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I. Introduction. The three problems of the title are treated here
from a unified geometric standpoint, and an algorithm is presented for
their solution. Algorithms for these problems already exist in [8], [4],
[5], and [6]. In the present algorithm, each problem is reinterpreted
as one of finding the lowest points (if any exist) of a polytope in an
Euclidean space the techniques of steepest descent and elimination of
variables are then combined to work downward from vertex to vertex.
Professor T. S. Motzkin kindly called our attention to references [8] and
[3] in which a similar viewpoint is exploited. Our thanks are also due
to the referee for helpful suggestions, and to Norman Levine, who has
coded the algorithm on the " 7 0 4 " automatic digital computer.

Section II which follows provides a description of the problems and
an outline of the algorithm. Section III contains a detailed statement
of the algorithm. Section IV concerns the special case of n variables
and n+1 equations or inequalities. Section V is devoted to a proof of
finiteness of the algorithm. In §VI, relationships among the three
above problems and linear programming are discussed. In particular,
it is shown that a simple modification of the algorithm will permit its
application to linear programming.

II. The problems defined. Let {A1, , Am} be a subset of En

with m^n, and let b denote a fixed point of Em. We emphasize that
throughout the paper the matrix A composed of the rows A1, , Am

is assumed to be of rank n. The notation (u, v) will be used for Σ U(ou

and a vector x = (xlf , xn+1) will be said to have abscissa x — (xly , xn)
and ordinate xn+1. The word polytope denotes the intersection of a finite
number of half-spaces. Define the polytope

& = \x : xn+1 ^ max [(A\ x) — δ«]

If & intersects the half-space {x: xn+ι <L 0}, then the system
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(A1, x) ^bi (l^i^ m)

is consistent. Any point x of & lying in the aforementioned half-space
has an abscissa which satisfies this system. In particular, if & possesses
lowest points (i.e., points of minimum ordinate), then these points have
this property, and their abscissae minimize the function

F(x) = max [(A*, x) - δ«] .

Consider next the system of linear equations

(A\ x) = bt (1 ^ i ^ m) .

The Tchebycheff problem for this system is to obtain x in Enf called a
minimax solution, which minimizes the function

F*(x) = max \{A\x) - δ41 .

If one defines Am+i = — A1 and bm+i = — bt when 1 ^ i <̂  m, then

F*(α) - max [(A4, α?) - δ«] .

In this case another poly tope may be defined, and any lowest point x
will have a minimax solution x for abscissa and F*(x) for ordinate.
Note that the case of consistent linear equations is encompassed by the
Tchebycheff problem, and that in the Tchebycheff problem the poly tope
must have a lowest point. The all-inclusive problem, then, to which
attention is now turned, is that of locating the lowest points of & or,
equivalents, of minimizing the function F. This unified geometric
viewpoint is due to Fourier, [3].

In the simplest case, the algorithm is as follows. Define residual
functions

Rι(x) = (A\ x)-bt (1 ^ i ^ m) .

Then F(x) = max Rι(x). An arbitrary initial vector #° will generally

provide one maximum residual suppose F(x°) = R1^) for convenience.
On the ray {#° — tA1 : t ^ 0} let xι be the first point at which another
residual equals R1 suppose F(xι) = R\xl) = R2(xτ). The equation R\x) =
R2(x) serves to eliminate one variable from the original system, and the
algorithm may begin anew in this reduced system. After at most n—1
eliminations and descents a point is obtained which is the abscissa of
a vertex of &. A direction for the next descent is obtained by solving
a system of inequalities according to a simple prescription. The precise
description of the algorithm in §111 is more complicated because of
certain singular cases that may arise.
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III. The algorithm. A point x of En is sought which minimizes
the function

F(x) = max R*(x) = max [(A\ x) - δ4] .

The solution is obtained by repeating a cycle of steps, each of which
determines a vertex of the polytope & at a lower level than the vertex
of the preceding cycle. Since the vertices of & are finite in number,
only one cycle need be described here. In each cycle (except the first)
a point x is on hand from the preceding cycle. (In the first cycle, this
point is arbitrary.) It is necessary to consider certain auxiliary systems

( rF(x) = max rR\x)
(r)

[rRι(x) = (rA\x)~%

in which xeEn9

 rAleEn,
 rbeEm, 1F=F, 1Ri = IP, ιAι = Ά, ιb = b,

1 <£ r ^ n, and 1 <£ i <Ξ m. A system of index (r +1) is obtained from
a system of index (r) by the elimination of a variable via an equation
of the form rR\χ) = rR>(x).

JUNCTURE I. Assume that system (r) is provided and that a point
y in En is specified. By reindexing, obtain for suitable k,

= rR\y) = ... =rRk(y) > rRk+ί(y) (l^

(rA\ rAι) ^ (rA% rAι) (1 ̂  i ^ Jfc)

If M.1 = 0, then r — 1 and 2/ is a solution. (See proof of Theorem J.)
Otherwise, there are three cases to distinguish :

Case 1 Not all of rA\ , rAk are multiples of rA\ By rearrang-
ing, assume rA2ΦcrA1

9 and set rRι(x) = rR2(x). By means of this equation,
some variable, say xJf may be eliminated from system (r). The new
system that arises in this way is, by definition, system (r + 1). The
vector taken now at Juncture I (with r + 1 replacing r) is identical with
y, except that the jth component is set equal to zero.

Case 2 rA\ , rAk are all positive multiples of 'A1. (This includes
the case k = l.) Let t be the least positive scalar for which the point
y—trAι induces k+1 or more equal maximum residuals. Define z=y—trA1,
and return to Juncture I with z in place of y. If no such t exists then
& has no lowest point. This can happen only in the inequality pro-
blem any z (=y—trA1) for which rF(z) <̂  0 will have for its image in
the original system a solution of the inequalities.

Case 3 All of rA1, , rAk are multiples of rA\ but not all positive
multiples. (This includes the case of some vanishing rAl.) Proceed to
Juncture II.
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JUNCTURE II. Restore those r—1 components of y which were set
equal to zero during occurrences of Case 1, obtaining thereby a vector
x in En for which

F{x) = R\x) = - = E*(x) > Rk+i(x) (1 S i ^ m-k).

If further descent is possible, then the system of inequalities

(1) (A\d)^l (l^i^k)

is consistent. By Theorem H, there exists (and is discoverable by trial)
a set of r indices {i19 , ir] c {1, , k) such that the set {A*i, , A4*-}
is linearly independent and such that the solution d of (A'J, d) = 1
(1 ^ i ^ r) satisfies (1). In the case of usual occurrence, k = r + 1,
and d may be constructed as in the proof of Theorem F. The point v
at which the minimum of F occurs on the ray {x—td :£^>0} is taken
for the initial point of the next cycle. If no such point exists, any t
for which F(x—td)^0 solves the inequalities.

REMARK. In the event that k>r+l at Juncture II, the selection of
the set of r indices may be avoided by a perturbation. Of the first k
components of the vector 6, k—r — 1 may be increased by arbitrarily
small quantities, and the algorithm continued with this perturbed system.
This situation arises only a finite number of times, and a solution of
a perturbed system is eventually obtained. It may be shown that if the
final perturbed vector δ* satisfies max \bt—hf \<iδ, where δ is the verti-
cal separation between the two lowest vertex-bearing levels of ^ , then
starting with the solution of the perturbed system, the algorithm will
produce in one cycle a solution of the original system. The perturbation
method is well-adapted to machine computation.

IV. The case m — n+l. The case m — n + l of the Tchebycheff
problem was considered in [6], where it was shown how the solution of
an mxn system may be obtained as the solution of a certain (n + l)xn
subsystem discoverable by trial. Algorithms which systematize the
search for this subsystem appear in [4]. Techniques developed in this
section are applicable also in the algorithm of §111 whenever there is
obtained an " ordinary " vertex of the poly tope & (that is, a vertex
involving precisely n+1 planes).

The norms, N, which are employed in this section belong to a large
class of monotone norms; i.e., they have the property that N(u)^N(v)
whenever [^ l^ l^ l for all i. Examples of such norms are these:

Np(x) = ( Σ la* W (p^l)

Nκ(x) = max | x, |
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Nw{x)^{Έ,xl\wΛ)^ (w.ΦO alii).

In these terms, a well-known inequality states (x, y)^N1(x) N^y). The
word orthant is used for the ^-dimensional analogue of octant. Thus,
two vectors x and y lie in the same orthant if sgn xt — sgn yι for all i.
It is understood that sgn 0 = 0.

THEOREM A. Let H denote a hyper plane in Em. Let N and N'
denote monotone norms. The points of H which minimize N or N' may
be taken to lie in the same orthant.

Proof. The theorem is trivial when H contains the origin. In the
other case, let u minimize N on H and let w minimize N.z on H. Then
E.— {v : (v, w) — {w, w)}. By setting u'i = ut sgn wu one obtains a vector
υ! in the same orthant as w by the monotone property of N, N(u') <:
N(u). Since the signs of u\ agree with those of wif (V, w)^(u, w) =
(w,w)>0, and the number k=(w,w)l(u',w) is therefore well-defined.
The inequality just written shows that 0</c<Ξl, whence N(ku')^N(u').
Since (ku\ w) = (w, w), ku' lies on H. Thus kuf minimizes N on H. The
argument may now be repeated with Nr and N2 to conclude the proof.
It should be observed that the theorem would not be valid if H denoted
a translate of an arbitrary subspace, as for example a line in E3. See
[7].

THEOREM B. Let H denote a hyper plane in Em not through the origin.
(1) A vector u of H which minimizes N* is unique if and only if

the vector w of H which minimizes iV2 has no zero components.
( 2) If the vector w exhibits zero components, then there is a unique

vector u whose corresponding components vanish.
(3) Statements (1) and (2) remain trice if w is replaced by the vec-

tor v which minimizes N on H} N being any strictly convex monotone
norm.

Proof. Define u% — (w, w) sgn (w^lN^w). Then (u, w) — {w, w), whence
u lies on H. If N^u'XN^u) then

', w) ̂  ΛL(V) Nλ{w)<N^u) Nλ{w) = (w, w)

so that u' does not lie on H. Hence the vector u defined above mini-
mizes iVoo on H. If all components of w are non-zero, then it is easy
to see that any alteration of the components of u will either increase
iVΌo(%) or decrease (u, w), so that u is unique. If w has zero components,
the corresponding components of u are zero by the above definition.
The remaining components of u are uniquely determined by the same
argument. Statement (3) depends on the observation that v is unique,
and on Theorem A.
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THEOREM C. Let A denote an (n+l)xn matrix of rank n. Let x
denote the least-squares solution of Ax=b, and let w=Ax—b. Define u as
in the proof of Theorem B. Then there exists y in En such that Ay=
u + b, and y is a minimax solution of Ay—b.

THEOREM D. Let A denote an (n+l)xn matrix of rank n. The

following are equivalent when the system Ax—b is inconsistent:

(1) The vector x which minimizes N^Ax—b) is unique.
(2) If the vector y minimizes N^Ay—b) then Ay—b has no zero

components.
(3) A has no singular nxn submatrices.
(4) The range of A contains no coordinate axis.

Proof. (1) o (2) follows from Theorem B. (1) <-> (3) follows from
Theorem G below. (2) «-»(4) follows from the observation that Ay—b is
normal to the range of A.

THEOREM E. Let A denote an (n+l)xn matrix of rank n. Let x
denote the least-squares solution of Ax—b. Let w=Ax—b. Define Nw(u) =
( Σ u\ I Wι l)1/2 Let y be chosen to minimize Nw(Ay—b) subject to the con-
dition (A\ y)=bι when wt = 0. Then y is a minimax solution of Ay—b.

Proof. The conditions on y guarantee its uniqueness. From least-
squares theory,

(1) Σι [(A4, x) - &JAJ = 0 (l^P^n)

(2) Σiί(A\y) - 6JA*, \w< \ = 0 (1 ̂  p ^ n) .

Now let z denote a minimax solution of Az—b for which Az—b lies in
the same orthant as Ax—b (Theorem A), and set M=Noo(Az—b). Equation
(2) remains valid when wt is replaced by WijM, and is then equivalent
to the following condition on y (since the indices i for which WiΦO yield
(A\z)-bt=M):

(3 ) Σί [(AS y) - δJAiKAS x) - 6J[(A«, z) - b^ = 0 ,

where p runs from 1 to n, and where Σ ' indicates omission of indices
i for which ^ = 0. If w has no zero components, equation (3) is satis-
fied if and only if y^z because of (1) and the uniqueness of y. If Wi—0
for some ΐ, then by Theorem B a minimax solution z exists for which
the corresponding components of Az—b are zero. The remainder of the
proof is then as before.

THEOREM F. Let {A*: 1<^"<^+1} be a subset of Em of rank n.
Let u be chosen in En+1 so that
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(1) ΣML1 = 0,
4 = 1

(2) uφO, and
(3) (u, 6)^0. The system of inequalities

(4) (A\x)^bt (l^i

is consistent if and only if either (u, b) — 0 or u exhibits a positive com-
ponent.

Proof. If (4) is consistent and (u, δ)>0, select x such that ^ =
(A*, #)<^δ4. Since (6 — y,u) = (6, %) — (2/, u) = (6, %) — Σ« (AS a?)%4 = (6, u) —
(#, Σ%4A*) = (δ, %)>0, it is clear that u must exhibit a positive com-
ponent. Next, if (u, b) — 0y then there exists an x such that (AS x)=bi9

(l^i^n+1). Finally, if u exhibits a positive component ujf then define
yt as bL or — (Σ f c ^ hu^/uj according to whether i^=i or i=^. It is quickly
verified that y^b, for all i, and that (y, u) = 0. Hence there exists an
x such that (Ai,x)=yi. This completes the proof. It is true that the
set {Aί:iΦj\ is linearly independent. For, if on the contrary Σ ^ A ^ O
with cΦO and c,=0, then Σ (Wi + c7)A* = 0, contradicting the fact that u is
unique to within a scalar multiple. Theorems of similar nature but greater
complexity can be given for the cases of more than n+1 inequalities.

THEOREM G. Assume the minimum value of f(x)= max | (AS x) — bι \

to be positive. Let y be chosen as in Theorem C. For each i, select uι

non-zero if possible to satisfy (%*, Aj) = 0, (l^j^n+1, jφi). Then
(1) I (AS y) — bj I is f(y) or zero according as u3 is or is not zero.
(2) f{x)~f{y) if aMd only if x is of the form 2/+Σ'' Uu1 where the

summation extends over i for which uιΦθ and where \ti\^f(y)l\(A\ui)\.
(3) The dimension of the set S= {x :f(x)=f(y)} is equal to the num-

ber of non-zero u\

Proof. (1) If ιt3φ0, then from any x in S one may obtain by pro-
ceeding in the direction uj a point x' satisfying {A5,x') = b3 and (Aί,x') =
(AS x) when iΦj. Thus whenever u3φ0, (A3,y) = bj. Conversely, if
uj — 0y then the set {Ai\%Φj} is of full rank. Consequently y is a con-
tinuous function of f(y) via Cramer's rule. If \(A3,y) — bj\<f(y) then
f(y) may be decreased slightly without elevating \{A3

1y)~bj\ to f(y),
thus contradicting the assumption that f(y) be a minimum. Hence

(2) If x is of the quoted form, then a calculation shows f(x) —f(y).
Conversely, if f(χ)=f(y), then for u'ΦO, define tt = [(AS x)-bί]l(A\ uι).
Set z=y+Σ/^iu

i. When u*Φ0 then

(A\ z) - (A\ y) + t,{A\ u«) - bk + UA\ u*) - (A\ x) .
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When uk — 0 then (Afc, z)~(Ak, y)9 but then Cramer's rule again shows
that (Afc, y) = {Ah

y x). Thus for all k we have (A\ z) = (A*, x), and x=z.
(3) This will follow from (2) if it can be shown that the non-zero

uι are linearly independent. Supposing otherwise, we have Σ'du^O
where the ct are not all zero. Then

thus showing that all cfc=0. This completes the proof.

V. Finiteness of the algorithm. We begin with the theorem [2, p.
104] which may be invoked at Juncture II whenever more than the usual
number (which is n+1) of planes is encountered at a vertex of &.

THEOREM H (Fan). Let the system

be consistent, where flf ••• ,fp are given linear functionals of rank r.
There exist r linearly independent functionals fni, ,fnr among them

such that every solution of the system

fH(x) = aH

is a solution of (1).

DEFINITION. A point xeEn will be called a quasi-critical point if
for appropriate indices i19 , ifc,

(1) ί\a?)=ΛΊ(a?)= =K*(x)
(2) the rank, r, of {A% , A**} is less than k
(3) the system (A*j9d) = l (l^j^k) is inconsistent.

When r = n, x is termed a critical point, and is the abscissa of a vertex
of ^ .

THEOREM I. The set of critical points is finite.

Proof. A critical point x, satisfying (1), (2) and (3) above, satisfies
the system of equations

1 xx

4> A> -1) {F(x)J U *

where the rank of the k by n+1 matrix is n+1 because of (3). Hence
the solution (x19 , xn, F(x)) is unique. Since there is only a finite
number of such systems, the set of critical points is finite.
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THEOREM J. At Juncture II the rank of {A1, , Ak] is r, and r<k.

Proof, The elimination of one component (say xs) from x—(xlf , xn)
by means of an equation such as R]c{x)~Rh(x) can be effected only if
Ak and Ah are linearly independent, and leads to a new system for which
the coefficient of x5 in the ith row is Aί

j+BfιJcsjA
ί

s where

Bfιksj = (A) - A*)!(Ak

s - A*) .

Thus the new matrix is obtained from the old by a sequence of
elementary column operations followed by the setting of one column equal
to zero. The rank of this set of rows is thus one less in the new
matrix than in the old. When Juncture II arises, r — 1 such eliminations
have been made using say the residuals &=& = . . . =Rr. Thus the
rank of A1, , Ar must be r. Now Juncture II occurs because rA\
• , r A k are multiples of rA\ but not all positive multiples. Not all of
these are zero moreover, because if they were, the rank of the r~M\
• , r-1Afe would be unity and an elimination would not have been pos-
sible. Thus the rank of A1, «- , A* is at most k—1.

THEOREM K. If for some set I of indices there exists a d in En such
that (A1, d) = l for i in I, then (rA\ d) — l (l^r^n—1) whenever i is in I.

Proof. We consider the case r = 2. Repetitions of the argument
will prove the general case. Assume (A\d) — 1 for iel. Then for dis-
tinct h and k in / we have Σ?-i^(A?-^ ?) = 0 Thus d8 = Σΰ¥*djBhk8},
with Bhksj as in the proof of Theorem J, Now for i e I we have

1 = Σ AJd, - Σ AM + Al± djB^j

J + AiBhks]) d} = (JA*, d) .

THEOREM L. In each cycle of the algorithm, the point x appearing
at Juncture II is a quasi-critical point.

Proof. By Theorem J, the point x satisfies criteria (1) and (2) for
a quasi-critical point. Criterion (3) follows because of Theorem K. For
suppose that at Juncture II the system (ιA\ <i) = l were consistent then
each reduced system (rAi,d) = l would be consistent and Case 3 would
not have arisen.

THEOREM M. TO each quasi-critical point y there corresponds a criti-
cal point x such that F(x)~F(y).
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Proof. Assume that y satisfies (1), (2), and (3) in the definition of
a quasi-critical point, lίr — n, the theorem is trivial. Otherwise, select
a non-zero vector z orthogonal to A\ ••• , A**. Along the ray {y+tz :
t^O} the residuals Rh, ••• , i2** remain constant, and one may select
the first point yr at which a new residual joins the maximum ones. This
process may be repeated until a point x is obtained such that for ap-
propriate indices ik+l9 , ih we have

F(χ) = F(y) = Rh(χ) = ... = R\{χ) ,

where h^n+1 and the rank of {A*i, , A**} is n. The system (AS, d) = l
(1 ί^jSh) is inconsistent because it has the inconsistent subsystem (A*J9 d) — l

The following theorem includes a classical result of [1] to the effect
that when each n by n submatrix of A is non-singular then the minimax
solution of Ax—b possesses n+1 equal dominating residuals.

THEOREM N. If F attains a minimum, then it does so at a critical
point. Thus there are vertices among the lowest points of &*.

Proof. Let y minimize F, and suppose that after renumbering we
have F(y)=R1(y) = ... =Rk(y)>Rk+i(y). If the rank of {A1, . , Ak] is
less than n then the techniques of the proof of Theorem M may be
used, repeatedly if necessary, to obtain a point x such that F(y) — F(x)~
R\x)=z ... R*>(χ)>Rv+ί(χ) and {A1: l^i^p} is of rank n. If p>n, then
x is a critical point. Otherwise x is a continuous function of F(x) via
Cramer's rule, and F(x) may be decreased by so small an amount that
none of Rv"ri{x) {l^ί^m—p) are elevated to F{x)—contradicting the
assumption that y was a solution. The proof is concluded by the obser-
vation that since x is a solution, the system (A%d) — 1 (l^i^p) is
inconsistent.

THEOREM 0. The algorithm is finite.

Proof. In view of Theorems I, L, M, and N, it is only necessary to
observe that Juncture II arises in each cycle, and that the value of F
is decreasing at each step.

VI. Miscellany.

THEOREM P. // the system of inequalities

(1) (A\ x)^bt (l^i^m)

is consistent, then for sufficiently large M, every minimax solution of the
system
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(2) (A\ x) = bt-M (l£i^m)

is a solution of (1).

Proof Select y satisfying (1). If Λf ̂  -min, [(A\ y)-b& then {A\ y)
-Λ + M^O whence | (A\ y)-bί+M\ = (Al

f y)-bi+M, and

max, I (A\ y)-bί + M\ = max, [(A1, y) - b, + M] .

Let x minimize max, | (A1, x) — bL+M |. Then

max* [(A*, x) - 6, + M] ^ max, | (A*, x) - 6, + M \

rg max, | (A1, y)-bt + M\ = max, [(A% y) - b, + M] ^ M .

Thus x satisfies (1).

REMARKS. One might expect a similar theorem to be valid for the
least-squares solution of (A\ x)=bL — M. A counter-example is provided
by the system

2x^ - 1 , -x ^ 1 .

The least-squares solution of the system

2x = - 1 - M, -x = 1 - Λf

is a<ΛΓ) = (-3ilί-l)/5; but — a<Λf) —1>0 for large Λf.

THEOREM Q. The following three problems are equivalent in the sense
that each may be reduced to problems of the other types :

(1) The Tchebycheff problem of finding x in En which minimizes
max I (A1, x) — bi |.

(2) The linear inequality problem of finding x in En such that

(3) The linear programming problem of finding x in En which mini-
mizes (L, x) subject to (A\x)^biy (l^i^m).

Proof That (3) subsumes (2) is trivial as L may be taken arbit-
rarily. That (2) subsumes (3) was proved by von Neumann see [1].
To reduce (1) to (3), double the number of At as in § II. The problem
is that of finding the least positive M for which the system (A*, x) — M
tibt (l^i^2m) is consistent, and of finding x in En which satisfies it.
This is the same as minimizing the linear form M subject to the in-
equalities (A\ x)-M£bL (l£i£2m), and -ikf^O. That (1) subsumes (2)
is the content of Theorem P. This concludes the proof.

REMARK. Only small modifications of the algorithm of §111 are
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required in order to apply it to linear programming. In what follows, let
& denote the poly tope {xeEn: (A\ x)^bt}9 and let S^f denote the hyper-
plane {xe En : (L, x)—c}. If (L, x) attains a minimum for x in &, then
c may be taken small enough to ensure that £?f and & are disjoint.
(If (L, x) attains a maximum on & then c is taken large.) The point
of & closest to 3ίf gives an extremum for (L, #.) The methods of § III
may be applied first to obtain a point x° in &*. (Such a point is termed
by some a feasible solution). One may select then the largest t for
which x° — tL still belongs to ^ . There will be at least one index ix

for which (A% a?l) = 6Ci, where xι—xϋ~tL. The equation (A*J, #) = &<JL serves
to eliminate one variable from the system, and the above step is repeated
in this reduced system. After at most n—1 eliminations and descents,
a vertex v of & is ordinarily obtained. In the usual case, {Ah, v) — bh

— . . . —(Aίn,v)—bίn. A direction for further descent must have the
properties (Alj, z)^0 (l^j^n) and (L, z)^0. Such a system is solvable
by Theorem F or H.

REMARK. The algorithm of [8], stated there for the Tchebycheff
problem, is also a method which proceeds from vertex on &. The first
vertex is obtained by a process of building-up of equal maximum residuals
as follows. Given a point x such that F{x) — R\x) — ••• ~Rk(x), one
obtains first a vector d of the form Σf-i M 1 such that (A\d)= •••
— {Ak, d) — l. This involves solving a system of k—1 linear equations
with &—1 unknowns. Along the ray x—td, the first k residuals remain
equal to each other, and the first point at which a new residual joins
the maximum ones is taken as a starting point for a repetition of the
process. Assuming now that a vertex has been obtained, a test is
applied to determine whether it is a lowest point of ^. This test is
in essence the same as one of [6], and involves the signs of n+\ deter-
minants of order n. If further descent is necessary, one obtains as a
by-product of this test an edge issuing downward from the vertex.
From this point on, only vertices are encountered, thus avoiding the
above building-up process.

The method given in § III for the building-up of equal maximum
residuals is more economical than that of [8]. In fact, neglecting the
n—1 descents which both methods entail, the latter involves (besides
certain matrix multiplications) the solving of n—1 square systems of
linear equations in 2, 3, , n variables, while the former involves
roughly the labor of solving a single nxn linear system.

Starting at a vertex, it appears advisable to descend to the minimum
of F along whatever ray is chosen, thus presumably by-passing more
vertices than when simply moving to an adjacent vertex. This of course
entails repeated use of the building-up process. The following alternatives
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are offered for determining a direction for descent at a vertex.
(1) Use the method of [8].
(2) In the Tchebycheff problem, use the methods of § IV or [6] to

obtain a solution of the nx(n+l) subsystem determined by those planes
which enter the vertex. Move toward this point.

(3) In the inequality problem, use Theorem F to obtain a solution
of the nx(n+l) subproblem. Move toward this point.
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