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1. Preliminaries. Throughout the discussions in the following sec-
tions, we shall assume that G is a compact topological group whose
space is T, with an identity element e and with Haar-measure ¢ normal-
ized in such a way that #(G)=1. G has a complete system of inequivalent
irreducible unitary representations' R™ (1€ 4) where R® is the identity-
representation and r, is the degree of R™W. RW®M(e¢) will then denote
the identity matrix of degree r,.

The concept of equidistribution of a sequence of points was introduced
first by H. Weyl [6] for the direct product of circle groups. It has
been transferred to compact groups by B. Eckmann [1] and highly
generalized by E. Hlawka [4]. We shall use it in the following from :

DEFINITION 1. Let' {x,:vew} be a sequence of elements in G and
let, for any closed subset M of G, N(M) be the number of elements in
the set {x,: 2z, e M, v<N}.

The sequence {x,:vew} is said to be equidistributed in G if
(1) lim YD —

N N
for all closed subsets M of G, whose boundaries have measured 0.

It is easy to see that a sequence which is equidistributed in G is
also dense in G. As Eckmann has shown for compact groups with
a countable base, and E. Hlawka for compact groups in general, the
equidistribution of a sequence in G can be stated by means of the
system {R®™ :1e 4} of representations of G.

LEMMA 1. The sequence {x,:ve w} is equidistributed in G if and
only if

(1) lim% S RM(z,) = 0 for all 1+ 1.

N-co

Using this lemma, Eckmann arrives at the following theorem.

Received May 27, 1957. Presented at the 535th meeting of the Amer. Math. Soc. in
Berkeley, Calif., April 20, 1957.

1 In the following A and A’ always denote any index-set, finite, countable, or un-
countable, and » denotes the set of positive integers 1,2, --- .

2 Professor Hlawka has also noted in a letter to me that in order to secure the validity
of Theorem 7 in [1] the lemma and footnote preceding it, it is necessary to change the
definition of equidistribution into the form given below.
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THEOREM 1. Let g be an element of G such that
|[RM(g) — R™(e)| # 0 Sor all 2+ 1.

Then the sequence {g":ve w} is equidistributed in G.

It follows immediately that a group containing an element g with
the above property is abelian and generated by a single element in the
sense that the powers of g are dense in G. A group with the last property
is called monothetic.

It is possible to extend this concept of generation of a group by
one element to generation by a finite number of elements, that is, to
ask for the smallest closed subgroup of G which contains a given finite
set of elements of G (i. e., in which the set of all finite products of
finite powers of these elements is dense).

DEFINITION 2. The finite set {g,:%k=1,2, ---,n} of elements of G
is said to gemerate the subgroup H of G, if H is the smallest closed
subgroup of G containing all g, (k=1,2, ---, n).

Our subject in the following discussion will be a generalization of
Eckmann’s results in two directions indicated by that definition. TFirst
we shall try to find equidistributed sequences produced by finite set of
elements in not necessarily commutative groups. In fact, the corre-
sponding Theorem 2 will turn out to contain Theorem 1 as a special
case. Furthermore we shall extend the definition of equidistribution in
G to equidistribution in a subgroup of G.

DEFINITION 3. The sequence {x,:ve€w} of elements of a subgroup
H is said to be equidistributed im H if it is equidistributed in the topo-
logical group H with respect to the relativized topology and with respect
to the Haar-measure on the topological group H.

This definition is legitimate since H in the relativized topology is
again a compact and 7,. Theorem 3 permits us to find sequences equi-
distributed in a subgroup of G and contains Theorem 2 as a special case.

In §4 we compare our results with the results already known
for finite groups which can be considered as compact groups in the
discrete topology. Finally, we apply our results to abelian groups.

Before taking up this program, we state two rather obvious lemmas
which will be helpful for deriving new equidistributed sequence from
given ones. Clearly changing a finite number of elements of an equi-
distributed sequence has no influence on the property of being equi-
distributed.

LEMMA 2. If the sequence {a,:ve€ w} is equidistributed in G, then
the sequence {a~}:ve w} is also equidistributed in G.
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Proof. If M is an arbitrary closed subset of G whose boundary has
measure 0, then M~ is also closed its boundary has measure 0 and #(M)
=p(M) because of the fundamental properties of the Haar-measure p.
Let N'(M) be the number of elements in the set {a,:a,e M, r<N} and
correspondingly N”/(M) the number of elements in {a;':a;'e M, v<N}.
Then N'(M)=N(M"") and

im VM) o
lim L) = ()

N—oo

which holds because of our assumption for {a,:re w} is equivalent with

im VM) _
lim N p(M) .

N—oo

Therefore {a;':ve w} is equidistributed in G.

LeMMA 3. If the sequences {a,:ve w} and {b,:ve w} are equidistri-
buted in G, then the sequence {c,:cCy_1=a,, c;,=b,,vE€w} is also equi-
distributed in G.

Proof. Define N'(M), N'(M) and N(M) respectively for the se-
quences {a,:vew}, {b,:vew} and {¢,:vew} as above. For any posi-
tive integer N, let NV, be the greatest integer in (N41)/2 and let N,=
N—N, (N; and N, are just the numbers of a’s and b’s among the first
N ¢’s). Then '

NGO _ N(D+NI(M) _ N(M) | Ni(
N N,+N, N N

Starting from our assumption about {a,:rew} and {b,:ve w} it is easy

to show that

tim Y1) _ gy No M) (M)
N0 N N-oo N 2

for any closed subset M of G whose boundary has measure 0. But
this implies (1) and the equidistribution of {¢,:ve w}.

2. Non-commutative groups. A first generalization of Eckmann’s
Theorem 1 is given by the following.

THEOREM 2. Let g, (k=1,2,---,n) be n elements of G such that
Jor each 2+1 there is at least one g; for which

|R®(g5) — R®(e)] # 0 .
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Then the set of elements®

G={g:9 =gngpp--- g, 054 < o, k=1,2,+--,n}
can be arranged in o sequence which is equidistributed in G.

Proof. We shall use Lemma 1. In order to simplify the notation
of the proof, let us agree on the following. If A is the matrix (a )
then || A]| shall stand for the matrix (|a,|), and if B is a matrix (b))
of the same degree 7, as A then we shall write ||A||<||B|| for the
simultaneous inequalities |a;,|<|b,,| for all 4, § with 1<4,5j<r,. The
symbol F® ghall stand for the matrix of degree r, with the entries
Sfi;=1 for all ¢, 5 with 1<4,j=r,. We can regard || A|| as matrix-norm
for A for which the following relations hold (all matrices are of same
degree r,).

Al = 1Ek]-|A]| (ke K=field of complex numbers)
HA+B| < |[All+] Bl

(2) NAB| = 1All- I B
HAl-NBlI=ICl-IID]l if JA[l=I]ICll and [[B|[=|[D]|
A]l £ aF'® if @ = max {la,|:1=14,5 < n}

(F ) = pr-1f

Furthermore we shall write II7, 4, for the ordered product Ak, -« -, &,
and 3. for

5,850,573,
FT S
S e, D
=0 7p=Ty In=Im
if it is clear that [ goes from 1 to m.

In order to prove the theorem we first arrange the countable set
G’ in a sequence {g,: v€ w} as follows, let g; be ¢ (¢,=0 for k=1,2, .-+, n);
as the next 2°—1 elements we take the products II7., gi+ with 0=Z4, =<1
(k=1,2,---,n) and max {4,:%k=1,2, --+-,n} =1 in any order. Then we
take the 3*—2" produects II?., gl with 0<4,<2 (k=1,2,---,n) and
max {4,:%k=1,2,--- ,n} =2 in any order and so on.

The sequence so constructed {g;:v€ w} contains all elements of G’
and has the property that the first (¢+1)* elements ¢, (»=1, --- (2+1)")
are precisely all elements II7_, gi with 0<¢,<4, (k=1,2,---,n). In
order to show the equidistribution of this sequence in G we have to
show that

3 We allow any element of G to occur an arbitrary number of times in the set G’ and
similar sets formed below.
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N—>oo

(3) lim 11V S RM(gl)=0 for all 11
v=1

Let us assume that for a fixed 1#1 the element g; satisfies the
condition

(4) |B™(gz) — R™(e)| # 0

which means exactly that the matrix R™(g,) does not have the eigen-
value 1. For a given N let ¢ be the greatest integer in N'/*—1, such
that

(5) (@+1)" = N<( + 2)".
Then

N N
LS Rovgl) = [ SROG) + S RO
N = = =+ +1
where the second term in the square brackets vanishes if N = (¢+1)";
with the same qualification we have

1 & N1 & S '
S RoE) = L] s Ro(TLok)+ S RO
6 N =i N Losi =i k=1 v=C+D%+1

— (a+1)" l:’ 1 ) T oot ___17__~ < RM™(( ]
N (t+1) ogizkng <1I=I1 gkk) + (@+1) v:-(i%)"ﬂ (@) ] -

Let us now consider separately the terms in the square brackets.
(a) Because of well-known properties of matrices and group-repre-
sentations we can write

;,1%_ R § ko 1 1 R iy
(e+1)" og%m <H1 G > (i 1) Os%si Igl[ (9]

=11l _,,z [R™(g,))
(7) { L i }

=T SEO@I - 1 3 RO

n

Again the first or last of the three factors vanishes if k=1 or k=mn.
Since R™(e) is the identity matrix, the following identity holds.

[RO(g) — RO()] 3 [RO (g5 = [RO(ge)]'™ — RO .

Because of our assumption (4), we can solve this equation to obtain.
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Z_;O[R“’(g;a)]if = [R®(gr) — R¥(e)]™ - {[BM(g)I'™" — B™(e)}
Since R™ is a unitary representation of G, we have for any geG
and any integral exponent j
(8) HRD@F Il = BE®(g) | < FD .
According to our rules (2), the following inequalities then hold
IR (ge)I'™ — EM(e) || < 2F™,
HIR™(gz) — BP(@17 || = mn ™,

where m, is a positive constant independent of 4. This gives an upper
bound for the matrix norm of the middle factor in (7)

< 2m, [FOT = 2mas oy |

S RO < it1 i1

z—l—l i =0

Furthermore by (8)

R™ | < 2 GHDEF® = FO |
|y S| = 4 G+

Replacing each factor in (7) by the stated bound for its matrix-
norm, we get

L gofi o)

—— <[ {F® 2y F - T {F®
(+1)" odise H { ;e +1 LONDY k=1;[+1{ }

(9)
1

. 2 T”FO) .
apl ST

(b) Using (b) we get an upper bound for matrix norm of the
second term in (6)

<1 5 Iro@

1 l ,
L S RO =
( 1)” V= (L+1) +1

(Z+1) Y=+ 41

N—(+1)"
< = Gy (by (8))
(+2)"—(+1)" f
10 Aera) =T L) pod by (5
(10) (1) (by (5))

-5y
[
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(¢) Let now ¢>0. Because of (9) we can find a number I, such
that for all i=1,

1 ™ (T i) £
(11) RPN (f1, o) < 7o .
Let
1/n
2_(3“)
5+1) -
then for ¢=1I, we have
1\ €
12 (1 f_> 1= &
(12) + 7+1 -2

Now let I=max ([, I,) and take M=(I+2)*. Then from (6), (10)
and the last two relations (11) and (12) it follows that

1 & S s @E+1)" [e 1> A]
= ST RM(q, A )7 | € pov 1 & ey
“N;l (g)“ <N

< g™ for all N= M.

This shows the validity of (3) and the application of Lemma 1 com-
pletes the proof.

E. Hlawka, [4, §6] has shown that any sequence which is dense in
G can be rearranged so as to be a sequence which is equidistributed in
G. In view of that fact it should be emphasized that Theorem 2 (as
well as any of the following ones) does not merely state that the set
G’ is dense in G; it states also the existence of a generally valid
formula, as shown in the proof, for actually arranging the elements of
G’ in a sequence which is equidistributed in G.

Theorem 2 implies two more facts which are worth noting. First
if we have n elements of G which satisfy the required condition, then
we can, before actually producing the set G', arrange them in an entirely
arbitrary order without affecting the equidistribution of the corresponding
sequence in G. In the non-commutative case we shall therefore in
general get different sequences containg different elements of G which
are equidistributed in G. Second, we can add an arbitrary finite number
of arbitrary elements ¢, **+, gm to our set of n elements {g,:k=
1,2, ---,n} of G. The new set of m(>n) elements of G still satisfies
the condition of the theorem and, taken in any order, produces a set
which can be arranged so as to be an equidistributed sequence in G.

The first remark together with Lemma 2 and Lemma 38 leads to the
following.
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COROLLARY 2.1. If the elements g, (k=1,2, --- , n) satisfy the con-
dition of Theorem 2, then the sets

G = {g//:g//:gflgéz,... ,gén’ — o <7’k§07 k:1,2,"' ,n}
and
G = {g”':g”':gflgi%“' , Gin, —oo <4, < 4 o, k=12, .-- ,n}

can be arranged in sequences which are equidistributed in G.

Proof. Let

G= {g:—é:g;ng;n_—li’ e 19:1, O§Zk< + oo, k~——1,2, M rn} .

Then G can be arranged in a sequence equidistributed in G and G”=G".
According to Lemma 2, G’/ can also be arranged in a sequence which
is equidistributed in G.

G’ is the union® of G’ and G”—e and according to Lemma 3 can
be arranged in a sequence equidistributed in G.

COROLLARY 2.2. If the elements g, (k=1,2, ---, n) satisfy the con-
dition of Theorem 2, then G is generated by {g,:k=1,2, «-- ,n}.

Proof. We notice that G’ is not an abstraet subgroup of G. How-
ever, the subgroup H generated by {g,:%k=1,2, ---,n} must contain
any finite product of finite powers of the g,’s. Therefore, it must con-
tain all elements of the set G'. Since G’ is dense in G, we have H=G.

3. Subgroups. If H is a subgroup of G, then any R™(ie A) re-
stricted to the elements of H, gives a representation R*™ of H, Each
R*® can be completely reduced into a direct sum of irreducible unitary
representations of H which, as remarked before, is again a compact
group. Let' R'™(re A’) be the system of inequivalent irreducible unitary
representations of H, so obtained. R’ again denotes the identity re-
presentation of H, obtained e.g. by restricting R® to H.

It can be shown without difficulty that {R'®™ :7r€ A’} is a complete
system of inequivalent irreducible representations of H. In order to do
that we have by the Stone-Weinstrass-theorem to show that the entries
of the system {R'™ :re A’} span a linear space which is an algebra
closed under pointwise multiplication and under conjugation and which
separates points in H. But all these properties hold for the system
{R® :2e 4}, and from this we have obtained {R'® :z€ A’} only by
changing the base in each R™, restricting it to H and selecting a
system of linearly independent entries.
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We can apply Theorem 2 to a subgroup H in the following form.

THEOREM 3. Let H be a subgroup of G and let h, (k=1,2, -+, n) be
elements of H with the property that for each Ae A there is at least one
element hy such that the multiplicity of the eigenvalue 1 in R™(hg) s
exactly the multiplicity with which the identity-representation R'® of H
18 contained in R*™,

Then the set

H ={:h0="~"hg - hin, 050, < + 0, k=1,2,.--,n}
can be arranged in a sequence which is equidistributed in H.
Proof. From the above remarks we can conclude that any irredu-

cible representation of H is contained in some R*™. Suppose that for
a certain 71 and for each k=1,2, --- , n we have

| RO (k) — B O(e)| = 0.

This implies that R’®(k,) has the eigenvalue 1 for each k=1,2, ..., n.

The representation R’'™ is contained in some R*® which may contain
also R'® with multiplicity m. But then each R™(%,) (k=1,2, --., n)
would have the eigenvalue 1 at least with multiplicity -1 which con-
tradicts our assumption.

Therefore for each r+#1 there has to be at least one A3 such that

| R' (ki) — R'(e) | # 0

and the conclusion of Theorem 2 applies to the topological group H.

Again we notice that the order, in which the elements %, are used
to produce the set H’ is insignificant. By exactly the same reasoning
as in §2, we obtain the following.

COROLLARY 3.1. If the elements h, (k=1,2, -+, n) satisfy the con-
dition of Theorem 3, then the sets

H"” = {k”:k’/:hilhé?,"' ’hrfnr "‘°°<7:1c§0r k=1,2,--. ’”’}
and
H"” = {B":0" =hithi, +ot ,hin, —c0< 4, < + 00, k=1,2,.+-,n}

can be arranged in sequences which are equidistributed in H.

COROLLARY 3.2. If the elements h, (k=1,2, ---, n) satisfy the con-
dition of Theorem 3, then H is generated by {h,:k=1,2, .- ,n}.

4. PFinite groups. Let now G be a not necessarily commutative
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finite group of order o, considered as a finite compact group with the
discrete topology. The Haar-measure of G is then defined by p(g)=1/o
for any element geG.

The theorems stated so far are valid in general and therefore also
for finite groups, since G was nowhere required in the definitions,
lemmas and proofs to have infinitely many different group elements or
inequivalent, irreducible representations. However, it is of not much
use to talk about infinite sequences in a finite group. Therefore it seems
justified to modity the concept of equidistribution of a sequence to the
situation in finite groups in the following way :

DeriNiTION 4. Let {2,:v=1,2,..., N} be a finite sequence of
elements of G and let N(M) be the number of elements in the set
{z,:2,e M, v< N} for any subset M of G.

The sequence {x,:v=1,2, ..., N} is said to be equidistributed in
G if

(13) NI — pany

for all subsets M of G.

The formal translation of Definition 1 to finite groups, however,
admits a much less complicated statement of equidistribution of finite
sequence in a finite group which in turn reflects the intuitive meaning
of equidistribution in infinte groups. In contrast to the infinite case the
order of the element in the finite sequence {z,:»=1,2, --., N} is com-
pletely irrelevant. Instead of talking about a finite sequence of elements
of G, we might therefore just as well talk about a finite set of elements
of G (which may contain any element of G arbitrarily often). If M
contains m elements, then u(M)=mfo. Especially if M={g} (a single
element of G) (18) gives N(g9)=NJo for any element g€ G which means
that {z,:v=1,2, ---, N} contains each element of G equally often.
Conversely, if the latter is true, then N(M)=mN/o and (13) holds for
any subset M of G. So we can give the following better definition.

DEFINITION 4’. The finiteset {z,:v=1, 2, .-, N} of elements of G is
said to be equidistributed in G if it contains every element of G equally
often.

In the same way we modify Definition 3.

DEFINITION 5. The finite set {w,:v=1,2, .-+, N} of elements of a
subgroup H is said to be equidistributed in H if it contains every element
of H equally often.

The theorems obtained so far are then completely transferrable to
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the finite case [3 Theorems 8 and 9]. Let now {R™:i=1,2,...,10}
be a complete system of inequivalent irreducible unitary representations
of G and let R® again be the identity-representation of G. Further-
more let o(g) be the order of any element ge G. The results are as
follows.

THEOREM 4. Let g, (k=1,2, -+, n) be n elements of the finite group
G such that for each A+#1 there is at least one gz for which

|R®(gy) — R®(e)| # 0 .
Then the set
G =1{9:9g =ghgh - ,00h 0=i,<olg) k=1,2, -+, n}
s equidistributed in G and contains each element g€ G exactly

l ﬁ O(Qk)
0 k=t

times.

COROLLARY 4.1. If the elements g, (k=1,2, -+, n) satisfy the con-
dition of Theorem 4, then G is gemerated by {g.:k=1,2,---,n}.

THEOREM 5. Let H be a subgroup of order o(H) of the finite group
G and let by, (k=1,2, .-+, n) be elements of H with the property that for
each 2=1,2, --- , [ there is at least one element h; such that the multi-
plicity of the eigenvalue 1 in RW(hg) is exactly the multiplicity with
which the identity representation R'® of H is contained in R*™,

Then the set

H = {k’:h’:hilkﬁz,--., 111:,"! 0§$k<0(hk), k:1,2,... ,n}

is  equidistributed inm H and contains each element he H exactly
o(H)* %1 olhy) times.

COROLLARY 5.1. If the elements h, (k=1,2, .-+, n) satisfy the con-
dition of Theorem 5, then H is generated by {h,:k=1,2,---, n}.

The Corollaries 2.1 and 3.1, transferred to the finite case, coincide
with Theorems 4 and 5. There is a last case which might be of in-
terest, where H is a finite discrete subgroup of the infinite compact
group G. Take the notation as defined in the corresponding cases. We
get the following.

THEOREM 6. Let H be a finite discrete subgroup of order o(H) of
the infinite compact group G and let h, (k=1,2, ---,n) be elements of
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H with the property that for each A€ A there is at least one element
hi; such that the multiplicity of the eigenvalue 1 in R™(hi) 4s exactly
the multiplicity with which the identity-representation R'® of H is con-
tatned in R*™,

Then the set

H = (Wl =hiths, coe  hin, 0 =i, <oh), k=1,2, - ,n}

is  equidistributed itn H and contains each element he H ewxactly
o(H)™* [T%-: 0(hs) times.

Proof. By the same reasoning as in the proof of Theorem 3 we
assert that each irreducible representation of H is contained in some
R®™, restricted to H. Then as there was done with Theorem 2 we apply
Theorem 4 to the finite group H.

COROLLARY 6.1. If the elements h, (k=1,2, ---,n) satisfy the con-
ditions of Theorem 6, then H is gemerated by {h;:k=1,2, .-, n}.

It may be remarked that Theorems 4 to 6 can be deduced also from
Theorems 2 and 3 without going back to the corresponding condition
imposed on the generating elements, by means of the following lemma.

LEMMA 4. Let g, (k=1,2, ---,n) be elements of finite order o(g;)
*k=1,2, .-+ ,n) of an arbitrary compact group G.
Then (i) the finite set

G={g:9=0qhg -, 0im 0=5,<o0(g), k=1,2, -+, 7}
is equidistributed in G if and only if (it) the set
G={g:9 =gugp - ,0m 056 <+, k=1,2+--,n}
can be arranged as in the proof of Theorem 2 in a sequence which s

equidistributed in G.

Proof. (i) — (i7). From (z) it follows immediately that G is finite.
Let m be the least common multiple of the numbers o(g;) (k=1,2, «--,
n). If we arrange the elements of G’ in a sequence {g,:v€w} as in
the proof of Theorem 2, then we observe that

{gviv=(om)'} = {9 19 =ghgh,-+-,gn, 04, <pm, k=1,2,+++,n}

(p=npositive integer) is just composed of (pm)*/I[r-10(g:) times® the set
G. So for N=(pm)" in (1') we get

L p—

(14) 1
(pm)* v=1 %=1 0(gx) 0sip<otap

ro(fL o)
k=1
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If (4) holds it can be shown that the right-side sum in (14) is the
0-matrix for 1#1. If N is an integer between (pm)* and [(p+1)m]
then the left-side term in (1’) can be split up into (pm)"/N times the
left-side term of (14) and 1/N times a sum of N—(pm)® unitary matrices.
But

N—(m)" _ [(p+1)m]"—(pm)* _ 1y
NS (my () 1

can be made arbitrarily small as in the proof of Theorem 2 and by the
method used there we arrive at (1').
(it) > (7). We first observe that G’ contains only finitely many different

elements, namely those contained in G, and G is finite. Again (14)
holds. Since (14) gives just the value of the left-side term of (1’) for
N=(pm)* (p € w), we can conclude from the validity of (1') that

R(M(If:[l ggk) = Z R(A)(g)

0=1<0(gz) geG

has to be the 0-matrix for i:1. But from this follows () by the well-
known properties of irreducible representations of a finite group.

5. Abelian groups. Let now G be a (finite or infinite) compact
abelian group. The irreducible representations are of degree 1 and in-
stead of talking about a complete system of inequivalent irreducible
unitary representations R™ (1€ 4) we may talk about a complete system
of inequivalent characters y™ (1€ 4), where y® denotes the identity-
character. As can be seen easily, the conditions of Theorem 2 and 8
take the specially simple form ‘ y™(ggz)=#1 for 21" and ‘“ for each 2
for which y™(%)+1 for some element 5 e H there is at least one element
hiz such that y™®(h;)+#1" respectively. However, here we can make a
stronger statement than in the preceding theorems.

THEOREM 7. Let g, (k=1,2, -+-, n) be elements of the abelian group
G. Furthermore, let

G,:{g/:g,zgf1g§2,“',g,fn, Og?’k< +o°’ k:1y2"";n}

and let {g,:ve w} be the sequence tn which the elements of G’ have been
arranged as in the proof of Theorem 2.

A mnecessary and sufficient condition for (3) {gx:k=1,2,---,n} to
generate G and (i1) {¢,:ve w} to be equidistributed in G is that for each
A#1 there is at least one ¢g; such that

2 M(ge) # 1.

Proof. The statement about sufficiency is exactly Theorem 2



240 GILBERT HELMBERG

together with Corollary 2.2. Let us now assume that {g,:vew!} is equi-
distributed in G. Then {g,:%k=1,2, .-+, n} generates G. Suppose that
for a given 21 we have y™(g,)=1 for all k=1,2, ..., n. Take a fixed
element ge G with y™(g9)#1 and an arbitrary small positive number
e<|¥™(9)—1}. Since finite products of finite powers of the elements
ox (k=1,2, ---,n) are dense in G and since Y™ is a continuous charac-
ter on G there has to be an element ¢'=gji gl -+- g/» such that

lx®(g) — 1) <e.

Since y™(g’)=1 this implies |y®™(g)—1|<e. But this contradicts our
assumption about e.

THEOREM 8. Let h, (k=1,2, ---,n) be elements of a subgroup H of
the abelian group G. Furthermore let

H = I :h =hihl, eoe  hin, 06, < + o0, k=1,2,--+,n}

and let {h,:vew} be the sequence in which the elements of H' have been
arranged as in the proof of Theorem 3.

A necessary and sufficient condition for (i) {h,:k=1,2,.--,n} to
generate H and (ii) {h,:ve w} to be equidistributed in H is that for each
A for which y™(h)=1 for some element he H there is at least on element
hi; such that y®(hy)+1.

Proof. Again the sufficiency of the above condition is stated in
Theorem 3 and Corollary 3.2. On the other had, if {4,:vew} is equi-
distributed in H, then {A,:k=1,2,...,n} generates H and we can
prove our claim exactly as in the proof of the preceding theorem.

Naturally there hold similar statements as Corollaries 2.1 and 38.1.
For finite abelian groups we can, by obvious modifications, arrive at con-
clusions about equidistribution of finite sets as in §4, see [3, Theorems
10 and 11].

If we take as our abelian group G the direct product of p eircle
groups, the p-dimensional toroidal group, then Theorems 7 and 8 give
us well-known theorems of Kronecker [5, p. 83 Theorem 4] and Weyl
[6, Theorem 4]. It has been shown by Halmos and Samelson and again by
Eckmann (see [1, Theorems 2 and 5] and [2, Theorem II* and Corollary])
that the p-dimensional toroidal group as well as any separable connected
compact abelian group is monothetie.

In contrast to the situation in abelian groups the condition of
Theorem 2 is not necessary for the existence of an equidistributed
sequence of the form {g,:ve w} (as constructed there) in a non-com-
mutative group. A simple counter example is given by the tetrahedral
group A, (the alternating group of 4 variables). Let ¢, and g, be two
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different elements of order 2 and g¢g; an arbitrary element of order 3.
If we denote by R® the irreducible representation of A4, of degree 8 it
can be easily checked* that | R®(g,)—R®(e) |=0 for k=1, 2, 3. However,
the set of 12 element G={g:g=gh gl g5, 0=i,<2, 0<i,<2, 0<4,<3}
is equidistributed in G. By Lemma 4 it follows that the set

G=1{g:9=gugigp, 0=i< o, k=1,2,8}

can be arranged in a sequence which is equidistributed in G. A counter-
example disproving the necessity of the condition of Theorem 3 is given
by any group containing A, as a subgroup, for example A, itself or
the symmetric group of 4 variables.
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