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Introduction. Wigner in [5] has defined a finite group & to be
simply reducible if (a) every conjugate class in & is self inverse and (b)
for each two irreducible representations L and M of ¥ the Kronecker
product LM is a direct sum of inequivalent irreducible representa-
tions. The principal result of [5] is a curious purely group theo-
retical characterization of simply reducible groups. For each ze & let
v(x) denote the number of elements of ¥ which commute with « and
let ¢(x) denote the number of solutions of the equation y*=x. Then
% is simply reducible if and only if S .cov(@)=D..ecl(x). As the
author has shown in [3] this result may be ‘‘ explained >’ as follows.

Let ?3 be the diagonal subgroup of & x & x &, that is the set of all

#, 9,2 with #=y=¢. Then it is easily seen that the number of &, : <,
double cosets in ¥ x & x & is equal to 3,eqv(z)* while the number of

self inverse &,: &, double cosets in & x & x & is equal to SeecC ().
Thus Wigner’s condition is equivalent to the condition that every ?3:

Z, double coset be self inverse. On the other hand if H is an arbitrary
subgroup of the finite group & and U’ is the corresponding permuta-
tion representation of & one can prove that every H: H double coset
is self inverse if and only if each irreducible component M, of U’
occurs with multiplicity one and is such that the intertwining operators

of M, with M, are symmetric. This result is a corollary of a general
theorem on anti-symmetric intertwining numbers for induced representa-
tions and certain elementary lemmas. It leads easily to Wigner’s
theorem when applied to & x & x & and its diagonal subgroup.

Now of the two conditions in the definition of simple reducibility ()
is much the more interesting. Moreover, as we shall see, there are
examples of groups which satisfy (b) and not (¢). This suggests looking
for a generalization of Wigner’s theorem in which (a) is dropped or
weakened. The way to such a generalization is suggested by the con-
siderations of [3] and a simple observation which plays a vital role in
Gelfand’s work [1] on ‘‘ spherical functions’ on Lie groups. Slightly
generalized! and then applied to finite groups this observation is the
following. Let @ — 2% be an involutory anti-automorphism of the finite
group . Let H be a subgroup of & such that the H:H double
cosets are invariant under z — x% Let .97 be the subalgebra of the

Received March 21, 1958.
1 Compare Mautner [4].
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group algebra of < consisting of all functions on & which are constant
on each H:H double coset. Then .94 is commutative. Since .9 is
the commuting algebra of the permutation representation U' of <«
defined by H, it follows that each irreducible component of U’ occurs
with multiplicity one. Confronting this result with the theorem from
[3] on U’ cited above, we are led at once to consider the possibility of
rewriting [3] with 2~ replaced in appropriate places by 2* thus obtain-
ing the indicated generalization of Wigner’s theorem as well as a con-
verse for the Gelfand observation.

It is the purpose of the present note to show that this rewriting can
be done. It turns out that the necessary arguments differ but little
from their counterparts in [3]. Accordingly the emphasis will be on
the formulation of definitions and results and insofar as possible the
reader will be referred to [3] for detailed proofs. We shall make no
attempt to generalize Theorems 1 and 2 or §§5 and 6 of [3].

1. Symmetric and anti-symmetric intertwining numbers. Let & be
a finite group and let o denote a fixed involutory anti-automorphism of
%« . Let x—U, be an arbitrary representation of &« by linear transfor-
mations in a finite dimensional vector space S7°(U) over a field &
whose characteristic is not two. Then —(U _,)* is a representation of &~
whose space is the dual 577 (U) of 97 (U). We shall denote this representa-
tion by U® It is clear that U**=U. Let T be an intertwining operator
for U* and U ; that is a linear operator from S#(U%) =257 (U) to S#(U)
such that TU?=U,T for all x in <. Then T*Uw*:(Uz)*T*:UzaT* for
all z. Hence T*U;:UZT* for all xz. Hence T* is also an intertwining
operator for U® and U. Setting T=(T-+T%)/2+(T—T%)/2 we see that
every intertwining operator T for U® and U is uniquely of the form
T,+T, where T'*=T, and T,*=—T,. Hence if we denote the dimension
of the space #(U? U) of all intertwining operators for U* and U by
(U U) we have # (U 0)=_sU° U)+ _~Z(U* U) where _F(U%
U) is the dimension of the space of all intertwining operators T' such
that T*=T and _Z(U% U) is the dimension of the space of all inter-
twining operators T such that 7*=—T. These two dimensions will be
referred to respectively as the symmetric and anti-symmetric intertwin-
ing numbers of U* with U. Their sum as usual will be call the inter-
twining number of U* with U.

LEMMA 1. If U and V are representations of < and U+ V denotes
their direct sum, then

AUV, U+ V)=A(U", U)+ AV, V)+ _# (U4 V)
AUV, U+ V)= U, U)+ (V" V)+ _# (U V)
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Proof. The corresponding proof in [3] proceeds through symmetric
and anti-symmetric Kronecker products and hence does not apply here.
However, it is readily converted into a direct proof which generalizes
immediately to the situation at hand.

COROLLARY. If C«U)=_Z(U* U)—_Z(U* U), then C{U+V)=
CHU)+CV).

LEMMA 2. Let & be algebraically closed and let © = <, x &, where
(T xe) =72 xe, (ex T,)=ex <, Let Uand V be irreducible repre-
sentations of <, and <, respectively. Then CYLx M)=C*L)CHM).

Proof. See proof of Lemma 2 of [3].

COROLLARY. The conclusion continues to hold if U and V are direct
sums of irreducible representations.

LEMMA 8. Let 7 be algebraically closed, let U be a direct sum of
irreducible representations, and let b denote an involutory anti-automor-
phism of & which commutes with a. Then CYU")=C¥«U).

Proof. Clearly we need only consider the case in which U is ir-
reducible. If U and U* are not equivalent then U® and U®=U"* are
not equivalent. Hence C¥U)=0 and C%U’)=0. If U and U” are
equivalent let T set up the equivalence. Then TU,=UT for all x.
Hence for all # we have

UST*=T*U% or UT*=T*US=T*U .

Thus T* sets up the equivalence between U’ and U’®. Since T'=+T*
if and only if (T™)*= + T* the truth of the lemma follows at once.

LEMMA 4. Let & be algebraically closed and let G be a subgroup
of & such that G°=G. Let L be an irreducible representation of <& and
suppose that the restriction M of L to G is a direct sum of inequivalent
representations M,. Then CYM,)=C*L) for all j.

Proof. See proof of Lemma 4 of [3].

2. Multiplicity-free permutation representations. Let I be the one-
dimensional identity representation of the subgroup G of the finite
group <. As in [3] we shall denote by U" the representation of &
induced by I, that is, the permutation representation of ¥ defined by G.
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LEMMA 5. Let I and G be as just described. Let n, denote the
number of G :G* double cosets which are invariant under a. Let n,

denote the number of G:G® double cosets which are not invariant under
a. Then (U U)=n,+in, and _Z((U")*, U")=mn,/2.

Proof. The proof is an obvious adaptation of the proof of Theorem
2" of [3].

LEMMA 6. Let M=M,+M,+---M, where the M, are irreducible
representations of <. Then _Z (M M)=0 if and only if for each j
one of the two following conditions holds.

(a) CYM,)=1 and M, is not equivalent to M, for any k+j.

(b) CHM,)=0 and M; is not equivalent to any M,.

Proof. See proof of Lemma 5 of [3].

We shall suppose henceforth that & is algebraically closed and
that the characteristic of & does not divide the order of . Hence
in particular every representation U of & will be a direct sum of
irreducible representations. When these irreducible components are
mutually inequivalent, we shall say that U is multiplicity-free.

THEOREM 1. Let G be a subgroup of & such that G*=G. Let I be
the identity representation of G. Then the following statements are
equivalent :

@) 7 (U, U)=0.

(b) Ewery G:G double coset is invariont under a.

(c) U" is multiplicity-free and each irreducible component M of U

is such that C*(M)=1.

Proof. The equivalence of (a) and (b) follows at once from Lemma
5. On the other hand, it is easy to verify that U’ and (U?)* are
equivalent. Hence, when we apply Lemma 6 to U, alternative (b) is
impossible, and the equivalence of (a) and (c¢) follows at once.

COROLLARY (of proof). The theorem remains true if the hypothesis
that G°=G 1is replaced by the hypothesis that (U')* and U" are equivalent
and in (b) G: G is replaced by G : G°.

THEOREM 2. Let &, denote the subgroup of & X & x & consisting
of all z,y, 2, with x=y==z. Then the following two statements are equiva-
lent :

(a) For each pair L, M of irreducible representations of & the

Kronecker product LRM is multiplicity-free and L* and L are
equivalent.
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(b) Ewvery Ty Ty double coset in T X T x T is invariant under a.

Proof. We apply Theorem 1 with @ x ©° x & playing the role of
% and <, that of G. Then condition (b) of the present theorem
becomes exactly condition (b) of Theorem 1. Now the most general
irreducible representation of & x @ x < is Lx Mx N where L, M, and
N are irreducible representations of <. Moreover by the Frobenius
reciprocity theorem U’ containg Lx Mx N just as often as LQMRIN

contains the identity; that is, just as often as L&QM contains N. (N
is N® where b(x)=«"'). Thus U’ is multiplicity-free if and only if each
L®M is multiplicity-free. In other words the first part of condition
(c) of Theorem 1 is equivalent to the first part of condition (a) of the
present theorem. On the other hand, C%L x M x N)=CHL)C*(M)C«N)
by Lemma 2. Thus the second part of condition (¢) is equivalent to

the condition that CYL)C*M)CYN)=1 whenever N is a component of
LEM. But if the first part of the condition is satisfied, then, by
Lemma 4, CYL)CHM)=C*Lx M)=C*N) for all N in the decomposition
of LQM. Moreover, by Lemma 3, C{N)=C%N). Thus, in the presence
of the first part, the second part of condition (c¢) is equivalent to the
condition that CYN)*=1 for all N occurring in the decomposition of
LYM. But CYN)*=1 if and only if C*(N)=+1; that is, if and only
if N=N*. The truth of Theorem 2 follows at once.

3. Generalizations of Wigner’s condition. We define wv(z) for
re %, just as in [3],[5] and the introduction to the present paper.
We replace the function ¢ however by a function ¢, which we define
as follows. For each xe &, ¢, (x) is the number of elements z in &
for which 2(z*)"'=x«. Theorem 5 of [3] relating >\ w(x)* to the number

€
of i1t T et double cosets in & ,,, can be used just as it stands but
we need a generalization of Theorem 6 giving us information about
See TCa (). Here #,., is the direct product of %@ with itself n--1

times and < ,.. is the ‘‘ diagonal’> subgroup of < ,...

THEOREM 3. Let & be of order h and let T .., Tne and €, be
defined as above. Then the following three numbers are all equal.

@) (1/A)3 o)
z€ g

(b) The number of gﬁnﬂ: < a1 double cosets in & ,.. Which are
nvariant under .
(€) The number of a invariant orbits in <, under the group of inner

automorphisms defined by members of Z:n
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Proof. We verify at once that if x, x,, -+-, Zuer and Y5, Ys, * ) Ynes
are in the same <,.,: <., double coset then xx,:i, z.x,3}, and yy.;%

<o, YYnit are in the same orbit in %°,. The mapping so defined is
easily seen to be one-to-one and onto from double cosets to orbits and
to carry the « invariant double cosets onto the a invariant orbits.
Thus (b) and (c) are equal. We now apply Lemma 6 of [2] with
=<, y(xly Lyy =*°y xn):y_lmly: Ylwy, -, Y ey, and T(wl Lyy =02y mn):
% @,% -, 2,% (In the statement of the lemma, it is assumed that T
commutes with y for all ¥y and this condition does not hold here.
However, the proof continues to hold under the weaker hypothesis that
T takes each orbit in S into itself and that condition does hold here.
We remark that the proof in question contains a typographical error.
In the second line from the bottom on page 399, T(s) should be followed
by ‘“‘is not’ rather than ‘‘is’’.) Here p(y) is the number of x,, 2,,
«++, &, such that y'2y=a for j=1,2, .-+, n. Hence p(y)=p,(y)" where
p(y) is the number of z in & with yay=z*. But y‘wy=z* if and
only if ay((zy)*)'=y@y*)~'. Moreover for fixed y the number of = such
that ay((zy)*)*=y(*)"* is equal to the number of z such that z(z%)-'=

y@*)™'. Thus p(y)=C¥»*)™") and p(y)=Cv@@*))*. Hence (c) is equal
to

1/h3e T Cay(y®) )" =1/R3(Cu(2)" (no. of y with y(y*)~'=2)

€

=1/hZ (L))"
zeg
Thus (a)=(c) and the theorem is proved.

As an immediate consequence of the theorem just proved and
Theorem 5 of [3], we obtain the following.

THEOREM 4. Let <, a,v, 4, T :Z:n be as above. Then for all
x=1,2, -+, we have

2 La(@)"! = Sv(a)" .
z€ g z€ ?f

Equality holds if and only if every % ,.,: %,., double coset in Z,,, is
invariant under a.

COROLLARY. Condition (a) of Theorem 2 is satisfied if and only if
Sa(x) = Sw(x). Theorem 2 of Wigner’s paper [5] s this corollary with
ze z€ &
w“;x‘l. If we take n=1 in Theorem 3 we conclude that 1/h>L.(x)* s
T€ g;;’
the number of conjugate classes in & which are invariant under a. When
x*=2x"t, this reduces to Theorem 1 of [5].
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Obvious adaptations of the proofs of Theorems 8 and 9 of [3] yield
proofs of the two following theorems.

THEOREM 5. If &, a,C, and v are as above, then the following
conditions are equivalent.
(@) L) = D).
z€ ¢’ ze
(b) Ewvery class in < s invariant under x—u”.
(¢) For every representation L of <, L and L* are equivalent.

THEOREM 6. If <, a,C, and v are as above, then the following
conditions are equivalent.
(a) For some integer n=3, 3¢ (x)** = Dw(x)".

T€ Z) x€ ZQ

(b) For every positive integer n, > (x)"*'= Sw(x)*
»e & z€ &

(¢) = is commutative and a is the identity.

4, Some examples. If Z is abelian and not every element is of
order two, then the Kronecker products of irreducible representations
of & are trivially multiplicity-free but Wigner’s theorem does not apply
since the classes in & are not self inverse. On the other hand, taking
o to be the identity we find that Corollary 2 of Theorem 4 of the
present paper does apply. A slightly less trivial example may be con-
structed by letting < be the direct product Hx K where H is abelian,
K is a group for which the equivalent conditions of Wigner’s theorem
are satisfied, and (& x)*=§, x7'. Still less trivial examples may be found
by applying the following theorem :

THEOREM 7. Let & have a commutative normal subgroup N such
that < |N is of order 2. Then the Kronecker product of any two irreduci-
ble representations of & is multiplicity-free.

Proof. The regular representation of & is a direct sum of the
representations U* where U* denote the representation of % induced
by the character y of N. Since the U* are all two-dimensional, every
irreducible representation of % is either a U* or is one-dimensional.
Thus to prove the theorem it will suffice to show that U“QU™ is multi-
plicity-free whenever U™ and U™ are irreducible. Let @ denote the
unique involutory automorphism of N such that f(x)=yxy* forallze N
and all ye @ —N. Let a denote the involutory automorphism of the
character group N of N defined by 5. Then (see [2]) the intertwining

of U™ and U™ is equal to one, zero, or two, according as ¥ is equal
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to one, neither, or both of y, and a(y,). Thus U* is irreducible if and
only if y#a(y) and when U* is reducible, it is multiplicity-free. More-
over if U™ and U™ are both reducible, then U+ U™ is multiplicity-free
whenever 7,#7.. Again by a result of [2], U'QU*= U4 U,
But if U and U™ are irreducible, then y,#a(y), X7#a(y). Hence
WX xa(X:) and e+ a(a(y.)) =a(y)y,. Hence by the foregoing,
UQU™ is multiplicity-free and the proof is complete.

Let & be the semi-direct product of a cyclic group N of order n»
and a cyclic group K of order 2 where xéx~'=£&"* for £e N and » the non
identity element of K ; that is, let & be the dihedral group of order
2n. It is readily verified that the classes in & are all self inverse.
Hence, by Theorem 7, & satisfies the equivalent conditions of Wigner’s
theorem. Now let N be a cyclic group of order 2n, let K be as before,
and let & be the set of all pairs & o where £e N and xc K. Let @ be
a generator of N. We define a multiplication in & by setting

(1 )&y @) =E2i(E)PA 2, 22), 2180,

where ,(§,)=¢, or &' according as a,=e (the identity) or not, and
h(x,, 2,)=0" or e depending upon whether z,=x,—¢ or not. It is readily
verified that & is a group with respect to this multiplication. It is
the well known dicyclic group of order 4n. Let the elements of K be
zand e. Then (e, 2)'=0" 2z but the class containing (e, z) is easily seen
to consist just of the elements of the form &% z where §e N. Hence if
every class in & is self inverse, a"=a*® for some k. Hence n—2k is
a multiple of 2n and » is even. Thus if » is odd, the dicyclic group
of order 4n has a non self inverse clags. On the other hand let (&, x)*
=u(§), «. Then it is easy to check that ¢ is an involutory anti-auto-
morphism of & which takes every class into itself. Hence & does not
satisfy the equivalent conditions of Wigner’s theorem but by Theorem
5 and 7 does satisfy the equivalent conditions of Theorem 2.
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