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1. Introduction. A relation is a set of ordered pairs. If R is a
relation then it helps our intuition to sometimes think that y comes after
z if and only if (x,y) € B. With this in mind we search among relations
for directing mechanisms among which are to be not only those familiar
ones considered by Moore-Smith, but enough more to handle! topologieal
convergence.

We agree that

dmn R = domain B = Ex [(x, y) € R for some ]
= the set of points = such that (x, y) € R for
some Y,

and that
rng K = range R = Ey[(z, ¥) € R for some z].
Now suppose
I'=Ez(0 <z < )

and

o = the set of non-negative integers.
Also suppose

R, = Ez, 90 £ v <y < »)

and

R,=Ez,y(xr € v and 0 = =y < ),

80 that (z,%) € R, if and only if 0 <z <y < o and (x,y) € R, if and
onlyif rewand 0 <y < oo.
Clearly

mgR,=rmgR, =1
but on the other hand
dmn R, = o dmn R, = I".

Nevertheless, R, and R, are intuitively equivalent directing mechanisms.
Now suppose :

Received February 17, 1958.
1 See Remark 5.2.
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I=EBy0=t=<1);

I"" = The set of functionson I to I";

o’ = The set of functions on I to w;

R =Ex,y[e e I'"" and y € I and a(t) < y(¢t) whenever ¢ € I];

R, =Ez,ylr ¢ o' and y € I and «(f) < y(t) whenever ¢ € I].
Very much as before

rng R, =rng R; =17,
dmn R, = o’ #dmn R, = I,

but nevertheless R, and R; are intuitively equivalent directing mecha-
nisms.

Let us look more closely at R;. R; is clearly transitive. That is,
(x, 2) € R; whenever (x,y) and (y, z) both belong to R;. In other words,
if y comes after  and z comes after y, then z comes after x. More-
over if 2 ¢ dmn R; and y € dmn R; then there is a z € dmn R; which
comes after both # and y. That is, corresponding to each z € dmn R}
and each y € dmn R; there is a z € dmn R; for which

(z,2) e R, and (y,2) ¢ R; .

We are thus led to

1.1 DEFINITION. R is a direction if and only if R is such a non-
vacuous transitive relation that corresponding to each « € dmn R and
each y € dmn R there is a zedmn R for which

(¢, z)e Rand (y,2)eR.

Fvidently the directing mechanisms of Moore-Smith are directions,
but it turns out that even directions are not topologically adequate.

If R is a direction then clearly for each x e dmn R and each ye dmn R
there is a 2 € dmn R such that anything which comes after z also
comes after x and after y. We are now on the right track.

1.2 DEFINITION. R is a run if and only if R is such a non-vacuous
relation that corresponding to each ¢ € dmn R and each y € dmn R there
is a z € dmn R for which

(xz,t) € R and (y,t) e R

whenever ¢t is such that (z,¢) € R.
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From 1.1 and 1.2 follows

1.3 THEOREM. Every direction is a run.

As we shall indicate, runs are topologically adequate. For that mat-
ter, so are the filter-bases of Cartan, the nets of Kelley, and the syntaxes
of McShane. But among these we do not find such an old friend as the
Moore-Smith direction R,.

It is a curious fact that one can come across situations in which the
effect of a direction cannot be duplicated by a filter-base.? Suppose

R;=Ea,b[a c b and b is a finite set] .

Clearly, R, is a direction. Moreover, it is a direction which has been put
to use in defining unordered summation. However, no filter-base can do
the work of R, since in many set theories the family of all finite super-
sets of a given finite set is a class incapable of belonging to anything.’

The runs which first come to mind are directions. However, some
runs are very unlike the directions they generalize. The domain of a
run is merely an indexing set of sign-posts which seem to say, *‘ Beyond
here is far enough.” It may be that many things follow such a sign.
post yet no sign-post at all is among them. To savor some possibilities
along this line let us examine briefly two more runs.

Assume T topologizes S and that p € S and check intuitively that

Ef,alp e B e T and = € f]

is a run which converges to p in the topology 7.
Next assume p metrizes S and p € S and check intuitively that

Er,2[0 < r < o and p(x, p) < 7]

is a run which converges to p in the metric p.

It must be admitted that filter-bases are less intricate than runs.
Moreover, filter-bases handle theoretical limits with less emphasis on
inessentials than any other method known to us. What disturbs us and
others about filter-bases is that in many specific situations, such as limit
by refinement, the filter-bases do not correspond vividly enough to the
limiting concept one pictures. Perhaps it is for this reason that direc-
tions, though inadequate, are still very much with us. We feel that
runs retain the virtues of directions and at the same time remove their
inadequacies.

2 A filter-base is a non-empty family of non-empty sets such that the intersection of
any two of them includes a third.

3 In this present paper we have in mind a set theory similar to that employed by J.L.
Kelley, General Topology, pp. 250 ff. New York, 1953.
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2. Some definitions.

2.1 DEFINITIONS.
1. ~B = The complement of B
2. oF = Ex(x ¢ B for some 3 € F)
3. aFF=Ex(x € B for every 8 € F)

2.2 REMARK. Thus oF' is the union and =F the intersection of all
members of F. If A is the set whose sole member is x, then 04 = x =

nA. We assume the integer 0 and the empty set are the same and
notice that ¢0 = 0 and 70 = the universe.

With vertical and horizontal sections in mind we make the following
definitions.

2.3 DEFINITIONS.
1. vs Re = Ey[(z, v) € E].
2. hs Ry = Ex[(x, y) € E].
When R is a run then we sometimes think :

y € vs Rz if and only if y comes after x;
x € hs Ry if and only if x comes before y.

There is no magical significance, as often in analytic geometry, at-
tached to the letters used. Thus we sometimes think :

x e vs RO if and only if & comes after o ;

or even

x € vs Ry if and only if x comes after y.

2.4 DEFINITIONS.

1. .RA=Eyl(z,y) € R for some & € A]
2. *RA = Eua[(x, y) € R for some y € A]

2.5 DEFINITION. inv R = inverse K = Ex, y[(y, ) € R].

2.6 DEFINITION. R: S = Ex, z[There is a y such that (x, ) € S and
(y,2) € R.]

A function is the same as its graph and is hence a special kind of
relation. If f and g are functions, then f: ¢ is that function 2 such
that 2(x) = f(g(x)) for each z.

2.7 DEFINITION. rct AB = rectangle AB = Ex, y(x € A and ye B).
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3. A few properties of relations.

3.1 THEOREM. If R is a relation and f is a function, then :
«(A U B)=,RAU ,RB

A C B vmplies ,RA C RB

+RANB)c RAN RB

*RA = ,inv RA

*f(ANB)=*fAN*fB

JA=ANTNg f

*R,RA > AN dmn R.

IS O W N

3.2 THEOREM. If R and S are relations and f is a function, then :
1. vs(R: S)x = Rvs Sx for each x
2. BN SAc S(*SB) N 4)
3. BN, JA= , f((*fB)N 4)
4. BN fA +# 0implies (*fB) N A+ 0.

4. Properties of runs.

4.1 THEOREM. R is a run if and only if R is such a non-vacuous
relation that for each x and y in the domain of R there exists a 2 in the
domain of R for which vs Rz C vs Rx (N vs Ry.

Accordingly if some vertical section of R is a set belonging to the
universe,” then the vertical sections form a filter-base theoretically as
useful as R itself. Only in the peripheral situation that every vertical
section of R is a class incapable of belonging to anything are runs more
effective than filter-bases. However, runs do operate on an essentially
different and, we feel, more convenient level.

The passage from a filter-base W to a run E can always be success-
fully accomplished by putting R =EB,2(x € f € W).

4.2 DEFINITIONS.
1. B runs in A if and only if R is a run and rng R C A.
2. R is eventually in A if and only if R is a run and vs
Rz c A for some z € dmn R.
3. R is frequently in A if and only if R is a run and vs
Rx N A+0 for each x € dmn R.

4.3 THEOREMS.
1. If R runs in A then R is eventually in A.
2. If R is eventually in A, then R is frequently in A.

4.4 DEFINITIONS.
1. S is a subrun of R if and only if S is a run, R is a run,
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and for each x € dmn R there exists such a y € dmn S that
vs Sy C vs Rzx.

R runs the same as S if and only if R is a subrun of S
and S is a subrun of R.

We agree that S is a corun of R if and only if there exists such an
A that R is frequently in A and S = R N Ez, y(y € A).
If Sis a corun of R then Sis asubrun of R. However coruns are

often inadequate in that S may be a subrun of R and yet no corun of
R will run the same as S.

4.5 THEOREMS.

4.6

1. If R is a run, then R is a subrun of R.

2, If R’ s a subrun of R and R is a subrun of R, then R’
s o subrun of R.

3. If R is frequently in Aand S = R N Ex, y(y € A), then Sisa
subrun of R, dmn S =dmnR, and vs Sz = A N vs Rx for
each x.

4. If R is a subrun of R and R is eventually in A, then R s
eventually in A.

THEOREMS.

1. If S is a relation and R is frequently in dmn S, then S: R
is @ run, dmn (S: R) = dmn R, and vs(S : R)x = ,S vs Rx for
each x.

2. If S is a relation and R is a run, then R s frequently in
dmn S if and only if dmn(S:R) = dmn R.

3. If S is a relation, R is a subrun of R, and R’ is frequently
sn dmn S, then S: R is a subrun of S: R.

4. If S is a relation and R is eventually in dmn S, then R is a
subrun of (inv S): (S: R).

5. If f s a function and R is eventually in rng f, then

f:(nv ) : R runs the same as K.

4.7 DEFINITIONS.

1.

2.

merger RS = the set of points of the form ((z, ¥), z), where
,y and 2z are such that R and S are runms, (x,2) € R, and
(y,2) € S.

R merges with S if and only if R and S are such runs that
vs Rz N vs Sy #+ 0 whenever 2z € dmn R and y € dmn S.

4.8 THEOREMS.

1.

If R and S are runs and V = merger RS, then V is a relation,
dmn Vc retdmn Rdmn S, and vs V(iz, y) = vs Rx N vs Sy
whenever (x,y) € dmn V.

. If R merges with S and V =merger RS, then dmn V=

retdmn R dmn S, and V s a subrun of both R and S.
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3. If W is a subrun of both R and S, then R and S merge and
W is a subrun of merger RS.

4.9 THEOREM. If f is a function, R is frequently in dmn f, and W
18 a subrun of f: R, then there exists such a subrun V of R that W runs
the same asf: V.

Proof. Let V'=(invf): W, let V = merger V'R, and let W' =f: V.
Use 4.6.1 to see that
don (f: R)=dmn R and dmn V' = dmn W.

We complete the proof in three parts by showing that W’ and W
are subruns of each other.

Part 1. V' merges with R, V is a subrun of V' and R, W’ is a run,
and dmn W' = dmn V = ret dmn W dmn R.

Proof. Let € dmn W and y € dmn R. Since W is a subrun of
S R we have

0+vsWaxnvs(f: Ryy=vs Wa N ,fvsRy.
Hence, using 3.2.4, 3.2.1, and 3.1.4, we find that
0+ (*fvs Wao) N ve Ry = vs V'x N vs Ry.
Use of 4.6.1 and 4.8.2 completes the proof.
Part 2. W’ is a subrun of W.

Proof. Use Part 1, 4.6.3, and 4.6.5 to see that W = f: V is a sub-
run of f: V' =f: (inv f): W, which runs the same as W.

Part 3. W is a subrun of W'.

Proof. Let z edmn W and y € dmnR. Select 2’ € dmn W so
that vs Wa' < vs(f: R)y, and select &’ € dmn W so that vs Wa'’' C
vs Wx N vs Wx'.

Then

vs Wa'' < vs Wa N vs(f: Ry = vs Wz N f vs Ry,

which in accordance with 3.2.3 equals

«J((*fvs Wx) N vs Ry) = . f[vs((inv f): W)z N vs Ry]
= Jvs V(z,y) = vs W'(x, y).

In view of Part 1 the proof is complete.
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4.10. REMARK. Theorems 4.6.1, 4.6.3, and 4.9 show us that under
any properly chosen function f, a run R is mapped into a run S = f: R,
subruns of R are mapped into subruns of S, and any subrun of S runs
the same as the map of some subrun of R.

4.11 DEFINITION. indexrun R = Ez,y[R is a run, x € dmn R,
y € dmn R, and vs Ry C vs Rx].

4,12 THEOREM. If R s o run and D = indexrun R, then D is a
direction, dmn D = rng D = dmn R, (x, ) € D whenever € dmn D, and
R=R:D.

4.13 REMARK. According to Theorem 4.12, every run is the com-
position of a relation with a reflexive direction. In fact, every run runs
the same as the composition of a function with a reflexive direction. Sup-
pose R is a run and D is the set of pairs of the form ((x,y), (&', ¥)),
where x, y, &', and ¥’ are such that (z,y) € R, (¢, %) € R, and vs Rz’ C
vs Rx. Let f be such a function that f(x, y) = y whenever (2, y) € dmn
D. It is easy to check that D is a reflexive direction and that R runs
the same as f: D.

In this connection it should be remarked that if (f, D) is a net in
the sense of Kelley (op. cit.) then f: D is a corresponding run. The
above construction gives a method for passing from a run back to a cor-
responding net.

4.14 DEFINITIONS.
1. R is a full run if and only if R is a run which runs the
same as all of its subruns.
2. R is fillable if and only if there exists a full subrun of R.

4.15 THEOREMS.

1. If R i a full run and R ts frequently in A, then R 1is
eventually in A.

Proof. Note that R is a subrun of RN Ex, y(y € A).
2. R is a full run if and only if for every A, R is either
eventually in A or eventually in ~A.
3. If R is a full run, f is a function, and R is frequently in
dmn f, then f: R is a full run.

Proof. Use 2.
4. If S is a full run which merges with R, then S is a subrun
of R.

4.16 DEFINITIONS.
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1. N is R nested if and only if R is a relation and either
ory =2(x,y) € R U inv B whenever x and y are in N.

2. N is nested if and only if either « C f or f# C @ whenever
a and £ are in N.

4.17 DEFINITIONS.
1. Fis R capped if and only if R is a relation and correspond-
ing to each R nested subfamily N of F there is a z ¢ F
such that (z,2) € R whenever x € N.
2. F is coapped if and only if corresponding to each nested
subfamily N of F' there is y € F such that cNC 7.
We have found quite useful the following inductive variants of Zorn’s

4,18 LEMMAS.

1. If R is transitive and F is R capped, and if corresponding to
ecach v € F'~ K thereisa y € F for which (x,y) € R~ inv R
then F' N K=+0.

2. If F 1s capped and if each member of F ~ K is a proper
subset of some member of F, then F' N K + 0.

4.19 REMARK. In accordance with the terminology used by Kelley
(op. cit.), we agree that a sef is a class which is small enough to belong
to the universe.

4.20 THEOREMS.
1. If R is o full run, then R is eventually in some set.

Outline of proof. Otherwise according to 4.15.2 R is eventually in
~A whenever A is a set. Advantage may be taken of this fact to con-
struet by transfinite induction two classes B and C for which B N C = 0,
R is frequently in B, and R is frequently in C. In view of 4.15.1 this
is impossible.

2. R s fillable if and only if R is frequently in some set.

Proof. 1If R is fillable it is easy to check with the help of 1. that
R is frequently in some set. We now assume that R is frequently in
some set A and show that R is fillable.

We agree that sng « is the family whose sole member is 2, and that
GNNH=Er[r=anp for some « € G and f ¢ H].

Let B=Eala C A and R is frequently in «], let F=EW[W isa
filter-base and W C B], and let K = EW [for each a« C A there exists a
B e W for which either fC a or FC A~a. If N is a nested sub-
family of F then: if N=0 then eN=0Csng 4 € F; if N+ 0, then
o NC oN e F. Accordingly F' is capped.
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Now suppose W e F'~ K, and select such a set athat 8 N a>B
and f~a #0 whenever f ¢ W. Let W =Wy (W N N sng a) and
check that W’ ¢ F and that W is a proper subfamily of W’. According
to 4.18.2 we conclude that F' N K= 0 and select V e F'N K, so that V
is a filter base, R is frequently in every member of V, and for each acC A4
there exists such a f € Vithat fCcaor fC A~a.

Let S=EfB, [z € B € V] and notice that S is a full run which
merges with RE. According to 4.15.4, S is a full subrun of R. This
completes the proof.

4.19 REMARK. The run R, is not fillable.

5. Topological convergence.

5.1 DEFINITIONS.

1. R clusters about p in the topology T if and only if T is a
topology, p € T, and R is frequently in every T neighbor-
hood of p.

2. R converges to p in the topology T if and only if T is a
topology, p € ¢T, and R is eventually in every T neighbor-
hood of p.

3. R converges in the topology T if and only if there exists
such a point p that R converges to p in the topology T.

4. nhbdrun pT = the neighborhood run of p in the topology
T = EB, «[T is a topology, p € S € T, and z € f].

5. nhbdrun’ pT = EB, 2[T is a topology, » € fe T,z € $, and
pFx).

5.2 REMARK. If T is a topology, A c oT, and p is a point in the
T closure of A, then Ef, z(p € S e Tand z € S N A) runs in 4 and con-
verges to p in the topology 7'. It is possible that no run which runs in
A and converges to p in the topology T' ean also be a direction. This

can be seen by making use of the topology defined in Problem E on page
77 of Kelley (op. cit.).

5.3 THEOREMS.

1. R clusters about p in the topology T if and only if R merges
with nhbdrun pT.

2. R converges to p in the topology T +if and only if R is a
subrun of nhbdrun pT.

As an application of the foregoing we offer the following characteri-
zations of compactness.

5.4 THEOREM. Each of the following is a necessary and sufficient
condition that a topology T be compact.
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1. Whenever R runs in oT', then for some point p, R clusters
about p in the topology T.

2. Whenever R runs in oT, then there exists such a subrun R’
of R that R’ converges in the topology T.

3. Whenever R is o full run which runs in oT, then R con-
verges in the topology T.

5.5 REMARK. The Tychonoff theorem,* which assures us that the
topological product of compact topologies is compact, we will now prove
following a well-known pattern. Suppose 7T is the product topology® in
question and that R is a full run which runs in ¢7. Considering any
coordinate, let P be the usual projection which maps T into the cor-
responding coordinate space. According to 4.15.3 and 5.4.3, P: R is a
full run which converges in the topology of the coordinate space. Conse-

quently R converges coordinatewise and hence converges in the topology®
T.

6. Limits.

6.1 DEFINITIONS.
1. far RxP if and only if R is eventually in ExP.
In 1. above we allow ‘““ P’’ to be replaced by an arbitrary formula
such as, for example,

3 [y<x<m2] ”.

2. f(x) tends to p in the topology 7' as 2 runs along R if and
only if T is a topology, » € o7, and far Ra(f(x) € ) when-
ever 3 is a T neighborhood of p.
3. f(x) tends uniquely to » in the topology T as « runs along
R if and only if for every ¢q(p = ¢ if and only if f(x) tends
to ¢ in the topology T as x runs along R).
4. Imt TxRf(x) = the limit in the topology 7T as z runs along
R of f(x) = zEp[f(x) tends uniquely to p in the topology
T as = runs along R].°
Thus if f(x) tends uniquely to p in the topology 7' as x runs along
R we know that Imt TwRf(x) = p.

6.2 THEOREM. If T 4s a topology, p € oT, [ is a function, and R
18 eventually in the domain of f, then
1. f(x) tends to p in the topology T as x runs along R if and
only if f: R converges to p in the topology T ; and
2. Imt TaRf(x) = p if and only +f f:R converges to p in the
¢ See Kelley (op. cit.) p. 143.

5 See Kelley (op. cit.) pp. 88-92.
8 See Remark 2.2.
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topology T, and q = p for every q such that f:R converges
to q in the topology T.

Very elementary but of considerable use is the

6.3 THEOREM. If far Rax(u(x) = v(z)) then Imt TxRu(x) =
Imt Tz Ruv(x).

6.4 REMARK. As examples of specialized limit notations in which
either the run or the topology or both are suppressed, we give the fol-
lowing definitions. We agree that .7 is the usual topology for the ex-
tended real number system, and that

B =Em,nm € w and m < n € w].

6.5 DEFINITIONS.

Int Tnu(n) =Imt 7 n Puln)

Imz R flx) =Imt 9 xR flx)

Ima R f(z) = Imt .t indexrun R (sup = € (vs Rt) f())
Imz R f(x) = Ilmt 77 ¢ indexrun R (inf = e (vs Rt) f(x))
limz a f(x) = Im z(nhbdrun’ a.77) f(x)

lin n u(n) = Int .7 nu(n)

SN A i

6.6 REMARK. In 6.5.1 we have a limit notation for ordinary
sequences. If » is a sequence, T is a topology, and p € T, then
Int Tnu(n) = p if and only if p is the unique point such that w:.cz
converges to p in the topology T'.

We give a few more simple but useful theorems.

6.7 THEOREMS.
1. If 6 e dmn R and if far Rx {f(x = f(y)} whenever y € vs R0,

then — o <Ilma R f(x) = supx € vs o f(z) £ oo.
2. If 0 € dmn R and if far Rx{f(r) £ f(y)} whenever y € vs RJ,
then — o <lmz R f(x) =infx € vs Rd f(x) < oo.

From 1. and 2. we infer 3. and 4. below. These resuits are generali-
zations of the fact that non-decreasing and non-increasing functions have
limits.

3. If far Ry far Rx{f(x) = f(y)} then

— oo £ Ima Bf(x) < .
4, If far Ry far Rx{f(x) = f(y)} then

— o < Ima Rf(z) < .
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6.8 THEOREM. If R is a run and — o < o < oo, then
ImezRa=ua.

6.9 THEOREM. If A =ImxzRu(x) and B = 1mx Rv(x), then:
1. if — o £ A+ B < o, then Imx R{u(x) + v(x)} = A + B;
2. if — o < A-BZ o, then Ima R{u(x) - v(x)} = A - B.
In connection with 6.9 above and 6.10 below it is understood that
o — o, - o, and 1/0 are not real numbers.

6.10 THEOREM. If A=Ima Ru(x) and — o < 1/A < o, then
Im 2 R{1/u(x)} = 1/A.
From 4.15.3 and 5.4.3 we infer

6.11 THEOREM. If R’ s a full subrun of R and far
Rx(— oo Zu(x) < ), then:
— o <ImzRu@) <lmz R wz) <Ima Ru(x) < « .

If R is fillable, then Theorem 6.11 furnishes us with a generalized
limit which, since it is expressed as an actual limit, automatically enjoys
the properties found in Theorems 6.8, 6.9, and 6.10. In the event u is
bounded, it does not at first glance seem too unreasonable to hope that
a similar generalized limit could be arrived at by some Hahn-Banach
technique. We, however, are inclined to think this impossible.’

We close with an application of limits to integration which expresses
the Lebesgue integral as a genuine limit of Riemann-like sums.

6.12 REMARK. Suppose that &~ is Lebesgue measure and L =
EP [P is a countable disjointed family of non-empty .~ measurable
subsets of the unit interval for which P = the unit interval]. We
agree that @ is a refinement of P if and only if every member of @ is
included in some member of P, and agree that & is a selector function
if and only if &) € B whenever # ¢ dmn &, Let

R, =EP, §[P ¢ 3 and ¢ is a selector function whose
domain is a member of ¥ and a refinement of P].

We now have the

THEOREM. 5 f@)de =meR, S 3 e dmn e{/(& (3)--Z(A)}

7 See R. P. Agnew and A. P. Morse, Extensions of linear functionals with applica-
tions 1o limits, integrals, measures, and denmsilies, Ann. Math. Stat. 39, no. 1, January.
1938, Notice especially the first two lines on page 24.
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whenever f is a finite-value & measurable function defined on the wunit
wnterval.

We think it noteworthy that R, runs in the selector functions.
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