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Introduction In this note, we define a set function for bounded
plane convex domains and study its properties. In particular, we exhibit
its analogy to a classical set function from the theory of conformal
mapping. The function is of interest because it is involved in bounds
and approximations to several physical quantities, notably the torsional
rigidity.

1. Preliminary definitions Let D denote a bounded open convex
plane domain and let C denote the boundary of D. For each p € D and
each ¢ € C, we denote by 4,, the distance (regarded as positive) from
p to the supporting line to D at ¢. The function %,, is single valued
for almost all q.

Consider the family of functions defined by the integrals

(1) § pds,

where ds, denotes an arc-element of C at q.

For most values of the exponent «, the integral in (1) depends upon
p as well as D. For the special cases a = 0,1 the integral (1) is inde-
pendent of p. For a = 0 we obtain the length of C which we denote by

(2) L(D):L=§Udsq.

For @« =1, we obtain twice the area of D, which we denote by

(3) 2A(D) = 24 — § Bopudls, -
[
In this paper we will be primarily concerned with the value
a = —1. For this case we employ the notation
(4) B,(D) = B, = § hiids, .

If D is transformed by a similarity transformation (i.e. linear isogonal
map) into D* and if p is transformed into p* then

Received September 3, 1956.

383



384 M. I. AISSEN

(5) B,(D) = BxD¥) .

Hence the set function B(D) defined by

(6) B(D) = B = inf B, (D)
PED

is invariant under a similarity transformation and thus depends on the
shape but not the size of the convex domain. It is the set funection
referred to in the title.

2. Two analytic representations of B,. Consider a polar coordinate
system with pole at p and let » and ¢ denote the polar coordinates of
g € C. The polar equation of C is r = r(p). Now

(7) dsi = (° + )i’

and by comparing two expressions for the area of an appropriate wedge
with vertex at p we obtain

(8) hpds = r°dep .
Combining (7) and (8) we obtain ‘

ds 7/
9 W = (14 " \dgp .
(9) s ( + Tz) ¢
This yields
(10) B, = S<1 + ff)dqs .
0 r

Another useful representation is for the case when the curve C is des-
cribed by parametric equations = a(t), y=9(t); O0=Zt=T. We
adopt the convention that the domain D lies in the x,y-plane, that »
corresponds to x = 0, y = 0. Also, since C is convex, we may select our
parameter ¢ so that z/(¢), y'(¢) exist for almost all ¢ and so that W(¢) =
x(t) y'(t) — 2'(t) y(t) > 0 for all ¢.

Then if there is a tangent line at ¢ = ¢(¢) it has the equation (X,
Y are coordinates of a point on the tangent line).

(11) d(Y —yt)} =y (O{X — 2(8)] .

From the normal form of (11) we obtain

_ Y@ — 2@y . W) )
[/ () + v ()] [ () + v (t)]”

pa

The arc-element ds, can be expressed by
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ds, = [«'() + y'(&y1"dt .

Hence we obtain

(12) B, = S x:@)%{)yw it .

3. Inequalities involving B,. We first show that of all convex
domains, D, B(D) is smallest for the circle. From (9) we obtain

B,D) =2 [ O ag

which implies

(13) B, =2x.
Since (13) is true for all p, we obtain
(14) B(D) = 2= .

We may strengthen (14) by applying the Schwarz Inequality to the
functions 1/p,, and 1/1/h, . We obtain

(15) § mids, - § hods, = (§ ds)
Using the definitions in (2), (3) and (4) we obtain
(16) B, =X,

24

for all p € D and hence

>LZ

17 B= =,
(a7 T 24

By the classical isoperimetric theorem,
(18) I’ > 4zA

with equality holding only for the circle.

Equality occurs in (15) and hence in (16) and (17) only when /4,
and 1// h,, are proportional, i.e. when A,, = const, almost everywhere.

This is true only when C consists of tangents to and arcs of a fixed
circle whose center is at p. We call this class of curves circumscribable.
Among the circumsecribable polygons are the general triangle, the general
rhombus, and the regular polygons. The fixed circle involved in the
description of the domains for which %,, is constant almost everywhere,

has the property that no larger circle can be contained in D (the closure
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of D). In general we define for an arbitrary domain D a maximal
inscribed ecircle as one of radius p(D), which is contained in D, where
p = p(D) is characterized by the following two properties :

(1) There exists in D a circle of radius p.

(2) There does not exist in D a circle of radius larger than p.

The number p(D) is unique but there may be several maximal inscribed
circles as in the case when D is a rectangle.

In those cases in which D is convex and B = L[?/24,

(hpy = constant almost everywhere), we have %,, = p(D) for the point p
at which B, = B = L/p.

In all other cases (D is convex, B > [*/2A, h,, not constant almost
everywhere for any fixed p), let p be a center of a maximal inscribed
circle. Since D is convex k,, = p for all ¢ on C, and %,, > p for a set
of positive measure on C. Hence

(19) % > B,(D) = B(D).

Combining the inequalities of the section we obtain

THEOREM 1. For all convex domains Llp = B = I7|2A = 2x.
Furthermore Llp = B = I*[2A = 2r for all circumscribable domains. For
all other domains Ljp > B > L*2A4 > 2r. The circle is the only domain
for which Ljp = B = I*|24 = 2x.

As a consequence of Theorem 1, we have the following

COROLLARY. There exists a constant M > 0 such that for any bounded
convexr domain D

o= BOWD) _
< BOD) o

M is of course independent of D.

The proof of the corollary depends upon the following geometric lemma
which we state without proof. The proof of the lemma can be found
in [4, pp. 509-510].

LEMMA Let D be a convex bounded domain and let D be the closure

of D. Then there ewist closed rectangles R, R, with the following
properties

(1) RcDCR,
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(2) R, and R, are similar and similarly situated
(3) A(R,) = 94A(R).

Proof of the Corollary. For an arbitrary rectangle we have L = 8p
and A = p(L — 4p). Hence

Lo L .1

24 2.L—4p = 2~
Let R, R, be the two rectangles associated with D in the lemma. Then

BD)D) - LD)eD) - LE)o(R)

LD) = 24(D) = 24(R)
> LE)p(R) o 1 .
= 9.24(R) = 18

Hence, using Theorem 1 again, we get 1/18 < Bp/L =1 for all convex
bounded domains.

4. Behavior of B, near the boundary. At each point of a convex
curve, there exist two one-gsided tangents which are collinear (when ex-
tended) for all points with at most a countable number of exceptions.

In the present section we consider %,, to be always measured to the
right hand tangent so that certain details of proof become easier. The
values of B, and B are not affected by this convention. By the right-
hand tangent we mean the one-sided tangent which points in the counter-
clockwise direction along the curve.

THEOREM 2. As p approaches the boundary curve C, B, becomes
arbitrarily large. More precisely, if q be any point of C, and M a
positive number, there exists a positive number o, such that B, > M, for
all p e D whose distance from q is less then 0.

Proof. We consider a Cartesian coordinate system whose origin is
at ¢ and whose positive z-axis coincides with the right hand tangent at
g. Hence y > 0 for all points of D. There is a unique supporting line
of C, which has slope one and whose y-intercept is negative. Let ¢ be
the point of this line which belongs to C and is closest to the origin at
g. Let ¢ denote a variable point between ¢ and ¢ (such that ¢, ¢/, ¢
occur in counterclockwise direction). Then

td‘%{’]

21 B, S
(21) > T

The integral is taken along an arc of C. We denote by M, the slope
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of the right hand tangent at ¢’. If the coordinates of ¢ are (x, ¥) and
those of a point on the right-hand tangent at ¢’ are (X, Y), the equation
of tangent line is

(22) Y-y=M(X—-2x).

Let p be a point of D with coordinates (24, #0) where ¢ > 0,2 >0, 1 =0,
2+ p =1
From (22) we obtain

1 —y — M+ Moz

h/:
. 1+ M,

Also
dsy = (1 4+ M,*) dx .
Combining these expressions with (21) we obtain

B@>r«771*Mf” v
o p0 — 9y — M8 + My x

where a is the abscissa of the point . Since 0 = M, <1

¢ dx a+ o a
B gﬁwyzl 0 S 1og @
p > 0 oL @ og 5 > log s
Hence, given M > 0, we can find &’ > 0 such that, for all p € D for which
dist. (p, ¢) < ¢’ and which are in the closed first quadrant (of the cood-
dinate system described above) we have B, > M.

Similarly (by considering a coordinate system with origin at ¢, whose
negative z-axis coincides with the left hand tangent at ¢, and measuring
h,, to the left hand tangent at ¢, etc.) we can find ¢” > 0 such that
for all p e D for which dist. (p,¢) < ¢ and which are in the closed
second quadrant of this new coordinate system we have B, > M.

The two closed quadrants share a boundary if ¢ is a point of tan-
gency and an entire angle if ¢ is not a point of tangency since D ig
convex. Hence if 6 = min (¢, 0”) and p € D with dist. (p,q¢) =<7 we
obtain B, > M.

COROLLARY The function B, assumes its minimum value for some
P in D.

Proof 1/B, >0 in D and 1/B,—~0 as p—> C. Also 1/B, is con-
tinuous in D. Hence 1/B, attains its maximum value in D.

To show the continuity of B, and hence of 1/B, (B, + 0) we proceed
as follows. Let d(p, p,) denote the distance from p, to p, and let
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d(p, C) denote inf,e, d(p,q). Fix pe D. Consider all » such that
d(p, p') < 2d(p, C) where 1 is a fixed number in 0 < 2 < 1. Then

lhpq - kp’q I = d(p’ p/)-

| 11 | < _d,p) .
h’))q hpa/ o (1 - )‘) dﬂ(p’ C)

Hence

|B,— B, |< L
1=

Yo d(p, D).
0. C) (p, ¥)

Hence as p' — p; B, — B,.

5. The convexity of B,. We consider a Cartesian coordinate system
with origin 0 at some interior point of D. Let 6 =46, be the angle
between the positive direction of the z-axis and the outward normal at
qg. If there is no tangent at ¢ we use (for definiteness) the normal to
the right-hand tangent to C at ¢. The equation of the tangent line at
g is
(24) X cos 0,4+ Y sin 0, = hy, .

In (24) X, Y are coordinates of a point on the tangent line, and A, is
the value of %,, at the origin. If the coordinates of an arbitrary point,
p e D are (x,y) then from (24) which is in the normal form, we obtain

(26) Py = hyy — 2 cos 0, —ysin 0, .

If we differentiate (25) we obtain

i . _ o5 0,
ox

and

@7 Ohu — _ging, .
0y

From (4), (26) and (27) we obtain the various derivatives of B,.
They are

0B cos 0
28 o= ¢ Tt s,
( ) o . hzm 8q
(29) 0B, _ [ sinfl. g

oy ¢ Wy v
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(30) ’B _ 2§ cos 0q ds,
(31) 8in* 4, ds,
pq
and
(32) B, _ 25)‘ sin 6, cos 6, ds,
00y ¢ N

From (30) and (31) we obtain

(33) 0B, | 0B, _of ds,

. ) >0.
ox’ oy* e hiy

Hence B, is a strictly subharmonic function of p e D. We now prove
that B, is also convex in D.

THEOREM 3. The function B, is strictly convex in D.

Proof Consider the quadratic form

(34) Qu, v) = OZBP w4+ 2 B, - ZQI’ -
From (30), (31), and (32) we obtain
(35) Qu, v) = 2 § (weosd, + vsin by)* s, |

’ c N

A sufficient condition [1; Th. 99] that B, be strictly convex in D is that
Qu,v) >0 for all (u,v)#(0,0) and all pe D. Clearly from (35)
Q(u, v) = 0. Let us assume that for some (u,, v,) = (0, 0), Q(uy, v,) = 0.
Then it would follow that

uycos 0, + v, 8in 0, = 0
for almost all q.

Hence for almost all ¢, 6, would be limited to two distinct values
in the interval 0 < 0, < 2r. These two values would differ by =. Hence
if we except a set of measure zero from the boundary of D, all of the
supporting lines of D would be parallel and D would have but two
supporting lines. This situation is possible for an infinite convex domain;
i.e. the infinite strip between two parallel lines. However it is not
possible for bounded convex domains. For let L and L* be the two
lines. A supporting line of a convex domain at a point of its boundary
must contain this point. However there are two arcs of positive length
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between L and L*. The lines L and L* cannot be supporting lines to
any point of there arecs. Hence for a bounded convex domain, the
numbers (u,, v,) # (0, 0) cannot exist such that @Q(u,, v,) = 0 and B, is
strictly convex.

An important corollary of Theorem 4.3 is that there is but one
point of D, at which B, assumes its minimum value, B(D). For if there
were two points p” and p” e D such that B(D) = B, = B,.,, it would
follow from the strict convexity [4, th. 98] of B, that for all p on the
segment joining p’ and p”, B, would be less than B(D). This is impos-
sible so we obtain the following.

THEOREM 4. The Equation B, (D) = B(D) has one and only one solu-
tion » = v, tn D. Furthermore B, has no relative extrema except at p,.

Proof. The existence and uniqueness of p, has already been demon-
strated. As for the existence of other extrema, there can be no maxima
or saddle points because of (33) and (34). As for another relative
minimum say at a point p*, there would be points p arbitrarily close
to p* on the segment joining p™ to p, for which the value of B, would
be less than B,*.

A consequence of Theorem 4 is that the usual necessary conditions
for relative extrema are necessary and sufficient conditions for the unique
absolute minimum value of B,.

Theorem 4 has the geometric interpretation that a convex surface
can only have a single horizontal supporting plane.

Theorem 4 also facilitates the determination of p, and hence of B(D)
in the case of a domain with symmetry.

COROLLARY 1. If D possesses a line of symmetry, B,(D) assumes
its mintmum upon that line.

COROLLARY 2. If D possesses two lines of symmetry, intersecting at
Do, then B(D) = B,(D).

Corollary 3. If D possesses a center of rotation (in the sense that
D is invariant under o rotation of 2z/n radian about this point, where
n > 1 is an integer) then B, assumes its mintmum at this point.

6. Steiner symmetrization and B. By Steiner symmetrization of a
plane domain D with respect to a fixed straight line !, we mean the
following : D is transformed into the domain D* which is characterized
by the properties ;
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(a) D* is symmetric about the line I.
(b) The intersections of any line perpendicular to ! with D and D,
are of the same length.

THEOREM 5. Let D be a bounded convex domain with boundary C.
Let D be transformed by Steiner symmetrization about a line 1, into the
domain D* and let C* be the boundary of D*. Then D* is convex and
B(D) = B(D*). Further if the line I is not parallel to an axis of sym-
metry of D then B(D) > B(D¥).

Proof. Since the sum of convex functions is convex, it is clear that
D* is convex and hence B(D*) is defined. Let us consider a coordinate
system with origin at the point at which B, (D) has its minimum. Let
the line with respect to which we symmetrize D be the x-axis. Let
@ < 2 < b be the projection of D upon the z-axis. We denote by 2, and
4, the lengths of those portions of C for which « =a and x = b respec-
tively. The two portions of C which lie between the supporting lines
z =a and @ = b can be represented by the two single valued continuous
functions,

y=ux),y=v@ a<zb,
with u(x) > ().

We use (12) with a(t) =¢ and »(t) = u(t) or »(¢) according as to
whether we consider the upper or lower branch of C. Then if we re-
member that the positive direction of x (or t) coincides with the clockwise
direction for u(x) and the counter-clockwise direction for v(x) we obtain

—p =t A (T LHWE | 14007
36) B =B = +§iu@)—twu)+‘mao—-uw]&

S| >

If we symmetrize D with respect to the x-axis we may denote the
two branches of the boundary of D* by

37) ¥ =+ w@) = + (@) ~ 1))
Then
Br¥=" _ 4t 2Sb_ii2”_/.2,(’§)f dt > B* .
b a a w(t) — tw'(t)

If we introduce the abbreviations

U =1+ w(t), U, >0
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U, =u(t) — tu'(t) >0
Vi=1+4 V()
V,=tv'({t) — »(t) > 0.
Z =1 —uw(tWw(t),

we obtain
W2 Uy
B(D) = B(D) =% — S”L dt ;
(D) = B(D) = 7 — * (U V)
and
2 Ui+ Vit 2z
B(D¥) =% % S dt .
B(D) b a+x U, + V, )
Hence
U Vi UL+ Vit2Z
38 B(D dﬁ_S[l L Ja.
(38) (D) — By(D™) U, + v UL,

We shall next prove that the integrand is always non-negative.

U2 V?:= 2"+ {W(t) + v'(t)*} and therefore

(39) u;viz=2z,

which implies

(40) UV, —2) =z 0.

Hence we obtain successively,

(41) U, v, — U, V,y + 20,V (U V, - Z) =0,
(42) UV, + VIUNU. + Vo) =z U, V(U + Vi + 22),
and

Ut Vi Ui+ Vitez

U, V— U,+ V,

Hence from (38) we finally obtain

B\(D*) = B(D)
but B(D*) = B(D*) and By(D) = B(D) and thus
(43) B(D) =z B(D*) .

393

Vi>0

First

Equality in (38) and hence in (43) cannot occur unless it occurs almost
everywhere in (39). But this would imply that »'(¢) +v'(¢) = 0 almost
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everywhere and since » and v are continuous that w(?) + v(¢) is constant.
But this can only happen if D has a line of symmetry parallel to the
x-axis.

7. Symmetrical domains. In this section we consider convex do-
mains, D, which possess the symmetries of the rectangle. Such domains
possess two axes of symmetry which are at right angles to each other.
We establish a rectangular coordinate system in which the axes of
symmetry correspond to the lines y = and y = —«. The origin is
then the center of symmetry. Let D* be the domain obtained from D
by the affine transformation.

(44) X = pzx, Y=y.

Then D* will also be convex and have the origin as a center of
symmetry. For both D and D* we must compute B at the origin (see
Corollary 3, Theorem 4). The Boundary C of D can be expressed
parametrically in the form x = x(¢), y = y(#); 0 <t < T. We select the
parameter, so that the Wronskian, W(¢) = a2()y'(¢) — y(t)x'(t) is always
positive. Furthermore we select the parameter so that ¢t =0 and t =T
correspond to the intersection of C with the line y = z in the first
quadrant. Finally we select the parameter so that symmetrical parts
of the curve correspond to equal intervals on the t-axis (for example,
we may take t as arc length). Then the symmetry conditions can be
expressed analytically by

(45) AT — t) = y(t), u(T — t) = a(t), 0<t<T.
and

T T T
(46) a3 + t) = —av), (3 + t)=—ut) 0Sts L

THEOREM 6. In the notation of the present section we have

B(D*) = B(D){ f‘j;,f{‘?,} _

Proof. By (12) we have

I R R0,
@ BD) = B(D) = | o0 wou

[By B, we mean B, at the origin]. Also

(48) B(D*) = S ﬂf%)%;(;,)yf(t)ﬂ it
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Using (45) we obtain

TRy +y @y g (TP + ey @)
(49) b ey e = [ O s
Hence
(50) B =" f%"’w’(;fl);vﬂ(: )@/'(t)"’ t

TAE) + Yy g
+ S T/2 2W(t)

= (1 + /rl)gjﬂﬁ(t);;;—gi/@ dt .

From (46) and (47), we have

(51) B(D) =2 S:” ‘x'(t);;éil(t)” it

From (50) and (51) we obtain

(52) B(D*) = B(D) " +2"‘* ,

which completes the proof of the theorem.

8. Some special domains. In this section we compute B(D) ex-
plicitly for several domains, using the methods developed in the earlier
sections. The results are summarized in table form in [4].

8.1 Circumscribable domains. Theorem 1 includes the statement
that for circumscribable domains, B = L/p = I}/2A. The most important
special cases involved are the regular polygons, the general triangle,
the rhombus and, of course, the circle. We list the results for these
domains without details.

Domain D B(D)

(53) Circle 27

(54) Regular N-gon. 2N tan ]Z] .

(55) Triangle of sides a, b, c. 231/ s _’4 )
28=a -+ b+ ¢ (s —a)s —b)s —¢)
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&

(56) Rhombus of angle 6. =,
sin ¢

From either (54) or (56) we obtain for the equilateral triangle, the
value B =61/3.

8.2 The domain. |z[*+ |y|* < 1. The domain |z[*"+ |y|"< 1 is
convex for » =1 and has the origin as a center of symmetry. Hence
B = B, (B, at the origin). It is most convenient to denote the boundary
of D parametrically in the form

x = (cos®t)"; y = (sin? t)® 05t £ 2m.

Then letting 1 = 2/n and taking advantage of symmetry, we obtain from
(12) that

(2
B = 82 S cos* D ¢ sin®> "t dt

0

— %[‘(;1{)1‘ (2 — %) .

For » > 1. We can simplify using the relation I'(2)"(1 — 2) = =n/sin nz
to obtain,

(57) p=8r-1 . = n> 1.
" sin =
n

As special or limiting cases of (57) we have the circle (n = 2) and the
square (n — o and n — 1%),

8.3 Application of Theorem 6. We mention just two applications.
If we apply the affine transformation X = az/b, Y =y to the circle
2+ ¥ =V, we obtain the ellipse X?/a? + Y*/6? = 1. Then by Theorem
6 we obtain for this ellipse

(58) an{%Jr.Z—}.

For the square we may obtain from (54) or (56) or (57) the value
(59) B=38.

If we place the square so that its sides are parallel to the coordinate
axis, the affine transformation (44) results in a rectangle. If the sides
of the rectangle are in the proportion a :b, Theorem 6 yields
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_4la b
(60) B_4{5~+;}.
If we place the square so that the diagonal coincide with the axis,

the affine transformation results in a rhombus. Thus using Theorem 6
we may obtain (56) from (59) as well as (59) from (56).

8.4 Convex circular sectors. We consider domains D, defined in
polar coordinates by 0 < p <1l; —lr < ¢ < Ar. For convexity we re-
strict 2 to the range 0 < 1=<1/2. The polar axis, ¢ = 0 is a line of
symmetry for the sector and by Corollary 1 of Theorem 4.4, B, (D)
assumes its minimum value B(D,) = B™ on this line. Let (u, 0) be the
coordinates of any point p on this line of symmetry, 0 < u < 1. If we
denote B,(D,) by B,D,) we obtain

A
BDy=-—L 42" &

w sin Ax o 1 — % cost

_ 2 4 1+u 27‘[}
61 . : arct { t .
(61) w sin Az +1/1—34' aretan \/ —u an 2

It is difficult to express B™ as an explicit function of 2, but for a
particular 4, the computation can be carried out numerically.
In the case of the semi-circle 4 = 1/2 and (61) becomes

4 arctan 1,4;—25 .

uDlz—*—‘“ :
(D) V1—uw 1—u

If we set =1+ u/l — u and express arctan y as the sum of an odd
and an even function of u, we obtain arctan y = z/4 4+ 1/2 arctan
(y* — 1)/2y. But (y* — 1)/2y = u/1/1 — u* and hence arctan [(y* — 1)/2y] =
arcsin u.

Finally we obtain for the semi-circle

2arcs1nu+7
(62 D, —*+ .
) B,(D,s) Pt

The derivative of the right side has a unique zero in the interval. We
can compute this zero, u, by Newton’s method and then compute
Buy(D,;,). This yields B¢» = 8.7915.

Another special case of interest is the ‘narrow’ sector corresponding
to ‘small’ values of 1. We use Theorem 1 and first obtain expressions
for L, A, and p.

L =24 2,
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A=ir,

sin Az

T 1Y sinan

The last expression is obtained by noting that the center of the maximum
inseribed circle lies on the axis of symmetry and that the circle itself
is tangent to the circular arc of the sector. Hence its center is at
(1—p,0) and p satisfies p= (1 — p)sin Az. Theorem 1 states that
Ljp > B > I*[24, or that

g 1+ 337).(,1,4,7,,819%73) > B®™ > 2 (1 + i) .
sin An In

If we expand is powers of 2 we obtain

2 L4 Dm0 >BO > 2 441 20m 4 O
Am 3 Am
Hence
(64) B® — 72 +44+00).
T

By a more involved analysis using (61) and (64) we can obtain

B® — 2

An

+4+%2n+0(12).

9. An analogy involving B,. Let D be a simply-connected domain
in the plane, and let p e D. If we map D conformally and in a one-
to-one manner onto a circle whose center is the image of p, and for
which the derivative of the mapping function has modulus one at p,
then the radius of the circle is uniquely determined. We call this
radius the inner conformal radius of D with respect to p, and denote
it by r,(D). As p approaches the boundary of D, r,(D) approaches zero.
This suggests an analogy between 1/r, and B,. To strengthen this
analogy we consider the function 2A4/r%. For the essential properties
of r,(D) which we use, reference may be made to [3, vol. 2, chapter 4,
probs. 110, 112, 124, 125] and to [2]. We now restrict D to be a convex
bounded domain and denote by Q, = Q,(D) either of the following do-
main functions.

(1) B,D), (2) 2;4((59))

We define QD) = @ as sup,e, Q,(D). Then we can assert the following :



II1.

I1I.
IV.

A SET FUNCTION DEFINED FOR CONVEX PLANE DOMAINS 399

For fixed D, @, becomes infinite as p approaches the boundary
of D.

For all D, @, = 2=, with equality holding only for the circle
and p at the center of the circle.

Q,(D) assumes the value Q(D) for precisely one p € D.

(D) Q(D)/L(D) lies between fixed positive bounds (independent
of D) for all D.

Steiner symmetrization cannot increase Q(D).
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