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1. Introduction. Recently, some combinatorial results by Andersen
[1, 2], Spitzer [5], and others have been applied quite successfully to
problems in probability theory. Many of these applications have given
rise to results which are entirely analytical in nature. For example,
Spitzer used a combinatorial theorem to find the distribution function
for the maximum of the partial sums S, S,, --+, S, for a sequence {X,}
of independent, identically distributed random variables. His final result
is a functional identity,

(L.1) Siea(t)s” = exp | S 0}
n=0 k=1 [{

where ¢,(¢) is the characteristic function of max (0, S, ---, S,) and where
¢(t) is the characteristic function of max (0, S;). One of our purposes
in this paper is to generalize (1.1) to an identity involving operators.
Our proofs involve more or less analytical methods and thus show that
the combinatorial methods hitherto employed can be avoided. We also
obtain certain results concerning max (X, Xj, --+, X,) when {X,, k > 0}
forms a stationary Markov process.

To illustrate the results we consider a simple example. Let N be
an » x n» matrix and let N* be the matrix formed from N by replacing
with zeros all elements of NN which are either on or below the diagonal.
Let N- = N — N*, and suppose that N+ and N~ commute. Now con-
sider the matrix equation

(1.2) PQ=c"=1+ N+ N2! + «en

where P-I (I is the identity matrix) has non-zero terms only above the
diagonal and where @ — I has non-zero terms only on or below the
diagonal. The properties of N* and N~ imply that

(1.3) P=e¢"" =]+ N* 4+ (N*P2! + «--,
Q=¢"" =I+N-+(N)2!+ ---

satisfy (1.2) and have the proper form for P and Q. In particular,
exp(N*) has the proper form for P by virtue of the fact that the product
of two matrices with non-zero elements only above the diagonal is a
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matrix of the same type. A similar statement holds for exp(N-). It
is not hard to see that P and @ are uniquely determined by (1.2). Thus
(1.8) is the unique solution of (1.2).

Suppose further that in some neighborhood of s = 0, N = N;s + N,s?
+ «.., where convergence of the infinite series of (n X n) matrices is
equivalent to convergence of the series of 4jth elements for all fixed ¢
and 5. Relations (1.3) may be rewritten as power series in s

(1.4) P= iﬂ Ps, Q= nioQ,,s"

which converge in some neighborhood of s = 0. It follows from the
form of P and @ that P, P, --- have non-zero elements only above the
diagonal while Q,, Q,, --- have non-zero elements only on or below the
diagonal. Certain problems will lead directly to an equation of the form
(1.2) where P and @ have the form (1.4). For example, in one case
we will have

oo Myc
(1.5) PQ = (I — sM)~ = exp{z e } .

k=1
Under the appropriate commutativity conditions it will follow that

(1.6) P = exp{kil(ﬂ/‘;:)+ s’“} , Q = exp {i(M,?),— s"} .
We see later that (1.6) is the operator analogue of Spitzer’s identity
(1.1) whenever the operator M has a special form.

Equation (1.5) is of particular importance in finding the distribution
of max(X, Xj, -+-, X,) when {X,, k> 0} is a Markov process with a
stationary transition probability matrix M. In this case the matrix M
in (1.5) is identified (see §4) with the stationary transition probability
matrix M. TUnfortunately, in the general Markov chain, the commuta-
tivity conditions which give (1.6) as the solution of (1.5) are not satisfied.
Some information can be obtained directly from (1.5).

In the next section we give general definitions and a few preliminary
results. The main theorems are proved in §3 and illustrated in §5.
A probabilistic interpretation of the theorems is contained in § 4.

2. Definitions and preliminaries. Let L, be the space of bounded
Baire functions (real-valued and Borel measurable) f(«) on the infinite
interval — o < x < . We will deal with bounded linear operators M
defined over L, which have the form

(2.1) Mf = Slf(?/)m(x ; dy)
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where m(x ; A) is a function of a real number 2 and a linear Borel
measurable set A such that

(i) for each fixed set A, m(x; A) is a Baire function of x,
(2.2) (ii) for each fixed =, m(x; A) is a signed measure in 4 on the
linear Borel sets.

The norm of the operator M is defined in the usual way in terms of
the norm ||f|| = max |f(x)] in the Banach space L,. Let pu(x; 4) and
v(x; A) be, respectivery, the upper variation and the lower variation of
the signed measure m(x; A) (see [4, page 122]) The boundedness of M
in (2.1) implies that

. |-t s du) + ot ap))

< max |7 o d) + (o5 dp)] = 1M < oo

—oo L p o0

—o0

We call m(x ; A) the kernel of the operator M. The notation which will
be used for integration with respect to a given measure is indicated in
(2.1). From now on when we call M a bounded linear operater of the
form (2.1), we imply that (2.2) is also satisfied. As a matter of fact,
with proper understanding of the notation, (2.2) follows directly from
(2.1). If M, and M, are bounded linear operators of the form (2.1) with
kernels m,(x; A) and my(x; A), respectively, then MM, is also of the
form (2.1) with kernel

(2.4) miz ; A) = S

_my(y 5 Aymy( ; dy) .
We now let [«] be the greatest integer less than or equal to .

DEFINITION 2.1. Set B,(x) = {y:y > [2"x + 1]/2"}. For any bounded
linear operator M of the form (2.1) with kernel m(x ; A), define

(2.5) m*(x; A) = lim m(x ; By(x)A) ,

and let M+ be the operator of form (2.1) with kernel m*(x; A). Finally,
set, M\~ =M — M*.

Almost directly from the definition of M* follow certain useful facts
which we list below. The bounded, linear operators M, M,, M,, etc. are
all of the form (2.1); I denotes the identity operator, which is also of
the form (2.1); and s, «, and B, are real numbers :

@ I~=1I,
() (M) =M, (i) (M7)"=M",
(v) (MiMy) = MMy, (v) (MiM:)™ = MiM;,
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(vi) IM+|| <Ml (vii) [|M-lI<IIMI,
(vili) (aM, + BM,)* = aM; + BMS

(2.6) (ix) if M, + M, + --- is a strongly convergent series of bounded,
linear operators of the form (2.1), i.e. if ||M,+---+M, || —0
as m, m — o, then T'= M, + M, + M, + .-+ is of the form
(2.1), and My + M} 4+ My + --- and My + My + M; + ---
are both convergent in the strong sense. Moreover, 7+ =
My + My + My + --- and T~ = My + M7 + M; + ---.

We prove only (ix) of (2.6). Let T, =M, + --- + M,, let t,(x;A) be
the kernel of 7,, and let y, be the characteristic function of a measura-
ble set A. If T'=1mT,, we note that ||T || is finite. Now

so that lim¢,(x; A) = t(x; A) exists uniformly in 4. If A = A, where
the A, are disjoint, then by the Moore double-limit theorem

2.7 kth(x; A, = }rim lim itn(x; Ay) =limt(x; A) = tx; A).
This shows that #(a; A) is a signed measure. Since Ty, = t(z; 4), a
simple argument shows that #(x; A) is the kernel of 7. Finally, since
WT+ —T:H<|T~—T,|l, it follows that T* = im T';. In terms of M,
this means T+ = My + M; + My + ---. A similar argument gives T~ =
My + My + M5 + ---.

It is interesting to note that the proofs of the main theorems will
depend only on the facts listed in (2.6). Before proceeding to the next
section we mention two special subclasses of operators which have the
form (2.1).

Case 1. Let M = (m;;) be a matrix for which uniformly in 4

(2.8) 2 lmy | < C

for some constant C. For any Borel measurable set A4 and any real
number « define

2.9) @ 4) {%Am“ x = 1 (an integer)
. m(x; A) =
0 x + [].

Condition (2.8) insures the existence of a bounded linear operator of
form (2.1) with the kernel m(x ; A) of (2.9). Certainly the operator given
by (2.1) in this case and the original matrix M can be identified. In
fact, L, could be replaced here by the class of bounded, doubly infinite
sequences {a;}, that is a, = f(k) (— o < k < =) where f(x) € L,. It will
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be convenient whenever possible to think of the matrix M rather than
the operator M. Note that the matrix M* is formed from the matrix
M by replacing with zeros all elements of M either on or below the
diagonal. Moreover, the matrix M* satisfies (2.6).

Case 2. Let m(x, y) be Borel measurable and integrable over the
plane and such that for some constant C

(2.10) [~ im@ vy <c

uniformly in . For any Borel measurable set A and any real number
wx, define

(2.11) m(x; A) = Sm(:v, Yy .

A

Then, (2.1) gives a bounded, linear operator M which has the form

(2.12) M= i, gy,
and M* becomes simply

2.13) M= S“’ - m(z, y)dy
with a similar formula for M-.

3. The theorems. When we say a sequence of operators {M,} con-
verges to an operator M, we mean it converges in the strong sense,
that is || M, — M || — 0 as »n becomes infinite.

Lemma 3.1. Let {K,}, {P.}, and {Q}, k=1,2,3, -+, be sequences
of bounded, linear operators of the form (2.1) for which Py = P, and
Q; = Q. For any |s| < s, let

P:I-{—Pls-}-_PZSZ_{_ cee
(3.1) Q=I+Qs+ Qs+ -+,
K=I+Ks+ K+ «--

converge. If PQ = K for all |s| < s, then {P,} and {Q.} are uniquely
determined by {K,}.

Proof. Equating coefficients of like powers of s on the two sides
of the equation PQ = K we obtain

(3'2) kﬁ“ Plch—-k = Kn .
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If P,P,.--,P,_, and Q,, Q,, ---, @,-;, have been uniquely determined
by K, K,, -+, K,_,, then we may write (3.2) as

(3.3) P+ Q,=J,

where J, is determined uniquely by K, K,, ---, K,. Since P, = @; = 0,
we have P, = J;} and @, = J, and the proof follows by induction.

The next theorems give results in the direction of solving equations
which involve the operation ‘“ *’’. Later we give a probabilistic interpre-
tation of these equations. As we will see, in certain cases the equations
may be solved completely in terms of the known operator M.

THEOREM 3.1. Let M be a bounded, linear operator of the form (2.1).
Define the sequences {P.}, {Q}, {R:}, and {T} by

Po:Qo:Iy Ro:To:Oy
(34) Pn+1 = (MPn)+ ’ Qn+1 = (QnM)— y
Tn+1 = (MPn)_ ’ Rn+1 = (QnM)+ ’

and let the generating functions of these sequences be

P'———iPnS", Q:iQnsny

(3.5) n=0 n=0
R=SRs, T=3>Ts",
n=0 n=0

Then, the series’ in (3.5) all converge for |s| < 1/|| M ||, and, moreover,
they are the umique bounded, linear operators of the form (2.1) which
satisfy.

(3.6) P=1+4 s(MP)*, T = s(MP)~,
Q=1+sQM)", R=s(QM)".

Proof. Let P be a bounded, linear operator of the form (2.1) which
satisfies the first equation of (3.6). By iteration we may write P =
I+ Ps+ Ps*+ -+ + P,s* + L,, where L, = s(MP)* and L, = s(ML,_,)*
and where P, P,, ---, P, are determined in (3.4). Property (vi) of (2.6)
implies that || L, || < |s|* || M ||* || P || which approaches zero as n becomes
infinite for all |s| < 1/|| M||. Thus, the solution (if it exists) of the
first equation of (8.6) is unique. Let {P,} satisfy the conditions of (3.4).
By property (vi) of (2.6), it follows that || P,|| < || M||*. For |s| < 1/|| M|,
the power series in (3.5) for P converges and by property (ix) of (2.6)

(8.7) P—1I= S P, s = S (MP,)*s"* = (i MPns"“>+ — s(MP)* .
n=0 n=0

n=0

The proofs of the other parts of the theorem follow similarly.
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THEOREM 3.2. Let |s| < 1/||M|| and let P and Q be the bounded,
linear operators of the form (2.1) which satisfy the equations of (3.6). Then,

3.8) PQ = (I — sM)™
sP'=P(QP—I)*, s@ =(QP—1)Q,

where ' indicates derivative with respect to s.

Proof. From (3.6) we find that || Q|| <1/(1 — |s|||M|]) and
NERI <[slIMI|QI<TIslIMI/Q—1Isl][M]]).

Thus, for |s| < (1 — |s|||M|)/l| M|, the operator (I — R)~"'is a bounded
linear operator of the form (2.1) and has a convergent power series
expansion in s. But @ =I— R + sQM, or equivalently, (I — R)™'Q =
(I — sM)~*. Similarly we show that (I — T)~'is a bounded linear operator
of the form (2.1) which has a convergent power series expansion in s for
[s|<@—1|stiMID/IIMIl, and that P(I — T)~ = (I — sM)™". Applying
Lemma 8.1 in the common interval of convergence of P, Q, (I —T)"
and (I — R)™', we deduce that

(3.9) P={U—-R)", Q=UI-T)".

and hence that PQ = (I — sM)~'. Since P, @, and (I — sM)" all converge
for |s| < 1/|| M ||, we have finally PQ = (I — sM)™* for all |s| < 1/|| M ||.
To show the second half of (3.8), we consider (PQ) = P'Q + PQ =
(I — sM)*M. It follows that

(3.10) (PQ) — s(PQ) = (I — sM)™>(I — sM) = PQ .

Multiplying on the left of (3.10) by P-' and on the right by Q' (take
sl <@ —|s|IIMI)/II M) we obtain

(3.11) QP — s(P'P' + Q' Q) =1.

By properties (iv), (v), and (ix) of (2.6), it is not hard to see that
(P'P)*=P'P' and (Q Q™) =Q'Q"". From (3.11) we find sP' = P(QP—I)*
and sQ" = (QP — I)"Q. These latter equations can certainly be extended
to hold for all |s| < 1/|| M||, and the theorem is proved.

THEOREM 3.3. Let {a,} be a sequence of real nwmbers such that
S + As® + a,8® 4+ + - has a positive radius of convergence. Let M be &
bounded, linear operator of the form (2.1) such that (M*)*M = M(M")*
for all k=1,2,8,«+-. Then for |s| such that

(3.12) SlalIMIF]s] <1,
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there is a unique pair of bounded linear operators P and Q of the form
(2.1) which satisfy

P=1+ [f‘, (akMkSk)P]+ ,
(3.13) k=1
Q=I+[@S @hrs | .
Moreover, the solution of (3.13) s

pP= exp{[— log (I — gla,cM"S’“)T} ,

Q = exp {[— log (I — ,i}lakM"s"):'—} .

(3.14)

Before proving Theorem 3.3 we mention a result of particular interest
which occurs when both Theorems 3.1 and 3.3 apply, i.e. when a, =1
and @, =a;= +-- = 0.

COROLLARY 3.1. Let M be a bounded linear operator of the form
(2.1) such that (M*)*M = M(M*)* for all k=1,2,8,---, and let the
sequences {Py} and {Q,} be defined as in (3.4). Then, for all |s| < 1/|| M ||,
the P and Q of (3.5) have the form

(3.15) P = exp { iﬁMf}fsk} . Q= exp { igﬁi‘)"sk} .

k=1 k k=1

Proof of Theorem 8.3. Let |s| satisfy the condition of (3.12), and
let

L="Y aM's",
(3.16)

N = log(l — iakM"s") = i L¥|k .
k=1 k=1

Both L and N are bounded linear operators of the form (2.1). The
commutativity of (M*)* and M together with property (ix) of (2.6) im-
plies that L*L = LL*. Again by property (ix) of (2.6) and the second
relation of (3.16), we deduce that N*N = NN*. In terms of N the first
equation in (3.13) may be written in the form

(3.17) P=1+[(I— e")P]*.

Using that (exp(— N*))* = exp(— N*) — I and that (exp(IN-))* = 0, it is
easy to show by substitution that P = exp(— N*) is a solution of (3.17).
To show that this solution is unique we apply Theorem 3.1, where the
operator ‘“ M’ of Theorem 3.1 is now
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(3.18) i{akM"sk
k=

and the number ‘“‘s’’ of Theorem 3.1 is now 1. In a similar manner
we can show that the @ of (8.14) is the unique solution of the second
equation in (3.13). This finishes the proof.

Before proceeding into the next section, we point out some implica-
tions of the theorems above. In Theorem 3.3, the operators P, Q, M, M+,
and M- all commute. Thus, the order of the factors @ and M* or of
P and M* in (3.13) is unimportant. In the s interval determined by
(3.12), there is a power series expansion in s for the solutions of (3.13).
The coefficients in this power series satisfy

PO = Qu =1 y
(319) P, = (a,MP, + a,M*P,_; + =-+ + Gy M),
Quir = (a’AQnM + QM+ e + Wi MY

If the M in Theorem 3.1 is a matrix of finite order, the P and @ of
(3.5) can be conveniently evaluated in terms of subdeterminants of the
matrix I — sM (See example 3, §5).

4. Probabilistic interpretation. In this section we give a probabi-
listic interpretation of the sequences {P}, {Q.}, {R:}, and {T,} of
Theorem 3.1. Let m(x; A) be a function of a real number = and a
linear Borel measurable set A such that

(i) for each fixed set A, m(x; A) is a Baire function of w,

(4.1) (i) for each fixed =, m(x; A) is a probability measure in A on
the linear Borel measurable sets.

Let {X,, k> 0} be a stationary Markov process for which m(x; 4) =
P{X,. € A|X, = z} is defined and satisfies the conditions of (4.1) (see
[3, pp. 18, 26-27]). We deal here only with processes of this type. By
(2.1) and (2.3) each Markov process under consideration has associated
with it a bounded linear operator M, with |[|M || = 1. We call this the
transition probability operator of the process.

Two subcases of special interest may be mentioned. The first one
is that of a discrete Markov chain (countable state space). In this case
the transition probabilities form a matrix M = (m;;). The connection
between the matrix M and the function m(x; A) has already been dis-
cussed in §2, case 1. The second type process of interest is the one
for which the joint distributions have densities. In this latter case, there
exists a transition probability density function m(z, y), and the connec-
tion with m(x; A) is given in § 2, case 2.

For convenience in stating the next theorem we introduce a random
variable L,.
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L,: the index k(=0,1,2, ---) for which max(X,, X, ---, X,)

(4.2)
= X, and max(X,, X, -+, Xi-1) < X .

Note in particular the meaning of the statements L, = and L, = 0.
In Theorem 4.1 and thereafter we will have occasion to refer to the
kernel associated with a given operator of the form (2.1). If the operator
is denoted by some capital letter, the kernel will be denoted by the
corresponding small letter.

THEOREM 4.1. Let {X,, k > 0} be a stationary Markov process with
transition probability operator M, and let {P,}, {Q}, {B:} and {T)} be
defined as in (3.4). Then, if the right hand members of (4.3) are defined
and satisfy (2.2), we have

(@5 A) = P{L, =n, X, e A| X, = =},

t(@; A)=P{L,=0,X,¢e A| X, = a},

rx; Ay=P{L,=mn,L,.,=0,X,e A|X, =2z},

to(x; A) = P{L, =0, max(X;, ---, X,.) < X,,, X, € A| X, = @} .

(4.3)

Proof. We prove only the first one of the relations in (4.3). Our
proof is by induction. Since P, = I, it follows that

lxe A

(4.4) po(x;A)=P{XoeAm:w}={o C
X .

Now assume the first relation of (4.3) is true for the case » and set
By(x) = {y: y>[2"x + 1]/2"} for N=1,2,8, ---. Then,

P{Ln+1 =N + 1, Xn+1 (S] BN(Q?)A l Xo - CIJ}
= |7 P(max(X,, -+, X)) < X, X € Bu@A| X, = 2}
=S{@:mLe&MM&=ﬂHXmm&=M

- S Pz ; By(@)Aym(z ; d2) .

From (2.4) we see that the last term of (4.5) is the kernel of MP, eval-
uated at « and By(x)A. Set A, = AN(x, ), and note that for any
n > 0,

P{L,=nXeA|X,=2} =P{L,=n,X, e A, | X, =z} .

Thus, by Definition 2.1 and (4.5)
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Paei(@ s A) = lim j Du(2 3 By(@)4, m(a ; de)
N —o0 — 00
(4.6) = Hm P{Ly.; = n + 1, Xouy € By(@)A| X, = @}

N—oo

=P{L,,,=n+1X,,,e A, | X, = «}
=P{L,,,=n+1,X,,,e Al X, =2z},

and the proof follows by induection.

Combining the first and second of the relations in (4.3) we get certain
additional information about max(X,, ---, X,). In fact, we can evaluate
the generating function

(4.6) S P{max(X,, «++, X.) € 4| X, = a}s"

in terms of the kernels of P and Q. Let S = (—o, «). Then, by
Theorem 4.1
P{max(X,, ---, X,) e A| X, = }

= fﬁ;P{Ln — k,max(X,, -+, X)) € A| X, = a)

@n =8| Pllic=01X = s}P(L = &, X.e dy| X, = 2}

ll

S v Spies )

Multiplying through (4.7) by s* and summing over s =0,1,2, --- we
obtain

@8 | aw; Sl dp = 3 Plmax(X, -+, X,) € A X, = a}s’

Relation (4.8) takes on a particularly simple form if ¢(y; S) is in-
dependent of y (See example 2, §5). In fact, in this special case we
have the following Corollary to Theorem 4.1 :

COROLLARY 4.1. Let {X,, k > 0} be a stationary Markov process with
transition probability operator M and let P and Q be defined as in Theorem
3.1. Furthermore, let q(x; A) be the kernel of Q, and let @ be the
bounded, linear operator of the form (2.1) determined by

(4.9) o@; A) = S P{max(X,, ---, X,) € A| X, = a}s" .
n=0
Then, of q(x; S) = q s independent of w,

(4.10) O = qP.

Relation (4.10) is an operator analogue of Spitzer’s identity (1.1).
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5. Examples. We now give applications of the theorems to some
particular examples.

ExaMPLE 1. Let the operator of form (2.1) be (See case 1, §2)

a 0 b
(5.1) M = ((1; — c)d/b c d ,
0 0 a
so that for £ =1,2,3, ---.
a 0 ka®'b
(5.2) M= (a° —c)dfp ¢ kat'd
0 0 a®

It is not hard to see that (M*)*M = M(M*)* in this case so Corollary
3.1 applies here. The solution of P = I + s(MP)* for |s|<1/|| M| <
1/la} is

(’ 0 0 a* ' ]
f‘, s 0 0 a*'d
= 1o o o

5.3
52) ( 0 0 bs/(1—as) l 1 0 bs/(L—as)
=exp,| 0 0 ds/1—as) |, =0 1 ds/(1— as)
L 0 0 0 [ 0 0 1

In a similar manner it follows that the solution of @ = I + s(QM)~ for
sl <1l M| < 1min(lal, |c]) is

1/(1 — as) 0 0
(.4) Q=] (a— c)ds/b(l — as)(l — es) 1)(1 — cs) 0
0 0 1)1 — as)

These solutions are easily checked by substitution.

ExampPLE 2. Let {X.}(k =1,2, 38, ---) be a sequence of independent,
identically distributed random variables with a common density funection
flx), and let S, =X, + --- + X,. If T, is any random variable inde-
pendent of {X.}, and if we set T,=S,+T,(n=1,2,3,---), then
{T,,n > 0} is a stationary Markov process with transition probability

(5.5) m(@; A) = P{Ty. e A|T, = o} = Lf(y — @)y .

The conditions (4.1) are satisfied by m(x; A) (as well as by the right
hand members of (4.3)) in this case so we so may talk about the
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transition probability operator M associated with {7,, » > 0}. This oper-
ator has the form

5.6) M= " sy aay

Using (2.4) and (5.6) it is not hard to deduce that M* also has a kernel
with a density. In fact,

(5.7) ue =" fty - @y,

where f(x) is the k-fold convolution of f(x) with itself.
By (5.6), (56.7), and (2.4) we see that the kernel of (M*)*M has a
density of the form

68 | sw - et - ade = sy — 0w - adw.

We now make the change of variable z =% 4+ # — w in the second in-
tegral of (5.8) to get

69 [ rw-ase-ad= fiw- 2.

The second term of (5.9) is the density of the kernel of M(M*)*. Thus,
(M*)*M = M(M*)* in this case and Corollary 3.1 applies. If P and @ are
as defined in Theorem 3.1, then for |s| < 1 (that is || M || = 1)

- o (MF)*s* p s M’“) s*
(5.10) P—-exp{k% ) } Q= exp | }

IIM

Since (M*)~ has a kernel with a density of the form f,(y — ), we
deduce that @ must have a kernel with a density of the form ¢(y — ).
This means

G1)  ae;S) = | aw—ady = exp| 5 =0 ]
is independent of « and Corollary 4.1 applies. Spitzer’s identity (1.1)
is found in this case from (4.10) by operating with each side on the
function ¢(y) = exp(ety). In fact, in the notation of (1.1)

Oy = otz 3 S” 1o P{max(T,, - -+, T,) € dy | Ty = a}s"
n=0J—oco

(5.12) - ES ¢ P{max(0, 8, - -+, S,) € dy}s"

n=0

— eibx go(bn(t)sn .
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Now in the special case of the exponential function g(y) = ',
(5'13) (M’“)*(M”)*ge““-v = [(M")+g@~“1][(M7z)+ge—uz] .
From (6.10), we find'

Py = ¢"= exp {i (Mk)+99jis"}
k=1 k
(5.14)

= ¢'t® exp[i S}; Sm e'"P{S, € dy}] .
0

k=1

Putting (5.11), (5.12), and (5.14) into (4.10), it follows that
(1.1) S o.(£)s" = exp [i sk r ¢ P{max(0, S,) € dy}] .
n=1 k=1 Q

In passing we note that the existence of a density is convenient
but not necessary for the derivation of (1.1) from (4.10). In general,
we can replace (5.5) by

(5.15) m(z; A) = P{(X, + =) e A},

which is Borel measurable in x for each fixed set A. The conditions
(4.1) are satisfied and the derivation continues in the obvious manner.

ExaMPLE 8. Let M be a matrix of finite order. We denote by D
the subdeterminant formed from the determinant of I — sM by crossing
out all but the first k¥ rows and columns. Moreover, D,(i; ) (1 <4,5 < k)
will denote the cofactor of the 4jth element in D,. Finally, for any
matrix N, let N(k) denote the matrix formed from N by crossing out
all but the first £ rows and columns,.

Let {P,}, {Q.}, P = (p;), and Q = (g,;) denote the matrices defined
by (3.4) and (3.5) when Theorem 3.1 is applied to M. We may also
apply Theorem 8.1 to M(k). It is not hard to show by induction that
{P,(k)}, {Q.(k)}, P(k), and Q(k) are the matrices defined by (3.4) and
(3.5) when Theorem 3.1 is applied to M(k). Thus, by (3.8)

(5.16) P(k)Q(k) = [I(k) — sM(k)]™ .

Equating elements of the last row (the kth row) in the matrix product
of (5.16), we find

(5.17) Qs = Di(5 ; B)[ D I=12-k.

Using (5.17) and the elements of the last column of the product in (5.16),
it follows that

(5.18) D = Di(k 5 9)[Dy -1, 1=1,2 -+ k.

1 The referee points out that (5.14) holds if and only if g is the exponential function.
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Let M be the transition probability matrix of a stationary Markov
chain {X,, k¥ > 0} with states o, < a, < +++ < ay. From (4.3), we find

(5.19) P{L,=n,X,=a;| X, = a} = Dyj; )/D;-s, G <3,
P{LnZO’XnZaJIXOZai}:Di(j;i)/Di’ (%Sj)'
REFERENCES

1. E. Sparre Andersen, On the fluctuaiions of sums of random variables, Math. Scand.
1 (1953), 263-285.

2. ———, On the fluctuations of sums of random variables 11, Math. Scand. 2 (1954),
195-223.

3. J. L. Doob, Siochastic process, New York 1953,

4. P. R. Halmos, Measure theory, New York 1958.

5. Frank Spitzer, A combinatorial lemma and ils application 1o probability theory, Trans.
Amer. Math. Soc. 82 (1956), 323-339.

UNIVERSITY OF MINNESOTA






PACIFIC JOURNAL OF MATHEMATICS
EDITORS

Davip GILBARG

Stanford University
Stanford, California

R. A. BEAUMONT

University of Washington
Seattle 5, Washington

A. L. WHITEMAN
University of Southern California
Los Angeles 7, California

E. G. StraUs

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH A. HORN
C. E. BURGESS
M. HALL

E. HEWITT

R. D. JAMES
M. S. KNEBELMAN

V. GANAPATHY IYER

L. NACHBIN M. M. SCHIFFER
I. NIVEN G. SZEKERES

T. G. OSTROM F. WOLF

H. L. ROYDEN K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

OREGON STATE COLLEGE

UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
THE RAMO-WOOLDRIDGE CORPORATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may

be sent to any one of the four editors.

All other communications to the editors should be addressed

to the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be

obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and

December.
are available.

The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
Special price to individual faculty members of supporting institutions and to

individual members of the American Mathematical Society: $4.00 per volume; single issues,

$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,

2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 8, No. 4 June, 1958

Richard Arens, The maximal ideals of certain functions algebras . . . ....... 641
Glen Earl Baxter, An operator identity . ..............ccciiiiiiiiiiaan.. 649
Robert James Blattner, Automorphic group representations ............... 665
Steve Jerome Bryant, Isomorphism order for Abelian groups . ............. 679
Charles W. Curtis, Modules whose annihilators are direct summands. . . . . .. 685
Wilbur Eugene Deskins, On the radical of a group algebra. ............... 693
Jacob Feldman, Equivalence and perpendicularity of Gaussian

PFOCESSES . o o et e e e e e e e e e e et e 699
Marion K. Fort, Jr. and G. A. Hedlund, Minimal coverings of pairs by

IIPlesS . . o 709
L. S. Gal, On the theory of (m, n)-compact topological spaces . ............ 721
David Gale and Oliver Gross, A note on polynomial and separable

777 735
Frank Harary, On the number of bi-colored graphs . ...................... 743
Bruno Harris, Centralizers in Jordan algebras . .......................... 757
Martin Jurchescu, Modulus of a boundary component .................... 791
Hewitt Kenyon and A. P. Morse, RUAS .. ...c.veeineiiiiiiie e, 811

Burnett C. Meyer and H. D. Sprinkle, Two nonseparable complete metric
spaces defined on [0, 1]. ... ... i
M. S. Robertson, Cesaro partial sums of harmonic series
John L. Selfridge and Ernst Gabor Straus, On the determi
by their sums of a fixed order .. ...................|
Annette Sinclair, A general solution for a class of approxi
problems ....... .. ... . ...
George Szekeres and Amnon Jakimovski, (C, 00) and (
SUMMALION . . . vi ittt
Hale Trotter, Approximation of semi-groups of operators.
L. E. Ward, A fixed point theorem for multi-valued functio
Roy Edwin Wild, On the number of lattice points in x' +




	
	
	

