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SECOND ORDER COMPLEX DIFFERENTIAL EQUATIONS
WITH A REAL INDEPENDENT VARIABLE

JOHN H. BARRETT

Introduction. This paper is concerned with the oscillation and
boundedness properties of solutions of the complex differential equation

(1) (p(@)9) + f(x)y=0, a=a< o,

where p(x)=p,(2)+ip(2)+0, f(x)=f(x)+if(x) and each of the functions
(@), ), fi(z) and fi(w) is a continuous real function on the half-line
a<r<ox, v

Such differential equations have many interpretations and applica-
tions. For example, if p(x)=1 and the real and imaginary parts of
equation (1) are separated the resulting system of two real equations
can be interpreted as equations of motion in the yw,-plane, where y=
Yi+1y,, as in [4, 9]. If in (1) = is replaced by the complex variable
z, and the coefficients are required to be analytic functions of 2z the
resulting completely complex equation can be reduced to one of the type
(1) by considering certain analytic paths in the z-plane. This proce-
dure has been used effectively by Taam [9] and others to find zero-free
regions for the compvletely complex equation. Also, Hille [5] has made
an extensive study of the behavior of solutions of a special case of (1),
where p(z)=1 and f(x)=21F(), F(x) real and positive and 1 a complex
parameter, and has used these results in his study of Cauchy’s problem
for a generalized heat equation.

The present study of equation (1) begins with consideration of the
special case

(2) (#la@) +a(@y=0, ase<l oo,

where (@) =g, (2)+ig{x)+#0, ¢(») and ¢ z) are real and continuous on
a<x< and ¢ is the complex conjugate of ¢q. For ¢(z) real a funda-

mental set of solutions consists of sin qu and cos gq. This suggests

3 22

an investigation of the corresponding complex solutions, s[a, z; ¢] and
cla, @ ; ¢, of (2) when ¢ is complex. These ‘‘ trigonometric’’ functionals
satisfy identities and inequalities analogous to those of the real sines
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188 SECOND ORDER COMPLEX DIFFERENTIAL EQUATIONS

and cosines. For example, the sum of the squares of the magnitudes
is identically one and, hence, all solutions of equation (2) are bounded
on a<x<o. This boundedness property is the main point of departure
from the analytic definition of trigonometric functions of a complex

variable z, where sin qu is unbounded if quz is unbounded. The bound-

edness property is useful in the applications of the last section.

An additional advantage in considering the special case is that for
a rather large class of coefficient functions, ¢(x), equation (2) can be
solved explicitly, thus providing a new set of much needed examples to
give insight into the oscillatory behavior of solutions of (1). Further-
more, for a still larger class of coefficient functions the oscillatory be-
havior of solutions of (2) is determined. An interesting result is that
the zero separation properties, true for the real case, are often violated
for the complex equation (2). For example, a class of functions, ¢(x),
ig found for which the ‘‘sine” s[a, x; q] oscillates (has infinitely many
zeros on a=x< ) and the ‘‘cosine >’ c[a, x ; ¢] has no zero on a<r<< .

The final section shows that although equation (2) is a special case
of (1), all oscillatory behavior patterns of equations of the type (1) are
present in those of type (2). In particular, for each non-trivial solution
y(x) of (1), for which y(a)=0, and each non-zero function w(z) of class
C’ there exist a continuous complex coefficient function ¢(x) and a non-
zero ‘‘ amplitude ’ function p(x) of class C’ such that

(3) y(@)=p(@)sla, z ; q], p@)y(x)=w(x)p(x)ela, = ; q] .

For w(x), p(x) and f(z) real; ¢(x) and p(x) are real and (3) reduces to
the modified Priifer transformation [1, 6]

(4) y=p(&) sin 0), pj=w(@)p(a) cos 0(z), @)= q,

which has been useful in establishing real oscillation and boundedness
theorems. The author [3] has developed a Priifer transformation for
equations of the form of (2) with both coefficients being square symmet-
ric matrices and a similar, but less useful, transformation of type (3)
(that is y=ps, py=pc) can be obtained as a corollary of the matrix
theorems.

Since the ‘“amplitude ”’ p(zx) is non-zero and the ‘‘sine’ s[a, x; q]
is bounded, the Priifer-type transformation (3) separates boundedness
considerations from those of oscillation, as does (4) for the real case.
Applications of (3) yield bounds on solutions of (1) of the Liapounofi-
Birkhoff-Levinson type. For the special case, p(x)=1 and w(x) a positive
real constant, these exponential bounds reduce to those of Taam [7]. It
it noted that Taam failed to achieve a ‘‘ symmetric”” form because he
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specialized p(x) to be real and, in particular, p(z)=1.

Further study of the relation of g(x) to the original coefficients, o(x)
and f(x), and of the oscillatory properties of the functionals of the first
section should lead to new oscillation theorems for (1).

1. Complex trigonometry. Let g(x)=g(x)+1ig ), ¢, and ¢, be con-
tinuous functions on a<z<o and define c=c(x)=cla, z; q], s=s(x)=
s[a, «; g] to be a solution (pair) of the complex first order system

(5) $§=gc,  s(a)=0,
¢c=—gqs, cla)=1.

If, in addition, ¢(x)#0 it is easily seen that s and ¢ are solutions of the
second order equation

(2) (@/9) +qy=0,
with initial conditions

(6) s(@)=0, c(@)=1,
s(a)=q(a) , c(a)=0.

Note that s=gin rq and c:cosgxq, if g(x) is real and, furthermore, if
g+0 both solutions oscillate (have infinitely many zeros on a=x< )
only if rlq|=oo.

Boundedness is retained for complex ¢(zx), as is seen by :
LeMmaA 1.1, [sP+lelP=1.
Proof. Differentiate ss--c¢¢ and note its value at z=a.

There is also an extension of the properties that the real sine func-
tion is odd and the cosine is even. This result is useful in carrying
out the details of the proof of Theorem 1.2.

LEMMA 1.2. If k is o complex number such that |k|=1 then
sla, @ ; kql=ks[a, z; q] and da, z; kgl=cla, x; q] on a<x< oo,

Proof. Let m(x)=s[a,x;kq]l—ks{a, z; ¢] and n(z)=ca, x; kgl —
ca,x ;ql.
Then m(a)=0, n(a)=0 and m=kqn, n=—kgni, whose only solution is
m=n=0 on a<x< o, thus completing the proof.

Consider now the polar form of solutions of (5) and (2) in terms of
the polar components of the coefficients ; i. e., suppose

(7) q(@)="(x) exp (i0(x)) , e=e< oo,
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where r(z) is real, continuous and positive and 60(x) is real and of class
C’. These conditions ensure a polar form for the complex trigonometric
functionals as is seen by the following.

LEMMA 1.38. Under the above hypotheses on q(x), there exist on

alx<co real functions h(x) and a(x) such that h, ii/?”, a and ha'c/r are of
class C’ and, furthermore

(8) sla, z ; g]=h(x) exp (ta(2)) .

Proof. Let s(x)=s[a, z;q]. Using a technique similar to that em-
ployed by Taam [9], define the real function

0/2r , if s(x)=0.

Note that g(x) is continuous on a<x <<, since computation by means
of L’Hopitals rule shows

lim S(3/rs)=0(,)/2r(x,), if s(aw)=0 .

Let
(10) a(x)ze(a>+g’;r(t)g(t)dt ,

then «(x) is of class C’ on a<ax <. Let

(11) h(x) =s(x) exp (—ia(x)) ,

then A(z) is of class C’, A(a)=0 and
li(w)z(é—w’ds) exp (—ix) .

Thus, #(¢)=5(a) exp (—ia(a))=r(z)>0.

The next step is to prove that A=#h,(x)+ih,(x) is real, that is, A,(x)=0.
Suppose A (x)==0, then there exist numbers £,<¢, such that A(t)=0,
hy(x)#0 on t,<x<t, and s(x)#0 on {,<x<t,. Then on f<x<t

h _exp(ih _s .,

Also,

or
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hhy—hoh=0

Therefore there exists a real constant k such that A(x)=kk(x) on t,<
a<t,. Hence h(t)= kl(t0+) kh,(t,;+)=0 and s(to) 0. Suppose ti=a,
then, since #Z(a) is real, kz(t) 0 and hl(to) hl(t0+) kh «(t). But this
requires that s(¢,)=0, which contradicts the fact that s(x) is non-trivial.
In a similar manner and by use of an induction argument it is easily
seen that ¢, cannot be any zero of s(x). Thus, A(x)=0 and A(x) as de-
fined by (11) is real.

Recall that $=¢¢ and ¢=—¢5 where s=s[a, x;q] and c=c[a, x; ¢]
and s=%(x) exp (ta(x)), where g=r(x) exp (¢:0(x)). By differentiating this
polar form of s and simplifying it follows that

ﬁ—f—z@ =c exp (i(0 —))
P r

and, since the right hand side is of class C’, that the real components,

h/r and ha/r are likewise of class C’. Furthermore, by transposing the
exponential factor to the left hand side and differentiating we obtain

(;ﬂ)—m( )+(a—0)~—(a 0) —rh .

Separation into real and imaginary parts yields the system

a 1)+ rio,
and
(13) (%‘3)405;5 h=0,

thus completing the proof of Lemma 1.3.

Integration of equation (13) gives

(13) et _ (-l

() r
Finally, integration by parts establishes the following.

LEMMA 1.4. If, in addition to the hypotheses of Lemma 1.3, the
quotient Olr is of class C’, then on a<x< o
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W e ) (50

Furthermore, c;/r 1s of class C’, whenever s+0 .
The preceding discussion suggests special consideration of the quo-

tient 0'/7'. The following theorem is a compilation of the results thus
far.

THEOREM 1.1. If on a=<wx<co, g=r(x) exp (i0(x)), r(z) is real, posi-
tive and continuous, O(x) is real and of class C’, b(m):d(m)/Zr(w), then
there exist real functions h(x) and a(x) both of class C’, as well as the
quotient };/r, such that

(8) sla, @5 q]=n(x) exp (ia(x)) ,
(12) ( i) +((1 +5) —(% —~0) )rh=0,
(13) Z‘Zfa‘fl@:zgxhéb :

Furthermore, if b(x) is of class C’' then

(14) hz(x)(i‘@ —b(2) ): _S”m(t)z}(t)dt .
() a

and c;/v' 2s of class C’, whenever s+0.

Application of the Sturmian comparison theorem to (12°) gives the
following.

CorOLLARY 1.1.1. (Non-oscillation theorem) If the real second-order
equation

W/r) +(1+b)ry=0 , a<z< oo,

18 mom-oscillatory (i.e., non-trivial solution has infinitely miny zeros on
aZx <o) then sla, x; q| is nmon-oscillatory.

Equation (14) shows the following.

COROLLARY 1.1.2. (Non-oscillation theorem) If, in addition to the
hypotheses of Theorem 1.1, b(x) is of class C' and b'(x)#0 on a<lwx<oo
then s[a, x; q] has no zeros of a<x< oo,

ExaMpLE 1.1. Let ¢(x)=1+iz, then r(z) = V1+2%, O(x)=Tan 'z,
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b(z)=—(a’+1)"* and i)(x)>0. Corollary 1.1.2 then establishes that
s[a, ¢ ; q] has no zeros on a<a<w,

This example shows that the latter non-oscillation theorem is not a
special case of the following.

THEOREM T (Taam [8]). If p(x)=mp:(x)+ipfa)#0,[(x) = fi(z)+ifi(),
where p,, v, f; and f, are real continuous functions on a<=x=b and there
exist constants § and k and a real function m(x) of class C' on a=x=b
such that jp.(x)-+kp,(x)>0
and

m+m* (G0, 4+ kp,) < —(Gfi+kf) on a<x<b

then the complex equation (p(x)y) + f(x)y=0 is disconjugate (i.e. no so-
lution has two zeros on a<x=<b).

For g(x)=1+1z, as in Example 1.1, consider the equation (#/q)-+gy=
0. Then

and f(x)=¢=1—4ixz. There exist constants j, k¥ with k<0 such that

; k :j+[klx 0,
I0: KD, 1ta >

for #>j/k . Consider the real second order equation

(15) (”—g;@ i) + G+l =0, >k

Now, (j+|klay=(k*+ 7*)(1+2*) and, hence,

j+kle _ B+

N ’ .’17>k.
1t itk al

With the use of this inequality to increase the leading coefficient,
equation (15) is altered to

: B3 Y _
(15) (G o) G+ klow=0

whose fundamental solutions are

. (7 j+1k|t Sx itk
sin| 212" dt and co ———"dt,
' Sal/ FE €08 oV Pk
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and all solutions of (15') oscillate on jlk<a<ax <. By the Sturmian
comparison theorem equation (15) is also oscillatory and hence for some
b>a there exists no function m(x) required by the Riccati inequality of
Theorem T. But by Corollary 1.1.2, s[a, x; ¢q] has no zeros on a<x< o
and hence the complex equation (%/q)"+gy=0 is disconjugate on a<z> .
Therefore Example 1.1 is non-oscillatory but does not satisfy the hypo-
theses of Theorem T.

REMARK. A similar polar form for the ‘¢ cosine >’ functional
ca, x; gl=k(x) exp (¢8(x))

can be obtained for which % and S replace » and «, respsctively, in
equations (12') and (13'). However, since k(a)=1, equation (14) must be
replaced by

(14) kz(x)(%% i) ): — b(a) — S:k‘l(t)l')(t)dt .

Of course, c[a, z; q] can be calculated from a known s[a, x; ¢] by the
derivative formula, $§=¢¢, which is the process actually used in the sue-

ceeding discussion.

THEOREM 1.2. If, in addition to the hypotheses of Theorem 1.1,
b:é(m)/Zr(:p) is constant then explicit solutions of the system (b) are

(16) ola, & 5 ql=_ ;. -exo i M)sin $(@) ,

am ca, x; ql= exp( 0(z)— 0(a)>{cos P(x) — 1/,7, _sin ¢ () }

where Pp(x)=1'b"+1 S r(t)dt. Furthermore, sla,x , q] oscillates (i. e., has

infinitely many zeros on a<w< ) if and only if EalT(t)ldtZOO- Final-
ly, if b+0, cla, x; q] has no zeros on a=x<oo,

Note that this means that there exists a second order complex equ-
ation (y/q)'+qy=0 such that the zeros of one solution do not separate
those of a linearly independent solution and the zeros of a solution are
not separated by zeros of its derivative. Before this theorem is proved
consider the following special cases.

ExaMpLE 1.2. Let ¢(x) be real and positive, then ¢(x)=1r(x), 0(x)=0,
b=0 and
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sla, z; q] =sinqu(t)dt, ca, «; g]=cos qu(t)dt.

ExamMPLE 1.3. Let ¢(z)=q.(x) i), ¢.(x)=kq.(x), k=constant, and
¢:(x)>0 then r(@)=1V"1+k" ¢(x), 0(xr)=Tan"%, §=0,b=0 and

sla, z; q]:vlﬂ:zii sin(v 1-+k* S:ql(t)dt > )

cla, z; ¢]l= c0s<1/ 1+k* g:ql(t)dt ) .
ExAMPLE 1.4. Let ¢(x)=exp (iz), then r(z)=1, 6(x) =z, b=1/2 and
sla, @ ; q] :V25t exp»% (z+a) sinyéi(x —a)
Ve V'5

s 1= exp (2 — —a)— & _
ca, x; ql= expz(x a)(cosﬁg,ﬁ(:c a) TE sm.iz,r\w a)).

Note that there do not exist constants j, £ such that j¢,—kq,>0, and
hence the yypotheses of Theorem T are not satisfied for b—a>n. Of
course, in this case (y/¢) +gy=0 is oscillatory on a<zx< .

ProoF oF THEOREM 1.2. In order to simplify computations let
0(a)=0. There is no loss of substance decause of this assumption since
Lemma 1.2 assures that if ¢(2) is multiplied by the constant exp (—i0(a))
then the resulting ‘¢ sine’” functional must be multiplied by that num-
ber and the ¢ cosine’’ is unchanged. Therefore equation (14) gives

(18) a(x) =br(x) :ﬁ;@and a() :0%(296’) ’

and equation (12') becomes

R N —
19 (h) S
(19) gy) TTVIFY k=0

Since A(a)=0 and I;(a):r(a) we have

(20) h(w) = %}+ - sin (mﬁgb?' SZr(t)dt> .

By combination of (8), (18) and (20) and the use of Lemma 1.2 and s=
g¢ the explicit solutions (16) and (17) are obtained. Finally, if -0, (17)
gives
b’ 1
2l—— =
e T |
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and the theorem is proved.

Note that in Theorem 1.2, if 5=0 then c[a, x; ¢] oscillates if and
only if s[a, 2 ; ¢] oscillates and the zeros of one functional separate those
of the other. But if 530 then s[a, z ; ¢] may oscillate but c[a, z ; ¢] has
no zeros on a<wx< oo, thus violating a ““ Rolle’s Theorem *’ for complex
functions.

In the next section it will be shown that every complex equation
of the form (py)'+fy=0 can be transformed into the ‘special > form
(/9)" +ay=0.

2. A complex Prufer transformation. Consider the complex gene-
ral linear second-order equation

(1) (py) +fy=0, asa< o,

where p=p,(x)+ip(x)#0, fF=f(x)+if,(x) and p, p,, f, f. are all real con-
tinuous functions on a<x <. Suppose y(x) is a non-trivial solution of
(1) such that y(a)=0 and there exist complex functions p(x)+0, w(x)+=0
of class C’ and ¢(x) continuous, such that

(21) y(@)=p(x)sla, x ; q] ,
p(@)y(e) =w(@)p(x)cla,  ; q] .

Then by differentiating both equations of (21) and combining with (1)
we obtain

ps+pae=-2p¢ ,
v

pc—pgs= —Lifs'— Yoe .
w w

Hence, solving for ¢ and ¢ and recalling that |¢[*+|s|*=1 we have

(22) p=pae( £ L)Lty )= PO

(23) a=P(Llep+ L sF) 4 Doe
p\p w w

For »,f,y, p, q real; s=sin qu, c=Co08 qu and (21), (22), (23) reduce to

the modified real Priifer transformation of [1]. The transformation of
(1) given by y=ps and py=pc results in the differential-integral system
p=p(1/p)cs— fsc) and ¢=(1/p)c*+fs* and can be obtained as a direct ap-
plication of the matrix Priifer transformation in [3] for (matrix) order
2. However, the form (21) seems to be more useful, e.g., see Corol-
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lary 2.1.

Consider next the question of existence of p(x) and g(x), that is the
solution pair of the system (22), (23). The method is that of successive
approximations and the following lemmas establish a Lipschitz condition
for the system.

LEmMMA 2.1. IFf q(x) and g*(x) are continuous complex functions on
asz<co and s*=sla, x; ¢*], c*=da, x; ¢*] then

(24) ls—s"| §4gziq—q*i, asx< oo,

Proof. By subtracting the differential equations (5) obtain the sys-
tem

(s—s*) =q(e—c*)+(g—q*)e* ,
(c—c*) =—q(s—s*)—(a—¢*)s* ,

which can be expressed in the veector-matrix form

" _(8—8™ _(0  a@)\ 5_(la—q*)*
@) a=Qeecri. «=(3270) @=L F=(=0s)
afa)=0 .

Let Y(z) be the matrix solution of the homogeneous equation :

Y=qv, Y(a):E:<(l) ‘1)) .

Then

Y(x)z(c_g f), and Y-=(C TF).

Cc 8 4

By elementary methods the solution of (21) is
(26) a(x):SxY(x)Y“l(t)ﬁ(t)dt .

Hence, by taking norms (square root of sum of square of absolute va-
lues), we have

latay 2| E@Nds<a | lo—a1,

from which the conclusion of the lemma follows.

LEMMA 2.2, Assume the hypotheses of Lemma 2.1 and let
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rlgl= 3 k@) G @),

where k,(x) (=1, 2, ---, n) are complex continuous function on a<x=<b
and a;, B;, 7:, 0; are non-negative integers. Then there exists a positive
constant K, (independent of ¢ and ¢*) such that

IT[Q]*T[Q*]léKog lg—a*l, a=w=b.
The proof based on Lemma 2.1 is simple and is omitted.

LemmA 2.3, If u(x) and v(x) are complex continuous functions on
asax<co, the complex differential equation (see equation (22))

@7 p=u(@)p+v(x)p

has exactly one solution for a prescribed value of p(a).
The proof parallels that for real linear equations and, consequently,
is not given here.

LEMMA 2.4. Let p(x) be a solution of (27), where w and v are the
corresponding coefficients of (22), and m(x)=plp. Then: (i) |m|=1, (ii)
m satisfies the complexr Riccati equation

(28) m=u—(v—v)m—um?

and (iii) ©f m* is the corresponding function when q s replaced by ¢*,
u by u* and v by v* then there exists a real constant K, (independent of q
and q*) such that

(29) Im—m*léKIS:lq(t)—q*(t)ldt : asw<le < oo,

Proof. (m—m*)" + {(v—2) +u(m~+m*)} (m—m*)
=wu—u*)+{(®—v)—@* —v*)}m*—(u—u*)m*
or
(m—m*) +n@)m—m*)=r(@), m(a@)—m*(a)=0,
and hence,
m(@)—m*(@)=e" Ves«in r(t)dt .
Therefore, there exists a real constant K, such that

lm(x)—M*(w)léKlrlq—Q*l , 4<z=a,< co.
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LEMMA 2.5. There exists a unique solution pair p(x), ¢(x) of the
system (22, 23).

Proof. 1t follows easily from Lemmas 2.2 and 2.4 that the system
((22), (28)) satisfies a Lipschitz condition. Let ¢,(z) and p,(z) be complex
continuous functions on a<x<b and for each non-negative integer =

posor=r@+ | (552 U= )P ef

Q@=L Piopt Ly, L4 Ve,
14 w w

n

where s,=s[a, «;q,] and ¢,=[a, x ; q,].

By the usual successive approximation arguments it follows that the
sequences {p,(x)} and {q.(x)} converge uniformly on a<a=<b to continu-
ous limit funections, p(x) and ¢(x), respectively, which form a solution
pair of (22) and (23).

THEOREM 2.1. If y(x) is a non-trivial solution of (1), such that
Y(a)=0, and w(x) is an arbitrary non-zero function of class C’ then there
exist & non-zero function p(x) of Class C’' and a continuous function q(x)
such that (21) is satisfied. Furthermore, (22) and (23) are satisfied.

Proof. From Lemma 2.5, there exists a unique solution pair p(x)
and g(x). Let w(x)=p(x)s[a, s; q], then u(a)=0=y(a),

i=ps+pge=L"G, and a(a) =D _5q)
D pla)

Finally,

(i) = _,5®‘_’53+@7.J?’5+F;wc =—fps=—fu,
therefore
y(@)=u(x)=p(z)sla, 2 ; q] .

Equation (22) yields the following bounds on solutions

COROLLARY 2.1. (i) lpl:]/lylz+\1;{i./’; _

xz
a

(30) () @) =1p@)] = (@] exp| ”g_%@;.
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(iii) ¢f w=Fk, a real positive constant, then

1(4k _fF
(31) ly(x)lép(a)lexp—zg 0 k\é
kp, _ fil | |kps_ £y
texn g { =7 ek

Proof. (i) is obvious and (ii) follows directly from (22). (iii) re-
sults from an application of (i) and a simple inequality about complex
numbers. Note that if p is real then p,=0 and (31) becomes

fzi}

which is the ‘‘ non-symmetric”’ bound given by Taam [10].
Finally, other choices of w(x) give other bounds on solutions as was
found for real second-order differential equations in [1].
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REMARKS ON THE MAXIMUM PRINCIPLE FOR
PARABOLIC EQUATIONS AND ITS
APPLICATIONS

AVNER FRIEDMAN

Introduction. In [3] Nirenberg has proved maximum principles,
both weak and strong, for parabolic equations. In §1 of this paper we
give a generalization of his strong maximum principle (Theorem 1).
Hopf [2] and Olainik [4] have proved that if Lu>0 and L is a linear
elliptic operator of the second order, if the coefficient of » in L is non-
positive, and if u (zZconst.) assumes its positive maximum at a point P’
(which necessarily belongs to the boundary) then 8ux/6» <0, where v is the
inwardly directed normal. In §2 we extend this result to parabolic
operators (Theorem 2). A further discussion of the assumptions made
in Theorem 2 is given in § 3. Application of Theorem 2 to the Neu-
mann problem is given in §4. In §5 we apply the weak maximum
principle to prove a uniqueness theorem for certain nonlinear parabolic
equations with nonlinear boundary conditions, and thus extend the spe-
cial case considered by Ficken [1]. An even more special case arises in
the theory of diffusion (for references, see [17).

1. Consider the operator

z, ou 2 ou ou

1 Lu= a;(x, t a,(x, t)-— +alx, Ou—-—-=

(1) a5 T S 07 ale, o=

with a(z, t)<0. Here, (z,t)=(x, * -+, @, t) varies in the closure D of a

given (n-+1)-dimensional domain D. Assume that L is parabolic in D,
that is, for every real vector 10 and for every (x,t) ¢ D we have

S aw, )2:2;,>0 .

All the coefficients of I, are assumed to be continuous in D and w is as-

sumed to be continuous in D and to have a continuous ¢-derivative and
continuous second zx-derivatives in D. From [3; Th. 5] it follows that,
under the above assumptions, of Lu=0 and if w assumes its positive
maximum at an interior point P°, then u=const. in S(P’). Here, S(P°)
denotes the set of all points @ in D which can be connected to P° by
a simple continuous curve in D along which the coordinate ¢ is non-de-
creasing from @ to P°. In the following theorem we consider the case

Received October 29, 1957. Prepared under ONR Contract Nonr-908 (09), NR 041 037
with Indiana University.
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202 AVNER FRIEDMAN

in which P° is a boundary point of D. We may assume that P° is the
origin. Let ¢=¢(x) be the equation of the boundary of D near P°.
Assume that t=0 is the tangent hyperplane to the boundary of D at P°.
Therefore 0¢/0x;|;p =0. Let D be on the side t<¢(x).

THEOREM 1. If Lu=0 in D, if uw assumes its positive maximum M
at P°, if

(2) lim 94P) o, 2—hm2ai,(P)au(P) <0 PeD
PP QX ox0x;
and if
(3) 1—{—2@” 6?50 >0 (PGC”
ox 0,

then u=M in S(P?).

REMARK 1. Without making any use of (3) one can deduce the
following :

Put p=lim sup aua(% (Pe D), then p=0 since #<0 will contradict
PPl

u(P)=u(P). Letting P— P° in Lu(P)=0 and using (2), we obtain 1+
W(PYM—p=0, from which it follows that 1=0. Since, by (2), 10, we
conclude that 1=0. Hence a(P’)M—p=0, from which it follows that
#=0 and, therefore, (since #=0) x=0. We also get a(P’)=0.

REMARK 2. The assumptions (2) and (3) can be verified if we assume
that ¢(x)=o(]2’) and that » belongs to C” in the closure of the domain
Vn {t<0}, where V is some neighborhood of P°. Indeed, by making an
appropriate orthogonal transformation we can assume that a,;,(P°)=4,;.
By the mean value theorem we have

(@, ) —u(0, 0= 3 o, 2 u(@, H)+t2u, ) .
0w, ot

Taking (x,t)e DNV {¢<0} such that |#|=06(|x]) and noting that u(w, t)<
u#(0, 0), one can show that du(P°)/ox;=0. Noting that ¢(x)=o(|2|*) and
expanding [u(x, t)—u(0, 0)] in terms of the first and second derivatives
of u, one can show that #*u(P’)/0x <0, and (2) is thereby proved. The
proof of (3) is immediate.

PROOF oF THEOREM 1. For simplicity we shall prove the theorem

only in case n=1; the proof of the general case is analogous. Lu takes
the form

(4) LuﬁA +a — +cu ?;tL c=0,4>0.
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From the strong maximum principle [3; Th. 5] it follows that all we
need to prove is that u(P)=M if Pe V'nS(P") where V’is some neigh-
borhood of P°.

There are two possibilities: Either there exists a sequence {P*}
such that P*e S(P°), P* — P° u(P*)=M, or there exists a neighborhood
V={2*4+#<R?} of P° such that u(P)<M for all Pe VnS(P"), P+ P".
In the first case we can use [3; Th. 5] to conclude that u(P)=M if
Pe V'n S(P’) where V' is some neighborhood of P° (since w(P)=M for
all P e S(P*)).

It remains therefore to consider the case in which w(P)<M for all
Pe VnS(P%), P+P°. We shall prove that this case cannot occur by
deriving a contradiction. Writing

o(x)=Kz*+o(z?) ,

we define a domain D; (6>0) as the intersection of S(P?) with the set of
points (x, £) in V for which

t< o(x)=(K—d8)z* .

If K<0 then, because of (8), we can choose ¢ sufficiently small such
that

(5) 1+ A% 5(@)],.0>0 .
0x®

If K=0, we can obviously take ¢ such that K—0<0 and such that (5)
holds.

We now can take R sufficiently small such that ¢(x)<<min (0, ¢(x)) for
all (z,t) in D,;, «+0. Consequently, u(z, t)<M if t¢=¢(x), 0. The
function A(x, t)=—{+¢(x) vanishes on #=¢(x) and is positive in D;.
Therefore, if ¢>0 is sufficiently small, then v=u-+¢ch is smaller than M
at all points on the boundary of D; with the exception of P° where
v(P)=M. Noting that ¢'(0)=0 and using (5), we conclude that

Lh=1+A3"(z)+a3'(z) +-ch>0

if R has been chosen sufficiently small. Hence, Iw=Lu-4-eLh>0. It
~ follows that v cannot assume its positive maximum at interior points of
D;s and, therefore, it assumes its maximum M at P°. We thus obtain
ov/0t=0 at P° and, consequently,

(Here

0 —t
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On the other hand, letting in (4) P — P° in an appropriate way and
using (2) and the inequality Lu(P)=0, we get

0 u(P)

0<Tlim A(P) + tim o(P) *42L 0P 1 —lim supau(P)<

—lim sup— au(P )

We have thus obtained

lim sup ou(P)/ot <0< c<ou/ot.

P—>P0
This is however a contradiction (since

U _ iy 010, %) te). < lim sup

ot 80 ot Popd

ou(P)
I

for an appropriate sequence {t.}), and the proof is completed.

REMARK (a) Consider the following example: n=1, P'=(0, 0) and
D defined by
THULR, <, t<rx 7 >0>7,.
The function u(z, t)=(—71.2)(row—1t) satisfies the following proper-
ties: u<0 in D,u=0 at P°, and

ou ou
Lu=A4-"" =2 = —2A7,7,+0 th)=0,
" 6x+ 0w ot 77+ 0(2|+¢) =

provided R is sufficiently small. Consequently, (3) and the second assump-
tion in (2) are not satisfied and also the assertion of Theorem 1 is false.

REMARK (b). Consider now the case in which the tangent hyper-
plane at P° is not of the form t=const.. We shall prove that in this
case Theorem 1 is false. Take n=1 and consider first the case in which
D 1is defined by

x>0, < R .

If Lu=06"u/02*—0u/0t, then the function u(x, t)= —x takes its maximum
in D at P'=(0, 0), Lu=0, but #+0 in S(P").
Consider next the case in which D is defined by

x>at, B R?.
and take Lu=08"u0x*—qdu|dx— 0u/ot.



REMARKS ON THE MAXIMUM PRINCIPLE 205

The transformation ¢ =¢, 2’ =x—«t carries the present case into the
previous one.

Note that if the tangent hyperplane H at P° is not the plane =0
and the axes are rotated so as to give H the equation ¢'=0 (in new a’,
¥’ coordinate), then Lu loses the form (1), for u,, and u,, will appear
in it.

REMARK (¢). If in Theorem 1 the domain D is on the side ¢>¢(x),

then the theorem is false. Indeed, as a counter-example take u=—f¢,
and D bounded from below by ¢=0.

2. Consider the linear operator

L= ay(a, t)- 0%+ b ) 0% 4 S aya, £)
47=1 Ox0x,; =1 ot0t, i=t ox,
(6) .
+ S by, t) g;bra(x, tyu alz, £)=<0,
i=1 .

where z—=(a, -+, 2, and t=(¢, ---,¢t,) vary in the closure of a given
(n-+m)-dimensional domain D. We agsume that L’ is elliptic in the
variables » and parabolic in the variables ¢, that is, for every real
vector A0,

(7) Ea'ij)‘i)‘j>07 > 044,20 .

All the coefficients appearing in (6) are assumed to be continuous in D

and u is assumed to be continuous in D and to have a continuous ¢-
derivative and continuous second a-derivatives in D. Under these as-
sumptions, Nirenberg [3; Th. 2] has proved a weak maximum principle
from which it follows that, iof L'u=0 in D then u must assume its posi-
tive maximum on the boundary.

Let Po=(a* t°) be a point on the boundary of D such that u(P°)=
M>0 is the maximum of % in D. Assume that there exists a neighbor-
hood V: |z—2'*+ t—*<R? of P° such that u(z, t)<M in VnD., We
then can prove the following theorem.

THEOREM 2. If there exvists & sphere S: |x—a' P+t —1t' P < R* passing

through P and contained in D, and if '+« then, under the assump-
tions made above (in particular, L'u=0,w(z, t)<M in V0D), every non-
tangential derivative oulor at (20, %), understood as the limit inferior
of du'dr along a non-tangential direction t, is negative.

By a non-tangential direction we mean a direction from P°into the
interior of the sphere S,
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REMARK (a). If a(z, t)==0 then the assumption M >0 is superflous.

REMARK (b). In §3 we shall show that the assumption 2°=#a is es-
sential. We shall also discuss the case in Wh1ch w(z, t) is not smaller
than M at all the points of V' nD.

Proof. For simplicity we give the proof in the case m=n=1, so
that

(8) L'u_Aa“+Batz+ —~+b——+cu A>0, B=0, ¢<0;

the proof of the general case is quite similar. Without loss of genera-
lity we can take (2/, t')=(0, 0) and 2°>0. Furthermore, we may assume
that, with the exception of P° S lies in V' n D, so that u(z, t)<M in
S—P° Denote by C the intersection of S with the plane x>48, where
0<o0<x’. The function

Mz, t)= exp (—a(e’+1*)) —exp (—aR’)

satisfies the following properties : h=0 on the boundary of S, 2=0 in
C; if «a is large enough, then

L'h=exp(—a(x*+8)[4a’(Ax*+ Bt*) —2a(A+ B+ ax+bt)+c]
—c exp (—aR*)>0.

(Here we used x>0>0, ¢<0.)

If ¢ is sufficiently small, then the function v=u-¢# is smaller than
M at all points of the boundary of C with the exception of P° where
v(PY)=M. Since L'v=Lu+cL'’h>0, v cannot assume its positive maxi-
mum in C at the interior of C (since, otherwise, at such interior points
L’'v would be non-positive). Hence, v assumes its maximum at P° and,
consequently, ov/0r=lim inf (4v/4r)<0. Since along the normal » (i.e.,
along the radius through P% 84/6»>0 and since along the tangential
direction o 0h/0c0=0, it follows that 6k/6z>0. TUsing the definition of v,
we conclude that ou/or==0v/6r—edh/or <0, and the proof is completed.

Added in proof. Theorem 2 was recently and independently proved
also by R. Viborni, On properties of solutions of some boundary wvalue
problems for eguations of parabolic type, Doklody Akad. Nauk SSSR,
117 (1957), 563-565.

3. From now on we shall consider only parabolic operators of the
form (1). Suppose the assumption u<M in V' n D, made in Theorem 2,
is replaced by w<<M. If there exists a sequence of points {P*} such
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that P*—P°, Pte D, Pt=(z* t*) and t*=¢, u(P*)=M, then, by [3; Th. 5],
u=M in S(P*). Hence, if the boundary of D near P° is sufficiently
smooth, u=M in some set V’'n D where V' is some neighborhood of P°.
Consequently 6u/6-=0 for every r.

If w(P)<M for all Pe Vn D, if u(P) is not strictly smaller than M
for all Pe Vn D, P+P°, and if the previous situation does not arise, then
one and only one of the following cases must occur :

(i) u<M at all points (x, t) in VnD with ¢=¢. Using [3; Th. 5]
one can easily conclude that there exists a neighborhood V' of P such
that u<M in V'n D, and Theorem 2 remains true.

(ii) u<M at all points (x,t) in Vn D with ¢>¢, and u=M at all
points (x,¢) in VnD with t=¢,. We then consider only those directions
r along which u<M. We claim that Theorem 2 s not true for the pre-
sent situation. To prove this, consider the following simple counter-
example :

PS=(0,0), M=0, Lu=2%_2" . t):{“t"’ it >0
0x* 9t 0 if t<0.

u satisfies Lu=0 and assumes its maximum 0 for ¢<0. But, the
derivative ou/6r at P°=(0, 0), along any direction r, is zero.

As another counter-example (with Lu=0) one can take a fundamen-
tal solution of the heat equation.

Note that the preceding counter-examples are valid without any
assumptions on the behavior of the boundary of D near P°.

We shall now consider the case x'=x" which was excluded by the
assumptions of Theorem 2. We shall assume that at P°=(0, 0) there
passes a tangent hyperplane ¢=0. If D is above this hyperplane, then
the preceding counter-examples show that Theorem 2 is not true. It
remains to consider the case in which D is ‘‘ essentially ”’ below £=0,
that is, if we denote by t=¢(x) the equation of the boundary of D near
P°, then D is on the side ¢<¢(x). In this case, however, Theorem 1
tells us that in general we cannot assume both w(P°)=max u(P)>0
(Pe D) and u<u(P°) in VnD.

The example in §1 Remark (a) can also serve as a counter-example
to Theorem 2 in case P° is a vertex-point. Indeed, along the i-direction

ou

O _ —
a—tpo —a[(t Tlx)(sz t)] e 0 *

0,6=0

By a small modification of this counter-example one can get a
counter-example to the analogue of Theorem 2 for elliptic operators [2]
[4] in case P° is a vertex. Indeed, define D by

LY <B y<y7.1@, Y > 1. 711.>0>7,
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and take Lu=0"/0x*+ Ad"u[0y*, where A>|7.7,]. The function u(zx, y)=
(y—r.x)(y—7r2) satisfies: u<0 in D, u=0 at the origin, Lu=2r7,+24>0.
But along any direction = within D, 8u(o7| ¢ ,-0=0.

4. Let D be a domain bounded by the two hyperplanes t=0, t=
T>0 and a surface B between them. Assume that the intersection

{¢=T} nD is the closure of an open set on ¢=T, and denote by A the
boundary of D on ¢=0. The Neumann problem for the parabolic equa-
tion Lu=0 consists in finding a solution to the equation Lu=0 which
satisfies the following initial and boundary conditions :

u=f on A, ,a,li:g on B
ov
(f, g are given functions).

From Theorem 2 and from the strong maximum principle [3 ; Th. 5] we
conclude: If for svery point P'=(2° t°) of B (1) there exists a sphere with
center (x',t), « +a°, passing through P° and contained in D, and (ii)
S(P%) contains interior points of A, then the Neumann problem has at
most one solution. Clearly, this uniqueness property holds also for the
more general problem where 8u/6y is replaced by 6u/or and ¢ is a non-
tangential direction which varies on B.

As another application to Theorem 2, one can deduce the positivity
of 9G/oy, where G is the Green’s function of Lx=0.

5. Let D be a domain bounded by ¢=0, t=T (0<T <) and sur-
faces Iy, 0<k<m, I', being the outer boundary. Suppose further that
the intersection of each I, with ¢=¢, (0<¢<T) is a simple closed curve
7:(t;) which belongs to C® and does not reduce to a single point. Write
uzizau/axi, u,—0ou/0t. We shall consider the following problem P:

( 9 ) i%la’ij(x’ t)umizj_ut:C(xy ty u, Vu)
(where pu denotes the vector ou/ox;),

(10) %Lgﬁ%mnm+m%mmwmwm)@Jﬁf:irk
T =1 ° k=0

(11) u(w, 0)=¢(x) on A A=Dn {t=0}
We make the following assumptions :
(a) a,(x,t) is continuous in D; e(x, t, u, pu) and it first derivatives

with respect to u, pu are continuous for (z, t) ¢ D and for all values
of u, pu.
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(b) ¢ and 8¢/ou are continuous for all (x,¢)e I” and for all .

(¢) ayz,t), afx, t) are continuous for (x,t)e I"; ¢(x) is continuous in A.

(d) (9) is parabolic in IJ, that is, there exists a positive constant o
such that

(12) > a’ij(xy t)EiEj =0>.8

holds for all real & and for all (x, t)eD.

(e) On each surface Iy (=0, 1, -+, m) either all the directions r=(«;,
«) are exterior or all are interior, and in the exterior case «=0 and
the directions («;, 0) are exterior while in the interior case a=<0
and the directions («;, 0) are interior.

Denote by 3 the class of functions u(x, ¢) defined and continuous

in D and satisfying the following conditions :
(a) 0Oufot, ou/ox,, 0°u/ox,0x, are continuous in D ;
(8) For every R>0, 6u/dx; is bounded in DN {la]*+ < R*}.

THEOREM 8. Under the assumptions (a)—(e) the problem P cannot
hawve two different solutions in the class >..
We shall need the following lemma.

LeMMA. There ewists a function C(x) defined in A and having the
Sollowing properties: (i) ¢ has continuous first derivatives in A and con-
tinuous second derivatives in the interior of A; (ii) 0/0v= —1 and 8¢[/op=0
on 10),- -+, 7..(0), where 8/ov and 0/0p denote the derivatives with respect
to the interior normal and to any tangential direction, respectively.

ProOF oF THE LEMMA. It will be enough to construct a function
%(®) which is C” in A, which vanishes in a neighborhood of 7,(0) (=1,
.-+, m) and for which 0y,/00=—1, 0y,/on=0 along 7,0); constructing
7.(x) in a similar manher, we can then take {(x)=>)y(x). Since 7,(0)
belongs to C®, the normals issuing from 7,0) and inwardly directed
cover in a one-to-one manner a small inner neighborhood of 7,(0), call it
A,. To each point « in A, there corresponds a unique point z’ on the
boundary of 740), such that x lies on the normal through 2°. Denote
by o(x) the distance |z—ax°|. It is elementary to show that o(x) has
continuous second derivatives in 4,. Denote by A, the domain 0=c=¢,
where ¢,>0 is small enough so that 4,cA,. The function

@) I 322 (e—o(@)) if xe A,
&) = 0

0 if e A—-A,

belongs to C” in A and satisfies: 0y,/0v=0y%,/0c=—1 and 0x,/0v=0 on
7:(0), and y, vanishes near 7,(0), (1=k=m); the proof is completed.
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Proor or THEOREM 3. We first consider the case n>1. We may
suppose that the vectors («;, @) are exterior directions on 77y,--+, I', and
that (a,, a) are interior directions on I',,,, --+, I",,. Suppose now that
uw and v are two solutions in >, of the problem P, and define w=v—u.
Writing

1
Cla, t, u, v):S —6@-0(90, t, w-+Aw, pu+Apw)di
00U
1
Ciz, t, u, v):S 0
00U,

c(z, t, u-+w, pu-+Ayw)da

%
1

d(x, t,u, v)zg »é%ga(x, t, u+Aiw)da
0

and using (9), (10) and (11), we obtain for w the following system :

(13) Za/ij?/Ugtzj'_wc———CW‘l“ZCiw:zi

(14) ow _ Saw., + aw, = 0w
or ¢

(15) w(@, 0)=0 .

Substituting w(z, t)=2(x, t) exp(Kt+M¢(x)), where ¢(x) is the function
constructed in the lemma and K, M are constant to be determined later,
we get for z the following system :

(18") SiRag,—2=—MZ 0azz— M 202 Le 2
- 2M ZaijCzizxj +KZ—|— CZ‘I‘ M ZCiCaﬂiz + thzmi

(14) Z?EZ Aze, taz,=—M Sl z—aKz+ 0z
T

(15") 2(x, 0)=0 .

If 0=sk=<q,a=0 and Fa(x, 0){.(x)>0 on 74(0), since the angle between
the vectors («;) and grad ¢ is <=z/2. By continuity we get >a(w, 1){. (x)=
»>0 on 7,(t), provided 0=t<T" and T is sufficiently small. Hence, we
can choose M sufficiently large such that

(16) —MSa . ~aK+0<0

holds on 7.(¢), provided K>0 and 0<t<T".

If ¢q+1<Zk<m, a<0 and Dla(x, O)C,i(oc)<0, since the angle between
(a;) and —grad ¢ is <z/2. Again, if K>0 and M is sufficiently large,
then

(17) —M Sl —aK+0>0



REMARKS ON THE MAXIMUM PRINCIPLE 211

on 7.(t), 0<e<T,

Having fixed M, we now choose K sufficiently large so that the
coefficient of z on the right side of (18’) becomes positive in the domain
Dp=Du{0<t<T’}. We claim that 2=0 in D,. Indeed, if this is not
the case then, using (15’) and the weak maximum principle [3; Th. 2]
we conclude that z assumes either its positive maximum or its

negative minimum on the boundary ir,c(t), 0<t<T’, of Dy. It will be
k=0

enough to consider the case in which z assumes its positive maximum
at a point P° on 74(¢). If 0<k=<gq, then 62/6r=0 since r is outwardly
directed. On the other hand, using (14') and (16) we get 082/6r<0,
which is a contradietion. If ¢4+1<k<m, then 92/0:<0 since ¢ is in-
wardly directed. On the other hand, using (14') and (17) we get
0z/6v>0 which is a contradiction. We have thus proved that z=w=
in Dy,. We can now apply a classical procedure of continuation and
thus complete the proof of the theorem for the case n>1.

In the case n=1, I'=I", is composed of two curves Iy, aud [,
Suppose Iy, intersects t=0 at a,, a,<a,. The function

Ha)=F )@ —a)
Uy~

can be used in the preceding proof. Note that it is not necessary to
make any assumptions on the smoothness of the curves I7,.
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AN INVERSION OF THE STIELTJES TRANSFORM

RicHARD R. GOLDBERG

A generalized Lambert transform, or L-transform, is an integral of
the form

H(x):r S aorttg(t)dt
In this paper we shall invert the integral transform

) Gay=| 2T 0<a<e

by reducing it by means of a certain summation to an L-transform and
then applying an inversion theorem for L-transforms.

From this we deduce an inversion formula for the Stieltjes transform.
This is given in Theorem 3.

1. The inversion of the transform (1). We shall need the follow-
ing theorem on L-transforms which is the case r=1 of Theorem 7.7
in [1].

THEOREM 1. Let {a,}i=, be a bounded sequence of non-negative
numbers with a,>0. Let {b,}y-, be the (unique) sequence such that

1, m=1

b=
i 0ot ;o, m=2, 8, «+-

?

the summation running over all divisors d of m. If the b, are also
bounded and if

oo

L K(t)=3 ae™ (0<t< )

2. H(x)= r K(at)(t)dt converges for some x>0

3 Sl 1¢@)log el 4,

-, .
then
1 (_—.1)2 v S vy TP \_y, L oo
plj‘g o1 <t> Zb n*H ( h ) d(t) almost everywhere (0<<t< ) .

Received March,21 1958.
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214 RICHARD R. GOLDBERG

Now let

G(x)= SO 9“2% gt

where we assume

Sw l‘/’(t)l dt < o and S |¢(t)10gt|dt<oo

0

To reduce G(x) to an L-transform we define

Hy@)=1 E0 4 5 (- 16(*7)] N=1, 2, .-
Then
(2) H@)=| 90 L +5 0 T

For N=1, 2, --- we have

T (—lyat

= (@ty+ (k)

at 1
D 0<at .
(xt)2+7r“<wt (O<at<eo)

(This is because the terms of the sum alternate in sign and decrease
in absolute value so that the modulus of the sum is less than that of
its first term.) Hence for any = >0

(ool v 2 Joe e

2 (at) - (kr)? ¢t
This, by dominated convergence, allows us to let N become infinite
under the integral sign in (2) and we obtain

BT (" (—1)txt
Hz)=lim H\(x)= So ’b(t)[ kzl @ty + (oY ]dt @>0).
But for z>0
1., $ (=% _ cosech z _ - 2 o CEDs
2z &=1 24 (km)? 2 ¢ —e"

(see [3; 113]). Thus
(3) H(x):S:]g o~ G2t ()l = S:K(xt)gb(t)dt

where K(t):i ae™" and
k=1
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(4) a’zk;—-lzl ’ 0'27‘::0 ’ k:]u 2; °ce

It was shown in [2; 556] that the sequence {b,}.. deﬁned in Theorem
1 corresponding to the a, in (4) is

(5) bzn—lzl“m—l ’ bm:O ’ 7’&21, 2, e

Here the p, are the Moebius numbers defined as pz,=1, p,=(—1)° if »
is the product of s distinet primes and g,=0 if » is divisible by a square
factor. The b, are bounded, so that we may apply Theorem 1 (with
the a, and b, as in (4) and (5)) to invert the L-transform (3) and obtain
¢(t) for almost all £>>0. These results are summarized in Theorem 2.

THEOREM 2. Let

G((E) = S :;Sb,(t)t,d?

-+t
where
S“’M@ dt< oo
0 t
and
Sl 9@ log t| 4, -,
0 t
Then

Hz)=tim 1[0 51 (—1pg(5)
Now 2L 2 E=1 x
exists for all positive x and

H(z)= S:gle—@k—nw(t)dt .

Moreover

almost everywhere (0<t< ).

2. The inversion of the Stieltjes transform. Let

(6) Fla)= S x:f) dt
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where

Sm Jjﬁ%t) L dt<o and SI Jﬁ@;ﬁgjL dt < oo .

0 0

Let G(x)= %F(xz), J(t)=¢(#). Then

G)= L Fay=1 (7 #O g [ e@N di [ 4O L,

o xitt o ot
also
S“’,J,,ﬁ{’(t), ],,dt:r‘f”(ti)dt: lfrf@dk o ;
o ¢ o ¢ 2Jo ¢
similarly

Sl lg@)logtl g,
0 t

The assumptions of Theorem 2 thus hold. We can therefore use Theorem
2 to obtain ¢(¢)=¢(¢*) for almost all ¢>>0. This gives us ¢(¢) for almost
all £>0 and thus effects an inversion of the Stieltjes transform (6).

THEOREM 3. Let

Fz)= rﬁ(@“ dt

ox++t¢
where
Sm,, e gt < o
0 t
and
Sl le(@) 10gj£l_dt< o
0 t '
Let
1 5
Gl) = F(a)
2
and

=Ll
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(the sum converging by Theorem 2). Then

almost everywhere (0<t<oo).

Of course, the Stieltjes transform has been inverted under less
restrictive conditions on ¢(t). We believe the interest of this note lies
in the use of the g, as an inverting device.
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ON THE PERIODICITY OF THE SOLUTION OF
A CERTAIN NONLINEAR INTEGRAL EQUATION

OrAvi HELLMAN

In the following paper we will study the nonlinear integral equation
(1) E(t):F(t)—S’G(t—T)N{E(z) | dr

where F'(t) is a known periodic real function and G(¢) and N(x) are
known real functions. In particular we will investigate the behaviour
of the solution E(¢) of the equation (1) for large values of ¢.

We assume that GelL[0, o] and that N(zx) is bounded almost
everywhere and Borel-measurable in [— o, o]. Furthermore N(z) is
assumed expressible in the form

1

(2) Ne)~NO)-+| s ¢ Las

with S+NIS(2)ldl<oo and with finite N(0). This representation is to be

valid almost everywhere in [—oco, oo]

Because N(x) is Borel-measurable in [—o, o] and |N(0)]< oo, the
measurability of 2z implies the measurability of Mz). The following
four classes of N(x)-functions are distinguished :

NeK, if weL0, 1] implies N@)e L[0, 1]

NeK,.. if xzelL[0, 1] implies M) e L[0, o]
(3) NeK. it weLf0, ] implies N()e L[0, 1]

NeK,.., if axeL]0, o] implies N(x)e L[0, o]

The space of measurable and bounded functions defined on the
finite interval [0, A] will be denoted by M[0, A]. The norm of
xre M[0, A] is defined, as usual, by

HwHZinf{ sup | }
H tef0,4]1-E
where E ranges over the sets of measure zero in [0, A], and the
distance of ¢ M[0, A] and ye M[0, A] by ||lx—y|]. The space M[0, 1]
is complete.

The proofs in this paper will be based on the following theorem by
Tihonov (see for instance [1]) which is valid in M[0, A]: Let the operator
B map M[0, A] into itself and let ||B(z)—B(»)||<8lle—y|l for all z and

Received March 5, 1957. The preparation of this paper was sponsored by the Office of
Naval Research and the Office of Ordnance Research, U.S. Army. Reproduction in whole
or in part is permitted for any purpose of the U.S. Government.
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220 OLAVI HELLMAN

y in M[0, A], where f<1l. Then the equation y=B(y) has a unique
solution y in M[0, A]. The function y may be obtained by iteration :
y=lim y,

n—oo

where y,=B(y,-;) and where y, may be taken arbitrarily from M[0, A].
We will prove the following theorem.

THEOREM. Suppose that F(t) is a periodic function in [0, o] with
period T, and that F'e M[0, T'|. Furthermore suppose that G e L[0, =],

NeK,.. and
(S: |G<u>ldu)(8: IS()1d2)<1
If E(t) is the solution of

t A(r )_1
(4) E(t):F(t)~—N(O)SOG(u)du SG(t—r)S S o~ s

then lim E(nT+u)=v(u) exists, as n—>o through integer values. The
convergence is uniform. Moreover, v(u) has the period T, and satisfies

(5)  wv(u)=F(u) —N(O)S:G(u)alu*S;° G(T)Sj:

This equation can be solved by tteration stating with any element of
M[0, T). The solution of (5) is unique.

In order to prove the theorem, we will first prove two lemmas.
Put

iAd (mT+u T) __ 1

H[A(u+mT)|= S G(r)drs S(2)grEmTru-m_ € -

dl

where du+mT)=E(u+nT)—Eu+mT) and 0<u<T. Here T is a finite
positive real number, ¢, a positive real number which may be finite or
infinite and m and n positive integers. E(u-+nT)e M[0, T] and E(u-+
mT)e M[0, T] implies A(u+mT)e M[0, T].. The operator H will play
an important role in the following considerations. For this reason we
will first establish some of its properties. We will write more briefly
H(4(mT +wu))=H(4).

LEmMA 1. Suppose that Ge L[0, «], and suppose that the function

N(x) belongs to one of the classes K, and K,,. Then 4e M[0, T] implies
H(4) e M[0, T and

1H(4:) — H(4)l| < Blldy— 4, |

where
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a=({ 160 "iswia).

Now
(6@ E @)~ NE (@~}
=[Gt~ AN (¢ —2)) — N (Bt~} 1or

where

. + oo ei)\E_l

NE)= S Tl
and
P if t<t,
(&= )_{0 if ¢,<t

GeL[0, o] implies G()I(¢,—7)e L[0, <]. Furthermore, from
xe M[0, T] and the properties of MN(x) follows that N(x)e M0, T1.
Consequently N(x) e L[0,T]. From known properties of the convolution
follows now that

| 6@t~ Bt~} — NUE(—)dr e L, T).
Hence H(4)e L{0, T]. Now, as is easily seen,
H@IS ({101 )i 16 +mT—w)dul < Al

which implies the boundedness of H(4). The function H(4) is thus
measurable and bounded in [0, 7], H(4)e M[0, T]. Furthermore

L R B O

2

é(gi: 1S(D)}da >HS:O|G(Z')HA2(ZL+MT—T)~Al(u—{-mT—r)]drH
éﬂ”dz_dlu ’

which completes the proof.
We will now consider the norm

(6) ||\ Eu+nT)— E(u+mT)+ Sf “ GOIN{Eu+nT —)}
— N{E@-+mT—)} 1de]|=Q

where m and » are positive integers, f(m) an arbitrary function of i,
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T a finite positive number and Ee M[0, T]. Furthermore it will be
assumed that Ge L[0, =] and Ne K,.. and that they satisfy the condition

(177 1isanan)({i6ian) <1
The following lemma holds.

LEMMA 2. For every ¢>0 there exists an integer m, such that
m=m, and n=m, tmply Q<e, o and only if, with v(u) from M[0, T],
|E(u+pT)—v(u)|| >0 as p—>oo through positive integral values.

Suppose first that ||E(u+pT)—v(u)]|—=0, as p—>o, where E and v
are in M[0, T]. Now

I GEIN B+ 0T —2)} — N{Eu+mT o) 1de

=] 6| “sw

zAE(u+nT -r)_ez)\ﬂ(uﬂnT -7)

5 didz||

g(g:lG(u)lduXSi 1S(2)]dA )I]E(u+nT—r)—E‘(u+mT—T)l|

and consequently
VB+nT) = B(utmT)+ | GEINE@+nT—2)} — N{E@+mT )| 1

=| 1+ (6w )({ 1wl a2 ) |iB+nT) — B+ mo)

where (S:[G(u)ldu>(S:]S(Z)Idz)<1. Because [|[E(u-+pT)—v(u)]|—0, as

p—oo, there exists for every ¢>0 an integer m, such that m,<m<n
implies

NE@+nT)—E@+mT)| <. °
( )—E( ) oy
from which the first part of the lemma follows.

Suppose now that (6) is valid for m and % greater than a given
integer m,. The inequality (6) may be written

[|4(w+mT)

Md(u +mT—1) __

(7) +Sf(m)G(T)S S(/{)@Mb(uwrﬂ'_?) 3 o ,;l S d)dTH<C
0 ?

where 4(u+mTy=Ew~+nT)— E(u-+mT)
Now let 2 be a function in M[0, T1nS(e, 0) where S(s, 0) is the
sphere with radius ¢ and center at 2=0. Put
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A(u+mT)
) e’i)\A(u +mT—-71) ___ 1

® [T e S

1

dAde=h(u) .

The functions 4 obtained by solving (8) for all ze M[0, T]nS(s, 0) are
those which satisfy (7). E(u+mT) is a known function.
The equation

A(u+mT)=h(u)‘—§f‘”)G(r>S S(2)eECm=o) e”"(“”ff«L—l»«dzdr
0 ?

(9)
= h(w)— H[4(u+mT)]

where H is the operator defined on page 3, may be solved by iteration.
Indeed, by Lemma 1 the operator H is defined in M[0, T}, 4e M[0, T7]
implies H(4)e M[0, T and

|A(w) — H(ds)— (h(u) — H())| = || H(4,)— H(4) || < Bl 4, — 4l

where ,8:(S:IG(u)[duXSi:IS(z)]dl\)<1.

The conditions of the Tihonov’s theorem are thus satisfied. We
begin the iteration process with an A from M0, T]nS(e, 0):

=1 e

Al(u -+ ’}’&T) = k(u) — S:(M) G(T)S S(A)ei)\E(u +nT=7) 6

and generally

T—
i)uip(u+m Ty __ 1

didr

dpers(u+nT)y=h(u)— S G(T)S S(2)gEu+nT=m) e

24

The unique solution of (9) is then lim 4 (u+nT)=4du+nT) where
k— o0
Aduw+mT) is in MO, T1.

Now

i ll+ 1] 16N Is@en -0l E2 L g

<et([T16ia ([ st Yialize+pla

From this inequality one obtains now, remembering that ||4,)]=]2]|<Ze
and that <1,

Myl SQ+B+F4 o4 e 2

This inequality holds true for all ». Consequently
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| |®
W

or, in view of the definition of A(u+»nT),

llE(u+nT)—E(u+mT)||§i%B

for m and n greater than m, But such m, exists for every ¢>0. From
this and from the completeness of the space M[0, 7] follows that
there exists a v, € M[0, T such that

E(w+pT) —v.(u)l| — 0

as p—oo through integral values.
We now proceed to prove the Theorem.
Because of the periodicity of F(¢) one obtains from (1)

Eu+nT)+ g Y G ) N BT —7) pde

— E(u+mT)+ S“+’"TG(T)N{E(u+mT—T)}dT

where 0<u<T and where m and n are positive integers.
Suppose that m<n and ¢,<mT. Then

E(u-+nT)—E(u-+mT) + S:OG(T)[N{E(ZLJrnT—z') } — N{E@u+mT —7)}1de

_ Sj+1nTG(T)_N{E(u+mT—T)}dT'— SZJMTG(T)N{E(ZL—I-?’I»T—T)} dr

0

and
\B(u-+nT) — Bt )+ [ “GRIN{B -+ 0T —2)) — N{B @+ nT—)} ]
gHSuMTIG(r)HN{E(u—l—nT—r)}ldr—i—SjmTlG(r)HN{E(u—{—mT—r)}IdrH

t
0

<(f, 6@l +|, " e a2 6 ar

Because G e L[0, ], there exists a positive integer m, for every
e>0 such that for t,=m,T

0O gy

But m;=<m<mn. Consequently, for every e>0 there exists a positive
integer m, such that m,<m<n implies
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| E(u+nT)—E@m-+mT)
+Sm2TG(T)[N{E(u+nT—T)} — N{Eu+mT—1)}Jdel| <e
0
By Lemma 2 it follows now that there exists a ve M[0, T] such
that ||[E(u+pT)—v(u)||>0 as p—c through positive integral values.
Consequently E(u-+pT) converges uniformly to »(x) in [0, T]. That

v(u) is periodic with period T' is immediate.
We substitute now

E@+nT)=v(u)+ H,(u)

where H, e M[0, T] and ||H,||—0, as n—>c and where 0<u<T, into (1)
and obtain

() —{—Hn(u):F(u)—N(O)SuMTG(r)dr

M)(u 7)61)\Hn(u )

—S *G(0) j s@) ¢

—1 gidr

As is seen at once, this may be rewritten as follows:

v(u)—F(u)+S:G(T)S:S(z)i”(.’g);1 dldr—I—N(O)rG(r)dr

(u 7 —

+S°°G(T)S+°° S VD =1 e+ H () +
0 -

iM (u—r)eiAHn(u—T) _

" 6ol sy Laade— (o) S:MG(T)drzo

which yields the inequality

) —Fey+{ 6| s < i
<t )+([ 66| Isola )il
+<S:mlG(u)ldu)(S: IS o)+ Ell+ NO)| " [Gldu
=+olI+(| 16wl 1swl d i+ i)
+ N0 |Gelar

But 3, giwIS(x)ld/l, llo(w)l] and N(0) are finite, ||H,||—>0 as n—o and

riG(u)[du—w as n—c. Consequently
nT
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+ i (U-7) __

Hv(u)—<F(u)—N(0)S:G(u)du~S:G(r)g “S@) 1 arde |0,

as m—oo through integral values, from which the equation (5) follows
for v(u).

The right side of (5) satisfies the conditions of Tihonov’s theorem.
This follows by Lemma 1 where we substitute f,=oo, E(mT+u—7)=0
and d(mT+u—7)=vm—z). If the right side of (5) is denoted by c(v),
then, by Lemma 1, ve M[0, T'] implies c¢(v)e M[0, T] and ||c(v,)—c(v,)l|
<pllv,—wv,|| for », and v, from M[0, T]. By Tihonov’s theorem it follows
then that the equation (5) has a unique solution v e M[0, T'] which may
be obtained by iteration, beginning with an arbitrary function from
M[0],T.
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A THEOREM ON EQUIDISTRIBUTION IN
COMPACT GROUPS

GILBERT HELMBERG

1. Preliminaries. Throughout the discussions in the following sec-
tions, we shall assume that G is a compact topological group whose
space is T, with an identity element e and with Haar-measure ¢ normal-
ized in such a way that #(G)=1. G has a complete system of inequivalent
irreducible unitary representations' R™ (1€ 4) where R® is the identity-
representation and r, is the degree of R™W. RW®M(e¢) will then denote
the identity matrix of degree r,.

The concept of equidistribution of a sequence of points was introduced
first by H. Weyl [6] for the direct product of circle groups. It has
been transferred to compact groups by B. Eckmann [1] and highly
generalized by E. Hlawka [4]. We shall use it in the following from :

DEFINITION 1. Let' {x,:vew} be a sequence of elements in G and
let, for any closed subset M of G, N(M) be the number of elements in
the set {x,: 2z, e M, v<N}.

The sequence {x,:vew} is said to be equidistributed in G if
(1) lim YD —

N N
for all closed subsets M of G, whose boundaries have measured 0.

It is easy to see that a sequence which is equidistributed in G is
also dense in G. As Eckmann has shown for compact groups with
a countable base, and E. Hlawka for compact groups in general, the
equidistribution of a sequence in G can be stated by means of the
system {R®™ :1e 4} of representations of G.

LEMMA 1. The sequence {x,:ve w} is equidistributed in G if and
only if

(1) lim% S RM(z,) = 0 for all 1+ 1.

N-co

Using this lemma, Eckmann arrives at the following theorem.

Received May 27, 1957. Presented at the 535th meeting of the Amer. Math. Soc. in
Berkeley, Calif., April 20, 1957.

1 In the following A and A’ always denote any index-set, finite, countable, or un-
countable, and » denotes the set of positive integers 1,2, --- .

2 Professor Hlawka has also noted in a letter to me that in order to secure the validity
of Theorem 7 in [1] the lemma and footnote preceding it, it is necessary to change the
definition of equidistribution into the form given below.
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THEOREM 1. Let g be an element of G such that
|[RM(g) — R™(e)| # 0 Sor all 2+ 1.

Then the sequence {g":ve w} is equidistributed in G.

It follows immediately that a group containing an element g with
the above property is abelian and generated by a single element in the
sense that the powers of g are dense in G. A group with the last property
is called monothetic.

It is possible to extend this concept of generation of a group by
one element to generation by a finite number of elements, that is, to
ask for the smallest closed subgroup of G which contains a given finite
set of elements of G (i. e., in which the set of all finite products of
finite powers of these elements is dense).

DEFINITION 2. The finite set {g,:%k=1,2, ---,n} of elements of G
is said to gemerate the subgroup H of G, if H is the smallest closed
subgroup of G containing all g, (k=1,2, ---, n).

Our subject in the following discussion will be a generalization of
Eckmann’s results in two directions indicated by that definition. TFirst
we shall try to find equidistributed sequences produced by finite set of
elements in not necessarily commutative groups. In fact, the corre-
sponding Theorem 2 will turn out to contain Theorem 1 as a special
case. Furthermore we shall extend the definition of equidistribution in
G to equidistribution in a subgroup of G.

DEFINITION 3. The sequence {x,:ve€w} of elements of a subgroup
H is said to be equidistributed im H if it is equidistributed in the topo-
logical group H with respect to the relativized topology and with respect
to the Haar-measure on the topological group H.

This definition is legitimate since H in the relativized topology is
again a compact and 7,. Theorem 3 permits us to find sequences equi-
distributed in a subgroup of G and contains Theorem 2 as a special case.

In §4 we compare our results with the results already known
for finite groups which can be considered as compact groups in the
discrete topology. Finally, we apply our results to abelian groups.

Before taking up this program, we state two rather obvious lemmas
which will be helpful for deriving new equidistributed sequence from
given ones. Clearly changing a finite number of elements of an equi-
distributed sequence has no influence on the property of being equi-
distributed.

LEMMA 2. If the sequence {a,:ve€ w} is equidistributed in G, then
the sequence {a~}:ve w} is also equidistributed in G.
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Proof. If M is an arbitrary closed subset of G whose boundary has
measure 0, then M~ is also closed its boundary has measure 0 and #(M)
=p(M) because of the fundamental properties of the Haar-measure p.
Let N'(M) be the number of elements in the set {a,:a,e M, r<N} and
correspondingly N”/(M) the number of elements in {a;':a;'e M, v<N}.
Then N'(M)=N(M"") and

im VM) o
lim L) = ()

N—oo

which holds because of our assumption for {a,:re w} is equivalent with

im VM) _
lim N p(M) .

N—oo

Therefore {a;':ve w} is equidistributed in G.

LeMMA 3. If the sequences {a,:ve w} and {b,:ve w} are equidistri-
buted in G, then the sequence {c,:cCy_1=a,, c;,=b,,vE€w} is also equi-
distributed in G.

Proof. Define N'(M), N'(M) and N(M) respectively for the se-
quences {a,:vew}, {b,:vew} and {¢,:vew} as above. For any posi-
tive integer N, let NV, be the greatest integer in (N41)/2 and let N,=
N—N, (N; and N, are just the numbers of a’s and b’s among the first
N ¢’s). Then '

NGO _ N(D+NI(M) _ N(M) | Ni(
N N,+N, N N

Starting from our assumption about {a,:rew} and {b,:ve w} it is easy

to show that

tim Y1) _ gy No M) (M)
N0 N N-oo N 2

for any closed subset M of G whose boundary has measure 0. But
this implies (1) and the equidistribution of {¢,:ve w}.

2. Non-commutative groups. A first generalization of Eckmann’s
Theorem 1 is given by the following.

THEOREM 2. Let g, (k=1,2,---,n) be n elements of G such that
Jor each 2+1 there is at least one g; for which

|R®(g5) — R®(e)] # 0 .
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Then the set of elements®

G={g:9 =gngpp--- g, 054 < o, k=1,2,+--,n}
can be arranged in o sequence which is equidistributed in G.

Proof. We shall use Lemma 1. In order to simplify the notation
of the proof, let us agree on the following. If A is the matrix (a )
then || A]| shall stand for the matrix (|a,|), and if B is a matrix (b))
of the same degree 7, as A then we shall write ||A||<||B|| for the
simultaneous inequalities |a;,|<|b,,| for all 4, § with 1<4,5j<r,. The
symbol F® ghall stand for the matrix of degree r, with the entries
Sfi;=1 for all ¢, 5 with 1<4,j=r,. We can regard || A|| as matrix-norm
for A for which the following relations hold (all matrices are of same
degree r,).

Al = 1Ek]-|A]| (ke K=field of complex numbers)
HA+B| < |[All+] Bl

(2) NAB| = 1All- I B
HAl-NBlI=ICl-IID]l if JA[l=I]ICll and [[B|[=|[D]|
A]l £ aF'® if @ = max {la,|:1=14,5 < n}

(F ) = pr-1f

Furthermore we shall write II7, 4, for the ordered product Ak, -« -, &,
and 3. for

5,850,573,
FT S
S e, D
=0 7p=Ty In=Im
if it is clear that [ goes from 1 to m.

In order to prove the theorem we first arrange the countable set
G’ in a sequence {g,: v€ w} as follows, let g; be ¢ (¢,=0 for k=1,2, .-+, n);
as the next 2°—1 elements we take the products II7., gi+ with 0=Z4, =<1
(k=1,2,---,n) and max {4,:%k=1,2, --+-,n} =1 in any order. Then we
take the 3*—2" produects II?., gl with 0<4,<2 (k=1,2,---,n) and
max {4,:%k=1,2,--- ,n} =2 in any order and so on.

The sequence so constructed {g;:v€ w} contains all elements of G’
and has the property that the first (¢+1)* elements ¢, (»=1, --- (2+1)")
are precisely all elements II7_, gi with 0<¢,<4, (k=1,2,---,n). In
order to show the equidistribution of this sequence in G we have to
show that

3 We allow any element of G to occur an arbitrary number of times in the set G’ and
similar sets formed below.
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N—>oo

(3) lim 11V S RM(gl)=0 for all 11
v=1

Let us assume that for a fixed 1#1 the element g; satisfies the
condition

(4) |B™(gz) — R™(e)| # 0

which means exactly that the matrix R™(g,) does not have the eigen-
value 1. For a given N let ¢ be the greatest integer in N'/*—1, such
that

(5) (@+1)" = N<( + 2)".
Then

N N
LS Rovgl) = [ SROG) + S RO
N = = =+ +1
where the second term in the square brackets vanishes if N = (¢+1)";
with the same qualification we have

1 & N1 & S '
S RoE) = L] s Ro(TLok)+ S RO
6 N =i N Losi =i k=1 v=C+D%+1

— (a+1)" l:’ 1 ) T oot ___17__~ < RM™(( ]
N (t+1) ogizkng <1I=I1 gkk) + (@+1) v:-(i%)"ﬂ (@) ] -

Let us now consider separately the terms in the square brackets.
(a) Because of well-known properties of matrices and group-repre-
sentations we can write

;,1%_ R § ko 1 1 R iy
(e+1)" og%m <H1 G > (i 1) Os%si Igl[ (9]

=11l _,,z [R™(g,))
(7) { L i }

=T SEO@I - 1 3 RO

n

Again the first or last of the three factors vanishes if k=1 or k=mn.
Since R™(e) is the identity matrix, the following identity holds.

[RO(g) — RO()] 3 [RO (g5 = [RO(ge)]'™ — RO .

Because of our assumption (4), we can solve this equation to obtain.
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Z_;O[R“’(g;a)]if = [R®(gr) — R¥(e)]™ - {[BM(g)I'™" — B™(e)}
Since R™ is a unitary representation of G, we have for any geG
and any integral exponent j
(8) HRD@F Il = BE®(g) | < FD .
According to our rules (2), the following inequalities then hold
IR (ge)I'™ — EM(e) || < 2F™,
HIR™(gz) — BP(@17 || = mn ™,

where m, is a positive constant independent of 4. This gives an upper
bound for the matrix norm of the middle factor in (7)

< 2m, [FOT = 2mas oy |

S RO < it1 i1

z—l—l i =0

Furthermore by (8)

R™ | < 2 GHDEF® = FO |
|y S| = 4 G+

Replacing each factor in (7) by the stated bound for its matrix-
norm, we get

L gofi o)

—— <[ {F® 2y F - T {F®
(+1)" odise H { ;e +1 LONDY k=1;[+1{ }

(9)
1

. 2 T”FO) .
apl ST

(b) Using (b) we get an upper bound for matrix norm of the
second term in (6)

<1 5 Iro@

1 l ,
L S RO =
( 1)” V= (L+1) +1

(Z+1) Y=+ 41

N—(+1)"
< = Gy (by (8))
(+2)"—(+1)" f
10 Aera) =T L) pod by (5
(10) (1) (by (5))

-5y
[
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(¢) Let now ¢>0. Because of (9) we can find a number I, such
that for all i=1,

1 ™ (T i) £
(11) RPN (f1, o) < 7o .
Let
1/n
2_(3“)
5+1) -
then for ¢=1I, we have
1\ €
12 (1 f_> 1= &
(12) + 7+1 -2

Now let I=max ([, I,) and take M=(I+2)*. Then from (6), (10)
and the last two relations (11) and (12) it follows that

1 & S s @E+1)" [e 1> A]
= ST RM(q, A )7 | € pov 1 & ey
“N;l (g)“ <N

< g™ for all N= M.

This shows the validity of (3) and the application of Lemma 1 com-
pletes the proof.

E. Hlawka, [4, §6] has shown that any sequence which is dense in
G can be rearranged so as to be a sequence which is equidistributed in
G. In view of that fact it should be emphasized that Theorem 2 (as
well as any of the following ones) does not merely state that the set
G’ is dense in G; it states also the existence of a generally valid
formula, as shown in the proof, for actually arranging the elements of
G’ in a sequence which is equidistributed in G.

Theorem 2 implies two more facts which are worth noting. First
if we have n elements of G which satisfy the required condition, then
we can, before actually producing the set G', arrange them in an entirely
arbitrary order without affecting the equidistribution of the corresponding
sequence in G. In the non-commutative case we shall therefore in
general get different sequences containg different elements of G which
are equidistributed in G. Second, we can add an arbitrary finite number
of arbitrary elements ¢, **+, gm to our set of n elements {g,:k=
1,2, ---,n} of G. The new set of m(>n) elements of G still satisfies
the condition of the theorem and, taken in any order, produces a set
which can be arranged so as to be an equidistributed sequence in G.

The first remark together with Lemma 2 and Lemma 38 leads to the
following.
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COROLLARY 2.1. If the elements g, (k=1,2, --- , n) satisfy the con-
dition of Theorem 2, then the sets

G = {g//:g//:gflgéz,... ,gén’ — o <7’k§07 k:1,2,"' ,n}
and
G = {g”':g”':gflgi%“' , Gin, —oo <4, < 4 o, k=12, .-- ,n}

can be arranged in sequences which are equidistributed in G.

Proof. Let

G= {g:—é:g;ng;n_—li’ e 19:1, O§Zk< + oo, k~——1,2, M rn} .

Then G can be arranged in a sequence equidistributed in G and G”=G".
According to Lemma 2, G’/ can also be arranged in a sequence which
is equidistributed in G.

G’ is the union® of G’ and G”—e and according to Lemma 3 can
be arranged in a sequence equidistributed in G.

COROLLARY 2.2. If the elements g, (k=1,2, ---, n) satisfy the con-
dition of Theorem 2, then G is generated by {g,:k=1,2, «-- ,n}.

Proof. We notice that G’ is not an abstraet subgroup of G. How-
ever, the subgroup H generated by {g,:%k=1,2, ---,n} must contain
any finite product of finite powers of the g,’s. Therefore, it must con-
tain all elements of the set G'. Since G’ is dense in G, we have H=G.

3. Subgroups. If H is a subgroup of G, then any R™(ie A) re-
stricted to the elements of H, gives a representation R*™ of H, Each
R*® can be completely reduced into a direct sum of irreducible unitary
representations of H which, as remarked before, is again a compact
group. Let' R'™(re A’) be the system of inequivalent irreducible unitary
representations of H, so obtained. R’ again denotes the identity re-
presentation of H, obtained e.g. by restricting R® to H.

It can be shown without difficulty that {R'®™ :7r€ A’} is a complete
system of inequivalent irreducible representations of H. In order to do
that we have by the Stone-Weinstrass-theorem to show that the entries
of the system {R'™ :re A’} span a linear space which is an algebra
closed under pointwise multiplication and under conjugation and which
separates points in H. But all these properties hold for the system
{R® :2e 4}, and from this we have obtained {R'® :z€ A’} only by
changing the base in each R™, restricting it to H and selecting a
system of linearly independent entries.
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We can apply Theorem 2 to a subgroup H in the following form.

THEOREM 3. Let H be a subgroup of G and let h, (k=1,2, -+, n) be
elements of H with the property that for each Ae A there is at least one
element hy such that the multiplicity of the eigenvalue 1 in R™(hg) s
exactly the multiplicity with which the identity-representation R'® of H
18 contained in R*™,

Then the set

H ={:h0="~"hg - hin, 050, < + 0, k=1,2,.--,n}
can be arranged in a sequence which is equidistributed in H.
Proof. From the above remarks we can conclude that any irredu-

cible representation of H is contained in some R*™. Suppose that for
a certain 71 and for each k=1,2, --- , n we have

| RO (k) — B O(e)| = 0.

This implies that R’®(k,) has the eigenvalue 1 for each k=1,2, ..., n.

The representation R’'™ is contained in some R*® which may contain
also R'® with multiplicity m. But then each R™(%,) (k=1,2, --., n)
would have the eigenvalue 1 at least with multiplicity -1 which con-
tradicts our assumption.

Therefore for each r+#1 there has to be at least one A3 such that

| R' (ki) — R'(e) | # 0

and the conclusion of Theorem 2 applies to the topological group H.

Again we notice that the order, in which the elements %, are used
to produce the set H’ is insignificant. By exactly the same reasoning
as in §2, we obtain the following.

COROLLARY 3.1. If the elements h, (k=1,2, -+, n) satisfy the con-
dition of Theorem 3, then the sets

H"” = {k”:k’/:hilhé?,"' ’hrfnr "‘°°<7:1c§0r k=1,2,--. ’”’}
and
H"” = {B":0" =hithi, +ot ,hin, —c0< 4, < + 00, k=1,2,.+-,n}

can be arranged in sequences which are equidistributed in H.

COROLLARY 3.2. If the elements h, (k=1,2, ---, n) satisfy the con-
dition of Theorem 3, then H is generated by {h,:k=1,2, .- ,n}.

4. PFinite groups. Let now G be a not necessarily commutative
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finite group of order o, considered as a finite compact group with the
discrete topology. The Haar-measure of G is then defined by p(g)=1/o
for any element geG.

The theorems stated so far are valid in general and therefore also
for finite groups, since G was nowhere required in the definitions,
lemmas and proofs to have infinitely many different group elements or
inequivalent, irreducible representations. However, it is of not much
use to talk about infinite sequences in a finite group. Therefore it seems
justified to modity the concept of equidistribution of a sequence to the
situation in finite groups in the following way :

DeriNiTION 4. Let {2,:v=1,2,..., N} be a finite sequence of
elements of G and let N(M) be the number of elements in the set
{z,:2,e M, v< N} for any subset M of G.

The sequence {x,:v=1,2, ..., N} is said to be equidistributed in
G if

(13) NI — pany

for all subsets M of G.

The formal translation of Definition 1 to finite groups, however,
admits a much less complicated statement of equidistribution of finite
sequence in a finite group which in turn reflects the intuitive meaning
of equidistribution in infinte groups. In contrast to the infinite case the
order of the element in the finite sequence {z,:»=1,2, --., N} is com-
pletely irrelevant. Instead of talking about a finite sequence of elements
of G, we might therefore just as well talk about a finite set of elements
of G (which may contain any element of G arbitrarily often). If M
contains m elements, then u(M)=mfo. Especially if M={g} (a single
element of G) (18) gives N(g9)=NJo for any element g€ G which means
that {z,:v=1,2, ---, N} contains each element of G equally often.
Conversely, if the latter is true, then N(M)=mN/o and (13) holds for
any subset M of G. So we can give the following better definition.

DEFINITION 4’. The finiteset {z,:v=1, 2, .-, N} of elements of G is
said to be equidistributed in G if it contains every element of G equally
often.

In the same way we modify Definition 3.

DEFINITION 5. The finite set {w,:v=1,2, .-+, N} of elements of a
subgroup H is said to be equidistributed in H if it contains every element
of H equally often.

The theorems obtained so far are then completely transferrable to
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the finite case [3 Theorems 8 and 9]. Let now {R™:i=1,2,...,10}
be a complete system of inequivalent irreducible unitary representations
of G and let R® again be the identity-representation of G. Further-
more let o(g) be the order of any element ge G. The results are as
follows.

THEOREM 4. Let g, (k=1,2, -+, n) be n elements of the finite group
G such that for each A+#1 there is at least one gz for which

|R®(gy) — R®(e)| # 0 .
Then the set
G =1{9:9g =ghgh - ,00h 0=i,<olg) k=1,2, -+, n}
s equidistributed in G and contains each element g€ G exactly

l ﬁ O(Qk)
0 k=t

times.

COROLLARY 4.1. If the elements g, (k=1,2, -+, n) satisfy the con-
dition of Theorem 4, then G is gemerated by {g.:k=1,2,---,n}.

THEOREM 5. Let H be a subgroup of order o(H) of the finite group
G and let by, (k=1,2, .-+, n) be elements of H with the property that for
each 2=1,2, --- , [ there is at least one element h; such that the multi-
plicity of the eigenvalue 1 in RW(hg) is exactly the multiplicity with
which the identity representation R'® of H is contained in R*™,

Then the set

H = {k’:h’:hilkﬁz,--., 111:,"! 0§$k<0(hk), k:1,2,... ,n}

is  equidistributed inm H and contains each element he H exactly
o(H)* %1 olhy) times.

COROLLARY 5.1. If the elements h, (k=1,2, .-+, n) satisfy the con-
dition of Theorem 5, then H is generated by {h,:k=1,2,---, n}.

The Corollaries 2.1 and 3.1, transferred to the finite case, coincide
with Theorems 4 and 5. There is a last case which might be of in-
terest, where H is a finite discrete subgroup of the infinite compact
group G. Take the notation as defined in the corresponding cases. We
get the following.

THEOREM 6. Let H be a finite discrete subgroup of order o(H) of
the infinite compact group G and let h, (k=1,2, ---,n) be elements of
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H with the property that for each A€ A there is at least one element
hi; such that the multiplicity of the eigenvalue 1 in R™(hi) 4s exactly
the multiplicity with which the identity-representation R'® of H is con-
tatned in R*™,

Then the set

H = (Wl =hiths, coe  hin, 0 =i, <oh), k=1,2, - ,n}

is  equidistributed itn H and contains each element he H ewxactly
o(H)™* [T%-: 0(hs) times.

Proof. By the same reasoning as in the proof of Theorem 3 we
assert that each irreducible representation of H is contained in some
R®™, restricted to H. Then as there was done with Theorem 2 we apply
Theorem 4 to the finite group H.

COROLLARY 6.1. If the elements h, (k=1,2, ---,n) satisfy the con-
ditions of Theorem 6, then H is gemerated by {h;:k=1,2, .-, n}.

It may be remarked that Theorems 4 to 6 can be deduced also from
Theorems 2 and 3 without going back to the corresponding condition
imposed on the generating elements, by means of the following lemma.

LEMMA 4. Let g, (k=1,2, ---,n) be elements of finite order o(g;)
*k=1,2, .-+ ,n) of an arbitrary compact group G.
Then (i) the finite set

G={g:9=0qhg -, 0im 0=5,<o0(g), k=1,2, -+, 7}
is equidistributed in G if and only if (it) the set
G={g:9 =gugp - ,0m 056 <+, k=1,2+--,n}
can be arranged as in the proof of Theorem 2 in a sequence which s

equidistributed in G.

Proof. (i) — (i7). From (z) it follows immediately that G is finite.
Let m be the least common multiple of the numbers o(g;) (k=1,2, «--,
n). If we arrange the elements of G’ in a sequence {g,:v€w} as in
the proof of Theorem 2, then we observe that

{gviv=(om)'} = {9 19 =ghgh,-+-,gn, 04, <pm, k=1,2,+++,n}

(p=npositive integer) is just composed of (pm)*/I[r-10(g:) times® the set
G. So for N=(pm)" in (1') we get

L p—

(14) 1
(pm)* v=1 %=1 0(gx) 0sip<otap

ro(fL o)
k=1
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If (4) holds it can be shown that the right-side sum in (14) is the
0-matrix for 1#1. If N is an integer between (pm)* and [(p+1)m]
then the left-side term in (1’) can be split up into (pm)"/N times the
left-side term of (14) and 1/N times a sum of N—(pm)® unitary matrices.
But

N—(m)" _ [(p+1)m]"—(pm)* _ 1y
NS (my () 1

can be made arbitrarily small as in the proof of Theorem 2 and by the
method used there we arrive at (1').
(it) > (7). We first observe that G’ contains only finitely many different

elements, namely those contained in G, and G is finite. Again (14)
holds. Since (14) gives just the value of the left-side term of (1’) for
N=(pm)* (p € w), we can conclude from the validity of (1') that

R(M(If:[l ggk) = Z R(A)(g)

0=1<0(gz) geG

has to be the 0-matrix for i:1. But from this follows () by the well-
known properties of irreducible representations of a finite group.

5. Abelian groups. Let now G be a (finite or infinite) compact
abelian group. The irreducible representations are of degree 1 and in-
stead of talking about a complete system of inequivalent irreducible
unitary representations R™ (1€ 4) we may talk about a complete system
of inequivalent characters y™ (1€ 4), where y® denotes the identity-
character. As can be seen easily, the conditions of Theorem 2 and 8
take the specially simple form ‘ y™(ggz)=#1 for 21" and ‘“ for each 2
for which y™(%)+1 for some element 5 e H there is at least one element
hiz such that y™®(h;)+#1" respectively. However, here we can make a
stronger statement than in the preceding theorems.

THEOREM 7. Let g, (k=1,2, -+-, n) be elements of the abelian group
G. Furthermore, let

G,:{g/:g,zgf1g§2,“',g,fn, Og?’k< +o°’ k:1y2"";n}

and let {g,:ve w} be the sequence tn which the elements of G’ have been
arranged as in the proof of Theorem 2.

A mnecessary and sufficient condition for (3) {gx:k=1,2,---,n} to
generate G and (i1) {¢,:ve w} to be equidistributed in G is that for each
A#1 there is at least one ¢g; such that

2 M(ge) # 1.

Proof. The statement about sufficiency is exactly Theorem 2
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together with Corollary 2.2. Let us now assume that {g,:vew!} is equi-
distributed in G. Then {g,:%k=1,2, .-+, n} generates G. Suppose that
for a given 21 we have y™(g,)=1 for all k=1,2, ..., n. Take a fixed
element ge G with y™(g9)#1 and an arbitrary small positive number
e<|¥™(9)—1}. Since finite products of finite powers of the elements
ox (k=1,2, ---,n) are dense in G and since Y™ is a continuous charac-
ter on G there has to be an element ¢'=gji gl -+- g/» such that

lx®(g) — 1) <e.

Since y™(g’)=1 this implies |y®™(g)—1|<e. But this contradicts our
assumption about e.

THEOREM 8. Let h, (k=1,2, ---,n) be elements of a subgroup H of
the abelian group G. Furthermore let

H = I :h =hihl, eoe  hin, 06, < + o0, k=1,2,--+,n}

and let {h,:vew} be the sequence in which the elements of H' have been
arranged as in the proof of Theorem 3.

A necessary and sufficient condition for (i) {h,:k=1,2,.--,n} to
generate H and (ii) {h,:ve w} to be equidistributed in H is that for each
A for which y™(h)=1 for some element he H there is at least on element
hi; such that y®(hy)+1.

Proof. Again the sufficiency of the above condition is stated in
Theorem 3 and Corollary 3.2. On the other had, if {4,:vew} is equi-
distributed in H, then {A,:k=1,2,...,n} generates H and we can
prove our claim exactly as in the proof of the preceding theorem.

Naturally there hold similar statements as Corollaries 2.1 and 38.1.
For finite abelian groups we can, by obvious modifications, arrive at con-
clusions about equidistribution of finite sets as in §4, see [3, Theorems
10 and 11].

If we take as our abelian group G the direct product of p eircle
groups, the p-dimensional toroidal group, then Theorems 7 and 8 give
us well-known theorems of Kronecker [5, p. 83 Theorem 4] and Weyl
[6, Theorem 4]. It has been shown by Halmos and Samelson and again by
Eckmann (see [1, Theorems 2 and 5] and [2, Theorem II* and Corollary])
that the p-dimensional toroidal group as well as any separable connected
compact abelian group is monothetie.

In contrast to the situation in abelian groups the condition of
Theorem 2 is not necessary for the existence of an equidistributed
sequence of the form {g,:ve w} (as constructed there) in a non-com-
mutative group. A simple counter example is given by the tetrahedral
group A, (the alternating group of 4 variables). Let ¢, and g, be two
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different elements of order 2 and g¢g; an arbitrary element of order 3.
If we denote by R® the irreducible representation of A4, of degree 8 it
can be easily checked* that | R®(g,)—R®(e) |=0 for k=1, 2, 3. However,
the set of 12 element G={g:g=gh gl g5, 0=i,<2, 0<i,<2, 0<4,<3}
is equidistributed in G. By Lemma 4 it follows that the set

G=1{g:9=gugigp, 0=i< o, k=1,2,8}

can be arranged in a sequence which is equidistributed in G. A counter-
example disproving the necessity of the condition of Theorem 3 is given
by any group containing A, as a subgroup, for example A, itself or
the symmetric group of 4 variables.
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SUBFUNCTIONS AND THE DIRICHLET PROBLEM

Lroyp K. JACKSON

1. Introduction. In previous papers [1;6] the notion of sub-
harmonic functions was generalized by replacing the dominating family
of harmonic funections by a more general family of functions. The object
was to require of the dominating functions the minimum properties
necessary to study the boundary value problem by subfunction tech-
niques. In a natural way these properties were separated into two
parts : first, those properties sufficient to obtain functions which are
solutions in the interior of a domain and, second, those properties suf-
ficient to obtain agreement of the solution with the prescribed boundary
values on the boundary of the domain. In particular the aim was to
choose properties which would be sufficient to insure that a solution
would take on prescribed boundary values at any boundary point p at
which an exterior circle could be drawn intersecting the closed domain
only in the point p. In a recent paper Inoue [5] points out an error
in this second aspect of [1]. Inoue then lists properties of the dominating
functions which are sufficient to insure the regularity of boundary points
at which exterior triangles can be drawn. In his paper these properties
are embodied in six postulates the first four of which are essentially
the same as the first four postulates of [1]. Postulates 5 and 6 given
by Inoue are used in studying the behavior at the boundary and are
naturally more restrictive but they are such that the theory can be
applied to elliptic partial differential equations which have the property
that the difference between two solutions is subharmonic when positive.

In the present paper we use only the portion of the theory of sub-
functions which is based on the first four postulates of [1] to obtain
some results concerning the Dirichlet problem for certain types of
elliptic equations. We shall give some results concerning the linear
equation

( 1 ) AZ—{—(I((E, y)zx‘}‘b(a” y)zy"‘{"c(x’ y)z-——f(x, y) ’

0%, 0% e .
where Az=—°"1"°  and the quasi-linear equation
oz oy

(2) a(p, Q)r+2b(p, 9)s+c(p, ¢)t=0,
2, 2 2

where p:ai, q:@?-, r:%, s:—az“, and t=0% In particular we
ox oy oz’ 0x0y 0x*
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shall give a theorem concerning the Dirichlet problem for the minimal
surface equation

(3) 1+¢)r—2pgs+(1+p*)t=0

for non-convex regions. The result is quite weak but is perhaps of
some interest since results ef this type are very meagre indeed.

2. {F}-functions and sub-{F} functions. In this section we shall
list for convenience the postulates satisfied by the {F'}-functions and
some theorems given in [1]. For simplicity our language will be in
terms of the plane, however, our statements in this section could be
phrased in terms of Euclidean space of any number of dimensions.

Let D be a given plane domain and let {k¥} be the family of all

circles with radii less than some fixed number and such that K=K+t cD
where K is the open circle bounded by x and K its closure. Throughout
the paper we shall use 2 to indicate an arbitrary bounded domain such

that 2c D and the boundary of 2 will be represented by w. We shall
use single small italic letters in this seetion to represent points in the
plane.

Let there be given a family of functions {F(xr)}, which we shall
call {F'}-functions, satisfying the postulates that follow.

PoSTULATE 1. For any re {t} and any continuous boundary value
function %(x) defined on &, there is a unique F(x; A ;x)e {F(x)} such that

(@) F(x;h;c)=h() on k,
and (b) F(x;h;x) is continuous on K.

POSTULATE 2. If A(x) and A, (x) are continuous on re {¢} and if
h{x)—hy(x)<M on k¥, M=0, then

Fl;h ;6)—F(x; by 6)SM

in K; further, if the strict inequality holds at a point of k¥, then the
strict inequality holds throughout K.

PosSTULATE 3. For any ke {¢} and any collection {A,(x)} of func-
tions #,(x) which are continuous and uniformly bounded on &, the
functions F(x; %, ; k) are equicontinuous in K.

DEFINITION 1. The function s(x) is defined to be a sub-{F'} func-
tion, or simply a subfunction, in D provided

(a) s(x) is bounded on every closed subset of D,
(b) s(w) is upper semicontinuous in D,
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and (e) s(@)=<F(x)e {F(x)} on te {k} implies s(x)<F(x) in K.

DEFINITION 2. The function S(z) is defined to be a super-{F'}
function or a superfunction in D provided—S(z) is a sub-{—F'} function
in D.

Let g(x) be a bounded function defined on w, the boundary of £,
and define

9, (xy) =lim inf g(x) ,

x€ L)

and

W

g*(x,)=lim sup g(x) .
€ 0

DEFINITION 3. The function ¢(x) is an under-function (relative to
g(x)) in 9 if ¢(x) is continuous in 2, is sub-{F} in 2, and ¢(@)=g(x)
on w.

DEFINITION 4. The function ¢(x) is an owver-function (relative to
g(x)) in Q if ¢(x) is continuous in 2, is a super-{F'} function in 2, and
P(z)=g(@) on w.

PoSTULATE 4. If 2 is any bounded domain comprised together with
its boundary » in D and if g(x) is any bounded function defined on w,
then the associated families of over-functions and under-functions are
both non-null.

DEFINITION 5. By a solution of the Dirichlet Problem for Q relative
to {F(x)} and relative to a given bounded boundary value function g(z)
on w, we shall mean a function H(x) which is continuous in 2, satisfies

(4) 94(a0)<lim inf H(z)<lim sup H(z)<g*(a,)

z€Q-mp TE Q>
at each 2,¢ w, and is such that for each & e {r} with KcQ we have

(5) Hx)=F(x; H;x) in K.

DEFINITION 6. We shall say that a funetion H(x) which is continuous

in 2, and which satisfies (5) for each ke {k} with Kc®Q, is an {F}-
function in £.

DEFINITION 7. Given a bounded domain £ such that 2cD and a
bounded function g(x) defined on w. We denote by H,(x) and H*(x) the
functions defined by
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H, (x)= sup () ,

and
H*(z)= inf ¢(=),
ve{}

where {¢} and {¢} are the associated families of under-functions and
over-functions respectively.

THEOREM 1. Given any bounded domain Q with 2cD and any
bounded function g(x) defined on o, then the associated functions H.(x)
and H*(z) are {F'}-functions in 2 [1; p. 303].

DEFINITION 8. The point x,ew is a regular boundary point of 2
relative to {F'(x)} provided that for every bounded function g(z) defined
on o the associated functions H, (x) and H*(x) satisfy (4) at .

THEOREM 2. If all points of @ are regular boundary points of £,
and g(x) is continuous on w, then the Dirichlet problem for 2, relative
to {F(x)} and g(x), has a unique solution [1; p. 304].

The next theorem shows that regularity of a boundary point ‘‘in
the small >’ implies regularity ‘‘in the large .

DEFINITION 9. For a point x,€ w, a circle £ with center at x, and
with Kc D, and constants ¢>0, M, and N, a function

s(x)=s(x; ;e M, N)

is a barrier subfunction provided :
(@) s(x) is continuous in 2N K,
(b) s(x) is a sub-{F'} function in 2N K,
(©) s(w)=N—e¢,
(d) s@)<N+2 on wNK,
and (e) s(@)=M on 2Nk.

DEFINITION 10. With the notation of Definition 9, a function S(x)=
S(x; ke, M, N) is a barrier superfunction provided :
(a) S(w) is continuous in KN 2,
(b) S(x) is a super-{F'} function in KN 2,
() S(x)=N-+e,
(d) S@)=N—-2¢ on oNK,
and (e) Sx)=M on 2Nk.

THEOREM 3. If jfor x,c¢w and Jfor each set of constants €>0, M,
and N, there exists a sequence of circles k,=kx,) with centers at x, and
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radit 7,(x) — 0 for which barrier subfunctions s(x ; k,; ¢, M, N) and bar-
rier superfunctions S(x; k,; e, M, N) exist, then x, is a regular boundary
point of 2 relative to {F(x)} [1; p. 305].

3. Equicontinuity at the boundary. In this section, before turning
our attention to differential equations, we shall show that a property of
{F'}-functions given as Postulate 8 in [1] is a consequence of Postulates
1 and 2.

THEOREM 4. For any circle ke {s}, if the functions {h[(x)}, uni-
Sforwly bounded and continuous on k, are equicontinuous at ¢, €k, then the

Sfunctions F(z; h, ; k), defined in K, are equicontinuous at .

Proof. Assume that |A(x)|<M on r for all A, x)e {h(x)}. Since
the functions {%,(®)} are equicontinuous at x,, it follows that given ¢>0
there exists an are ¢ of x with midpoint at x, such that

|h(x)—=h (2)|<e on &

for all 4 (x)e {h(x)}. Now let the function g(x) be continuous on &,
g@)>M on k—o, g(@)=—M+e on o, and g(x)<—M+2¢. For any
k(@) e {h,(x)} set

e,=h(x,)+M=0,
then
Fa;h,;k)—e,<F(x;g;k)

on k. Therefore, by Postulate 2
F@;h,;8)—c,<F(x;g;t) in K

for each A,(x)e {h,(x)}. Since F(x;g; k) is continuous in K, there exists
a circle &, with center at z, such that

Fx;g;6)—F@,;9;6)<e in KNK, .
Then
F@ih,;k)—c,<F(x;g;r)<ectF(x,;9;k)<3e+F(y; by 6)—c,
in KN K, hence, for any A,(2) € {A,(x)}
Fx b, &)—F(w; hy; 5)<3¢  in KNK, .
By a similar argument there exists a circle x, with center , such that
F(x;h,;5)—F(x,; hy; £)>—8 in KNK,.

Hence, if &; is the smaller of &, and &,, then
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|F(a; by s K)—F(a; by s )| <3¢ in KNK,

and the functions F(x; 4, ; k) are equicontinuous at a,.

Theorem 4 obviously remains valid under weaker conditions. For
example, the theorem remains valid if Postulate 1 is weakened by
assuming that the boundary value problem is solvable for some class of
continuous boundary value functions defined on ¢ which under the uni-
form topology is dense in the set of all continuous functions defined on
k. Also, Theorem 4 remains valid if instead of dealing with a circle
ke {k} we state the theorem in terms of a bounded demain 2 with

Q2c D and assume x, is a regular boundary point of 2. However, in
this case the proof draws on Postulates 3 and 4 as well as Postulates 1
and 2.

4. Applications to elliptic partial differential equations. In this
section we shall show that the solutions of certain types of elliptic
partial differential equations satisfy Postulates 1 to 4. We shall also
consider some regularity criteria for boundary points with respect to
these equations. It will be more convenient in this section to return to
the customary (z, y) representation of points in the plane.

First we shall consider Postulate 2 since it states a characteristic
property of the solutions of a wide class of elliptic differential equations.
We consider the function E(z, ¥, 2, p, g, 7, s, t) and make the following
assumptions :

(1) FE is continuous in all 8 variables in the region 7' defined by
T {(x, yyeD |
—o<l2,0,¢7 8t +x
where D is a domain in the ay-plane.

(2) The first partial derivatives E,, E,, E, E,, E,, and E, are con-
tinuous in T, E*—4E.E, <0, E,>0, and E,<0 in T.

THEOREM 5. The solutions of the elliptic partial differential equation

(6) E(SL’, Yz, 0,4, 7,8, t):’o
2, 2 2,
where p:ﬁf‘i, q:,af’z», r.—_a—z_, s:~£ﬁ~, and tzgif- satisfy Postulate 2.
ox oy o fady oy*

THEOREM 6. The functions s(x,y) and S(x,y) of class C® in the
subdomain QC D, are respectively a subfunction and a superfunction in
Q with respect to solutions of (6) if and only if

(7) E(x, Y, S, Se» Sy» Sexy Says Syy) =0

and
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(8) E(@,, S, Sz, Sy Sixs Sery 1) =0

mn 2.

The proofs of Theorems 5 and 6 follow immediately from the maxi-
mum principle for solutions of elliptic partial differential equations which
has been discussed by Hopf [4].

We consider now the linear elliptic equation
(1) L(z)= dz+a(x, y)z.+0(z, y)z,+c(z, y)z=f(=, y) .

We assume that D is a bounded plane domain such that a(z, y), bz, v),
o(x,y) and f(x, y) are Holder continuous in D and ¢(x, ¥)<0 in D.

THEOREM 7. The solutions of (1) satisfy Postulates 1, 2, 3, and 4.

Proof. It follows from Theorem 5 that the condition ¢(x, ¥)<0 in
D insures that Postulate 2 is satisfied.

It is known [9] that there is an 7,>0, depending on max [|al, [b],
lel, | F1] in D, such that Postulate 1 is satisfied for the family {x} of
circles with radii less than or equal to r, and with K=K-+scD. The
uniqueness part of Postulate 1 follows since Postulate 2 is satisfied.

If ke {x}, if (x, ¥, is an interior point of K, and if 2(x, y) is con-
tinuous in K, is of class C® in K, and is a solution of (1) in K, then
|2a(a0, %o) |= M and |2,(x, )| <M, where M depends on max [|al, [0], [c],
|£11 in K, max |2(z, y)| on k, the radius of &, and the distance from
(20, %) to £ [9]. This implies that Postulate 3 is satisfied.

Let 2 be any domain such that 2cD and let g(x, ¥) be any bounded
function defined on w. Then, if u(z, y)=r[a—e*] where «, 8, and r are
constants,

Liul=r(a—o) ofw, y)— ETPUD DT

a—e?

Choose /2 so that #>max |a(z, y)| in D, then choose a so that ¢ —e*>1

in 2. It is then clear that 7,>0 can be chosen large enough that the
function ¢(x, y)=7[a—e*] will simultaneously satisfy the conditions :

L[$]<f(z,y) in 2 and ¢(z, y)=g(z, y) on o.

Hence, it follows from Definition 4 and Theorem 6 that ¢(x, y) is an
over-function. Similarly, if 7,>0 is taken large enough,

d(@, y)=—rfa—e*]

will be an under-function. Postulate 4 is satisfied.
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Since Postulates 1 to 4 are satisfied it follows from Theorem 1 that,

given any domain Q2 with 2c D and any bounded function g(z, y) defined
on w, the associated functions H*(x,y) and H,.(x,y) exists and are
solutions of (1) in £.

THEOREM 8. Let 2 be a domwin with 2D and let (4, ¥) € w be

such that a circle &, can be drawn with K,cD and K,0Q=(xy, 3,). Then
(@, ¥o) s a regular boundary point of 2 relative to solutions of (1)

Proof. Making use of Theorem 3 we see that to establish the
regularity of (w, 9,) it is sufficient to show that barrier subfunctions and
barrier superfunctions can be constructed for all sufficiently small circles
with centers at (x,, ¥,). We shall consider only the barrier superfunctions
since the barrier subfunctions can be dealt with in an exactly parallel
way.

By the method used in Theorem 7 we can select a functions Sy(z, ¥)

which is continuous in 2, is of class C® in 2, and satisfies
(9) ' LIS]=f(x,y) in Q2.

Now assume that constants ¢>0, M, and N are given. Let (2, %) be
the center of x, and 7, its radius. Let &, be a circle with center at
(%, ¥,) and radius 7, <7, taken small enough that

(10) So@, ¥)=Sy(@y to)—e  on wNK .
Let

r= 1/(9/'_‘”1)2‘{" (y—u.)*
and

-n

w(x, Yy)y=r;"—r
One can easily verify that, if # is chosen large enough, then
11) LIw]<0 in 2,

furthermore, w(x,y) is continuous in 2, w(x, ¥,)=0, and w(x, y)>0
elsewhere in 2.

Now we consider two cases: N—Sy(x, #)=0 and N—Sy(a,, ,)<0.
First we assume N—S(a,, 4,)=0, then we can choose %,>0 such that

(12) haw(x, y)=M+ max |Sy@, y)|  on £NL2.

(@, 9)EQ

The function

S, y; k.5 6, M, N)=hw(z, y)+ S, y)+N—Su, %)
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is then a barrier superfunction at (z, ,) for the circle £,. This follows
immediately from (9), (10), (11), (12) and the definition of a barrier
superfunction.

Now assume N—Sy(, %,)<0. Again it is easily verified that, for
08>0 chosen sufficiently large, the function

(13) 'U(x, y):[N—SO(xO, yo)]eMz—xo)
satisfies
(1) Lv]<0  in Q.

Let the circle &, with center at (a,, %) and radius r,<7, be chosen small
enough that

(15) 'U(x7 y)gN—S(,(mo, yo)_ on wf) Kz .
Then let %2,>0 be taken large enough that
(16) haw(@, ) =M+ max [| S, v)|+lv@, »)|1  on kN2,

(=, YEQ

It follows from (13), (14), (15), and (16) that
S(x, y; 625 ¢, M, N)=hw(@, y)+v(@, ¥)+S(, v)

is a barrier superfunction at (x,, y,) with respect to the circle k..

THEOREM 9. Let D be a domain in which the coefficient functions
wn (1) are Holder continuous. Then, if Q is any bounded domain with

Qc D and is such that corresponding to each (%, ) € w there is a circle
& with 2NK-: =(x, %) and of g(x,y) s any continuous function defined

on w, there is & unique function «x,y) which is continuous in 2, is of
class C® and satisfies (1) in 2, and is equal to g(x,y) on w.

Proof. This is an immediate consequence of Theorems 2 and 8.
In our consideration of the quasi-linear equation

(2) (I(p, q)7'+2b(p, Q)S+C(p! Q)t:()

we are going to employ two sets of conditions on the coefficient func-
tions, first, conditions (A): a(v, q), b(p, q), and c¢(p,¢) have Holder
continuous first partial derivatives, ac—b*=1, and a>0 for all (p, q).

Bers [2] has proved that, if a, b, and ¢ satisfy conditions (A), then
there exist functions %(p, q), O(p, ¢), and A(p, q) with k(p, ¢)>0, 6(0, 0)
=A4(0, 0)=0, and which are such that

00 _pq 04,00 _op Z_Azkc .

op op 0q q
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We now state conditions (B) on the coefficients of (2): There exists an
e>0 such that

17) a(l_jupf) n c(%‘i) + 2b(l’w2) <2

for all (p, ¢) where w=1"1+p*+¢*, further # and 4 can be chosen so
that

(18) P+
pl+q4

for all (p, ¢). Conditions (A) and (B) are satisfied by the minimal surface
equation (3) if it is normalized so that ac—b*=1. For this reason Finn
[3] calls equations (2) which satisfy conditions (A) and (B) equations of
““ minimal surface type .

In our application of the theory of §2 to equation (2), we let D be
the zy-plane and {x} the family of all circles in the plane.

THEOREM 10. If equation (2) satisfies conditions (A) and (B), then
its solutions satisfy Postulates 1 to 4.

Proof. Nirenberg [7; p. 138] has proved that if /" is any convex
domain in the plane with boundary y which is of finite length, which
can be represented parametrically by

) {xzx(s)
T ly=yls)

in terms of arc length s where a(s) and y(s) are of class C®, and
which has positive curvature everywhere, and if g(s) has a Holder con-
tinuous second derivative on 7, then there is a function 2(«, y) continuous

in I", of class C® and a solution of (2) in I", and such that z(a(s), y(s))
=g(s) on 7.

Finn [3] has shown that if (2) satisfies conditions (A) and (B) and
if 2(w,y) is continuous in K, is of class C® in K, and is a solution of
(2) in K, then at any point (2, ) € K |22, )|SM and [z.(x, y)|I=M
where M depends on max |z(z, y)| on &, the radius of &, the distance
from (x,, ¥,) to &, and other quantities which are fixed for any particular
equation (2). Using standard arguments [3; p. 411], one can then use
Nirenberg’s result to prove that Postulate 1 is satisfied. The bounds on
the first partial derivatives of solutions imply that Postulate 3 is satisfied.
That Postulate 2 is satisfied follows from Theorem 5 and since planes
are solutions of (2) Postulate 4 is obviously satisfied.

Thus, we can conclude that, if 2 is any bounded domain and g(z, y)
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is any bounded function defined on w, the functions H*(x, y) and H,(x, ¥)
of Theorem 1 exist and are solutions of (2) in 2. In particular this is
true of the minimal surface equation.

THEOREM 11. Let equation (2) satisfy conditions (A) and (B) and let
Q be any bounded plane domain with boundary o. If (%, y)Ew s such
that there is a circle & with center at (X, Y%) and a straight line = such

that =N (KN Q)=(x, o), then (2,7, 8 @ regular boundary point of Q
relative to solutions of (2).

Proof. Since planes are solutions of (2), barrier subfunctions and
superfunctions can obviously be constructed at (x, ¥,) for all sufficiently
small circles with centers at (w,, ¥,).

It follows that if equation (2) satisfies conditions (A) and (B), then
in order that the Dirichlet problem have a solution for any convex
domain whose boundary contains no straight line segments, it is sufficient
that the Dirichlet problem have a solution for circles. Of course it is
well known that the Dirichlet problem for the minimal surface equation
always has a solution for convex domains whether or not their boundaries
contain straight line segments. It is known that the Dirichlet problem
for equation (2) is not always solvable for non-convex domains. In
particular an example of a boundary value problem for a non-convex
region which is not solvable for the minimal surface equation was given
by H. A. Schwarz [8; p. 42]. For a given domain £ with boundary o,
those points of w which satisfy the criterion of Theorem 11 are regular
with respect to equation (2), those points which are interior points of
straight line segments of o are possibly regular, but it seems likely
that all other points of w are not regular relative to solutions of (2).
The possibility remains that the Dirichlet problem for (2) for certain
types of non-convex domains may be solvable if the boundary values
are suitably restricted. Our last theorem contains a weak result in
this direction.

Let w, be the set of points of w which satisfy the regularity criterion
of Theorem 11. Let w,=w—w, and for 6>0 let w; be the set of points
of  which belong to w, or are within a distance ¢ of points of w,.

THEOREM 12. Let 2 be a bounded plane domain with boundary o for
which there is an R>0 such that for every (x,Y)€ w a circle & of radius
R may be drawn with QN K=(x,y). If for a given 6>0 the boundary
value function g(x,y) is continuous on o, is constant on each component
of ws, and is such that



254 LLOYD K. JACKSON

[1/——82— Jor 0<R
(19)  V,=max g(z,y)— min gz, v)< V.
z,y)€w z,y)€w S>R ,
[ oxr 707

then the Dirichlet problem for 2 with boundary values g(x, y) has a unique
solution for the mimimal surface equation (3).

Proof. As we have already observed the functions H.(z,y) and
H*(z, y) both exist and are solutions of (3) in Q. Since the function
g(x,y) is continuous on w, it is sufficient to show that inequality (4) is
satisfied at each point of w. This implies that the functions H,(z, y)

and H*(x,y) are both continuous in 2, agree on w, and consequently

coincide in 2 to give the unique solution of the Dirichlet problem.
Since by Theorem 11 the points of w, are regular, it will be sufficient
to show that at each point of w, we can construct an over-function and
an under-function which take on the given boundary value at the point.

Let (@, %) € ®, and let x, be a circle of radius R such that K,N Q2
=(a, ¥,). Translate the origin to the center of £, and rotate the axes
so that (x, ) becomes the point (&, 0). Draw the circle x; with center
at (R, 0) and radius 6. Then the function

(20) 8w, y)= BV @V —Ry

is of class C® on comp K,, Si(z,y)=0 on compK,, and S(R, 0)=0.
Furthermore, by substituting S.(«, ) in the left-hand member of equation
(8) one can verify that inequality (8) is satisfied in 2. It follows from
Theorem 6 that S(x, y) is a superfunction in 2 with respect to solutions
of (8). Finally, we also have that on x;Ncomp K,

{_ﬁ _ if 6<R

Ry 2 it o>R.
0+R
We define the function Sz, y) by

(22) Sy(=, y)=8(z, y)+9(E, 0) .

The function Sz, y) is clearly also a superfunction in £ because of the
form of equation (3). Now let M=max g(x, y) on », then the function

(21) min Sz, y) =

03 )_{M in 2N comp K,
(23) Y@ D= min (M, S, )] in ONE,
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is the desired over-function. To see this we first observe that ¢(z, y)

is continuous in Q since by (19), (21), and (22) Syx,»)=M on 2Nk,
The argument that ¢(z, y) is a superfunction is the same as that given
in [1; p. 306]. From the definitions of Sz, y) and w; it follows that
HR, 0)=g(R, 0) and ¢(x, y)=9(x,y) on .

Similarly

Sl(x’ y): —-S,((U, y) ’
and

s, y)=s(x, y)+9(R, 0)

are subfunctions in 2. The function ¢(zx, y) defined by

m in 2N comp K,

@, y)z{max [m, s(x,y)] in 2NK,
where m=min g(x,y) on » is an under-function with ¢(R, 0)=g(R, 0).
Thus inequality (4) holds at every point of » and

H*(x,y)=H,(z,y) in 2

constituting the unique solution of the Dirichlet problem.
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THE STRUCTURE OF IDEMPOTENT SEMIGROUPS (1)

NAoKI KIMURA

1. Introduction. The first step in the study of idempotent semi-
groups has been made by David McLean [3] and is stated as follows.

THEOREM 1. Let S be an idempotent semigroup. Then there exist
a semilattice T and o disjoint family of rectangular subsemigroups of S
indexed by T, {S,: r € '}, such that

(1) S=U{S,: r eI}
and
(ll) SyS,s C Sya fO’r r,0 € I,

However, the structure of S is not determined, in general, by
knowing only the structures of I" and of all S,.

In this paper and the subsequent papers we shall study some special
idempotent semigroups which are defined by some identities, where the
decomposition theorem above plays an important role. This paper will
be chiefly concerned with the study of regular idempotent semigroups
(for the definition see below), which can be considered as a quite general
class of idempotent semigroups. Also characterizations of identities for
some special idempotent semigroups are obtained.

2. Rectangular bands. An idempotent semigroup or band [1] is a
semigroup which satisfies the identity a*=a.
A semigroup satisfying the identity

aba =a (ab = a,ba = a)

is called rectangular (left singular, right singular). These semigroups
are all idempotent. And a left (right) singular semigroup is rectangular.
Conversely we have the following

LEMMA 1. A rectangular semigroup is the direct product of a left
singular semigroup and o right singular semigroup. Moreover this
Jactorization s unique up to 1somorphism.

Proof. Let S be a rectangular semigroup. Then since

Received December 20, 1957, and in revised form February 26, 1958. This work was
partially supported by the National Science foundation, U.S.A. An abstract of this paper
has appeared in Proc. Jap. Acad., 33 (1957) p. 642.
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xS D 2(yS) = (zy)S D (ay)(@S) = (xyx)S = xS,
we have

(1) xyS = 2S. Dually ,
{Sxy = Sy.

Therefore we have also

(2) { @S)¥S) = (@S)(yxS) = (#Syx)S = «S. Dually ,
(Sz)(Sy)=Sy.

Let A (B) be the set of all subsets of S of the form «S (Sz). Then
A (B) forms a left (right) singular semigroup, with respect to the usual
multiplication induced by that of S, on account of (2).

Let p: S— A (¢: S— B) be the mapping defined by

p@)=2S (q(x)=Sx) .

Then by (1) and (2), p and ¢ are onto homomorphisms.
Let r: S — AxB be the mapping defined by

r(@)=(p(), ¢(=)) .

Then » is a homomorphism. Take any element of AxB, say (xS, Sy).
Then »(wy)=(xyS, Swy)= (xS, Sy), by (1). Thus r is onto. On the other
hand, if r(z)=(«S, Sy), then 2S=xS and Sz=Sy. Therefore by rectan-
gularity we have

xy = (@Sx)(ySy) = (2Sz)(ySz) = 2(SxyS)z = z .

Thus r is an isomorphism between S and A x B, where A (B) is left
(right) singular.

Let #': S — A’xB’ be an isomorphism, where A’ (B’) is left (right)
singular. Define p': S— A’ and ¢': S — B by »'(x)=('(%), ¢'(x)), then
they are onto homomorphisms.

If p(z)=p(y), that is 2S=yS, then

p'@S) = p'(@)p'(S) = p'(x) and P'S) = (y).

Therefore p'(x)=p'(y). Thus we have an onto homomorphism f: A — A’
(g: B — B’) such that »'=fp (¢'=gq).
Now f (g) must be one-to-one. For, let @S+#yS, f(xS)=f(yS). Then
ayS=xS+yS, therefore xy+y. But
p'(zy) = fo(xy) = flayS) = fzS) = fyS) = fo(y) = p'(v) ,
q'(zy) = ga(wy) = 9(Swy) = 9(Sy) = 9a(y) = ¢'(W) .

Therefore 7'(xy)=7'(y), which contradicts the assumption that +’ is an
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isomorphism. Thus f and ¢ must be isomorphisms,
This ends the proof of Lemma 1.

REMARK 1. The above defined A (B) is the set of all minimal right
(left) ideals of S.

LEMMA 2. A band is rectangular iof and only if it satisfies the iden-
tity abc=ac.

Proof. (1) Sufficiency. If a band S satisfies the above identity,
then simply put ¢=a, which proves that S is rectangular.

(2) Necessity. Assume that S is a rectangular band, then a(bc)a=
a. Therefore abec=ab(cac)=(abca)c=ac, which proves the above identity.

REMARK 2. Now we have established the equivalence between two
identities, aba=a and abc=ac, on idempotent semigroups. Thus either
one of them can define rectangularity.

Also each one of the following identities on bands is equivalent to
rectangularity :

(1) ALE,e » =Tyl = (n=1),

(2) (07 AR s 2 AR Y 1 JO A L0 = &
I<i<j<ee<m),

(3) AT Lo+~ X0 = ab (n = 1),
(4) AXye + 2Ly Gy = X jgCollije s o v v sv e xnb = ab ,
where ¢, is either a or b for each k (1<i<j<---<n),

(5) AB\T," + T = AT @y,0 2,

A=2u<,< <t Zn,r<n).

These facts raise the problem of determining the conditions for iden-
tities to be equivalent to rectangularity. It will be discussed in §5
below, and there we will find that the equivalence of the above identi-
ties with rectangularity is merely a special case of Theorem 6.

REMARK 3. If we consider the two identities, aba=a and abc=ac,
for general semigroups, then they are not equivalent. The former de-
fines a rectangular band, but the latter defines a little wider class of
semigroups which contains rectangular bands.

However we have the following Lemma 3.

A semigroup S is called fotal if every element of S can be written
as the product of two elements of S, that is S? = S.
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LEMMA 3. A total semigroup is rectangular if and only if it satis-
Jfies the identity abc=ac.

Proof. (1) Sufficiency Let S be total. Assume the identity abc=
ac. Pick a € S, then a=xy for some elements «,y. Then

@ = (xy)’ = (@wy)(@y) = 2(yx)y = a2y = a .

Thus S is a band. Therefore by Lemma 2, S must be rectangular.
(2) Necessity. Obvious, because any rectangular semigroup satisfies
the given identity by Lemma 2. This ends the proof of Lemma 3.
Let S be a semigroup which satisfies the identity abc=ac. Consider
the mapping f: S — S defined by f(x)=2a*. Then f is a homomorphism
of S into S, because

Sflzy) = (@) = a(yx)y = oy = a(@y)y = 2’ = f(@)f () .
Let R be the image of S under f:
R=f(s)={a*: z € S} .

Then obviously R* © R c S* Conversely, every element of S* is idem-
potent, because (ay)=wx(yx)y==xy. Therefore we have R*=R=S*. Now
since R is total, R is rectangular by Lemma 3.

Hence, defining S, by S,={x: = € S, 2’=r}, S is decomposed in the
following way :

S=U{S,: r e R} , where S,S,={rt} .

For, if x e S, ye S, then &*=r,y*=¢ and so ay=a"y*=rt. Thus we
have the following

THEOREM 2. Let S be a semigroup satisfying the identity abc=ac.
Then there exists a rectangular subsemigroup R of S and a partition of
S with R as its index set, such that

S=uU{S,: re R},

where
S.nS, =0, the null set, of v+t
re S,

and
S,S, = {rt} .

Thus the ‘“if >’ part of Lemma 38 is a special case of this Theorem.
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3. The structure of one-sided regular bands. A band is called (1)
left regular, (2) right regular or (3) regular if it satisfies the identity :

(1) aba = ab ,
(2) aba = ba
or
(3) abaca = abca ,
respectively.

Then the following lemmas are obvious by these definitions.
LEMMA 4. A left (right) regular band is regular.

LEMMA 5. The direct product of (left, right) regular bands is also
(left, right) regular. ’

LEMMA 6. Any subsemigroup of a (left, right) regular band is also
(left, right) regular.

LEMMA 7. A left (right) singular band is left (right) regular.
LEMMA 8. A rectangular band s regqular.

LeMMA 9. A band is left (right) singular if and only iof it is both
left (right) regular and rectangulor.

LEMMA 10. A band s commutative if and only if it is both left and
right regular.

For a total semigroup we have the following.

LEMMA 11. A total semigroup is a left (right) regular band if and
only if it satisfies the identity aba=ab (aba=ba).

Proof. The necessity is trivial. So it is sufficient to prove the
idempotence from the above identity

Let S be a total semigroup, that is S*=8. Then any element
xeS can be written as the product of two elements of S, say, x=ab
for some a,be S. Therefore

z* = (ab)* = a(badb) = a(ba) = aba =ab =z .

Thus we have 2=z, or S is idempotent.
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Let S be a band. Then by Theorem 1 there exist a semilattice T’
and a disjoint family of rectangular subsemigroups of S indexed by T,
{Sy: reTI}, such that

(1) S=U{S,: rel}
and
(ii) S,S;c Sy for 7,0el

(See McLean [3, p. 111], also see A. H. Clifford [1, p. 501]).

Furthermore I' is determined uniquely up to isomorphism, and ac-
cordingly so is S,.

We call I' the structure semilattice, and S, the (r-)kernel. A
homomorphism p: S —I' defined by p(S,)=7 is called natural. Also in
this case we write S~>{S,: reI'}, and call it the structure decompo-
sition of S.

Then we have the following corollaries to Theorem 1.

COROLLARY 1. FEach kernel S, is a maximal rectangular subsemi-
group of S. Moreover any rectangular subsemigroup of S is contained in
one and only one kernel.

Proof. Let S~ >, {S,: reI'} be the structure decomposition of S
and let p: S— 1T be natural. If R is a rectangular subsemigroup of S,
then p(R) is also a rectangular subsemigroup of I'. Since I' is a semi-
lattice, p(R) is reduced to a single element, say r=p(R), and according
Rcp(r)=S,. Namely R is contained in one and only one S, since the
S,’s are disjoint. On the other hand S, is rectangular for each yrel.
Therefore each kernel S, is a maximal rectangular subsemigroup of S.

COROLLARY 2. For any (onto) homomorphism ¢q: S — A, where A is
a semilattice, there exists a unique (onto) homomorphism f: I' > A, such
that ¢ = fp, where p: S —> T s natural.

Proof. Since q(S,) is rectangular, it must be a single element in A.
Now we have a mapping f: I'— A defined by f(7)=¢(S,). Then it is
easy to see that ¢=fp.

COROLLARY 3. Let q: S— A be an onto homomorphism, where A s
a semilattice. ILf q*(0) is rectangular for all € A, then the mapping f
defined above is an isomorphism. More precisely, we can consider A as
the structure semilattice of S, q~*(0) as the 6-kernel and q as the natural
homomorphism, that is S~> {q7(5): 6 € A}.

Proof. Since ¢7%(6) is rectangular, it is contained in S, for some 7
by Corollary 1 above. Now we have



THE STRUCTURE OF IDEMPOTENT SEMIGROUPS (I) 263

7 = p(S,) D pg7l(d) = p(fp)~(d) = pp~f(d) = f7(9) .

Therefore f must be one-to-one.

THEOREM 3. A band is left (right) regular, if and only if ts ker-
nels are all left (right) singular (Naoki Kimura [2, p. 117]).

Proof. Let S~>{S,: reI'} be the structure decomposition of a
band S.

(1) Let S be left regular. Then each 7-kernel S, of S is rectan-
gular. Also it is left regular by Lemma 6.

Therefore S, must be left singular by Lemma 9.

(2) Let every kernel of S be left singular. Let ae S, beS;.
Then ab, bae S,;=Ss,. Thus, by the left singularity of S,;, we have
aba=ab’a=(ab)(ba)=ab, which proves that S is left regular.

4. The structure of regular bands. Let I' be a semilattice. Let A
and B be bands having I' as their structure semilattice. Let A~3> {4,
7el}, B~3>{B,: rel'} be their structure decompositions.

Form the direct product D=AxB. Then C,=A,xB, can be con-
sidered as a rectangular subsemigroup of D. Also C=U{C,: rel'} is
a subsemigroup of D. Moreover the structure decomposition of C is C~
>S{C,: reT}.

Let p: A—>T1, ¢g: B— 1T be the natural homomorphisms. Then

C={(vy): xecA,yeB, px)=q¥y)} ,

and r: C — I' defined by r(x, ¥)=p(x)=¢(y) is the natural homomorphism.
We call C the spined product of A and B with respect to I'. Note that
this product depends not only on 4, B and I’ but also on the natural
homomorphism » and ¢ [2, p. 28].

LEMMA 12. The spined product of a left regular band and a right
regular band is regqular.

Proof. Since the spined product of 4 and B is a subsemigroup of
the direct product of A and B, we have the lemma by Lemmas 4, 5 and
6.

Now we shall prove the converse of this lemma which plays an es-
sential part in the structure theorem of regular bands.

LEMMA 13. Let S~3{S,: reT'} be a regular band. Then there
exist o left regular band A~S{A,: reT} and a right reqular band B~
By : reT}, both of which have the same structure semilattice I, such
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that S s isomorphic to the spined product of A and B with respect to
I

Proof. Let S~>{S,: reT'} be a regular band. Since each r-ker-
nel S, is rectangular we can assume that S,=A,xB,, where 4, is left
singular and B, is right singular. Let

A= U{4,: 7eT},B=U{By,: rel},T=AxB.

Then S can be identified as a subset of 7. We shall prove that 4 and
B can be considered as idempotent semigroups. Let

a€ A, ce A b beB,, d deB,.

Then (@, b), (¢, b’) € S,, (¢, d), (¢, d)e Sz. Put (¢, f)=(a, b)c, d), (¢, f)=
(a, ¥')ec, d'). Then both (¢, f) and (¢, f’) belong to S,;.
Since A,s is left singular and B, is right singular, we have

(6’ f)(e,!f/) = (6, .

On the other hand we have

(e, SN, f) = (a, b)(c, d)(a, b')(c, d')
= (a, b'b)(c, d'd)(a, bb')(c, d) (by right singularity of B, and Bg)
= (a, b')(a, b)(e, d')(c, d)(a, b)(a, b')(e, d)
= (a, t')(a, b)(a, V')(c, d')(a, b)(c, d)(a, b)(a, ¥')(c, d)
(by repeated use of regularity)
= (a, b'bb ) (e, d')(a, b)(c, d)(a, B )(c, d')
= (a, b')(c, d')(a, b)(c, d)(a, b')(c, d')
= (¢, f)e, F), f) (by definition)
= (¢, f). (by rectangularity of S,s)

Hence
(e, f)Y=(e,f) or e=¢.

Thus e is determined by ¢ and ¢ only, and does not depend on b or
d. Similarly, f is also determined by b and d only.
Now we can define m: AxA—> A, n: BxB— B by

(m(a, ¢), n(b, d)) = (a, b)(c, d) = (e, f) .

Thus A and B become multiplicative systems where m and = are
multiplications on them, and A4, and B, are subsystems which are a left
singular band and a right singular band, respectively. Also T=AxB
is a multiplicative system.
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Consider the projections p: T — A defined by p(a, b)=a and ¢: T —
B defined by q(a, b)=>b. They are homomorphisms. Therefore the map-
pings p and ¢ with their domain restricted to ST are also homomor-
phisms, and their images are A=p(S) and B=¢(S). Since homomorphisms
preserve any relation defined by identities, as a result, associativity and
idempotency hold in both A and B, because S is a band. Thus both A
and B are bands.

Since A, is left singular, and B, is right singular, they are rectan-
gular, and since I'" is a semilattice,

A~S\{A,: 7T}, B~S{B,: rel}

become the structure decompositions of A4 and B, by Corollary 3 to
Theorem 1.
Thus there exist a left regular band A and a right regular band B
such that S is the spined product of A and B with respect to I.
Lemmas 12 and 13 prove the following

THEOREM 4. A band s regular if and only if it is the spined pro-
duct of a left regular band and a right regular band.'

COROLLARY 1. Any regular band is tmbedded into the direct product
of a left reqular band and a right regular band.

Proof. Immediately from Theorem 4.

COROLLARY 2. Lot S be the spined product of A and B with respect
to T and let T be the spined product of C and D with respect to A, where
A~SH{A): e} and C~3{Cs: de A} are left regular, and B~>{B,:
reT} and D~>{D;: de A} are right regular.

Let k: S — T be a homomorphism, then there exist a homomorphism
h: I'—>A and homomorphisms f: A—C and g: B — D satisfying (1)
kE(a, b)=(f(a), g(b)) and (2) hp=rf and hq=sg, that is the diagram

D q

A— T «—B
£olp e
r s
C—A—D

18 analytic, where v, q, r and s are the natural homomorphisms.

Proof. Let u: S—T,v: T—>A be the natural homomorphisms.
Then since vk: S — A is a homomorphism, by Corollary 2 to Theorem 1,
there exists a unique homomorphism %: I' > A such that vk=hu.

Therefore v(k(S,))=hu(S,)=h(r), and so k(S,)Cv-(6)=T;, where 6=
h(r). Now the homomorphism k,: S, — T; defines uniquely homomor-
phisms f,: A, —Cs; and ¢,: B, —> D; such that k.(a, d)=(f,(a), g,(b)),

1 Miyuki Yamada has obtained this theorem also, according to a recent communication
from him to the author.
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where £, is the homomorphism % with its domain restricted to S,.
Since A and B are the union of 4, and B, for ye I, f, and g, de-
termined uniquely mappings f: A — C and g: B — D, such that

fa) =fy(a) if acA,,

and
g(0) = g,(0) if beB,.

Then it is obvious that k(a, b)=(f(a), g()) . Therefore if (a, d)e S,
(a/, b’) e S, then we have

(flaa’),g(0b')) = k(aa’, bY') = k((a, b)(a’, b)) = k(a, b)k(a’, b')
= (f(@), g®)(f@), 9(b)) = (F(@)f(a), g(b)g(b)) ,

which proves that f and g are homomorphisms.
Since (a, b)e S, implies (f(a), g(b))=k(a, b) € Ts, where o=~h(r), we
have rf(a)=0=n(r)=hp(a), namely, rf=hp. Similarly, sg=nq.

COROLLARY 3. In Corollary 2, k is (1) one-to-one into, (2) onto or
(3) ome-to-one onto, respectively, if and only if there exists h, f and g, all
of which are (1) one-to-one into, (2) onto or (3) one-to-one onto, satisfying
all the conditions in Corollary 2.

Proof. Sufficiency. It is easily proved by considering the mapping k
defined by k(a, b)=(f(a), g(b)), in each case.

Necessity (1) Let k& be one-to-one into. Then k~Y(T}) is rectangular
if it is not empty, and so it is contained in only one S; by Corollary 1
to Theorem 1. Therefore % is one-to-one into. Now it is easy to see
that f and g are one-to-one.

(2) Let k be onto. Then

I = h(uw(S)) = vk(S) = «(T) = A,

which shows that 4 is onto. Now it is obvious that f and g are onto.
(3) Obvious by (1) and (2).
The case (3) of this corollary can be restated as follows.

COROLLARY 4. The decomposition of a regular band into the spined
product of a left reqular band and a right regular band is unique up to
rdomorphism.

5. Characterizations by identities. Let X={x, y,---} be a set whose
elements we will call variables. A word is an element of the free semi-
group F=F(X). A pair of words (P, Q) is called an identity and is
written P=Q.
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Let S be a band. Then we say S satisfies an identity P=@Q, if
Jf(P)=£(Q) for every homomorphism f: F' — S.

An identity P=@Q is said to imply an identity P’=Q’ if any band
satisfying P=@Q also satisfies P’=@’. Thus any identity implies the iden-
tity a?=a, that is idempotence. If P=Q implies P'=@Q and P'=¢’
implies P=@, then the identities are equivalent.

Let X’ also be a set of variables. Let {,: X > X’ be any trans-
formation, then it induces a homomorphism ¢: F(X)— F(X') which
coincides with ¢ on X.

It is easy to see that P=Q implies #(P)=%(Q).

LEMMA 14. P=Q implies t(P)=%(Q) for any transformation of vari-
ables t,.

The following lemmas are also straightforward.

LEMMA 15. If P=Q implies P=P’, Q=Q’, then P=Q implies P'=
Q.

LEMMA 16. If P=Q implies P'=Q’, then P=Q implies both PP’ =
QY and PP=Q'Q.

REMARK 4. We can take the free idempotent semigroup generated
by X instead of the free semigroup generated by X. It makes no es-
sential difference in the argument.

An identity P=Q is said to be homotypical if both P and @ contain
the same variables explicitly, otherwise it is said to be heterotypical.
Thus an identity xy=x is heterotypical, but an identity ay=yx is homo-
typical.

If Pis a word «&,---%,, then we call x, the head of P and x, the
tail of P.

THEOREM 5. An identity P=Q 1is equivalent to left (right) singu-
larity if and only if*

(1) P=Q s heterotypical,

(2) P and Q have the same (different) heads,

(3) P and Q have different (the same) tails.

Proof. Sufficiency. Let P=@ satisfy (1), (2) and (3) above. Then
the words P and @ are expressed by z---x; and z---x, respectively,
where x, is different from z,, and either z; or z,, but not both, may be
the same as x. By assumption (1) either P or @ contains a variable y,
which the other does not. Assume that P contains v.

A transformation X — X defined by ¥ — v, all other variables — &
sends the words P, Q to P’, Q" where P’ is x-«+y-++2 or &-++y (-

2 The “only if”’ part will be proved right after the proof of Lemma 17 below.
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stands for «’s,%’s or nothing) and @' is z* for some positive integer n.
Now any band satisfies the identities P’'=ayx or P'=zxy, according as
P’ is x---y---x or x---y, and @ =x. Thus by using Lemmas 14 and 15
we have that P=@ implies either (i) zyx=2a or (ii) xy=uw.

Since (i) is rectangularity, and rectangularity implies both P=uxux,
and Q@=xz, by Lemma 2, the identity P=@Q implies xx,=xx, by Lemma
15. It is now easy to see that the identity zx,=xx, implies left singu-
larity, by a suitable transformation. (ii) itself shows left singularity.

Thus P=@Q implies left singularity.

Conversely, the identity xy== implies any identity of the form

x.-.y:x.--x or LeoeeYy = Le-°2,

where z, y, z are all different and.--stand for any sequence of variables.
Thus xzy=2« implies any identity satisfying the conditions in the theorem.

THEOREM 6. An identity P=Q is equivalent to rectangularity if and
only if*

(1) P=Q is heterotypical,

(2) P and Q have the same heads,

(8) P and Q have the same tails.

Proof. Let P=@ be an identity satisfying (1), (2) and (3) above.
Then we can assume that the word Pis z---y---z and Q is z-.-2,
where @ does not contain the variable y, while 2z can be the same as z.
Now the transformation y — y, all other variables — «, implies the iden-
tity ayx=wx, which is equivalent to rectangularity.

Conversely, rectangularity xzyr=a implies any identity of the form
Leeoz=2+--2 by Lemma 2. Thus it implies any identity satisfying the
above conditions.

REMARK 5. It is easily verified that all identities mentioned in Re-
mark 2 satisfy the above three conditions.

THEOREM 7. An identity P=Q is equivalent to triviality, that s
x=vy, &f and only if?

(1) P=Q s heterotypical,

(2) P and Q have different heads,

(8) P and Q have different tails.

Proof. Let P=@ be an identity satisfying the above condition.
Then it implies both identities 2P=2Q and Pz=Q2, where z is a variable
which is not contained in both P and @, by Lemma 16. The former is
equivalent to left singularity, while the latter is equivalent to right
singularity by Theorem 5. Thus P=@Q implies both left and right singu-
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larity. Hence it implies triviality.
Conversely, triviality implies any identity.

LemMMA 17. Any semalattice satisfies any homotypical identity.

Proof. Let P=@ be any homotypical identity whose variables are
T+, 2,. Let S be any semilattice. Then it is clear that S satisfies
the both identities, P=xx,---2, and xa,---2,=@. Thus S satisfies the
identity P=0Q.

Proof of the necessity in Theorem 5, 6 and 7.

Let P=Q be an identity which is equivalent to triviality, left (right)
singularity or rectangularity. Let S be the two-element semilattice. If
P=@ is homotypical, then S satisfies this identity by the preceding
lemma. But S is not rectangular nor left (right) singular nor trivial.
So this identity can not be homotypical. Thus it must be heterotypical.
This takes care of the part (1) of the theorems.

Let A(B) be the two-element left (right) singular band. Then A(B)
is neither right (left) singular nor trivial. Also A(B) satisfies any identity
P=Q if the heads (tails) of P and @ are the same.

(i) Assume that P=Q is equivalent to triviality. Then the heads
(tails) of P and @ must be different. For, if not, A(B) which is not
trivial satisfies this identity. This proves the necessity of (2) and (3)
in Theorem 7.

(ii) Assume that P=Q is equivalent to left (right) singularity.
Then the tails (heads) of P and @ must be different. For, if not, then
B(A), which is not left (right) singular, satisfies this identity. This
takes care of (8) of Theorem 5.

Now the heads (tails) of P and @ must be the same. For, if not,
this identity is equivalent to triviality by Theorem 7, which has already
been proved completely. But there exists a left (right) singular band
which is not trivial, for example, A(B).

This takes care of (2) of Theorem 5.

(iii) Assume that P=@Q is equivalent to rectangularity.

Then the heads of P and @ are the same and so are their tails.
For, if not, the identity is equivalent to triviality or left singularity or
right singularity by the preceding argument. Also there exists a band
which is rectangular but neither left nor right singular nor trivial, for
example, AxB. This ends the proof of (2) and (38) in Theorem 6.

Thus the classification of all heterotypical identities into four dis-
tinet cases is now completed.

THEOREM 8. An identity P=Q s equivalent to commutativity if it
satisfies the following conditions :
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(1) P=Q is homotypical,
(2) P oand Q have different heads,
(3) P and Q have different tails.

Proof. Let P=Q be an identity satisfying the above conditions (1),
(2) and (3). Then we can assume the word P is z---, and @ is y---,
xz#y. Thus P=Q implies Pry=Qxy. Now the transformation: y —y,
all other variables — x on the latter identity implies the identity xy=
yaxy, which is equivalent to right regularity. Similarly, P=@ implies left
regularity. Thus by Lemma 10 the identity P=@ implies commutativity.

Conversely, commutativity implies any homotypical identity.

Before stating the conditions for an identity to be equivalent to
left or right regularity, we shall introduce the concept of initial and
final parts, by which we can reduce both members of an identity to
simpler forms.

If the word P’, say Ti Ty, * Ty is the word which is obtained by
writing down all the distinct variables of the word P, say z2.---2,,
from the left, we call P’ the ¢nitial part of P and denote it by q¢(P).
Similarly, we can define the final part of P, »(P), dually with respect
to left and right. Thus if the word P is axyzzr, then the initial part
and the final part of P are wxyz and yzx, respectively, that is q(P) is ayz
and »(P) is yzx.

When P and @ have the same initial (final) parts, we say that the
identity P=Q is coinitial (cofinal). Note that if an identity is coinitial
or cofinal then it must be homotypical.

THEOREM 9. An identity P=Q is equivalent to left (right) regularity,
of it satisfies the following two conditions :

(1) P=Q s coinitial (cofinal),

(2) P and Q have different tails (heads).

Proof. Let P=Q satisfy the above two conditions. Then by (1) P
and @ must have the same head, say «, By (2) one of P or @ has a
tail which is different from z, say P is «---y, where y+zx.

Let ¢, be the transformation defined by y —y, all other variables—
z. Then we have two identities ¢{(P)=xy and #(Q)=zyx. Thus we
have left regularity, xy=ayx.

Conversely it is obvious that left regularity implies P=P’ for any
word P, where P’ is the initial part of P. Thus left regularity implies
any coinitial identity. Hence it implies any identity satisfying the above
conditions.

The problem of finding the characteristic conditions for an identity
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on bands to be equivalent to regularity still remains open.

6. Free regular bands. By the free (left, right) regular band gene-
rated by a non-empty set X, we mean a band S such that

(1) there exists a mapping ¢: X — S, which is called the imbedd-
ing mapping,

(2) i(X) generates S,

(3) S is (left, right) regular,

(4) for any (left, right) regular band 7' and for any mapping j5:
X — T, there exists a homomorphism % : S — T such that j=#s.

REMARK 6. In this definition, the imbedding mapping is not as-
sumed to be one-to-one, but this property is proved easily in this case.
Also it is easy to see that if there are two such free regular bands for
a given set X, then they are isomorphic fixing every point of X point-
wise under the imbedding mappings. So if there exists a free (left,
right) regular band, it is unique up to isomorphism. The homomorphism
h in (4) is also unique.

The free commutative band, i.e., the free semilattice generated by
X is defined similarly.

In this section we shall construct the free (left, right) regular band
from a given set X.

Let X be a non-empty set. Let S be the set of all non-empty sub-
sets of X consisting of a finite number of points. Then we have the
following

LeEMMA 18. The above defined S is the free semilattice gemerated by
X under the multiplication defined by yz=yUz, where U denotes the
union operation.

Proof. 1t is obvious that S forms a semilattice generated by {{z}:
xeX}. Let i: X— S be defined by i(x)={x}. Let T be a semilattice
and j: X — T any mapping. Then the mapping 4: S — T defined by
h(y)=3(z)j(x,)- - -5(x,) where y={w, x,, ---,Z,}, is a homomorphism by
commutativity and by idempotence, satisfying j(x)=~A({z})="n(i(x)), that
is j=hi. Thus S is the free semilattice generated by X.

Let X be a non-empty set. Let F=F(X) be a free semigroup
generated by X. Then F is the set of all finite sequences of points of
X with juxtaposition multiplication. We imbed X in F' in the natural
way under k: X — F.

Consider the two mappings, the initial part ¢: F — F and the final
part r: F — F, defined in the preceding section. Let A,=¢(F)CF, B,=
r(F)CF be the images of F' under ¢,r. Note that not only are ¢ and
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r not homomorphisms but also 4, and B, can never be subsemigroups
of F. To make them form bands we define other multiplications in A4,
and in B, as follows:

m(a, @') = q(aa’), for a,a’ € 4,,
n(b, b') = r(bb’), for b, b’ e B,.

Let a,a’ a”’ € 4, Then
m(m(a, &), a”) = m(g(aa’), &'’) = q(g(aa’)a”) = glaa’a’) .

Similarly m(a, m(a’,a”’))=q(aa’a”’). Therefore m is an associative multi-
plication on A,.
Moreover m(a, @) = g(aa) = g(a) = @ and

m(m(a, a'), a) = glaa’a) = q(aa’) = m(a, &’) .

Therefore A4, forms a left regular band under the multiplication m.
Similarly, B, is a right regular band under the multiplication n. We
shall denote these bands by A and B instead of A4, and B,, because of
the difference of multiplications.

It is now simple to see that ¢: F— A and r: F — B are both onto
homomorphisms. Since F' is generated by &(X), A and B are generated
by #(X) and 4(X), respectively, where ¢=¢k and j=rk.

Let A’ be any left regular band and ¢: X —> A’ any mapping.
Since F' is the free semigroup generated by X, there exists a homo-
morphism f: F — A’ such that ¢=fk. For any we F' we have fw)=
flqg(w)), because A’ is left regular. Thus there exists a homomorphism
h: A— A’ such that f=#hg. Therefore

i = fk = (ha)k = h(qk) = hi .

Hence A is the free left regular band generated by X. Similarly
B is the free right regular band generated by X.

Consider the free semilattice I' generated by X with its imbedding
¢: X—>T (Lemma 18). Then since I' is both left and right regular,
there exist homomorphisms s: 4 - I and ¢: B — I'" such that si=c=t¢j.
It is obvious that

s(@) = {x, oy + -+, @,} , if @& = di(x)i(x)- - i(x,,) .

Let A,=s"%(y) and B,=t"Y(y) for reI'. Then it is easy to see that
Ay(By) is left (right) singular. Thus by Corollary 3 to Theorem 1, A~
> {A4,: reT} and B~ {B,: reT'} are the structure decomposition of
A and B. Thus we have the following

THEOREM 10. Let X be a non-empty set. Let T' be the free semilat-
tice obtained in Lemma 18. Let A (B) be the set of all linearly ordered
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non-empty finite subsets of X together with the multiplication defined by
Juataposition deleting all second letters which appear in the expression of
the juxtaposition product reading from the left (right). Lets: A — T (t:
B —T') be the mapping defined by s(a) (£(b))=the set of all distinct points
contained in a (b). Let A,=s '(y) and B,=t"(y) for reT. Then A (B) is
the free left (right) regular band generated by X and A~X{A,: reT}
(B~ {By: rel}) 4s its structure decomposition.

COROLLARY. The free left (right) regular band generated by n ele-
ments consists of >(F)i! = n! S\ 7Zi1/i! elements.

Proof. Each A, consists of 7! elements when 7 contains 7 elements,
since A, consists of all permutations of points of 7.

Let A (B) and I' be the free left (right) regular band and the free
semilattice generated by X with the imbedding mappings i: X — A4 (5:
X —B) and ¢: X —T, respectively. Since I' is both left and right re-
gular, there exist homomorphisms s: A —»I' and ¢: B—1I such that
st=c=tj.

Let C be the spined product of A and B with respect to I' with s
and ¢ as spine homomorphisms. Then C is the subset of- 4 x B consist-
ing of elements (@, b) such that s(a)=t(b). Now since s(i(x))=(si)(x)=
c(x)=(tj)(x)=t(j(x)) the element (i(x), j(x)) is in C. Define k: X — C by
k()=(i(®), j(z)).

Now we shall prove that k(X) generates C.

Pick any element (a,b)e C. Then s(a)=%()eI'. Since A and B are
generated by X, we have

a = (2)i(x,) - i(@m) » b= JW)I(Y)*+-5(Yn) -
Thus
e(@,)e(@,) - - e(@n) = s(@) = t(b) = c(@)e(¥.)- - -c(Yn) .

Therefore the subset consisting of the points «,, 2,,- - -, @,, coincides with
that consisting of the points v, ¥ ***, Ya-
Since A is left regular we have

U@ )i(25)* = 8@ (@)i(Y)  + +8ln) = W@ )il,) + i) = @ .
Similarly,
3(@)j(@s) + -+ J(@n)J W) (W) * * +5(Wa) = JW)I(W)+ - +5(Wn) = b .

Thus we have (a, b)=Fk(@,)k(z,)- + -k(@,)k(y:)k¥s)- - - k(¥,), which proves
that k(X) generates C.

Next, we shall prove that C is the free regular band generated by
X.
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Let C’ be any regular band and %' : X — C’ any mapping. Since
C' is regular, it is the spined product of a left regular band A’ and a
right regular band B’ with respect to a semilattice IV, where s': A" —
I'" and ¢ : B’ —I" are the spine homomorphisms. Now the freeness of
A, B and T implies the existence of homomorphisms f: A —> A4’, g: B —
B and A: I' > I such that

(1) fi=uk', g =7k, he=dk,

where w' : C' - A’, v': C’'— B’ are natural and d': C' - IV are such
that

(2) Su =d =tv.

Let u: C—> A, v: C— B be natural and d: C —-I' be such that
su=d=tv. Take (a,b)eC. Then s(a)=t(b) by definition. Since C is
generated by k(X), there exist x, @, +-+, x,€ X. such that

a = 4(@)i(@,) -+ -8(xn), b = J(,)j (@) + +5(n) .
Put a’'=f(a) and &' =g(d). Then by (1) and (2) we have

§'(a) = s'fla) = [I 31 8'fi(x,) = 11 $=i sw'E' () = I1 5= B ()
W) =tg0) = [131t'gi(x,) = [[ 3t vk (@) =[] 3. dE (w,) .

Thus s'(a’)=t'(b’). Therefore (a’,d’)e C’, that is (f(a), g(b)) e C’. Hence
there exists a mapping p: C — C’ defined by p(a, b)=(f(a), g(b)).

It is now easy to see that p is a homomorphism. Moreover for x e
X we have by (1)

k() = (w'k (@), vE (@) = (fi(z), 9i(@)) = pk(z) ,

because k(x)=(i(x), j(x)), and accordingly % =pk. This completes the
proof that C is the free regular band generated by X. Thus we have
the following

THEOREM 11. Let X be a non-empty set. Let A, B and I' be the
Sree left regular, the free right reqular and the free commutative band
generated by X, respectively, so that I' is regarded as the structure semi-
lattice of both A and B. Then the free regular band generated by X is
the spined product of A and B with respect to T.

COROLLARY. The regular band generated by n distinct elements con-
sists of

S(ar=n S A

i=1 \? i=1 (n-—q,)!
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elements.

Proof. Each A,xB, consists of (¢!)* elements when contains ¢
elements.
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A METHOD OF APPROXIMATING THE COMPLEX
ROOTS OF EQUATIONS

STEPHEN KULIK

1. The method described in this paper presents an algorithm by
which at least two roots of an equation can be approximated starting
with the same first approximation. This is achieved by introducing
a parameter and choosing its numerical value appropriately. In particular,
in case of real roots, two adjacent or the largest and the smallest roots
are approximated by the use of two different values of the parameter.
This is discussed in §3. In case of conjugate imaginary roots the real
and imaginary parts of the approximations are easily separated. This
is discussed in §4.

2. Let f(z) be an analytic function within and upon a circle C,
and let the roots of the equation f(z)=0 within and upon the circle be
denoted by a,, =1, 2, ---, and their multiplicities by m, respectively.

We consider the expansion into the partial fractions of (u—2)*f"(2)/f(z),
where % is a positive integer and u=a, or z but otherwise arbitrary,

(1) =) @)fR)= 2 m(u—a)f/e—a)+ () ,

where ¢,(z) is analytic within and upon the circle, and the sum is taken
over all the roots a, starting with j=1.

By differentiating (1) n—1 times and dividing by (—1)"*(rn—1)! we
derive

(2) an/[f(z)]”:; mj(u“aj)k/(z_@j)"'l"S[’n(z) ’ n=k,

where ¢,(2) is analytic within and upon C. The function @, ,=@Q, (2, »)
can be evaluated by the formula

(3) Q=5 (H)u—2r-1r21D.-,

with D, evaluated recursively

Dy=5 O @ ~f@) Dy G+ 1) H P AT =1
D,=1, Di=f"(2)

(4)

The function @, , can also be evaluated recursively, and both @, , and
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D, can be expressed in the form of determinants [1, 2].
We rewrite (2) as follows

(5) Qn /LA (R)]" =ma(u — @) [(z— )"
L= o imu—a )| Smu—a)le—a )+ ]}

where the summation starts with j=2. Now, if we assume that » and
z are given such values that

(6) l(w—a)/(z—a)| > (u—a,)/(z—a,) , j=2, 3, -,
and '

|(u"a1)/(z_a'1)| >l(u_C)/(z"‘C)l ’

for any ¢ on C, the following result follows :

( 7 ) (u_al)c—b/(z—a’l)a:lijg Qn,n—b/[f(z)]aQn—a,n—c ’

where a, b, and ¢ are constants satisfying the conditions imposed on the
subscripts of @,; in (2). An approximation to a, is obtained with a
finite n.

Of particular practical value are the cases when the left hand side
of the equation has only u—a,, or 2—a,, or both of the first or second
degree.

3. The reason for introducing the parameter u into the problem
is that more than one root can be approximated with the same D,, D,,
<+« D, by using different appropriately chosen values of ». This will be
illustrated when the left hand side of (7) is either u—a,, (v—a,)/(z—a,),
or 1/(z—a,), namely :

(8) (e—a)/(u—a)=Hm f2)Qn-1,-1/Cnn
(9) 2=, =lm f(2)Qn-1,n-1/@n.ns

(10) u—0,=1m Q, /@ n-s

(11) (2 —a)/(u—a:)=lim f&)Qn-1,2-2/Qn.n-1

Let us assume that z=x is real and that the two roots closest to
x are also real, o, <a<a, —a;<a,—2x. Then, as it can easily be
verified, an approximation to a, can be obtained with any u,>z, and
oo <u, < [(a;+a,)r—2a,a,]/(2c—a,—a,) ; an approximation to @, can be
obtained with any [(a,+a,)r—2a,a,]/(2x—a,—a,)<u,<x (Diagram 1). The
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above inequalities defining u, and u, should also be used when a,<w is
the largest real root of an equation and a, the smallest (Diagram 2).

Before applying any of (8)—(11), an approximation to @, can be
obtained by using a more particular case of (7) [1, 2]:

(12) z—a,=lim f(2)D,,/ D,=lim [f™(z)D,]""

N—>oco

This gives an idea as to the location of the root closest to .

RS
T

|
|
|
]
T

U—
4

u, Y,

Diagram 1 Diagram 2

4. Let now z=a be real equidistant from two conjugate imaginary
roots a+bt and a—bi. Then u can be taken in the form z-+¢: and the
real and imaginary parts in the equations (8)—(11) can easily be separated.
In this case, if x is closer to a4 and a—b7 than to any other root of
the equation, and if the equation has no more imaginary roots, any
positive ¢ can be taken to approximate a—b7 (Diagram 3). If the
equation has another imaginary root not much more distant from « than
a—bi, and with real part closer to « than a, a large value of ¢ would
be required (Diagram 4). The imaginary root a—bi can be approximated
with some positive ¢ (Diagram 5) even if there is a real root which is
closer to z than to a—bi, but not very close, and if the real part, a,
is close to z.

l
ti t | L ti
t |
a+bi
/t/ a+bi / a+bi ﬂ
t
[
a-bi
a~bi
Diagram 3 Diagram 4 Diagram 5

We shall now give the explicit formulas for the real and imaginary
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parts of a root a, in the four cases given by (8)-(11).
We designate z=x+ti, as before, where x and ¢ are real, >0,
a’1:a_bi1 Qn,n:An,n+,l:Bn,ny Qn,n—len,n—1+iBn,n—1’ Where

A= =3 (=17 () @D,y

(13)
By=t3 (=17 (g;" 1 =LA@l Dyges

Anpr =3 (=17 =2 f@)]* Doy
By =t 3, (—1Y 7@ =)= f(@)] D -

(14)

The sums being taken over all §, for which the binomial coefficients do
not vanish, starting with j=1.

Now by using (8)-(11) we get respectively
r—a=lim tf(x)[Bn—l,n—l(f(w)An—l,n—l —A,)

(15)
_An—l,n—l(f(x)Bn—l,n—l _Bn,n)]/A ’
b=—lm ¢ f@)[An-12-1(/(X)An-10-1—Ann)
(15)) noe
—B,in-1 f(x)Bn—l,n—l_Bn,n)]/d ’
where

A = [f(x)An—l,n—l - An,n]z + [f(x)Bn—l,n—l_ Bn,n]2 ;
(16)  z—a=lim f(x)(Ann-14n-1n-11FBan-1Bn-1,n-1)[(Ann-1+ B n-1)

(161) b=Ilim f(x)(An,n-an-l,n—l _Bn,n—lAn—],n—l)/(A:,,n—l +Bazz,n-1) >

n—>o0

(17) r—a=lim (An,nAn,n—l+Bn,an,n—l)/(Agb,n—l+B5L,n~1) ’
(171) t'—'b:lim (An,an,n—l"‘Bn.nAn,n—l),/(Azb,n—l +B121,n—1) ’

r—a=lim¢ f(x)[Bn—l,n—z(f(x)An-l,n—Z'—An,n—l)

(18)
'—An-l,n—z(f(‘w)Bn—l,n—z_Bn,n—l)]/AI ’
b'—"lim tf(x)[An—l,n—Z(f(x)An '1,n—-2—An,n—1)
(18,) ne
- n—-l,n—z(f(x)Bn—l,n—z—Bn,n—l)/dl ’
where

Alz[.)“('/1")1411,—1,11—2—‘4%‘15—1]2—{_[f(w)-Bn--1,71,—2'_-Bn,n—-l]2 .

5. Results analogous to those presented above can be obtained by
considering other expansions similar to those given by (2). We mention
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here one such result assuming that f(2) has only simple zeros. We
consider then (u—2z)*/f(z) instead of (u—=z)*f"(2)/f(2) and derive the
equation

(19) AR = 5 A u—a) =0 + (@) ,
where A, are constants.

(20) @o=3 () u—ay- L@ P.- -

21) Pn=§f(z><f+l>[—f(z)]fP,,-,-l : P=1.

It would suffice now to replace Q,, by QL. in all the previous formulas.

6. If f(z) is a polynomial of degree N and k=mn, then the last
member on the right hand side of (2) equals —N. If taken to the left
hand side, it would contribute the term N[f(2)]" to Q,. consequently,
N[f(z)]" and N[f(2)]** will be contributed to 4,, and A,-,,-, respectively
in (8), (9), and (10). In case of equation (19), however, the last member
would be reduced to —A,—A4,— -+ —Ay.
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A NOTE ON A PAPER OF L. GUTTMAN

A. C. MEWBORN

In a recent paper L. Guttman [2] obtained, using a result of von
Neumann on the theory of games, lower bounds for the largest charac-
teristic root of the matrix AA’ where A is a real matrix of order m xn.
As Guttman points out his bounds are non-trivial only if some row or
column of A has only positive or only negative elements. I wish to
show that Guttman’s results, and even a better result, are an immediate
corollary of a well known theorem on Hermitian matrices: that each
diagonal element lies between the smallest and largest characteristic
roots (see e.g. [1]). Moreover, if AA’ be replaced by AA4* then A can
be real or complex and a non-trivial result is always obtained.

THEOREM 1. Let A=(ay;) be an mXxn matric with real or complex
elements. Let A be the largest characteristic root of the mxm non-
negative definite Hermition matric B=AA*=(b;;). Then

(1) 1= maXilaulz
i Jj=1

(2) A= maX§laulZ
J i=1

Proof. Let b,, be the largest diagonal element of B. Then
Zzbw: i larjiz'—_ max Zn:l Iaijlz ’
j=1 i j=1

and (1) is proved. Now the non-zero characteristic roots of AA* are
the same as those of A*A. Then (2) follows as above if we consider
A*A instead of AA*.

The bounds in (1) and (2) can be replaced by the weaker bounds

(3) Azn - max (mjin la,, 12>
(4) izm - mjax (miin |y, IZ)

respectively, and even these bounds are obviously better than Guttman’s.
Theorem 1 can be improved further.

THEOREM 2. Under the hypotheses of Theorem 1 we have

VRece;er:d_ October 25, 1957. The author is a National Science Foundation fellow,
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(5) 2= mﬁX l:é (o P +layy lz)‘}‘{[é«l(la“ F—lay |z)]z+4l vZZT aivajyr}l/j

1]

Proof. It was shown in [1] that the largest root of an Hermitian
matrix is greater than or equal to the larger of the two roots of any
principal minor of order two of the matrix. Suppose the principal minor
or order two of B having the largest root lies in the r, s rows and
columns of B. Then

(6) 21z max| 3 (o, )+ E (aul—la,p [+4] $5.q,

22 gbrr"l"bss"}— [(brr _bss)2+4 l brs |2]1/2
=3 (anPHan )+ S (b —la, P [ +4] S 0.,

2}1/2

and (3) follows. (4) is proved similarly by considering A*A instead of
B.
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ON THE PRINCIPAL FREQUENCY OF A MEMBRANE

ZEEV NEHARI

1. Let D denote a simply-connected region in the ay-plane whose
boundary consists of a finite number of piecewise smooth arcs. If 1 is
the principal frequency of a homogeneous membrane which covers D
and is kept fixed at its boundary C, then, according to a well-known
theorem of Rayleigh [3], 2 is not smaller than the principal frequency
of a circular membrane of equal area and density. This may also be
expressed by saying that the homogeneous circular membrane has the
lowest principal frequency among all homogeneous membranes of the
same mass.

In this paper we shall be concerned with the possible generalizations
of Rayleigh’s theorem to the case of non-homogeneous membranes. It
is clear that no general result of this type is to be expected unless
certain restrictions are imposed on the density distribution of the
membrane. Indeed, it is easily shown that the principal frequency of
a membrane of given mass can be made arbitrarily small if enough of
the mass is concentrated in a small area interior to D. It is therefore
necessary to add conditions which prevent the excessive accumulation
of mass at interior points of the membrane. As the following theorem
shows, a sufficient condition of this type is the requirement that the
density distribution p(z, ) be such that log p(zx, y) is subharmonic, i.e.,
that the mean value of log p(z, ¥) on any circular circumference inside
D is not smaller than the value of log p(x, y) at the center.

THEOREM I. If 2 is the principal frequency of a membrane of given
mass whose density distribution p(x, y) is such that log p(x, y) is subhar-
monic, then

(1) 1=,

where A, 18 the principal frequency of & homogeneous circular membrane
of the same mass.

The conclusion of Theorem I will in general not hold if the
restriction on p(x, y) is replaced by the somewhat weaker condition
that p(xz, y) be subharmonic. The following theorem shows, moreover,
that — at least in the case of a circular membrane — inequality (1) is
reversed if p(x, y) is assumed to be superharmonic.

THEOREM II. If 1 s the principal frequency of a circular membrane

Receivedﬁ January 3, 1958. This research was supported by the United States Air Force
Office of Scientific Research.
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of given mass whose density distribution p(x, y) S superharmonic, then
2= 4,

where 2, is the principal frequency of & homogeneous circular membrane
of the same mass.

Theorems I and II will be proved in §§2 and 3, respectively.
In §4, Theorem I will be applied to the proof of the following result
on homogeneous membranes.

THEOREM III. Let « be an analytic subarc of C which is concave
with respect to D. If A denotes the principal frequency of a homogeneous
membrane whose boundary is free along « and fixed along C—«a, then

4 =4,

where A, is the principal frequency of a homogeneous semi-circular
membrane of equal mass whose boundary is free along the diameter and
JSized along the semi-circle.

2. The principal frequency of the membrane with the continuous
density distribution p(x, y) is the lowest eigenvalue 1 of the differential
equation

(3) Ugy + Uy + (@, YIu =0

with the boundary condition ©=0. 2 may also be defined as the minimum
of the Rayleigh quotient

S (U2 U2)da dy

(4) S
SSD Ude dy

if U(w, y) ranges over the class of functions which vanish on C and
for which U, U,, U, are continuous in D+C. To prove Theorem I, we
have to show that, under the assumptions concerning p(x, y) the integral

,ZH pdz dy attains its minimum in case D is a circular disk and p(z, v)
D

is constant, i.e., we have to demonstrate the inequality

(5) || oo, v dwdy = =,

where 7, is the smallest zero of the Bessel function Jy(r).

We denote by wu the first eigenfunction of (3). The function u is
not zero in D, and may be normalized in such a way that 0<u<1 in
D. We use the symbol C, for the level curve, or curves, u=p and we
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set A(p)z“D pdx dy, where D, is the subset of D at which u=p. If
P

C, consists of n closed Jordan curves (sections of which may coincide),
these will be denoted by C,,, C,,, -+, C,,. The proof of (5) will use
a symmetrization procedure [3] in which the curve, or curves, C, is
replaced by a circle about the origin of radius r», where =r*=A(p). If
v is the function which takes the value p at all points of this circle,

and R is defined by nRzzA(O):“ pdx dy, we shall show that
D

(6) SSDp w? do dy = S”Svadr 0
0 0
and
(7) SSD(ug+u;) do dy = S S:(vi-l-vf,) rdrdo .

If J(u) and J(v) denote the Rayleigh quotients (8) of # and v for their
respective domains of definition, it will follow from (6) and (7) that

ASS pdedy = 2RJ(@) = <RI) .

Since v(R, 0)=0, J(v) is not smaller than the principal frequency j:R-*
of a homogeneous circular membrane of radius R and density 1. Theorem I
will therefore be proved if (6) and (7) are established.

We denote by CF the level curve u=p—dp, where dp=¢>0 and ¢
is small. If dn is the length of the piece of the normal to C between
C, and CJ, the area between C, and C} will be, except for a correction
term of order &

(8) dA:SOpdndszzn]SC pdnds .

o V=1
where s is the length parameter on C,. Since A(p)=rx1? we thus have

(9) 2rrdr = Scpdnds.

P

By the Schwarz inequality, we have

(dp)zqo vV?dsy = <S 401/ 5 dn ds)z < S pdn dsgc (gf)zdn ds .

[ Cp,vd'”' o,y by AT

It follows therefore that

(o) 3, (SC v ?ds)z < Sc pdn dsSC @—‘Z)zdn ds .

bd (R 3
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dp
dn
the area between C, and Cj to the Dirichlet integral on the left-hand
side of (7), we thus have, in view of (9).

Since, up to an e*-correction, S ( >2dn ds is the contribution D,(u) of
cp

@y 5 (S v1/}5ds>z < 977 Do) .

%,

On the other hand, the contridution D,(v) of the circular ring between
r and r+dr to the dirichlet integral D(v) is (again with an e*-correction)

2m~<gf )Zdr. Hence,
"

V' p ds)g < 471 Dg(u).
Cp,\/

Du 35|
Since nr“:SS pdxdy, this may also be written
Dp

(10) Dy 3, (SC vVEds>2 < 4z Dd,,(u)SSD pdzdy .

We shall prove presently that, under our assumptions regarding
the function p(z, y), the inequality

(11) 4nSSGp dody < (er/zozs)z

holds for any rectifiable Jordan curve I' and the region G bounded by
it. If the simply-connected region enclosed by C,, is denoted by D,,,
(11) implies that

47rSSD pdrdy < /;brv:é1 SSD pdrdy < i(go V?ds)z .

0,v y=1 0,y
Combining this with (10), we obtain
Dy,(v) = Dyy(u)
and this entails (7). (6) follows from the fact that, by (9),

SSD puwdedy = ng pdnds + O(e?) = 2z r v’dr + O() .
kD c,

To complete the proof of Theorem I, we have to show that (11)
holds for a function p(x, y) which is positive and continuons in a simply-
connected region G and on its boundary I, and which is such that
log p(x, y) is subharmonic. Because of the latter property, we have
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log p(x, y)<o(x, y) in G if o(x, y) is the harmonic function in G whose
boundary values on I' coincide with those of log »(x, y). Hence, (11)
will be proved if we can show that

471“@@” dedy < (Sre" tJls)Z )

where o(x, ¥) is any harmonic function in G which is continuous in
G+1I'. Now e"=l|g(z)|, where g(z) is a regular analytic function in G
which is continuous and does not vanish in G+1I". If we set g(z)=f'(z),
we thus have to show that

(12 (| ir@rady = (] 1reas)
G r
where f(z) is regular in G, and f’(z) is continuous and does not vanish

in G+1.
If f(2) is univalent in G, (12) reduces to the isoperimetric inequality

. . _
47rn dedy < (S ldwl) (w=E-+i7)
G* I*
for the region G* (bounded by /'*) onto which G is mapped by the

transformation w=f(z). In the general case we have, by Green’s
formula,

[ r@raay=1]Fra="1{ car—ya,
and (12) is seen to be equivalent to the general isoperimetric inequality

2| (ed7—7d0) = ([ lawl)

proved by Hurwitz [1, p. 97] for arbitrary piecewise smooth closed
curves I'™* which may be self-intersecting. This completes the proof of
Theorem 1.

3. We now turn to the proof of Theorem II. Since p(x, y) is
superharmonic in the circle a*4y*<R? it follows from a well-known
result [2] that

(13) ar) =  "pla, y)as (o +iy=re®)

is a non-increasing function of = in the interval [0, B]. The same is
evidently true of its mean value
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2 S £ q()dt .

7)o
If we set r(r):Srtq(t)dt, we may therefore conclude that
0
(14) o) = Ze(R)

If 2 denotes the lowest eigenvalue of the problem 4dv-ipv=0 with
the boundary condition v=0 on the circumference r=R, we bave

0

2 R
S S purrdrdl
, 0 — S ——
SMSR(ui-{-ui)r dr
0 Jo

=
1\

where u is any function which satisfies the boundary and admissibility
conditions. In particular, we may take for u the lowest eigenfunction
of the problem

(15) [rw'@)) + hru@) =0, w(R)=u(0)=0.
This yields

1 SRT q(r) wdr
A> Jo v

27TSR’I' u*dr
0
In view of the definition of «(r), we have
R R R
(16) S r q(rwdr = S T(rudr = — ZS (ryuw'dr.
0 0 0
Since u(r)=0 in [0, R], it follows from (15) that » «'(r) is a non-increas-

ing function of ». Because of %'(0)=0, we must therefore have «/(r)<0
throughout the interval. We thus conclude from (14) and (16) that

SR’I"Q(T) wdr < — 2@5%2& w dr = 2 7&) SR'r wrdr .
0 Rz Jo R* Jo
Hence,

«(R) So“"’ I Ar) _ (R

- s

m R? SR TR A js

v

1
1 r u'*dr
0

where j, is the first zero of the Bessel function Jyx). Since
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(R) = S:r g(rydr = Szﬂgfpfr drdé ,
we finally obtain
| paway < =i,

and this is equivalent to the assertion of Theorem II.

4. In Theorem III, we are concerned with a boundary value
problem of different type. If « is an analytic subarc of C, we are
considering the problem

@am Au+Au=0,u=OonC—a,%u:00na.
n

We shall show that, under the assumption that « is concave with
respect to the interior of the membrane, the smallest eigenvalue 4 of 17y
takes its smallest possible value in the case of a semicircular membrane
of the same area, where « coincides with the diameter bounding the
membrane. It may be noted that for non-concave arcs « the assertion
of Theorem III will in general not be true; as suitable examples show,
A may in this case be made arbitrarily small.

We introduce the analytic function f(2) which maps the semicircle
[z| <R, {2z} >0 conformally onto the region D covered by the
membrane, and transforms the segment —R<z<R into the open arc «.
The value of R may be chosen in such a war that the semicircle has
the same area as D. Since « is analytic, f(z) will be regular and the
mapping will be conformal on the segment —R<z<R. Accordingly,
the function w(z) defined by w(z)=u[f(z)] will satisfy the boundary
condition dv/on=0 on this linear segment, and (17) is transformed into
the problem

(18) v+ Af'@PFv=0,v=0 for 2 =Re*, 0 < ¢ <,

W _0for —~R<z<R.
on

We now define a function p(z) by n(z)=|f'(2)}* for |2|<R, {2z} =0,
and p(z)=|f'(?)* for |z|<R, {2} <0. This function is continuous in
|2|<R, and we may consider the eigenvalue problem

(19) dw + A*pw =0, w=0 for [2] =R.
It is easy to see that

(20) A* < 4,
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where 4 and A* are the lowest eigenvalues of (18) and (19), respectively.
Indeed, we have

SS (-7 )dae dy
A* é J DR

(21) 2
SS py* da dy

DR
where D, denotes the disk [z|<R and 7 satisfies the boundary and
admissibility conditions. If 7 is identified with v(z) in the upper half
of Dy, and with v(2) in the lower half, these conditions are satisfied
and the right-hand side of (21) reduces to 4.

The next step is to show that logp(z) is a subharmonic function
in |z|<R. This is certainly true in both the upper and the lower open
halves of |z|<R; indeed, in both these regions logp(z) is even harmoniec.
To show that logp(z) is subharmonic throughout |z|<R it is therefore
only necessary to derive the inequality

(22) log p(x) < él SM log p(z+ee®)do
T Jo

where « is any value such that —R<x<R and ¢ is a sufficiently small
positive number. Since p(2) is symmetric with respect to the horizontal
axis, this is equivalent to

log p(x) < 1 Sﬂ log p(z+ee?)dl ,
T Jo

or, in view of the definition of p(z) in the upper half of the disk
|z|<R,

(23) log I/ @] = 1 [ tog 17 (o+eeian .

Since f(2) is regular for —R<z<R, we have

L [Mog 1@ +eennar = wf L ["1og s@eoan)

- {% SO [log Fi(@) + ¢ g ((f)l + O(aﬂda}
=log |"(@)| — 29t | ﬁ((x”;) b+ 0@ .

A comparison with (23) shows therefore that (22) will be satisfied for
sufficiently small ¢ if, and only if, J{f"(@)/f'(x)} <0. If ¢(x) is the
angle between the tangent to the curve w=f(x) and the positive
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x-direction, this is equivalent to ¢’(z)<0. This condition will therefore
be satisfied if, and only if, the curve w=/f(x) — that is the arc a— is
concave with respect to the interior of . We add that the points at
which §{f""/f’} =0 are either isolated, or else this expression vanishes
identically for —R<z<R and « is a linear segment. Evidently, the
subharmonicity of p(z) in not destroyed by isolated points of this nature.
If « is a linear segment, the assertion of Theorem III follows from
Rayleigh’s theorem and an elementary symmetry argument.

In accordance with the hypotheses of Theorem III, log p(z) will
thus be subharmonic in |z|<R and we may apply Theorem I, i.e.,
inequality (5). In view of the definition of p(z), we have

211*H1)R|f’(z)l“ da dy = A*SS p(2) do dy = =j: .

1<

Taking account of (20) and the fact that SSD () da dy is the area A
R

of D, we obtain

Adz Tji= AR,

and this is equivalent to the assertion of Theorem III since g R™* is
the principal frequency of the membrane of density 1 which covers Dy
and has the indicated boundary conditions.
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REMARKS ON DE LA VALLEE POUSSIN MEANS
AND CONVEX CONFORMAL MAPS
OF THE CIRCLE

G. POLYA AND I. J. SCHOENBERG

Introduction. The aims of the present remarks are similar to those
pursued by L. Fejér in several papers in the early nineteen thirties and well
described by the title of one of his paper: Gestaltliches iiber die Partial-
summen und thre Mittelwerte bei der Fourierreihe und der Potenzreihe.
However, the means which we use to realize these aims are different.
Fejér discovered the remarkable behavior of certain Cesaro means, es-
pecially that of the third Cesaro means for even or odd functions of
certain simple basic shapes. In what follows we show that the de la
Vallée Poussin means possess such shape-preserving properties to a much
higher degree thanks to their variation diminishing character.

Before stating our results, we have to explain a few concepts.

Variation diminishing Transformations on the Circle. If a, a,, «--, a,
s a finite sequence of real numbers we shall denote by v(a) or v(a,) the
number of variations of sign in the terms of this sequence. By the
number v(a) of cyclic variations of sign of our sequence we mean the
following : If all a,=0 we set v, (a)=0. If a,7#0 we set

vc(a):v(aiv Aig1y * o0y Ay Ay Aoy * 20y Qg a’i) .

If we think of the a, as arranged clockwise in cyclic order, it becomes
obvious that v(a) does not depend on the particular non-vanishing term
a;, we start with. Notice that v(a) is always an even number. Let
now f(¢) be a real-valued function of period 2z. Let ¢, ¢, ---, ¢, be such
that

(1) <t e <ty <t 4+2m .

We may now define the number v, (f) of cyclic variations of sign of f(t)
by

( 2 ) vc(f)zsuP ?)c(f(tv)) ’

the supremum being taken for all finite sequences {t,} subject to (1).
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Also vy(f), if finite, is even. Thus wv,(sin t)=2, v,(sin 2¢)=4, v,(|sin ¢])=0.

We now describe what is meant by a variation diminishing trans-
formation on the circle (See [4]). Such a transformation is characterized
by a non-negative weight-function, or kernel, 2(f), of period 27, of
bounded variation and normalized by the conditions

(3) —zl;gzﬂQ(t)dtzl, 2= L(At-+0)+2(¢~0) .

Let f(¢) be an arbitrary periodic function, with period 27, real-valued
and integrable (ef. §1.2); let us form its convolution transform

(4) g(t)= ';S 7tuQ(t —7)f(z)dr .

We say that this transformation is variation diminishing provided that
the inequality

(5) v9) = f)

holds for each f. We mean the same thing if we say that Q(¢) is
a variation diminishing kernel.

V-means. One of our aims is to show that the de la Vallée Poussin
kernels

(6) wonlt) = ((;z))!<2 cos *) ,

the Fourier expansion of which has the simple form

(6) w ()= ( )Z<gn_'{_y> 1+2Z (E?_L)r (,}Z%LTCOS vt ,
n

possess the property of being variation diminishing for »=1,2,8, «-- .
For 2(t)=w,(t) the transformation (4) becomes

(7) V)= g')L' zlﬂ SM(ZCOS¥A> He)de

and defines the de la Vallée Poussin means, or simply V-means, of the
function f(t). It is easily verified (See [14] and [5, p. 15]) that V,(¢)
is a trigonometric polynomial of an order not exceeding %, which is
readily expressed in terms of the Fourier coefficients of f(¢). Indeed, if

(8 ) f(t)~icveiwr (c_v:a,) ’



ON DE LA VALLEE POUSSIN MEANS AND CONVEX MAPS 297

we obtain by convoluting (6") and (8)

(9) Vn(t):,,},wx”;(% V)cbem _

()™

In terms of the real Fourier series (2¢,=a,—ib,)

(10) Ay~ ot Si(a, comt+b, sinst)
we find
1 1 &/2n .
(11) Vn(t)——zfa,—{—; an ;(n —l—u)(a” cosut+b, sinvt)
(w
or
(12) Va(t)=- 0604—2 n! (@, cosvt+D, sinvt) .
(n —V)‘ (n—)!

Main Results. Our principal result is the following

THEOREM 1. The inequalities
(13) v Vi) = ZAVa) S0 f)

hold for an arbitrary integrable function f(t). (We let Z(V,) denote the
number of real zeros of V,(t) within a period including multiplicities.)

The first inequality »(V,)<Z/(V,), which is obvious, shows that
Theorem 1 states considerably more than the variation diminishing pro-
perty of the kernel w,(f) which amounts to v,(V,)<v.(f). In Part I we
give two proofs of Theorem 1, both based on a theorem due to Sylvester
[12]. The first proof uses the result of Sylvester’s theorem, the second
uses the method of one of its proofs.

In Part II we discuss applications of the variation diminishing pro-
perty of V-means. Theorem 1 gives a useful lower bound for v,.(f) if
a certain number of Fourier coefficients of f(¢) are known. It is shown
how this implies easily some results by Sturm, A. Hurwitz, Pélya and
Wiener. In §5 we study the simplest classes of discontinuous periodic
functions ; the behavior of their V-means is described by Theorems 3
and 4. Fejér’s Theorem III [1, p. 86] has an analogue for V-means
which is our Theorem 5 below. All this refers to real periodic func-
tions. However, the shape-preserving properties of V-means appear to
best advantage if applied to complex-valued periodic functions.
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Let us state here the main result of §6 concerning convex maps of
the circle. Let K denote the class of those ‘‘schlicht’ power series
Sz’ which map [2|<1 onto some convex domain. Let

(14) f@)=e#, @=1),
(15) V= o S e

)
n

be the de la Vallée Poussin mean, or V-mean, of the power series (14).
It is known that the partial sums of the series (14) need not belong to
K. G. Szego has shown [13] that if F(z) e K then all partial sums of
(14) are ‘‘schlicht’ in the circle |z|<1/4 and map it onto convex do-

mains, and that 1/4 is here the largest constant. That the V-means
belong to K is one part of the following

THEOREM 2. For
(16) f@eK
it 1S mecessary and sufficient that
an Viz)e K for n=1,2, -+ .

The sufficiency part does not even assume the regularity of (14) in
the unit circle, as for any formal power series (14) the assumption (17)
imply that (14) converges and defines an element of K.

Addaitional Results. Parts I and II are followed by two appendices
which contain related materials, but are almost independent of the main
text.

Appendix I brings out a certain analogy between approximations to
two kinds of funetions: periodic funections and funections defined in
a finite interval. It will be shown that the shape-preserving properties
of the V-means, which approximate functions of period 2z, are analogous
to the shape-preserving properties of the so called Bernstein polynomials
which approximate functions defined in [0,1]. For the definition of these
polynomials see 87 where also their variation diminishing property
(Theorem 6) is stated and proved.

Appendix II is devoted to a conjecture on power series which re-
present a conformal one to one mapping of the unit circle onto a convex
domain. The conjecture is that the Hadamard eomposition, or convolu-
tion, of two such power series is again a power series of the same kind
(see §9). We do not know whether this conjecture is true or not (it
seems to us more likely that it is true) but at any rate, in view of the
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partial results which we have obtained (§§10 and 11), the problem to
prove or to disprove the conjecture seems to us worth while.

PART I. THE DE LA VALLEE POUSSIN SUMMATION
METHOD IS VARIATION DIMINISHING

1.1 A theorem of Sylvester. In the course of his work on Newton’s
rule of signs J. J. Sylvester discovered a remarkable theorem concerning
the real zeros of polynomials of the form

zinjlcv(x - Ev)q

(see [12, p. 408], [7] and also [9, vol. 2, Problem 79, p. 50]). In Sylvester’s
theorem ¢ may assume any positive integral value, a fact which is im-
portant for its proof which proceeds by induction in ¢. We need
Sylvester’s result only for ¢=2n and state it as follows.

LEMMA 1. Let £<6,< +++ <&,, (m=2), be given reals and consider
the polynomial

P(x) :gcv(x— £,)™

(with real c,#0 for all v), which we assume not to vanish identically.
Then
Z(P; —o0 <x<0)Zv(C1y € =+ Cuy C1)

where the left side denotes the number of real zeros of P(x) while the
right side is the number of variations of sign in the sequence displayed.

The significance for us of Sylvester’s results is that it easily yields
the following

LEMMA 2. Let
(1.1) —r<ln<ln< oo <7, <, m=2,

be given reals and consider the trigonometric polynomial

(1.2) T(t)= icy(sin t_zfv )2" ,
(for real ¢,#0 for all v), which we assume not to vanish identically. Then
Z(T; —-7T<t<77)§'l7(01, Cyy ***y Cpy cl) .

Proof. We introduce the new variable
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(1.3) r=tan é —n<lt<ln

whose range is —oo <w<o. The images of the r, we denote by

€, =tan =

and these give rise to the identities

. t—7, VL (x—&,)
s T T e A ? :]—y ] ’
(sin 57) A+ (1 +8) ’ "

Thus (1.2) may be expressed in terms of « by

1 m
=————>cr.(®—&)",
Aoy =0

T(¢)
where the 7, are positive and so Lemma 2 immediately follows from
Sylvester’s Lemma 1.

We now recast our result in the following more useful form;

LEMMA 3. Let 71,75 =+, 7 (m=2) be m points in counter-clockwise
order on the circle such that t, should not overtake or even reach ..
We may express these requirements by assuming that

(1'4) <, e <Tm<1'1+277.‘ .
Let
(1.5) T ()= icywn(t—rv) , T,(8) 0 ,

where ot least two among the ¢, do not vanish. Then
(1.6) Z(T,)=vc,) -

Proof. By omitting vanishing terms in (1.5) we may assume that
¢,#0 for all v. Moreover, a change of variable by ¢=t¢—= will evi-
dently not alter the left hand side of (1.6). This implies that in our
statement (1.6) we may replace T',(t) by the polynomial 7(¢) defined by
(1.2). By a second appropriate transformation ¢=t'4-¢ we may replace
the conditions (1.4) by the more restrictive inequalities (1.1), at the
same time making sure that T(r)#0. But then

Z(T)=Z(T)=2Z(T; —a<t<m)Zv(Cyy Cs ***, Coms C)=0c(C;)

and Lemma 3 is established,
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1.2. On the number of variations of a function. The reader may
interpret the term ¢ integrable’’ either according to the definition of
Riemann or to that of Lebesgue, or to any other definition that involves
the familiar standard properties of the integral. We emphasize the
following property : If f(¢) and ¢(¢) are integrable and f(¢)=0 in the
interval I, then

S Fdt=0
I
implies
S Sodt=0 .
I

We consider now a real-valued periodic function f(¢) with the period
27, we assume that it is integrable in the interval (0,27) and that v.(f),
as defined in the Introduction, is finite. We consider ¢ (mod 2r), that
is, we consider ¢ as attached to a point on the periphery of the unit
circle. If v(f)=2k, we can, as easily seen, divide the circumference
of the unit circle into 2k consecutive arcs

(1'7) IU Izv ey Izk
such that
(1.8) (=)' f(t)=0in I,

for v=1, 2, ---, 2k ; the arcs (1.7) may be open, or closed, or open from
one side and closed from the other, some of them may even reduce to
a single point. Now, we normalize f(t), that is, we change f(¢) (if
necessary) as follows: we set f(£)=0 in all points of any interval (1.7)
on which §fd¢ vanishes; especially, if an interval listed under (1.7) con-
sists of just one point, we set f(£)=0 in that point. This normalization
cannot increase (but may decrease) v,f) and leaves unchanged the V-
means of f (cf. the initial remark of this section). Therefore, it will
be sufficient to prove Theorem 1 for normalized functions. If, however,
v(f)=2k for a normalized f(¢), the intervals (1.7), constructed as above,
have the property

(1.8) (—1)V—ISI ADAE>0 for v=1,2, ---, 2 .

The foregoing remarks will be useful in the following proof of
Theorem 1. Yet we do not need them in establishing the weaker ine-
quality

(1.9) v Vi) =vf)
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for a Riemann-integrable function f.
Indeed, let us consider the integral

Vn(t):LS”wn(t—r) (o)
2 Jo
and its approximating sums

Lemma 8 and definition (2) imply

o Vaw=o. (£ ()=o)

or

/UC( V’n, m) §UC(f) *

Since V,, .(t)— V,(t) for all ¢, ag m—oo, the last inequality evidently
implies (1.9). An ‘‘approximation argument” extending (1.9) to a more
comprehensive class of functions is easy, but hardly deserves to be
presented here.

1.3. A first proof of Theorem 1. The first inequality (13) is im-
mediate and so the essential assertion of Theorem 1 consists in the
inequality

(1.10) ZVa)=vdf) -

If v,(f)=2n there is nothing to prove; also if v,(f)=0 for then
Vut) clearly can not vanish. Let us assume, then, that f(¢) is ‘‘ nor-
malized >’ according to §1.2, and that 0<v,(f)=2k<2n, and let us divide
the unit circumference into the 2k consecutive arcs (1.7) which satisfy
the conditions (1.8) and (1.8). We may then write the Fourier coef-
ficients of f(¢) in the form

s=17T =177

a=rou=5"1{ roa-5 1o

(1.11) %ZLS“ ft) cosytdtzfjlg ()] cosvtdt
T Jo 1

_ﬁi}l_SI Lf(£)] coswtdt

bv:lr ft) sinutdtzzlg | £(£)] sinvtdt
T Jo LTy
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—ﬁlS | £(2)] sinvtds .
L 70 JIgg
)):1, AR (D)

Consider in the 2n-dimensional space E,, the closed curve I' defined in
parametric form by cosrt, simt (v=1, ---, n; 0<t<27). To the division
(1.7) of the circumference into the arcs I,, corresponds a division of I
into arcs

(1'12) Flyrm""rzky

where we think of the arc I', as carrying the positive mass
(1.13) lg L) dt .
T Ii‘«

This mass has a centroid the coordinates of which, multiplied by (1.13),
are

(1.14) ls{ /() |cos vtdt, LSI \f(¢) sin vtd (=1, -, ).

T

By a well known theorem of Carathéocdory the mass (1.13) of I°, may
be concentrated in a finite number of points along I, so as to produce
the same centroid (1.14). This we do for each of the ares (1.12).
Arranging all these points in cyclic order along I° we obtain points 7, =,

-+, 7, and corresponding coefficients ¢, ¢, -+, ¢, where (—1)*"'¢,;>0
when 7, belongs to I,. In view of the relations (1.11) we obtain

(1.15) auzzmcj, a,,::chj cosyty, byzzm‘cj sin vz, ,
j=1 j=1 =1
(1.16) oo =2k=v(f) .

We consider now the trigonometric polynomial
(1.17) Ft)= | Seot—r)
j=1

and claim that

(1.18) Fi)y=V,(¢) .
Indeed, by (6")

F(t)=3 St )
j=1

— - n!
=Sed 2 +v21(n_y)' s cosu(t—,)}
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n! n!
= ch{ yZ; (1)1 ()T (cosyt cosvr, 4 sinvt smurj)}

and interchanging the order of summations, we obtain by (1.15)

F(t)_~ aﬁ—le(n_y)‘ (n—{—u)' (@, cosvt+b, sinvt)

which is identical with V,(¢) by (12). Finally, by (1.17), (1.18), (1.16)
and Lemma 3
Z(Va)=ZF)<vlc)=v{f) ,
which proves the inequality (1.10).
2. A second proof of Theorem 1. The foregoing proof is based on
Sylvester’s result which we stated as Lemma 1. We shall now prove

Theorem 1 without assuming the knowledge of this result.
We transform (7) by changing the variables. Setting

t T
=tan—-, =—cot—,
r=ta 5 I3 3

we obtain from (7) (by steps similar to those exhibited following (1.3))
that

2.1) (1+a9)"V,(2arc tanx)zgl(x-E)%((gZ;‘?t A <(—12:;%%fﬂt5) ds

This relation is contained in the more general

2.2) p(@:Sl(x—s)mA(s)ds

where m is a positive integer and the integral Sw gmA(&)dé is absolutely

convergent ; P(x) is by the structure of the formula (2.2) a polynomial
of degree not higher than m.

We consider the following quantities connected with (2.2):

N the number of real zeros of P(x), counted with multiplicity ;

v the number of variations of sign of A(£) in the open interval
—o0LEL o ;

sgnd(eo) is the constant sign, different from 0, that A(£) possesses
whenever it is different from 0 in a suitably chosen interval w<é< o ;
waessume here that A(f) is normalized in the sense of §1.2;
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sgnA(—oo) is similarly defined ;

7 :’; |sgnd(eo)—sgn(—1)"A(—co)]

so that 7 is either 0 or 1;
V=v+7.

In fitting (2.1) into the more general pattern (2.2), we can assume
without loss of generality (by rotating the circle through an appropriate
angle) that V,(z)+0, that f(¢) is normalized in the sense of §1.2, and
that 0 is an interior point of one of the intervals of constant sign con-
sidered there, so located that, for some positive &, f(¢) takes some non-
vanishing values in both intervals —&<¢<<0 and 0<¢<é&. Under these
circumstances, in the particular case (2.1),

m=2n ,
A(—o)=A(),
7=0,
V=v=vdf),
N=2ZV,),

and so Theorem I is an immediate consequence of the following.

LeMMmA 4. NZV.

We need several steps to prove Lemma 4.

(a) There are some particular cases in which Lemma 4 is obvious.

If P(a) vanishes identically there is nothing to prove since in this
case, by definition, N=0.

If V=m there is nothing to prove since, of course, N<m.

If v=0 and m is even (so that V=7=0) then P(x) will have for all
real z the constant sign of A(¢) and so N=0 as it should be according
to Lemma 4.

If v=0 and m is odd (so that V=7=1) then m—1 is even and so

P@)=| (@-er-mA@d

has a constant sign for all z, by what we have just said. Therefore,
F(z) is monotone and N=1 which agrees with Lemma 4.
And so we may and shall assume in the sequel that

(2.3) IsvsVeEm—1.
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(b) Let ¢ be a point of change of sign for A(§); that is, ¢ is the
common endpoint of two contiguous intervals in each of which A(£)
keeps a constant sign, yet the two signs (cf. §1.2) considered are op-
posite. The number of such points is v and we have assumed (2.3).

We assert that at least one of the m—1 quantities P'(c),P"(¢c), - -,
P™m-b(¢) is different from 0. If this assertion were wrong, the integral

| —ora@a

would vanish for g=m—1, -..,2,1 and, as a linear combination of these
integrals,

2.4) | —er@aea

would vanish for any polynomial Q(§) of degree not exceeding m—2.
Yet this is certainly false if

(2.5) Q)=(@—c)(@—¢c) +++ (—cC,-1)

where ¢, ¢, ¢, -+, c,-, are all the points of change of sign of A(£); ob-
serve (2.3) in computing the degree of Q(£). In fact, with (2.5) the
integrand in (2.4) has a constant sign and so the integral (2.4) cannot

vanish.
We have seen by the way, that under the condition (2.3) P(x) cannot

vanish identically.

(c) Set
(2.6) G(z)=P(x)x—c)™
2.7 P*(a)=(x—c)""'G'(x)
=(x—c)P'(x) —mP(x)
_ S:(x~é)m—‘A*(E)d5
where
(2.8) AX(&)=m(E—c)A(E)

and let N*, m*, v*, 7*, V* be just so connected with P*(z) and A*(§) as
N, m,v,7 and V are with P(z) and A(¢). Obviously

m*=m—1
v¥=v—1
(2.9) sgnA*(co)=sgnA(oo)

sgnA*(—co)=—sgnA(—c)

and so 7*=%. Combining this with (2.9), we obtain
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(2.10) V*=V—-1.

We intend to prove Lemma 4 by mathematical induction with re-
spect to V. In fact, we have already proved Lemma 4 in the particular
case V=0 under (a). We therefore assume V=1, ef. (2.83), and that
Lemma 4 has been proved for the preceding value (2.10), and so we
take for granted that

(2.11) N¥<V* .

(d) Let k& denote the number of those zeros of P(xr) that coincide
with the point ¢; obviously £=0, and, by (b),

(2.12) k<m—1.

Let k&* denote the number of those zeros of P*(x) that coincide with c.
We set

(2.13) N=k+l, Nr=k*+I*.

The quantities [ and [*, defined by (2.13), enumerate those zeros of
P(x) and P*(x), respectively, that fall into one or the other of the two
open intervals —oo <z<c¢ and c<x< .

We note the critical term of the expansion of P(x) around the point
r=c,

P)= P2 ..., Poo)20.

By (2.6) and (2.12), G(«) has a pole at the point ¢ and (2.7) yields

pra) = GmmPOEE=e

We infer that P*(x) has just as many zeros at the point ¢ as P(z):
(2.14) k*=Fk .

By the way, we have seen that P*(x) does not vanish identically.

(e) It remains to consider the real zeros different from ¢; P(x) or,
which is the same, G(x) has [ such zeros, and P*(x) or, which is the
same, G’'(x) has [* such zeros. These zeros are distributed somehow in
the two open intervals, —o <x<e¢ and c<z< .

By the theorem of Rolle, in each of these intervals at most one
zero can be lost in the passage from G(x) to G'(x), so that
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(2.15) 1¥=1-2;

this information is correct, but insufficient for our purpose. We shall
obtain, however, additional information by using the following remark
(cf. |9, vol. 2, p. 39, problem 14]).

No zero can be lost in the passage from G(x) to G'(x) in the interval

(—e0,0) of

(2.16) sgnG(— oo )=8gnG'(— )

and no zero can be lost in this passage in the interval (¢, ) if
(2.17) sgnG (oo )= —sgnG’'(o) .

The signs mentioned in (2.16) and (2.17) refer to a certain neigh-
borhood of —oo or o and, as G(x) has only a finite number of zeros,
they are certainly different from 0.

(f) We know, cf. (b), that the polynomial P(x) does not vanish
identically. We set

(2.18) P(r)=ba" +ba"+ -+ +b,

and distinguish two cases.
Case 1. If b,=0, there is an s such that §,=b,= .- =b,_,=0, b;£0
and so we easily find the initial terms in the expansions around oo:

.} — bs G/(x) . 8
G)y="s 4 oo,  TW S
@) @’ + G(x) @ *

In this case, both conditions (2.16) and (2.17) are satisfied, and, by the
final remark under (e), we can improve (2.15) to

(2.19) =1
Case 1I. Now
(2.20) bu:r AE)E£0

and the expansions around oo begin

(2.21) Gla)=b,+ Mhtb
X
(2.22) G'(@)=—Pbtb
o

where
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(2.23) mcba-i—blzmSlA(E)(c—E)dE .

We again distinguish two cases.

Subcase 11, 1. If v=1, ¢ is the only point of change of sign of A(€),
the integrand in (2.23) is of constant sign, and so the integral is dif-
ferent from O.

Subcase 11, 2. If v=2, the integral (2.23) could vanish. Yet in
this case A(¢) has at least another point of change of sign, ¢, and we
say that (2.23) and

n|” A@)e—od
cannot vanish simultaneously: in fact, their difference is
m(cl—c)r A(E)dE=m(c, —c)by£0

by our present assumption (2.20). Therefore, assuming that the point
of change was properly selected from the start (which boils down to
a proper choice of notation) we may assume that (2.23) is different
from 0, also in the present subcase.

Finally, in both subcases, we conclude from (2.21) and (2.22)
@*G'(x) _ _ mceby+b,

——2 L0
sz G(2) by ”

and we see that just one of the two conditions (2.16) and (2.17) is ful-
filled. Therefore, by the final remark under (e), we can improve (2.15)
to

(2.24) =11

Thus, even in the less favorable of the two cases I and II, we
have (2.24). Combining this with (2.13) and (2.14), we obtain

N*=N-1
and hence and from (2.10) and (2.11) we obtain
V-1=V*=N*=N-1

or V=N, which is the desired conclusion of Lemma 4.

The foregoing somewhat involved proof becomes more understanda-
ble if it is compared with the proof for Lemma 1 given in [7] or in
[9, vol. 2, p. 50, problem 79].
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PART II. SOME APPLICATIONS OF THE
VARIATION DIMINISHING PROPERTY OF V-MEANS

3. A theorem of Ch. Sturm and A. Hurwitz. Let f(¢t) be a real-
valued, integrable, periodic function of period 2z. Let

3.1) f(z‘;):éud—l— S (@, cos vt -4-b, sin »t)
y=1

be its Fourier expansion. Suppose that the partial sum

3.2) Sn(t):é— ay+ nZJ (a, cos vt -+b, sin vt)

is known. What can we say about the number v(f) of changes of
sign of f(t) in a period? An answer is immediate: Knowing (3.2), we
can compute (11), the nth V-mean of f(¢), and we must have

(8.8) V() ZZA V)

by Theorem 1.

The information provided by this inequality is strongest when the
right hand side attains its largest value 2n. There is a simple sufficient
condition for this eventuality which we record as follows.

COROLLARY 1. If
(@007 > (% Y-8+ (B @t b -

3.4)
(2 Jarrbye L (2l

then every function f(t) having (3.2) as the nth partial sum of its Fourier
series, must change sign within a period at least 2n times.

Indeed, it is clear by (3.4) that the last term of the expression (11)
for V,(¢) so predominates that V,(¢) has 2n simple zeros, hence Z,(V,)=2n.
The statement now follows from (3.3).

We obtain a classical result [2, pp. 572-574] as a very special case.

COROLLARY 2. If ay=a,=b,= +++ =a,_;=b,_,=0, a%-+b>>0, then
v ) =2n.
The following is an equivalent formulation. If a%-+b:>0 then

(3.5) vo(f() = Su-i(8)) =20 .

This second formulation is especially interesting and intuitive because
it shows that the graph of the partial sum S,_,(¢f) must cross the graph
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of f(t) at least 2n times. Hurwitz’s proof of Corollary 2 is direct and
elementary. However, his classical argument is no longer available to
establish other special cases such as the following.

If

-

A= +3 cos i+ (a, cos vt+b, sin 1)

V=n+1

[\

then

v(f)=2n .

For in this case V,,(t)Z—;a)n(t), hence Z(V,)=2n so that (3.8) implies

the result. Such particular examples are easily constructed and we see
no other way of proving them except by the fundamental inequality
(3.3).

4. The simplest Pélya-Wiener result concerning high order derivatives
of periodic functions. Let f(¢) be a real function of period 2z which
is infinitely often differentiable. Let us consider its zeros and also the
zeros of its successive derivatives. Counting multiplicities as usual we
set

N® =Z,(f®) k=0, 1, ---,

and assume all these numbers to be finite. A familiar application of
Rolle’s theorem shows that

(4.1) NOSNOZL «oe S N®OSNEDL L.,

Can this sequence remain bounded? This is surely the case if f(¢) is a
trigonometric polynomial. The truth of the converse is stated by the
following proposition due to Pélya and Wiener [8.]

COROLLARY 3. If the sequence (4.1) is bounded and
4.2) lim N® =2m ,

then f(t) is a trigonometric polynomial of exact order m.

Indeed, let (3.1) be the Fourier series of f(¢). It is known to
converge under our assumptions and the expansion of f*(¢) is obtained
by formal differentiations of the expansion of f(¢). Let us assume that
for a certain n

(4.3) a2 +b2>0 .

It is clear then from the form of the Fourier series for f™(¢) that this
series will satisfy the inequality (8.4) of Corollary 1, provided only that
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k is sufficiently large, k#>K say. But then by Corollary 1
N® =9 (f®)=2n, (if E>K) .

Thus (4.2) and (4.3) imply that n<m, and f(¢) must reduce to a
trigonometric polynomial of order ¢g<m. On the other hand, if f{¢) is
such a polynomial, N™ <2¢ which implies 2m=<2q or m=<q, hence ¢g=m
and the theorem is established.

5. The graphic behavior of V-means. We now wish to discuss the
shape-preserving properties of the V-means which are implicitly contained
in the fundamental inequality

(5.1) Z{ Vi) =vdf) -

It shows that V,(¢) can’t oscillate about zero more frequently than f(¢)
does. But there is nothing peculiar about the level zero. Indeed, if 7
is any real, then f(¢{)=7r implies V,(¢)=7. Thus we may replace in (5.1)
fand V, by f—7 and V,—7, respectively, obtaining the inequality

(52) Zc( Vn—r)évc(f_r) .

A second remark is based on the obvious known fact (see [5, p. 191])
that if f(¢) is absolutely continuous then V,(¢) is the V-mean of f'(%).
But then (5.1) immediately gives

(5.3) ZAV)<vdF) -
This operation may naturally be repeated giving

(5.4) Z{VE) S0 f®)

which is valid depending on how many derivatives f(t¢) possesses. For
instance, if

fec”

dkar dhe greank nf (D carlt.have .mnte .maxims .minima v gmints of
inflexion than the corresponding numbers for the graph of f(z).

It is desirable, however, to discuss this phenomenon for functions
of a lower degree of smoothness and the following developments aim
to do that. We consider the class D, of real periodic functions f(¢), of
bounded variation, normalized by 2j(¢)=f(t+0)+f(t—0). A subclass of
D, is the class D, of functions satisfying the classical Dirichlet condit-
ions. By f(t)e D, we mean that the circle can be dissected into a finite
number of consecutive open arcs in each of which f{(¢) is monotone in
the wide sense.

With each f(£)e D, we associate an even non-negative integer S(f),
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called the number of sense-reversals of f(t) and defined as follows.
Consider, for a given natural number %, the periodic sequence of ordinates

(5.5) = 2;;” )=fon) h=2ak

of period k, and the likewise periodic sequence of differences

o) (%),

v=0, 1, 2, ..., n—1. We now define S(f) by

(5.6) S(f):lkim vc(dfv)szx v(4fr) .
The reader is urged to supply. proof for the statements implied in this
definition ; it depends on an analysis of the finitely many points which
have no neighborhood in which f(¢) is monotone. If in addition to
f(t) e D, we assume that f(¢) e C’ then evidently S(f)=v.f").

Our substitute for (5.3) for the class D, is given by the following.

THEOREM 3. If f(t)e D, then
(5.7) v(V2)=S(Va.)<S(f) .

The proof is very simple. Besides the V-mean

Va®= | “on(t—f ()
we consider the approximating sums

Vn.k(t)z%; w (t—vh)f, . h=2r|k.
Replacing ¢ by £+% we obtain

Vaslt+h) = S 0t—+h)foms

and therefore
(58 AViuh=(Vaslt-+D)=VasO)h= S o,t—sh)F,

By Lemma 38, in view of (5.6), we obtain v,(4V,./h)<v(4f)<S(f) or

VA VailR)<S(f) -
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Because the difference quotient (5.8) converges to V,(t), as k—c, for
all ¢, the last inequality implies (5.7).

There is a similar significant substitute for (5.4) if k=2. In order
to formulate it we define a class of functions f(¢) which we denote by
D,: By f(t)e D, we mean that the circle can be dissected into a finite
number of consecutive open arcs in each of which f(¢) is continuous and
convex, or concave, or linear. It is clear that D,cD..

With each f(¢) e D, we associate an even non-negative integer T'(f),
called the number of turn-reversals of f(¢) and defined as follows:
Besides the 4fv we consider the periodic sequence of second differences

Bz.fv :fv+1_'2fv +fv—1
and define T(f) by
(5.9) T(f )leci_m v(0" f,)=sup v f)) .

Again a proof of the equality of the last two expressions requires the
consideration of the points (finite in number) which have no neighbor-
hood in which f(¢) is convex, or concave. If in addition to f(¢)e D, we
assume that f(¢)e C” then evidently

T(H)=vAf") .
A substitute of (5.4) for k=2 is given by

THEOREM 4. If f(t)e D, then
(5.10) v(V2)=T(V)=T(f) .

The proof is so very similar to the proof of Theorem 3 that it
suffices to indicate the main points. In place of (5.8) we now start
from the second order difference quotient

PVl =Vt +h)—2V,i(t)+ Vi —R)/2

1
=— t—vh)o* 1y ,
5 2\«‘ wn(t—vh)d* f,

and observe that on the one hand it converges to V(¢), on the other
hand by Lemma 3 and (5.9)

(8" Vo u/ )= T(S)

This last inequality implies (5.10) on letting k—co.

The following remarks concerning the simplest elements of D, and
D, are called for: 1. If f(¢)=const. then clearly S(f)=0 and T'(f)=0.
Conversely, either of these relations is easily seen to imply that f(¢)=
const. 2, The first non-trivial case is
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(5.11) S(r)=2.

Functions f(¢) satisfying (5.11) are in a way the simplest non-constant
periodic functions and may aptly be called periodicaily monotone. Likewise
functions with

(5.12) T(f)=2

may be called periodically conves.

It is easily shown that (5.12) implies (5.11). That these new terms
are appropriate is also shown by the following two statements.

1. If the periodic function f(f) is monotone (non-constant) in
—n<t<rw then S(f)=2, that is, f(¢) is periodically monotone.

2. If the periodic function f(¢) is convex or concave (non-constant)
in —x<t<zm then T(f)=2, that is f(¢) is periodically convex.

Observe that the distinction between ‘‘increasing’ and ‘‘decreasing’’
as well as between ‘‘convex’ and ‘‘concave’’, drops out for periodic
functions.

We conclude our short excursus into ‘‘descriptive function theory”’
with a few examples:

S(sin ¢)=T(sin £)=2.

S(|sin ¢))=T(lsin t[)=4 .

If f(t)=sin t+1 in (—=, 0) and f(¢)=sin ¢ in (0, z) then
S(f)=T(1)=6 .
If f(t)=sin t+¢ in 0<t<27, then
S(f)=2, T(f)=4.

From these examples we see that
(5.13) S(N=T(S)

and this inequality is generally true. We see this if we observe that
for a periodic sequence (5.5) we always have

V() S04 S8 1)

In view of (5.6), (5.9) and the corresponding relations
vc(f):hm UC(fv):maX 'vc(f\») s
k—oo k

we conclude that

(5.14) v(F)=S(A=T(f) .
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It is of some interest to show that the remarkable properties of the
third Cesaro means established by L. Fejér in his Theorems 1, 2 and
3 [1, p. 82 and p. 86] are also enjoyed by the de la Vallée Poussin
means V,(t). Thus Fejér’s work suggests the following

THEOREM b. If f(t) is an odd periodic function which is positive
and concave wn the range 0<t<m, then

(5.15) 0< V() SAR) if 0<t<n (n=1).

Moreover, the function V,(t) is also concave in 0<t<r.
The last statement and the first inequality (5.15) are easily proved.
Indeed, it is clear that

(5.16) v()=S(N=T(f)=2.

Observe also that V,()#0 if n=1, for V,(¢)=0 would imply S,(¢t)=0,
hence also v.(f)=2n+2=4 (by Corollary 2) which contradicts (5.16).
By Theorem 1 and (5.16) surely

(5.17) Z(V)=2.

Since V,(t) is a sine polynomial it vanishes at 0 and =. By (5.17)
these zeros are simple and the only zeros of V,(¢). Also by (5.16) and
Theorems 3 and 4 we conclude that

v(V3)=v(V,)=2.

These remarks show that V,(¢) or perhaps — V,(¢) enjoy the properties
to be established. That V,(¢), rather than — V,(¢), has these properties
is shown by observing that

V.A(0)=c S:,(COS ;-)m_l sin %f(r)dr , c>0,

(obtained from (7) by differentiation) has a positive integrand and is
therefore positive.
To establish the second inequality (5.15) or

(5.18) V()= f(2) 0<t<,

is a little more troublesome and we resort to Fejér’s own method. We
consider the ‘‘roof-function’’

by if 0<t<a

(5.19) Fo={ ",
b=  if a<ZtZn o<a<nm, b>0,

T—a
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and denote again by f (¢) its odd periodic extension. We now observe that
indeed

(5.20) V)< F @), 0<t<r,

for these special functions. Since we already know from our previous

discussion that Vn(t) is positive and concave in (0, x), the inequality
(5.20) is perfectly clear as soon as we can prove that

(5.21) Vi0)<F(0), V'@)>F(),

These inequalities, however, follow immediately from previous remarks.
Since f'(t) is continuous, V,(¢) is the V-mean of }"(t). Since ,}”’(0):
sup f"(t), f’(n):inf f"(t), we conclude, for instance from (5.2), that

F)<VuE)< F(0) for all ¢ .

The proof of the general inequality (5.18) now follows from the
observation that the function f(¢) of Theorem 5 may be approximated
by appropriate linear combinations of roof-functions with positive
coefficients.

6. Convex, and star-shaped, conformal maps of the circle. The
following introduectory remark (previously made by one of us; see [10,
pp. 226-227]) applies to any variation diminishing kernel Q(¢) as defined
by the relations (3), (4) and (5) of our Introduction.

Let ’

(6.1) F@)=751t)+ir(1) (f1, S real-valued)

be a complex-valued continuous function of period 27 and let

6.2) g(t)=§1~

7T

S:”Q(t— ) f (@) de

be its transform ; g(¢) is evidently also complex-valued periodic and we
may write

(6.3) 9(t)=gx(t)+1gu(t) , (91, 9. real-valued).

Since Q is real and (3) holds it follows that the transforms of f.(¢),
ft) and 1 are ¢:(t), 9.(t) and 1, respectively. If A, B, C are arbitrary
real constants it follows that Ag(t)-+Bg(t)+C is the transform of
Af(t)y+Bf(t)+C. Since 2(t) is assumed to be a variation diminishing
kernel, we conclude by (5) that the inequality

(6.4) vl Ag:(8)+Bg(t)+C)= v AS(t)+Bf(t)-+C)



318 G. POLYA AND I. J. SCHOENBERG

always holds.

The inequality (6.4) admits a remarkable geometric interpretation.
Indeed, let us denote by {f} the closed curve traced out by f(¢) in
the complex plane of the variable z=w-+iy as ¢ varies in the range
[0, 2], and let {g} be the corresponding curve described by ¢(¢). Let
the following statement, too simple to be called a theorem, be referred
to as a

PRINCIPLE. The curve {g} never crosses a straight line more often
than the curve {f} does.

For if Av+By+C=0 is the equation of a line L then the two
members of the inequality (6.4) are identical with the total numbers of
crossings of L by {9} and {f}, respectively. In particular we have the

COROLLARY 4. If the curve {f} ts convex then {g} is interior to {f}
and {g} s also convew.

Indeed, {f} being convex, it crosses any L at most twice, hence
also {g} crosses any L at most twice and is therefore convex. That
{9} has no points outside of {f} follows already from the properties

(6.5) sxnga%{?ggmt:1,

and in no way requires the sophisticated condition that Q(¢) be variation
diminishing. On the other hand the conditions (6.5) are by themselves
insufficient to enforce the convexity of {g}. It is also true, however,
that the variation diminishing property of Q(¢) is sufficient but far from
necessary for {g} to be convex. As an example we mention the perio-
dic kernel

nlh if —hAZt=<h

. Qt:{
(6.6) ® 0 if —7<t<h or ht<n (0<h<n),

which is readily shown to have the ‘‘convexity preserving’’ property
of Corollary 4. However, (6.6) is not variation diminishing because it
is not periodic totally positive (see [4]).
We now turn to an application of these remarks to conformal maps
of the circle, in particular to a proof of Theorem 2 of the Introduction.
Let

(6.7) F()=z+c2+e®+ - -

be regular in the unit circle. For a fixed value of » we consider the
complex-valued periodic function

(6.8) & my=F(ré®)=re*t-cret+ -« | 0=r<1.
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By (6.8) and (9) its V-means are

Va(t; T):%SZﬂwn(t——r)F(re”)dr

_ 1 2n it (2’)’&) 2.2 1 ... nnit}
—(27’5«"4_1)% + n+2 c,r’e™ 4 +c,r"e
n

or
(6.9) Valt; r)=Va(re") ,

where V,(z) are the de la Vallée Poussin means of the power series as
defined by (15), with ¢;=1. We also record the more explicit expression

_on n(n—1) 20 ...
(6.10) Vn(z)-zi?liz—kml)(n—lﬂ) 2+
n(n—1) -+ 1 n

Cn?
(n+1)(n+2) --- (2n)

Our Theorem 2 seems now almost self-evident. Indeed, if F(2)e K
then the curve {V,(re')} is convex by (6.8), (6.9) and Corollary 4. This
being true for every r<1, we conclude that V,(z)e K. Conversely, if
Viz)e K for every mn, then {V,(re)} is a convex curve for all = and
all »r<1. From the relation

lim V(re)=F(re*)

n—co

we conclude that also {F(re")} is convex. Hence F(2)e K.

REMARK 1. In order to conclude from (17) that Fi(z) e K it is not
necessary to assume that the power series (6.7) converges in the unit
circle or that it converges at all. Rather the converse part of Theorem
2 holds for a formal power series (6.7). For it is known (see e.g. [9,
vol. II, p. 29]) that the assumptions (17) imply that all coefficients of
the polynomial (6.10) are bounded in absolute value by n/(n+1). Lett-
ing m—c we obtain |¢|=Z1 (v=1, 2, ---) which clearly imply the
convergence of (6.7) within the unit circle.

REMARK 2. Let F(z2)e K and hence V,(z) e K. Let D and D, denote
the convex domains into which the unit circle is mapped by F(z) and
V.(2), respectively. We know by Corollary 4 that

(6.11) D,cD.

At this point it is natural to suspect that more is true, namely
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that all the inclusions
(6.12) DcD,c ---cD,cD,.,C ---

are valid, but we are unable to prove or disprove this.

REMARK 3. Since numerous elements of the class K are explicitly
known, Theorem 2 is a ready source of polynomials belonging to K.
Thus

(613) Fy(z)—— 2. =zt ...
1—2

is in K because it maps the unit circle onto the half-plane Jz> — ;

The corresponding ¥V-means

(6.14) Vie)= (21&) (2m e ( 2 )t oo e}
n

are a remarkable sequence of polynomials some extremal properties of
which might be discussed on another occasion. Of course (6.11) holds.
1

Here the convex boundary of D, touches the line 9?2:———2— to an order
of contact which increases with n. Also the inclusions (6.12) can be
verified in this special case.

REMARK 4. Observe that the image D; of the unit circle by

Vi(z)= ;z is the circle

(6.15) Di: lel< ; .

By (6.11) we have D,c D for every F(z)e K. This proves the following
proposition: The circle (6.15) is covered by every convex map D and (6.15)
@s the largest circle with this property. That D, is the largest circle is
shown by the special function (6.13). This theorem is due to Study,
[11, p. 116], and our proof is really identical with Nehari’s proof in
[6, pp. 223-224].

REMARK 5. A comparison of Theorem 2 with Fejér’s Theorem IV
[1, p. 87] again shows the extent to which the de la Vallée Poussin
means of a power series are superior to its third Cesaro means as far
as shape-preserving properties are concerned.
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REMARK 6. In §3 we have seen that from a knowledge of the
section (3.2) of the Fourier series (3.1) of f(¢{) we can infer the infor-
mation (3.3) concerning the zeros of f(t). Is there a similar result for
power series? Specifically, let

F(z)= i ¢’ (¢=1)
0
converge for |z|<1 and let, for a certain value of n,

1 &/ 2n )
V"(z)_’—Zn—>v>:‘o(n 1, JoR
(n

be given and known to have a certain number of zeros within the unit
circle. Can we then draw any positive conclusion concerning the
existence of zeros of f(z) in the unit circle ?

That the answer is negative is very simply shown as follows. With
the given ¢,=1, ¢, -+, ¢, derive the expansion

log (14cz+ «-+ +e2")=bz+ <+ +b2"+ --- .
But then
F(z):eblz+..--abnzn____l_*_clz_l_ e e +cnzn+ . e

is a zero-free entire function whose nth V-mean is precisely the given
V.(2).
In concluding this section we wish to point out similar applications

concerning the class Y of power series ib,zv which map the unit circle
onto a univalent domain which is star-shaped with respect to the origin.
It is well known that the two classes K and 2 are related as follows:
LEMMA 5. S a2’ e if and only if
1
fj@z” eK.
1y

But then Theorem 2 easily implies the following.

COROLLARY 5. For F(z)el it is mecessary and sufficient that
Vaz)e 3 for n=1, 2, ---.

APPENDIX I. THE BERNSTEIN POLYNOMIALS

7. The Bernstein construction is variation diminishing. The purpose
of the present appendix is to furnish for functions f(x) defined in a
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finite interval a theory analogous to that given in Parts I and II for
periodic funections. It is remarkable that such a theory is provided by
the classical Bernstein polynomials. Indeed, let f(x) be defined in [0, 1]
and let

(.1) By =3 7( 2 1) a—ay-, n=1,

be the corresponding Bernstein polynomial (see [5]). Let Z(B,) denote
the number of zeros of B,(x) in the open range (0, 1). We now state
the following

THEOREM 6. Denoting by v(f) the number of changes of sign of f(x)
wn [0, 1] we have the inequalities

(7.2) v(B)=Z(B,)=v(f) .

This result, an analogue of Theorem 1, can be derived as a special
case from a general theorem of S. Karlin [3]. It admits, however, a
very simple direct proof. Indeed, with z=2/(1—2) for 0<x<l, we
have

=)0

hence by Descartes’ rule of signs
o B) 2 (S5 ) o

8. The graphic behavior of the Bernstein polynomials. If we
write B (x)=B,(«; f) to indicate the dependence on f(x), it is known
that

(8.1) B,(x; Ax+B)=Ax+B .
But then (7.1) implies that B,(x)—Ax—B is the Bernstein polynomial of
S(@)—Ax—B. Now (7.2) implies the
COROLLARY 6. If Axz-+B is an arbitrary linear function then
(8.2) Z(B,(x)—Az—B)<v(f(x)—Ax—B) .

Intersecting the graphs of f(«) and B,(x) by appropriate straight
lines y=Axz+B, the inequality (8.2) furnishes a good deal of information
concerning the shape of the graph of B,(x). Notice in particular the
following
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COROLLARY 7. If f(x) is convex in [0, 1], possibly discontinuous at
the endpoints, but not linear in [0, 1], then

1. B,(x) is convez,

2. Byx)>f(») if O<a<],

3. B, (0)=r(0), B,(1)=r(1).

We may omit the simple proof based an Corollary 6.

Observe that the relation Bu(x;f)=B.(x; f’) is not valid. However
a simple calculation shows that (7.1) implies

, =lipn—1
— v 1_/ N—=1=V
Bi@)=nS(" 1 )as, 21 —)
and
By@)=n(n—1%(" %) aF, o1 —ay=
where we have set

fv=f(;”) . (=0, -+, m),

Afvszl_‘fw Azfv:fvﬂ’“szl’i‘fv .

(See Natanson [5], p. 179, fifth line from the bottom). The Theorems
3, 4 and 5 have precise analogues as will now be shown with a minimum
of details. The function classes D, and D, have analogues in the present
situation and the numbers of sense-reversals and turn-reversals may
again be defined by the relations

S(f)=lim v(4f,)=sup v(4f,) febD,
T(f)=lim v(Lf,)=sup v(4*f,) S eD,

respectively.

As in the periodic case we obtain the following.

THEOREM 7. If f(x)e D, then
S(B)=v(B)=S(S) -
If f(x)e D, then
T(B.)=v(B)=T(S) .

If f(x) is odd about the point x=%, then B,(x) is found to share

‘this property. As an analogue of Theorem 5 we have the following
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THEOREM 8. If f(x) is odd about x= ; , concave and non-negative

mn ; <x<1, positive in 7; <x<1, then also B,(x) is concave in [;, 1]
and
(8.3) 0< B,(2)< f(x) if é—<w<1 .

Indeed, let us first observe the following. Because of the invariance
of linear functions expressed by (8.1), we may subtract from f(x) the
linear function whose graph is the chord joining the extreme points
(0, f(0)) and (1, f(1)), without altering the assumptions on f(x). Thus
without loss of generality we may assume that f(0)=s(1)=0. From
this point the proof is entirely similar to the proof of Theorem 5 in all
details, including the use of the roof-functions. Finally notice that the
equality is excluded in the second inequality (8.3). This is so because
of the inequality (8.2) of Corollary 6 ; in the periodic case we only had
the weaker analogue (5.2).

APPENDIX II. A CONJECTURE ON POWER SERIES
MAPPING A CIRCLE ONTO A CONVEX DOMAIN

9. Sources and forms of the conjecture. As stated in the Introd-
uction, a power series

(9.1) az+az+al+ oo Fa g+ oo =1(2)

is said to belong to the class K, if it converges in the circle [z|]<1 and
maps this circle onto a convex domain. We say that the infinite sequence
of complex numbers 2, A, 45, <+ A,, -++ IS a convexity-preserving factor
sequence if the series Aa.z-+ ,a,2°+2,a,2°+ - -+ necessarily belongs to K
whenever (9.1) belongs to K. Let us apply such a factor sequence to
the simplest power series belonging to K, to the geometric series

(9.2) 2t e =2,
1—2z

We obtain

9-3) A AZ D+ e F AR e

if 4, 4, 4, --+ is a convexity-preserving factor sequence, the power
series (9.3) must necessarily belong to K. We state the conjecture
that this obvious necessary condition is also sufficient; that is, we
formulate
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CONJECTURE 1. If both power series
Y o A A SR
bz+b,2+b2+ -
belong to K, also
abz+a.b,t+ab - .-
belongs to K.*

In view of Lemma 5, the conjecture can be restated in other forms,
equivalent to the first.

CONJECTURE II. If the power series
a2t a2 a2+ o
belongs to K and
bz+b2 b8+ - .-
belongs to 2, then
abz+a.b2+ab - e
belongs to =.
CONJECTURE III. If both power series
a2+ a2+t -
biz+02+b22 4 + o
belong to X, also

o,b,

b, ab
1

sy Wby 5
2+~ g ? +—3—z +
belongs to 2.

These three Conjectures I, II and III are completely equivalent,
they stand and fall together. The third form. brings out most clearly
the relation to a conjecture that has been found, years ago and inde-
pendently of each other, by two of our friends, Professor S. Mandelbrojt
and Professor M. Schiffer, and which is published here with their
permission :

2 One of the ‘‘intuitive sources’ of the conjecture is the feeling that (9.2) plays a
‘‘leading role” in K, that it ‘‘sets the fashion.”” Which one of the two authors of this
paper is the author of the conjecture will be disclosed if and when the conjecture is
proved.
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CONJECTURE M. S. If both power series
a2+ e+l e
bz+b22 4027+ ---

are ‘‘schlicht” wn the unit circle, also

by abw Oy L
1 z-l— + 3 2+

@8 ‘‘schlicht’”’ in the unit circle.

Whereas III is equivalent to I or 1I, it appears logically independent
of MS. As far as obvious conclusions from the statements go, I1I could
be true but MS false, or MS true yet III false, or both could be true
or both false. Still, the conjectures are obviously related and their
joint consideration may lead to various suggestions.

The Conjectures I, II and III are more ‘‘elementary’ than MS and
they are certainly more accessible; we succeeded in treating several of
their particular cases and consequences.

10. Verification of the conjecture in some particular cases. We
shall exhibit several particular series Y b,2* belonging to K which,
convoluted with an arbitrary series (9.1) belonging to K, generate a
series > a,b,z" belonging to K.

(a) The polynomial (6.14) belongs to K. That its convolution with
an arbitrary series belonging to K necessarily belongs to K is precisely
what Theorem 2 asserts.

(b) If the series (9.1) belongs to K, it belongs, a fortiori, to 2.
Therefore, by Lemma 5, the series

a2

- n_}_,, —{.-_,,,ﬁ

belongs to K. This is another special case of Conjecture I; that the
series

maps the unit circle onto a convex domain follows from its relation to
(9.2) and from Lemma 5 but this fact can also be established directly
(see [9, vol. 1, p. 106, problem 114]).

(c) The result mentioned under (a) (Theorem 2) is due to the fact
that the V-means are variation diminishing; ef. §6. Any variation
diminishing transformation on the circle leads to an analogous result,
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and so we obtain especially the following (cf. [4]). Let g(z) be the
product of e, where r=0, with an entire function of genus 1, all
coeffiicients and all zeros of which are reat ; then

oo

zn
Z1:'g('m)

belongs to K, and, provided that (9.1) belongs to K, also

>, @4,2"

T g(in)

belongs to K. The term ‘‘entire function of genus 17’ is used here in
the comprehensive sense, that is, it is supposed to include also entire
functions of genus 0 and polynomials (but, obviously, not the identically
vanishing polynomial) ; the case in which g(z) reduces to z was mentioned
under (b).

(d) Let p and ¢ denote two different given points on the unit
circle (lp|=lql=1, p#¢q). Assume that (9.1) belongs to K and let z
describe a circle concentric with, and interior to, the unit circle. Then
f(2) describes a convex curve of which f(pz)—f(gz) represents a moving
chord ; as it is easy to see geometrically this chord turns all the time
in the same sense. The argument of the complex number f(pz)—f(¢z)
increases steadily. That is, the power series

SO)=AR) _$ o P
p—q T p—q

belongs to X (maps the unit circle onto a star-shaped domain) and so,
by Lemma 5, the power series

(10.1) S D" Q"
nsin p—q

belongs to K (cf. [6]). The series (10.1) is the convolution of (9.1) and
of that particular case of (10.1) in which «,=1; this particular series
maps |z|<<1 onto an infinite strip bounded by two parallels.

11. Verification of some consequences. In the foregoing, we have
dealt mainly with form I of the conjecture, but now we shall consider
its form III. We assume, therefore, that the function (9.1) belongs to
the class 2, that is, it maps the circle |2| <1 onto a star-shaped domain.
We shall say that (9.1) is normalized if

(11.1) a=1.
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(a) We are given an integer n, n=2. Let us consider the normal-
ized functions of the class Y and let us seek one for which |a, is a
maximum. We leave aside the {easy) discussion of the existence and
assume that (9.1) is such a function with maximum |a,|. Now we apply
Conjecture III with b,=a, for m=1, 2, 3, ---; the resulting series is
again normalized and so its nth coefficient cannot have an absolute

2
value exceeding the maximum ; that is, l““Lglanl, from which it follows
n
that
la,|=n .

For series of the class = this inequality is well known and easily estab-
lished independently of the Conjecture III. And so our previous reason-
ing served only to enhance somewhat the plausibility of Conjecture III.
Yet the same reasoning is also applicable to the Conjecture MS and
reveals one of the essential sources of this Conjecture.

(b) The function f(z) belongs to the class = if, and only if,

(11.2) @) 14 2apt2ast2ast .-

is regular in the circle |z2|<1 and has there a positive real part. This
will be the case if, and only if, the Hermitian form of the variables
Roy Ry ***y 2y

n

> 02
0i=0

M=

(11.3)

k

(a_,=a,, by definition) is positive (definite or semidefinite) for n=1, 2,
3, --- . This well known important necessary and sufficient condition
is due to Carathéodory and Toeplitz. It can also be expressed in terms
of the determinants

1 a a, LI € 4 ‘

a_y 1 oy &g (
(11.4) A,=| a, a, 1 e s | .

x_p (o SETEIN ¢ S 1 ’

Now (see (9.1)) the relation (11.2) can be written in the form

2 3
(11.5)  aztas+ad+ --- =ag exp( 2ag 4 202 | 202 )

1 2 3

or in the form
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(11.6) 2z +g‘fﬁi+3Q‘izi e :10g<1_[_ﬂ‘-'z_+ﬂ3f‘i+ .. )
1 2 3 a, a,

and so we can express both a,/a, as a polynomial in the « and «, as
a polynomial in the a/a, :

B _on,
a;
(11.7) @ _ (200)'+ 20,
a, 21
Ay _ (26'(1)*1412(2“3)+§(ﬂ2£¥})(2az)
a, 3!
2(;(1: EL
ay
(11.8) %0, = — G200
2 o
2, = %320+ 3aia,

al

It would be easy to write down (11.7) or (11.8) for general n, but we
shall not enter into details. Using (11.8) we could express the Her-
mitian form (11.3) and the determinant (11.4) in terms of the coefficients
of the series (9.1) and doing so we wonld render more explicit the
necessary and sufficient condition for the class . Yet we postpone
this consideration.

(¢) Now consider, besides (9.1), two other power series with coef-
ficients b, and ¢, respectively, and let 5, and B, be so linked to the b,
and 7, and C, so linked to the ¢, as «, and A, are to the a. Thus we
have besides (11.5) (in all summations »=1,2,3, --+)

(11.9) >b.2"=bz exp(22£;‘:—n) , St =e2 exp(2zl’i~n-) ,
Set

(11.10) b g

Now express a,/a, in terms of the « from (11.7), and express analogously
b,/b, in terms of the @, then ¢,/c, in terms of the @ and £ from (11.10)
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and finally from relations analogous to (11.8), express 7, in terms of
the ¢/c, and so in terms of the « and 5. This leads to

n=auf,
3r.=aP,+ 20,5
(11.11) +2a3f,— 23t

6r;= O35+ 303313, + 20,32
+3a,a,p;+ 3,5, 8, — 6, B4
+2a3;— 63, B, 4B

Not all details of the general formula for y, are obvious ; a few features
will be discussed under (e). The determinant C, (expressed in terms of
the 7 as A4, is in terms of the «, cf. (11.4)) becomes by virtue of (11.11)

a polynomial in the «, «, @ and B. By the theory of Carathéodory and
Toeplitz, Conjecture III is equivalent to the following.

CONJECTURE IV. The 2n tnequalities

A,>0,A4,>0,---,4,>0,

B>0,B,>0,---,B,>0,
mply the n inequalities

c¢,.>0,C,>0,.--,C,>0

and this holds for n=1,2,3, «+- .

This formulation excludes the case of equality in all the 8n inequalities
considered. This is due to the fact that, without loss of generality, we
may suppose Za,2" and %p,2" regular in |z] 1.

(d) The case m=1 of Conjecture IV is trivial. In fact, if we as-
sume that the series are normalized, see (11.1), and introduce the coef-
ficients of the mapping functions, see (11.8), the statement that we
have to prove reduces to this:

The inequalities la,| <2, |b,] <2
mply J%bll<2
which is obvious.
(¢) The case n=2 of Conjecture IV was first established by Dr. G.

A. Hummel and can be proved as follows.
We take the series as normalized, see (11.1), and set

o, =a, a;=A, b,=b, b=B;
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we suppose, without loss of generality, that ¢=0,5=0. We have to
show :

The two inequalities

3a? a* 35 B
11.12 ‘A——— -9 ‘B__‘ -
(1112) s | < 1<y
tmply
AB  3a®? o?b?
11.13 l _ 19
(11.13) 16 1<t 16

(The first inequality (11.12) results from the condition 4,>0, see (11.4),

by virtue of (11.8); it implies a<<2, and so the condition 4,>0.)
Let

(11.14) A:3_a+ B:f’fi—}—v

By the hypothesis (11.12) of the theorem that we are about to prove

11.15 12 -
( ) [ul< 1 [v]< 1
We derive from (11.14) and (11.15)
9azb2 3b
9 b 3b o? a? bz
(11.16) | 4B 9 |< (=) B (1= )4 (1= D)= ).
We assert that
2 b 5a°h* 3a’b*
11.17 149 L 0 o g_ X
( ) t e <3 e

in fact, this follows from a<2,5<2, since it is equivalent to

(1421)(1—%)» .

The right hand side of (11.16) is equal to the left hand side of (11.17),
and so the combination of these two inequalities immediately yields the
desired conclusion (11.13).

(e) We consider now the expression of 7, in terms of the « and
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B for general n; for the cases n=1,2,3, see (11.11). The procedure
that led us to (11.11) shows that 7, is a polynomial in «, «,, ---, a,,
B, 8., -+, B, with rational coefficients. Obviously, by virtue of (11.10),
7. is symmetric in the « and 5. If we substitute pz for z in (11.5) or,
which is the same, we change «, into p"a, and g, into p"w,, there re-
sults a change, see again (11.10), of ¢, into p"¢, and of 7, into p*r,;
therefore, y, must be an isobaric polynomial in the « of weight n=.
Finally, 7, must be of the form

»

S IWAB,

11=1

M@

(11.18)

&
Il

where

p=p(n) is the number of partitions of the integer n,

A, A, ---, A, are the products of powers of weight n of «,, @), ---,
«,, ordered lexicographically so that

(1119) Alzan, Az:a’n—xau o Ap:a? .
Generally A4, is of the form
(11.20) Ak:aihl(‘(lf_z oo a;‘;n ;

its weight 1%k, +2k,+3k,+ - -+ +nk,=n.
B, B, ---,B, are analogously expressed in terms of 3, 4, -+, 3,, and
7 are rational numbers, ;57 =7¢".

For example p(4)=5 and, for n=4
A=a, A=y, A=, A=a.a], A, =af
the B are analogously defined and the matrix of the 7 results from

9 24 9 36 12
24 24 24 —24 —48
9 24 -1 —4 —28
36 —24 —4 —136 128
12 —48 —28 128 —64

if each of the 25 numbers displayed is divided by 90.

We cannot exhibit the law of the dependence of 5 on n in some
obviously useful manner, but we note here one property. If f,=11itis
easily seen from (11.9) that 0,/b,=n and, therefore, by (11.10) ¢,/c,=
a,/a; and so finally

Tn=0

for any choice of the «,; this must be compatible with (11.18) and so,
since B,=B,= -+ =B,=1, by our choice of the f£,
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(11.21) =

=1

{1 for k=1
0 for £=2,3, -, p.

(f) The system of » complex numbers («;, @, - -+, @,), for which we
shall also use the more concise notation («), determines a point in
2n-dimensional Fuclidean space. A point («) belongs to the coefficient-
domain if, and only if, it corresponds by virtue of (11.5) to the initial
terms of a power series of the class 3. The most remarkable boundary
point of the coefficient domain is the ¢ Koebe-point’’ whiech corresponds
to the function

2+22° 432+ 0 =2(1—2)7".

Our aim is to show that, for any given », Conjecture 1V is true for two
interior points of the coefficient domain which are sufficiently close to
the Koebe-point.

Let us choose two arbitrary points (u) and (v) in the interior or the
coefficient domain. That is, (cf. under (b)) both Hermitian forms

(11.22) S Uiy 2> Vk-1Rk2

are positive definite. Let «, 8 and ¢ denote positive numbers ; « and
/B are arbitrary and e so small that ae<1, fc<1. The coefficient domain
is convex. Therefore, if we set

(11.23) a,=1—ea)teau,, p,=(1—ef)+epv,

for v=0, +1, +2, ---, +n, the points (a) and () are in the interior of
the coefficient domain. If 4, is given by (11.20)

A, =14ceail,+0(e)
where
U=l (u,— 1)+ R, — 1)+ -« +E(u,—1)

and O(g?) denotes a quantity of order not exceeding & when ¢ tends to
0. There is a2 similar expression for B, and finally, by (11.21),

(11.24) Tn= EZZJ'%)A,CBL

=17=1

»

= ST+ et + e, ]+O(&)

fem1i=1
=14 ea;cl + 5,851 +0(&)
=1-+tea(u,—1)+ef(v,—1)+0(e) .
By virtue of (11.24)
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erk—lzkgl
=(1—ea—cef)|ata+ -+ +2,0°
+€C¥ZEuk—zz‘k55
+8522%_L2k%+0(8“’)

and this Hermitian form is definite positive for sufficiently small ¢, since
the forms (11.22) are definite positive. With this, we have proved ano-
ther infinitesimal part of Conjecture IV.
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ASYMMETRY OF A PLANE CONVEX SET WITH
RESPECT TO ITS CENTROID

B. M. STEWART

A. 8. Besicovitch [1] proved that every bounded plane convex set
K has a central subset of area at least 2m(K)/3 where m(K) denotes
the area of K. His method is to construct a semi-regular hexagon of
center N whose vertices belong to the boundary of K.

Ellen F. Buck and R.C. Buck [2] showed that for every K there
exists at least one point X, called a six-partite point, such that there
are three straight lines through X dividing K into six subsets each of
area m(K)/6. H.G. Eggleston [3] showed that any six-partite point of
K is the center of a semi-regular hexagon of area 2m(K)/3 contained
in K. .

I. Fary and L. Rédei [4] and S. Stein [5] defined for each point P
the subset S(P) of K determined by the intersection of K with its radial
reflection in P and considered the funetion f(P)=m(S(P))/m(K). By use
of the Brunn-Minkowski theorem these authors showed that if o is a
real number, then the set of points at which f(P)=a is convex; and
the maximum f* of f(P) is attained at a single point. (Moreover, these
results apply to an n-dimensional bounded convex set in n-dimensional
Euclidean space.) Note that these conclusions may be false if the set
K is not convex: for example, consider an L-shaped region formed by
deleting one quarter of a square.

The results of Besicovitch and Eggleston imply f(N)=2/3 and AX)
=2/3, hence f*=2/3.

We obtain the following theorem.

THEOREM. If G is the centroid of K, then f(G)=2/3.

To see that this result is not included in the theorems previously
mentioned, consider the isosceles trapezoid with vertices (—4, 0), (4, 0),
(2,2), (—2,2). For this example there is only one point N: (0,1) and
only one point X: (0,4—417.6) and the closure of these points does not
include G : (0, 8/9).

Proof of the theorem. If K has central symmetry, then f(G)=1. In
any case S(G) has central symmetry about G ; hence if K does not have
central symmetry, the part M of K outside S(G) has G at its centroid.
Then as in Figure 1 let 7 be any maximal connected subset of M with

Received October 10, 1957.
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A and B as terminal points of the boundary curve common to K and
T. Let P’ denote the reflection of a point P in G. Note that the con-
gruent triangles AGB and A’GB’ are contained in S(G).

If for every T' the area m(T)
is less than or equal to the area
4 of the corresponding triangle
AGB, then m(S(G))=2m(M). Since

m(K)=m(M)+m(S(G))

=3m(8(G))/2,
it follows that f(G)=2/3.

In the contrary case, if we
assume for any T that m(T)>4,
we can arrive at a contradiction
of the fact that G is the centroid

Fig. 1. of M.

Let line L through G parallel to AB cut the boundary of K in
points C and D. To fix ideas suppose in length CG>GD. Let lines BD
and AC meet at H and intersect line A’'B’ in P and @, respectively.
Let AC and B'D’ meet at R; then BD and A’C’ meet at R'; and R is
on the side of L toward 7.

Considerations of convexity imply that on the side of L away from
T the maximum possible moment of M with respect to L is u-+w., where
u is the moment of triangle R’A’P and w, is the moment of trapezoid
CQB'D'. On the other side the minimum possible moment of M with
respect to L is w,+v where w, is the moment of triangle RCD’ and v
is the moment of a trapezoid of area m(T) inscribed in triangle ABH
and having 4B as one base.

We will show that if m(T)>4, then w,+v>u+w, in contradiction
to G being the centroid of M. It will suffice to show v>u+4w where
w=w,—w, is the moment of triangle RQB’.

Let a=AB, let d be the distance from G to AB and let % be the
distance from H to AB. Let a,=A'Pand a,=QB’. From similar triangles
(@, +a,+a)a=(2d-+h)/h, so that a,+a,=2ad/h. The combined moments
of triangles R'A’P and RQB’ are equivalent to those of a single triangle
of base a,+a, and altitude d with centroid at a distance 2d/3 from L,
hence u-+w=2ad’/3h.

Let ¢ be the altitude of a trapezoid Z of area 4 inseribed in triangle
ABH and having AB as one base. A direct computation shows the
moment v’ of Z with respect to L to be

,:gd(dJr c(3h—20)> _

2 3(2h—c)

v

Since m(T)>4 implies v>v" the inequality v>u-+w will hold if
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v >u+w. Since m(T) >4 also implies A>d>¢, the inequality v >u-+4w
reduces to

(6hd —3cd+8ch —2¢)h > 4d(2h —c) .

Comparison of the areas of Z and triangle ABG shows ¢’=2ch—hd.
Then the previous inequality may be rearranged and factored to obtain
the equivalent inequality

8hd(h—d)>c(h+4d)(h—d)

whose truth follows readily from A>d>c.

The case that length CG=GD may be treated in the same manner
(even if BD and AC are parallel). This completes the proof of the
theorem.

We do not see how to extend the theorem about f(G) to higher
dimensions. Possibly the lower limit for f{G) for the general bounded
convex set is the same as f(G) for a simplex of corresponding dimension.
The value of the latter is given in [4] (but incorrectly given in Theorem
6 of [5], an error for which Professor Stein wishes this note to serve
in lieu of a formal corrigendum).

Note that for as simple an example as a trapezoid f*>/(G). Some
necessary conditions for determining P such that f(P)=f* have been
given in [6].
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LOWER BOUNDS FOR HIGHER EIGENVALUES
BY FINITE DIFFERENCE METHODS

H. ¥. WEINBERGER

1. Introduction. This paper gives lower bounds for all the eigen-
values of an arbitrary second order self-adjoint elliptic differential
operator on a bounded domain R with zero boundary conditions in terms
of the eigenvalues of an associated finite difference problem. When R
is sufficiently smooth, the lower bounds converge to the eigenvalues
themselves as the mesh size approaches zero. A certain class of self-
abjoint systems of elliptic differential equations containing no mixed
derivatives is also treated.

Upper bounds for the eigenvalues of a differential operator can
always be found by the Rayleigh-Ritz method. That is, one puts piece-
wise differentiable functions vanishing on the boundary into the Poincaré
inequality [14]. It was pointed out by Courant [2] that in the case of
second order operators one can reduce the problem of upper bounds to
a finite difference eigenvalue problem by using piecewise linear functions
(see §6).

Lower bounds are more difficult to find. The only known method
giving arbitrarily close lower bounds for the eigenvalues is that of A.
Weinstein [20], which is usually quite difficult to apply. It was shown
by G. E. Forsythe {5, 6, 7] that if the eigenvalues 1, <4,< --- of the
two-dimensional problem

1.1) du+iu=0 in R

with #=0 on the boundary are approximated by the eigenvalues
M LIW<... of a certain finite difference problem on a mesh of size
h, then there exist constants y®y®... such that

(1.2) A< 2 — 7 @R +-o(h?)

The y® cannot be computed, but are positive for convex R. However,
the o(#*) term is completely unknown, so that this asymptotic formula
cannot be used to bound 1, below.

It was shown independently by J. Hersch [8] and the author [18,
19] that if 1, is the lowest eigenvalue of (1.1) and if 1{ is the lowest
eigenvalue of a finite difference problem on a mesh that is slightly
arger than R, then X® and, in fact, a quantity slightly larger than 2%
are lower bounds for 4,.

Received September 17, 1957. Sponsored by the United States Army under Contract
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This result is here extended to higher eigenvalues, higher dimensions,
and variable coefficients by a modification of the method previously used
by the author. The basic idea is to define a mesh function by an
average over mesh squares of a linear combination of the first &
eigenfunections of (1.1). One then defines the finite difference eigenvalue
problem in such a way that its Rayleigh quotient evaluated for this
mesh function can be estimated in terms of the unknown eigenvalue
A,. By the Poincaré inequality this leads to an upper bound for the
eigenvalue 4{” in terms of 2,, which serves as a lower bound for 2, in
terms of (!

For the sake of clarity, the method is first presented for the prob-
lem (1.1) in §2. It must be noted that while the lower bound (2.25)
holds for all 2., it is not as good for 1, as the bound previously given
either by Hersch [8] or the author [19]. It is smaller, rather than
larger, than {® by a term of order A%

The method extends easily to an equation in N dimensions with
variable coefficients when the operator contains no mixed derivatives.
This extension is made in §8. Again the lower bound is smaller than
2™ by a term of order A%

In §4 the general second order self-adjoint operator is considered.
The presence of mixed derivatives introduces complications. The lower
bound becomes 1 reduced by a term of order #/’. Furthermore, it
becomes necssary to assume that B has no re-entrant cusps, corners,
or edges, and that it does not have infinite oscillations.

Section 5 presents an extension of the lower bound to a self-adjoint
system of second order equations with no mixed derivatives. The

extension to a system with mixed derivatives appears to be very
difficult, and is not dene.

In § 6 the difference between upper and lower bound is discussed.
It is estimated explicitly for convex R. At the same time this discussion
serves to show when the lower bounds converge to the eigenvalues.

In §7 we take account of the fact that the solution vanishing on
the boundary of a non-homogeneous differential equation can be character-
ized by a minimum principle (Dirichlet’s principle). Using the methods
developed for eigenvalues, we give a methoed for finding a lower bound
for this minimum. It is, of course, true that in this case one can
get a get a lower bound by Thomson’s principle. However, this principle
involves solutions of the differential equation which may be difficult to
find as well as difficult to compute with. Finite difference methods are
more amenable to high speed computation. The upper and lower bounds
so obtained, together with the function that gives the upper bound,
can be used to find upper and lower bounds for the solution at an

(h)rerWs'iminér idea was used by L. Collatz [1] to establish the order of magnitude of
[k~ Ak].
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interior point by the method of Diaz and Greenberg [3, 4].
Section 8 indicates the extension of our method to an important

class of higher order operators. This extension is applied to the problem
of the vibrating clamped plate.

2. The basic bound. Let the eigenvalues of
2.1) du + 2w =0 in R,
u=0 on the boundary R
be denoted by
(2.2) WE RS ie-
Let the corresponding eigenfunctions, normalized so that
2.3) [,wdoay=1

be denoted by u,, u,, ---

Consider the z-y plane divided into squares by lines x=mh, y=nh,
m,n=0, +1, +2.... Let R, be a region consisting of a union of entire
squares of this grid and having the property of containing not only Z,
but also all its left and downward translates of distances up to % :2

(2.4) R,D {(w, Yl(@+a, y+Ph)e R for some 0 <a<h, 0L =h}.

We consider the class M, of functions w(mh, nk) defined at mesh
points (mh, nk) in R, and vanishing at boundary points of R,. The
eigenvalues (2.2) are to be approximated by the eigenvalues

(2.5) I < A < aee

of the finite difference problem

(2.6) A+ = 0

where v is a mesh function of the class M,, and

2.7) Aw=h"v(mh-+h, nh)+v(mh—h, nh)+v(mh, nh-+h)
+v(mh, nh—h)—4v(mh, nh)] .

The eigenvalues (2.5) are bounded above by the Poincaré (Rayleigh-
Ritz) inequality [14], which states that for v, v,, ---, v, of class M,
and linearly independent

z Equivalently, if the intersection of R and the square mh<x<(m+1)h, nh<y<(n+1)h
is non-empty, then (mh, mh) is an interior point of Ep.
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Dy(§v, 4 - - +5v5)

2.8 Y < max S0 R,

( ) & Eeees & h? 2 (Elvl—l“' ._+Sk,vk)z
(mh,nk) €R,,

where

(2.9) Dulw) = 3% {[o(mh-+hynh) — o(mh, k)T + [o(mbnh-t k) — v Guhnh)T}

Let u(x, y) be a continuous piecewise continuously differentiable
funection in the whole z-y plane which vanishes outside R. We define
the mesh function

2.10) o(mh, nk) = - gh Shu(mk+a, wh+ ) dor df .
0J0
Because of (2.4) this function belongs to M,. We note that

(2.11) g Suzdw dy — 1 S, w(mh, nh)?
R

(mh,nh) € Ry

= E Sh Sh[u(/”’th‘*’ay nk-}—ﬁ) — Q)(mk’ nk)]z do dﬂ .

(mh,nh)eRh 0Jo0

By definition (2.10)

h(*h
(2.12) S S [u(mh + a, nh + B) — v(mh, nh)ldadf =0 .

0 Jo
Consequently, each integral on the right of (2.11) is bounded by the
integral of the gradient of » times the reciprocal of the second free
membrane eigenvalue for the square of gide 4:

(2.13) S S:[u(mh-{—a, nh+B) — v(mh, nh)} da dp

< Z&; Shshlgrad w(mh+a, nh+p)dadp .
T 0Jo

Replacing this in (2.11) and summing over all the squares, we have

(2.14) SS wdedy — S0 < SS \grad |t do dy .
R Rh T R

Now let

(2-15) u==~&u + -+ + &u,,

where the u;, are the normalized eigenfunctions of (2.1), and the & are
any real numbers. Then we have

(2.16) V=8 4 e + Sy,
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where the v, are defined in terms of the u; just as v is defined in terms
of % by (2.10). Inequality (2.14) can be written in the form

k 2 k
(2.17) B3 Em e ez e P S,
R, i=1 IT? i=1

This gives a lower bound for the denominator of the ratio in (2.8). In
order to be certain that the mesh functions », are linearly independent,
we assume that % is chogen so small that this lower bound is always

positive. That is, we take
(2.18) h < w2 .

We now turn to the numerator in (2.8). We note that if » and »
are again related by (2.10), we have

(2.19) v(imh-+h, nh)—v(mh, nh)
= h gzhdacS: dp ¢(a) g“ (mh+a, nh+p),

X

with a similar formula for vw(mh, nh+nr)—v(mh, nh). Here we have put

f a 0ah
(2.20) d@)= | 2h—a h<a<?2h.
l 0 elsewhere
so that
(2.21) W) + Hat+h) + dla—h) =k, Szhglf(a) da = 12 .

Consequently, we can write
(2.22) XS |grad ul* dz dy—Di(v)
R
2h h 6u
=ht3 S dag dp ¢(a)[{ “Z (mh+a, nh+p)
R, JO 0 ox
— bt Co(mb by mh)y—v(mh, nh)> }
+ {gg (mh+ B, nh+a) — b= (o(mb, nh4-h) — vimh, nh)> }] >0.
Again making the substitutions (2.15) and (2.16), we have

k
(2.23) Dh(&% A oeee + Ekvk) = Z{ 27,5% .

Inserting (2,17) and (2.23) in the bound (2.8) yields
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%
(2.24) M < max - = K
e f](l—fmf )s% 1— P
i=1 7[2 ¢ 71-2

Solving for A, we find the lower bound

(2.25) PRSI A

This bound was derived under the assumption that (2.18) holds.
However, if (2.18) is violated, (2.25) is trivially true. Thus, the lower
bound (2.25) holds for all £ such that Ay is defined (k¥ at most equal
to the number of interior mesh points of R,). The same type of
consideration will apply in all the derivations to follow. That is, one
derives the lower bound by assuming an inequality like (2.18) to hold,
and then finds that the lower bound also holds when the inequality is
violated. We shall suppress this argument in what follows.

3. Variable coefficients, no mixed derivatives. We now extend the
results of the preceding section to an eigenvalue problem in N dimensions.
We consider the problem

N
3.1) -3 0 (p* 6“, > 4 qu = Aru in R,
i=1 ozt ox’

u=0 on the boundary R.

Here R is a bounded N-dimensional domain. The functions 2%, ¢, and
r are assumed to be piecewise continuously differentiable. We assume
p and r to be positive and ¢ non-negative in the closure of B. The
eigenvalues are arranged in increasing order

(3.2) WEHRS e

and the corresponding eigenfunctions, normalized by

(3.3) S rtde =1,
R

are called u,, u,, ---

The space is divided into N-cubes by the planes z‘=m'h, m‘=0,
+1, £2, .-,

We again denote by R, a region consisting of the union of mesh
cubes, and containing not only R but all its translates in negative
a-directions of distances up to z. We denote by M, the class of functions
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v(m'h, ---, m”h) defined at mesh points and vanishing at all such points
on the bounday of or exterior to R,.

Let u(x', ---, x”) be a continuous piecewise differentiable function
vanishing outside B. Then by definition of R, the mesh funection

(3.4) vim'h, <+, m'h) = k‘NS . u(m’h+al)dat - - - da?

is in M,. We define the mesh funection?

(3.5) T(m'h) = [h j da -« da” ]

osa'=n r(mih+at)

Analogous to (2.11) we have the identity

(3.6) SRmde — WS Fmihy(mhy:

= 31| JrOmhamnh o) —Fmon i} e A
Also, by (3.4) and (3.5)
(3.7) S [rmih+ayu(mih+ o) — Mmhyo(m'h)] dc(‘m;hjz; —~0

Thus, we are again led to a free membrane problem, and we find

(3.8) S , Lru— —rp & dec - - - Mg lﬂ,‘g . |grad ru(m'h+a’)fdat - - - da”,
=@ sh

o<al <n 7‘ o, Jo=

where we have put

(3.9) T, = min r(xt, «--, zv).

z€R

By the triangle inequality
g e .
(3.10) {S |grad ml“dV} < {S r?|grad u[‘dV} + lg u?|grad rlldV}
R R R

Hence we have

3 The deﬁmtxon of r(x) outside R is rather arbitrary. We choose it in such a way
that the term in the bracket is the mean value of 7 over the intersection of the domain

of integration with 7. Since Agch) decreases with increasing R,, we can assume without
loss of generality that R, is minimal with respect to the analogue of (2.4, so that for
squares corresponding to interior points of R, this intersection is not empty. Similar
considerations will apply to the mesh functions formed from the other coefficients.
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G1) Sz SRrude— L[KL[;;(K oYy
h

P/ oxt
v ou )2 2] 1/2 { S 5 }1/2]2
+p (——amN + qu dV} + 4L Jrw av
where
(3.12) K = max (L) ,
ZTER p
.......
_ |grad »|?
L max( , >
We also find
318) | qwav - s @ = ZS | [qu—gup Geeda” g
R Rh. RIL o=a'=h q

where we have putt

— - date - -da? !
3.14 mh :[ NS d v_] ,
(3.14) q(m'h) e e

Using the function ¢(«a) defined by (2.20), we find that
(3.15) S pl(_aﬁt)zdv—m—z S pmth) [o(mih+h, mih, -+~ , m¥h)
R oxt R,

(b, e MR = B S Sosw N {p‘(m%—l—ai) é’% (mh+a)

By,
) O_S_wjéh,j>1
— (s — o)V p(ary B e
BB o(mih+h) v(mh)]}gz(a)pl(m%wi):o,
where we have put?
(3.16) Ponthy = 7= e o 17,
EaEs Pmhta)
e

In this way we find that if we define the quadratic form
N —_—
3.17) Q(w) = h” %] {k'z JZ‘,lpf[w(m%%—Bz ) — wm'h) P + qwz}
o =

for mesh functions w in M,, where?

— Hdads - -da”
3.1 ) = l:h-N—lg $la’)da ]
(3.18) b 0selzon p(mih+at)

osalsh, 1#5

¢ See footnote 3. We make the convention that ¢g=0 if the integral diverges or if
¢=0 in an open set,
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and ¢ is defined by (3.14), then

(3.19) o) = [ [p( 2y oo (28] + awfav.

oxt ox~

We now define the numbers AP <1 < ... as the successive minima
of a ratio of quadratic forms:

(3.20) 2® = min QW)
weRy, KNS oy’
Rh

The 2 are eigenvalues of the finite difference problem

(3.21) L®w 4+ qw = 1%rw ,
we M, ,
where
(3.22) L®w(mih) = — k—zf; (D/(mih) [wim'h+0,,k) — w(im'h)]
J=1

— pHm'h—0yh) [w(m'h) — w(m'h—8,m)]} -

The equation (3.21) is clearly a finite difference analogue of (3.1).
We now proceed exactly as in §2 to let

(3.23) U =6y + -+ Uy
where the u; are the normalized eigenfunctions of (3.1). Then
(3.24) V=6 e

where the v, are related to the u, by (3.4). We apply the Poincaré
inequality

(3.25) i < max  QEmte &)
ety k‘N%: (50 + -« -+ &)
h

together with the inequalities (3.19) and (3.11) to find

(3.26) A0 = ; & ;-
1— ;L[VK‘A;‘M/ E]

P

Solving for 1, we obtain the lower bound
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kz 1/2 hz
+- (sz—L)} P (gragy
T 7 T,
h2
14

Erm

(3.27) A = AP
K

Clearly this lower bound differs from A{” only by a term of order
k% It should be noted that it is independent of N and, except for (™
itself, of k. For the case of the Laplace operator treated in section
2, K=r,=1 and L=0. Then (3.27) reduces to (2.25).

We note that (3.27) simplifies considerably when the function # is
constant so that L=0.

4. The general self-adjoint case. In the preceding section we
restricted ourselves to the differential equation (3.1), where no mixed
derivatives occur. In this section we shall treat the general case

N
(4.1) - > fi (a”—a—zf-> +qu=2u in R,
6,7=1 0t ox’
u=20 on R .

Here a' is assumed to be a uniformly positive definite symmetric matrix
in R, » is assumed positive, and ¢ non-negative. All coefficients are
taken as piecewise differentiable.

We keep the notation of §3. In particular, we consider the
continuous function # vanishing outside R, and the mesh funection v in
M, defined by (3.4).

The inequalities (3.11) and (3.13) can be used almost without change.
The problem is to find a quadratic form in v which can be bounded from
above in terms of the quadratic form

X ou ou ]
. A av,
(4.2) .g L%la o' 0x’ +a

and which approximates this form for small 4.
We begin with the identity

N
(4.3) S S 0 g Fwaw,
ri5H 0 0x By 05o1
d ik 6”’ pri Jt au »
=3 >ty F——(mPh+a”) — a’w, || @ (m®h+ac?)
B JosaPsn 4,781 ox”* A

— Eﬂwl]dal cee da¥ >0 .

Here a,, is the inverse matrix of ¢, and we have defined the mesh
matrix®
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(4.4) () = [k"Ngoéwléna“(m%—ka‘)da‘ e daﬂ"l ,
ie.,

(4.5) g [h-NSuéwlénai,,(m%+al)da1 daN‘J T mih) = 8, ,
and the mesh vector

(4.6) w(mh) = [h—NLéwléh g;‘k (mih+ad)dedt - - - da”] :

While w, is clearly an approximation to du/6x*, it cannot be obtained
from v or any other mesh function. Therefore, (4.83) does not give a
quadratic form in v. However, since the finite difference

4.7 d[vl(m'h) = b [o(mih+6uh) — v(mh)]

also approximates 6u/6x*, it must approximate w,. We estimate the
error introduced by using d[v] instead of w,. It follows from the
triangle inequality that

w9 | s [ @apap + )" < o [ 5 @, + |

R, L 0.5
P S 5 Fo—dlo) @, ~a )]

It can be seen from the definition (4.4) that largest and smallest eigen-

values of a” lie between the maximum of the largest eigenvalue and
minimum of the smallest eigenvalue of a¥ in the cube of definition.

Hence, a* is still positive definite so that the triangle inequality applies.
The first term on the right of (4.8) is bounded by means of (4.3). The
second term is the error due to replacing w, by d,v]. We shall bound
it.

Let the constant a be a uniform upper bound for the eigenvalues
of a¥’; that is,

N
> a6E,
(4.9) a = max —5bI=L .
Epeendy S 00 +65

Then the same bound holds if o/ is replaced by . Hence,
N o N
(4.10) hY RE ;1 a(w,—d,[v]) (w;,—d,[v]) < ah” %} izi (w,—d[v]) .
n 8= b=

We use the identity
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A1) wmih) — dsl(mih) = gos o ol@) P b a)det - da

ox®
0<alsh,l£i
_§¢( o 5“ o’ 4s,
on
where
Lopra@h—a)y 0zas<h,
(4.12) ¢(a) =

:12“ BT Ch—a)  h<a<2h.

The volume integral is actually over the intersection of the
rectangular parallelepiped with B. On the boundaries of the parallelepiped
the integrand of the surface integral vanishes by the construction of

¢. Thus, the last integal is only over the part of R cut by the paral-
lelepiped.

We apply Schwarz’s inequality and the triangle inequality to (4.11),
and note that R is covered twice by each set of parallelepipeds. Using

the fact that «=0 on R we have

wm g Secan] s e g [ (2"

Rh =1 i=1

Hres H Gasd (Gt

Here F' is an arbitrary positive function defined on R. To estimate the
last term on the right, we note that § Iaai/an]dSw‘represents the pro-

jection perpendicular to the a’-axis of the total surface. We call v, the

maximum number of intersections of R with any line segment of length
2k parallel to one of the coordinate axes. Clearly, v, is a monotone

increasing funection of 4. If R is at all regular, v, is bounded, and
equals 2 for sufficiently small 2. Noting that w“é%kz’zm loat/on| <1,

and that the projection of any one layer of area within the parallelepiped
in the a'-direction is at most 2¥~* we have

aai y,ht=
14 f R ol
(419 S (o) ase =4
where
(4.15) F,= min F,

ZER
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Again taking account of the fact that R is covered twice by each
set of parallelepipeds, we have

wo ey Soamf” = rg] (2o

o g #G)s

It thus becomes necessary to bound the integral of the sum of
squares of the second derivatives of u, and a boundary integral of the
square of the normal derivative of w. We begin with the latter.

We utilize an identity which was found for the Laplace operator
by F. Rellich [16], for hyperbolic operators by L. Hormander [9], and
which was extensively used for purposes similar to the present one by
L. E. Payne and the author [11, 12, 13]. Let f'(z), ---, fx(x) be an
arbitrary piecewise differentiable vector field in B. The identity is

(4.17) § ( kﬁzl f"n,cx éla“nmjxg%i)zds
L) B

|2 s s 2ar,
R i=1 oxt

where we have written

) S 0 01
(4.18) =3 <a, o )

and n, is the outward unit normal on R
We now assume that the vector field f* has the property that its

outward normal component on R is positive :
N
S5m0
Then we can put

(4.19) F = Z Sy, Z anmn,

§,J=1

in (4.16). For example, if R is star-shaped with respect to the origin,

we may take f*=ux*. More generally, if Ris represented by an equation
R(x)=0 where B(x) is a twice differentiable function in B whose outward

normal derivative on R is positive, we may take [f*=o0oR/0x*. It still
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remains to bound the right hand side of (4.17). For this purpose, we
restrict ourselves to the function

(4.20) w= &y + - + Gy

where u,, -+, u, are the first & eigenfunctions of (4.1) normalized by
(3.3). Then

(4.21) & (u) = :Z=|1 Ea(q— A1) .

The integrand of the first integral on the right of (4.17) is a quad-
ratic form in the gradient of ». Since the lowest eigenvalue of a¥/ is
assumed to be positive and bounded away from =zero, there exists a
constant ¢ defined by

a K
(4.22) ¢ = max ~ —
ey S avya,

%,7=1

ﬁll(af 1200 ¢ a4 fr— i)m;

Thus, the first integral on the right of (4.17) is bounded by

z ou  ou ¥ ou ou
ij Y Ml
(4.23) ¢ SR i§la oz 0w . dV < cSR L;ﬂ 5 o _ +qu }dV
=c(MLE 4+ -0 +AE) .
Substituting (4.21) in the second integral and using Schwarz’s
inequality, we find the bound

(4.24) M AME + - o0 + LEFP{BE + -0 + BE
FM{AE 4 oee £ EV2{E e BV

where
N 12 j 3 N ) 1/2
(4.25) M, = 2 max {T_Za“f"“fj} , M, =2 max{ Z “fzfj} .
T, j=1 Jj=1
Thus we find
ou\? ’
(4.26) § . F(a%) dS < c(AE + -+ + 4E)

FMAME 4 oo o+ LYV (2 co 4 gy
FME 4 - RGPS + - 8P
We now estimate the first integral on the right of (4.16). For

this purpose we extend an argument used in the case of the two-
dimensional Laplace operator by L. E. Payne [10].
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We let
(4.27) @l =1V gg¥
where
(4.28) g = det [g,,] ,

gi; = [g¥17" .
In three or more dimensions one can solve (4.27):
g = {det [a¥]}~&/¥-
(4.29)
gkl — {det [aij]} 1/N-2 a,kl .

In two dimensions (4.27) implies det[a‘’]=1. If this is satisfied,
one takes g¢g”=a". If not, one must make a change of dependent and
independent variables to arrive at det[a*/]=1. We assume this to have
been done,

We consider g;, as the metric tensor of a Riemannian space. We
derive the tensor identity (using summation convention)

(4.30) V?gm(g“unuu)m = 21/5 i AT S T T |

=2V g ¢ w0+ tiithers 0 RE 1]
=2V'g g"g"uuthin+2V" 9 671 (9 i)y
— 2V g RYuuy; .

Here we have used symbol ,; for covariant differentiation. R2,, is the

Riemann curvature tensor, and R is the contravariant Ricci tensor (see,
for example, [17]):

. 1
181) BRI =g L
(4.31) 997 2 a0

o _,‘12 {lfn} 63;1’ Ing— 62” {l%})n} +{qu}{nqpﬂ ’

Ing

where

1 . [ 0g% dor™ o™
4.32 {p}—__*M pq[ 9 9" _ 0g ]
(4:32) i) = 20 Lowr T o T o

is the Christoffel symbol of the second kind. We have

ou
4.33 u, = 2
( ) b ot
W = s = 0u _{ ) } ou
I YT pafon i g) B’

and consequently
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(4.34) 9= WV g

where o7 (#) is the operator (4.18). The left-hand side of (4.30) is a
perfect divergence. Integrating (4.30) over R, applying the divergence
theorem, and transposing terms gives, after use of (4.34),

(435) S ]/ggkzgzju[iku]”dv — _j; Kl ( i ou ou ) ds
ox®

o G’
(o guon 0 (@), S Vg Rv O o
SRa 0rt 0z’ \ V' g ) v B ox' ox’ av.

Here we have used Euclidean elements of volume and area.
We now restrict ourselves to functions # of the form (4.20), so that
& (u)=0 on the boundary. Then by the divergence theorem and (4.27)

(4.36) —SRaﬁf’li (%(“))dv - S 1 ouyav.

oz’ 0x’\ V' g rV g

But when u is given by (4.20), .o/ (u) is given by (4.21). By the triangle
inequality we find the bound

(4.37) {S 1/1* M(u)ZdV} S {L(E et EYVE 4 (LR e REYP

with
(4.38) l, = max (Tvgg)
and

(4.39) L, = max (] = -

For the last term on the right of (4.35) we put

V?R“vi% >

(4.40) d= max < ,
a7,

Nty
ZER

Then

(4.41) S Vg RO 0 gy o dS a1 O O Gy G0 4 e+ LED.
R ox' ox’ 0 0z’
We come now to the surface integral in (4.35). We suppose that
in some neighborhood of the surface R there is defined a differentiable
function R(x) vanishing on R and such that the outward normal deriva-

tive is positive. Since R(x) vanishes on E we may put
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(4.42) u(@) = R(x)p(x)

in the neighborhood of R. Then we see that on R

(4.48) a* 0 (g“ ou ﬂ)n,

ot oxt oz’
:(in>"1 [4 wOR OF ., 0R 8¢ zaw_aﬁ_i( m@@.ﬁ)]_
on ox* ox oxt 0x’ oxt ox’ 0x* 0x*
Also on R
(4.44) ) = ¢/ (R) + 2q+ OB 09
oxt ox’

Since u is taken of the form (4.20) and the u, satisfy (4.1), &7 (u)

vanishes on E. Hence, we may eliminate the derivaties of ¢ occurring
in (4.43) by setting (4.44) equal to zero. Finally, to identify ¢ in terms
of u we take the normal derivative of (4.42) to find

ou oR
4.45 TE =
( ) on ¢ on

Thus, we arrive at

0 5 OU U
4.46 a’“——( “—f—>n
( ) ox* 9 oz ox'/

0 OR 0R )YV ,— ,,OR\/ 0u\
= — 2M0*n.n 3/2__,:({ kl¥riii} -l/ Uﬁ‘)(_ﬁ\) .
Lol o \\¥ ou oo 99 %0 Nom
The coefficient of (6u/on)* is clearly independent of the particular func-

tion R(z) used to represent R. It is a local geometric property of R.
In fact, if g% is the unit matrix, the coefficient is just —2(N—1) times

the mean curvature of R, as can be seen by taking for R(x) the distance
from R. If g:; is the metric of a flat space, the divergence term is

still proportional to the mean curvature of R in this space. The first
part of the coefficient arises from the fact that we are mixing a
Euclidean and a non-Euclidean metric.

Setting

_ 0 oR 6R - ,— , OR
4.47) e = max{—F YgPmm P -2 % g 0LV 0LV 7 >}
( ) Lg%, o’ ( g ox® 69&} Vg o’

where F is defined by (4.19) in terms of the arbitrary vector field
pointing outward on R, we have by (4.26)
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(4.48) ; § ¥ o (g” u_Ou_ )m iS<e § F( 0 > s

0" oz O’
= ce(AE + -0+ MEL) + Me{l& + -+ + Xké?c}l/z B+ -+ + 1?55125}1/2
+ Me{2& + « -« + ZEP 2 &+ -0 + &P

We note that in order to have a finite ¢ it is necessary to assume
that the coefficient of (ou/on)* in (4.46) is bounded above. Since this
coefficient, at least in a flat space, is proportional to the negative of the

mean curvature, one sees that this implies that R has no re-entrant
corners, edges, or cusps. On the other hand, non-re-entrant corners,
edges, and cusps cause no difficulty. It is easily ascertained from the
asymptotic form of a solution of (4.1) that the integrals of the squares
of the second derivatives, which we are seeking to bound, actually
diverge at re-entrant corners, edges, and cusps.

Having bounded the right-hand side of (4.85), we turn to the left-
hand side. The positive definite symmetric matrix ¢ may be expanded
in terms of its eigenvalues 0<g,<p, < ... <py and orthonormal eigenvec-
tors in the form

N
(4.49) gv = > piiel .
p=1
Then
N z
(4.50) 9 g”umuuz = Z%} l=1/‘p/‘q(cpc ulzk)(cf)clquljz)
N
ZEDY Z CyC u(ilc)
e
= p Z Wik »
k=1

the last equality being due to the orthonormality of the eigenvectors.
Now by virtue of (4.33) and the triangle inequality

o s

R i,k=1

+{SR§ [g{ip@'}g%]zdv}uz

Thus, letting

(4.52) b= max( - 1;*) = max Ui
/"11/ g9

and
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1, 0.4=

(4.53) m=max S 1am{ p H q }

and applying Schwarz’s inequality we have

N

(4.54) {SR > (2 Yav}'s {bSRvg‘ o V|

i=1 axiz
1/2
+{mg aro 000U gy
R 0x? 0xt

We return now to the original problem. We define the quadratic func-
tional Q(w) of mesh function w by

(4.55) Q) = 1¥ S { jﬁv;l avd, [w] d,fw] + ng}

By

where d, is the first difference operator in the 2 direction defined by
(4.7), and a¥ and ¢ are the average functions defined by (4.9) and (3.14).
We let AP<2W< ... be the successive minima of the ratio

Q)
(4.56) L

with respect to mesh functions w in M,. Here 7 is defined by (3.5).

The minimizing functions and the minima satisfy the finite difference
equation

4.57) — éldi[a“dj[w] 1k —8,h) + Gmhyw(m'h) = AF(mihyw(m'h) .

This is, of course, a finite difference analogue of (4.1).

The Poincaré inequality (3.25) still holds. Taking for v the mesh
function defined by (3.4) and for u the linear combination &u, -+ -+« &y
of the first k& eigenfunctions of (4.1), we get v in the form &v,+ -+ +£&,2;.

We now put together the inequalities (4.8), (3.13), (4.3), (4.10),
(4.16), (4.54), (4.35), (4.48), (4.37), (4.41), and (4.26) to find

(4.58) {Q(&w, + +++ + &V} S {é ii&?}l/z
11 )2 2 0 Py—,
+r Ll (e d) 5 26 + el S a1 5 g
+ M3 2.8 S 81 + [ 3 82 + (1 3 B T

* h{%(lfam > lifi}llz-{- hl/z{ _]g%%}l/z

X {e A48+ M3 48 2 BET" + MY a6 3610
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The denominator is bounded by the generalization of (3.11), namely

(4.59) hN%EFvZ =>1-— h UKZ Y Eg} /2 {LZ _53}]/2]2

T ')" G=1
where

(4.60) K = max Uit +7y)
cee N R ’
w xe,ZBN izlawvtv"
s )=

L = max (Jgrad %)

Inserting these bounds in the Poincaré inequality (3.25) yields

(4.61) 1 < [x;ﬂ R MAY + ol + Mo {g}‘i}/ + h{l, + Mo

m

o (co+d + 20/BL)s + MY + LA {7 )

g am T

This is an implicit lower bound for 4,. We note that the lower
bound differs from A{” by a term of order %', rather than A* as in the
absence of mixed derivatives. The inequality (4.61) does not reduce to
(3.27) when a¥ is diagonal.

%+ VI

5. Systems with no mixed derivatives. The process used in § 3 is
easily extended to a self-adjoint system of elliptic equations. We must
only consider the unknown function in (3.1) as a vector and the coef-
ficients as symmetric matrices. Thus we have

n N B n
(5.1) z{ z i( ;;ga“_)+qwﬁuﬂ}=zzr,,ﬂuﬂ, a=1,---n
=il is o o0’ - B=1

We assume the matrices pS3 - - p¥ and 7, to be positive definite and
Q. semi-definite, and all their components piecewise differentiable. We
put
(5.2) V(i) = h-”S wPh + ai)dat -+ da

0sa’sh

and, writing »** for the inverse of 7,,*

(5.3) Tas(mih) = [h‘”go _rRmth + atyda daNT :
sSalzh

Then we have, analogous to (3.6)
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N n —
(5.4) S S AV — WS S rogf
R a,p=1 R, a,B=1
K —_ —_—
=3 S Tus [rwuy — nﬂf’] [rmus — rﬁavﬂdal -eo da? .
By Josyish @,8,7,8=1
Thus, putting
z 2 2
65 N S ) [t s
. rp=min| =1 | =mmn | —f——— |,
gl @F A e (T L gm g
T ek ( Bk DI e WA
,B=1
7
K = max L%=n p“"”f’mrsy] ,

n
L= max[ >, r*gradr,, grad rﬁy] ,

xER @,B,y=1

where we have written p®*® for the inverse matrix of p{3, we have
the analogue of (3.11)

(5.6) PSS Rt = SR zﬁ rogtuPdV

R, w.p=1

2 n n a 1/2
-2k, 3 (Bt 2000 e v
R &L ox

Similarly, defining®

.7) Tus(mh) E[iﬂj g + e -+ daN]‘l
<k

0sa

where ¢** is the inverse matrix of ¢, and®
. -1
(5.8) PE(mh) = [th | pOP(mh + a)dat -+~ da”] ,
0=’ <h

we find the analogues of (3.13) and (3.15). Thus, if we define the finite
difference eigenvalues AW<A< ... as the successive minima of the
ratio

i (é} P8R [w*1d [wP]+ g w? )

@,B=1

(5.9) " _
> ragW*w®
o,B=1

among sets of mesh functions (w', ---,w") in class M,, we find again
the lower bound (3.27) for the eigenvalues of (5.1) in terms of those
of (5.9).
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i+ 2@ -n) "~ ¥ rragye)
(5.10) 7, = A Ty, I
1+ gy
~r,

The considerations of §4 do not appear capable of extension to
systems of elliptic differential equations containing mixed derivatives.

6. Error estimation. As has already been mentioned in the in-
troduction, it is rather easy to get upper bounds for the eigenvalues
2, by means of another finite difference problem. Thus in order to
determine the error, one must first calculate the eigenvalues of two
finite difference problems. If the error turns out to be too large, one
must reduce the mesh size and recalculate the eigenvalues. It is a
great saving of labor to have an a priori estimate of the error in terms
of the mesh size. For then one can pick a mesh size to give at most
a given error and do only one eigenvalue computation.

We proceed to estimate the error by considering the scheme for
obtaining upper bounds. For the sake of clarity we begin with the two-
dimensional Laplace operator case treated in § 2.

Following a method suggested by R. Courant [2] (and already im-
plicitly contained in a paper of L. Collatz [1]), we divide each square
of the finite difference mesh into two triangles by means of a diagonal
in a fixed direction. Then, given any mesh function v of class M,, we
can associate with it a piecewise differentiable function u by specifying
that it coincides with v at the mesh points, and is linear in each tri-
angle. This function vanishes on the boundary of the domain R,. Fur-
thermore, if v, ---, v, are linearly independent mesh funections, the
corresponding functions ., ---, #, are linearly independent; and to the
linear combination &wv,+ -+ +&2, corresponds the linear combination
§u+ -+ +&u,.  Letting p(R,) be the kth eigenvalue of the fixed
membrane problem

6.1) du + pu =0 in R,

with #=0 on the boundary of R,, we have the Poincaré inequality

SR |grad (U ’|‘5kuk)[2dxdy
(6.2) 2By _<_:€max 2k — .

poeenrk SRh(€1u1+ - s &) dady

Since n depends linearly on its mesh values », both the numerator
and denominator in (6.2) are quadratic forms in the mesh function v.
They have been explicitly determined by G. Polya [15], who finds that
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(6.3) S | grad uldady =D(v)
By,

defined by (2.9), while

©.4) [ wdady = 10) =1 S o0, ) = o [0(an+ i Y)—0(z, 1))

h h

0@ Do 1) = 0@ B)] = [0+ I Bk = 0 U]

We now let pP< < ... be the successive minima of the ratio

D,(v)
6.5 Y,
(6.5) T(v)
Letting v, «--, v, be the first © minimizing functions, we see from
(6.2) that

(6.6) (R < 15 .

Thus, we have upper bounds for the g(R,) in terms of the minimum
problem (6.5), which can again be formulated as a finite difference pro-
blem. However, noting that

(6.7) I0) Z 1?5 0@ 1) — FHDi0)

we can bound the /4® in terms of the eigenvalues 1 by
i
1_’41{;"225:”) ’

(6.8) s =

assuming, of course, that %~ is so small that A2A»<4. Thus, we have
the upper bound
A(h)
(6.9) t(Ry) = + .
1—=—p2m

4

This process is easily extended to N dimensions. Here each mesh
cube is divided in an arbitrary but fixed manner into simplices with
vertices at the corners. Then the values of the mesh function v deter-
mine a function % coinciding with v at the mesh points and linear in
each simplex. We again find the bound (6.9) with the factor 1/4 replaced
by a constant ¢y depending on the dimensionality.

In the case of variable coefficients an extra error occurs because
the coefficients appearing in the quadratic forms for the upper bound
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are different averages of the coefficients of the differential problem
from those used in finding upper bounds. However, both are averages
over cubes of size at most 2h. Thus the differences will be at most 4
times a constant depending on the maximum gradients of the coef-
ficients. This constant can be calculated. Thus we find in general

(6.10) t(R) = AP + hf(h, 2)

where f(h, A’) is an explicitly known bounded non-decreasing function
of 2 and I®.

Now since R is contained in R,, p(R,)<2,. However, if R, is close
to R, we expect the g, (R,) to be close to 1,. The estimation of this
closeness depends on the geometry of R. For example, if B contains a
cut, the domains R, will never have this cut, and so the g (R,) will
not approach the 1,. However, if R is so smooth that the boundary of
R, approaches that of R as ~—0, then it is easy to show that g (R,)—
and the inequality (6.10) together with the lower bound for 4, proves
that 1P —2,.

If R is convex and contains a circle of radius », then one can see
that the image of R under a dilatation of the ratio (1+8%~):1 about
the center of this circle contains a region R,. The eigenvalues of this
image are (1+4-8hr~')-%,, and they now lie below the g (R,). Thus, us-
ing (6.10) we have

(6.13) A Z (L + 807 (0 + 1f (b, 22))

In other words, we have an upper bound for 2, differing from 2{¥ by
a term of order 4. The difference between this and the lower bound
thus approaches zero with 4. In order to make this difference explicit,
we need only bound 2{® in terms of 2, by the inequality (3.26), (4.61),
or (5.10) and use some upper bound for 1,.

For another error estimate when R is not convex the reader is re-
ferred to § 5 of our previous paper [19]. While the argument is given
there only for the lowest eigenvalue, it applies equally well to higher
eigenvalues.

7. The non-homogeneous problem. We consider the elliptic dif-
ferential equation

0 ou _ .
(7.1) - > -a?(a“a—x]) +qu=G in R,

4,j=1

(7.2) %=0 on R.

Here the coefficients a¢* and ¢ satisfy the hypotheses of §4, and G is a
given continuous function,
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By the well-known Dirichlet principle, % minimizes the ratio

N
. N B ad

(7607)

among functions ¢ vanishing on the boundary. Let the value of the
minimum be (1/2). It is easily seen from the equation (7.1) that

(7.4) 2= S quV:S (S avfn By g Nav .
R R

5 Bxt ox?

An upper bound for (1/2) is easily found from the minimum principle.
We proceed to find a lower bound. We define the mesh domain R, as
before, the mesh function » in terms of u by (8.4), the mesh coeffici-

ents ¢ and g by (4.4) and (8.14), and the mesh function’
(7.5) G(mih)zh‘l"s Gt + at)dat - -da
0w =h

Then, by Schwarz’s inequality, the free membrane problem for the
cube, and (7.4)

U wGAV — WS G |
R

By -

= I:; S , {u(mh + &) — v(m’h)}G(m'h + a')da - - daﬁf":l2

0sa’sh

< [% ngiéh{u(m% + o) — o(mh)2dadt - - - da”]

gl ot i o]
OSw =h
- h2
< " lgradapav| cav < W1( Gav
wt )R B A
where
N
> aty,
(7.6) A — min __ij_ R

Mz 71 . c gy

The inequality (7.5) gives the lower bound
—\?2 h pl \1/27]2
N > __ {4 2
.7 (n %_::vG) > [x ’ (ASGdV> } .

We derive an upper bound for the form @Q(v) defined by (4.55) in
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the same way as we derived (4.58). We must, however, use the dif-
ferential equation (7.1) instead of (4.1) and the single function » instead
of the linear combination (4.20). Thus, we find that the bound for the
first integral on the right of (4.17) is, by inequality (4.23), just ¢4 with
¢ defined by (4.22). However, the bound for the second integral on the
right of (4.17) becomes (we again introduce the summation convention)

(7.8) Pit2 [SRa“fifJsz VI/ZA‘“

instead of (4.24). Here we have defined
(79) P = max [2(qaijflfj)m] .
Thus, (4.26) is replaced by

(7.10) f . F(%fds < (¢ + PR+ 2<Sﬁa“f‘f’G2d V)“zvz .

Since .27 (x) does not necessarily vanish on the boundary, (4.36) be-
comes

1y | a2 a@(“ﬁ/}(f v

2 1 OU
:SRT/‘~M(u)dV § .07 2mrs .

Using the differential equation and the triangle inequality we bound
the first term on the right.

(7.12) %S 71? o7 () dv} < (L) + (SR 17% dV)w
where
(7.13) LL=max (¢/v g) .

If we eliminate the derivatives of ¢ between (4.43) and (4.44),
without assuming .97 (u) to vanish on the boundary, we find

@14y Lm0 (gquor 0
2 0x* ox' 0%’

0 ({ w OB OR) -~/ @R)( >
g 32 fohdidatdl
Lg7n,ima] ozt g ox"* 6x‘f 1/gg ox'/ \ on

t

5 OU
+ g%j faﬁ nj&/(u) .

The integral of the second term just cancels the boundary terms of
(7.11) when we substitute in (4.35). The first terms on the right of

(7.14) is bounded as before by e § F(ou|on) dS where ¢ is defined by (4.47).
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Inequality (4.41) remains unchanged. Thus we derive in the same
way as (4.58) that

(71.15)  {Q@)'™ < 2 p) 1——ab} j(ce+Pe+l3—|—d)2

2| e(| anrircav)” +<z§m/ av)’ ]»/2+§ng av}”

+h{ amz}”zirh“{N-”t} HerPn

30 2F, |
2 Lai, FiFIGE V)”gz‘ﬂ}w .

We now define

(7.16) Sy =min - 9
¢ wE M, AN
- (h z w@ )

This quantity may be computed by a finite difference analogue of (7.1).
By the minimum property,
1 Q)

(10 a <kNZ vG)

Il/\

But the right-hand side is bounded by an explicit function of 1 and A
of the form (1/2)+a(~2"?) by means of (7.7) and (7.15). This gives a
lower bound for 1/ in terms of 1/A(%).

The absence of mixed derivatives results in a great simplification.
Inequality (3.19) is valid, and we find

(7.18) RIS 2

VR 1,?',‘15 ; ”T '
[z +ﬂ{ )G dv}

The upper bound for 1/1 can again be obtained by means of a finite
difference method using piecewise linear functions. Once this piecewise
linear function and the error (difference between upper and lower
bounds) is known, one can find a pointwise approximation to » at any
interior point by the method of Diaz and Greenberg [3, 4].

8. Higher order operators. The methods of § 3 are easily extended
to the eigenvalue problem

(8.1) Lu = ru in R

where L is an elliptic operator of order 2m, and all derivatives of orders
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up to m-1 of u vanish on R, provided the numerator of the correspond-
ing Rayleigh quotient is the integral of a linear combination of squares
of derivatives of u.

We illustrate the extension by applying it to the problem of the
vibrating clamped plate

A = u in R,
(8.2) .
u=0ouon=0 on KR

in two dimensions. The Rayleigh quotient may be written as
o™ ou \? o"u
+2( — -+ }dmdy
(8.3) Sg [< o ) ( 0x0y > (jy> N
SS u? dady
R

The domain R, is defined as before. M, is the set of mesh functions
vanishing everywhere except at the interior mesh points of R,. The
finite difference eigenvalues 1 are defined as the successive minima of
the ratio

Qw)
(84) 7&" RZ‘ w?

with we M, and
(8.5) R(w) = 3 {[wimh + h, nh) — 2w(mh, nh) + wimh—h, nh)]’
+ 2lw(mh+h, nh+h) — w(imh-+h, nh)

— w(mh, nh+h) + w(mh, nh)]*
+ [w(mh, nh+h) — 2w(mh, nh) + wimh, nh — )} .

The mesh function v is related by means of (2.10) to the function
having continuous first derivatives and piecewise continuous second
derivatives and vanishing outside F.

We now find

(3.6) Sg (a“) dady — b~ [o(mh + b, nk) — 2o(mh, nh) + v(mh — b, nh)]
B\ Qx? B,

1)

> Sm g dﬂg//(ac)[ "L (mhtct, nh+) — hH{v(mh+ b, nh)
— 20(mh, nh) + v(mh—h, nh)}:r >0

We have put
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[(am)z —h<a=<0
(8.7) 20(a) = W+2ha—20¢ O0=a=<h
1(2k—a)" h<a<2h.

A similar inequality holds for ¢*u/6y*. For the mixed derivative we
have

(8.8) SS ( 6"‘ 2 Jdedy —
x [v(mh+h, nh+h) — v(mh-+h, nh) — v(mh, nh+h) + v(mh, nh)F

AR KON

h

X [b"'a" (mh+a, nh+ ) — h*{o(mh-+h, nh+h) — v(mh+h, nh)

— w(mh, nh-+h) + v(mh, nh)}]zdadﬁ

W%

0

with ¢(«) defined by (2.20).
Thus Q(v) is bounded by the numerator of (8.3). For the denomi-

nator of (8.4) we use the inequality (2.14) together with Green’s theorem

and Schwarz’s inequality to give

(8.9) H wdady — S0 =

R Rh

P

” uzdxdygg uAAudocdy’”2 .
R R

The substitution (2.15) and Poincare’s inequality then give

(8.10)

’

- _,k
= 1—(hn Y
which is a lower bound for 2,.
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LOCALLY COMPACT DIVISION RINGS

EpwIN WEISS AND NEAL ZIERLER

Let K be a division ring with a non-discrete topology T with respect
to which both the additive group K+ and the multiplicative group K*
of K are locally compact topological groups.! If m is Haar measure for
K+ and a € K, the function m/(E) = m(aF) is clearly an invariant Borel
measure for K*. Hence there exists a real number ¢(a) such that
m/ (E)=¢(a)m(E) for all Borel subsets & of K*. The real-valued function
¢ on K (which is essentially the Radon-Nikodym derivative of m with
respect to left-invariant Haar measure on K*) evidently has the first
two of the following three properties.

(1) ¢H(@)=0; ¢(e)=0 if and only if a=0.

(2) $(ab)=d(@)$(b).

(3) There exists M>0 such that ¢(a)<1 implies ¢(1+a)<M.

We shall show that ¢ satisfies (3) also, i.e., is a valuation for K,
and that the topology T, for K defined by ¢ coincides with T7.*> The
classification of K then follows from known results.

LEMMA 1. ¢ ¢s continuous.

Proof. Let ¢ be a positive number and let E be a compact set of
positive measure. By the regularity of Haar measure we may choose
an open set U containing E such that m(U)—m(E)<em(E). Choose a
neighborhood V of 1 with V=V and V- E c U. Then for  in V,
#(@) = m(zE)/m(E) £ m(U)/m(E)<1+¢; since a7 € V, ¢(x) = (¢p(z))" >
(1+¢)t. Hence 1—e<¢(x)<1l-+e and the continuity of ¢ on K* follows,*
Now choose an open set U with m(U)<em{E) and a neighborhood V of
0 with V-E < U. Then for a in V, ¢(a)=m(aE)/m(E)sm(U)/m(E)<e
and ¢ is continuous at 0.

LemMa 2. S={a e K: ¢a)<1} is compact.

Received February 13, 1958 and in revised form April 1, 1958,

The research in this paper was supported jointly by the Army, Navy and Air Force
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M.1.T.

1 Continuity of the inverse multiplicative operation need not be assumed; cf. the con-
cluding remark. The continuity of multiplication implies that a—>—a=(-1). a is conti-
nuous.

2 This idea was suggested by some work of Tate, [12].

2+Cf. Halmos [3, £60.6, p. 265].
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Proof. Let C be a compact neighborhood of 0 and choose a neigh-
borhood V of 0 such that V-Cc C. Let a € Vi C such that 0<¢(a)<
1, If a®S< C holds for no n = 1,2, ---, we select for each #» an s, € S
such that a"s, ¢ C. Since ¢(@*) - 0 and all the o* lie in the compact
set C, a* — 0 and hence a*s, € C for sufficiently large k. We may there-
fore choose k, = n such that a*s, ¢ C but a*»*'s, € C. Then the sequ-
ence {a*ss,} of elements of the compact set a¢~'C has a cluster point ¢
in a~'C. Hence ¢(a*nsn)=gp(a)sd(s,)<¢p(a)» has ¢(c) as a cluster point
by the continuity of ¢ ; thus ¢(c)=0 and ¢=0, which contradicts a*»s, ¢
C. It follows that S is a subset of the compact set ¢ "C for some =
and so, being closed by virtue of the continuity of ¢, is compact.

COROLLARY. ¢ s a valuation.

Proof. ¢(1+S), the continuous image of the compact set 1+S, is
bounded.

LemMMmaA 3. T,=T.

Proof. Let Ve T—{¢},aecVand B,={be K: ¢(b—a)<2"}. Sup-
pose we can choose b, € B, with b, ¢ V for each n=1,2, -.-. But then
the points 6,—a, all of which lie in the compact set S, have a cluster
point ¢ in S which must be 0 since ¢(¢)=0. Hence b, — a contrary to
our assumption and it follows that 7' c T,. Since the opposite inclusion
is an immediate consequence of the continuity of ¢, the proof is comp-
lete.

If K is connected®, it is the real, complex or quaternion field
(Pontrjagin [10]); in particular, ¢ is archimedean. Conversely, if ¢ is
archimedean, the theorem of Ostrowski [8, p. 278] asserts that the cen-
ter of K is either the real or complex field and so K, not being totally
disconnected, is connected.®

If K is totally disconnected, ¢ is non-archimedean (and conversely,
according to the above) and results due to van Dantzig [2], Hasse [4],
Hasse and Schmidt [5], Jacobson and Taussky [6] and Jacobson [7] as-
sert that K is of one of the following three types;*

(i) the completion of an algebraic number field at a finite prime,

(ii) the completion of an algebraic function field in one variable

3 K is either connected or totally disconnected: if the component C of 0 contains a &
0 then ba-1C is a connected set containing 0 and & € K.
¢ Otobe [9] shows that a — a-! need not be assumed to be continuous; cf. our final

remark in this connection.
5 Alternatively, if K is connected, it is not difficult to show that ¢ is archemedian;

then K is a vector space over the reals (Ostrowski) with ¢ as a norm, hence is the
real, complex or quaternion field (Arens {1] Tornheim [13]), proving Pontrjagin’s theorem.
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over a finite field H,
(iii) a division ring D obtained from a field F' of type (ii) by rede-
fining =. a=a°. x, ¢ € H, ¢ a fixed non-trivial avtomorphism of
H, the elements of D and F being regarded as power series
=, %" in an indeterminate x over H with coeflicients in H.

REMARK. Continuity of a — a~! need not be assumed, for it appears
in the connected case only in the proof that K is not compact in the
proof of the Pontrjagin theorem [11, p. 173, Theorem 45.]. If K were
compact, ¢p(a)=m(aK)/m(K)<1 for all @ ¢ K. But, as in the proof of
the continuity of ¢ at 0 in Lemma 1, we can find o € K such that 0<
$(a)<1; then ¢(a~')>1 and it follows that K is not compact. If K is
totally disconnected we have only to apply to 7, K* the following un-
published theorem of A. M. Gleason: Let G be a group with a totally
disconneted topology T' under which the group operation is continuous
from GxG to G. Then T, G is a topological group.
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HOMOMORPHISMS ON NORMED ALGEBRAS

BERTRAM YOOD

1. Introdaction Let B, and B be real normed Q-algebras (not
necessarily complete) and 7" be a homomorphism of B, into B. Our
main object is to show that, for certain algebras B, T will always be
either continuous or closed if the range T(B;) contains * enough” of
B. 1If B is the algebra of all bounded linear operators on a Banach
space X and 7(B,) contains all finite-dimensional operators then 7 is
continuous. If B is primitive with minimal one-sided ideals, T'(B;) is
dense in B and intersects at least one minimal ideal of B then T is
closed. Other examples are given. In these results we can obtain the
conclusion for ring homomorphism as well as algebra homomorphism if
we assume that p(T'(x))<p(x), ¢ B;, where p(x) is the spectral radius
of . Note that this is a necessary condition for real-homogeneity.
For the application of these results it is desirable to have examples of
algebras which are Q-algebras in all possible normed algebra norms.
Examples are given in §2. For previous work on the continuity of
homomorphisms and the homogeneity of isomorphisms on Banach alge-
bras see [8], [9], [11], [12] and [14].

2. Normed Q-algebras and continuity of homomorphisms. For
the algebraic notions used see [6]. Let B be a normed algebra over
the real field (completeness is not assumed). As in [8], [11] a complex
number 1#0 is in the spectrum of xe B if it is in the usual complex
algebra spectrum of (z, 0) in the complexification of B. If B is already
a complex algebra then the spectrum of z in this sense is the smallest
set in the complex plane symmetric with respect to the real axis which
contains the spectrum of z in the complex algebra sense. Let p(x) be
the spectral radius of x, p(x)=sup || for 2 in the spectrum of x. B
is called a Q-algebra if the set of quasi-regular elements of B is open.
Every regular maximal one-sided or two-sided ideal in a Q-algebra is
closed. Hence the radical of a Q-algebra is closed and so also is any
primitive ideal. See [10; 77].

2.1. LEMMA. For a normed algebra B the following statements are
equivalent.

(a) B is a Q-algebra.

(b) p(z)=lim ||z*|[V", 2 e B.

(¢) p@)=llzll, ze B.

Received January 14, 1958. This research was supported in part by the National
Science Foundation, research grant NSF-G 2573.
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Suppose (a). Then there exists a number ¢>0 such that z is quasi-
regular for all x, ||x||<ec. Set k=[(1+¢)"*—1]"'. Let xe B and 1=a-+bi
be any complex number =0 where {1|>k|lz!l. Then

[2]72 ]| 20 —a*]| < 2172 12| |lzl|| + 2| < 2k + k> <ec
This shows that p(x)<k||z||. Thus
p(x) = p(a™)/™ < EV*|[a] "

for every positive integer n. Letting n—o we see that g(x)=<lim
[|2=||“». But lim ||z"||*=p(x|B°), the spectral radius of 2 in the com-
pletion B° of B. Hence p(x)<p(x|B°). Since p(x|B?)=p(x), (b) follows.
Clearly (b) implies (c). Suppose that (a) is false. Then there exists a
sequence {z,}, x,—0 where x, is not quasi-regular. Then p(x,)=1 for
each n and (c) is false.

Let X be a Banach space and let &(X) be the Banach algebra of
all bounded linear operators on X in the uniform topology. Let F(%)
be the ideal of all elements of &(X) with finite dimensional range.

2.2. LEMMA. Let j be an idempotent in a normed algebra B. Then
the mon-zero spectrum of an element in jBj s the same whether computed
wn jBj or B.

This is given in [9; 875] in the complex case. The real case of-
fers no new difficulty.

2.3. THEOREM. Let U be a ring hcemomorphism or anti-homomor-
phism of a normed Q-algebra B, into C(X) where U(B,)DF(X) and
pLlUWMIZo(V), VeB,. Then U is continuous.

Suppose that U is not continuous. By the additivity of U (see [2;
54]) there exists a sequence {7,} in B, such that ||7,]l,—>0 and || U(T,)I|
—oo where ||T'||; is the norm in B, and ||7T'|| is the usual norm in E(X).
Consider any idempotent J of (%) such that JE(X) is a minimal right
ideal of &(X). By the work of Arnold [1] these elements J are the
linear operators on X of the form J(x)=x*(x)y where x* e X*, ye X and
z*(y)=1. Let U(W)=J and U(T,)=V,. Since ||WT,W|,—0 we have,
by Lemma 2.1, o(WT,W)—0 and therefore p(JV,J)—0. By Lemma 2.2
and the Gelfand-Mazur theorem, ||JV,J||—>0. Note that JV, J(x)=a%(x)
z*[V()ly. Hence z*[V, (y)]—>0. Fix y+#0 in X. Then z*[V,(y)]>0 for
all ¥ e K= {z* e X¥*|o*(y)#0}. Let z*e¥*, z*(y)=0. Since z* can be
written as the sum of two elements of K, x*[V,(y)]-0 for all z* e X*.
Hence sup || V,(¥)l|<e for each yeX. By the uniform boundedness
theorem, sup || V,||<e. This is a contradiction.

2.4. THEOREM. Let T be a ring homomorphism or anti-homomor-
phism of a normed Q-algebra onto a dense subring of & semi-simple
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JSinitedimensional normed algebra B where plT(x)|<p(x), xe B,. Then T
1S continuous.

By [7; 698] B is strongly semi-simple and so, by Theorem
proved below, T is real-homogenous and closed. Let ||z}, (]|x]]) denote
the norm in B(B). Suppose that T is not continuous. Then there ex
ists a sequence {w,} in B, such that ||x,|,—0 and || T(2,)||=1, n=1, 2, ---.
There exists a subsequence {y,} of {«,} such that |[|T(y,)—w||—>0 for
some weB. Since ||w||=1 we contradict the fact that 7 is a closed
mapping.

A normed algebra B is called a permanent @Q-algebra if it is a Q-
algebra in all normed algebra norms. We say that the normed algebra
B has the spectral extension property if the spectral radius of xze B is
the same as the spectral radius of z considered as an element of any
Banach algebra B, in which B may be algebraically imbedded. Ex-
amples of algebras with this property are B*-algebras [13] and annihila-
tor Banach algebras [3]. To test if a normed algebra B has this pro-
perty it is sufficient to consider the completions of B in all possible
normed algebra norms.

2.5. LEMMA. A normed algebra B is o permanent Q-algebra if and
only if B has the spectral extension property.

Let B be a permanent Q-algebra, < B. Then lim ||z*|//* has the
same value p(x), by Lemma 2.1, for any normed algebra norm for B.
Thus B has the spectral extension property. If B has the latter pro-
perty then for any norm ||z||, p(x)=1lim |[2"]|/* and B is a permanent
Q-algebra by Lemma 2.1.

2.6. THEOREM. Any two sided ideal I of G(X) where IDF(X) and
any closed subalgebra B of G(X), BOF(X) have the spectral extension
property.

Let R be any such ideal I or closed subalgebra B. Let ||T]|, be a
normed algebra norm for R and [|7T{] the usual norm. For TeR let
o(T) be its spectral radius as an element of R, p(T) as an element of
the completion of R in the norm ||T'l|;, and p(7) as an element G(%).
In the ideal case if Ue R has a quasi-inverse V in §(%X) then Ve R. In
every case o(T)=p/(T).

It is enough to show the identity imbedding of R (with norm [|7'|,)
into &(X) (with norm [|T'||) is continuous. For then there exists ¢>0,
T <ell T, TeR, whence

e < e Tl m

for all positive integers n. Consequently p(T)=<p(T). Since p(T)=<p(T)
we would have po(T)=p(T).
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Theorem 2.3 cannot be applied since it is not known o prior: that
R is a Q-algebra in the norm ||7]|,. If, however, the imbedding is
diseontinuous there exists a sequence {7} in R such that ||7,|/,—0 and
|T,||-=>. By the arguments of [1], the minimal ideals of R are the
same as the minimal ideals of &(X). For each idempotent generator J
of a minimal right ideal of R, JRJ is a normed division algebra and
hence has a unique norm topology by the Gelfand-Mazur theorem.
Since ||JT,.J|l,—>0 we have [|JT,J||—0. The remainder of the proof
may be handled as in Theorem 2.3.

For a ring B and a subset ACB we denote the left (right) an-
nihilator of A by L(4) (RB(A4)). Bonsall and Goldie [4] have considered
topological rings called annihilator rings in which for each proper right
(left) closed ideal I, L(I)+(0) (R(I)+#(0)). We consider the related pure-
ly algebraic concept of a modular annihilator ring which is defined to
be a ring in which L(M)=(0) (R(M)+(0)) for every regular maximal
right (left) ideal. From the standpoint of algebra these rings appear
to be a natural class containing H*-algebras, etc. In view of what
follows it is natural to ask if the two concepts agree for semi-simple
normed Q-algebras or semi-simple Banach algebras. A affirmative ans-
wer would settle an unsolved problem in the theory of annihilator al-
gebras.

2.7. LEMMA. Let B be a semi-simple normed annihilator Q-algebra
and I be a closed two-sided ideal in B. Then I is a modular annihilator
Q-algebra.

Thus if we had affirmative answer to the above question, any closed
two-sided ideal of a semi-simple annihilator Banach algebra would also
be one. The analogous result is known for dual algebras [7; 690].

Let M be a regular maximal right ideal of I. Since I is a Q-al-
gebra (as an ideal in B), M is closed in B. Since L(I)=R(I), ([4; 159]),
L(I+R(I)) = (0) so that I4R(I) is dense. The arguments of [7; Theorem
2] show that M is a right ideal in B. We must show L(M)NI+(0). Suppose
the contrary. Then I L(M)=(0) and L(M)cR(I)=IL(I). As MclI,
L(M)> L(I). Therefore L(M)=L(I). R(M)M=(0) since it is a nilpotent
ideal in B. Thus R(M)cL(M)=R(I). Then since R(M)DR(I) we see
that R(M)=L(M). If ze L(M+ R(M)) then x = L{M)=R(M) and x € LR(M).
Thus #*=0 and, by semi-simplicity and the annihilator property, M+
R(M) is dense in B. Then (M+R(M)) I=(M+L(I)IcM and BICM.
Let j be a left identity for I modulo M. Then jz—xze M, vxel and
jee M, xel. Hence ICM which is a contradiction.

2.8. LEMMA. In a semi-simple modular annihilator ring, every
proper right (left) ideal contains a minimal right (left) ideal, A normed
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modular annihilator algebra B has the spectral extension property.

Since the first statement is shown by stripping the arguments of
Bonsall and Goldie [4] of all topological connotations, a sketch of the
argument is sufficient. As in [4, Lemma 2], if j is not right (left)
quasi-regular there exists #+#0 in B where aj=x(jz=x). The arguments
of [4, Theorem 1] show that if M is a regular maximal right (left) ideal
of B then L(M) (R(M)) is a minimal left (right) ideal generated by an
idempotent. Also the left (right) annihilator of a minimal right (left)
ideal is a regular maximal left (right) ideal. Consider the socle K of
B. By the reasoning of [4, Theorem 4], L(K)=R(K)=(0). Let I be a
proper right ideal of B. If I contained no minimal right ideals of B
then, as in the proof of [4, Lemma 4], ICI(K), which is impossible.

Let xe B and let B’ be the completion of B in the normed algebra
norm ||z||,. Consider 1=a+bi+0 in sp(zx|{B). Then u»=|1|"* Lax—z?)
has no quasi-inverse in B. As in [3; p 159] there exists y+0 such
that uy—y and » has no quasi-inverse in B’. Then p(x|B’)=p(x|B).

3. Closure of homomorphisms and anti-homomorphisms. Through-
out this section the following notation is assumed. Let B,(B) be a real
normed algebra with norm [|z|,({z|). T is a ring homomorphism or
anti-homomorphism of B, onto a dense subset of B. T is called closed
if |lz,—2|[—0, [|T(x,)—y||>0 imply that yeT(B,) and y=T(x). By
the separating set S of T we mean the set of all ye B such that
there exists a sequence {w,} in B, where ||z,|—0 and ||y—T(z,)||—0.
We assume that p[T(x)]<p(x), € B,. Note that this condition is auto-
matic if T is real-linear.

The next lemma is an adaptation of results of Rickart [11].

3.1. LEMMA. T is closed and real-homogencous if and only if S=(0).
S is a closed two-sided ideal in B and T-YS) a closed two-sided ideal
in B, If B, is a normed Q-algebra then every element of S is a topological
divisor of zero in B.

Clearly T is rational-homogeneous. Let e B, and r,—r where each
r, is rational and » is real. Then ||r,z—rzl|,—0 and ||rT(x)—T(rz)—
T(rpe—rx)||>0. Hence rT(w)—T(rz)=S. The first statemant follows by
a straightforward argument.

Let y,eS, ||lw—v,l|—0. There exists, for each =, an element
2, € B, such that ||y,—T(z,)l|<n™* and |[z,|,<n"'. Then |lw—T(z,)]|—0
so that weS. Hence S is closed in B. Since xS and » rational im-
ply rz e S it follows that S is a real linear manifold. To show that S
is an ideal in B it is enough to show that xy and yxe S for xS and
y=T(z) e T(B,). This, however, is a simple matter. Suppose next that
|z,—2|l;—>0 where each x,e T-(S). For each n there exists 9, e B, such
that [|T(z,)—T(¥.)||<n' and [ly,|,<n”'. Then |[—(x,—y.)|l,—0 while
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| T(x) = T[x—(x,—¥,)]{|—>0 whence T(x)cS. Hence T-(S) is closed. It
is readily seen to be a two-sided ideal in B,.

Let B° be the completion of B where we use ||x|| to denote the
norm in B° and p(x) the spectral radius there. To show that seS is a
topological divisor of zero in B it is sufficient to show that it is one in B°.
Choose a sequence {w,} in B, such that ||s—T(x,)||—>0 and ||x,|,—0. If B,
is a normed Q-algebra s is the limit of quasi-regular elements of B° by
Lemma 2.1. Hence so also is is for any real 2. By the arguments of
[11; 621] it suffices to rule out the possibility that both B° has an
identity 1 and that s has a two-sided inverse in B°.

Suppose this is the case. Let S, be the separating set for T con-
sidered as a mapping of B, into B°. Clearly ScS,. Then as S, is an
ideal in B°, Sy=B° and 1€ S;,. There exists a sequence {u,} in B, such
that ||1—T(u,)||—>0 and ||u,|l;—0. Since 1—T(u,) and T(u,) permute we
have by Lemma 2.1,

1= p(1) = p(1—T(ua)) + p(T(wn)) = 1—=T(ua)|] + p(us| B)—0

This contradication completes the argument.

If B, and B are Banach algebras, by the closed graph theorem [2;
41] S=(0) will imply that T is continuous. In every case S=(0) will
imply real-homogeneity for T and the closure of 7-%(0).

3.2. LEMMA. Let B, be a normed Q-algebra and B be semi-simple
with minimal one-sided ideals. Suppose that there exists o minimal one-
sided ideal I of B, such that T(B)NI+0. Then SNI=(0).

We consider the case where I is a right ideal and 7T is a homomor-
phism. The other cases follow by the reasoning employed. Set I,=
T-'(I). I, is a right (ring) ideal of B,. Let I=jB, j*=j and consider
x,€ I, where T(x,)=jv+0. By the semi-simplicity of B, juB=+(0) and, as
jB is minimal, jyB=4B. Then j7T(B,) is dense in I. It follows that
T3 #(0) for otherwise [JvT(B)F=(0) and I*=(0). Select wel, T(z)=
jw#0 and T(x*)+#0. Let R be the set of elements y in B for which
jyeT(I)). As observed, jR is dense in jB. Hence jRj is dense in jBj.
But jBj is a normed division algebra and therefore, by the Gelfand-
Mazur theorem, finite-dimensional in B. Thus jRj=jBj. There exists
z€ R such that jzjwj=jwjzj=j. For some z,el,, T(x)j=jzj. Then
T(xx)=gz27w=T((x:x)*). Set jzyw=h and xx=u. Then % is a non-zero
idempotent in INT(B,). Clearly hB=1I so that ABh is a division algebra
hence isomorphic to the reals, complexes or quaternions.

We show that ~¢ S. For suppose otherwise. Then there exists a
sequence {y,} in B, such that ||A—T(y,)||—0 and [|y,|l,—>0. Thus
Huyuli—0 and ||A—T(uy,u)||—0. By Lemma 2.2 and the fact that
hBh is the reals, complexes or quaternions, [[2T(y,)2||—0. This is a
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contradiction as 2+0. Now SNI is a right ideal of B, SNI+#1. Since
I is minimal, SNI=(0).

3.3. THEOREM. Let B, be a normed Q-algebra and B be primitive
with minimal one-sided ideals. If T(B))NI+#(0) for a minimal one-sided
ideal I of B then T is closed and real-homogeneous.

Let K be the socle of B. If S#(0) then KcS by [6; 75]. Then
IcS which is impossible by Lemma 3.2.

3.4. COROLLARY. Let B be any subalgebra of E(X) closed in the
uniform norm ||T|| where BOF(X). Let ||T], be any normed algebra
norm for B such that the completion B° of B in this norm is primitive.
Then the two norms are equivalent.

By Theorem 2.6 and Lemma 2.5, B is a @-algebra in the norm
[IT1l,. By Theorem 2.8, there exists ¢>0 such that [|T||Z¢||T]l;, T € B.
Consider the embedding mapping I of B (with norm ||T||) into B°. B
is a primitive algebra with a minimal right ideal JB, J?=.J. Then
I()I(B)I(J) a normed division algebra and, by the Gelfand-Mazur theorm,
closed in B°. Since I(J) is an idempotent, its closure in B° is I(J)BI(J).
Therefore I(J)B° is a minimal right ideal of B°. From Theorem 3.3, I
is closed. The closed graph theorem [2; 41] shows that I is continuous.
Hence there exists ¢, >0 such that |[T{,Zel|T)], T e B.

3.5. THEOREM. Let B, and B be normed Q-algebras. Then S is
contained wn the Brown-McCoy radical of B. If B is strongly semi-
simple then T 1is closed and real-homogenecous.

The Brown-McCoy radical [5] coincides with the intersection of the
regular maximal two-sided ideals of B. Let M be such an ideal of B.
Since B is a normed Q-algebra, M is closed. Let = be the natural
homomorphism of B onto B/M. Since T(B,) is dense in B, then = T(B,)
is dense in B/M. Also p[=zT(x)]=ZplT(x)]<p(x), x € B;. Hence our theory
applies to the mapping »T.

Let S, be the separating set for 7. Since B/M is simple with an
identity, S,=(0) by Lemma 8.1. Let weS, l|{z,|,—0, ly—T(x,)]||—0.
Then |[z(y)—=T(x,)||>0 or =(y)eS,. Therefore SCcM. B is called
strongly semi-simple if its Brown-MeCoy radical is (0).

3.6. THEOREM. Let B, and B be semi-simple mnormed Q-algebras
where B, has a dense socle K and B has an tdentity Let T be real-linear.
Then Tis closed.

Let P be a primitive ideal of B and 7 be the natural homomorphism
of B onto B/P. Since B is a Q-algebra then P is closed, = is contin-
uous and n7T'(B,) is dense in B/P. Let S, be the separating set for =T
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as a mapping of B, into B/P. We show first that T(K)C P is impos-
sible. Suppose T(K)cP. Since Kc(zT)7(S,), by Lemma 3.1 we have
B, =(=T)"%S,) and S;=B/P. Since B/P has an identity this is contrary
to Lemma 3.1. Hence there exists a minimal right ideal 5B, of B,, °=j
such that 7(j)¢ P. Set =7T'(j)=u, =T(B)=B,. =T is an isomorphism or
anti-isomorphism of the division algebra jB,j onto uBmu. Hence uBu is
a normed division algebra and thus, by the Gelfand-Mazur theorem
closed in B/P. Since » is an idempotent, #(B/P) is a minimal right
ideal of B/P. By Theorem 3.3, =T is closed from which we obtain
ScP. Since B is semi-simple, S=(0).

3.7. THEOREM. Let B, be @ normed Q-algebra and B semi-simple
where either B is a modular annihilator algebra or has denmse socle. If
T(B,) contains the socle of B then T is closed and real-homogeneous.

By Lemma 3.2, SNI=(0) for every minimal one-sided ideal of B.
Let I be a minimal right ideal. Then SI=(0). Thus S annihilates the
socle. It follows (see the proof of Lemma 2.8) that S=(0) in the first
case. In the second case we have S*=(0) and S=(0) by semi-simplicity.

Consider further a semi-simple normed modular annihilator algebra
B. B is a permanent @Q-algebra by Lemma 2.5 and 2.8. From Theorem
8.7 we see that any algebraic homomorphism or anti-homomorphism of
B onto B is closed no matter which two norms are used for B.

Let B be a real normed algebra. By an ¢nwvolution on B we mean
a mapping z—a* of B onto B which is a real-linear automorphism or
anti-automorphism of period two. Let H(K) be the set of self-adjoint
(skew) elements of B with respect to the involution z—a*. B is the
direct sum H@® K of the linear manifolds H and K.

The mapping z—z* of B onto B is subject to the above analysis.
Here S is the set of all xe€ B for which there exists a sequence {w,} in
B with {|z,||—0 and ||z—=z}||—0.

3.8. LEMMA. S=HNK. S=(0)if and only if H and K are closed.
Let weS. Then there exist sequences {4,} and {k,} in H and K
respectively such that |lw—(%,—k,)||>0 and |&,+k%,||—0. Therefore

| —2h,||—0 and |lw+2k,||—0 so we HNK. Conversely suppose that
llz—h,)|—0, |lz—E,||>0 where each z,e H, k,e K. Then |jz—(h,+k,)/2l|
—0 and [|(h,—Ek,)/2||—>0 and ze S.

If H and K are closed, clearly S=(0). Suppose S=(0). Let #,—
u-+v where h,e H, ue H andve K. Then h,—u—vand ve HNK. Then
v=0 and H is closed. Similarly K is closed.

Let B be a semi-simple normed annihilator algebra, for example an
H*-algebra. Then it follows from the above that H and K are closed
in B for any involution on B and any normed algebra norm on B. For
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B*-algebras we have been able to show only the following weaker re-
sult.

3.9. THEOREM. Let B be a B*-algebra with H(K) as the set of self-
adjoint (skew) elements in the defining involution for B. Then H and K
are closed in any normed algebra norm topology for B.

B has the spectral extension property [13] and is therefore a per-
manent Q-algebra by Lemma 2.5. The arguments of [14; § 3] can be
adapted to show that H and K are closed in any given normed algebra
norm ||,
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