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INJECTIVE MODULES OVER NOETHERIAN RINGS

EBEN MATLIS

Introduction In this discussion every module over a ring R will be
understood to be a left i2-module. R will always have a unit, and every
module will be unitary. The aim of this paper is to study the structure
and properties of injective modules, particularly over Noetherian rings.
B. Eckmann and A. Schopf have shown that if M is a module over any
ring, then there exists a unique, minimal, injective module E(M) con-
taining it. The module E(M) will be a major tool in our investigations,
and we shall systematically exploit its properties.

In § 1 we show that if a module M has a maximal, injective sub-
module C (as is the case for left-Noetherian rings), then C contains a
carbon-copy of every injective submodule of M, and MjC has no injective
submodules different from 0. Although C is unique up to an automor-
phism of My C does not in general contain every injective submodule
of M, In fact, the sum of two injective submodules of a module is
always injective if and only if the ring is left-hereditary.

In § 2 we show that for any ring R a module E is an indecom-
posable, injective module if and only if E = E(R\J)y where J is an ir-
reducible, left ideal of R. We prove that if R is a left-Noetherian ring,
then every injective Jϋ-module has a decomposition as a direct sum of
indecomposable, injective submodules. Strong uniqueness assertions can
be made concerning such decompositions over any ring.

In § 3 we take R to be a commutative, Noetherian ring, and P to
be a prime ideal of R. We prove there is a one-to-one correspondence
between the prime ideals of R and the indecomposable, injective R-
modules given by P**E(RjP). We examine the structure of the module
E = E{RjP)y and show that if At is the annihilator in E of P\ then
E = U At and -4ί+1/At is a finite dimensional vector space over the
quotient field of R/P. The ring of iϋ-endomorphisms of E is isomorphic
in a natural way to Rp, the completion of the ring of quotients of R
with respect to R-P. As an ^-module E is an injective envelope of
RpjP, where P is the maximal ideal of Rp. If P is a maximal ideal
of Ry then E is a countably generated β-module. Every indecomposable,
injective i2-module is finitely generated if and only if R has the minimum
condition on ideals.

In § 4 we take R to be a commutative, Noetherian, complete, local ring,
P the maximal ideal of R and E = E{RjP). Then the eontravariant,
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exact functor Ή.omE(A, E) establishes a one-to-one correspondence be-
tween the category of modules with ACC and the category of modules
with DCC such that Homi2(Homβ(A, E),E) = A, for A in either category.
In particular, there is a lattice anti-isomorphism of the ideals of R and
the submodules of E given by annihilation.

This paper is essentially the first half of a doctoral dissertation
submitted to the University of Chicago. The author would like to ex-
press his deep appreciation for the assistance and inspiration given to
to him by Professor I. Kaplansky.

1. Maximal Injective Submodules*

DEFINITION Let R be a ring and S an .β-module. Then an iϋ-module
M is said to be an essential extension of S, if S c M, and if the only
submodule T of M such that S Π T = 0 is the submodule T = 0.

B. Eckmann and A. Schopf have shown [4] that if R is a ring and
M an ΛJ-module, then there exists an injective ^-module E(M) which is
an essential extension of M, If C is any other injective extension of
My then there exists in C a maximal, essential extension A of M, and
there is an isomorphism of E(M) onto A which is the identity on M.
We shall call E(M) the injective envelope of M. A. Rosenberg and D.
Zelinsky have called this module the injective hull of M [9].

LEMMA 1.1. Let R be a ring, S and T R-modules, and D an inject-
ive submodule of Sξ£)T. Let E be an injective envelope o/DpiS in D,
and let F be a complementary summand of E in D. Thus D = EQ)F;
and E and F project monomorphically into S and T, respectively.

Proof. It is clear that F projects monomorphically into T. Let / be
the projection of E into S. Since Ker / c Γ , Ker / Π φ Π S ) = 0.
However, E is an essential extension of D Π S, and so Ker / = 0.

The following proposition is well known [3, Ch. 1, Ex. 8], but we
state it for the sake of reference.

PROPOSITION 1.2. Let R be a left-Noetherian ring. Then:
(1) A direct limit of injective R-modules is injective.
(2) A direct sum of R-modules is injective if and only if each

summand is injective.
It is an immediate consequence of Proposition 1.2 that if R is a

left-Noetherian ring and M an iϋ-module, then M possesses a maximal,
injective submodule C. Concerning this situation we have the following :

THEOREM 1.3. Let R be any ring and M an R-module such that M
has a maximal, injective submodule C. Then:
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( 1 ) If N is a complementary summand of C in M, then M — C φ N,
and MjC = N has no injective submodules different from 0.

(2 ) If E is any injective submodule of M, then the projection of E
into C maps E isomorphically onto an injective envelope ofEΓ\C in C.

( 3 ) If D is any other maximal, injective submodule of M, then
there is an automorphism of M which carries C onto D and is the identi-
ty on N.

Proof. (1) is obvious, and (2) follows immediately from (1) and
Lemma 1.1. We will prove (3). Let / be the projection of D into C.
By (2) f(D) is an injective envelope of D Π C in C and thus C =
f(D) φ Cl9 where Cλ is an injective submodule of C. However, since
( D ί l Q c f(D), D Π CΊ = 0; and thus by the maximality of D, CΊ = 0.
Therefore, since / is one-to-one by (2), / is an isomorphism of D onto
C, and so D Π N = 0. Thus M = D φ iV, and this completes the proof
of the theorem.

If the sum of the injective submodules of a module M is always
injective, then M has a unique, maximal, injective submodule which
contains every injective submodule of M. However, in general, this is
not the case. In fact, we have the following.

THEOREM 1.4. Let R be any ring. The sum of tiυo injective sub-
modules of an R-module is always injective if and only if R is left-
hereditary.

Proof. If R is left-hereditary and Nlf N.z are injective submodules
of an i2-module N, then NL + N2 is a homomorphic image of the inject-
ive i2-module Λ^φΛ^, and hence is injective.

Conversely, assume that the sum of two injective submodules of
any i2-module is injective. Let M be any injective iϋ-module and H a
submodule of M. We will show that MjH is injective, and this will
prove that R is left-hereditary.

Let Mv, M2 be two copies of M, N = Mλ@M^-and D the submodule
of N consisting of the elements (A, h), where h e H. The canonical
homomorphism : N -> N/D maps M19 M2 isomorphically onto submodules

Mlf M2 of N/D, respectively. Since NjD = ML + M2, N/D is injective

and, therefore, (NΊD)ίMι is injective. The composite mapping: Λf->

M2 -> M2 -> (NID)!M1 defines a homomorphism of M onto (N/D)IM1 with
kernel H. Therefore, MjH is injective and the proof is complete.

It follows easily from Proposition 1.2 and Theorem 1.4 that if M is
any module over a left-Noetherian, left-hereditary ring, then M has a
unique, maximal, injective submodule C which contains every injective
submodule of M.
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2. Indecomposable Injective Modules .

PROPOSITION 2.1. Let R be a ring and {Mt} a finite family of R-
modules. Then the natural imbedding of Σ ® M * into Σ ® W ) can

be extended to an isomorphism of £ ( Σ θ ^ ί ) cmd Σ Φ W ) If R is
left-Noetherian, the finiteness restriction can be omitted.

Proof. We identify Σ φ M 4 with its image in Σ Θ W I f the
family is finite, or if R is left-Noetherian, the latter module is injective.
Hence it suffices to show that Σ®2?(Λf4) is an essential extension of
Σφikf έ, regardless of whether the family is finite or not. Let
χ =£ 0 e Σ Φ E(Mt); then since x has only a finite number of non-zero
coordinates, we can by working successively on each coordinate find an
element r e R such that rx Φ 0 and π e Σ Θ ^ . This proves the as-
sertion.

DEFINITION. Let A be a module over a ring R. We say that A is
indecomposable, if its only direct summands are 0 and A.

The following proposition follows readily from the definitions :

PROPOSITION 2.2. Let M be a module over a ring R. Then the fol-
lowing statements are equivalent:

(1) E(M) is an injective envelope of every one of its non-zero sub-
modules.

( 2 ) M contains no non-zero submodules S and T such that S Π T = 0.
( 3 ) E(M) is indecomposable.
In general it is not true that if M is indecomposable, then E(M) is

also indecomposable. For let M be an indecomposable, torsion-free
module of rank two over an integral domain R. Let Q be the quotient
field of R. Then E(M) ~Q^)Q [5, Th. 19].

DEFINITION. Let ί be a ring and / a left ideal of R such that
/ = Jλ Π Π Jn, where Ji is a left ideal of R. We call this a decom-
position of I, and we say the decomposition is irredundant, if no J%

contains the intersection of the others.

THEOREM 2.3. Let R be a ring and I — Jτ Π Π Jn &n irredun-
dant decomposition of the left ideal I by left ideals Ji. Assume that each
E{RlJi) is indecomposable. Then the natural imbedding of R\l into C —
E(RIJτ) φ φ E(R/Jn) can be extended to an isomorphism of E(R/I)
onto C.

Proof. We identify R/I with the submodule of C consisting of all
elements of the form (r + Jlf , r + Jn), where r e R. Since C is
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injective, it is sufficient to show that it is an essential extension of Rjl. We
first show that Rjl (Ί R\Jι φ 0 for all i for simplicity we will prove only
the case i — 1. By the irredundancy of the decomposition of / we can
find r e R such that r e J2 Π Π Jnf but r $ Jx. Then (r + J19 r +
</2, , r + Jw) = (r + Λ, 0, , 0) is a non-zero element of RII Π R\Jλ.

By Proposition 2.2 EiR/J^ is an injective envelope of Rjl Π RfJi
Let x φ 0 6 C. By working successively in each component we can find
s e R such that sx φ 0, and the ith component of sx is in R\l Π RjJt.
Thus s# is a sum of elements of Rjl, and hence sx e R/L Thus C is an
essential extension of RII,

DEFINITION. Let J be a left ideal of a ring .B. We say that J is
irreducible, if there do not exist left ideals K and L of R, properly
containing J, such that K Π L — J.

NOTATION. Let M be a module over a ring i?, and let S be a sub-
set of M. Then we define O(S) = {r e i2 | rS = 0}. Clearly O(S) is a
left ideal of R.

THEOREM 2.4. 4̂ module E over α ring R is an indecomposable, in-
jective module if and only if E = E(R/J), where J is an irreducible left
ideal of R. In this case, for every x φ 0 e E, O(x) is an irreducible left
ideal and E = E{RIO{x)).

Proof. Let J be an irreducible left ideal of R, and K, L left ideals
of R such that KIJ Π L/J = 0. Then K Π L = J, and thus either K= J
or L = J. Hence E(R/J) is indecomposable by Proposition 2.2.

Conversely, let Z? be an indecomposable, injective module, # =£ 0 6 #,
and J = O(x). By Proposition 2.2 E = E(Rx); and since ifa; ^ u?/J, we
have # = E(R/J). Suppose that J = if Π L is an irredundant decomposi-
tion of J by the left ideals K, L. We imbed R\J in C = E(R\K)<§)E(R\L),
and let D be an injective envelope of R\J in C. Due to the irredund-
ancy of the decomposition of J, R\J Π R\K Φ 0. Therefore, by Lemma
1.1 and the indecomposability of D, D projects monomorphically into
E{RjK). The image of D is an injective module containing R\K, and
hence is equal to E(R/K). Thus E(RIK) is indecomposable similarly,
E(R/L) is indecomposable. Thus by Theorem 2.3 E{RIJ)^E{RIK)®E{RIL).
This contradicts the indecomposability of E(RjJ), and thus Jis irreducible.

REMARKS.

(1) Every ring R possesses indecomposable, injective modules.
For if J is a maximal, left ideal of R (such exist by Zorn's lemma and
the fact that R has an identity element), then J is an irreducible ideal,
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and so E(RjJ) is indecomposable by Theorem 2.4.
(2) It can be shown that every injective module over a ring R

has an indecomposable, direct summand if and only if every left ideal
of R has an irredundant decomposition by left ideals, at least one of
which is irreducible.

THEOREM 2.5. Let R be a left-Noetherian ring. Then every injective
R-module has a decomposition as a direct sum of indecomposable, injective
submodules.

Proof. Let M be an injective J?-module. Then by Zorn's lemma
we can find a submodule C of M which is maximal with respect to the
property of being a direct sum of indecomposable, injective submodules.
Suppose that C Φ M. By Proposition 1.2 C is injective, and hence there
is a non-zero submodule D of M such that M = C φ D. Let x Φ 0 e D;
since R is left-Noetherian, O(x) is an intersection of a finite number of
irreducible, left ideals [8, Lemma 1.8.2]. Therefore, by Theorems 2.3
and 2.4, E(R\O(x)) is a direct sum of a finite number of indecomposable,
injective iί-modules. Now Rx = RjO(x)9 and so we can consider that
E(R/O(x)) is imbedded in D. But then C®E(RIO(x)) contradicts the
maximality of C, and thus C = M. This concludes the proof of the
theorem.

Theorem 2.5 is a generalization of a theorem of Y. Kawada, K.
Morita, and H. Tachikawa [6, Th. 3.2] who considered the case of a
ring with the minimum condition on left ideals. Their theorem, in turn,
is a generalization of a theorem of H. Nagao and T. Nakayama [7]
concerning finite dimensional algebras over a field.

DEFINITION. Following the most general definition [3, p. 147] we
will call a ring H a local ring if the set of non-units of H forms a two-
sided ideal.

PROPOSITION 2.6. Let E be an injective module over a ring R and
H = Ή.omR(E, E). Then H is a local ring if and only if E is indecom-
posable. In this case f e H is a unit if and only if Ker / = 0.

Proof. If E is not indecomposable, then H has a non-zero idempo-
tent different from the identity, which can't happen in a local ring.
Conversely, assume that E is indecomposable. If / e H is a unit, then
of course Ker / = 0 while if Ker / = 0, then f(E) is injective, f(E)=Ef

and so / is a unit of H. Let g, h be non-units of H. Then Ker g Φ 0,
Ker h Φ 0, and by Proposition 2.2 Ker g Π Ker h Φ 0. Since Ker
g Π Ker h c Ker (g + h), it follows that g + h is a non-unit. It is well-
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known that if the sum of two non-units of a ring is always a non-unit,
then the ring is a local ring.

The preceding proposition shows that G. Azumaya's generalization
of the Krull-Remak-Schmidt theorem [1, Th. 1] applies to direct sums
of indecomposable, injective modules. We state this theorem without
proof in the form in which it applies to our considerations.

PROPOSITION 2.7. Let R be a ring and M = Σ φ £ α (a e A) an R-
module which is a direct sum of indecomposable, injective submodules Ea.
Then:

( 1 ) Given a second decomposition of M into indecomposable sub-
modules Fb (b 6 B): M = Σ φ Fb, then there exists a one-to-one mapping
a -» b(a) of A onto B such that Ea is isomorphic to Fb(a ), for each a e A.
In other words the decomposition of M into indecomposable submodules is
unique up to an automorphism of M.

( 2 ) For any non-zero idempotent element f in Hom^M, M) there
exists at least one Ea such that f is an isomorphism on Ea. In particular
every indecomposable, direct summand of M is isomorphic to one of the
Ea's.

It is an open question whether every direct summand of M is also
a direct sum of indecomposable, injective modules. Of course if R is
left-Noetherian, then Theorem 2.5 provides an affirmative answer.

The following proposition will be needed in § 3.

PROPOSITION 2.8. Let R be a ring, B an R-module, and C an in-
jective R-module let y e C and xlf , xn e B. Then Π 0{xi)(Z O(y) if
and only if there exist f19 ,/w e HomB(B, C) such that y—f1x1+

Proof. If y = fxτ + - . . + fnχnt then clearly Π O(xt) c O(y). Now
assume that Π O(#4) c O(y). Rj Π Ofe) is a cyclic i2-module generated by
an element z with O(z) = Π O(#4). There exists an TMiomomorphism :
Rz ~> Ry such that z-> y and there exists a natural imbedding of Rz
into Σ θ ^ ( such that z -» (xl9 , xn). This yields the diagram :

I
Ry
I
c

Since C is injective, there is an i2-homomorphism / : Σ Φ - β ^ -* C such
that f(x19 , xn) = y. Now / = Σ / t , where f : Rxh ~> C is the restric-
tion of / to Rxt. We have the diagram :
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0 -> Rxt ^ B

A i
c

Therefore, we have iMiomomorphisms fi'.B-^C such that ft extends

A for each i. Thus fλxλ H + fnxn = A%i + /

3. Injective Modules over a Commutative, Noetherian Ring.

Throughout this section R will be a fixed commutative, Noetherian
ring.

PROPOSITION 3.1. There is a one-to-one correspondence between the
prime ideals of R and the indecomposable, injective R-modules given by
P <-> E{R\P), for P a prime ideal of R. If Q is an irreducible P-primary
ideal, then E(R/Q) =

Proof. It is obvious that a prime ideal is irreducible and thus
E(RIP) is an indecomposable, injective module by Theorem 2.4. Let
Pτ,Pz be two prime ideals of R such that E(RIPΎ) = E(RIPZ). We con-
sider that RjPΎ and RjP2 are imbedded in E(R\PΎ). Hence by Proposition
2.2, R/Pι Π RIP* Φ 0. However, every nonzero element of R/Pt (resp.
RlPi) has order ideal P1 (resp. P2). Thus PΎ — P2, and the mapping
P ~> E{R(P) is one-to-one.

Let E be any indecomposable, injective iϋ-module. Then by Theorem
2.4 there is an irreducible ideal Q of R such that E ~ E{RjQ). Now
Q is a primary ideal with a unique associated prime ideal P [8, Lemma
1.8.3]. If Q — P, we are finished hence assume that Q Φ P. Then
there is a smallest integer n > 1 such that Pn c Q. Take b e Pn~λ such
that b $ Q, and denote the image of b in R/Q by δ. Clearly 0(5) D P
on the other hand if a e 0(5), then ab e Q, and so a e P, showing that
0(5) = p . Therefore, there is an element of E(RjQ) with order ideal
P, and thus E{RjQ) ^ #(i?/P) by Theorem 2.4. This completes the proof
of the proposition.

LEMMA 3.2. Let P be a prime ideal of R and E — Έ(R\P). Then :
( 1 ) Q is an irreducible, P-primary ideal if and only if there is an

x Φ 0 e E such that 0(x) = Q.
( 2 ) Ifre R-P, then 0{rx) = 0(x) for all x e E, and the homo-

morphism : E -» E defined by x -* rx is an automorphism of E.

Proof.
( 1 ) This is an immediate consequence of Theorem 2.4 and Pro-

position 3.1.
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( 2 ) Let r e R — P the map : E -» E defined by x -* rx, for x e E,
has kernel O by (1); therefore, it is an automorphism by Proposition
2.6. It follows that O(x) = O(rx) for every x e E.

DEFINITION. Let M be an injective i?-module, and P a prime ideal
of R. Define

Mp = {x e MI P c Rad O(α)}

and

iVp = {a? e Jlί, I P ^ Rad O(α)} .

Let M — 2 Φ ^α (a e A) be a direct decomposition of Λf by indecom-
posable, injective submodules Ea. By Proposition 3.1 there is associated
with each Ea a prime ideal which we shall designate by Pa. Define Hp

to be the direct sum of those Ea'& such that Pa = P. We shall call Hp

the P-component of the decomposition of M and we define the P-index
of M to be the cardinal number of summands Ea in the decomposition
of Hp.

THEOREM 3.3.

( 1 ) Mp is the direct sum of those Ea's such that Pa Z) P, and Np

is the direct sum of those Ea

ys such that Pa $ P. Thus Mp and Np are
submodules of M; and, in fact, are direct summands of M. In addition,
the direct sums of Ea's just defined are independent of the decomposition
of M.

( 2 ) M is a direct sum of the Pa-components Hp . We have Hp =
Mp/Np , and Hp is unique up to an automorphism of M. In other words
M is determined up to isomorphism by a collection of cardinal numbers,
namely its P-indices.

If P is a maximal ideal of R, then Hp — Mp, and thus Hp is in-
dependent of the decomposition.

Proof.
( 1 ) Let x Φ 0 e M; then x = xx + + xn, where x% Φ 0 e Ea..

Thus O(x) = Π Ofa); and by Lemma 3.2 (1) 0{xt) is Pα.-primary. From

this it follows that Rad O(x) = Π Pα.. Hence it is clear that x e Mp if

and only if x is an element of the direct sum of those Ea'& such that

Pa z) P. It also follows that x e Np if and only if x is an element of

those Ea'8 such that Pa J P.
( 2 ) This follows immediately from (1) and Proposition 2.7.
We now proceed to examine the structure of a typical indecom-

posable, injective i2-module.
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THEOREM 3.4. Let P be a prime ideal of R, E = E(RIP), and At =
{xe E\I*x = 0}. Then:

( 1 ) At is a submodule of E, At c Ai+l9 and E — U A%.
( 2 ) Π 0(x) = P ( ί ) , w/^rβ P ( ΐ ) is the ith symbolic prime power of P.

xeA

( 3 ) T%# non-zero elements of Aί+ιIAi form the set of elements of
E\A% having order ideal P.

( 4 ) Let K be the quotient field of RjP. Then Ai+ΊIAi is a vector
space over K, and Aλ ~ K.

Proof.
( 1 ) Clearly At is a submodule of E, and A ( c 4 i + 1 . Let x Φ 0 e E;

then by Lemma 3.2 (1) O(x) is a P-primary ideal. Thus there exists a
positive integer i such that P c O ( 4 and so x e At. Therefore,
E = U A,.

( 2 ) By Lemma 3.2 (1) Π O(#) is the intersection of all irreducible,
€

P-primary ideals containing F\ It is easily seen that this intersection
is equal to P ( i ) .

( 3 ) Since PAi+ιcz Aif it follows from Lemma 3.2 (2) that every
non-zero element of A ί+I/A has order ideal P. Conversely, if x e E is
an element such that Pxc:Aίf then x e Aί+Ί. Therefore, every element
of ElAi having order ideal P is an element of Ai+1IAi.

( 4 ) If r e R, denote its image in RjP by r. Similarly, if x 6 Ai+1,
denote its image in Ai+1/Ai by x. If s e R — P, then by Lemma 3.2 (2)
there exists a unique y e Aί+1 such that x = sy. Define an operation of
K on Aί+llIAi by (r/s) x = ry. It is easily verified that with this defi-
nition Ai+1jAi becomes a vector space over K.

Take x Φ 0 e Aτ. Since Ao = 0, Ax is a vector space over K and
so we can define a iί-monomorphism g : K-> Aτ by #(r/s) = (r/s) a?, for
r/s e JL Let z Φ 0 e Ai. Since E1 is an essential extension of A19 there
exist tyweR — P such that to = wz. Thus <7(£/w) = z9 and # is an
isomorphism.

REMARKS.

( 1 ) Let 7 c P be an ideal of R, and A(l) = {# e E11 /^ = 0}. Then
it follows from [2, Th. 17] that A(/), considered as an i2//-module, is
an injective envelope of (JB/I)/(P//). Therefore, A(I) is an indecom-
posable, injective Rj/-module. We obtain from [8, Lemma 1] that
HomΛ(B/I, E) ~ A(/); and if J is an ideal of R containing 7, then
HomΛ(J/I, # ) ^ A(I)!A(J).

( 2 ) If P — 0, R is an integral domain, and E — Ax ~ K, which is
then the quotient field of 72. If P Φ 0, the module E is the natural
generalization of the typical divisible, torsion, Abelian group Zp . We
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will show in a later theorem that Ai+1!Ah is a finite dimensional vector
space over K, although in general it is not one dimensional as is the
case for ZPoo. The ring of endomorphisms of Zp^ is the p-adic integers.
This will generalize to the theorem that the ring of iϋ-endomorphisms

of E is Rp, the completion of the generalized ring of quotients of R
with respect to R — P.

DEFINITION. Let P be b prime ideal of R, S = R — P, and N the
^-component of the 0-ideal of R; i.e. N= {a e R | there exists an ele-
ment ce S with ca = 0}. Let R* = RjN, P* = P/JV, and let S* be the
image of S in F . No element of S* is a zero divisor in 22*, and thus
we can form the ordinary ring of quotients of R* with respect to S*.
We denote this ring by i?p; it is a commutative, Noetherian, local ring
with maximal ideal P = 22PP. We will denote the completion of Rv by

Rp, and its maximal ideal by P. Further details of the construction
may be found in [8, Ch. 2].

LEMMA 3.5. Let K be the quotient field of RIP. Then K and RP\P
are isomorphic as fields and P1^1^ (x) R/PK and Pn/pfi+1 are isomorphic
as vector spaces over K.

Proof. Let reR, seR — P and denote the images of r, s in RjN
by r*, s*, and their images in R\P by r, s. It is easily verified that
the mapping: K -> RpjP

r defined by rjs ~> (r*/s*) + P r is a field isomor-
phism. We make every .KJP'-module into a iΓ-module by means of this
isomorphism.

Let q e Pι and denote its image in RIN by g*. We define a map-
ping : pηp^ <g) Λ / F If -* P's/P'*-1 by [g + P ί + 1] (g) r/s -> (r/β)[?* + P / ί + 1 ] . We
define a mapping in the reverse direction by g*/s*+P'*+1-»[g+Pί+1](x)r/s.
These mappings are if-homomorphisms, and their product in either order
is the identity mapping. Thus PijPi+l (g) RjPK is isomorphic as a vector
space over K to pηp*+\

It is easily seen that if Q is a P-primary ideal, then NaQ. Hence
by Lemma 3.2 (1) E(RjP) is an i?*-module. We will henceforth assume
(without loss of generality) that N = 0. The simplification amounts to
this : Rp is an ordinary ring of quotients of R.

THEOREM 3.6. With the notation as already given let E = E{RIP).

Then E is in a natural way an Rp-module, and as such it is an injective

envelope of RP\P. The R-submodules At— {x e E \ Pιx — 0} ofE are equal

to the corresponding submodules defined for Rp,
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Proof. We define on operation of Rp on E as follows : let x e E,
r e R, and s e R — P then by Lemma 3.2 (2) there exists a unique
y e E such that x — sy. Define (rjs)x = r?/. It is easily verified that
with this definition E becomes an iϋ^-module. If G is an i?p-module
containing E, then E is an iϋ-direct summand of G. But then E is an
indirect summand of G also, and thus E is iϋp-injective. Since E is
indecomposable as an β-module, it is a fortiori indecomposable as an

If x e E has order ideal O(x) in R, then a straightforward calculation
shows that the order ideal of x in Rp is RpO(x). From this it follows
readily that Pιx = 0 if and only if Prix — 0. These remarks show that
we may assume that R is a local ring with maximal ideal P. We denote

its completion by R, and the maximal ideal of R by P = RP.

Let a e R; then there exists a Cauchy sequence {αw} in R such
that αw -* a. Let x e E then x e At for some i. There exists an in-
teger iV such that an — am e P* whenever n > m^ N. Thus αw# = αm#,
and if we define ax = α ^ , it is easily verified that this definition makes
E into an ΐ?-module.

Let E be the iϋ-injectίve envelope of E. Since Aτ = iϋ/P = JB/P

over -ff, it follows from Proposition 2.2 that E is the ϋϊ-injective envelope

of R/P. Therefore, by Theorem 3.4 E = U A4, where A, = {x e E \ Pιx =0}.

As an i2-module E splits into a direct sum of E and an ϋJ-module

C. If x e C, then x e A% for some i and iΐ r e R, there exists r 6 R

such that r = r (mod P*). Hence rx = rx e C, and thus C is an R-

module. However, E is indecomposable as an iu-module and thus C = 0

and E = E. A simple calculation shows that if x e E has order ideal

O(x) in iϋ, then it has order ideal RO(x) in R From this it follows readily

that At = At.

THEOREM 3.7. With the notation of Theorem 3.6 let H = RomR(E, E).

Then H is R-isomorphic to Rp; more precisely, every R-homomorphism of

E into itself can be realized by multiplication by exactly one element of Rp.

Proof. It is easily seen that H = Hom^ (E, E). Therefore, by
Theorem 3.6 we can assume without loss of generality that R is a com-
plete, local ring with maximal ideal P. Since Π Pι — 0, if r Φ 0 e R,
there exists an integer i such that r $ Pι. Hence rA% Φ 0 by Theorem
3.4 (2); and E is a faithful iϋ-module. Consequently, we can identify
R with the subring of H consisting of multiplications by elements of R.

Define iϊ4 = {he H\ h{A%) = 0}. Then Π H, = 0, and since g(At) c At
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for every g e H, Hi is a two-sided ideal of H. We will prove by induc-
tion on i that if / e H, then for each integer i there exists an element
pte R such that / = pt (mod Ht). Since Aλ = R/P, there exists y e A±

such that Aλ — Ry. Let f e H; then there exists pτ e R such that
fy — PiV- Thus f= pτ (mod HJ. We assume the assertion has been
proved for i ^ 1.

Let Pί+1 — Q1f) ΓiQn be an irredundant decomposition of Pί+ι by

irreducible, P-primary ideals Qj. By Lemma 3.2 (1) we can find ele-

ments Xj e Ai+ι such that O(xj) = Qj for j> — i, , n. By the irredun-

dancy of the decomposition we can find q5 e Q: Π ΓΊ Qj Π Qn (where

Qj means Qj is left out) such that q5 e Qjy Thus qjxj Φ 0 and q5xh — 0

for j Φ k.
By induction there exists pt e R such that g = / — pL e H^ Since

Pxj c Ai9 P(gXj) — g(Pxj) = 0 and thus gxj e Aτ. Therefore, by
Proposition 2.2 there exists r3 e R such that r^qpcj) = flra?Je Let
<7 = rλqL + + rnqn. Then ^ ^ = qxό for i = 1, , n.

Let OJ 6 A j+1; then O(x) z) P*+1 = 0{xλ) Π Π Ofe). Hence by Propo-
sition 2.8 there exist fu ••• 9fne H such that x — f1xί + + fnxn.
By the induction hypothesis fό — sό + hj9 where Sj e R and h3 e Ht.
Since

Pxj c Au P(hjXj) = hj(Pxj) = 0

hence hjXj e AL and g{h3xό) — 0. Since g ^ e Aif q(hJXJ) — hό{qxό) — 0.

Thus

g(x) = SxtoαO + + sn (gxn) = s^qxj + + sn(qxn) = g(a ).

Therefore, g — q e Hi+1. We let pi+1 = pt + q then / = pi+ι(mod Hί+ι),
and we have verified the induction.

Thus we have associated with / a sequence {pt} of elements of R.
If n^m, then pn - pm = (pw - / ) + ( / - pm) e Hn + Hm = Hn. Therefore,
(p» - Pm)Aw = 0, and so by Theorem 3.4 (2) pn - pm e P \ Thus {p4} is
a Cauchy sequence in it! and since R is complete, Pι-> p e R. Since
P 1 c Hif pi-* p in fί. But pt-*f in iί, and so / = p e R. Thus
H — R and the theorem is proved.

COROLLARY 3.8.

( 1 ) Let y, xl9 , xn e E. Then Π O(xό) c O(i/) i/ α^d only if there
exist r19 , rn e Rp such that y — rxxx + + rnxn.

( 2 ) Every R-homomorphism from one submodule of E into another

can be realized by multiplication by an element of Rp.

Proof.
( 1 ) This is an immediate consequence of Proposition 2.8, Theorem
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3.7, and the definition of the operation of Rp on E.
( 2 ) Since E is injective, every ϋJ-homomorphism from one sub-

module of E to another can be extended to an endomorphism of E.

DEFINITION. Let P be a prime ideal of R, and let P ( ί ) =
Qι Π Π Qt Π Qt+i (Ί Qn be an irredundant decomposition of the
symbolic prime power P ( ί ) by irreducible ideals Qm such that Qm φ p( έ~υ

for m — 1, , t and Qm ID P^-^ for m = ί + 1, , n. We say that
this is a minimal decomposition of P ( i ) and that P ( i ) belongs to t, if £ is
the smallest integer for which we can obtain such a decomposition.
Clearly for i > 0 P ( ί ) has a minimal decomposition and t > 0 if and
only if P^ Φ P*'-1).

THEOREM 3.9. Let P be a prime ideal of R, E = E(RIP), and assume
that P(i+1> belongs to t. Then the dimension of Ai+1jAi as a vector space
over the quotient field of RjP is equal to t.

Proof. We can assume without loss of generality that R is a local
ring with maximal ideal P. Then P ( ί ) = Pι for every i. Let Pί+1 —
Qι Π Π Qt Π Qt+ι Π c Qw be a minimal decomposition of P ί + \ where
Qm φ Pι for m = 1, , t and Qm z) P* for m = £ + 1, , n. By Lemma
3.2 (1) we can find xm e Ai+1 such that O(xm) = Qm for m = 1, , n.
Let xm = ίrm + At; we will show that xlf , ^ t form a basis for At+i/Ai
over RIP.

( 1 ) δ l f , xt are linearly independent over R/P. Suppose that
rxxλ + + rsxs — 0. where s S t and r5 — r5 + P for some r5 e i2. We
can assume that rt Φ 0 for i = 1, , s. Now rxxx + + rsxs — y e A%\
and so rλxx = — r2α;2 — . . . — rsα;s + y. Applying Lemma 3.2 (2) we have
0{xx) ID 0{x2) n Π O(xs) n O(ι/). Hence Pi+1 = O(α,) n Π O(^s) n O(?/).
We can refine this irreducible decomposition of Pi+ι to an irredundant
one but since O(y) D P\ we will then have t — 1, or fewer, components
not containing P\ This contradicts the minimal nature of t and there-
fore, xly <- ,xt are linearly independent over R/P.

( 2 ) xu ,xt span Aί+i/A4 over .K/P. For let a ; 6 i w ; then
O(x) ID P*+1 = n O(xm). Therefore, by Corollary 3.7 (1) there exist
n, , rn 6 R such that x = r ^ + + rnα;M. Since Qm ID P 4 for
m = t + 1 , , n, it follows that xm e At for m = έ + 1, , n. Thus x + A*
is a linear combination of xlf , x% with coefficients in i2/P.

The main part of the following theorem was communicated to me
by A. Rosenberg and D. Zelinsky.

THEOREM 3.10. With the notation of Theorem 3.9 let K be the
quotient field of R/P. Then Ai+1IAi is isomorphic as a vector space over
K to the dual space of PijPi^1 (g) Λjp K.
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Proof. By Lemma 3.5 and Theorem 3.6 we can assume that R is
a local ring with maximal ideal P ; and then we must prove that Ai+ιjA.
is isomorphic as a vector space over R\P to the dual space of PilPi+1.
By [9, Lemma 1] we know that Ai+1IAt is isomorphic over R/P to
Hom^PVP^1, E). It is clear that any i2-homomorphism of pηpi+1 into
E has its range in Aτ (which is isomorphic to RjP), and is actually an
22/P-homomorphism. Thus we can identify HomΛ(P*/P*+1, E) with
Hom^pίP^P^ 1, RjP). Since the latter is the dual space of pηpί+1 as a
vector space over R/P, this concludes the proof.

Theorem 3.10 provides a second proof that Ai+1IAi is a finite dimen-
sional vector space over K; and in addition shows that this dimension
is equal to the dimension over K of F^P1*1 ® RIP K- Combining this
result with Theorem 3.9 we see that P<ΐ+J) belongs to t if and only if
piipi+i g) Rip jζ k a s dimension t over K.

THEOREM 3.11.

( 1 ) If P is a maximal ideal of R, then A% c E(R\P) is a finitely
generated R-module for every integer i and thus E(R/P) is a countably
generated R-module.

( 2 ) R has the minimum condition on ideals if and only if every
indecomposable, injective R-module is finitely generated.

Proof.
( 1 ) The proof is by induction on i. Since the case i — 0 is trivial,

assume that A4-χ is finitely generated. By Theorem 3.9 we can find
xu , xn e Ai such that if x 6 Ai9 then there exists b e R — P such
that bx is in the module generated by xlf * ,xn and A^. Since P is
maximal and Px c At-l9 x is in the module generated by At-τ and xlf , xn.
Thus Ai is finitely generated.

( 2 ) Suppose that R has the minimum condition on ideals. Let P
be a prime ideal of R then P is a maximal ideal, and there exists an
integer i such that P* - Pί+ι - P*+2 = . Therefore, E(RIP) = At

and by (1) E{RjP) is finitely generated over R. Since E(RjP) is typical,
all indecomposable, injective ^-modules are finitely generated.

Conversely, assume that every indecomposable, injective i2-module
is finitely generated. Let P be a prime ideal of R. Then Aι c E(RjP)
is finitely generated over R/P. But Aι is isomorphic to the quotient
field of RjP, and hence R/P is a field. Thus prime ideals of R are
maximal and since R is a Noetherian ring, this implies that R has the
minimum condition on ideals.

4 Duality

DEFINITION. Let R be any ring and M a n i?-module. Then we say
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that M has ACC {Ascending Chain Condition) if every ascending chain
of submodules of M terminates, and we say that M has DCC {Descend-
ing Chain Condition) if every descending chain of submodules of M
terminates.

PROPOSITION 4.1. Let R be a left-Noetherian ring, and M an R-
module having DCC. Then E{M) is a direct sum of a finite number of
indecomposable injective R-modules.

Proof. By Theorem 2.5 E(M) = Σ φ £ α ( α e A), where the Ea'$ are
indecomposable, injective i2-modules. Assume that the index set A is
infinite. Then A has a properly descending chain of subsets:
i D A p i p . Define the submodule Ct of E(M) by C, = Σ®Eb{be At).
Then M ZD ( d Π M) =) (C2 Π M) z> is a descending chain of submodules
of M. Since M Π Ea Φ 0 for all a e A, the chain is properly descending.
This contradiction shows that A is finite.

DEFINITION. Let R be any ring and M an iϋ-module. For any
positive integer n let Mn denote a direct sum of n copies of M. If
x = (#!, , χn) e Λf\ where x1 e M, we will denote x by fe). For a
fixed pair i?*, Λfw we make the following definitions : let S be a subset
of Rn and B a subset of Mn; then define S' = {(»<) e Λfw | Σ ^ Λ = 0 for
all (rt) e S} and Br = {(rf) e iϊw | Σ ^ Λ = 0 for all (a?4) e £ } . If i? is
commutative, then Sr is a submodule of Mn and β r is a submodule of iϋ\

THEOREM 4.2. Lei R be a commutative, Noetherian, complete, local
ring, P its maximal ideal, and E — E{R[P). Take a fixed pair Rn, En

let S be a submodule of Rn and B a submodule of En. Then :
( 1 ) S' = RomR{RnIS, E), and En/Sr ~ RomR(S, E), and S" = S.
( 2 ) Bf = H o m ^ ^ / 5 , E), and Rn\Br ^ HomΛ(5, E), and B" = S.

i/ A is α submodule or factor module of either Rn or Έn, then
m^A, E), E) = A. The operation ' is a lattice anti-isomorphism

of the submodules of Rn and En. Therefore, En has DCC.

Proof.

{1) Rn/S is generated by elements ui9 i = 1, , n, such that
(r i)6 5φφΣ^w* = 0 LetfeΉomR(Rn/S,E) and define φ: ΉomE(Bn/S,E)->S'
by Φ{f) = (fUi). Clearly φ is a well-defined ϋMiomomorphism. If
Φ(f) = 0, then /%Λ = 0 for all i, and so / = 0. Thus φ is one-to-one.
If (xt) e S', define / : Rn/S^E by /%< = α?4; and then φ(f) = (xt). Thus
φ is onto, and so RomR{RnIS, E) = iS'.

From the exact sequence :
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we derive the commutative diagram :

0 -> HomΛ(i?7S, E) -* RomR(Rn, E) -> HomΛ(S, E)-* 0

I I
0 -» S' -> # w -> JS*/S' -> 0 .

Since E1 is injective, the top row is exact. Of course the bottom row is
exact, and the vertical maps are isomorphisms. Thus Homjβ(*S, E) ~

Clearly S c S ^ c Rn. Suppose that (s4) e S", but (s{) $ S. Then
V = Σ Si%« ^ O e iϊw/S. Now 0(2/) c P, and so by Proposition 2.8 there
exists an ίί-homomorphism g : RnjS-> E such that g(y) Φ 0. However,
S((y) = Σ si9(ud — 0, since (gUi) e Sr. This is a contradiction, and so

( 2 ) Let (r4) 6 B ; and (j/') e £ l w. Define Φ \ B -* RomB(EnIB, E) by
^(^*)[(2/0 + -δ] — Σ riVi- Then (P is a well defined β-homomorphism. If
φ(r%) = 0, then Σ ^Vt = 0 for all (&) 6 ^ w . Thus rtE = 0 for all i.
Since iί1 is a faithful i2-module by Theorem 3.7. rt = 0 for all i. Thus
Φ is one-to-one. Let f e HomR(EnIB, E), and for each i — 1, -, w let
^ be the ίth component of En. Then the composite mapping : E -> ^ ->
£"w -» En(Bf -> £" induces an iϋ-endomorphism of £*, and so by Theorem
3.7 can be realized by multiplication by an element rt e R. Thus if
(Vi) e En, fl(yt) + B] = Σ rtyt. If fe) e S, then Σ W =/[(a?,) + B] - 0
and thus (r4) e ί', Clearly φ(rt) = f, and thus 0 is onto. Therefore,
B - HomΛ(E"IB, E).

From the exact sequence :

0^B->En-> EnIB -* 0

we derive the commutative diagram :

0 -> Homβ(ΐ;w/S, E) -+ KomR(En, E) -» Hom/e(5, E) ~> 0

The top row is exact, the vertical maps are isomorphisms and since E
is injective, the bottom row is exact. Thus Rn\B' = Homβ(5, E).

Clearly B c B" c En. Suppose that (zt) e B'\ but (zt) <£ B. Since
O((Zi) + B) c P, we can find by Proposition 2.8 an i2-homomorphism
/ : EnIB~+E such that f((z) + B) Φ 0. However, f=Φ(ri), where
(n) e B'\ and thus f((zt) + B)= Φir^z) + B) = Σ Λ î = 0, since (s4) 6 S r /.
This contradiction shows that B — B",

REMARKS.

( 1 ) It follows easily from Proposition 2.8 that if R is any ring,
C an injective .β-module which contains a copy of every simple
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i2-module, and M any R-moάvλe, then M is imbedded in a natural way in
Hom^Hom^M, C), C). G. Azumaya has also obtained this result [2,
Prop. 6]. However, his other duality statements concern non-commuta-
tive rings with minimum conditions on both left and right ideals.

( 2 ) It is easily seen that if R is a commutative, Noetherian ring,
and C an injective iϋ-module such HoiϊiΛ(HomΛ(A, C), C) = A for every
cyclic JS-module A, then R is a finite direct sum of complete, local rings
Rt. And if C4 is the ^-component of C, and P* the maximal ideal of
Bi9 then C4 = E(BljPi).

COROLLARY 4.3. Lβί R be a commutative, Noetherian, complete, local
ring P its maximal ideal and E = E(RjP). Then :

( 1 ) Aw R-module M has ACC i/ αrcd owίi/ i / it is a homomorphic
image of Rn for some n.

( 2 ) An R-module M has DCC if and only if it is a submodule of
En for some n.

( 3 ) If X, Y are the categories of R-modules with ACC and DCC,
respectively, then the contravariant, exact functor Hom^ , E) establishes
a one-to-one correspondence Xt-> Y. In particular, Homi2(HomjR(lί,£'), E=M
for M in either category.

Proof.
( 1 ) This is true for any left-Noetherian ring.
( 2 ) By Theorem 4.2 every submodule of En has DCC. On the

other hand let M be a module with DCC. By Proposition 4.1 E(M) =
C i φ φ C n , where the C/s are indecomposable, injective iϋ-modules.
Let x Φ 0 6 M. Then there exists an integer j such that P3x = PJ+1x,
and so Pj c O(x) + Pj+\ This implies that Pj c O(x) [8, Prop. 4.2.1]
and thus O(x) is a P-primary ideal. It follows from Lemma 3.2 (1) that
Ci~E for i = 1, ••, n.

( 3 ) This follows immediately from (1), (2), and Theorem 4.2.
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