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AUTOMORPHIC GROUP REPRESENTATIONS

ROBERT J. BLATTNER

1. Introduction In this paper we investigate certain representations
of groups as * -automorphisms of rings of operators. More particularly,
we are interested in finding conditions on the group, representation, and
ring which guarantee the production of outer automorphisms of the ring.
The exhibition of outer automorphisms has been considered before, nota-
bly by Singer in a paper [9] which intensively analyses the automorphism
group of one of the finite factors constructed by von Neumann. Although
we also shall be concerned with finite rings, our results do not overlap
Singer's.

Segal, in [8], introduced the notion of skew distribution over a real
Hubert space §. He singled out one in particular, the Clifford distribu-
tion over ξ>, which admits a representation Γ of the orthogonal group
^(£>) of § into the automorphism group of the ring 51 associated to
the distribution. Section 2 of the present paper gives (mostly without
proofs) a variant of Segal's construction of 21 and Γ, which is more
suitable for our calculations. Section 3 states and begins the proof of
Theorem 1, which completely classifies (vis a vis innerness) the auto-
morphisms of 31 arising from Γ. The proof is completed in § 4 and 5.

In § 6, we introduce the notion of a continuous automorphic group
representation and show that any locally compact group satisfying the
second axiom of countability may be represented as outer automorphisms
of the Clifford distribution ring. Finally, Theorem 2 shows that any
continuous automorphic representation of an open simple Lie group on
a finite ring is essentially outer.

We shall make free use of the standard theory of operators and
rings of operators as found in [6] and [3]. For the theory of measurable
operators and gage spaces see [7].

The author would like to thank I. E. Segal for bringing the problems
solved in this paper to his attention.

2 Preliminaries* Let § be a real Hubert space, X the tensor
algebra over ξ>, $ the ideal generated by elements of the form x®x— (x, x)l.
Set (£ = £/$, the Clifford algebra over £> with respect to the quadratic
form x -> (x, x), and * = the main anti-automorphism of (£ = the anti-
automorphism of © arising from the anti-automorphism of % which sends

#1 (8) (X) %n -+ %n (X) * (X) Xl
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666 ROBERT J. BLATTNER

As usual, we will consider ξ> as embedded in (£.

Any central linear functional θ on (£ has the property that
0(χι xn) = 0 whenever {χ19 •••,»„} are an orthogonal set in φ.
Since those elements, together with 1, span E, there is (up to a multi-
plicative factor) at most one such ί on K. Let us produce one. Follow-
ing Chevalley [2], we let @ = the exterior algebra over ξ>, multiplication
indicated by Λ, and ^ = the algebra of endomorphisms of @. ξ> is
considered embedded in g. For each a? e £>, let 4 be the unique anti-
derivation of (g such that <5X2/ = (a?, y)l for all j/ e ξ>, and let ^ be the
operator of left multiplication by x in @. The mapping a; -> ^ + dx of
§ into ^ T extends to a homomorphism f of S into ^#. We let
τ(%) = Ψ(u)l for ^ e (£. It is easy to show that τ is a one-to-one linear
map of (£ onto @.

Now the inner product (. , •) on ξ> extends to a real Hubert inner
product, also called ( , •), on ©. We set θ(u) =z (τ(u), 1). It is clear that
0 is linear and that 0(1) = 1. We shall show that θ(v* u) = (τ(u), τ(v)).
This will establish the centraϋty of θ and wϋ] also show that (uf v) =
θ{v*u) is a Hubert inner product on K making τ into an isometry. It
suffices to prove the above when u = x1 a?^ •••?/,. and v — a?x χn

zx zs where {^, •• 9xn,y1, , yr, ^, , ^} (w, r, s possibly 0) form
an orthonormal set in £>, since the u(x)v for all such pairs u, v span
£ <g) K. But

β( v* % ) = 0(^g . . . ^a?n . χxxλ xnyι yr) ^ θ(zs . zλyλ . j/r)

= «β Λ Λ «i Λ 2/i Λ Λ 2/r, 1) = 1 or 0

according as r = s = 0 or not. Thus

φ * v) = ( α h Λ •-- Λ X n Λ V i Λ --- Λ y r , X i Λ --- Λ X n Λ Z i Λ •-- Λ z 8 )

a^ desired.

Let 3) be the complexification of (£ and extend the inner product
on & in the usual way to a (complex) Hubert inner product on ®. Let
$ be the completion of £>. * may be extended fay conjugate Ήnearity
and closure to be a conjugation on $. We note that if {βj is an ortho-
normal basis for £>, then {eh eh-- eir}{iλ < i2 < . . . < i r r = 0,1, .)
is an orthonormal base for ffi, where the indices i have been linearly
ordered in some fashion. We shall adopt the notation eΛ, A a finite set
of indices, to mean eh eH. . eif where %<•••< ir and A = {ilf , i } .
Conventionally eφ = 1.

For any element w e ® , let L'ή be the operator with domain 3) defined by
L'Jα = ^α, α e S , It is easily seen that L'ή, x α unit vector of φ, is an
isometry of © onto ®. Since Φ is spanned algebraically by products
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of the form xλ xn, xt unit vectors in ξ>, we conclude that L'ύ9u e ®,
is a continuous operator on the normed linear space ®. Thus (ί£, ©, *)
forms a Hubert algebra, the left ring 31 of which is a factor of type
II, when fg is infinite dimensional, which is the only case we shall con-
sider [8]. Let S3 be the algebra of all bounded elements of (&, ®, *).
La and Ra, a e S3, will denote the closure of the left and right multipli-
cation operators respectively by a on the domain S3. The maps a -> La

and a -> Ra are an isomorphism and anti-isomorphism of 33 onto 21 and
2Γ respectively. For x e S, we define L̂  as the operator with domain
S3 such that L'xa — Rax, a e S3. Then Lx is defined to be (14*)*, the
notation agreeing with the above when x e S3. Lx is always measurable
with respect to 21 [7].

3. The representation Γ. Any orthogonal transformation U o$ ξ>
extends canonically to an automorphism of % which leaves $ invariant
and thus induces an automorphism of (£, which we denote Γ(U). Γ(U)
is defined by

Γ(U)(xι xn) = (Ux1 Uxn) for a?χ, , xn e £> .

Clearly Γ{U) commutes with *. The functional θ o Γ(U) is again a
central linear functional on (£ and Θ(Γ(U)1) = 0(1) = 1. Hence ί o Γ(U) = Θ
so that /'(ί/) is an isometry on ©. The automorphism /χ?7) then ex-
tends to an automorphism of (®, ®, *) which leaves ® invariant. /̂  is
clearly a faithful representation of the orthogonal group of ξ> into the
automorphism group of (β, ©, *). β will denote the automorphism Γ( —I).
β2 = /, so that S is the direct sum of two subspaces $ + and' $~ defined
by Ωx = x or — x according as x e B+ or ffi~.

Γ(ί7) is an mwβr automorphism if there exists a unitary element
u e S3 such that Γ(U) = LURU*. Since 2ί is a factor, % is determined up
to a multiplicative constant of modulus 1 by Γ(U). Now

-I)) = ΩLURU*Ω = (ΩLUΩ)(ΩRU*Ω)

Hence βw = ^ , /ί a constant. Clearly Λ = ± 1 so that either u e B+ or
u e $~. In the former case Γ(Z7) is called even, in the latter, odd.
Those inner automorphisms /"XΪ7) which are even form a subgroup of
the group of all inner automorphisms of the type Γ(U).

In order to classify the automorphisms Γ(U) according to the above
categories, we introduce the following notation : Let ^ + be the set of
orthogonal transformations U on ξ> such that / — U is of Hilbert-Schmidt
class and whose eigenspace belonging to — 1 has even dimension let
^ " contain all those U such that / + U is Hilbert-Schmidt and whose
eigenspace belonging to + 1 has odd dimension. Set S7Q = 2^+ U g^~.
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THEOREM 1. Γ(U) is inner if and only ifUe %?Q. If Γ(U) is inner,
it is even if and only if U e & + .

Let {eL}ieJ be an orthonormal basis of §, where J is a totally ordered
index set, and let U be a fixed orthogonal transformation. Set/ 4 = Uet

and Vt = LTiRu.

LEMMA 1. The subspace 8 of vectors left invariant by all the Vt has
dimension — 0 or 1. // dim 8 = 0, Γ(U) is outer if dim 8 — 1, 8 con-
tains a unitary element u e S3 such that Γ(U) — LURU*.

Proof. Suppose Γ{U) = LuRu*y u a unitary in S3. Then Γ(U)ei —
LuRu*ei or ft — Ueι = uetu*, all i. Thus ftuet = u or F4% = u, all i.
Therefore dim8 ^ 1 if Γ(U) is inner.

Next suppose dim 8 ;> 1 and let 0 Φ x e 8. Then i?/ έ#* = Le%x% so

that Lί x* = LR x*. For any element a e S3, L^ x*a = RaLe.x* = Le Rax*

= LeL'x*a so that LLQ X* = LeL'x*. Similarly Z4 x* = L'xX
r

fi. Taking ad-

joints, we have

(L'Le x,)* a (L;,)*L * = LxLe. and (Li ..)* 3 (L'f/(Li,)* = L, Lx .

Therefore, using to indicate strong product [7], Lx Le. = Lft Lx.
Again taking adjoints, Le Lx = L* L r.. This implies L r Lx L* =
Lx - L* - Lf. that is, the positive measurable operator A.LJ commutes
with each Lfi. Thus every spectral projection of LxLξ commutes with
each Lf . But the {Lf} are a self-ad joint set of generators for Sί and
Sί is a factor. Therefore each spectral projection of LXL* is either 0
or /, whence LXL^ = λl, λ a positive constant. A similar argument
shows that L*LX = λl. Thus we have shown that Lx is bounded and
that λ~ι!2Lx is unitary so that λ~Ύl'ιx is a unitary element in S3 Π 8.

Let u — λ~ιl2x. Then fiUβi = u, and hence ue%u% — f^ Therefore
the automorphisms Γ(U) and LURU* agree on the {β4} which are a set
of generators for (β, ®, *) that is, Γ(U) — LURU*. Suppose now that
0 Φ y G 8 also. Then y e S3, yy% — y*y — μl, μ a positive constant, v —
μ~ll2y is also a unitary e S3 Π 8 and Γ(U) — LυRυ*. But this implies that
v — ζu, ζ a constant that is, y = μll2ζu. Hence dim 8 = 1.

DEFINITION 1. For any orthogonal transformation U on ξ>, the sub-
space 8 of $ is called its characteristic subspace.

It is clear from Lemma 1 that the characteristic subspace depends
only on U and not on the choice of a basis {et} for £>.

4. The determinant condition. In this section we will show that if
Γ(U) is an even inner automorphism, then / — U is Hilbert-Schmidt,
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This will be achieved in a series of lemmas. We adhere to the notation
of §2.

LEMMA 2. Let U be an orthogonal transformation on ξ> and let P
be the projection on its characteristic subspace. Then

lim det (2-1(/ + U)ek, et) = (PI, 1) .
A k,l€A

(Here " lim " means limit according to the set of finite subsets A of J,
directed upward by inclusion. The determinant is expanded with respect
to the total order on the elements of A.)

Proof. We first introduce some notation : fΛ will denote Γ(U)eA

Pi = the projection on the invariant subspace of Vi (see Lemma 1) if
A - {ily , ir}(ix < • < ir) then PA = Ph • . Piγ.

Since the Vι mutually commute, the PA are projections which mutally
commute. Clearly P — strong-lim4 PA. In addition, V\ — I, all i.
This imples that P% = 2'\I + Vt) that is, Pta = 2-\a + fae,) for a e 33.
Iterating this, we calculate that

where r is the cardinality of A. Hence (PA1, 1) = 2~r ]
Fix B <Ξ A and suppose B = {λ, , js}(jL < < j s ) . Then

(βfl, Λ) = (Φ*), τ(Λ)) (see § 2) = ( ^ Λ Λ eJgf fh Λ /,,)

= det (eΛ, f) — det (efc, ZJβJ — det (Z7βfc, βz) .
k,lβB k,l€B k,lβB

Hence

( P A 1) - 2" r

BΣdetjZ7β f c, O ,

which we recognize to be

det (2-1(/ + C/K, βθ .

Passing to the limit on A, we have the lemma.
Note that the lemma shows that lim^ det kjieA(2~χi + U)βk, et) depends

only on U and not on the particular choice of basis. Hence we may
write det (2"1(/ + U)) without fear of confusion. This motivates the
following.

DEFINITION 2. An operator T on ξ> will be said to have a determi-
nant if, for every choice of an orthonormal basis {eJ i e J (J totally
ordered), limAdetk>ιeA(Tek, et) exists and is independent of the choice of
basis. We write det(Γ) for the common limit. (Cf. the treatment in [5].)



670 ROBERT J. BLATTNER

To make use of the conclusion of Lemma 2, we must prove a short
preliminary result. For any operator T, σ(T) will denote the spectrum
of T.

LEMMA 3. Let S be a self-adjoint operator on ξ> and let {Sa} be a
net of self-adjoint operators and {Q*} a net of projections (same index
set) such that:

( 1 ) S = strong-lim* Sa

( 2 ) Sa = QJS*QΛ and / = strong-lim* QΛ.
Then σ(S) S topological lim inf* <r(SΛ\Q*&).

Proof. Let λ e σ(S) and ε > 0 be given. Since <S is self-ad joint, we
can find a unit vector x e £> such that \\(S — λl)x\\ < ε/4. We may then
find an index aQ such that a>aQ implies H(£α—S)a?|l < ε/4 and HQrtα;[[ ̂  1/2.
Then \\(SΛ - λl)x\\ < εfi, whence \\(S0 - λQa)(Qax)\\ < ε/2. Set yΛ =
Q«vl\\Q€&\\ Then yΛ is a unit vector in QJQ. We have shown that
\\(Sa — λQa)ya\\< ε. This implies that <r(Sa\QΛlQ) contains a point within
ε of λ, a > aQ.

We shall apply this to the situation in the following lemma.

LEMMA 4. Let the operator Tonfe have a determinant det(Γ) = c Φ 0
and suppose \\T\\ ^ 1. Then I — T*T is of trace class.

Proof. Chose a basis {et}i€j9 J totally ordered. We shall take as
our index set the set of all finite subsets A of J. QA = the projection
on the subspace of ξ> spanned by the eif i e A. Clearly QA -•/strongly.
Set S=T*T,SA = QAT*QATQA, and TA = QATQA/QA$. Then SA-+S
strongly and SJQj® = T%TA. Lemma 3 asserts that σ(T*T) g topological
lim inf̂  σ(ΓJΓκ).

Now det(ΓJΓ^) = (det Γ^)2 so that the hypotheses of the lemma assert
that lim^ d e t ( T ^ ) = <? Φ 0 and |[T*T|1 ^ 1, implying each \\TΪTA\\ ^ 1.
Clearly σ(Γ*Γ) and <r(TϊTA) S [0,1]. Given ε < 1, let N(A, e) = card-
inality of σ(ΓίΓ^) Π [0, ε) and N(ε) = cardinality of σ(Γ*Γ) n [0, ε). Choose
a set Ao such that det(T*7^) ^ 2"V for A a Ao. Since det(ΓίΓ^) is the
product of the eigenvalues of T^TAy we must have that N(A, ε) S
log2-V/logε for A^A0. Therefore N(ε) ̂  log 2'V/log ε. This shows
that <r(T*T) is pure point spectrum except possibly for the value 1 and
that <r(T*T) has only 1 as a cluster point.

§ is the direct sum of the eigenspaces of T*T. Choose a new
basis, again called {ej ί e j, adapted to this direct decomposition of ξ>.
We use the notation of the previous paragraphs (with respect to the
new basis). Each et is an eigenvector belonging to an eigenvalue λt of
T*T. For every finite subset A of J we have
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iβA

But

Γ * Γ | Q ^ - T*TA = QAT*(I - QA)TQA\QJQ ,

a positive operator on QAξ>. Now the determinant of the sum of two
positive operators on a finite dimensional Hubert space is greater than
the determinant of either operator. Hence

ίβA l ~

As A t , YlίEA λi i since 0 ^ Λt <* 1 for all i e J. It follows that IL Λ*
exists. Moreover, Π« h ^ c3 > 0 since lim^ det(T^TA) = &. Therefore
Π« ̂ i converges absolutely, so that Σ*(l ~ *̂) < °° 5 ^hat is, / — Γ*Γ is
of trace class.

LEMMA 5. Let Γ(U)LURU*, u a unitary operator of S3 Π St+. Then
I ~ U is Hilbβrt-Schmidt.

Proof. Fix a basis {<?Jί6J, J totally ordered. Each e% is a self-
adjoint unitary element of S3. Hence for any finite subset A of J, eA

(notation as in § 2) is a unitary in S3. For each et we define Ue. to be
that orthogonal transformation on ξ> which leaves et invariant and mul-
tiplies the other elements of the basis by —1. It is easy to see that
Γ(Ue.) = Le.Re.. In general, we define Ue to be Ue. •••Z7e. where

i ί i A \ T

A = {ilf . . . , ir}(ii < < ir). Then Γ(Uej = LeJteA* and UβAeg?+ or
^ " and /^(ί/e ) is even or odd according as A has even or odd cardi-
nality. It is clear that all the V&A are self-adjoint.

Let Γ(U) = LURU*, u a unitary element of S3 Π $ + . Then u = Σ^ ^ ^ ,
the summation being extended over the A of even cardinality. Pick
a λB Φ 0. Then % = ^ ( Σ ^ Λ>A), λ'A 's different constants, Setting v =
Σ^ ^^> v is a unitary in S3 Π ̂ + such that (v, 1) = λ'φ = λB Φ 0. Set
y - ^ ? 7 . Then

Γ(V) = Γ{Ueβ)Γ{U) = (LeBMeB)(LuRu*) = LβB*uRCβji.u> = L,β,* .

Since UeBe ^ + , I - U will be Hilbert-Schmidt if and only if / - F is.
Thus we may assume without loss of generality that (u, 1) Φ 0.

If P is the projection on the characteristic subspace of U, our as-
sumption implies that (PI, 1) Φ 0. Setting T = 2-χ(I + Ϊ7), we conclude
from Lemmas 2 and 4 that / — T*T is of trace class. This says that
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is of trace class. Hence 27 - U - £7* = (/ - Z7)*(J - U) is of trace
class so that 7 — U is Hilbert-Schmidt.

5. Completion of proof*

LEMMA 6. If U e ^ + [respectively gf"], then Γ(U) is an even [odd]
inner automorphism.

Proof. We use the notation of Lemma 5. Let U e S^+ [respectively
5/~~]. Then the eigenspace 3Jί of Z7 belonging to the eigenvalue —1 [+1]
is of even [odd] dimension. Let {et}ieΛ be a basis for 3B. Then Z7e 6 g^ +

[2?'] . Set V=UejU. It is easily seen that F e g " + and that the
eigenspace belonging to —1 has dimension 0. If the lemma can be
proved for V, it will follow for U since U — Ue V will then be the
product of an even [odd] and an even inner automorphism. Thus we
may assume without loss of generality that f/e ^ + and that U has no
eigenvectors belonging to — 1 .

£> is the direct sum of the eigenspaces of (7 — Z7)*(/ — 17). These
spaces are all finite dimensional except possibly that belonging to 0.
These subspaces all reduce U and on the 0-eigenspace U = I. Using the
classical reduction of an orthogonal transformation on a Euclidean space
and remembering that U has no eigenvectors belonging to — 1 , we see
that § is the direct sum of a countable number of 2-dimensional sub-
spaces $Qn{n = 1, 2, •) and a subspace £>0> each of which reduces U, and
such that U is irreducible on every φ n and U = I on ξ>0. Let { β j i e j be
a basis for £> adapted to this direct decomposition. With respect to this
basis

(
sin θn cos β

o < β n < π

(where the basis elements of § have been suitably ordered). We readily
calculate det (2"1(7 + U)) to be

For any operator T, we denote its Hilbert-Schmidt norm by \\T\\2.
Then

117 - Z7||l - Σ IK* - U)\§n\\l = 4 Σ (1 - cos 0n) = 8 Σ f
n n n \

Hence

1 + cos θn
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converges absolutely. By Lemma 2, this says that (PI, 1) Φ 0, where
P is the projection on the characteristic subspace of U. Thus P Φ 0
and Γ{U) is inner by Lemma 1. Finally, Γ(U) must be even. In fact,
suppose Γ(U) = LuRφy u unitary in S3 Π Sϊ~. Since P is the projection
on the subspace generated by u and since l e S + , we conclude P I = 0,
a contradiction.

LEMMA 7. // Γ(U) is inner, then U e γy\.

Proof, Suppose Γ(U) is odd. Let eγ be a unit vector in ξ>. Then
Γ(Uβι) (notation as in Lemma 5) is odd. It follows that Γ(UeU) is even,
so that / — UeU is Hilbert-Schmidt. Since / + UH is Hilbert-Schmidt,
so is 1 + U = (J + Ue) - Ueβ ~ UHU).

Let now Γ(U) be even [odd]. We know that / — U [respectively
I + U~\ is Hilbert-Schmidt. Suppose that the eigenspace of U belonging
to — 1 [ + 1] is of odd [even] dimension. Then — U e ^"[respectively
gf+] so that Γ(-i7)is also inner by Lemma 6. Therefore Ω = λΓ(U*(—U))
is inner. We shall be through if we can show that Ω is outer.

Suppose then that Ω is inner., Since / — ( — / ) is not Hilbert-Schmidt,
Lemma 5 implies that Ω must be odd. Let Ω = LURU*, u unitary in
S3 Π ίϊ~. Picking a basis {e j i e j , J totally ordered, for ξ>, u = ^ λAβA,
the summation being extended over all finite A g J of odd cardinality.

We let S be the characteristic subspace of — / and adopt the notation
of Lemmas 1 and 2. We have Ptu = u for each i e J . Now

PiU = Σ *A
A

Since A has odd cardinality, eieAeι = eA or —eA according as i e A or
i 0 A. Hence λA = 0 unless i $ A for all i that is, all λA — 0, which is
ridiculous. This concludes the proof of Lemma 7 and, with it, Theorem 1.

6. Automorphic representations of topological groups* The map-
ping Γ is a representation of the orthogonal group ^p(ξ>) of φ as auto-
morphisms of the Hubert algebra (ξ), D, *). Every automorphism of the
Hubert algebra gives rise to an automorphism of its left ring 21 via
the isomorphism b <-> Lb of the bounded algebra 33 and 2ί. Conversely,
every * -automorphism of 2ί gives rise to one of the Hubert algebra
(by the uniqueness of the normalized central trace on S3) and the cor-
respondance is univalent. Henceforth we identify these two types of
automorphisms.

Let S/ be the * -automorphism group of 21. If a e s>f, T e 21, T*
denotes the image of T by α. We have then

Lϊw = LΓ(w)δ = Γ(U)LbΓ(Ur
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for U e £?(§) and b e 33. Now it is easy to check that the maps
U -+ Γ(U)b, 5 e ® , are continuous in the norm of ® when £?(§) is given
the strong operator topology (as henceforth it shall be). Hence Γ is
continuous from ^(ξ>) to the unitaries of B in the strong topology. It
follows that, for each T e 31, the map

is continuous from <£?(«£) to 21 in the strong, and hence the weak
topology. Γ is thus a continuous automorphic representation, in the
following sense.

DEFINITION 3. Let SI be a ring of operators, J%f its * -automorphism
group, G a topological group. A representation p of the abstract group
G into s/ is called a continuous automorphic representation on%\ί, for
every T e 31, the map g -> T^g) of G into 2ί (in the weak topology) is
continuous.

This continuity restriction is the weakest that can reasonably be
imposed on p and is independent of the particular spacial representation
of 3ί. We note that if p is continuous in the above sense, then g —• ?7p(flr)

is strongly continuous. In fact, let gΛ~-> g. Then

{Tp{g^ — τ p ( g ) ) * (Tp(9^ — Tp{9))

— ( T ^ T ) P ( 0 ^ — (T*)p(9<χ)Tp(o:> — (27*)p(»f l»)j7p(1/) + (T*T)P<:9) -• 0 w e a k l y .

Let now G be a topological group, τ a continuous representation of
G into £?(&), 31 the left ring of our Hubert algebra, and s/ its auto-
morphism group. Any α e j y which leaves § invariant will be called
special, p = JΓ o r is then a continuous representation of G as special
automorphisms. Conversely, let /o be a special continuous automorphic
representation on 31. Then p — Γ o r, where r is a representation of the
abstract group G into ^(£>) (merely restrict ^ to φ). Let α, δ e £>.
Then ^ -> (τ(g)a, b) — (Ifa

{g)l, b) is continuous so that τ is continuous.
With this in mind, we see that Theorem 1 has the following easy

consequence.

COROLLARY. Let G be a locally compact group satisfying the second
axiom of countability. Then G has a special continuous automorphic rep-
resentation p such that if p(g) is inner, then g — e.

Proof. Let ττ be a faithful continuous representation of G into
some orthogonal group ^(£>:), & a real Hubert space of countable
dimension e.g., the left regular representation of G (real functions).
Let ^r be the cardinality of a basis for ξ>. Then ξ) is the ^-fold direct
copy of ξ>! so that the direct sum of ^- copies of τl9 call it r, can be
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taken as a representatation of G into ^(ξ>) Since ^r is infinite, it is
clear that τ(g)ε% if and only if τ(g) = I that is, g = e. Set p = Γ o τ.

It can also be deduced from Theorem 1 that for any special continuous
automorphic representation p of an open simple Lie group on 21,
p-1 (inner automorphisms) is central. But this will follow from the more
general statement in Theorem 2.

THEOREM 2. Let G be an open simple Lie group, 2ί a finite ring of
operators, and p a non-trivial continuous automorphic representation of G
on 21. Then p(g) is inner only if g is central.

The essential step is Lemma 8 below. It, together with an exten-
sion of a result of Kadison and Singer [4] to continuous projective
unitary representation (for definitions, see below), will imply our theorem.
Let 91 be any ring of operators, s/ its automorphism group, S/o the
subgroup of inner automorphisms, and "?/ the group of unitary operators
in SI. The map π : <2S-+sfo defined by T^ = UTU*, Ue W, T e 21,
is a homomorphism onto J>/o whose kernel is the center ^ of ff. If
^/ is given the strong operator topology, then π is a continuous auto-
morphic representation. We set ^ — ̂ /\{6? with the topology induced
from ^/ and, with some abuse of language, call & the protective
unitary group of 21 any continuous group representation into & will
be called a continuous projective unitary representation on 2ί. π clearly
induces a continuous isomorphism π of & onto s/o.

Let τ be a continuous projective unitary representation of the
topological group G on 21. Then p — π o τ is an inner continuous auto-
morphic representation of G on 21. Lemma 8 gives a partial converse.

LEMMA 8. Let G be a locally compact group satisfying the second
axiom of countability and let 21 be a ring of operators on a separable
Hilbert space £). Let p be an inner continuous automorphic representation
of G on 21. Then p is induced by a continuous projective unitary repre-
tation on 21.

Proof. Let 2ίx be the unit sphere of 21 in the weak topology. Ŝ
is a compact separable metric space (since ξ> is separable). G is a complete
separable metric space and bears its left Haar measure μ. Let {TJ be
a dense sequence in 2IX, and let @ be the set of all (g, U) e G x 2It such
that U is unitary and UTi = Tfg) U for all i. The argument of Lemma
2(b), section 6, § 2, Chapter II of [3] shows that @ is a Borel, and hence
an analytic, subset of G x %. Let ζ be the canonical projection of
G x % on G. Since p is inner, C(@) = G. By Appendix V oί [3], there
exists a measurable map (in the sense of Bourbaki [1]) g -> Ug of G into
2Xx such that (#, E7,) e &, g e G.
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Thus we have a measurable map g -> Ug of G into <%S in the weak,
and hence strong, topology such that !Γ?(ί7) = UgTJJ*, all i. Taking weak
limits of {ΓJ, we have Tp(g) = UgTU* for all T e SIX, and hence in St.
Let φ be the canonical projection of *%/ on £P and set τ(g) = ψ(Ug).
We know that g -> p(g) = π(Ug) = π(r(#)) is a representation. Since Sr is
univalent, r is a representation. Since ψ is continuous, r is measurable
from G into ^ . Hence there exists a compact K^G such that μ(i?) > 0
and τ I K is continuous. Using the representation property of r we see
easily that τ \ KK"1 is continuous. But KK'1 is a neighborhood of e in
G [10]. Therefore τ is continuous, as desired.

Proof of Theorem 2. For any ring of operators, the group of inner
automorphisms is invariant in the full group of automorphisms. Let G
be an open simple Lie group and C its center. Since every proper
abstract invariant subgroup of G is contained in C, the theorem asserts
the non-existence of non-trivial inner continuous automorphic represen-
tations of G on finite rings. Suppose, on the contrary, that p is such
a representation on the finite ring Si on the Hubert space £>. We shall
first show that ξ> may be assumed separable.

For eace geG choose a unitary Ug e 31 such that UgTU* = Tp(9\ Te SI.
Let {gt} be a dense sequence in G and let 33O be the * -algebra (with
unit) generated by the UOt over the complex rationale. 33 o is countable.
Let 33 be the weak closure of 33O, a finite ring of operators. Clearly
each p(gi) leaves 33O, and hence 23, setwise invariant. The continuity
of p then implies that p(g) leaves 33 setwise invariant, geG. Set
°id) — Pie) I S3- Then σ is a continuous automorphic representation on
S3 and each σ(^) is inner by construction. The argument of the last
paragraph shows that σ-(#) is inner, geG.

We next assert that Uσ

g

(0^Ug* Φ /for some i,j. Otherwise UgUg} —
UOjUgi9 whence pfagj) = pig^d, all i,j. Taking limits, we see that p
maps the commutator subgroup of G (=<r itself) into the identity, a
contradiction. Let then x e ξ> be a vector not invariant under all the
Uσ

g^Ug*. Set SI equal to the closure of ?bx and P equal to the smallest
central projection of 33 such that Px = x. $ reduces every T e 33 and
the homomorphism T -> T \ K of 33 onto 33 | ̂  is faithful and onto on the
direct summand 33P of 33. Since each σ(g) is inner, each leaves the
center of 33 elementwise invariant. Therefore σ induces by restriction
an automorphic representation σ of G on 33P and hence, via the above
isomorphism, on 33 | S. Clearly σ is continuous and inner. It is also
non-trivial, since a e i Lastly, 33O# is a countable dence subset of $.

We thus see, returning to the first paragraph of the proof, that
we can assume ξ> separable. Lemma 8 then implies the existence of a
non-trivial continuous representation of G into the projective unitary
group & = ^7<ίf of 31. We follow now the methods of [4]. Since
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ξ> is separable, SI is countably decomposable and hence carries a faithful
normal positive (finite) central trace ω. The space 21 is then a pre-
Hilbert space in the norm || T \\l = ω(T*T) and the unitaries of SI form
a topological group %ζ in the metric d(U, V) — \\ U — F| | 3. The identity
map of ^/ onto % is continuous, hence so is the identity map of &
onto &i— ^ι\%7. Therefore G has a non-trivial continuous representa-
tion into &i. The metric g on %ζ is both left and right invariant.
Hence &ξ has a metric similarly invariant. The Lemma in [4] shows
that G has arbitrarily small invariant neighborhoods of the identity, an
impossibility. This contradiction proves Theorem 2.
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