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In a recent paper I introduced the following generalization of the
notion of compactness :

A topological space X is (m, m)-compact if from every open covering
{0} (tel) of X whose cordinality card I is at most n one can select a
subcovering {Oi;} (Ged) of X whose cardinality card J is at most m.

A similar definition was introduced earlier by P. Alexandroff and
P. Urysohn [1]. If no inaccessible cardinals exist between m and n the
two definitions are equivalent. The present definition has the advantage
that in applications the question of the existence of inaccessible cardin-
als does not generally come up. The basic results on (m, n)-compact
spaces were published by me in [8] and a detailed study of generalized
compactness in the Alexandroff-Urysohn sense was made by Yu. M.
Smirnov in [14] and [15]. The special case m = o and n = c was first
studied much earlier by C. Kuratowski and W. Sierpinski in [13] and
[10]. These spaces are generally known as Lindelof spaces.

The present paper contains four types of results on (m, n)-compact-
ness which were obtained since the publication of [8]. The problems
and the principal results are stated in the beginnings of the individual
Sections 1, 2, 3, and 4.

The following notations will be used : 4 and A’ denote the closure
and the interior of the set A. The symbols O and C stand for open
and closed sets, respectively. ¢ denotes the empty set. N, is an arbi-
trary neighborhood of the point x and O, denotes any open set con-
taining . Filters are denoted by &, nets by (x,) (d € D) where D
stands for the directed set on which the net is formed. The set of
adherence points of & is denoted by adh & . Similarly the set of
adherence points of a net is denoted by adh(x,). The set of limit points
is denoted by lim & and lim (w,), respectively. A topological space X
is called normal if for any pair of disjoint closed sets 4 and B there
exist disjoint open sets O, and O, such that 4 £ O, and B < O,.

Uniform structures for a set X will be denoted by 2. The symbol
Ulx] stands for ¢ the vicinity U e 7/ evaluated at x e X” so that
Uzl =ly: (#,y) e U]. The composition operator is denoted by o and
80 U o V consists of those ordered pairs (z,z) € X x X for which there
is aye X with (x,y) e U and (y,2) e V.
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1. Characterization of (m, n)-compactness by filters and nets. A
topological space X is compact if and only if every filter .# in X has a
non-void adherence. A similar characterization of compactness can be
given also in terms of nets (x,) (d € D) with values in X. As a matter
of fact it is sufficient to prove only one of these propositions. For one
can associate with every filter &% in X a net (x,) (d € D) with values
in X such that adh & = adh (z,) and lim & = lim(x,) and conversely
given any net with values in X there is a filter %4 in X having the
same adherence and limit as (x,) (d e D). The equivalence of filters and
nets relative to adherence properties is due to R. G. Bartle [3] and the
equivalence relative to both adherence and limit properties is discussed
in [9].

It is natural to ask whether (m, n)-compactness can be character-
ized in term of filters and nets. We shall prove here that such charac-
terization can be given both in terms of filters and nets. Namely for
every pair of cardinals m < n a class of filters called (m, n)-filters can
be selected such that X is (m, n)-compact if and only if each of these
filters has adherence points. Similarly we can define the class of (m, n)-
nets with values in X such that X is (m, n)-compact if and only if
adh (¢,) is not void for every one of these nets (x,)(d € D). This in-
dicates that there is a natural correspondence between the class of
(m, n)-filters and the class of (m, n)-nets and one can expect that these
two classes exhibit the same adherence and limit phenomena. However
it will be seen that this is not the case. Hence if we consider filters
and nets in a topological space X not as whole classes but in their finer
classification then their behavior relative to convergence is not the same.

In the nexi definition we use the concept of *‘m-intersection pro-
perty ”’. A family {C,}(¢ € I) of subsets of a set X is said to have the
m~intersection property if every subfamily of cardinality at most m has
a non-void intersection. If every finite subfamily of {C;}(: € I) has a
non-void intersection we say that the family has the finite intersection
property or I-intersection property.

DEeFINITION 1.1. A filter & is called an (m, n)-filter if it has the

m-intersection property and if it has a base <# of cardinality card
F < n.

If & is a filter which has a base of cardinality at most » then
# is called an n-filter or an (1, n)-filter. If the filter % has the m-
intersection property we say that & is an (m, «o)-filter. A (1, «)-
filter means a filter in the usual sense.

DEFINITION 1.2. A directed set D is called an (m, n)-directed set if
every subset SS D of cardinality card S < m has an upper bound in
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D and if card D < n.

If every subset S&D of cardinality card S <m has an upper
bound in D or in other words if for every S with card S < m there is
a de D such that s < d for every se .S then D will be called an m-
directed set or an (m, oo )-directed set. If card D < n we speak about
a (1, n)-directed set. A (1, «)-directed set means a directed set in the
usual sense.

DEFINITION 1.3. An (m, n)-net (x,)(d € D) with values in a set X
is a function # defined on an (m, n)-directed set D whose funection
values z, belong to the set X.

If the directed set D is linearly ordered we call (x,)(d € D) a line-
arly ordered (m, n)-net.

It is known that filters and nets exhibit the same convergence and
adherence phenomena. The following lemmas show that the same holds
for the more restricted class of (m, oo )-filters and (m, c)-nets:

LEMMA 1.1. Let X be a topological space and let (x )(d € D) be an
(m, n)-net in X. Then there exists an (m, n)-filter % in X having the
property that adh % = adh (x,) and lim & = lim (x,).

Proof. For every de D we define B, =1[xs:d < é]. Since D is
an (m, n)-directed set the family <2 = {B,;(d € D) has the m-intersec-
tion property and card <% < n. Let # be the (m, n)-filter generated
by the filter base <%. One shows that & satisfies the requirements.

LeMMA 1.2. Let F be an (m, «)-filter in « topological space X.
Then there is an (m, «)-net (x,)(d e D) with values in X and having the
property that adh (x,) = adh & and lim (x,) = lim #

Proof. Let us consider the set D of all ordered pairs d = (x, F)
where x € FFe 4 We say that d, < d, if F,2 F,. Under this ordering
D becomes an (m, «)-directed set. In fact if d, = (a,, ;) for 1€ I and
card I < m then d, < d for every d = (x, F') where x € F'= NF,e Z
An (m, o )-net can be defined on D with values in X by choosing x, =«
for every d =(x,F)e D. Let zelim ¥ and let N, be arbitrary.
Then there is an F'e & such that S N,. Hence if ¢ = (¢, @) satis-
fies d < 0, or in other words if @ S F' then ;s = £ e @S FFES N, and so
x i8 a limit point of (x,)(d € D). Conversely let x e lim (x,) and let NV,
be given. Then there is a d = (x, F') such that x; ¢ N, for every o
satisfying d < 6. Using this for every o6 = (¢, F)(§ ¢ F') we see that
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xs = £ e N, for every £ e I' and so F= N,. This shows that x € lim .
and lim (z,) = lim .

Now we suppose that z € adh &7 so that N, N F'#¢ for every neighbor-
hood N, and for every Fe ¢ Given N, and d = (x, F') we choose
§in N, N F and consider 6 = (§, F'). Then d <6 and ;s =&6e N, and
so xeadh(x,). On the other hand if xeadh (x;) then given F'e & and
N, there is a d e D such that d =(x, /) <6 =(50) and a5 N,. In
other words z: =£6e @ NN, EF NN, and so F and N, intersect for
every F'e 7 and for every N, e _/ (x). This proves that x € adh &
and adh (x,) = adh F

Using the same reasoning similar results can be derived for (m, n)-
filters. For instance we can easily prove that if X is an (m, n)-filter
in a space X and if card F' < n for some F'e % then there is an (m, n)-
net (x,)(d € D) with values in X and having the property that adh (z,) =
adh % and lim (z;) = lim .4 If the hypothesis card F' < n is dropped
we can find only an (m, n)-net satisfying adh &% 2 adh (x,) and lim & &
lim (x;). None of these results will be used in the sequel.

We can easily find examples where only the strict inclusion
adh & Dadh (z;) can be realized. For instance let X be a non-coun-
table set and let X be topologized by the discrete topology. If & con-
sists of the single element X then & is an (m, n)-filter for any pair
of cardinals m and n. Moreover adh % = X and so the cardinality of
adh # is greater than that of % On the other hand if (a,)(d € D) is
a (1, w)-net with values in X then the cardinality of adh (z,) is at most
w. Hence adh % Dadh (x,) for every (1, w)-net in X.

This example shows that (m, n)-filters and (m, n)-nets in arbitrary
topological spaces have different adherence properties. Nevertheless the
following theorems show that both (m, n)-filters and (m, n)-nets can be
used to characterize (m, n)-compactness.

THEOREM 1.1. A topological space X is (m, n)-compact if and only if
every (m, n)-filter in X has a non-void adherence.

Proof. In [8] we proved that X is (m, n)-compact if and only if every
family {C,} of closed sets C,< X having the m-intersection property
also has the n-intersection property. We apply this result: Let X be
(m, n)-compact and let <Z with card <2 < n be a filter base for an (m, n)-
filter % in X. Then the family {B} (B € <7 ) has the m-intersection
property and so it has the n-intersection property. Since card &% < n
this implies that N B = adh <7 is not void. Conversely if X is not
(m, m)-compact then there is a family <7 of closed sets with card <7 < n
and having the m-intersection property but with total intersection void.
Thus &7 is a filter base for an (m, n)-filter % and adh & = ®.
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THEOREM 1.2. A topological space X is (m, n)-compact if and only if
every (m, n)-net with values in X has a non-veid adherence.

Proof. If there is an (m, n)-net with values in X whose adherence
is void then by Lemma 1.1 there is an (m, n)-filter without adherence
points and so by Theorem 1.1 the space X is not (m, n)-compact. Next
we prove that if every (m, n)-net with values in X has a non-void ad-
herence then the same is true for every (m, n)-filter in X. By Theorem
1.1 this will prove that X is (m, n)-compact. Let &7 = {B,}(d € D) be
a filter base for an (m, n)-filter % in X and let card D <n. We order
D by using inverse inclusion of <#: d, < d, if B, 2 B,, Under this
ordering D becomes an (m, n)-directed set. We form a net (z,)(d € D) by
choosing x, in B,. By hypothesis (x,)(d € D) has an adherence point .
Given any neighborhood N, and any d € D there is a 6 = d such that
x5 € N,. Hence N,NBs +# ¢ and so by Bs< B, also N, N B, + ¢. Con-

sequently « € B, for every d € D and so z € adh .7

2. Uniformizability and (m, n)-compactness. This section contains
the generalization to infinite cardinals of the following results :

A space X is countably compact if and only if every infinite set
S< X has an accumulation point in X.

If X is a metric space such that every infinite set SS X has an
accumulation point in X then the open sets of X have a countable base
and so X is a Lindelof space.

Countable compactness will be replaced by (m, m’)-compactness where
m is an infinite cardinal and m’ denotes the first cardinal succeeding m.
If m denotes the symbol 1 then 1’ is defined to be . Instead of ae-
cumulation points we must consider m-accumulation points :

DEFINITION 2.1. A point = of a topological space X is called an m-
accumulation point of a set SE X if for every open set O, contwining x
we have card (O, N S) > m.

If m is 0, 1 or o then the relation card (O, N S) > m means that
O, N S is not void, not finite or not countable. If card S < m the set
of its m-accumulation points is void. In particular if S is countable
then it has no w-accumulation points and if S is finite then it has no
l-accumulation points. The notion of an m-accumulation point is related
to Fréchet’s ‘‘ point d’accumulation maximé’’ (see [7]).

The metrizability condition can be rephrased as follows: There is
a uniform structure %/ which is compatible with the topology of X and
has a countable structure base. This hypothesis will be replaced by
another which requires the existence of a structure base of cardinality



726 1. S. GAL
at most m.

DEFINITION 2.2. A uniformizable space X is said to be of uniform
cardinality » if there is a base %; for a uniform structure Z com-
patible with the topology of X whose cardinality card %4 is at most u.

Every pseudo-metric space is of uniform cardinality o. If for every
uniform structure % compatible with the topology of X and for every
base 75 of 7% we have card %; = u where u is a uniform cardinality
of X then we say that X is of uniform cardinality exactly #. The exact
uniform cardinality of a pseudo-metric-space is at most o ; it can also
be 1.

The first result which we mentioned in the beginning is a special
case of

THEOREM 2.1. Let m be an infinite cardinal and let m' denote the
next cardinal. Then a topological space X is (m, m')-compact if and only
of every set SS X of cardinality card S > m has an m-accumulation
point in X.

Proof. First we prove the necessity of the condition. If X con-
tains sets of cardinality greater than m which have no m-accumulation
points in X then we can select a set S of cardinality exactly m' such
that it has no m-accumulation points in X. Let & denote the set of
all those sets 'S S whose cardinality is at most m. For every e X
there is an open set O, such that O,N S e % We define O, for every
Fe 7 as O, = U[O,: O,NS=F]. The family {O,}(F'e &) is an
open cover of X whose cardinality card & is m'. Since every subfamily
of cardinality at most m would cover at most m points of S the family
{Oy}(F € ) cannot contain such subfamilies. Hence X is not (m, m')-
compact.

The deeper part of the theorem is the sufficiency of the condition.
Here we need the axiom of choice both in the form of Zorn’s lemma
and also in the form of the well-ordering theorem. Suppose that X is
not (m, m')-compact. Let {O,}(# € I) be an open cover of cardinality
card I = m' which contains no subcovers of cardinality at most m. Let
the index set I be well ordered. Since X is not (m, m/)-compact there
is a point @, € X such that z, ¢ O,. More generally for every positive
integer » > 1 there are points ,, -+-,x, such that =, ¢ O, U +-- UO,_;
for every j < n. In general we consider segments J of I such that a
segment (or net) of points (x;) can be selected so that ;¢ U[O,: 7 < j]
for every jeJ. Let & denote the family of ordered pairs (J, (x,))
where J denotes a segment of I and (x,) a segment of points associated
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with J. We order .o~ as follows: (J;, (x)) = (J,, (y,) if J,&J, and
xz; =y, for every j ¢ J,. Clearly every linearly ordered subfamily of .o~
has an upper bound in % and so by Zorn’s lemma & has a maximal
element, say (J, (x;)). The maximality of (J,(x,)) implies that J is a
limit ordinal and {O,}(j e J) is a cover of X. We claim that the set
S = {x,}(j € J) has no m-accumulation points in X. For if x e X then
z € O, for some j e .J and so

card (O, NS) Zcard [, : 1 <] < m .

Finally card S = m’ because card S = card J and {O,}(j € J) is a cover
of the not (m, m’)-compact space X.

THEOREM 2.2. If the uniformizable space X is of uniform cardin-
ality w ond if there is an m such that every set SS X of cardinality
card X > m has a non-void derived set then the open sets of X have a
base of cardinality at most max (m, u).

Proof. Let 24 = {U} Dbe a base of a uniform structure % for
X and let card 24 < u. We may suppose that every U e %4 is sym-
metric. We fix a vicinity U e %; and consider systems of points {z;}
(¢ € I) having the property that Ulz] N Ulx,] is void for every 4 =+ j.
Let .o~ be the set of all such systems {x;}(¢ € I). The set .o~ is not
void for such systems exist at least in the case when the index set I
consists of a single element. We order . by inclusion : {x;} < {y,} if
{z;,} S {y;}. Every linearly ordered subset &~ of .97 has an upper
bound in & namely U[{x}: {w;} e <} is in & and it majorizes
every {x;} € &4 Hence Zorn’s lemma can be applied to show the ex-
istence of a maximal system which we denote by {x,}(z € I). If
ye UlU[w]: ¢ €I] then by the maximality Uly] N Ulx,] is non-void
for some 7 ¢ I. Hence by the symmetry of U we have ye (Uo U)x,].
Therefore the family {(Uo U)[w;]}(s € I) is a cover of the uniform space
X.

Let S = {x])(@ € I) so that card S = card I. We show that the
derived set of Sis void and so card I < m : Let V be a symmetric vicinity
in % such that Vo VS U and let & be an arbitrary point in X. If
2 € Viz,;] for some ¢ € I then V[z]=(Vo V)[z;] < Ulx,] and so V[z]NS
is void or contains at most the point x,. If = ¢ V], for every iel
then by the symmetry x,¢ V[x] for every 4el and so V[x]NS is void.
It follows that card I < m.

The family {(Uo U)[z,]}(¢ € I) is a cover of X and so the interiors
of the sets (Uo Uo U)lx;J(¢ € I) form an open cover of X. Its cardin-
ality is at most m. Hence the cardinality of the union of these families
for every choice of U e 7, is of cardinality at most max (m, u). Since
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for every vicinity Ve % there is a Ue %, such that Uoc U UZS V
these sets form a base for the open sets of X.
The results of this section can be combined to obtain the following

THEOREM 2.3. If X is a uniformizable space of uniform cardinality
w which is (m, n)-compact for some cardinals m and n where m < n then
X is (m, o )-compact or (u, «)-compact according as m = u or u > m.

Proof. By Theorem 2.1 every set S of cardinality greater than m
has an m-accumulation point and so its derived set is not void. Theo-
rem 2.2 implies the existence of a base of cardinality at most max (m, u)
for the family of open sets of X. Hence the space X is (max (m, u), «)-
compact.

This proof did not make use of the full force of Theorem 2.1. It
is sufficient to know for instance that every set of cardinality card S>m
has a l-accumulation point whenever the space X is (m, n)-compact for
some % > m. This weaker statement can be proved without using the
axiom of choice or the well ordering theorem. Nevertheless the axiom
of choice is used in the proof of Theorem 2.2.

3. Dense sets, (m, n)-compact spaces and complete structures. It is
knownthat if X is a compact topological space then every net with values
in X has a non-void adherence and conversely if the adherence of every
net with values in X is not void then X is compact. We can raise the
following question : Suppose A is a dense subset of X and that adh (x,)
is not void for every net (x,)(d ¢ D) with values in 4. Does it follow
that X is compact ? We shall prove a theorem a special case of which
states that for regular spaces the answer is affirmative. The result can
be formulated also in terms of filters: Every filter % in A is a filter
base in X. If the adherence af the filter generated by the base & is
not void we say that the filter % has a non-void adherence in X. It
was proved earlier that if X is regular and if every filter in the dense
set 4 has a non-void adherence in X then X is compact. (See [4] p. 109
Ex. 1 a.)

The same type of question can be raised when the net (2,)(d e D)
is subject to additional restrictions: For instance we can assume that
every countable net with values in 4 has a non-void adherence in X
and ask whether this implies that X is countably compact. It will be
proved that the conclusion holds under the assumption of normality and
countable compactness.

As is known a family <& of sets S, & X is called a locally finite
system if every x € X has a neighborhood N, which meets only finitely
many sets of the family <& We shall deal only with locally finite
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systems which consist of open sets.

DeriNITION 3.1. A topological space X is called m-paracompact if
every open cover {O;}(7 e I) satisfying card I < »n admits a refinement
{Q,}(4 € J) which is a locally finite system.

Clearly every topological space is 1-paracompact and we agree that
co-paracompactness means paracompactness in the usual sense. Using
this definition we can state the following

THEOREM 3.1. Let X be a normal n-paracompact space which con-
tains a demse set A such that every (m, m')-net with values in A (or every
(m, m')-filter in A) has a non-void adherence in X. Then X is (m, n)-
compact.

Since every regular paracompact space is normal in the special case
when n = + o normality can be replaced by the formally weaker re-
quirement of regularity. However this is not a real improvement of
the result. If m = 1 then by our agreement m’' = w and so if X is count-
ably compact then every (m, m')-net with values in X has a non-void
adherence. Hence as a corollary we have the following result due to
R. Arens and J. Dugundji [2]:

COROLLARY. If X 1is regular, paracompact and countably compact
then X is compact.

Since every pseudo-metric space is paracompact (see [17]) the corol-
lary is a generalization of the following known result: If the pseudo-
metric space X is countably compact then it is compact. A weaker
form of the corollary was obtained by Miss A. Dickinson who proved
in [5] that every uniformizable space with a unique structure is countab-
ly compact and a paracompact space with a unique structure is compact.

In the proof of the theorem we shall use the following known
lemmas :

Lemma 3.1. If {S;}(eel) is a locally finite system of sets them

A short proof can be found for instance in [16].

LEMMA 3.2. Let {0,}(i € I) be a locally finite open cover of the
normal space X. Then there is an open cover {Q.}(¢ € I) of X such that

Q,S 0, for every i c L
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Proofs of this lemma can be found in [12], [9], [6] or [11],

LeEMMA 3.3. If {w}(i e I) is a set of ordinals such that o, < m’ for
every ¢ € I and if card I < m then lub {w;} < m'.

Proof. Since m’ is the first ordinal of cardinality m’ we have
w; < m’, that is, card o, < m for every ¢+ ¢ I. Hence by card I < m the
cardinality of lub {w;} is m.

Proof of Theorem 3.1. We assume that X is normal and n-para-
compact but it is not (m, n)-compact. We shall construct a linear
(m, m')-net (x,)(d e D) with values in 4 and such that it has no adher-
ence points in X. Then the sets [w;: d < 0[(d € D) form a filter base
for an (m,m’) filter in A which has no adherence points in X.

Let {0,}(¢ € I) be an open cover of cardinality at most »n which
contains no subcover of cardinality at most m. Since X is n-paracom-
pact {O,}(7 € I) admits a refinement {Q,}(j € J) which is a locally finite
system of open sets. The space being normal by Lemma 3.2 we may
assume that Q, < O, for every j € J and for a suitable ¢ = i(j) e I. Since
{Q,}(7 e J) is locally finite Lemma 3.1. can be applied to any subfamily
of this cover.

Let the index set J be well ordered ; for the sake of simplicity we
assume that the elements of J are ordinals. Denote by S, the open set

S, =Q,— UlQ,: 5 <Kkl.

Let D be the set of those indices ke J for which S, is not void. We
prove that ¢ = card D = m/.

For let &~ be the class of those initial segments K< J for which
UlQ;:7 e K1<€ U[Q,:jeD]. Then & isnot void because (1, ---, k) e &7
It can be ordered by inclusion: K, < K, if K, € K,. There is a max-
imal element in ¢~ namely K, = U[K: K e &7] itself is an element of
. We prove that K, =J. TFor let Ke% be a proper subset of J
which contains ¢ and let %/ be the first index not in K. We set K’ =
KU {F'} and obtain by v < ¥’

UIQ,: je K= UlQ,;: j e KJUQ, = U[Q,: j e K]
- U[Q_j:jeD]-

Hence K’ € &7 and K is not maximal. Consequently K, = J and this
implies that

ulQ,: e J1c UIQ,: je D].

However on the one hand {Q,;}(7e.J) is a cover of X and so X =
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U[Q,: e D]. On the other hand {Q,}(j € J) is a refinement of {O,}
(¢ € I) and by hypothesis {0,}(: € I) does not contain a subcover of
cardinality at most m. Hence we have card D = w/.

The well-ordered set D is order isomorphic to an initial segment of
the ordinals which segment contains every ordinal preceding m'. If
we discard from D every element corresponding to m’ and to the
ordinals succeeding m’ we cbtain a subset of D of cardinality at least
m’. We denote this subset again by D. By Lemma 3.3 the new D is
an (m, m')-directed set.

The open sets S, are not void for every d e D and A is dense in
X. Hence we can choose a point a, € A in each of the sets Sid e D).
The linear net (a,)(d € D) is an (m, m')-net with values in A and it has
no adherence points in X: In fact {Q,}( € J) being locally finite for
every point x € X we can find an open set O, such that O,NQ, is not
void only for finitely many indices d € D. If d is larger than any of
these finitely many indices then O,NQ; = ¢ for every 6 =d and so
as ¢ O, for every 6 = d. This, however, shows that « is not an adher-
ence point of the net (a,)(d € D). This completes the proof of Theorem
3.1.

Now we turn to uniformizable spaces :

THEOREM 3.2. Let X be a uniformizable space of unsform cardin-
ality w. Suppose that X contains a dense subset A such that every (m, n)-
filter in A has a non-void adherence in X. Then X is (m, o )-compact.

It is sufficient to prove that X is (m, n)-compact. The (m, o)-com-
pactness follows from Theorem 2.8. The proof of the (m,u)-compact-
ness can be modified such that we obtain the following known result
(see [7] p. 150, Proposition 7):

Let A be a dense subset of a uniform space X with uniform struc-
ture 7Z. If every Cauchy filter in A is convergent to some point of X
then the structure 7/ is complete.

Proof. Let 5 Dbe a filter (or an (m, u)-filter) in X. Consider the
family & = {(U[F1NA} (Ue 7 and F e % ). Since A is dense in X
every set U[F']N A is non-void and

(UIF 1N A4) N (UIFNA) 2 UIF,.NF,]NA.

Hence <z is a filter base in X. (Moreover if & is an (m, u)-filter and
7/ is of uniform cardinality » then <# is a base for an (m, u)-filter in
A.) If & is a Cauchy filter then <% is a base for a Cauchy filter
because if F'x FF< V where V is symmetric then V[F] x V[F]E
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VoVoV: In fact if ¢ V[F] and y € V[F] then (x, a) € V and
(b, y) e V for some a, be F. Thus by (¢,b)e F'x FS V we have
(z,y) = (x,a)o(a,b) o (b,y) € Vo Vo V. By hypothesis <~ as a Cauchy
filter base in X (as a base for an (m, u)-filter in X) is convergent to
some point x € X. We show that x € adh % which is equivalent of
saying that x € lim &% Given any an open neighborhood O, of « there
is a U e % such that U[x] & O,. We determine the symmetric Ve Z
such that Vo V< U. Since x € adh < and V[F]NA is an element of
G we have V[z]N V[F'] +# ¢ for every Fe # Hence thereisan acd
and an f € F' such that (x, @) € V and (a,f) e V. Therefore (z,f)e Vo VEU
and fe Ulzg]NF. This shows that Ulx] and F intersect for every
Ue 7/ and for every Fe.# Thus zeadh “

4, Additional results and notes. In my first paper on (m, n)-compact-
ness I introduced the notion of a hereditary or completely (m, n)-com-
pact topological space : X is completely (m, n)-compact if every subspace
Y of X is (m, n)-compact. It can be easily proved that if every open
set Y is an (m, n)-compact subspace then X is completely (m, n)-com-
pact. In the same paper I gave a number of equivalent characteriza-
tions of complete (m, »)-compactness. At that time time I did not
notice that one of these criteria (Theorem 4, condition (ii) in [8]) in-
volves n only in a formal way.! I should have added as a corollary the
following.

THEOREM 4.1. If X 4s completely (m, n)-compact for some cardinals
m < n then X is completely (m, o )-compact.

Progf. Suppose that X is not completely (m, oo)-compact. Then
there is a family of open sets O, (¢ € I) in X such that UOij is a pro-
per subset of UO, whenever cardJ < m. Let the index set I be well
ordered. Let O; be the first non-void O, and let O;, be the first O,
such that O;, & O,. In general we consider initial segments J of the
ordinals 1,2, ---,4, --- and sets Oij(j e J) such that for every jeJ the

set Oij is the first O, set which is not a subset of U[Oik: k<jl. By
hypothesis {0,}(7 € I) does not admit a subfamily {Oij}(j e J) satisfying
Uuo, = UO‘; with card J < m. Hence using Zorn’s lemma we can find
initial segments J and corresponding sets Oij such that card J = w'
where ' is the first cardinal greater than m. We restrict ourselves to
ordinals preceding m’ so that J =1[j: 7 <m'] and 0¢j <z U[Oik: k<]
for every j e J. The family {O,ij}(j e J) is of cardinality cardJ = m/
and if card K < m’ where K J then by Lemma 3.3

1 This wés first noticed by Mr. R. D. Joseph.
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U[Oik‘ ke K]C U[Oij: jed].

This shows that X is not completely (m, m')-compact and so the theorem
is proved.

Let & = {B} be a bage for the open sets of a space X and let
YS X. Then <%, = {BNY}(Be <%} is a base for the subspace Y.
Hence if <7 is a base for the topology of the space X then every sub-
space of X is (card <7, «)-compact. Applying this remark to the situa-
tion described in Theorem 2.3 we obtain

THEOREM 4.2. Let X be o uniformizable space of uniform cardin-
ality u. 1If X is (m, n)-compact for some m < n then X s completely
(m, oo )-compact or completely (u, o )-compact according as m = u or m = u.

If n = co this result can be obtained directly by using the defini-
tion of (m, «)-compactness and of hereditary (m, co)-compactness.

The product of a (1, «)-compact space with an (m, n)-compact space
is (m, n)-compact. This was proved a few years ago by Yu. M. Smirnov
[14]. Not knowing the existence of this paper, I proved in [8] (Theo-
rem 8) the result in the special case when n =co, but a slight modifica-
tion in my reasoning gives a new proof of Smirnov’s theorem: Start
again by replacing the open cover {0,}(¢ € I) where cardl < n by a
family of sets OY x 0. However instead of forming the intersection
Ojr N -++ N Ojm form the intersection of those sets O, -.-, O{” of the

given family which have the property that
0! x 01 O, «--, 0! x O S O,
g Y= iy ’ Zn ¥y = b

Since card I < »n there are at most n distinet ones among the finite in-
tersections Q, = 05;;“0 e ngn). The rest of the reasoning then is the
same as in [8].

We end by stating two unsolved problems: Professor Erdos men-
tioned to me that he was thinking without success of the following
problem : Let m be an infinite cardinal. We say that X is [m]-com-
pact if from every open covering of X one can select a subcovering
having fewer than m elements. Is there an infinite cardinal m such
that the product of any two [m]-compact spaces is again [m]-compact ?

It is known that given any filter & in a set X there exists an
ultrafilter _# such that & < _#. Let % be an (m, «)-filter. The
corresponding ultrafilter _~ need not be an (m, «)-filter and in general
there is no (m, oo )-ultrafilter _# satisfying the requirement & < 7
We can ask the following question: Is there any infinite cardinal m
such that for every (m, «)-filter & the ultrafilter _# can be chosen
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such that _~ is an (m, o )-filter and & < _#?

I do not know to what extent n-paracompactness is necessary in the
hypothesis of Theorem 8.1. The only example that I know of shows
that there exists a non-compact space X which contains a dense set A
such that every filter in A has a non-void adherence in X: We choose
X to be the interval [—1, 1] and call O open if it can be obtained from
an open set in the usual sense by omitting points of the form = + 1,
+4,---. Wecan choose A=X—{+1,+ %, ---}. The space X is
neither regular nor compact. It can be proved that X is not countably
paracompact.
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