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Introduction. This paper is concerned with the oscillation and
boundedness properties of solutions of the complex differential equation

(1) (P(@)9) +f(@)y=0, esa< o,

where p(a)=p,(x)+ipx)#0, f(@)=7F(z)+if,(x) and each of the functions
(@), px), fi(x) and fi(x) is a continuous real function on the half-line
a=xr< oo, v

Such differential equations have many interpretations and applica-
tions. For example, if p(x)=1 and the real and imaginary parts of
equation (1) are separated the resulting system of two real equations
can be interpreted as equations of motion in the yy,-plane, where y=
Y.+, as in [4, 9]. If in (1) x is replaced by the complex variable
z, and the coefficients are required to be analytic functions of z the
resulting completely complex equation can be reduced to one of the type
(1) by considering certain analytic paths in the z-plane. This proce-
dure has been used effectively by Taam [9] and others to find zero-free
regions for the compvletely complex equation. Also, Hille [5] has made
an extensive study of the behavior of solutions of a special case of (1),
where p(r)=1 and f(a)=21F\(z), F(x) real and positive and 2 a complex
parameter, and has used these results in his study of Cauchy’s problem
for a generalized heat equation.

The present study of equation (1) begins with consideration of the
special case

(2) (#/a@) +qlx)y=0, aZa< oo,

where q(z)=q(x)+1ig.(x)#0, ¢.(v) and g¢(x) are real and continuous on
a<x<o and ¢ is the complex conjugate of ¢q. For ¢(x) real a funda-

mental set of solutions consists of sin Sq and cos S;q. This suggests

@

an investigation of the corresponding complex solutions, s[a, z; ¢] and
cla, x; ql, of (2) when ¢ is complex. These ‘‘ trigonometric”’ functionals
satisfy identities and inequalities analogous to those of the real sines
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188 SECOND ORDER COMPLEX DIFFERENTIAL EQUATIONS

and cosines. For example, the sum of the squares of the magnitudes
is identically one and, hence, all solutions of equation (2) are bounded
on a<x<o. This boundedness property is the main point of departure
from the analytic definition of trigonometric functions of a complex

variable z, where sin qu is unbounded if quz is unbounded. The bound-

edness property is useful in the applications of the last section.

An additional advantage in considering the special case is that for
a rather large class of coefficient functions, ¢(x), equation (2) can be
solved explicitly, thus providing a new set of much needed examples to
give insight into the oscillatory behavior of solutions of (1). Further-
more, for a still larger class of coefficient functions the oscillatory be-
havior of solutions of (2) is determined. An interesting result is that
the zero separation properties, true for the real case, are often violated
for the complex equation (2). For example, a class of functions, ¢(x),
is found for which the ‘‘sine ”’ s[a, « ; ¢] oscillates (has infinitely many
zeros on a<wx<oo) and the ‘‘cosine”’ c[a, « ; ¢] has no zero on a<r< .

The final section shows that although equation (2) is a special case
of (1), all oscillatory behavior patterns of equations of the type (1) are
present in those of type (2). In particular, for each non-trivial solution
y(x) of (1), for which y(a)=0, and each non-zero function w(x) of class
C’ there exist a continuous complex coefficient function ¢(x) and a non-
zero ‘‘ amplitude > function p(x) of class C’ such that

(3) Y(@)=p(@)sla, © ; q], P@Y@)=w)p@)]la, 2 ; q] .

For w(x), p(x) and f(x) real; q(x) and p(x) are real and (3) reduces to
the modified Priifer transformation [1, 6]

(4) y=p(x) sin 0(x), py=w(x)p(x) cos 0(x), 0(x)=§:q ,

which has been useful in establishing real oscillation and boundedness
theorems. The author [3] has developed a Priifer transformation for
equations of the form of (2) with both coefficients being square symmet-
ric matrices and a similar, but less useful, transformation of type (3)
(that is y=ps, py=pc) can be obtained as a corollary of the matrix
theorems.

Since the ¢ amplitude >’ p(x) is non-zero and the ‘ sine’ s[a, x;q]
is bounded, the Priifer-type transformation (8) separates boundedness
considerations from those of oscillation, as does (4) for the real case.
Applications of (38) yield bounds on solutions of (1) of the Liapounoff-
Birkhoff-Levinson type. For the special case, p(x)=1 and w(x) a positive
real constant, these exponential bounds reduce to those of Taam [7]. It
it noted that Taam failed to achieve a ‘‘ symmetric’’ form because he
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specialized p(x) to be real and, in particular, p(x)=1.

Further study of the relation of ¢(x) to the original coefficients, p(x)
and f(x), and of the oscillatory properties of the functionals of the first
section should lead to new oscillation theorems for (1).

1. Complex trigonometry. Let q(z)=g¢\(x)+1q.(2), ¢, and ¢, be con-
tinuous functions on a<x<o and define c=c(x)=c[a, x; q], s=s(x)=
s[a, «; g] to be a solution (pair) of the complex first order system

(5) $§=qc, S(a’):():
c=—gs, c(a)=1.

If, in addition, ¢(x)+#0 it is easily seen that s and c are solutions of the
second order equation

(2) @) +ay=0,
with initial conditions
(6) s(a)=0, c(a)=1,

s(a)=q(a) , c(a)=0.
Note that s=sin qu and c:cosqu, if ¢(x) is real and, furthermore, if
q+0 both solutiogs oscillate (haave infinitely many zeros on a<wx <)
only if S:]qlzoo.

Boundedness is retained for complex ¢(x), as is seen by :
LEmMmaA 1.1. [s]*4lel*=1.
Proof. Differentiate ss-+c¢ and note its value at x=a.

There is also an extension of the properties that the real sine func-
tion is odd and the cosine is even. This result is useful in carrying
out the details of the proof of Theorem 1.2.

LEmMMA 1.2. If Ik is a compler number such that |k|l=1 then
sla, x ; kql=ks[a, z; q] and cla, @ ; kql=cla, z ; ¢] on a<x<oco.

Proof. Let m(x)=s[a, z; kgl —ks[a, ; ¢] and n(x)=cla, z; kq] —
cla,x ; q].
Then m(a)=0, n(a)=0 and m=kqgn, n=—kgm, whose only solution is
m=n=0 on a<x< o, thus completing the proof.

Consider now the polar form of solutions of (5) and (2) in terms of
the polar components of the coefficients ; i. e., suppose

(7) q(@)=r(x) exp (i0(x)) , a=x< oo,
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where r(x) is real, continuous and positive and 6(x) is real and of class
C’. These conditions ensure a polar form for the complex trigonometric
functionals as is seen by the following.

LEMMA 1.8. Under the above hypotheses on q¢(x), there exist on

asx< oo real functions h(x) and «(x) such that h, l;/r, a and ha.c/r are of
class C' and, furthermore

(8) sla, @ ; g]=h(x) exp (ia(2)) .

Proof. Let s(x)=s[a, xz;q]. Using a technique similar to that em-
ployed by Taam [9], define the real function

(9) g(x):{S(é/Ts)» if s(2)#0
0/27' ’ if s(m):O,

Note that g(x) is continuous on a<x< o, since computation by means
of I’Hopitals rule shows

lim (8[rs)=0(x,)/2r(x,), if s(a,)=0 .
Let 0
(10) ala)=0(a) + | r(t(®)dt
then «a(x) is of clags C’ on a<ax< . Let
(11) h(w) =s(x) exp (—ia()) ,
then A(x) is of class C’, A(a)=0 and
Ii(x) = (s —ias) exp (—icx) .

Thus, h(a)=5(a) exp (—ia(a))=r(az)>0.

The next step is to prove that A=h(x)+ik(x) is real, that is, A, (z)=0.
Suppose A, (x)#0, then there exist numbers ¢,<t, such that hyt,)=0,
hy(x)#0 on t,<x<t, and s(x)#0 on f,<w<#t. Then on ¢t,<x<t,

h_expiah _& ;.

h s s

Also,

o)

or
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bhy—hoh =0 .

Therefore there exists a real constant k& such that A(x)=Fkh(x) on ¢,<
x<t,. Hence M(t)=h(t,+)=kh(t,;+)=0 and s(¢,)=0. Suppose t,=a,
then, since Z(a) is real, Z,(t)=0 and #&(t,)=nh(t,+)=khy(t,). But this
requires that $(f,)=0, which contradicts the fact that s(x) is non-trivial.
In a similar manner and by use of an induction argument it is easily
seen that ¢, cannot be any zero of s(z). Thus, Z,(x)=0 and A(x) as de-
fined by (11) is real.

Recall that s=g¢¢ and ¢=—gs where s=s[a, x; q] and c=c[a, x; q]
and s=h(x) exp (ta(x)), where g=r(x) exp (¢0(x)). By differentiating this
polar form of s and simplifying it follows that

h

r

hat

+i%% =c exp (i(0 —«))
r

and, since the right hand side is of class C’, that the real components,

ia/r and hc;/r are likewise of class C’. Furthermore, by transposing the
exponential factor to the left hand side and differentiating we obtain

<f)+z(%)+z(a - é)% _(oz—é)%‘“: —rh .

Separation into real and imaginary parts yields the system

(12) (f)#(l—‘;%}‘i))m:o :
and
as) (hey 42l o,

thus completing the proof of Lemma 1.3.

Integration of equation (13) gives

(13) ﬂ@a_(w):r@(i )
r(x) a r
Finally, integration by parts establishes the following.

LEMMA 1.4. If, in addition to the hypotheses of Lemma 1.3, the
quotient Ojr is of class C’, then on a<x< o
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(14) CECOR ) L[ <>(”Eg)

Furthermore, c;c/r 1s of class C’, whenever s+0 .
The preceding discussion suggests special consideration of the quo-

tient 0/r. The following theorem is a compilation of the results thus
far.

THEOREM 1.1. If om a=<ax< o, q=r(x)exp (:0(x)), r(x) is real, posi-
tive and continuous, 0(x) is real and of class C’, b(x):(f(w)/Zr(x), then
there exist real functions h(x) and a(x) both of class C’, as well as the
quotient }.L/T, such that

(8) sla, @ ; g]=h(z) exp (ia()) ,
(12) (i—)—i—((l b7 —(%—by)rh:o

' h‘(x)a(x) y
(13) s 2S hhb .
Furthermore, if b(x) is of class C’ then
(14) B (x)<9‘..2‘”; —b(z) )= S:m(t)i)(t)dt.

and c;/r 1s of class C’, whenever s+0.

Application of the Sturmian comparison theorem to (12’) gives the
following.

COROLLARY 1.1.1. (Non-oscillation theorem) If the real second-order
equation

W/r) +A+b)ry=0 , a=w< .

18 mon-oscillatory (i.e., non-trivial solution has infinitely many 2eros on
alax<xo) then sla, x; q] 1s non-oscillatory.

Equation (14) shows the following.

COROLLARY 1.1.2. (Non-oscillation theorem) If, in addition to the
hypotheses of Theorem 1.1, b(z) is of class C' and b'(x)#0 on a<lwx<o
then s[a, = ; q] has no zeros of a<wx<co.

ExamMpPLE 1.1. Let ¢(@)=1+ix, then »(z) = V/1+4% 0(x)=Tan"'z,
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b(x)=—(a’+1)"** and i)(x)>0. Corollary 1.1.2 then establishes that
s[a, ¢ ; q] has no zeros on a<ax<oo.

This example shows that the latter non-oscillation theorem is not a
special case of the following.

THEOREM T (Taam [8]). If p(x)=m:(x)+ip(2)#0,f(x) = fi(x)+ifi(),
where p,, v, i and f, are real continuous functions on a=x=<b and there
exist constants 7 and k and o real function m(x) of class C' on a<x=<b
such that jp,(x)-+kp(x)>0
and

m+m* (o, +kp,) < — (i +Ef)) on a<x=<b

then the complex equation (p(x)y) +f(x)y=0 is disconjugate (¢.e. no so-
lution has two zeros on a<x<b).

For ¢(x)=1+1, as in Example 1.1, consider the equation (¥/q)+gy=
0. Then

and f(x)=¢=1—14x. There exist constants j, ¥ with k<0 such that

J+1kle

1+a? >0,

I, +kp.=

for x>4/k . Consider the real second order equation

(15) (l;“—f;'f” i) + G+ l2ly=0, >k,

Now, (5-+|klxy<(kF*+ 75)(14+=*) and, hence,

jtlkle . B+
14  j+lkl

x>jlk.

With the use of this inequality to increase the leading coefficient,
equation (15) is altered to

, k2+jz . >. . .
15 —y ) +(G+klw)y=0
(15 (G v) +GHE)
whose fundamental solutions are

. (7 |kt Sx J+1klt
sin| L2 dt and ——_dt,
! SaV .71“!‘/52 and cos Lﬂ/jz' K
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and all solutions of (15') oscillate on j/k<a<a<o. By the Sturmian
comparison theorem equation (15) is also oscillatory and hence for some
b>a there exists no function m(x) required by the Riceati inequality of
Theorem T. But by Corollary 1.1.2, s[a, «; ¢] has no zeros on a<az< o
and hence the complex equation (¥/q)" +qy=0 is disconjugate on a <> .
Therefore Example 1.1 is non-oscillatory but does not satisfy the hypo-
theses of Theorem T.

REMARK. A similar polar form for the ¢ cosine’’ funectional
cda, z; g]=k(x) exp (if(x))

can be obtained for which % and S replace » and «, respectively, in
equations (12') and (13). However, since k(a)=1, equation (14) must be
replaced by

(14) k%x)(f;% ~b(a) )=~ b(a) — S:m(t)z}(t)dt .

Of course, c[a, x; q] can be calculated from a known s[a, z; ¢g] by the
derivative formula, $=¢é, which is the process actually used in the suc-

ceeding discussion.

THEOREM 1.2. If, in addition to the hypotheses of Theorem 1.1,
b:O(x),Zr(:v) 18 constant then explicit solutions of the system (5) are

(16) sla, @3 q)= o exp (i1 0T M Dsin g

a7 da,z; ql= exp< O(z)— 0(a)>{cos H(a) — 762._._. _ sm¢>(x)}

where ¢>(x)=1/bf|l—1°gzr(t)dt. Furthermore, s[a, x, q] oscillates (i. e., has

infinitely many zeros on a=x< ) if and only if Salr(t)ldtzoo. Final-
ly, if b+0, cla, x; q] has no zeros on a=x<co.

Note that this means that there exists a second order complex equ-
ation (y/q)'+qy=0 such that the zeros of one solution do not separate
those of a linearly independent solution and the zeros of a solution are
not separated by zeros of its derivative. Before this theorem is proved
consider the following special cases.

ExaMpLE 1.2. Let ¢(x) be real and positive, then g(x)=r(x), 0(x)=0,
b=0 and
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sla, ; q) =sinqu(t)dt, cla, x ; g]=cos rq(t)dt.

EXAMPLE 1.3. Let ¢(z)=q,(®)+%q(x), ¢.(x)=kq.(x), k=constant, and
¢:(®)>0 then r(z)=V1+k* ¢(z), 0(x)=Tan"'k, §=0,b=0 and

_ 1+dk —-ZS"‘
sla, z; ¢]= =i s1n<1/1_|-lc aql(t)dt>,
ca, z; ql= COS<1/ 1+k S:ql(t)dt ) .
EXAMPLE 1.4. Let g(x)=exp (ix), then r(x)=1, 0(z)=x, b=1/2 and
sla, z; ¢l= 1/ g exp — (x+a) s,m‘/5 (x—~a)
cla, x; q]= exp- (x a) <cos 1/25“ (x—a)— l/',5ﬁ s1n;K2,5*\x—a)> .

Note that there do not exist constants j, % such that jg,—k¢,>0, and
hence the yypotheses of Theorem 7' are not satisfied for b—a>=n. Of
course, in this case (y/q) +qy=0 is oscillatory on a<x< .

PrROOF OF THEOREM 1.2. In order to simplify computations let
0(a)=0. There is no loss of substance decause of this assumption since
Lemma 1.2 assures that if ¢(z) is multiplied by the constant exp (—if(a))
then the resulting ‘‘ sine’ functional must be multiplied by that num-
ber and the ‘‘ cosine’’ is unchanged. Therefore equation (14) gives

(18) cé(w)=br(x)=ﬂ;@and a(w):Lg”) ,

and equation (12') becomes

(19) (W"Hbz’) TV 140 h=0.

Since 2(a)=0 and i;(a)zr(a,) we have

(20) ()= L sin (m‘;cbz‘gzr(t)dt) .

1/bz
By combination of (8), (18) and (20) and the use of Lemma 1.2 and s=
q¢ the explicit solutions (16) and (17) are obtained. Finally, if b0, (17)
gives

» _ 1

>1_.. 9 -+
e T |
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and the theorem is proved.

Note that in Theorem 1.2, if b=0 then c[a, x ; ¢] oscillates if and
only if s[a, x; ¢] oscillates and the zeros of one functional separate those
of the other. But if b0 then s[a, x ; ¢] may oscillate but c[a, « ; ¢] has
no zeros on a<x< oo, thus violating a ‘ Rolle’s Theorem >> for complex
functions.

In the next section it will be shown that every complex equation
of the form (py) +fy=0 can be transformed into the ‘¢ special>> form
@l9)"+qy=0.

2. A complex Prufer transformation. Consider the complex gene-
ral linear second-order equation

(1) (p9) +fy=0, - a=x< o,

where p=p,(x)+ip.(x)#0, f=fi(z)+if.(x) and p, p, fi, . are all real con-
tinuous functions on a<x< . Suppose y(x) is a non-trivial solution of
(1) such that y(a)=0 and there exist complex functions p(x)+0, w(x)#0
of class C’ and ¢(x) continuous, such that

(21) Y(@)=p@)s[a, = ; 4] ,
p()y(x)=w(@)p(x)cla, z ; q] .

Then by differentiating both equations of (21) and combining with (1)
we obtain

ps+pae=-2p¢ ,
p

pCc—pgs= —L'E— —wpc .
w w

Hence, solving for ¢ and ¢ and recalling that |c|*+|s|*=1 we have

(22) p=pae( =D)L otp, =22 4

(23) q=-é(EIClZ+£ISIZ>+-f‘Qsc
pPA\D w w

For p, f,y, p, ¢ real ; s=sin Yq, c=cos8 qu and (21), (22), (23) reduce to

the modified real Priifer transformation of [1]. The transformation of
(1) given by y=ps and py=pc results in the differential-integral system
p=p/p)cs — fsc) and ¢=(1/p)c*+fs* and can be obtained as a direct ap-
plication of the matrix Priifer transformation in [3] for (matrix) order
2. However, the form (21) seems to be more useful, e. g., see Corol-
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lary 2.1.

Consider next the question of existence of p(x) and g(x), that is the
solution pair of the system (22), (23). The method is that of successive
approximations and the following lemmas establish a Lipschitz condition
for the system.

LEmMMA 2.1. If q(®) and ¢*(x) are continuous complex functions on
a<z<co and s*=sla, x; ¢*], ¢*=da, x; ¢*] then

(24) ls—s™1) g4§”1q—q*i, 4=< o,
le—c¥) ~ Ja

Proof. By subtracting the differential equations (5) obtain the sys-
tem

(s—8") =q(c—c*)+(g—a*)* ,
(c—c*) = -Q(S——-S'_*)— (@ —g")5*

which can be expressed in the vector-matrix form

@ iaomsaon =(70) . a=(0 29 p-(00)
a(a)=0 .

Let Y(x) be the matrix solution of the homogeneous equation :

Y=qY, Y(a):E:((l) ‘1)) .

Then

Y(w)z(c _ f) , and Y'1=<f —s>‘

-5 ¢ s c
By elementary methods the solution of (21) is
(26) (z) :S”Y(x)y—l(t)ﬂ(t)dt .

Hence, by taking norms (square root of sum of square of absolute va-
lues), we have

la@li=2{ IE®N <4 | la—q1,

from which the conclusion of the lemma follows.

LEMMA 2.2. Assume the hypotheses of Lemma 2.1 and let
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rlgl= 3 k(@)s @

where k(x)(1=1, 2, --+, n) are complex continuous function on a=<x=<b
and a,, B;, 7:, 0; are non-negative integers. Then there exists a positive
constant K, (independent of ¢ and ¢*) such that

IT[QJ—T[Q*]IéKOK lg—a*| , a<w=b.
The proof based on Lemma 2.1 is simple and is omitted.

LeMMA 2.3. If u(x) and v(x) are complex continuous functions on
asx<o, the complex differential equation (see equation (22))

(27) p=u(@)p+v(@)p

has exactly one solution for a prescribed value of p(a).
The proof parallels that for real linear equations and, consequently,
is not given here.

LEMMA 2.4. Let p(x) be a solution of (27), where u and v are the
corresponding coefficients of (22), and m(x)=plp. Then: (i) |m|=1, (ii)
m satisfies the complex Riccati equation

(28) m=u——v)m—um’

and (iii) @f m* is the corresponding function when q is replaced by g*,
u by u* and v by v* then there exists a real constant K, (independent of ¢
and q*) such that

(29) Im—m*IéKlswlq(t)—q*(t)ldt , 4<w << .

Proof. (m—m*) 4+ {(v—2) +u(m-+m*)} (m—m*)
= U—u*)+{(H—v) — (7" —v*)} m* — (w—u*)m**
or
(m—m*) +n(@)m—m*)=r(), ma)—m*(a)=0,

and hence,

m(a)—m*(2)=¢" 32 " eSir r(e)dt .

.

Therefore, there exists a real constant K, such that

Im(x)—m*(w)lglflgzlq—q*l , 4<T=a,< co.
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LEMMA 2.5. There exists o unique solution pair p(x), ¢(x) of the
system (22, 23).

Proof. 1t follows easily from Lemmas 2.2 and 2.4 that the system
((22), (23)) satisfies a Lipschitz condition. Let g,(x) and p,(x) be complex
continuous functions on a<a<b and for each non-negative integer n

)=o)+ [ 758 2= )= Pler)

qnﬂ(x):&{ﬂlcnl% S |8 l2}+7—“98ncn ,
P w w

n

where s,=s[a, «;q,] and ¢,=[a, « ; ¢,].

By the usual successive approximation arguments it follows that the
sequences {p,(x)} and {g,(x)} converge uniformly on a<x<b to continu-
ous limit functions, p(x) and ¢(x), respectively, which form a solution
pair of (22) and (23).

THEOREM 2.1. If y(x) vs a non-trivial solution of (1), such that
yY(a)=0, and w(x) is an arbitrary non-zero function of class C’ then there
exist & non-zero function p(x) of Class C’' and a continuous function q(x)
such that (21) is satisfied. Furthermore, (22) and (23) are satisfied.

Proof. From Lemma 2.5, there exists a unique solution pair p(x)
and g(x). Let w(x)=p(x)sla, s; q], then u(a)=0=y(a),

n=ps+pge="LY5, and a(a) = D0 _jq) .
p p(a)
Finally,
(i)’ = — 91iigs + e +pioe = — f ps = —fu ,
therefore

y(@)=u(@)=p@)sla, 2 ; q] .

Equation (22) yields the following bounds on solutions
COROLLARY 2.1. (i) lf’[:}/lylzﬂmpy "
w |
1 )

@) (@ @) <le)] < lp@)lexp| | ]

x
a
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(iii) ¢f w=Fk, a real positive constant, then

(31) ly(x)|<9(“)iexpégjﬁ JZF
|o(a)| exp Hﬁﬁ; 1 T“ppl—j—l?[}

Proof. (i) is obvious and (ii) follows directly from (22). (iii) re-
sults from an application of (ii) and a simple inequality about complex
numbers. Note that if p is real then p,=0 and (31) becomes

Al

(31) @) = p(a)| explg {‘ k_ Ay 2

p k|

which is the ‘‘ non-symmetric’’ bound given by Taam [10].
Finally, other choices of w(x) give other bounds on solutions as was
found for real second-order differential equations in [1].
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