+r-=-)0IG—a) G —a) (

where L(k+a)>0, L(k+7)>0, La'—k)>0, XG'—k)>0, r+7'—1+0, —1,
—2, 005 7—a#0, -1, =2, --+ and v —a'#0, -1, —2, «-- .

In (2), take =7, write a/r for 2 and let y—oo, to get
ap L laali

_S) PN . e A a e
271% i ];(,é;si)f(ﬁ,—is) F(f—a; ff+s; o)F(F—a' 5 f'—s; @) ds
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Fa+a)(f+F —a—a' —1) FA+7 1. ‘1.
= 5~ I N Y /9'*71 —a—A _1u8+ﬂ"1,2m)’
P(E—a)[(F — ) (F+7 1)

where RN(k-+a)>0, REk+7)>0, W' —k)>0, R(EF —k)>0, f—a+0, —1,
—2, -0 f—a’#0, —1, =2, -+ and f+[F—1+£0, =1, —2, +-+
Finally in (4), take =3 ; write /3 for « and let F—w, to get

k+i>
(12) » -1.5 L(r+8) (" —s) (a-+s)[ (' —s)
2t Jr-ieo

x Fla+s; a+7 ; )F(a—s; o +71 ;) ds
= I(+7) 1 (a+a) A7) @+ (@t 4747}
X Fla+d 5 at+d +r+7" 5 22)

where R(k+7)>0, Ra+k)>0, RG'—k)>0, N(a'—k)>0, and a+a’+7+7"
£0, =1, —2, -+ |
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PRINCIPAL SOLUTIONS OF NON-OSCILLATORY SELF-
ADJOINT LINEAR DIFFERENTIAL SYSTEMS

WirLiaM T. REID

1. Introduction. In their study of real quadratic functionals

S; [r(z)y” + 2q(x)yy’ +p(x)y*de

admitting a singularity at the end-point x=a Morse and Leighton [11]
showed that if x=a is not its own first conjugate point then the
corresponding Kuler differential equation

(1.1) (r(@)y +ao@)y) —((x)y +p@)y)=0, a<z=<b,

possesses a non-trivial solution u(2) such that w(x)/y(x)—0 as z—a* for
each solution y(x) of (1.1) that is independent of u(x). Such a solution
u(z) was termed a focal solution belonging to z=a by Morse and Leighton
[11], but in a subsequent continuation of the study by Leighton [8] the
terminology was changed to principal solution.

If f(t) is a real-valued continuous function on ¢,<¢<e and

(1.2) '+ f(t)xz=0, L<t<oo ,

is non-oscillatory, Hartman and Wintner [4] have termed a non-trivial
solution x(¢) a principal solution if

(1.3) S;lx(t)\—wt:oo ,

for ¢, greater than the largest zero of x(¢), and proved that a non-
oscillatory "equation (1.2) has a principal solution that is unique to an
arbitrary non-zero constant factor; moreover, if x(¢£)#0 is a solution of
(1.2) which is not principal then every solution y(¢) of (1.2) is of the
form y(¢)=Cuwx(t)+o(|2(t)|]) as t—oo, where the constant C' is or is not
zero according as y(f) is or is not principal. In view of this latter
result, for a non-oscillatory equation (1.2) a solution «(¢) is principal in
the sense of Hartman and Wintner if and only if it is principal in the
sense of Morse and Leighton.

Recently Hartman [5] has considered a self-adjoint vector differential
equation
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(1.4) (RO)) +Ft)x=0, 0=<t<co

where F(t), F(t) are nxn matrices which are continuous and hermitian,
while E(t) is positive definite on the interval of consideration. An nxn
matrix solution of the corresponding matrix differential equation

(1.4 (ROX'Y +F(H)X=0

is termed ‘‘prepared” by Hartman if X*(¢)R(¢)X'(¢) is hermitian. Under
the assumption that the class T' of solutions X=X(¢) of (1.4’) which are
prepared and non-singular on a corresponding interval ¢,<t< oo is non-
empty, Hartman showed that in I there exists a solution which is
principal in the sense that the least proper value 2,(¢) of the positive
definite hermitian matrix

(1.5) S (X*X)ds , (b sufficiently large; t>t),
o

satisfies 14(t)—>c as t—>co, and this principal prepared solution is unique
up to multiplication on the right by an arbitrary non-singular constant
matrix, while there also exist in I' solutions that are non-principal in
the sense that the greatest proper value g (t) of (1.5) remains finite as
t—oo ; moreover, if Y(¢) and X(¢) are matrices of [' which are principal
and non-principal, respectively, then X-'(¢)Y(¢)—0 as {—oo.

Hartman’s assumption that the above defined class 1" is non-empty
is indeed an hypothesis of non-oscillation, since in view of the results
of a recent paper of Reid [13] the class I' is non-empty if and only if
(1.4) is non-oscillatory for large ¢ in the sense that there exists a ¢,
such that if x(¢) is a solution of (1.4) satisfying x(¢,)=0=a(t,) with ¢,<t,
<t, then a(t)=0.

It is to be noted that Hartman’s definition of principal solution for
an equation (1.4) which is non-oscillatory for large ¢ has the undesirable
feature of limiting the considered matrix solutions of (1.4') to the class
T'; indeed, Hartman [5; §11] gives an example of a non-prepared
solution X(t) of (1.4’) that is non-singular for large ¢, and such that
the least proper value 2,(t) of the corresponding hermitian matrix (1.5)
satisfles 14t)—>o as ¢t—o. Moreover, as Hartman points out, his
classification of principal and non-principal solutions does not present a
disjunctive alternative in the class T.

For a self-adjoint vector differential equation of somewhat more
general type than that considered by Hartman, and which is non-
oscillatory for large values of the independent variable, the present
paper presents a generalized definition of principal solution that dis-
tinguishes such solutions in the class I', of all matrix solutions which
are non-singular for large values of the independent wvariable. In
addition, it is shown that principal solutions possess on |, certain
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properties that are extensions of properties established by Hartman for
the class I'. It is to be commented also that the presented determination
of a principal solution is by variational methods and is direct in nature,
in contrast to the indirect character of the proofs of the existence of
a principal solution in the above-cited papers of Hartman, Hartman and
Wintner, and Morse and Leighton ; in this connection it is to be remarked
that although the existence of a principal solution for (1.1) was established
indirectly by Morse and Leighton [11], the properties of principal
solutions derived in their Theorem 2.2 permit a ready direct determination
of such a solution.

Sections 2-8 of the present paper deal with a self-adjoint
n-dimensional vector equation with complex coefficients that is a direct
generalization of the scalar equation (1.1); Section 9 is devoted to a
more general differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type.

Matrix notation is used throughout; in particular, matrices of one
column are termed vectors, and for a vector y=(y.), (=1, ---, n), the
norm |y| is given by (Jy,[*+ -++ + [¢4")'"*. The symbol E is used for
the nxn identity matrix, while 0 is used indiscriminately for the zero
matrix of any dimensions; the conjugate transpose of a matrix M is
denoted by M*. Moreover, the notation M=N, (M>N), is used to
signify that M and N are hermitian matrices of the same dimensions
and M—N is a nonnegative (positive) hermitian matrix.

2. Formulation of the problem. For a on a given interval X:
a<x<o let w(x, y, =) denote the hermitian form

(2.1) o(@, ¥, 7)=a*R(@)z+7*Q@)y+y @ (@)z+y*P(x)y ,

in the 2n variables y, 7=(y,, *++, Yu, @, =+, 7). It will be assumed
throughout Sections 2 -8 that R(x), Q(x), P(x) are nxn matrices having
complex-valued continuous elements on X, with R(x), P(x) hermatian, and
R(x) non-singular on this interval.

If ¢, d are points of X the symbol I[y; ¢, d] will denote the
hermitian functional

2.2) Iy : e, d]zgfw(x, v, ¥)da .

For the functional (2.2) the vector Euler equation is

(2.3) Liu]=(R(x)u’ +Qe)u) —(Q@*(x)u’+ P(z)u)=0,
which may be written in terms of the canonical variables

u(@), v(@)=R@m'(@)+&@)u(z)



150 WILLIAM T. REID

as the first order system
(2.4) w' =A(@u+B@w, v=C@u—A%zy,

where the nxn coefficient matrices of (2.4) are continuous on X and
given by A=—R'Q, B=R', C=P—Q*R'Q; in particular, the matrices
B(z), C(x) are hermitian on X and B(x) is non-singular on this interval.

Corresponding to (2.3) and (2.4) are the respective matrix equations

(2.3) LIUJ=(R(x)U'+Q(x)U) —(Q*(x)U'+ P(x)U)=0 ,
(2.4) U=A@)U+B@)V, V=C@)U—A"=)V .

In [13] the author has discussed various criteria of oscillation and
non-oscillation for an equation (2.3) in which the coefficient matrices
satisfy weaker conditions than those imposed above; although the
results of the present paper hold for equations of the generality discussed
in [13], for simplicity specific attention is restricted to the case described
above.

Throughout the subsequent discussion of Sections 2 -8 we shall deal
consistently with the cononical system (2.4) and associated matrix
system (2.4'), instead of the equivalent respective equations (2.3) and
(2.8"), since in Section 9 there is considered a vector differential system
more general than (2.8), but with associated canonical system still of
the form (2.4).

It U@)=llU(@)ll, V@)=l Vaf@)ll, (@=1, -+, n; j=1, -+, r) are
nxr matrices, for typographical simplicity the symbol (U(x); V(x))
will be used to denote the 2n x# matrix whose j-th column has elements
Ux), «++, Uylx), Vifx), -+, Vaf(x). In the major portion of the
following discussion we shall be concerned with matrices (U(x); V(z))
which are solutions of the matrix differential system (2.4).

If (Ufz); Vi) and (Ufx); V(x)) are individually solutions of
(2.4") then, as noted in Lemma 2.1 of [13], the matrix U*(x)V(x)—
V. *(@)U/z) is a constant. This matrix will be denoted by {U,, U,}; it is
to be remarked that for the problem formulated above there is no
ambiguity in this notation, since the V(x) belonging to a solution (U(x) ;
V(x)) of (2.47) is uniquely determined as V(z)=R(z)U'(z)+Q@)U(x). As
in [13], two solutions (u,(x); v(x)) and (ufx); v.(x)) of (2.4) are said to
be (mutually) conjoined if {u,, u,} =0. If (U(x); V(x)) is a solution of
(2.4") whose column vectors are conjoined solutions of (2.4), then (U(x);
V(x)) will be termed a matrix of conjoined solutions. In particular, if
U(z), V(r) are nxn matrices such that (U(z); V(x)) is a matrix of
conjoined solutions of (2.4), then U(x) is a prepared solution of (2.3") in
the sense of Hartman [5]. If the coefficients of (2.1) are real-valued,
then two real-valued solutions of (2.4) are conjoined if and only if they
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are conjugate in the sense introduced originally by von Escherich. The
reader is referred to [13; pp. 737, 743] for comments on the use of
the synonym ‘‘conjoined’” for the case of (2.1) with complex-valued
coefficients.

Two points s, ¢ of X are said to be (mutually) conjugate, (with
respect to (2.3) or (2.4)), if there exists a solution (u(zx); v(x)) with
w(@)#0 on [s, t] and satisfying u(s)=0=wu(¢t). The system (2.4) will be
termed nom-oscillatory on a given interval provided no two distinct points
of this interval are conjugate; moreover, (2.4) will be called non-oscillatory
Jor large x if there exists a subinterval a, <@ <o of X on which this
system is non-oscillatory.

3. Related matrix solutions of (2.4'). Suppose that (U(x); V(x))
is a solution of (2.4’) with U(x) non-singular on a given subinterval X,
of X, and denote by K the nxn constant matrix such that {U, U}=K.
If (Ufz); Vix)) is a 2nxr matrix solution of (2.4") on X,, and K, is the
nxr constant matrix such that {U, U,}=K, then from this latter
relation it follows that the nx s matrix H(x)=U"(x)Uyx) is such that

(3.1)  Ufx)=Ulx)H(z), Vi(x)=V(x)H(z)+U*""(x)[K,—KH(x)] ,
and in view of the relation K= —K* it may be verified readily that
(3.2) {U,, U)}=—H*()KH(x)+ H*(2)K,~ K,*H(x)=K, ,

where K, is a constant »x7» matrix. Moreover, from the differential
equations U/=AU,+BV,, U=AU+BV it follows that

(3.3) H'(z) = U~(z)B(a)U*~'(z)[K,— KH(z)], x€ X, .

Conversely, if K, is an arbitrary nx» constant matrix, and H(x) is an
nx o matrix satisfying the corresponding matrix differential equation
(8.3), then it follows readily that the 2n x » matrix (Uy(x); Vi(x)) defined
by (8.1) is a solution of (2.4") with {U, U,}=K,, and {U,, U,} given
by (3.2).

Now if x=s is a point of X and T(x)=T(x, s; U) is the solution
of the matrix differential system

(3.4) T'=—U"Yx)Bx)U*(«)KT, T(s)=E,

then by the method of variation of parameters it follows immediately
that H(x) is a solution of (8.3) for a given nxr matrix K, if and only
if there is an nxr constant matrix H,=H(s) such that

(3.5) Hx)=T(x, s; U[H,+S(z, s; U)K, ,

where
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3.6) S, 5; U)::SfT~1(t, s DU OBOT\ () dt, «, se X, .

The corresponding solution (Ujyx); Vi(x)) of (2.4') determined by (3.1)
is such that

(3.7) Ufx)=Ux)T(x, s; UJUYs)Uys)+S(x, s; U){U, T,1].

In general, if F(x) is a continuous nxn matrix and Y(x) is the
fundamental matrix of Y'=F(x)Y satisfying Y(s)=F, then Z=Y*"'(x)
is the fundamental matrix solution of Z'=—F*(»)Z satisfying Z(s)=FE.
As K={U, U} satisfies K=—K* it follows that 7' (a)=T%"(«, s; U)
is the solution of (T*-')' = — KU~ '(a)B(x)U*~!(2)T7" " satisfying T '(s)=I.
Now if H(x) 1s a solution of (3.3) then

[K,— KH(@)]'= — KU (2)B(x)U "~ '(x) K,— KH(x)] ,

and hence K,—KH(x)=T"\(«, s; U)[K,—KH,. Since K={U, U} and
K,={U, U,}, this latter relation may be written as the following identity
for solutions (Uyzx); V(x)) and (U(z); V(x)) of (2.4"), with U(x) non-
singular on the interval of consideration X, and «, s arbitrary values
on this interval,

(3'8) {U9 Uo} - {U: U} U‘](x)U(,(:z:):s—:T”"'"‘(x, s U)[{U’ u}
— (U, U}U-)U6)].

In particular, if {U, U} =0 then
(3.9) K=0, T(z, s; U)=E, H(w):H(,JrSiU“(t)B(t)U*“(t)dt,

and the Uyz), V(x) given by (3.1) satisfy {U,, U,}==0 if and only if
the rxr constant matrix H *K, is hermitian. In case {U, U} =0 the
formula (3.7) reduces to a relation that may be found in various recent
papers, (see Sternberg and Kaufman [14]; Barrett [1 and 2]; Hartman [5]).
For future reference the above results are collected in the following
theorem.

THEOREM 3.1. If (U(x); V(x)) is @ solution of (2.4") with U(x) non-
singular on a subinterval X, of X, and K is the constant nxn matric
such that {U, U}=K, then an nxr matriz Uyfz) belongs to & solution
(Ufx); V@) of (2.4) on X, if and only if Ufx)=U(x)H(x), where H(x)
is of the form (3.5) with T(x, s; U) and S(z, s; U) determined by (3.4)
and (3.6), respectively, and H,, K, are nxr constant matrices. Moreover,
Jor such a Ufx) the corresponding Vi(x) is given by (3.1), {U, U} =K,
{U,, Uy} has the value (3.2), and the identities (3.7), (3.8) hold for z, s
e X,; wn particular, if K=0 then T(z, s; U)y=FE and {U, U,}=0 if
and only if the constant v xr matric H,*K, is hermitian.
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It is to be emphasized that the above theorem is quite independent
of any non-oscillatory character of (2.4). For example, the scalar
equation %" +#=0 has solution u(x)=exp (¢2) which satisfies u(x)=0 on
(—o0, ), and with {w, u}==2i, T(x, s; u)=exp (—2i(x—s)), Sz, s; u)
=sin (#—s) exp (¢(x—s)) ; moreover, ufx)= sin x is a second solution of
this equation for which {u, »,}- 1, and one may verify readily the
identities (3.7) and (3.8).

THEOREM 3.2. Suppose that (Ulx); Vix)) is a solution of (2.4") with
U(z) non-singular on a subinterval X, of X. If se X, then for te X,
t+s, the matrix S(t, s; U) is singular if and only +f t is conjugate to
s, In particular, of (2.4) s non-oscillatory on a subinterval X,: a, <
<o, and (Ux); V(x)) is a solution of (2.4°) with U(x) non-singular on
Xy, then for seX, the matriz S(t, s; U) is non-singular for te X,
t#s; moreover, if there exists an se< X, such that Sz, s; U)—0 as
x—oo then S™'(z, r; U)—0 as x> for arbitrary re X,.

As B(zx) is non-singular, if u(x)==0, v(x) is a solution of (2.4) on a
given subinterval of X then v(x)=0 on this subinterval. In view of
this condition, which is a property of ‘‘normality’’ of (2.4), it follows
that if (U(x); V(«)) is a solution of (2.4") with Ugfs)=0 and V(s) non-
singular then ¢ is conjugate to s if and only if Uy(t) is singular. Now if
(U(z); V(x)) is a solution of (2.4") with U(x) non-singular on X,, then
for se X, the above-defined (U(x); V(x)) is such that {U, U,} is the
non-singular matrix U*(s)V(s), and from (3.7) it follows that Uyx)=
U@)T(z, s; U)S(x, s; U)U*(s)V(s) for x € X,, and thus S(¢, s; U) is singular
for a value te X|, t-s, if and only if ¢ is conjugate to s. Consequently,
if (2.4) is non-oscillatory on a subinterval X,, and (U(x); V(z)) is a
solution of (2.4") with U(x) non-singular on X,, then S(¢, s; U) is non-
singular for te X, t+s. Now the fundamental matrix T(x, s; U) of
(3.4) satisfies the well-known relation T(z, s; U)=T(x, »; U)I(r, s; U)
for », se X,, and by direct computation it follows that

(3.10) Sz, s; U)y=T(s, »; O)[S(z, r; U)—S(s, r; U)]
for r, s, ve X,. If for a general non-singular matrix M the supremum

and infimum of |My| on the sphere |y|=1 are denoted by (M) and A(M),
respectively, then the relation

HMY My | = | M- (My)| =y |=|M(M " y)| = (M)IM 7yl

implies that 1=AXM)«(M-"). As the condition that S-'(z, s; U)—0 as
x—oo is equivalent to u(S-Y(z, s; U))—0 as w— oo, this condition holds
if and only if A(S(z, s; U))>w as x—w. Now in view of the non-
singularity of T'(s, »; U) it follows from (3.10) that for », se X, we
have A(S(x, s; U))>w as x—co if and only if A(S(z, 7; U))—cw as
z—ro0,
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In view of the result of Theorem 3.2, for an equation (2.4) that is
non-oscillatory for large x a solution (U(z); V(z)) of (2.4") will be termed
a principed solution if U(x) is non-singular for x on some interval X,:
ap<z<oo and Sz, s; U)—0 as v— for at least one (and consequently
all) se X,. If (U(x); V(x)) is a matrix of conjoined solutions of (2.4)
with U(x) non-singular for large z this definiton clearly reduces to that
of Hartman [5]. In the following sections it will be shown that if R(z)
is positive definite on X, and (2.4) is non-oscillatory for large w, then
there does exist a principal solution of (2.4"), and this principal solution
is unique up to multiplication on the right by a non-singular constant
matrix. In general, however, one has the following theorem, which
shows that if (2.4) is non-oscillatory for large = then a solution of (2.4")
which is principal in the sense defined above possesses a property
corresponding to that used as a definitive property by Morse and
Leighton [11] for the scalar eqution (1.1).

THEOREM 3.3. If (2.4) is mon-oscillatory for large x, then a solution
(Ulz); Vi) of (2.4') is a principal solution zf U(x) is non-singular for
large x and there ewxists a solution (Ufz); Vyx)) of (2.4") with Uyx)
non-singular for large x and such that for some value s€ X,

(3.11) Uy (2)U(x)T(z, s; U)>0 as a— oo ;

moreover, {U, Uy} is non-singular for any such (Ufx); Vyx)). Conversely,
of (2.4) s mon-oscillatory for large x, and (U(z); V(x)) is a principal
solution of (2.4'), then any solution (Ufx); Vix)) of (2.4") with {U, Uy}
non-singular is such that Ugfx) is non-singular for large x and (3.11)
holds for arbitrary se X.

Suppose that (2.4) is non-oscillatory for large x, and that there is
a solution (U(x); V(x)) of (2.4’) with U(x) non-singular on an interval
X, qp<a <o, If (Ufz); Vx)) is also a solution of (2.4') then by (3.7),

(3.12)  [U@)T(z, s; U)"'Uf@)=U"(s)Ufs)+S(2, s; UY{U, Uy} ;

moreover, if Uy(x) is non-singular and satisfies (3.11) for some se X,
then A([U(x)T(x, s; U)]"*'Ufx))—c as z—o and from (3.12) it follows
that {U, U,} is non-singular and A(S(z, s; U))— o as x—co, 80 that
(U(zx) ; V() is a principal solution of (2.4").

On the other hand, if (2.4) is non-oscillatory for large x, and (U(x);
V(x)) is a principal solution of (2.4'), then for s sufficiently large we
have that A(S(z, s; U))—w as x—cw. For such a value s, and (Uys);
V@) a solution of (2.4") with {U, U,} non-singular, we have A(U~(s)U(s)
+S8(x, s; UY{U, U)})—>oo as z—w, and hence from (8.12) it follows
that A([U(x)T(z, s; U)]"'U(x))— e as @— o, which is equivalent to the
condition that Uyx) is non-singular for large « and satisfies (38.11). As



PRINCIPAL SOLUTIONS OF NON-OSCILLATORY SYSTEMS 155

T(x, s; Uy=T(x, r; U)T(r, s; U), if (3.11) holds for one value s then
this condition holds for arbitrary s ¢ X.

4. Certain basic results of the calculus of variations. For the
functional (2.2) an n-dimensional vector function y(x) will be termed
differentially admissible on o subinterval of X if on this subinterval y(x)
is continuous and has piecewise continuous derivatives. For brevity, if
[e, d] is a compact subinterval of X the symbol H.[e, d] will signify
the condition that I[y; ¢, d]>0 for arbitrary y(x) differentially admissible
on [¢, d], and such that y(x)%0 on [e, d], y(c)=0=y(d). We shall also
denote by Hy the condition that R(x)>0 on X; in view of the basic
assumption that R(x) is non-singular on X the condition Hj holds
whenever there is a single s of X such that R(s)>0.

For the subsequent discussion the following known variational results
are basic.

THEOREM 4.1. If [e, d] s a compact subinterval of X then a necessary
and sufficient condition for H.,[c, d] is that Hy hold, together with one
of the following conditions :

(i) (2.4) is non-oscillatory on [c, d];

(il) there exists a matriz (U(x); V(x)) of conjoined solutions of (2.4)
with U(x) non-singular on [e, d].

THEOREM 4.2. If [c, d] 7s a compact subinterval of X such that
H.[e, d] holds, then for arbitrary vectors Y., Y. there is & unique solution
(w(@) ; v(x)) of (2.4) satisfying u(c) =y, W(d)=y,, and I[y; ¢, dA)>1u; ¢, d]
Jor arbitrary differentially admissible y(x) with y #= u on [c, d], y(c)
=u(e), y(d)=u(d).

THEOREM 4.3. Suppose that [c, d] is a compact subinterval of X
such that H,[c, d] holds. If (Ufx); Vi x)), [(UJx); Vix))], is the solution
of (2.4) determined by Ufc)=E, U (d)=0, [U(d)=FE, U(c)=0], and
(U(x); V(x)) is a solution of (2.4') satisfying U(c)=E, V(e)>V.c),
[Ud)=E, V(A)<V(d)], then (Ux); V(x)) is « matriz of conjoined
solutions of (2.4) with U(z) non-singular on [c, d).

For the case in which the coefficient matrices of (2.1) are real-valued
the results of Theorems 4.1 and 4.2 are classical results in the calculus
of variations, (see, for example, Morse [10; Chapter I], or Bliss [3;
Chapter IV]; for the general case of complex coefficients these results
are contained in Theorems 2.1 and 2.2 of Reid [13]. In connection
with Theorem 4.2 it is to be commented that if

Iy, u; e d]:Si[vy*’(Ru’+Qu)+77*(Q*u/+Pu)]dw
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for differentially admissible 7(a), w(x), then in case (u(x); v(x)) is a
solution of (2.3) on [¢, d] we have

4.1) Iy, w; ¢, di=7"(@)(x) / .

A ready consequence of (4.1) is that if (u(x); v(@)) and y(a) satisfy the
conditions of Theorem 4.2 then

4.2) Iy ; ¢, dl=1lu; ¢, d]+1ly—u; c, d],

whieh is the well-known ‘‘integral formula of Weierstrass” for the
functional (2.2).

Theorem 4.3 is a comparison theorem of Sturmian type that is a
special case of results of Morse [9; §10, or 10; Chapter IV, 8§8] in
case the coefficients of (2.1) are real-valued, and Morse’s method may
be extended readily to prove the stated result. The method introduced
by Hestenes [6], (see also Bliss [3; §886-87]), to establish the corresponding
result for variational problems of Bolza type yields the following brief
and elegant proof of the statement of the theorem involving (UJz); V.(«));
the statement involving (UJx); V.x)) follows by a similar argument.
By Theorem 4.2 the condition H.[e, d] implies the existence of the
solution (UJz); VAx)) of (2.4) satisfying UJfc)=E, U.d)=0; the end
condition U/(d)=0 clearly implies that (UJfx); V.(z)) is a matrix of
conjoined solutions and consequently V.(¢)=U,*(¢) V(c) is hermitian. For
(U(x); V(x)) a solution of (2.4") satisfying U(c)=FE, V(c)>V.c) the
matrix U(d) is non-singular, since if U(d)é =0 then u(z)=(U(z)— Ux))t,
v(@)=(V(x)— V()¢ is a solution of (2.4) satisfying u(c)=0=u(d) so
that u(x)=0 by Theorem 4.1, and hence (V(¢)— V.(c))é=0 and £=0.
Moreover, U(x) is non-singular on c¢<x<d, since if ¢c<b<d and U(b)s=0
then y(x) defined as y(x)=(U(a)—Ufz))é, e<ax<b, and y(a)=—Ufx),
b=wx=d, satisfies y(c)=0=y(d) and is differentially admissible on [¢, d],
while in view of the hermitian character of U.,*(b)V.(b) we have

Ly ; ¢, d]=&U*()—~ U B V(b)—V.b)g—&* V. b)ULb)e
=—=*U b)) V(D)= VUb)IE+E* VO UDB)— ULb))é
=& U, U-U,¢
=—&*[V(e)-VAo))E,

and consequently I[y; ¢, d]<0 unless £:=0, so that &é=0 in view of
H.[e, d].

5, Systems (2. 4) that are non-oscillatory for large x. TFor a system
satisfying H, and non-oscillatory for large z, the following theorem
determines a particular matrix of conjoined solutions which subsequently
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will be shown to be a principal solution, as defined in Section 3.

THEOREM 5.1. Suppose that (2.4) satisfies H, and is non-oscillatory
on a subinterval X,: aq,<wz<oo of X. IfseX, and for te X, t=#s,
the matriz (Ugy(x); V() is the solution of (2.4") determined by U/(s)
=F, U/ (t)=0, then U, . (x)=lim, . Ux), V,.(x)=Hm,_. V,(x) exist
and (U,,.(x); V(@) is a matric of conjoined solutions of (2.4) with
U, () non-singular on X,; moreover, U,, . (x)=U,,.(x)U,,.(s) and V,,.(z)
=V4uo(@)U,,.(s) for r, s, ve X,.

As the initial condition U, (¢)=0 implies {U,, U,}=0, it follows
that if s, te X,, s#t, then (Uy(z); V.(x)) is a matrix of conjoined
solutions, so that the matrix Uj(x)V,(x) is hermitian for xe X; in
particular, V,(s) is hermitian. For a given se X, let r, ¢ be points of
X, satisfying r<s<¢, and for an arbitrary non-zero constant vector &
let y(xz) denote the vector function defined on [r, t] as

(5.1) Yx)=U(x)$ on [r, s]; y(@)=Uy(@)s on [s, t].

Now this vector function y(x) is differentially admissible and y(»r)=0
=(t), so that under the hypothesis that (2.4) satisfies H, and is non-
oscillatory on X, it follows from Theorem 4.1 that

0<lly; r, t]1=E"UNS)Vl8)E = E¥UH(s) V() =5 [V.l(s) = V()5 .
Ag this relation holds for arbitrary non-zero vectors £ we have
(5.2) V()< V(s) for », s, te X, r<s<t.

For s<t<d, and £ an arbitrary non-zero constant vector, let u(x)
=U(2)5, v(x)=Vy(x)¢ and y(x)=U,(x)¢ on [s, t], y(x)=0 on [¢t, d].
Then (w(z); w(x)) is a solution of (2.4), while y(z) is differentially
admissible and satisfies y(s)=u(s), y(d)=u(d), y(x)=£u(x) on [s, d], so that

(6.3) =&V (s)i=I[u; s, dI<Ily; s, dl=1Ily; s, t]=—V,(8)§
in view of Theorem 4.2; that is,

(5.4) Va(s)< Viuls) for s, t, de X,, s<t<d .

By a similar argument it follows that

(5.5) V(s)< Vols) for ¢, r, se X, c<r<s.

From (5.2), (5.4) it follows that for fixed se X, the one-parameter
family of hermitian matrices V(s), s<<¢<oo, is monotone increasing and
bounded, so that there is an hermitian matrix V,,. such that V(s)—
V.. as d—c. Moreover, in view of (5.2), (5.4), (5.5) it follows that

(5.6) Vo(8) < Vil Vols) for r, s, te X, r<s<t,
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If (U,,.(2); V,o(x)) is the solution of (2.4") determined by the
initial values U,,.(s)=F, V,.(s)=V,. then clearly (Uy(x); V.(x))—
(Uyyl) 5 Vi), while the hermitian character of V,,.=Uf.(s)V,.(3)
implies that {U,., Uy.}=0, and (U,.(2); V,(2)) is a matrix of
conjoined solutions. Moreover, in view of Theorem 4.3, inequality (5.6)
implies that U,,.(x) is non-singular on each subinterval [, ¢] of X, with
r<s<t, and hence U,,.(x) is non-singular on X,.

The final statement of the theorem is an immediate consequence
of the fact that U,(z)=U,(x)U;(s), Vu(x)=V,(2)U;(s) for r, s, te X,
r+t, s+t.

If (2.4) is oscillatory on X then there exists a ¢ such that there
are points s of X which precede ¢ and are conjugate to ¢, and consequently
there is a largest such conjugate point s=c¢(¢) preceding ¢. For a
system (2.4) satisfying H, it follows from Theorem 4.1 that if ¢(?)
exists for a value t=¢, then ¢(¢) exists for ¢, <i< oo and increases with
t. In accordance with the terminology introduced by Morse and Leighton
[11] for a scalar second order linear differential equation, the first
conjugate point e¢(w) of z=co on X is defined as the limit of ¢(¢) as
t—-co. Clearly such a system (2.4) is non-oscillatory for large z if and
only if either (2.4) is non-oscillatory on X or ¢(e) exists and is finite.
If () exists and is finite then (2.4) is non-oscillatory on (¢(e0), o)
so that the interval X, of Theorem 5.1 may be chosen as this interval,
and consequently for c¢(co)<s<co the matrix of conjoined solutions
(Us, (@) ; Viyolx)) has U, () non-singular on (¢(c), o). On the other
hand, the definition of ¢(o)implies that (2.4) is oscillatory on an arbitrary
subinterval (@, o) of X with a,<¢(o), and Theorem 4.1 implies that
U,,.(x) is singular at some point of such a subinterval (a,, =), so that
by continuity U,,.(z) is singular for a#=e¢(e). That is, if H, holds and
(2.4) is non-oscillatory for large x then the matrix of conjoined solutions
(U, o(z) ; V(@) of Theorem 5.1 is such that ¢(c) exists on X if and
only if U,,.(x) is singular at some point of X, in which case ¢(x) is
the largest value of « for which U,,.(x) is singular.

6. Principal solutions. From Theorem 5.1 it follows that if (2.4)
satisfies H, and is non-oscillatory on X;: a,<x<oo then there exist
matrix solutions (U(x); V(z)) of (2.4') with U(x) non-singular on X,.
The basic result on principal solutions for such a system (2.4) is contained
in the following theorem.

THEOREM 6.1. Suppose that the equation (2.4) satisfies Hp and 1is
non-oscillatory on a subinterval X,: a,<w<o of X. If (U(z); V(x)) is
a solution of (2.4") with U(z) non-singuler on an interval X, : a,<z<c
then for s a point common to X, and X, the matriz
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(6.1) M(s; U)=lim,.. S-'(t, s; U)

exists and 1s fimite. Moreover, M(s; U)=0 and (Ux); V(z)) is a
principal solution of (2.4") if and only if U(x)=U,,(2)C, V(z)=V,,.(x)C,
where r 1s any fived value on X, (U,,.(x); V, (%)) is the matrix of
conjoined solutions as determined by Theorem 5.1, and C is a non-singular
constant matrix.

In view of Theorems 3.2 and 5.1 it clearly suffices to establish the
result of the above theorem for s=r» a point common to X, and X,.
For such a value s it follows from Theorem 3.1 that

Usyo(@)=U)T(z, s; U)U(s)+S(=, s; U{U, U,=}],
U (2)=U)T(z, s; U)E—S(z, s; U)S (¢, s; O)IU(s),

and since U, (2)—>U,,.(x), Vi(x)—V,,.(x) as a—oo it follows that M(s; U)
defined by (6.1) exists and has the finite value

6.2) M(s; U)=—{U, U,,.}U(s) .

In particular, (6.2) implies that M(s; U)=0 if and only if {U, U,,.}=0.
As 0={U,,., U,.} =V,.(s)— Vi.(s) it follows that 0={U, U,,.}
=U*(8)Vyol8)— V¥($S)U,,(8)=U*(s)Vi¥u(s)— V¥(s) if and only if (U(s);
V(s)) satisfies with the non-singular matrix C=U(s) the initial conditions
U(s)=U,,.(s)C, V(8)=V,(x)C, and therefore U(x)=U,.(x)C, V(x)
= s,w(x)C.

In particular, under the hypotheses of Theorem 6.1 it follows that
if (U(z); V(z)) is a principal solution of (2.4') then (U(z); V(x)) is a
matrix of conjoined solutions of (2.4), and therefore T(x, s; U)=E.
As the first conclusion of Theorem 3.3 with Uyfx)=U(x) implies that if
(2.4) has a solution (U(x); V(wx)) with U(x) non-singular for large x,
and T'(z, s; U)—0 as a—oo, then (U(x); V(x)) is a principal solution,
the following corollary is direct consequence of the results of Theorems
3.3, 6.1, and formula (6.2).

COROLLARY. In case (2.4) satisfies Hp, and 1is non-oscillatory for
large x, then :

(i) iof (U(x); V(x)) is a solution of (2.4") with U(x) non-singular on
X gpy<x< o, and s€ X,, then it is not true that T(x, s; U)—0 as
T—> oo |

(i) +f (U(x); V(x)) is a principal solution of (2.4), them for a
solution (Ufx); Vi) of (2.4") the matrixz {U, U,} is non-singular if and
only if Uyx) 1s mon-singular for large x and Uj'(x)U(x)—0 as x—,
moreover, if {U, Uy} is non-singular then, for s sufficiently large, lim,_...
S(t, s, U,) exists and is non-singular.

Finally, we shall establish the following result; in particular,
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conclusion (v) generalizes a result of Hartman [5].

THEOREM 6.2. Suppose that (2.4) satisfies H, and s non-oscillatory
on a subinterval X,: a,<ax<cw of X, while (Uy,(2); Vao(x), s€ Xy, is
the matriz of conjoined solutions as determined by Theorem 5.1. If
(U(x); Vi(x)) is a solution of (2.4) with U(x) non-singular on X,, and
S(eo, r; U)=tm,.. S(x, r; U) exists und is finite for some re X,, then
Jor arbitrary se X, :

(i) S(eo, s; U) exists, and

(6.3) S(eo, s; U)=T(s, r; U)S(eo, r; U)=S(s, r; U)] for s, xe X;

(i) {U, U,.} is non-singular ;

(ili) U (@)U, ,(x)—0 as z—oo ;

(iv) {U, U,.}—{U, UiU(s) is non-singular, and T(c, s; U)
=lim, ... T(x, s; U) exists and is equal to the non-singular matriz
Uaer U HUgw, U =U*'(s){U, U}l;

(V) Us,w(a'):—U(m)S(OO, X ; U){U7 Us'wc}'

Conclusion (i) is an immediate consequence of relation (3.10). Now,
as established in the proof of Theorem 6.1, the matrix M(s; U)=lim, ...
S-(¢, s; U) exists and has the finite value —{U, U,.} U(s), so if
S(eo, s; U) exists and is finite we have

(6.4) E=—S(c, s; UWU, U,.1U(s),

and hence {U, U,.} is non-singular; in turn it follows from the
Corollary to Theorem 6.1 that (ii) implies (iii).

In order to establish conclusion (iv), it is noted that the non-
singularity of U(x) on X, implies the validity of (3.8) with U,=U,,.(x),
so that

(6'5) {Ur Usrw}~{Ur U}U_I(QZ)US,w(Q?)
:T*_1(x7 S, U)[{U) Us!w}_{UV U}U_](S)]

for s, € X,. From conclusions (ii), (iii) and relation (6.5) it follows
that if £ is a constant vector satisfying [{U, U,.} —{U, UlU(s)l=0
then £=0, so that {U, U,,.}—{U, U}UY(s) is non-singular for se X,.
This result, together with conclusions (ii), (iii) and relation (6.5), imply
that for se X, the matrix T* 'z, s; U) approaches the non-singular
matrix {U, U,.}[{U, U,.}—{U, U}UY(s)]"!, which is equivalent to the
final statement of coneclusion (iv).
Finally, it is to be noted that (6.4) is equivalent to

E=—-U@)S(c, x; U{U, U,,.}, for € X,
and as U,,.(t)=U,,.(t)Us,e(2), Voult)=V,,(t)U,, () for s, ¢, x € X, it
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follows that {U, U,,.}U,.(a)-={U, U,.} and U,.(x)= —U(@)S(, z; U)
{U, U,,.} for a, se X,, thus establishing conclusion (v).

7. An example. In the notation of the preceding sections, the
example of Section 11 of Hartman [5] shows that for an equation (2.4)
which satisfies H,, and is non-oscillatory for large x, there may exist
solutions (U(x); V(x)) of (2.4’) with U(x) non-singular for large « and
such that

(7.1) H U—l(t)B(t)U*-l(t)dt]“bo s g—oo

while (U(z); V(x)) is not a principal solution. As shown by Theorem
6.1, for general solutions (U(x); V(x)) of (2.4’) with U(x) non-singular
for large « the diseriminating property for principal solutions is not
(7.1), but rather S-(w, s; U)—0 as x—~>c. We shall proceed to illustrate
the results of the preceding sections by the example of Hartman.

For typographical simplification @ 2x 2 matrix |[Myull, (a, f=1, 2),
will be displayed as M=(My,; My,; M,; M,). In this notation the
two-dimensional vector equation of Hartman’s example is

(7.2) w” +Pau=0, 0<e<o, with P(x)=(0; 0; 0; (42°)7).

For (7.2) the matrix solutions (Uy(x); V(x)=U;(x)) of Theorem 5.1
have

Uyx)=((x—t)/(s—t); 0; 0; (z/s)”* (In t—In z)/(In t—In s)).

and consequently (Ug,.(z); V(@) has U, (x)=1; 0; 0; (x/s)).
Hartman’s example involves the principal solution (U;,.(); Vi,.(x)) for
which Uj,.(x)=(1; 0; 0; «*), and the matrix solution (U(x); V(x))
having U(x)=1; «; 0; 2. For these matrix solutions one may
compute readily the following quantities ;

S, s; Uyu)=(@—s; 0; 0; s(In x—1n s)),

{U, U}=(0;1; —1;0), {Uy,., U}=(0;1;0;0),
T, 1; )=Ql—xzInz; l1-z2—2xInz; In z; 1+In 2),
Sz, 1; U)=(x—14+2xInz; ~lnz; ~aInza; Inx),
M1; U)=(0;0;1; 1); U'@U,=(x)=1; —z; 0;1).

It is to be noted that {U,., U} is singular, so that the corollary
to Theorem 6.1 implies that the matrix U-(x)U,,.(x) does not tend to
0 as x—o, a fact that is obvious from the specific value of this matrix.

To illustrate further the results of the preceding section, consider
the solution (U(w); Vi(x)) of (2.4") with U(a)=(x; 1; 0; &V In ).
For this solution Uj(x) is non-singular for #>1, and one has
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U@ o(@) =1z ; —1/(s" @ In 2); 05 1/(s” In @),
U, Uj=(0; ~1;5 15 0), {U,., U}=(1;0;0; s,
Z(In ayUr'(@)B@)Ui-(x)=1+a(ln a)'; —a; —z; &) .

Moreover, if §=0(x, s)=(1/In 2)—(1/In s), it may be verified that

Tz, s; U)=1—0/z; (x—s—0)/(sz); 0; 14+0]s),
Sz, s; U)=(xz—s—0)/(sx); b/s; Olz; —0),
(x—s8)S"Yx, s; U)=(ws; x; s; 1—(x—29)/0),

from which one may verify readily that for 1<s< oo,

T(eo, s; U)=(1; 1/s; —1/In s; 1—1/(s In s)),
S(oo, s; U)=Q/s; —1/(s In s); 0; 1/In s),
M(s; U)=(s; 1; 0; In s).

8. TFurther properties of principal solutions. Suppose that (2.4)
satisfies H,, and is non-oscillatory on a subinterval X,: a,<a<o of
X; for s, t e X, s<t, let Y, (2)=U,(x) on «=<¢t, and Y,(2)=0 on x=¢,
where, as in Theorem 5.1, (U,(x); V. (z)) is the solution of (2.4")
satisfying U, (s)=FE, U,(t)=0.

For brevity, if y(z), u(x) are differentially admissible vector functions
on [s. o) such that

(8.1) im0y, ©; s, t]

exists and is finite, the value of (8.1) will be denoted by Iy, u; s],
moreover, for brevity we shall write I[y; s]| in place of I[y, y; s]. In
particular, for arbitrary constant vectors &€ we have [[Y,&; s|=I[U,¢;
s, t]. Now from relations (5.3) and (4.2) it follows that

0<E[Vals) = V) E=1[Y &5 s]—I[Y55 sI=1[YE—Y.&; s]

for s<t<d, s € X, and since V(s)—V,,. as t—o it follows that for
se X,, and & an arbitrary constant vector,

(8.2) Y ,6—-Y,5; s]20 as t, d—oo.
It is to be emphasized that in general it is not true that
(8.3) —&*V,u(8)e=I[U,,.5; 5], for s € X,,

although —&*V  (s)é=I[Y ¢ ; s] for t>s, and Y ()f—>U,,.(2)5 as t—oo ;
moreover, in general it is not true that the vector function U,,.(x)§ is
bounded on [s, o), although Y (x)é=0 for a=¢. The statements are
illustrated by the well-known scalar second order equation ' +u/(42”)
=0, which is non-oscillatory on (0, co); for this equation u,.(z)=ga"*
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and v,,.(1)=1/2, while w(z, %,,., #';,.)==0. However, much more can
be said about the principal solutions (U,,.(z); V,.(x)) in case the
hermitian integrand function « is such that

(8.4) w(x, y, 7)=0 for arbitrary x, y, = with z € X,.

In view of the continued understanding that R(x) is non-singular on X,
it is clear that (8.4) implies Hj;, as well as the result that H.[s, ¢] holds
for arbitrary compact subintervals [s, #] of X,, so that (2.4) is non-
oscillatory on X,.

THEOREM 8.1. If condition (8.4) holds on a subinterval X, : a,<x< o
of X then (8.3) is valid ; moreover, U, (2)V,(2)<0 on ssx<o and
U*oVio—0 as x— .

Since V(s)— V,,(s), and the vector function Y, (x)¢ tends to U,,.(x)E
uniformly on each compact subinterval of [s, «) as ¢—oo, whenever
condition (8.4) holds on X it follows readily from the relation —&*V(s)§
=I[Y,&; s] that I[U.5; s] exists and

— &V (8)§=I[U,,.£ 5 8] -
Now V,,.(s) is hermitian and by (4.1) we have
—EVu(8)E=I[Y 6, Uyt s, t]=1[Y6, Uy s].
Moreover, whenever (8.4) holds we have the Schwarz inequality
Y&, Usgef s "1P<I[Y6; 7 H[UsE 5 7] for s<r<o,

and as I[Y,§; rI<I[Yé; sISI[Y,6; s] for t=p>s it follows that for
given p>s, >0 there exists a value r=r,>s such that

— 8V, () SNU[ Y, Uyl s, r])+e for t=p .

As RU[Y.E, U,.t; s, r))=>I[U,.t; s, ] as t—oo, and I[U,.f; s, 7]
<I[U,.£; s] by (8.4), it follows that —&*V,.(s)6ZI[U.£; s], thus
completing the proof of (8.3). Finally, condition (8.4) implies that for
¢ a non-zero constant vector the integral I[U,,.£; s, r]=E*[U () V()
—V,,.(8)]¢ is a monotone increasing function of 7 on s<r<o which
tends to I[U,,.£; s]=—&*V,,.(s)é as r—oo, and consequently Ui.(r)
Voe(r)=<0 on (s, ) and Uf.(1)V,,.(r)—>0 as r—co.

In particular, if R(x)=F, Q(x)=0 and P(x)=0 on X, then the above
theorem implies that (|U,,.(2)5]?) =28*Uf¥.(2)V,.(2)§<0, so that for such
an equation (2.4) the norm of the vector function U,,.(x) tends to a
limit as @—w. This particular result has been established by Wintner
[16].

It is to be emphasized that condition (8.4) does not imply that
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U,,.—0 as 2>, TFor example, (8.4) holds for the scalar equation
(W' [(e®+2))Y —2uj(e*+-2)y=0

with general solution u=c¢(1+¢ *)+ce”, and principal solution wu,,.(x)
=(1+4e"*)/2.

THEOREM 8.2. If Hj holds and (2.4) is non-oscillatory on a subinterval
X qy<x<oo of X then U, .(x)—0 as x— if there exists a constant
k>0 and a continuous positive function h(xz) such that if s, d € X,,
s<d, then

(8.5) Ity s, szka ()l o ) Mz

Sor arbitrary y(x) which are differentially admissible on s, d] and satisfy

y(s)=0=y(d).
If the vector function y(x) is differentially admissible on [s, d], and
Y(s)=0=y(d), then

)= Wy rynda={ @y e,
=2l o= || o)y i@k

the last inequality holding for arbitrary continuous positive functions
h(x). Consequently the hypothesis of Theorem 8.2 implies that there
is a positive constant & such that

(8.6) 2kly(@)=Ily; s, d] for ssx=d

holds if s, d € X,, s<d, and y(z) is a differentially admissible vector
funetion on [s, d] with y(s)=0=y(d). In particular, if s<¢<d and ¢ is
a constant vector, then y(z)=Y (2)f—Y(x)¢ is such a vector function
with y(#)==0 for a=d and I[y; s, d]=1I[y; s], so that

(87) Zkl Yer(x)s— le(m)élZgI[YsUE“ }fsdE 5 8]! sSx<o,

Inequalities (8.2), (8.7) then imply that as t—o the convergence of
Y, (@)¢ to U,.(x)5 is uniform on sSe<oo. As Y (2)i=0 for z=t it
then follows that U,,.(x)§—0 as a—o for arbitrary constant vectors §,
so that U,,.(2)—0 as x—oo.

THEOREM 8.3. If on a subinterval X,: a,<ax<oo of X we have Q(x)
=0, R(x) of class C" with R(x)>0, R'(x)<0, and there is a non-negative
continuous function k(x) such that Sw Kx)dx 1is divergent and y*P(x)y
=k(x)y*R(x)y for arbitrary vectors y, then UF (z)R(2)U,,.(x)=>0 as x—oo.
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The hypotheses of the theorem clearly imply condition (8.4) on X,.
Now if Q(x)-=0 and R(x) is of class €’ we have V,,.(2)=R@)U,.(x),
and as {U,., U,.} =0 it follows that (U*.RU,,.) =2U*.V,,«
+U.R'U,,., so that in view of the condition R/(x)<0 and the last
conclusion of Theorem 8.1 we have (U..RU,,.) <0 on X,. Consequently,
for an arbitrary constant vector £ the non-negative function &*Uf.(x)
R(x)U,, ()¢ is non-increasing on X,, and thus tends to a non-negative
limit as a@—oo. Moreover, by Theorem 8.1 the integral I[U,,.¢; s]
exists and is finite, so that in view of the relation

1U,,.¢; s]zré*U:;wPUs,mé dxggwk(x)[E*ijRUs,mé]dx,

and the divergent character of Sw k(z)dz, it follows that &*Uj.(2)R(z)

U, ()6 —0 as o—oo, for & an arbitrary constant vector.
As a particular instance of the above theorem we have the following
result.

COROLLARY. If on a subinterval X,: a,<z<oo of X we have Q(x)
-0, R(x) a constant matriz R>0, and there is a non-negative continuous
Junction k(x) such that Sm k(x)dx is divergent and y*P(x)y=k(x)y|* for

arbitrary vectors y, then for s € X, we have U, .(x)—>0 as x— .
For the case of a scalar equation the result of the above corollary
in essence dates from Kneser [7], as has been pointed out by Wintner [15].
Added November 20, 1957. P. Hartman has pointed out to the
author that the following argument establishes the conclusion of Theorem

8.3 with the hypothesis that Sw k(z)dx is divergent replaced by the

weaker condition that gm xk(zx)dx is divergent. Since Theorem 8.1 implies

that Uf.V,,.<0, from the condition U;.R'U,.<0 and the expression
given for (Uf.RU,.) in the proof of Theorem 8.3 it follows that the

integral r UtV dz exists. From Theorem 8.1 it follows that
Uf.Vi,..—0 and

— U )V w)e=1[U,, . 5 ZLJ;SwS*U:mPUS,dex

for a,<u<co and arbitrary constant vectors &, and as U;.PU,,.=0 the

U#.PU,,..dz and SmDm UjijUs,wdt}dx exist for a,<u<oo ;

u e

oo

integrals S
an integration by parts then yields the existence of the integral
Sma:U;‘jm(w)P(w)Us,w(x)dx. Consequently the condition that y*P(x)y

>k(x)y*R(x)y for arbitrary vectors y implies that the integral



166 WILLIAM T. REID

Smxk(x)Us*,w(x)R(x)Us,w(a:)dx exists, and in view of the relations U{.RU,,.

=0, (Uf.RU,,.) <0 it follows that U}.RU,,.—0 whenever rxk(w)dx is

divergent.

9. A more general differential system. In this section we shall
consider a differential system with complex coefficients that is of the
general form of the accessory differential equations for a variational
problem of Bolza type, (see, for example, Bliss [3; § 81] and Reid [12]).
As in §2, o(x, y, 7) will denote an hermitian form (2.1) with ER(x),
Q(x), P(x) n x n matrices having complex-valued continuous elements on X:

a<w<oo, and R(x), P(x) hermitian on this interval. In addition,
consider a vector linear form
9.1) D, Yy, 7)==¢(x)7+0x)y ,

where ¢(x) and 6(z) are mxmn, (m<n), matrices with complex-valued
continuous elements on X. Instead of the hypothesis of Section 2 that
R(x) is non-singular, it is now assumed that the (n-+m) x (7+m) hermitian
matrix

R(x)  ¢*(x)
L o) 0

is non-singular on X ; in particular, the non-singularity of (9.2) on X
implies that ¢(x) is of rank m on this interval.

For the variational problem involving the functional (2.2) subject
to the auxiliary m-dimensional vector differential equation

(9.2)

9.3) D, y, y)=0

the Euler-Lagrange differential equations are in vector form

94)  (R@w + Q)+ ¢ @) — (@@ -+ Playu+0*(2)m) =0 ,
Dz, u, u)=0,

where u(z) is an n-dimensional vector function and p(x) is an m-
dimensional ‘‘multiplier’’ vector function.
The inverse of the non-singular matrix (9.2) is of the form

T(x) *(x)
() Ux)

where 7T(x) and #(x) are hermitian matrices of orders » and m,
respectively, and r(z) is an mxn matrix. In terms of the canonical
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variables
u(@), v(x)=LR(x)u'(x)+Qx)u(x)+¢*(x)m(x)

the Euler-Lagrange equations (9.4) become a vector differential system
(2.4), with now

(9.5) A=—TQ+7*0), B=T, C=P—Q*TQ—Q*c*0—0*cQ—0*t0 ;

the matrices B and C of (9.5) are hermitian on X, while B is a non-
negative definite matrix of rank n—m with B¢*=0 throughout this
interval. Throughout this section we shall continue to refer to the
vector equation (2.4) and the corresponding matrix equation (2.4'), with
the understanding that the coefficient matrices are given by (9.5).

As in Section 2, if (Ui(x); Vi(z)) and (Ufx); V.(x)) are solutions
of (2.4’) then the matrix U*(x)V(x)— V. *(@)Ufxr) is a constant; to
denote this matrix by {U,, U,} now in general involves an ambiguity,
however, since if (U(x); V(x)) is a solution of (2.4) there may exist
other matrices Vi(x)+ V(x) such that (U(x); Vy(x)) is also a solution of
(2.4). This ambiguity does not exist, however, if (2.4) is such that
whenever u(2)=0, v(x) is a solution of this equation on a non-degenerate
subinterval of X then wv(2)=0 on this subinterval; if this property
holds the equation (2.4) is said to be identically normal, or to be normal
on every subinterval, on X. It is to be commented that this condition of
normality was used in Section 3 to show that if (2.4) is non-oscillatory
on X,, and (U(x); V(x)) is a solution of (2.4") with U(x) non-singular on
this interval, then S(¢, s; U) is non-singular for s, ¢ € X, s#t.

For the equation (2.4) now under consideration one may define the
concepts of conjugate point, non-oscillation on a subinterval, and non-
oscillation for large z, in precisely the language of Section 2. For the
problem involving the functional (2.2) subject to the differential equation
(9.83) an n-dimensional vector function y(x) will now be said to be
differentially admissible on a subinterval of X if on this subinterval
y(x) is continuous, has piecewise continuous derivatives, and satisfies
(9.8) ; for a compact subinterval [¢, d] of X the symbol H.[c, d] will
again denote the condition that I[y; ¢, d]>0 for arbitrary differentially
admissible y(x) which are not identically zero on [¢, d] and satisfy w(c)
=0=y(d). For the problem now considered the symbol H, signifies the
condition that for all # € X we have z*R(2)x>0 for arbitrary non-zero
vectors = satisfying the restraint ¢(x)r=0; in view of the basic assumption
that (9.2) is non-singular throughout X it follows that Hj holds whenever
there is a single s € X such that z*R(s)r>0 for arbitrary non-zero
vectors = satisfying ¢(s)r=0.

With the above definitions, the result of Theorem 4.1 is valid for
the equation (2.4) now under consideration. In this connection, it is to
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be commented that if we write y=(y,+1%), (=1, ---, %), and denote
by z the real 2n-dimensional vector function with components (y!, -- - ,¥.,
Yi, <+, ¥h), then w(x, y, ¥')is a quadratic form wx, z, 2') in (2, ') with
real coefficients, and (9.3) is equivalent to a real 2m-dimensional vector
differential equation Pz, z, 2)=0. Moreover, H.[c, d] and H, are
individually equivalent to the corresponding conditions H%[c¢, d] and Hj
for the associated real problem in 2, and for this latter problem the
conclusion that H%[e, d] implies HY is a well-known result of the calculus
of variations, (see, for example, Bliss [3; Theorem 78.2 and Lemma
81.2]). For a problem of the sort formulated above which satisfies Hp,
the method of proof of Lemma 89.1 of Bliss [3] yields the result that
H.[c, d] holds if and only if there is a matrix (U(x); V(x)) of conjoined
solutions of (2.4) with U(a) non-singular on [¢, d], and the method of
proof of Lemma 89.2 of Bliss [3] establishes that H.[e, d] holds if and
only if (2.4) is non-oscillatory on [e, d].

For a differential system (2.4) of the type now under consideration,
the result of Theorem 4.2 is valid only if this system is normal on the
interval [e, d], since if y(x) is differentially admissible then y(e), y(d)
must satisfy v*(d)y(d) —v*(¢)y(c)=0 with all vector functions v(z) belong-
ing to abnormal solutions u==0, v(x) of (2.4) on [¢, d]. On the other hand,
if (2.4) is normal on every subinterval of X then Theorems 4.2 and 4.3
hold, as well as relations (4.1) and (4.2) for vector functions that
are differentially admissible for the problem of this section.

From the above remarks it follows that for systems (2.4) with
coefficient matrices given by (9.5), and which are normal on every
subinterval of X, the various theorems of Sections 3-6 remain valid,
with no changes in proofs required. An important illustration of this
class of systems (2.4) is afforded by certain systems (2.4) that are
equivalent to self-adjoint scalar differential equations of even order.
Indeed, suppose that p,(z), (=0, 1, ..., 2n), are real-valued functions
with pa(r)#0 on X and p,(x) of class CYU» or CU*H™ gccording as J
is even or odd, and let R(z), Q(x), P(x) be diagonal matrices with P,.(x)
=(=1)"""ps, (), Qua,(x):'i(~1)”p2d_l(x), (=1, -+, n), B,(x)==0 for
a<n and R (x)=(—1)"p.(x), while Pz, y, 7)=(7—Ys+1), (B=1, -,
n—1). The corresponding vector differential system (2.4) is readily
seen to be normal on every subinterval, and (u(x); v(x)) is a solution
of this system if and only if u,(x)=y“ "(x), (=1, ---, n), where y(z)
is a solution of the self-adjoint differential equation

25 [Paf@)y 10 +103 ([Deama(2)y =21+ [Drsl@)y @ 1*77) =0

It is to be noted also that for a system (2.4) normal on every subinterval
the results of Theorems 8.1 and 8.2 are valid, with (8.4) replaced by
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the condition that w(x, y, z)=0 for arbitrary (x, y; =) with z e X,,
and satisfying d(x, y, 7)=0.

Finally, it is to be remarked that for an equation (2.4) with
coefficients given by (9.5), and which is not normal on every subinterval
of X, there do exist suitable modifications of Theorems 4.2 and 4.3
which with an altered definition of principal solution enable one to
establish certain results corresponding to those of Sections 5,6 ; however,
the details of these results will not be presented here.
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ON GENERAL MINIMAX THEOREMS

MAURICE SION

1. Introduction. von Neumann’s minimax theorem [10] can be
stated as follows: if M and N are finite dimensional simplices and f
is a bilinear function on Mx N, then f has a saddle point, i.e.:

max min f(p, v)=min max f(u, v) .

WEM YVEN VEN  pENM
There have been several generalizations of this theorem. J. Ville [9],
A. Wald [11], and others [1] variously extended von Neumann’s result
to cases where M and N were allowed to be subsets of certain infinite
dimensional linear spaces. The functions f they considered, however,
were still linear. M. Shiffman [8] seems to have been the first to have
considered concave-convex functions in a minimax theorem. H. Kne-
ser [6], K. Fan [3], and C. Berge [2] (using induction and the method
of separating two disjoint convex sets in Kuclidean space by a hyper-
plane) got minimax theorems for concave-convex functions that are ap-
propriately semi-continuous in one of the two variables. Although these
theorems include the previous results as special cases, they can also be
shown to be rather direct consequences of von Neumann’s theorem. H.
Nikaidd [7], on the other hand, using Brouwer’s fixed point theorem,
proved the existence of a saddle point for functions satisfying the
weaker algebraic condition of being quasi-concave-convex, but the strong-
er topological condition of being continuous in each variable.

Thus, there seem 1o be essentially two types of argument: one
uses some form of separation of disjoint convex sets by a hyperplane
and yields the theorem of Kneser-Fan (see 4.2), and the other uses a
fixed point theorem and yields Nikaido’s result.

In this paper, we unify the two streams of thought by proving a
minimax theorem for a function that is quasi-concave-convex and appro-
priately semi-continuous in each variable. The method of proof differs
radically from any used previously. The difficulty lies in the fact that
we cannol use a fixed point theorem (due to lack of continuity) nor the
separation of disjoint convex sets by a hyperplane (due to lack of con-
vexity). The key tool used is a theorem due to Knaster, Kuratowski,
Mazurkiewicz based on Sperner’s lemma.

It may be of some interest to point out that, in all the minimax
theorems, the crucial argument is carried out on spaces M and N thatl

Received June 26, 1957. This research was supported by the United States Air Force,
Office of Scientific Research and Development Command, under contract No. AF18(600)-1109
[Supplemental Agreement No. 4 (56-339)].
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are finite dimensional simplices. When concave-convexlike functions are

considered, the topological conditions of compactness and semi-continuity
are used only in reducing the problem to the finite dimensional case.
For quasi-concave-convex functions, however, semi-continuity is needed
in a more crucial way, as can be seen from the example in 3.6.

2. Fundamental notions and definitions. The following definitions
of concavelike and convexlike functions were first considered by K.
Fan [3]. They generalize the concepts of concavity and convexity and
are valid for spaces without linear structure.

2.1. A function f on MxN is concavelike in M if for every
my €M and 0=t<1, there is a e M such that

tf (1, )+ =0 f (e v) = f(pr,v) for all ve N .

2.2. A function f on MxN is convexlike in N if for every
v,v,€ Nand 0 <t <1, there is a ve N such

tf( v)+ A=) f (1, v) = f(pr,v) for all pe M.

2.3. A function f on Mx N is concave-convexlike if it is concave-
like in M and convexlike in N.

2.4. A function f on Mx N is quasi-concave in M if {p: f(p,v)
> ¢} is a convex set for any »e N and real c.

2.5. A function f on M x N is quasi-convex in N if {v: f(x, ) < ¢}
is a convex set for any pe M and real c.

2.6. A function f on Mx N is quasi-concave-convex if it is quasi-
concave in M and quasi-convex in N.

2.7. A function S on MxN is u.s.c.-ls.c. if f(p, ) is upper
semi-continuous in g for each v e N and lower semi-continuous in » for
each pe M.

2.8. For a function f on Mx N, we set
sup inf f=sup inf f(#,v),
LEM VEN

inf sup f=inf sup f(r,v).
veEN pEM
2.9, The convex hull of X will be denoted by "X

2.10. The closure of X will be denoted by X.
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3. Minimax theorems for quasi-concave-convex functions. The aim
of this section is Theorem 3.4. The method of proof, making use of
3.1, 3.2, and 3.3, is very different from any argument used previously
in obtaining minimax theorems.

3.1. THEOREM. Let S be an n-dimensional simplexr with vertices

Gy »roy Q. If Ay -ov, A, are open sets such that Sc U A4, S—A4, 1s

1=0

convex, and a;¢ A, for 1+7 (4,7, =0 ---,n), then N A;#0.
i=0

Proof. We can set A,= OL]BL,,; where the B,,, are open and
k=0
B.,. C B,:«1. Since S is compact, there is an integer N such that
Sc U B,,. By a theorem of Knaster, Kuratowski, Mazurkiewicz [5],
i=0

we have N 4, D N B,,y#0.
$=0 i=0

i=
3.2. THEOREM. Let A={ay, ---,a,} consist of n+1 points in a li-

n
near space of dimension k < n. Then N T(A—~ {a,})1+0.
i=0

Proof. N "= 1{a;\ ) D {a,l #0 for j=0, -+, n.
i=0

%)

Hence by Helly’s Theorem [14], we have the desired result.

3.3. LEMMA. Let M be a convex set, Y a finite set, and f a func-
tion on MxY, quasi-concave and upper semi-continuous in M. Suppose,
n addition, that Y is minimal with respect to the property: for each
re M there is @ yeY with f(p, y)<c. Then there ewists p,e M such
that f(u, y)<c for all ye'Y.

Proof. Let Y={y, -+, ¥,} and set A,={p: f(n, y;)<ec} for i=0,
.--,n. Then the A, are open and M—A, convex. By hypothesis, for
each ¢, there exists a,¢ M such that a;e M—A; for j=i. Let A= {a,,

n
-+, a,}. Then "(A—{a,})' © M—A, and, since M c U A;, we must have
1=0

N 'AM—{a;})'=0. Hence, by 3.2., A spans an n-dimensional simplex in

i=0

M and, by 8.1, there exists a g, € (ﬂ\ A,.
1=0

3.8'. LEMMA. Let N be a convex set, X a finite set, and f a func-
tion on X x N, quasi-convex and lower semi-continuous in N. Suppose, in
addition, that X ts minimal with respect to the property : for each ve N
there is an xe X with f(x,v)>c. Then there exists v,e N such that
Sz, v)>c for all xe X,
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3.4. THEOREM. Let M and N be convex, compact spaces, and f a
Junction on Mx N, quasi-concave-convexr and u. s. c.-1. s. c.. Then sup inf
f=inf sup f.

Proof. Suppose sup inf f<e<inf sup f. Let A,={v: f(g, v)>c}
and B,={p¢: f(¢,v)<c}. The A, are open and cover N. Since N is
compact, a finite number of the 4, cover N. Similarly, a finite num-
ber of the B, cover M. We can therefore choose finite subsets X, ¢ M
and Y, © N such that for each ve N, and hence for each ve Y1, there
is an x e X, with f(, v) >c¢; and for each z € M, and hence for each ze "X 3,
there is a ye Y, with f(g, y)< c.

Let X, be a minimal subset of X, such that for each ve'Y," there
is an e X, with f(x,»)>c. Next, let Y, be a minimal subset of Y,
such that for each peTX,? there is a ye Y, with f(g, y)<ec.

Thus, by repeating this process of alternately reducing the X, and
Y,, after a finite number of steps, we can choose finite subsets Xc M
and YC N such that X is minimal with respect to the property: for
each ve 'Y thereis an xe¢ X with f(z,»)>¢; and Y is minimal with
respect to the property : for each e "™X1 there is a ye Y with f(g,y)<e.
By 3.8, there exists g, e "X such that f(u, v)<e for all y e Y and hence
(by quasi-convexity) f(m, v)<<c for all »eTYY By 3.8, there exists
v, € "Y' such that f(zx, v,)>c¢ for all xe X and hence (by quasi-concavity)
Sy, vo)>c for all pe™X". Then ¢<f(pmy, vo)<c¢, which is impossible.

3.3. COROLLARY. Let M and N be convexr spaces one of which 1s
compact, and f a functton on Mx N, quasi-concave-convex and u. s. cC.
-l.s.c.. Then sup inf f =inf sup f.

Proof. Suppose M is compact and sup inf f<<e<inf sup /. Then
there exists a finite set Y N such that for any pe M there is a yeY
with f(y, y)<c. Taking f'=f/(M x'Y1), we get sup inf f’'<e<inf supf’
in eontradiction to 3.4 with N replaced by "Y! and f by f".

3.6. REMARK. In Theorem 3.4, the condition that f be u.s. c.-ls.c.
cannot be removed nor appreciably weakened even if the spaces M, N
are finite dimensional. To see this, we consider the following example.
Let M=N=[0,1] and f(z,»)=0 for 0<p<1/2 and v=0o0r 1;2<p<1and
v=1; flp,)=1 otherwise. We easily check that f is quasi-concave-con-
vex ; for each g, f(1, v) is lower semi-continuous in »; however f(g, 1)
is not upper semi-continuous in z. We also have: sup inf f=0 and inf
sup f=1.

4. Minimax theorems for concave-convexlike functions. For con-
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cave-convexlike functions, the topology for the spaces on which they
are defined plays only a secondary role. Theorem 4.2 (4.2') below, which
is the generalization of Kneser’s theorem to concave-convexlike functions
due to K. Fan {3], is not a special case of 8.4 since the concepts of
concave-convexlike and quasi-concave-convex are independent of each
other (see [7]). It is however a special case of 4.1" (4.1), which is it-
self an immediate consequence of 3.4 (actually, von Neumann’s theorem).

4.1. THEOREM. Let M and N be any spaces, f a function on Mx N
that s concave-convexlike. Lf for any c<inf sup f there exists o finite
subset XM such that for any ve N there is an xe X with flw,v)>c¢,
then sup inf f=inf sup f.

4.1'. THEOREM. Let M, N be any spaces, f & function on MxN
that is concave-convexlike. If for any ¢>sup inf [ there exists a finite
set YC N such that for any rpe M there is a ye 'Y with flyn, y)<ec, then
sup inf f=inf sup f.

4.2. THEOREM. (Kneser, Fan). Let M be compact, N any space, f
a function on M x N that is concave-convexlike. If f(p,v) is upper semi-
continuous in p for each v, then sup inf f=inf sup f.

Proof. If e>supinf f, let A,={z: f(p, v)<c} for each ve N. The
A, are open and cover M, hence a finite number of them cover M.
We may therefore apply 4.1°.

4.2 THEOREM. Let M be any space, N compact, f a function on
M x N that is concave-convexlike. If f(p, v) is lower semi-continuous in v
Jor each p, then sup inf f=inf sup f.
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ON SEMI-NORMED *-ALGEBRAS

CHIEN WENJEN

1. Introduction. The notion of semi-normed algebras was introduced
by Arens as a generalization of Banach algebras [2, 5]. They are called
locally multiplically-convex algebras by Michael [16]. Various properties
of Banach algebras have been generalized to semi-normed algebras [5,
16,21, 22, 23].

We repeat here a few definitions. Let A be a linear algebra over the
field K of complex or real numbers. A nonnegative real-valued funec-
tion T defined on A4 is called a semi-norm if it satisfies the following
conditions :

Viz+y) < V(x)+ V), Viey) < V(x)V(y), V(2z)=|2|V(x). Suppose there
is a family 7 of semi-norms such that V(z)=0 for all Ve ¥ only if
x=0. A is a semi-normed algebra if all the translations of the sets on
which V(x)<e, where ¢ is real and Ve ¥, are taken as a subbase of
topology, and is complete if it is complete with respect to the uniform
structure defined by the various relations V(z—y)<<e. A is called an
*-algebra if there is a semi-linear operation * such that (Ax—yz)*z_/lx*
—z*y*, o**=x. A subset U of A is called idempotent if UU c U; it is
called multiplicatively convex (m-convex) if it is convex and idempotent.
A is locally m-convex if there exists a basis for the neighbourhoods
of the origin consisting of sets which are m-convex and symmetric.

The present paper is devoted to generalizing the representation theo-
rems for commutative and noncommutative Banach algebras to semi-
normed algebras. An application of the Gelfand-Neumark-Arens
representation theorem for commutative Banach algebras yields a simple
proof of the spectral theorem for bounded self-adjoint operators in
Hilbert space [14, p. 95]. Our generalized representation theorem for
commutative semi-normed algebras gives rise to a similar proof of the
spectral theorem for unbounded self-adjoint operators.

The characterization of the algebra C(7, K) of all complex-valued con-
tinuous functions on a locally compact, paracompact Hausdorff space T
has been treated by Arens [5,p. 469]. We have a characterization
theorem for C(T, K) where T is a locally compact completely regular
space and also a uniqueness theorem for the space 7' [cf. the Banach-
Stone theorem, 6, p. 170, 20, p. 469]: If C(T,, K), C(T,, K) are topo-

Received July 19, 1954, and in revised form September 1, 1957. This paper is part of
a thesis submitted by the writer to the graduate division of the University of California,
Los Angeles, (Summer, 1953) in partial satisfaction for the Ph. D. degree. The writer is
indebted to Professor Richard Arens for his encouragement and valuable advice.
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logically isomorphic, then 7', and T, are homeomorphic. If T, T, are
Hewitt’s @-spaces [11, p. 85], the topological equivalence between the
spaces follows from the algebraic isomorphism between C(7,, K) and
C(T,, K), but not in general.

2. Functional representation.

2.1. THEOREM. Let A be a complete commutotive semi-normed
*-algebra (with or without a unit) over the complex numbers K such that

2.2. W(ax*)=k,V(z®), for all Ve 7 (k,>0). Then A is topologically
isomorphic to a complete self-adjoint subalgebra S of the algebra C(T, K)
of all continuous complex-valued functions (vanishing ot infinity iof A
has no unit) on T with k-topology, where T is the union of the mem-
bers of a family of pairwise disconnected and closed-open sets. (compact
if A has o unit, otherwise locally compact).

Proof. The elements  in A satisfying V(z)=0 form an ideal Z,, a
kernel ideal of A. The quotient algebra A/Z, is a normed algebra when
V is used to define a norm, and the completion B, of 4/Z, is a com-
mutative Banach *-algebra. By Gelfand-Neumark-Arens representation
theorem [3, Theorem 1, p. 278], there exists a Hausdorff space (compact
if A has a unit, otherwise locally compact) Q,= V-neighbourhood homo-
morphism, for which B, is the class of all complex-valued continuous
functions (vanishing at infinity if 4 has no unit) on @, such that

X (@)=a(q) (@€ Qy, x € By).
and
(2.3) by V(@)= sup led@) = Vi) .
fleQV
Let
T= U Q..
Ve %

Retaining the original weak* topology for @, and regarding all @, as
pairwise disconnected and closed-open subsets, we have a locally compact
completely regular space 7. The complex-valued continuous functions
on T are of the form f(¢t)={f,}, where fi(t) e C(Q,, K) and f{t)=r»(¢t) if
te Q.

The mapping

P : xe A—u(t)={xt)} € C(T, K)

maps A onto a subalgebra S of C(T, K). P is isomorphic; for, if x
maps to zero functional, then V(x)=0 for all Ve »" and x is the zero
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element of A.

In faet, P is a homeomorphism. Denote the open set in A consisting
of all # such that V(x)<e by O(V, ¢) and the open set in C(T, K) defined
by Su(g) A <kre by 0(Qy, e). It follows from the inequalities 2.3 that

1€Q;

P maps O(V, e) onto a subset of C(7T, K) containing 0'(Q,, e). This pro-
ves the continuity of the inverse mapping of P from S onto A.

Let W be a compact subset in 7' contained in the union of @y ,---,
Qy,. It is clear that P maps the intersection of 0(V,e),---, O(V,, e)
onto a subset in C(T, K) contained in the intersection of 0'(V,, e/k,),---,
O(V,, e/k,), and S, that is, in the intersection of 0(W, e/k,) and S.
P is therefore continuous.

The completeness of S is an immediate consequence of the complete-
ness of A and inequalities 2.3.

2.4. COROLLARY. Let M, be a maximal ideal in B, (the completion
of the quotient ring A,=A|Z,) and let f(t) be a complex-valued continuous
Sunction on the space T. Then f(t) belongs to S if fr(My)=fu(M,) when-
ever UV,

Proof. M, is actually a point in @, and f,,(M,) belongs to C(Q,, K).
Let ﬁw be the natural mapping of B, into By when U<YV. Then
1, (fy)=f, whenever UV if f,(M,)=f,(M.). Hence the corollary [16,
Theorem 5.1].

This immediately yields the following result [ef. 5, p. 471].

2.5. THEOREM. Let A be a commutative complete semi-normed *—al-
gebra with o unit (without unit) satisfying 2.2. Then an element x in A
has an inverse (reverse) of a(M)+0 (x(M)+ —1) for each closed mawimal
adeal M in A.

3. Spectrum. An element % in a complete semi-normed *-algebra
A satisfying 2.2 is called Hermitian, if A2*=4; and an Hermitian ele-
ment A is called positive, if its spectrum consists of nonnegative numbers.

3.1. THEOREM. The spectrum of every Hermitian element h is real.

Proof. Suppose A has a unit. Let 4, be the minimal complete
*-subalgebra of A containing %. Then A, is commutative. By Theorem
2.1 A, is equivalent to a closed subalgebra S of C(T, K). The corres-
ponding function A(M) of the element % in A is real-valued. For any
nonreal number 4, the function A(M)—2 is not equal to zero anywhere.
The theorem follows from Theorem 2,5,
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3.2. THEOREM. FEwery closed self-adjoint subalgebra A, of a complete
semi-normed *-algebra A with a unit (without unit) satisfying 2.2 contains
inverses (reverses).

Proof. Rickart has proved that =, € 4,, (the completion of A4,,=A4,/Z,)
has an inverse (reverse) iff both =, *x, and «,,* have inverses (reverses)
and that the inverse (reverse) of w, is contained in 4,, iff the inverses
(reverses) of a,*r, and x,x,* are contained in A4, [18, pp. 531-532].
Since every closed maximal ideal in A contains a kernel ideal [5, p. 466],
it follows from Theorem 2.5 that A, contains inverses (reverses) of its
Hermitian elements, and hence of all its elements which have inverses
(reverses) in A.

3.3. COROLLARY. Let A, be any closed self-adjoint subalgebra of A.
Then the spectrum of x e A, relative to A, is identical with the spectrum
relative to A.

3.4, THEOREM. Let x be a normal element, that is, xx*=x*x, of A
(with or without a unit) and let f(2) be & complex-valued continuous func-
tion (vanishing at infinity, if A has no unit) defined on the spectrum o
of . Then f(x) defines an element contained in every commutative closed
sel f-adjoint subalgebra of A which contains x.

Moreover if s(2)=f()+9(2), D()=F(Dg(2), q(2) = f(3), "()=1, then
s(x)=f(x)+g(x), p(x)= flx)g(x), ¢(x)=f(@)*, r(x)==.

Proof. Let A, be a commutative closed self-adjoint subalgebra of

A containing « and let M, be a maximal ideal in A,,. Then A, is equi-
valent to a closed self-adjoint subalgebra S of the algebra C(T, K) of
all complex-valued continuous functions on a locally compact completely
regular space T and f(zy(M))=f(x(M,)) whenever U< V. By Corollary
2.4, f(x(M)) determines a unique element, denoted by f(x), contained in
A,. The first part of the theorem is proved.

The second part of the theorem is obvious.

3.5. THEOREM. The sum of two positive elements is positive.

Proof. Suppose A has a unit. Let % and k be two positive elements
in A and let 4, be the minimal closed self-adjoint subalgebra of A con-
taining A-+k. Since the inverse of %,+k,+ Ze for any nonnegative num-
ber 1 and each Ve ¥". [13, p. 52] the function A(M)-+ k(M )+ 2 does not
vanish at any M. The theorem follows from Theorem 2.5.

3.6. THEoOREM. The Hermitian elements of a complete seminormed
*-algebra satisfying the condition 2.2 constitute a lattice,
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Proof. To any Hermitian A, there is a positive element |A| corres-
ponding to the function |1 by Theorem 3.4. Let A and % be arbitrary
Hermitian elements and define.

hvk=3h+k+\h—Ek|), hak=3%3(h+k—|h—k|). Then the Hermitian ele-
ments constitutes a lattice.

4. Closed self-adjoint subalgebras.

4.1. THEOREM. A commutative complete semi-normed *-algebra A
satisfying the condition 2.2 is equivalent to a closed, separating self-ad-
joint subalgebra S of the algebra C(T,, K) of all complex-valued continuous
Sfunctions (vanishing at infinity, if A has no unit) on a completely regulor
space T, with « topology which has at most the open sets of the k-topology,
that s, with a topology p<k.

Proof. By Theorem 2.1, A is equivalent to a closed self-adjoint
subalgebra S of C(T, K), where T' is a union of pairwise disconnected
and closed-open sets (compact if A has a unit, otherwise locally compact).
Let x(t) be the corresponding function in S of the element « in A. De-
note by T, the class of all subsets of T':

L.,={t; x(t)=a(a) for each xe A} .
Following Céch’s notation, Let p denote the mapping :
aeT—L,

and let [f, I] denote those elements p(¢) of T, such that f(¢)el, where
M(t) is a continuous real function belonging to S end I is an open inter-
val. The topology generated by considering all these [f, I] as a subbase
is called p-topology.

It is easy to see that p is a continuous mapping and that for any
aeT, there is an [f, I] containing p(a). Let [fi, I,] and [f,, I,] be any
two open sets in T, containing p(a). If both fi(a) and f(a) are different
from zero, we can assume without loss of generality that fi(a)=f(a)
and that 7, and I, are identical. We define g¢,(¢)=£i(¢) if fy(¢)=f(a), and
9:(t)=2f(a)— fi(#) if fi(t)>f(a), t=1,2. Then ¢(t) and g«t) are continu-
ous functions. Let g(¢)=g.(t)Ag(t). It is clear that [g, I1C[f}, IINLfs
I1. In case fi(a)=0 and fi(a)+0, we can assume that fi(¢) and fy(t) are
nonnegative. Let g(¢t)=f(t)—fi(t). An interval I can be so chosen that
Lo, I1cfy, IIN[f I]. Hence T, is a topological space. Cech has proved
that T, is Hausdorff and completely regular [8, p. 827].

Now the closed subalgebra S of C(T, K) is a closed, separating sub-
algebra of C(T,, K).
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4.2. REMARK. It is clear that the elements in the space T, are the
closed maximal ideals in the algebra A and the p-topology is the weak*
topology. Professor Arens has constructed examples to show that T, is
not necessarily locally compact. He has also constructed a completely
regular space T such that C(T, K) with k-topology is not complete. [4,
p. 234]. We have, however, the following.

4.3. THEOREM. The necessary and sufficient condition that o com-
mutative complete semi-normed *-algebra A satisfying the condition 2.2
be equivalent to C(T, K), with k-topology, of all complex-valued continuous
functions on a locally compact completely reqular space T is:

To any closed maximal ideal M, in A, there are an x€ A and an
e>0 such that the intersection of the maximal ideals M satisfying the
relation |w(M,)—a(M)| e contains o kernel ideal.

Proof. The necessity is obvious. The sufficiency follows from
Theorem 4.1 and Corollary 2.4.

4.4. REMARK. Theorem 4.3 generalizes the theorem of Arens
characterizing the algebra C(7T, K), where T is a locally compact, para-
compact Hausdorff space. [5, p. 469]. Let A be an algebra with a
locally finite partition of unity. (For definition and notation, see 5, p.
463) To any maximal closed ideal M,, there exists an u, such that
w,(M,)=0+0, since M, contains a kernel ideal. There are only a finite
number of W such that W(u,)+0, say, Wi, ---, W,. Let W,=max.
(Wiy,--+, W,). The intersection of the closed maximal ideals M satisfying
(M) —u(M)|< 0/2 evidently contains Z,.

4.5. THEOREM. For the algebra C(T, K) of all complex-valued conti-
nuous functions (vanishing at infinity) on a locally compact completely
regular space T with k-topology, there is one-to-one correspondence between
closed ideals in C(T, K) and the closed subsets of T.

This is a generalization of a theorem due to Stone [20, Theorem 85]
and the proof is straightforward.

4.6. COROLLARY. For the glgebra of all complex-valued continuous
Sfunctions (vanishing at infinity) on a locally compact completely regular
space with k-topology, there is one-to-one correspondence between the closed
maximal (regular) ideals of the algebra and the points of the space (the
point at infinity is not included).

4.7. THEOREM. The necessary and sufficient condition two locally
compact completely regular spaces T and T' be homeomorphic is that the
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algebras C(T, K) and C(T', K) of all complex-valued continuous functions
(vanishing at infinity) on the spaces with k-topology be topologically iso-
morphic.

Proof. Following Stone’s idea, we define the closure of a family of
closed maximal (regular) ideals in C(7T, K) as the hull of the kernel of
the family {14, p. 56]. It is clear that a subset of the space T is closed
iff it is equal to the hull of its kernel when it is considered as a set of
the maximal (regular) ideals in C(7', K).

4.8. REMARK. The homeomorphism between the spaces 7' and 7"
does not follow from the algebraic isomorphism between C(T, K) and
C(T', K). For example, the space T, &KT,..—(Q, ») [11, p. 69] is
pseudo-compact, completely regular, locally compact, and C(T, K) and
C(pT, K) are algebraically isormorphic, while 7" and 57 are not homeo-
morphic.

5. Spectral theorem for unbounded self-adjoint operators in Hilbert
space.

5.1. Let L be the algebra of all real-valued continuous functions
defined on a locally compact Hausdorff space 7' and vanishing off compact
sets. It is well-known that every nonnegative linear funectional on L is
an integral [14, p. 44].

A family of real-valued functions on a space is called monotone if
it is closed under the operations of taking monotone increasing and de-
creasing limits. The functions belonging to the smallest monotone
family including L are called Baire functions.

A topological space T is called hemi-compact by Arens [1, p. 486]

if there exists a sequence T, of compact subsets of 7" such that G T,=T
i=1

and every compact subset of 7' is contained in some 7;. Every topo-
logical space which is both o-compact and locally eompact is hemi-com-
pact.

5.2. LEMMA. Let G be a *-representation of the algebra C(T, K) of
all complex-valued continuous functions vanishing outside compact sets on
a hemi-compact Hausdorff space T, which is a union of pairwise discon-
nected, closed-open compact sets T\, T,, ---, by ¢ family B of operators
in o Hilbert space H. Let H be spanned by a sequence of closed linear
manifolds H,, H,, --- , orthogonal in pairs, such that each operator of L
18 bunded on H, and G is a bounded *-representation of the algebra
C(T;, K) of all complex-valued continuous functions on T; by a family of
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operators on H,. Then G can be extented to o *-representation of the
algebra B(T, K) of all Baire functions bounded on compact subsets of T,
and the extemsion is unique, subject to the condition that J, (f)=(Gx, y)
is & complex-valued integral for every xe H,ye H*.

Proof. The function F(f;, , y)=(G,z, y), defined for f;e C(T)), x € H,,
y€ H,*, is a bounded integral on C(7;) and thus is uniquely extensible
to B(T;). [14, p. 93]. Hence the lemma [17, p. 312].

5.3. THEOREM. o any self-adjoint operator R in a Hilbert space
H, there ewists a unique family of projections {E,} depending on the
parameter 2, satisfying

(a) E\<E, or E,=E\E, for 1<p,
(b) E,.,=E,,
(c) AETO E,=0 and }130101 E, =1,
such that
R:SlmE} :

Proof. Let b, be a set of real numbers, i=0, +1, +2, -+, such
that

(1) for all ¢,b,>b,-;

(2) lim b,=oo ;
f—roe

(3) lim b,—=—o .

om0

Then there exists a set of closed linear manifolds {H,},+=1,2,---,
orthogonal in pairs, spanning H, and such that R is defined on H; and
satisfies the relation [15, 17]

bI=R=b, I .

Let P, be a projection on H such that Px=x if «€ H,, and Pz=0
otherwise. Now P, P,, ---, and R generate a commutative semi-normed
*.algebra A, the semi-norms of its elements being the norms of the
operators in H,. By Theorem 2.1, A is equivalent to a closed self-adjoint
subalgebra S of the algebra C(T, K) of all complex-valued continuous
functions on a hemi-compact Hausdorff space 7', which is a union of a
sequence of pairwise disconnected, closed-open compact subsets T4, T4,«--.
S is, in fact, the algebra C(T', K) itself.
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Any real continuous function f(¢) on the space T is a Baire func-
tion. Define a continuous function f, such that f,(¢)=,(¢) if te T\u---
uT, and f(t)=0 otherwise. Let greL so that ¢*tmf, where g
vanish outside the sets T14,---,T,, and let g,=g?v---vg% Then gt f
and f is a Baire function. Also the characteristic functions of closed
subsets in 7 are Baire functions.

Let E be the image of the operator R. Given ¢>0, we can choose
25 8=0, +£1, £2,-.. such that A,—>c,i_;—>—oas ¢—c and, for all 4,
2> Aay Ay—A;<e. Let E, be the characteristic function of the closed
set where B<2, and choose 2, from the interval [4,_;, 2]

Then

S, ~ i, ] <o
and hence
UR‘ih'(E;\i—EAi_l) “v<e for each Ve 7.

The theorem is proved.

6. Imbedding algebras into rings of operators in Hilbert space.

6.1. THEOREM. Ewery complete semi-normed *-algebra A with or
without o unit, satisfying the condition V(zx*)= V(x)V(a*) for each
Ve 77, can be isomorphically mapped onto a closed self-adjoint subalgebra
A, of the algebra of all linear operators in o Hilbert space H= VeZ%HV

such that if xe€ A maps to X e A,, then X is bounded in each H, and
V(x)=||zll, for each Ve 77, where ||z|l, denotes the norm of X in H,.

Proof. By Gelfand-Neumark representation theorem [10, Theorem 1;
12, p. 4091, the completed quotient algebra A, can be isometrically mapped
onto a closed self-adjoint subalgebra of the algebra of all bounded
operators in Hilbert space H,.

Let

H= > H,
VE%

be the set of all complexes ~A={h,}, , € H,, with
SRR < o
VE%
The algebraic operations and inner products are defined as follows :

Ah:{)thy}, h1+hz:{lllv+hzv} , (Pl h;’):VGZ‘A%(hﬁV_h'zV) .
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Let A;={hy}. Then ”hz‘_kj”;,:VZ 1y =Py |F. [l;— Rl =0 implies
€7

[|hiy—hyl|>0 for each V. For any fixed V, h;, approaches to an ele-
ment A, in H, as a limit when ¢ approaches infinity. Then 2;—h,= {Ay}
which belongs to H, and H is complete.

The corresponding operator X in H of an element x€ A is defined
as X={X,}, where X, is the operator in H, corresponding to z,€ Ay.
Now Xh={X,%,} with

S NX Ry <o .
167

The domain of X is dense in H, for it contains all those elements {4}
where %, are 0 except for a finite number of them. It is clear that
X(H)c H and X(H,)CH,.
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