LOCALLY COMPACT DIVISION RINGS

Edwin Weiss and Neal Zierler
Let K be a division ring with a non-discrete topology T with respect to which both the additive group K^+ and the multiplicative group K^* of K are locally compact topological groups.\(^1\) If m is Haar measure for K^+ and $a \in K$, the function $m'(E) = m(aE)$ is clearly an invariant Borel measure for K^*. Hence there exists a real number $\phi(a)$ such that $m'(E) = \phi(a)m(E)$ for all Borel subsets E of K^*. The real-valued function ϕ on K (which is essentially the Radon-Nikodym derivative of m with respect to left-invariant Haar measure on K^*) evidently has the first two of the following three properties.

1. $\phi(a) \geq 0$; $\phi(a) = 0$ if and only if $a = 0$.
2. $\phi(ab) = \phi(a)\phi(b)$.
3. There exists $M > 0$ such that $\phi(a) \leq 1$ implies $\phi(1+a) \leq M$.

We shall show that ϕ satisfies (3) also, i.e., is a valuation for K, and that the topology T_ϕ for K defined by ϕ coincides with T.\(^2\) The classification of K then follows from known results.

Lemma 1. ϕ is continuous.

Proof. Let ε be a positive number and let E be a compact set of positive measure. By the regularity of Haar measure we may choose an open set U containing E such that $m(U) - m(E) < \varepsilon m(E)$. Choose a neighborhood V of 1 with $V = V^{-1}$ and $V \cdot E \subset U$. Then for x in V, $\phi(x) = m(xE)/m(E) \leq m(U)/m(E) < 1 + \varepsilon$; since $x^{-1} \in V$, $\phi(x) = (\phi(x^{-1}))^{-1} > (1 + \varepsilon)^{-1}$. Hence $1 - \varepsilon < \phi(x) < 1 + \varepsilon$ and the continuity of ϕ on K^* follows.\(^2\)

Now choose an open set U with $m(U) < \varepsilon m(E)$ and a neighborhood V of 0 with $V \cdot E \subset U$. Then for a in V, $\phi(a) = m(aE)/m(E) \leq m(U)/m(E) < \varepsilon$ and ϕ is continuous at 0.

Lemma 2. $S = \{a \in K : \phi(a) \leq 1\}$ is compact.
Proof. Let C be a compact neighborhood of 0 and choose a neighborhood V of 0 such that $V \cdot C \subset C$. Let $a \in V \cap C$ such that $0 < \phi(a) < 1$. If $a^n S \subset C$ holds for no $n = 1, 2, \ldots$, we select for each n an $s_n \in S$ such that $a^n s_n \notin C$. Since $\phi(a^n) \to 0$ and all the a^n lie in the compact set C, $a^n \to 0$ and hence $a^n s_n \in C$ for sufficiently large k. We may therefore choose $k_n \geq n$ such that $a^n s_n \notin C$ but $a^{k_n + 1} s_n \in C$. Then the sequence $\{a^n s_n\}$ of elements of the compact set $a^{-1} C$ has a cluster point c in $a^{-1} C$. Hence $\phi(a^n s_n) = \phi(a)^n \phi(s_n) \leq \phi(a)^n$ has $\phi(c)$ as a cluster point by the continuity of ϕ; thus $\phi(c) = 0$ and $c = 0$, which contradicts $a^n s_n \notin C$. It follows that S is a subset of the compact set $a^{-n} C$ for some n and so, being closed by virtue of the continuity of ϕ, is compact.

COROLLARY. ϕ is a valuation.

Proof. $\phi(1+S)$, the continuous image of the compact set $1+S$, is bounded.

LEMMA 3. $T_\phi = T$.

Proof. Let $V \in T \setminus \{\phi\}$, $a \in V$ and $B_n = \{b \in K : \phi(b-a) < 2^{-n}\}$. Suppose we can choose $b_n \in B_n$ with $b_n \notin V$ for each $n = 1, 2, \ldots$. But then the points $b_n - a$, all of which lie in the compact set S, have a cluster point c in S which must be 0 since $\phi(c) = 0$. Hence $b_n \to a$ contrary to our assumption and it follows that $T \subset T_\phi$. Since the opposite inclusion is an immediate consequence of the continuity of ϕ, the proof is complete.

If K is connected, it is the real, complex or quaternion field (Pontryagin [10]); in particular, ϕ is archimedean. Conversely, if ϕ is archimedean, the theorem of Ostrowski [8, p. 278] asserts that the center of K is either the real or complex field and so K, not being totally disconnected, is connected.\footnote{\textit{Note:} K is either connected or totally disconnected: if the component C of 0 contains $a \notin 0$ then $ba^{-1} C$ is a connected set containing 0 and $b \in K$.}

If K is totally disconnected, ϕ is non-archimedean (and conversely, according to the above) and results due to van Dantzig [2], Hasse [4], Hasse and Schmidt [5], Jacobson and Taussky [6] and Jacobson [7] assert that K is of one of the following three types:\footnote{Otobe [9] shows that $a \to a^{-1}$ need not be assumed to be continuous; cf. our final remark in this connection.}

(i) the completion of an algebraic number field at a finite prime,
(ii) the completion of an algebraic function field in one variable.

Alternatively, if K is connected, it is not difficult to show that ϕ is archimedean; then K is a vector space over the reals (Ostrowski) with ϕ as a norm, hence is the real, complex or quaternion field (Arens [1] Tornheim [13]), proving Pontryagin’s theorem.
over a finite field H,

(iii) a division ring D obtained from a field F of type (ii) by redefining x. $a = a^\sigma$, $x, a \in H$, σ a fixed non-trivial automorphism of H, the elements of D and F being regarded as power series $\sum_{n=0}^{\infty} a_n x^n$ in an indeterminate x over H with coefficients in H.

Remark. Continuity of $a \rightarrow a^{-1}$ need not be assumed, for it appears in the connected case only in the proof that K is not compact in the proof of the Pontrjagin theorem [11, p. 173, Theorem 45]. If K were compact, $\phi(a) = m(aK)/m(K) \leq 1$ for all $a \in K$. But, as in the proof of the continuity of ϕ at 0 in Lemma 1, we can find $a \in K$ such that $0 < \phi(a) < 1$; then $\phi(a^{-1}) > 1$ and it follows that K is not compact. If K is totally disconnected we have only to apply to T, K^* the following unpublished theorem of A. M. Gleason: Let G be a group with a totally disconnected topology T under which the group operation is continuous from $G \times G$ to G. Then T, G is a topological group.

References

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. L. Royden
Stanford University
Stanford, California

A. L. Whiteman
University of Southern California
Los Angeles 7, California

R. A. Beaumont
University of Washington
Seattle 5, Washington

E. G. Straus
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. Beckenbach
A. Horn
L. Nachbin
G. Szekeres

C. E. Burgess
V. Ganapathy Iyer
I. Niven
F. Wolf

M. Hall
R. D. James
T. G. Ostrom
K. Yosida

E. Hewitt
M. S. Knebelman
M. M. Schiffer

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
THE RAMO-WOOLDRIDGE CORPORATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. All other communications to the editors should be addressed to the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10, 1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
John Herbert Barrett, *Second order complex differential equations with a real independent variable* .. 187
Avner Friedman, *Remarks on the maximum principle for parabolic equations and its applications* ... 201
Richard Robinson Goldberg, *An inversion of the Stieltjes transform* 213
Olavi Hellman, *On the periodicity of the solution of a certain nonlinear integral equation* .. 219
Gilbert Helmberg, *A theorem on equidistribution on compact groups* 227
Stephen Kulik, *A method of approximating the complex roots of equations* ... 277
Ancel Clyde Mewborn, *A note on a paper of L. Guttman* 283
Zeev Nehari, *On the principal frequency of a membrane* 285
B. M. Stewart, *Asymmetry of a plane convex set with respect to its centroid* .. 335
Hans F. Weinberger, *Lower bounds for higher eigenvalues by finite difference methods* .. 339
Edwin Weiss and Neal Zierler, *Locally compact division rings* 369
Bertram Yood, *Homomorphisms on normed algebras* 373