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APPROXIMATION OF SEMI-GROUPS OF

OPERATORS

H. F. TROTTER

1. Introduction. The usual methods for numerically computing
the solution of a partial differential equation consist in replacing the
differential operators by difference operators which approximate them,
and taking the solution of the resulting difference equation as an ap-
proximation to the solution of the original equation. The question of
convergence then arises that is, when will a sequence of difference
equations have the property that their solutions converge to the solution
of a given differential equation ? We treat this question in an operator-
theoretic fashion, and our discussion has much in common with that of
Lax and Richtmyer [17], as is pointed out in more detail below. The
reader is referred to the bibliography of [17] for a list of the principal
papers dealing with this question of convergence.

Our discussion will be limited to the initial value problem (Cauchy
problem) for linear equations in the form

(1.1) £-u(t, x) = Ωu(t, x) u(0, x) = f(x)

in which Ω is linear and constant in time. Here t is a non-negative
real variable, and x is a point in some space S. Equation (1.1) is form-
ally of parabolic type, but, as is shown in [14, Chap. XX], the initial
value problem for hyperbolic equations can also be put into this form.
Lateral conditions (i.e., boundary conditions such as are needed for the
heat equation on a finite interval) are considered to be incorporated into
the definition of Ω as restrictions on its domain [8, 17].

The process of setting up a sequence of finite difference approxi-
mations to (1.1) may be described in the following general terms. For
each n, take a positive number hn and a set Sn c S whose points form
a suitable grid. The solution to the nth approximating equation is de-
fined inductively, for t an integral multiple of hn and x a point of Sn

by the following system of equations 1

1 Sometimes only the space variable is made discrete, so that un is defined by a finite
set of simultaneous differential equations (cf. [13, p. 233]). Theorem 5.2 can be applied
to this situation just as Theorem 5.3 can be applied to the case in which the time variable
is made discrete and the un are defined by (1.2;.
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(1.2) un((k + l)hnf x) = Tnu{khn, x) k = 0, 1, 2, . . .

Un(0,X) =fn(x)

where Tn is a linear operator and /„ is a function defined on Sn which
suitably approximates /. For example, fn may be simply the restriction
of / to Sn. (Other possible ways of defining fn are discussed in § 2.)
It will be convenient to extend the definition of un to all t by setting

(1.3) un(t, x) = un(khn, x) for khn ^ t < (k + ΐ)hn .

In some numerical methods, the relation between the values of un at
steps k and k + 1 is given by a set of simultaneous linear equations,
so that Tn is defined implicitly rather than by explicit formulae the
particular way in which Tn may be defined will be irrelevant to our
discussion.

If the operators Ωn defined by

(1.4) Ωn = h-\Tn - I)

converge to Ω in some suitable sence, then (1.2) converges formally to
(1.1) as n-+ co, and it is plausible that under certain conditions the
functions un will converge to the solution of (1.1).

It was observed by von Neumann [20] that a system like (1.2) may
be unstable in the sense that small errors in the initial data may lead
to errors in un{t) which become unbounded as n -> oo. The definitions
of stability given in the literature vary slightly in detail. We adopt
essentially the same definition as that used in [17]. We suppose that
the space of functions on Sn is normed as a Banach space. (Examples
of how such a norm may be defined are given in § 2.) Then the norm
of Tn as an operator on this space is defined. We shall say that the
system (1.2) is stable if

(1.5) || Tl || £ MeKkhn

for some constants K and M independent of n and k. The simpler
condition | | Γ n | | ^ 1 is satisfied in many applications, and clearly implies
(1.5).2

Although it is possible to find an example of an unstable system
whose solutions converge to the correct result if the approximating
functions fn are appropriately chosen [18], Lax and Richtmyer [17] have
shown that in general an unstable system cannot converge. On the
other hand, they have shown that stability, together with some reasonable

2 It should be pointed out that we are concerned only with the behaviour of the exact
solutions of (1.2). In actual computation the effect of round-off errors must be considered,
and the situation becomes more complicated.
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assumptions on the limiting behaviour of the Ωnf is sufficient to imply
convergence. Our main result is very similar however, our hypotheses
differ in two respects from those of [17].

In the first place, we do not require that the limit function u and
the approximating functions un all belong to the same Banach space.
Frequently, the Tn arise most naturally as operators on functions which
are defined only at a grid of points in the space S. In most practical
applications the Tn can be modified so as to become operators on func-
tions defined on the whole space, and this is assumed in [17]. Such
modification, however, is usually unnatural, and in the case of random
walks and diffusion processes which we discuss in § 6 it is not neces-
sarily possible. Consequently it seems worth while to eliminate this
assumption. We introduce the notion of an approximating sequence of
Banach spaces and define associated concepts of convergence of vectors
and operators. Section 2 is devoted to setting up the definitions and
giving examples it also includes some lemmas on the convergence of
operators. Section 3 contains some remarks on the adjoint spaces of an
approximating sequence which have application in § 6. Kantorovich [16]
uses a similar sort of approximation of one Banach space by another,
but requires the approximating space to be isomorphic to a subspace
of the approximated space. This requirement is unnecessarily restrictive
for our purposes.

To explain the second difference, we must describe more precisely
what we mean by a solution of (1.1). We give an abstract formulation
in terms of a semi-group of operators [14, chap. 20; 15]. Let X be some
suitable Banach space of functions on S, and let Ω be a linear operator
on X. Suppose that Ω is densely defined and has the property that
for every f in its domain there exists a unique function u(tf x) satisying

(1.6) ( i ) u(t, x) and —u(t, x) are in X for all ί ^ 0
Uv

( i i ) — u(t, x) = Ω u(t, x) f or t ^ 0
dt

(in) \\u(t,x) -/(aOH->0 as t ~> 0

( i v ) \ \ u ( t , x ) \ \ ^ M \ \ f ( x ) \ \ f o r O ^ έ ^ l

Where M is a constant independent of /. Then for each t, setting

(1.7) ίT(t)f](x) = u(t, x)

defines an operator on the domain of Ω. Since Ω is densely defined,
T(t) (which is bounded by 1 + Mt+1) can be extended to all of X by
continuity. The operators T{t) then form a semi-group with Ω as
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infinitesimal generator, which is (hypothesis (iii)) strongly continuous at
the origin. The conditions (1.6) express the requirement that the initial
value problem (1.1) be " well-posed " [cf. 17].

In [17] it is assumed that an operator Ω is given which leads to a
well-posed problem, and the operators Ωn are required to satisfy a con-
sistency condition which may be translated into our terminology as
follows :

There exists a dense set of functions / such that || (Ωn — Ω)T(t)f\\
tends to zero uniformly for t restricted to a bounded interval.

Our condition is that lim Ωn be densely defined, and that for some
n-*oo

positive λ, lim (λ — Ωn) have a dense range. (The precise meaning we
attach to "limit of a sequence of operators " is given in § 2.) It is
part of our conclusion that the operator to which the Ωn converge gives
rise to a well-posed problem. Although our condition appears to be quite
different from that of Lax and Richtmyer, we have found no example
in which we could show that one condition was satisfied and the other
was not. Our condition seems to be easier to verify in the case of the
applications made in § 6.

Our proof of convergence is based on the relation between a semi-
group and its resolvent which is made explicit in the Hille-Yosida
theorem [14, 22]. In § 4 we develop the relevant facts in a form con-
venient for our discussion. All the results in this section are well-
known the proof of Theorem 4.1, however, is new.

Section 5 is concerned with the convergence problem proper, and
the theorems of this section represent the principal results of the paper.

In § 6 we consider in some detail the convergence of random walks
to one-dimensional diffusion processes, and discuss several examples.

This paper is based on a thesis submitted to the Department of
Mathematics of Princeton University in June 1956. I wish to thank
Professor W. Feller for his guidance in the writing of the thesis, and
the National Research Council of Canada for fellowship support during
the academic year 1955-56.

2Φ Approximating sequences of Banach spaces. Let X be a Banach
space. A sequence of Banach spaces {Xn} together with a sequence of
linear maps Pn: X-* Xn is called a sequence3 of Banach spaces approximat-
ing X if

3 We could equally well define a system of Banach spaces approximating X using an
arbitrary directed set as index set. The proofs of all the main theorems of this paper
require only trivial changes of language to adapt them to the more general situation. Un-
less X is assumed to be separable, it is necessary to use nets in discussing some of the
properties of the adjoint approximating sequence (§ 3).
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(2.1) II P» l l ^ l

and

(2.2) lim \\PJ\\ = | | / 1 | for every fe X

Condition (2.2) obviously implies that in some sense the maps Pn become
isomorphisms " i n the limit". The following lemma gives a precise
expression to this idea.

LEMMA 2.1. Let X be any finite-dimensional subspace of X, and
let Qn be the restriction of Pn to X. Then Qn is one-to-one if n is suf-
ficiently large, and lim || Q~ι \\ — 1.

n-*co

Proof Take any ε > 0, and let {/J be a finite set of vectors of
unit length in X such that the ε-neighbourhoods of the ft cover the
unit sphere in X. Now take N sufficiently large that for all n ^ N,
maXidl/s || — \\Pnft ||) < ε. Then for any g on the unit sphere in X,
\\Pnΰ II > 1 — 2ε for all n ^ N. Hence Qn is one-to-one and

l ^ II Qn II -1 ̂  II Qΰ1 II ̂  (1 - 2s)-1.

We now define convergence for sequences of vectors and operators.
We shall use the following terminology and notation. By "operator
o n l " we shall mean '' linear transformation defined on a linear subset
of X and taking values in I " . If A is an operator on X, the linear
subset of X on which A is defined is the domain of A, written Ό(A).
The range of A, denoted by R(A), is the linear subset consisting of all
g e X for which there exists an / e D(A) with g = Af. If A and B are
two operators such than Ό(A) c D(B) and Af = Bf for all / e B(A)
then we call B an extension of A and write A a B. The identity
operator on any space will be denoted by /.

A sequence {/„}, where fneXn, converges to f e X iί lim\\fn—Pnf\\ = 0.
It is easy to see that (2.2) implies that a sequence cannot converge to
more than one f e X. A sequence is convergent if there exists an
/ e X to which it converges we call / the limit of {fn} and write
/ =

The limit of a sequence of operators {An}, where An is an operator
on Xn, is the operator on X whose domain consists of those f e X for
which {AnPnf} converges and whose value for such an / is lim AnPnf.

n-*oo

EXAMPLES.

(1) Let X be an arbitrary Banach space, and for every n let
Xn — X and Pn — L Then the convergence of vectors is ordinary
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convergence, and convergence of operators is the usual strong conver-
gence. Lemmas 2.2, 2.3, and 2.4 below then become results on the
strong convergence of operators.

(2) Let X be the space of bounded continuous functions on some
topological space S, with the uniform norm. For each n, let Sn be a
subset of S and let Xn be some Banach space of functions on Sn (with
the uniform norm) which contains all the restrictions of elements of X.
For / e X, define Pnf to be the restriction of ftoSn. (Note that there
is no requirement that the projection Pn map X onto Xn.) Condition
(2.1) is obviously satisfied, and if the sets Sn become dense in S in the
sense that every open set U c S contains points of Sn for n sufficiently
large, then (2.2) is also satisfied. In this case {/„} converges to / if
and only if

lim sup \fn(x) -f(x)\ = 0 .
rc-> oo xESn

( 3 ) Let S be a region of Euclidean space with Lebesgue measure,
and let X be LP(S). For each n, let S be partitioned into measureable
sets SnΛ, each with finite measure mnΛ > 0. Let Xn be the subspace of
X consisting of functions constant on the SnΛ. For fe X, define Pnf to

have the value m~]\ SnΛ f(x)dx. Condition (2.1) is always satisfied. If

each partition is a refinement of the preceding one, and if the partitions
become sufficiently fine in the sense that the Borel field generated by the
collection of all the SΛti contains all Borel-measureable subsets of S, then
(2.2) will be satisfied. It is clear that a similar procedure can be followed
to get an approximating sequence to the Lp-space over any measure space.
Essentially this type of approximation (with p = 2) has been used by
Douglas [4].

The following lemmas will be needed for later use. Lemma 2.2 is
a generalization of the Banach-Steinhaus lemma [1, p. 79], and Lemma
2.3 similarly generalizes an obvious fact about the strong convergence
of operators. Lemma 2.4 is a more special result which is used in the
proof of Theorem 5.2. ,

LEMMA 2.2. For each n, let An be an operator on Xn, with domain
all of Xn. If there exists a constant M such that \\ An \\ ̂  M for all n,
and if A = lim An is densely defined, then A is defined on all of X and

n-+oo

IIA II £M.

Proof. By hypothesis, for any / 6 X it is possible find a sequence
{/•>} converging to /, with every fJ in D(A). This, by definition, means
that for each fJ there exists a gj e X such that
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| AnPnf
3 - Png>\\ -+ 0 as n -* « . For any i, j ,

II ff* - flfJ II = Mm \\Pn{gι - g})\\
n-*oo

= \im\\AnPn(Γ-fi)\\

Since the /* form a convergent sequence, it follows that the gι form a
Cauchy sequence and consequently have a limit g. Now

II AnPnf - Pwg || ^ || 4 Λ ( / - / ' ) || + || AnPnf - Png
ι \\ + \\ Pn{gι - g) \\ .

The first and last terms on the right may be made arbitrarily small by
taking i sufficiently large, independent of n, and the middle term goes
to zero as n-> oo. Hence Af is defined and equal to g. It is obvious
that | | A || ^M.

LEMMA 2.3. Let {An} be a sequence of operators satisfying the
hypotheses of Lemma 2.2, and converging to A. For each n, let Bn be
an operator on Xn and let B — lim Bn. Then AB c lim AnBn.

Proof. Suppose / e D(AB). Then

PnABf - AnBnPnf = (PnABf - AnPnBf) + An(PnB - BnPn)f.

The first term on the right tends to zero because A = lim An. The

second term on the right is dominated in norm by M\\PnBf — BnPnf\\
and this tends to zero because fe Ό(AB) c Ό(B).

COROLLARY. Let {An} be a sequence of operators satisfying the
hypotheses of Lemma 2.2 and converging to A. Then for any positive
integer k, lim An = Ak.

LEMMA 2.4. For each n, let An be an operator on Xn with an in-
verse Bn defined on all of Xn. Suppose that \\Bn \\ ̂  M for all n, and
that both the domain and range of A — lim An are dense in X. Then

W->oo

B = lim Bn is defined on all of X, and has a dense range. B has an

inverse if and only if A has a closed extension, and then B'1 is the

closure of A.

Proof. Consider an arbitrary g 6 R(A), g — Af.
Then

IIBnPng - P J | | = | |B n (P n g - AnPJ) \\^M\\ Png - AnPJ\\ .
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Since g = lim AnPnf, the term on the right goes to zero, and conse-

quently BnPng~*f. Since R(A) is dense, it follows from Lemma 2.2
that B = lim Bn is defined on all of X. Since Bg — f if g = A/,

SA c /. Hence R(B) Z) D(A) and is dense in X

If B~ι exists it is a closed operator because S is closed; since BA c J,
it is an extension of A. Conversely, suppose A has a closed exten-
sion Ar. Then, since B is bounded, A'B is a closed extension of AB.
But for g = Af e R(A), we have ABg = A5(A/) = A(5A)/ =Af=g,
so that AS coincides with / on a dense set. Hence AB = / therefore
5 has an inverse, and A is an extension of it. This is true for any
closed extension of A, and consequently B~ι is the closure of A.

3Φ Adjoint spaces. If {Xn} is a sequence approximating X, with
associated projection operators Pn, then the adjoint spaces X% are con-
nected with X* by the adjoint operators P* : X* -> X*. Condition (2.1)
of course implies that I|P*H ^ 1. Condition (2.2) clearly should imply that
in some sense the images of the Ft become dense in X* in the limit.
This is not generally true in terms of the norm topology on X*—it is
easy to give an example in which the union of the images of the P* is
nowhere dense in X* with respect to this topology. It is more appropriate
to consider the weak topology [1] (often called the weak* topology) on
X*. For any/* e X*,flf ,/m e X, and ε > 0 we write Vf*(f19 ,/m; ε)
for the set {</* e X* : !/*(/*)-#*(/*) | < e, i = 1, 2, .. , m). The collection
of the " cubical neighourhoods '' forms a base for the neighbourhoods
of / * in the weak topology.

LEMMA 3.1. Let / * be any element of X* and V = Vf*(f19 ,/w; ε)
a cubical neighbourhood of it. Then for all sufficiently large n, there
exists an f* e X*, with \\f* |[ ^ 2 | | /* [| and f*Pn e V."

Proof. Let X! be the subspace of X spanned by flf , fmf and as
in Lemma 2.1, let Qn be the restriction of Pn to X'. Let /* r be the
restriction of / * to X!. Let n be sufficiently large that Q"1 exists, and
define / * =/* / Q- 1 . It follows directly from the definitions that/JP n / 4 =
/*(/,) for any one of the fi9 so that /*P W e V. Since |[ Q~ι || ~> 1, the
condition on the norm of / * is satisfied for sufficiently large n.

If {/*} is a net with f* e X*^ for each a, we say that {/*} con-
verges weakly to / * if n* -» oo and {f%Pncύ} converges weakly to /*.
The net {/*} is said to be bounded if H/* || is bounded uniformly with

4 We write adjoint operators on the right when applied to a vector (dropping the " s tar"
since the position of the operator indicates that it is the adjoint).



APPROXIMATION OF SEMI-GROUPS OF OPERATORS 895

respect to <x.

From Lemma 3.1 we obtain at once the proposition: for every
/ * e X* there exists a bounded net Γ/ί} with/ί e X* which converges

OCi

weakly to it. To construct such a net, let the index set consist of the
cubical neighbourhoods of /*, ordered by inclusion. For each such
neighbourhood a, we can pick an / * e X* , nΛ > ε"1 (where ε is the

cύ

positive number used to define the cubical neighbourhood a), with
l l / ί l l ^ 2 | | / * | | and f*Pn e a. This net converges to /*. If X is

Oti

separable there exists a uniformly bounded sequence {/*} with / * 6 I J
which converges weakly t o / * . To show this, \etflff,, be a sequence
which is dense in X, and let X'm be the subspace of X spanned by the
first m vectors of the sequence. Using the construction of Lemma 3.1
we can define Nm inductively so that iVm+1 > Nm, and for Nm <£ n < Nm+1

there exists an / * e X* with | | /* H ^ 2 [|/* || and /*P»/4 =/*(/*) for
i < m. Then \\f*Pn || is uniformly bounded and lim/ίP*/, = /*(/*) for
all the / t . Hence by a theorem of Banach [1, Theorem 2 of Chapter
7], {fnPn} converges weakly to /*.

For each n let Bn be an operator on X*. The weak limit of the
sequence {Bn} is defined to be an operator B on X*, with domain con-
sisting of all / * 6 X* such that for every bounded net {/£} with
/ * 6 XJα which converges weakly to /*, the net \ftBnPn^ converges
weakly to a unique limit. For / * e D(.£), f*B is defined to be this
limit.

LEMMA 3.2. For each n let An be a bounded operator on Xn with
domain all of Xn, and suppose that A = lim An is defined on all of X.
Then the adjoint operators A* converge weakly to A*.

Proof. Take any / * e X*, and let {/J} be any bounded net converg-
ing to it weakly. We must show that for every / e X. {/ίAn PΛ /}
converges to f*Af. We have

ΠAnPnJ - f*Af = ft(AnPna - PnA)f + (f*Pna - f*)Af .

The first term on the right goes to zero because wβ-> oo, A — lim An,

and the / ί are uniformly bounded. The second term on the right goes

to zero because *f£} converges weakly to /*.

4 Semigroups and resolvents. Throughout this section we shall
be dealing with a fixed Banach space X. Convergence of operators is
to be interpreted as strong convergence.

A (one-parameter) semi-group of operators is a family {T(t)} of
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bounded operators on X, t ranging over the non-negative real numbers,
which satisfies the relation

(4.1) T(t + β) = T(t)T(s) t, s > 0 ,

with T(0) defined to be /. We shall consider only semi-groups for which

(4.2) lim T(t) = I

and

(4.3) \\T(t)\\£M all ί

for some constant M. Semi-groups satisfying (4.2) and (4.3) will be
called proper.*

The operator

(4.4) Ω = lim t~\T(t) - I)
t->-0

is the infinitesimal generator of the semi-group and is always closed and
densely defined. One has g — Ωf if and only if

(4.5) T(t)f = f+ [T(s)gds.
Jo

For every λ > 0 there is a bounded operator

(4.6) J{λ) = (λ - Ω)'1 = [~e-λtT(t) dt.
Jo

The family {J(λ)} is called the resolvent family of T(t). The operators
J{λ) satisfy the relations

(4.7) J(λ) - J(μ) = (μ- λ)J{λ)J{μ)

(4.8) \\λmJm{λ)\\^M λ > 0, m = 1,2, •••

(4.9) lim λJ(λ) = / .

A family of operators satisfying (4.7) will be called a resolvent family,
and one which satisfies (4.8) and (4.9) as well, a proper resolvent family.

If {J{λ)} is a resolvent family it is clear that any / annihilated by
one of the J(λ) is annihilated by all of them, and also that R(J(λ)) is
independent of λ. These remarks, together with (4.9), show that the
operators of a proper resolvent family are one-to-one transformations with

5 Condition (4.3) is not a serious restriction. If a semi-group satisfies (4.2) then | | T(t) \\
must be bounded for t near zero. It is then well-known [14] that 11 Tit) \ \ ^ Meκt for
some K, so that the closely related semi-group Tr(t) = e~κtT(t) will be proper. We use
this trick in proving Theorems 5.2 and 5.3.
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dense range. Hence for each λ, {J(λ)}-1 is a densely defined operator.
It is easy to show from (4.7) that

(4.10) Ω = λ- {Jiλ)}-1

is independent of λ we call it the infinitesimal generator associated with
the resolvent family {J{λ)}.

A proper semi-group is uniquely determined by its resolvent family.
Suppose {T(t)} and {Tf(t)} are two proper semi-groups with the same
resolvent family {J(i)}. For any / e X, f* e X* the function f*{J{λ)f)
will be the Laplace transform of both f*(T(t)f) and f(T(t)f). The
classical uniqueness theorem for the Laplace transform [21, p. 63] then
implies the identity of the last two functions (since both are bounded
and continuous), and since / and / * are arbitrary it follows that T{t)~
T(t). This fact shows that {J(λ)} is the resolvent family of the semi-
group T(t) if and only if the operator Ω defined by (4.10) is the same
as that defined by (4.4).

The question still remains as to whether every proper resolvent
family is the resolvent family of some proper semi-group. The Hille-
Yosida theorem [14, 22] provides an affirmative answer. Our next
theorem gives an expression for the semi-group in terms of the re-
solvent, (cf. [14, p. 234]; the proof given there depends on the Post-
Widder inversion formula for the Laplace transform.)

THEOREM 4.1. Let {J{λ)} be a proper resolvent family. Then the
operators

T(t) = lim {λJ(λ)}ίλtl t ^ 0
λ-»oo

are defined on all of X and form a proper semi-group which has {J(λ)}
as its resolvent family.

We first prove several lemmas.

LEMMA 4.1 Let A and B be two operators which commute and have
the property that \\Ai\\,\\Bi\\SM for all positive integers i.

Then, for any /,

\\(An - Bn)f\\ ^nM*\\(A - B)f\\ .

Proof. Since A and B commute

(An - Bn)f = ZA^-WiA - B)f .

The right hand side contains n terms, each with norm less than or equal
to M}\\(A-B)f\\.
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LEMMA 4.2. For any f e Ό(Ω) (where Ω is defined by (4.10))

\\{λJ{λ) - l)f\\<λ-W\\Ωf\\ .

Proof. This follows from (4.8) since for / e Ό(Ω),

(4.11) (λJ(λ) - I)f = J{λ) Ωf .

LEMMA 4.3. For any f e D(ί?)

i| W ) - (2λJ{2λ)f}f\\ < (2Λ)-2M21| Ω\f\\ .

Proof. Note that

(4.12) J(/i)

is a special case of (4.7). Now

λJ{λ)f - {2λJ{2λ)Yf - {λJ{λ) -I)f - {2λJ(2λ) + I){2λJ{2λ) -

= J{λ)Ωf - {2λJ{2λ) + I)J{2λ)Ωf by (4.11)

= {J{λ) - J{2λ) - 2λJ\2λ)}Ωf

- J{2λ){λJ{λ) - 2λJ{2λ)}Ωf by (4.12)

= J(2λ){λJ{λ) - I - 2λJ{2λ) + I}Ωf

= J(2λ){J(t) - J(2λ)}ΩY by (4.11)

= λJ{λ)J\2λ)Ω*f by (4.12) .

The conclusion follows from this identity and (4.8).

Proof of Theorem 4.1. Let r be an arbitrary positive number which
will be assumed fixed throughout the following discussion. Write rn as
an abbreviation for 2nr. Define

(4.13) T(n,t) = {rJ(rn)}^ .

From the definition we have

where ε = [2ίrre] - 2[ίrM] = 0 or 1. Thus

T(n + 1, t)f - T(n, t)f = {2rnJ{2

)Y^ - [rj(rn)} i"J

Estimating the first term on the right by Lemma 4.2 and the second
term by Lemmas 4.1 and 4.3, we obtain, for / 6 D(ί22)>
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(4.14) || {T(n + m, ί) - T(n, t)}f || r ^ Σ II {T (n + k + 1, t) - T(n + fc, ί)}/ ||

^ Σ r-^-^-^M || β/1| + tM' || β2/1|)

^ 2 r " W I | £ / H + tM*\\Ωf\\) .

Since the right-hand side goes to zero as n -* oo, the vectors Γ(n, ί)/
form a Cauchy sequence and therefore converge. It should be remarked
that the convergence is uniform over every bounded t-interval. D(ί23)
is dense in X since it includes R(e/2(Λ)), and the latter is dense because
of (4.9). From (4.8), || T(n, ί)\\^M for all n. Hence, by the Banach-
Steinhaus theorem

(4.15) T(t) = lim T(n, t)

is everywhere defined and satisfies (4.3). Taking n = 0 in (4.14) and
letting m -* oo, we obtain the estimate

(4.16) || {rJ(r)} Wf - T(t)f\\ £ 2r-\M\\ Ωf |[ + tM* \\ Ωf \\

for any fe D(β2).
For any n,

T(n, s + i)- T(n, s)T{n, t) = T(n, s)T(n, t)({rnJ(rn)}e - I) ,

where ε = [rn(s + t)] - [rns] - [rnt] = 0 or 1.
Consequently (Lemma 4.2)

(4.17) || {T(n, s + t)~ T(n, s)T(n, t)}f\\ ̂  r?M\\ Ωf\\

for any / e D(β). Taking the limit as n -> oo in (4.17) shows that the
operators defined by (4.15) satisfy (4.1) on a dense subset of X, and
hence on all of X, by continuity.

From Lemmas 4.1 and 4.2 we get

(4.18) || {T(n, t) - I}f \\ £ rΛrnt]M> \\ Ωf \\ ^ tM* \\ Ωf \\ .

This inequality must hold also in the limit and shows that lim T(t)f = /
ί = 0

for all / in the dense set D(β). By the Banach-Steinhaus theorem it
follows that the operators defined by (4.15) satisfy (4.2).

This completes the proof that the operators T(t) which we have
constructed form a proper semi-group. The construction, however, de-
pended on the choice of a number r, and we still have to show that
the result is independent of this choice. We shall show that the semi-
group has the given family {J(λ)} as its resolvent family, and since the
resolvent family of a semi-group determines it uniquely, it will follow
that the result of our construction is independent of r.
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We show that {T(t)} has the original {J(Λ)} as resolvent family by
demonstrating that the operator Ω defined by (4.10) is the infinitesimal
generator of the semi-group as defined by (4.4). Suppose / e Ό(Ω) and
g — Ωf. For convenience, let t be such that rnt is an integer for
sufficiently large n. Such values of t are dense in the line. Then

[τ(n, s)gds = [ {ruJ(rn)}ίr»* Ωfds

{rnJ(rn)}^J(rn)Ωf

+ r~ι{Ωf - T(n, t)Ωf]

= T(n, t)f-f + r'ι{Ωf - T(n, t)Ωf) .

Letting n —• oo we obtain formula (4.5). (Passage to the limit under
the integral sign is justified since T{n, t)f converges uniformly on every
bounded ^-interval.) The number t was any one of a dense set, and by
continuity, (4.5) must in fact hold for all t. This shows that g = Ωf
with Ω defined by (4.4), and the proof of Theorem 4.1 is complete.

5 Convergence of Semirgroups Throughout this section {X?} will
be a sequence of Banach spaces approximating X, with associated pro-
jections Pn. We shall use the notational convention that vectors with
subscript n are elements of Xn, and operators with subscript n are
operators on Xn vectors and operators without subscript will be as-
sociated with X.

A sequence of semi-groups {Tn(t)} or resolvent families {Jn(λ)} will
be said to be uniformly proper if each member of the sequence is
proper, and the constant M in conditions (4.3) or (4.8) may be taken
independent of n.

THEOREM 5.1. Let {Tn(t)} be a uniformly proper sequence of semi-
groups, and {Jn(λ)} the sequence of associated resolvent families. Then
if the operators J{λ) = lim Jn{λ) form a proper resolvent family, the

ίl-oo

sequence {Tn(t)} converges to T(t), the proper semi-group having {J(λ)} as
resolvent family.

Proof. Since the Tn(t) are uniformly bounded, it will be sufficient,
by Lemma 2.2, to prove that Tn(t)f converges to T{t)f for a set of /
which is dense in X It has already been remarked (in the paragraph
following (4.9)) that any operator in a proper resolvent family has a
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dense range. By similar considerations it is easy to show that the
square of any operator in a proper resolvent family has a dense range.
Hence we need only consider / such that / = J\μ)g for some g and μ.
Define gn — Png and /„ = Jl(μ)gn. Letting Ωn be the infinitesimal gener-
ator of Tn(t) we have

(5.1) || ΩJn\\ = \\{μJn{μ) - I)Jn{μ)gn II

^ μ-\M + 1) || gn II ̂  μ-\M + 1) || g \\ =S K

and

(5.2) \\&nfn\\

for some sufficiently large constant K we also have || Ωf\\, \\Ω2f\\ sΞ K.
Now

PnT(t)f - Tn(t)Pnf = Pn(T(t) - {rJ(r)}™)f

+ Pn{rJ{r)} f •]/ - {rJn{r)} ^PJ

)}W - Γn(ί))Λ

Tn(t)(fn ~

Applying (4.16), (5.1), (5.2) and the uniform boundedness of the Tn(t),
this yields

PnT{t)f - Tn{t)PJ || ^ Ar-ιK(M + tM*) + 2M || Pnf - /„

+ \\Pn{rJ(r)}Wf-

For any fixed r, the last two terms go to zero as n -> oo, because fn ->/
and {rJ(r)}k = lim {rJn(r)}* for any fixed k. Thus

lim sup || PwΓ(ί)/ - Γn(ί)iVII S Aτ~ιK{M + ίMJ) .
7l->oo

Since r may be taken arbitrarily large it follows that T(t)f — lim

Tn{t)PJ.

LEMMA 5.1. Let {Jn{λ)} be a uniformly proper sequence of resolvent
families, such that for some positive μ, lim Jn{μ) is densely defined and

tt->oo

has a dense range. Then for every λ, J(λ) ~ lim Jn{λ) is defined on all

of X, and {J{λ)} is a proper resolvent family.

Proof. That J{μ) is everywhere defined follows immediately from
Lemma 2,2, To show that lim Jn{λ) is everywhere defined we make
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use of the relation [14, p. 119]

(5.3) Jn(μ -v) = Σ / - % )

where, provided that \v\< μ, the series converges in the uniform
operator norm, uniformly in n. This follows from the formula

which is easily derived from (4.7) by induction on m, condition (4.8),
and the assumption that the Jn(λ) are uniformly proper. For each k,
lim Jn{μ) is everywhere defined, by the corollary to Lemma 2.3, and

the uniform convergence of (5.3) implies that lim Jn(λ) is everywhere

defined for 2μ > λ > 0. Repetition of the argument, replacing μ by,
say, 3/*/2, shows the convergence of {Jn(λ)} for Sμ > λ > 0. By further
repetitions of the argument it can be shown that J(λ) = lim Jn{λ) is

everywhere defined for all λ > 0. Relation (4.7) holds for each n, and
by Lemma 2.3 it continues to hold in the limit. Condition (4.8) is
clearly satisfied by every J(λ). To complete the proof it is only neces-
sary to demonstrate (4.9). Since any / e R(J(μ)) is in D(β), where Ω
is defined by (4.10), it follows from Lemma 4.2 that (4.9) holds on
R(J(μ)), which is dense by hypothesis. Since the operators λJ(λ) are
uniformly bounded, the conclusion follows by the Banach-Steinhaus
theorem.

THEOREM 5.2. Let {Tn(t)} be a sequence of semi-groups satisfying
(4.2) and the stability condition

\\Tn(t) = || <Meκt

where M and K are independent of n and t. Let Ωn be the infinitesimal
generator of Tn(t) and define Ω = lim Ωn.

Suppose that

( i ) Ω is densely defined

( i i ) for some λ > K, R(λ — Ω) is dense in X.

Then the closure of Ω is the infinitesimal generator of a semi-group T(t)
which satisfies (4.2), and T(t) = lim Tn(t).

Proof. Define Tn{t) = e~κtTn(t) and Ω'n = Ωn - K. Then Ω'n is the

infinitesimal generator of T'n(t) and the semi-groups T'n(t) from a uniform-

ly proper sequence. Also Ω' — lim Ω'n is densely defined and R(Λ — K — Ωf)

is dense in X The sequence J'n{λ — K) — (λ — K — Ω'n)~ι is uniformly
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bounded, From Lemma 2.4 it follows that J\λ — K) is everywhere
defined and has a dense range. By Lemma 5.1, the operators J\λ) =
lim J'n{λ) form a proper resolvent family, which by Theorem 5.1 is the

resolvent family of a semi-group T'(t) such that T(t) = lim T'n(t). Since

J'(λ) has an inverse, this inverse (by Lemma 2.4) is the closure of
λ — K — Ω\ and it follows that the closure of Ω' is the infinitesimal
generator of T'(t). The results stated for T(t) follow immediately from
what we have proved about T\t).

LEMMA 5.2. Let h be a given positive number, and T an operator
such that |1 T« || ^ M for all n. Then Ω = h~\T - I) is the infinitesimal
generator of a semi-group S(t) such that \\ S(t) \\ ^ M.

Proof. Define

S(t) = Σ (fc !)"W) fc = e~th~l Σ (k \Y\th-ιTf .
fc0 0

That Ω is the infinitesimal generator of S(t) can be verified by term-
by-term differentiation of the first expression given. From the second
expression we obtain

II S(t) II ̂  e-th~ι Σ (k \γ\th-λfM ^ M.

LEMMA 5.3. Let h, T, Ω and S(t) be as in Lemma 5.2. For a fixed
t, let k = [th"1]. Then for any f,

|| S(t)f - TV II ^ ^M2(iί || β 2/| | + || Ωf\\) .

Proof. Iteration of (4.5) gives

S(h)f = f+ [hS(t)Ωfdt
Jo

= / + hΩf + [h['S(t)Ω*f dtds
Jo Jo

dtds .

H e n c e |[ S(h)f -Tf\\^ W II β 2 / II. B y L e m m a 4 . 1

| | S(kh)f - TY\\ ^ \WkW \\Ωf II ^ iΛ^Λί | | Ω2f \\

when fc=[iA-1]. Also

|| S(t)f -S(kh)f\\ =

THEOREM 5.3. Let {hn} be a sequence of positive numbers converging
to zero, and {Tn} a sequence of operators satisfying the stability condition
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HI'S II ^Meκkhn

where M and K are constants independent of n and k. Let Ωn=hn\Tn — I)
and define Ω = lim Ωn . Suppose that

( i ) Ω is densely defined

(ii) for some λ > K, R(λ — Ω) is dense in X.

Then the closure of Ω is the infinitesimal generator of a semi-group
T(t) and

T(t) = lim Tn\th~ ] .
71-*°°

Proof. Define T'n - e~KllnTn, so t h a t for a n y k, \\T'*\\^M. Then

Ωn = h? (T; - I) = β-**»Ωn - Λ;1 (1 - β-«» )

and

Ω' = lim Ω'n = Ω - K .

Hence Ω' is densely defined and R(λ — K — Ω') is dense. Let Sn(t) be the
semi-group generated by Ω'n. Lemma 5.2 shows that the hypotheses of
Theorem 5.2 are satisfied and hence there is a proper semi-group T'(t)
= lim Sn(t), with infinitesimal generator the closure of Ω\ For a fixed

ί, define kn = [ίfe-1]. We shall show that lim T'*n = Tr(i). As in the

proof of Theorem 5.1 it suffices to show that °T\t)f = lim Γ;*»Pn/ for /

of the form / = J\λ)g for some g and /ί. Define fn^J'ίi^PnU then as
in the proof of Theorem 5.1 there exists a constant C such that || Ω\fn ||,
l|β»/«ll ^ C for all w. Then

II sn(t) - τ ; f c n ) p w / II <ς s
+ II (Sn(t) - T?*)fn II
+ IITXΛ - Pw/) II

^ 2Af||/n - P n /[ | + hnΛPC(t

Since fn-*f and hn-* 0 this shows that

lim Γ > P n / = lim ^ ( ί ) P , / = T(t) .

Hence

lim T%* = lim eκhnknT'n
kn == eκtT(t) ,

which is a semi-group Γ(ί) with the closure of β r + if = β as infini-
tesimal generator.

6 Random walks and diffusion processes. Throughout this section,
Swill denote either the compactified real line [— oo, oo], or some closed
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subinterval of it. Let S' be any Borel subset of S, and suppose that
for every a e S ' a positive Borel measure μx is given such that

( i ) μx(S) ^ 1

(ii) μa(S-S') = 0

(iii) μx(A) is a Borel function of x for every Borel set A.

We consider a particle which executes a random walk in the fol-
lowing way. Let h be a positive constant. If the particle is at a point
x G Sf at time kh (k a non-negative integer) then it remains at x during
the interval [kh, (k + l)h) and at time (k + l)h " jumps " so that the
probability that it goes to any Borel set A is μx(A). (If μx(S) < 1 then
the particle disappears with probability 1 — μx(S) .) The number h is
the basic time-interval of the random walk, and the measures μx are
the one-step transition probability distributions. The set S' is the support
of the random walk. If a probability distribution v on S' for the initial
position of the particle is fixed, then the random walk gives rise to
what is essentially a discrete parameter Markov process with stationary
transition probabilities. For rigorous definition and further details [3,
p. 190 if.] may be consulted.

For any bounded Borel function / o n S', the random walk deter-
mines a new function Tf defined by setting

y) xe S'.

Condition (iii) implies that Tf is again a Borel function. The one-step
transition operator T is obviously linear and positivity preserving. The
space of bounded Borel functions on S' is a Banach space under the
norm | | / | | = sup \f(x) |, and || T \\ ̂  1 relative to this norm. The adjoint

transformation may be considered as acting on the Borel measures on
S', and for any such measure v, vT is given by

where A is an arbitrary Borel set and χA is its characteristic function.
If v is a probability measure giving the distribution of the initial posi-
tion of the particle then vT* is the distribution for its position after k
jumps [cf. 3, p. 191]. Thus a random walk is completely characterized
by its support, its basic time-interval, and its one-step transition oper-
ator, and we may speak of " t h e random walk {S',h,T}".

A diffusion process (with stationary transition probabilities) on S is
characterized by giving for each x e S and ί > 0 a measure μXit such
that μXyt(S) <̂  1, which is to be interpreted as the probability distribution
for the position at time s + t of a particle which is at x at time β. To
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begin with, it is necessary to have μXft(A) a Borel function of x for
every t and every Borel set A [3, p. 255]. Then a family of operators
T(t) on the space of bounded Borel functions can be defined by setting

As in the case of a random walk, we may consider the adjoint trans-
formation for v a Borel measure on S

for every Borel set A. If v gives the distribution for the initial position
of the particle then vT{t) gives the distribution for its position at time
t. The further conditions which the measures μx>t must satisfy are
most easily expressed in terms of the operators T{t), which we call the
transition operators of the process. In the first place, we impose the
condition that μXtt be a continuous function of x with respect to the
weak topology on the measures this is equivalent to requiring that
T(t)f be continuous when / is continuous (cf. [11]). Secondly, we would
like to require that for any continuous /, T(t)f converge uniformly to
/ a s t -> 0, but certain processes (those with absorbing barriers) do not
satisfy this condition. One or both end-points of S may be absorbing
barriers intuitively speaking, an end-point is an absorbing barrier if a
diffusing particle disappears immediately when it reaches that point.
In such a case, the range of T(t) contains only functions which vanish
at the absorbing barrier(s). Throughout the rest of this section, let X
be the Banach space of continuous functions on S which vanish at those
end-points which are absorbing barriers for the diffusion process under
consideration. We shall require that T(t)f converge uniformly to / as
t -> 0 for all f e X. For the process to have the Markov property, the
operators T(t) must have the semi-group property (4.1). It is obvious
that |1 T(t) || ^ 1. The conditions imposed so far may be summarized as :

The operators T(t) form a proper semi-group of operators on the
space X.

Finally, in order to restrict attention to diffusion processes rather than
more general types of Markov process, we suppose that

The infinitesimal generator of the semi-group T(t) is a restriction
of an operator of the form

(6.1) β' = d d

dm dx

where m is a strictly increasing function of x.
It has been shown by Feller [10, 11] that all one-dimensional diffusion
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processes satisfying certain regularity conditions have associated semi-
groups whose infinitesimal generators can be put into the required form
by a suitable choice for the coordinate function x.

Suppose that for each n a random walk {Sn, hn, Tn} is given, and
that a diffusion process with transition semi-group T(t) is also given.
We shall say that the sequence of random walks converges to the dif-
fusion process if

( i ) For every probability measure ι> on S, there exists a sequence
of probability measures vn converging weakly to it, with the support
of vn contained in Sn.

(ii) For every such sequence vn9 and every t > 0, the probability
distribution for the position at time ί of a particle starting with initial
distribution vn and executing the nth random walk converges weakly
to the probability distribution at time t for the position of a particle
starting with initial distribution v and following the diffusion process.
The weak convergence referred to above is weak convergence relative to
the space X.

Now let Xn be the Banach space of bounded Borel functions on Sn,
and define Pn : X -* Xn by taking Pnf to be the restriction of / to Sn

for any f e X. Suppose that the Sn become dense in S, as in Example
2, § 2 then the Xn form a sequence of Banach spaces approximating
X. The adjoint space to X consists of the Borel measures on S (with
the exception of measures giving non-zero mass to end-points which
are absorbing barriers). The Borel measures with support included in
Sn may be considered as elements of X*, and for any such measure
vn, vnPn = *v It is clear that condition (i) will be satisfied. Condition
(ii) may be restated as follows. For any sequence of probability meas-
ures vn converging weakly to y, vnTnί

thnl1 converges weakly to vT(t).
Thus as a direct consequence of the definition of weak limit in § 3, (ii)
will be satisfied if T*(ί) is the weak limit of T*ttΛΛ1]. Finally, appealing
to Lemma 3.2, we obtain the following sufficient condition for con-
vergence.

In order that a sequence of random walks converge to a diffusion
process as described above, it is sufficient that the Sn become dense
in S and that T(t) = lim T J ^ A

Our subsequent discussion will be directed to giving conditions under
which this criterion holds.

The simplest example is the convergence of the symmetric random
walk to Brownian motion [6, Chap. 14]. Let S be the real line. The
standard Brownian motion process is obtained by taking
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} dy.

The nth symmetric random walk has the integral multiples of n"1 for
support, and basic time-interval hn — n~2. For x e Sw,

μx = I δ(x + n~ι) + ±δ(x - n-1) ,

where S(x) denotes the measure giving unit weight to the point x.

The convergence in this case follows immediately from a special
case of the central limit theorem (namely, the normal approximation
to the binomial distribution). From more general versions of the central
limit theorem it may be shown that many different random walks con-
verge to Brownian motion. The precise form of the one-step transition
probability distributions is largely irrelevant essentially all that matters
is the behaviour of the mean displacements and mean square displace-
ments. Our goal is to establish similar results for the more general
diffusion processes described above.

Before giving our next set of definitions, we must fix some nota-
tional conventions. Assuming that some definite diffusion process is
under discussion, we normalize the function m occurring in (6.1) so that
it is continuous on the right in the interior of S and continuous (possibly

fδwith values ± oo) at the end-points. The expression! fdm denotes the
Jα

integral over the half-open interval (α, 6] if a < &, and the negative of
the integral over (6, α] if a > b. The derivatives of functions in Ό(Ω)
may have simple discontinuities at the discontinuities of m [cf. 10], and
we use f'(x) to denote always the right-hand derivative of / at x.

The necessary and sufficient conditions for the central limit theorem
[5] involve truncated means and variances of the distributions concerned,
rather than the actual means and variances (which need not exist).
Let C be a covering of S by intervals, and for every x e S define Cx

to be the union of those elements of C which contain x. Then for a
random walk with transition probabilities μx we introduce the following
functions, defined for all x in the support of the random walk.
The residual probability at x is

(6.2) P°(x) = μx(S - Cx) .

The truncated mass defect at x is

(6.3) qc(x) = 1 - μ,(Cx) .

The truncated mean displacement at x is
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(6.4) W{χ) = ( (y-x)dμx(y).

The (generalized) truncated mean square displacement at x is

(6.5) s%x) = f vx(y) dμx(y) .

where

5 y

{m(u) — m(x)} dn
X

is the solution of Ωv — 1 which satisfies the conditions v(x) = ΐ^(#) = 0.6

For functions in Ό(Ω) we obtain the "Taylor expansion "

(6.6) f(y)=f(x) + \Vf'(u)
Jx

du

= /(«) + (V -

- f(x) + (y- x)f\x) + vx(y)Wf(v) + E{xf y))

where E(x, y) is an error term whose absolute value does not exceed
the oscillation of Ωf on the interval (x, y). Putting this estimate to-
gether with the definitions (6.2) — (6.5), we obtain

(6.7) Tf{x) = ( f(y) dμx{y) + \ f(y) dμx(y)
Jcχ )s-ox

= f(x) + sc(x)Ωf(x) - qc(x)f(x)

+ kc(x)f(x) + sG(x)E(x)

+ O(p%x)\\f\\)

where | E(x) | does not exceed the oscillation of Ωf on the interval Cx.

A family of coverings will be said to contain arbitrarily fine mem-
bers if it contains a refinement of every finite covering of S by open
intervals.

Suppose a diffusion process with transition semi-group T(t) and a
sequence of random walks {Sn, hn, Tn] are given and that the space X
and the approximating sequence Xn, Pn are defined as described above.
Define Ωn = h~ι(Tn - I).

LEMMA 6.1. Suppose that there exists a family of coverings contain-
ing arbitrarily fine members such that for every covering C in the family

6 In the case of Brownian motion, m(x) = 2x, vz{y) = (x - 2/)2 and s°(x) is the usual
truncated mean square displacement. The remark that the definitions given above furnish
the appropriate generalization is due to W. Feller.
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V°Jx) — o(hn) and s%(x) — O(hn), uniformly for x e Sn as n -» OD J Then
for any f e Ό(Ω),

lim sup I QnPnf(x) - Ωf(x) |

Ξg lim sup A M - gί(x)f(x) + K(x)f'(x) + (<φ;) - W f ( » ) I

Proof. The functions in X are continuous on a compact set hence
Ωf in particular is uniformly continuous. For any ε > 0, there is a
covering C in the postulated family which is sufficiently fine that the
oscillation of Ωf on any Cx is less then ε. Then for any x e Sn, (6.7)
gives

(6.8) ΩnPJ{x) - Ωf{x) - h?{- qc

n(x)f(x) + K

+ (s%x) - K) Ωf(x) + O(εs%x) + v%x) 11/II)} .

From the assumptions, the last term on the right is O(e), uniformly in
n, and since ε is arbitrary, the conclusion follows.

In order to apply Theorem 5.3 to show that lim T ^ 1 ] = T(t) we

must show that lim ΩnPnf = Ωf for sufficiently many functions /. Ac-

cording to the definition, this means that we must show that

lim sup I ΩnPJ{x) - Ωf(x) | = 0 .

We shall in all cases assume the following

Condition A. There exists a family of coverings such that the
hypotheses of Lemma 6.1 are satisfied, and such that

( i ) qcn(x) = o(hn)

( i i ) k°(x) = o(hn)

( i i i ) s°n(x) = hn + o{hn)

as n -» oo, uniformly for x bounded away from the end-points of S.

We remark that since / and Ωf are bounded for any / e D(β) while f
is bounded except perhaps near the end-points of S, these conditions
imply that

(6.9) -g°n(x)f(x) + K{x)f{x) + (sc

n(x) - hn)Ωf - o(hn)

for any / e D(β), uniformly for x bounded away from the end-points
of S.

7 The first assumption is essentially the Lindeberg condition [9], strengthened by the
requirement of uniformity, and implies that lim Ωn is of local character.

W-»oo
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The conditions to be imposed on q, k, and s near the boundaries
are more complicated and will depend on the boundary conditions used
to define Ω as a contraction of Ω''. The classification of types of bound-
aries and possible boundary conditions has been given in [8], and justifi-
cation for the assertions made in what follows regarding the behaviour
of the solutions of the homogeneous equation (λ — Ω')n = 0 is to be
found there. In [8] a different canonical form for the operator Ωf is
used, so that the statements require some translation to fit our situation;
[19] contains a summary of what we need in terms of the present nota-
tion. For simplicity, we shall consider only boundary conditions under
which Ω is of local character at the end-points of S as well as in the
interior. This restriction rules out any interaction between the bound-
aries of the sort described in [8] and they can be considered separately.
We shall discuss in detail only the left-hand boundary. The modifications
necessary to deal with the right-hand boundary will be obvious.

Since T(t) is a proper semi-group, the resolvent (λ — Ω)"1 is defined
on all of X (From here on we take λ to have some fixed positive
value.) Let Y be the linear subset of X consisting of all functions
which are constant in some neighbourhood of each end-point. Suppose
g e Y has the value c in a neighbourhood of an end-point, and let
f=(λ- Q)-Xg. Then (λ - Ω)(f - cλ'1) = g - c = 0 on this neighbourhood.
Hence in this neighbourhood, / has the form

(6.10) f(x) = bu(x) + constant

where b is some constant and u is the solution (unique up to a constant
multiple) of (λ — Ω')VL = 0 which satisfies the boundary condition for Ω
at the end-point in question.

LEMMA 6.2. Let Ω be the restriction of Ω to those functions in Ό(Ω)
which are of the form (6.10) in some neighbourhood of each boundary.
Then Ω is densely defined, and R(Λ — Ω) is dense in X.

Proof. It is clear that Ω is densely defined. From the remarks
preceding the lemma, R(Λ — Ω) Ό Y which is dense in X

Let r denote the left-hand end-point of S. We first consider the
case where r is a natural boundary, so that no additional boundary
condition may be imposed. The functions u(x), u'(x), and Ωu(x) all tend
to zero as x approaches r. Hence for / 6 D(ίJ), f and Ωf tend to zero
as x -» r. Then if

Condition B.I. For every covering of the family postulated in
condition A
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Q°n(x) = O(K)

¥n{x) = O(hn)

sc

n{x) = O(hn)

uniformly in some neighbourhood of r,

is satisfied, it is clear that for every / e Ό(Ω) and every ε > 0, there
exists a neighbourhood N of r such that

(6.11) lim sup A;11 - ςfn(x)f{x) + K{x)f{x) + {s%x) - hn)Ωf(x)\^e.

In the case of an exit boundary, we shall suppose that the absorb-
ing barrier condition f(r) = 0 is imposed. Then the functions u(x) and
Ωu(x) vanish at r, while u'(x) is continuous at r and has a finite non-
zero value there. Since f(r) = 0, any / e Ό(Ω) is a multiple of u in
some neighbourhood of r. At an exit boundary, r is finite and we may
integrate to obtain

f(x) =f(r) + (x~ r)f(r) + o(x - r) .

Making use of this and the continuity of / and Ωf, we see that if

Condition B.2. For every covering of the family postulated in
Condition A

( i ) (x - r)q%x) - O(K)

( i i ) K{x) =* O(hn)

(iii) s°n(x) = 0{hn)

(iv ) -(x - r)qG

n{x) + kc

n(x) = o{hn)

uniformly in some neighbourhood of r,

is satisfied, then for any / e Ό(Ω) and ε > 0 there exists a neighbourhood
of T on which (6.11) holds.

At an entrance boundary r is infinite while m is finite. The func-
tion u has the property that u\r) = 0. Hence for / e D(β), f(r) = 0,
and integrating with respect to m yields

f(x) — {m(x) — m{r)}Ωf{r) + o(m(x) — m(r)) .

Using this it is easy to see that

Condition B.3. For every covering of the family postulated in

Condition A

( i ) {m(x) - m{r)}¥n(x) - C(hn)

(ii) sσ(x)
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(iii) {m(x) - m(r)}k°n(x) + s%x) - hn = o(hn)

(iv) q%x) = o(hn)

uniformly in a neighbourhood of r,

implies (6.11) for some neighbourhood N.

At a regular boundary, m and r are both finite, and the boundary

condition is of the form

(6.12) aΩf(r) + bf(r) + cf(r) = 0

where α, 6, and c are constants, not all zero. For / e Ό(Ω) we have

Ωf(x) = Ωf(r) + o(l)

and by integrating obtain

f{x) = f(r) + {m(x) - m(r)}Ωf(r) + o(m(x) - m(r))

and

f{x) =f(r) + (α? - r)f(r) + vr(x)Ωf(r) + o(vr(x)) .

Under these circumstances, the following condition is sufficient to give

the conclusion (6.11) for any ε > 0 and any f e Ό(Ω).

Condition B.4. For every covering of the family postulated in

condition A

( i ) vr(x)q°n(x) = O(K)

(ii) {m(x) - m(r)}k°n(x) = O(hn)

(iii) 8°(x) = O(hn)

(iv) c{K(x) -(x- r)qcn(x)} + bqc

n(x) = o(hn)

( v ) a{kc

n(x) -(x- r)q%x)}

~b{sc

n(x) -hn+ {m(x) - m(r)}kc

n(x) - vr(x)qc

n(x)} = o{hn)

(v i ) c{sG

n(x) - hn + {m(x) - m(r)}k*(x) - vr(x)qc

n(x)}

+ aqc

n{x) = o(hn) ,

omitting (vi) if a = b = 0.

The last three conditions are of course not independent, and if neither
a, &, nor c is zero any two of them imply the third. Condition (vi) can
be omitted if a = b — 0 because this is the absorbing barrier condition and
hence for fe Ό(Ω),f(r) = Ωf(r) = 0.

Putting all these results together, we obtain as the final result

THEOREM 6.1. If a diffusion process and a sequence of random walks

are such that
( i ) The supports Sn become dense in S and
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(i i) Condition A and the appropriate conditions from among B.I,

B.2, B.3, B.4, and their analogues for the right-hand boundary

are satisfied

then the random walks converge to the diffusion process.

Proof. For any ε > 0 and any / e Ό(Ω) the conditions imposed

near the boundaries imply the existence of neighbourhoods of the bound-

aries on which (6.11) holds. Taken with Condition A and Lemma 6.1,

this implies that for / e D(β), lim ΩnPnf = Ωf. Hence, from Lemma

6.2, lim Ωn is densely defined and λ — lim Ωn has a dense range. Since

the operators Tn are all bounded by 1, Theorem 5.3 applies to give the
desired conclusion.

For our first example we shall take Brownian motion on the half-
line [0, oo], for which there is a regular boundary at the origin and a
natural boundary at infinity. Let {hn} be a sequence of positive num-
bers converging to zero, and define dn = h]l2. Consider a sequence of
random walks, with the nth. walk having a basic time interval hn and
support Sn consisting of the non-negative integral multiples of dn. Away
from the origin take the ordinary symmetric random walk with

μl = \δ(x + dn) + \δ(x - dn)

for x e Sn, x Φ 0. The behaviour at the origin will, of course depend
on the boundary condition to be imposed on the diffusion process. As
the family of coverings required in condition A we shall take the family
of all finite coverings of [0, oo] by open intervals. Since dn -* 0 it is
easy to see that for any fixed covering, for sufficiently large n, p°n{x) —
q°n(x) = k°n(x) = 0 and s°n(x) = hn for all x e Sn, x Φ 0. Thus Condition A
is satisfied, and so is Condition B.I at the natural boundary. Further-
more, whatever condition of type B.4 is imposed at the regular boundary,
it will automatically be satisfied in any neignbourhood of that boundary
except at the origin itself. At the origin the Conditions B.4 reduce to

( i ) eZ(0) = O(A»)

(ii) ck°(0) + bq°n(0) = o(hn)

(iii) aJφ) - b{sϋ

n(0) - hn} = o(hn)

(iv ) c{s°M - hn) + aqc

n(0) - o{hn)

where (iv) can be omitted in the absorbing barrier case.

In order to obtain convergence to the absorbing barrier process, it
is sufficient that no particle which reaches the origin returns to the
interior of the interval (i.e., once a particle is at the origin, it either
stays there or disappears). In this case, &£(0) = s£(0) = 0, and since in
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the absorbing barrier process a — b — 0 and condition (iv) can be omitted,
the conditions are satisfied.

It is slightly more complicated to obtain a sequence of random
walks converging to a diffusion process with an elastic barrier condition
α = 0, 6 = 1, c = — α (which by taking a = 0 specializes to the reflecting
barrier condition). It can be done by letting a particle reaching the
origin be " reflected " to the point dn with probability (1 + adn)~ι and
disappear with probability adn(l + adn)-\ This gives qG

n(0) = adn(l + adn)-\
kc

n(0) = dn(2 + adn)~\ and s°(0) = d2

n(l + adn)-1. Remembering that dJ=Λ»,
it easy to verify that the conditions given above are satisfied.

As a further variation of Brownian motion, let us consider the dif-
fusion process on [—00, 00] defined by taking

mix] = 2a? - 1 x < 0

= 2α + 1 x ^ 0 .

This is known to give a Brownian motion process modified by the in-
troduction of a " delay '' at the origin so that the set of times for which
a particle is at the origin is a nowhere-dense set of positive Lebesgue
measure. We shall show that this process is the limit of symmetric
random walks, modified so that a particle at the origin has probability
1 — dn of staying there at the next jump, and probability dn\2 of jump-
ing to each of its neighbours. (We use hn and dn with the same meaning
as in the previous example). As before, we have q°n{x) — k°n{x) — 0 for
all x e Sn, while s°nlx] = hn for all x Φ 0. Noting that vo(y) = y2 for
2/^0, and vo(y) = yλ + 2 | y \ for y < 0, we obtain

82(0) = dn(di + dn)

= hn + dl = hn + o(hn) .

The boundaries are both natural and Conditions A and B.I can obviously
be satisfied by taking the required family of coverings to consist of all
finite coverings of the line.

As a final example, in which it is not so evident a priori what the
appropriate boundary conditions are, we consider the limiting behaviour
of a sequence of random walks encountered in genetic theory. These
processes are discussed in [7, p. 232 if.] and their genetic interpretation
is described there. We have made some inessential changes in notation
for purposes of convenience.

The processes take place on the interval 0 ^ y ^ 1. (We use y as
coordinate to reserve x for the natural scale used to express Ωr in the
form (6.1).) The nth random walk has basic time-interval hn = n~l

and support the integer multiples of n'1. The one-step transition
probabilities are
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(6.13) //»= i(:)p£.,<rtr»*(y*)

so that

Tnf(y) = Σ M.ytftfG/*)

where 2/Λ = λ^"1, pΛtV — 1 — gΛfV = 2/(1 — ra~ι) + (1 — y)sn~\ and r and s

are non-negative constants.

It is easy to check that the formal limit of the operators Ωn =

n(Tn — I) is the differential operator

(6.14) Ω' = * ?/(l - y)Ί? + {s - (r + %}D

where D denotes differentiation with respect to y.8 The natural scale
a;, and the monotone function m needed to express β' in the form (6.1)
may be taken as [10, formula 4.2]

(6.15) x(y) - ( v z~2s(l - z)~*r dz
Jl/2

l /2

- zf7"1 dz .

The nature of the boundary at y = 0 depends on the value of s the
nature of the boundary at y — 1 depends similarly on the value of r.
We shall discuss only the left-hand boundary in detail, since there is
obviously a complete symmetry. Checking with the criteria given in
[8] or [19], we see that the boundary at y — 0 is an exit boundary if
s — 0, a regular boundary if 0 < 2s < 1, and an entrance boundary if
2s > 1.

It would presumably be possible to show that the sequence of
random walks under consideration satisfies our Condition A and the
appropriate conditions at the boundary, but the functions x and m are
not elementary, and it would be complicated to obtain satisfactory
estimates for the mean displacements, etc. We shall instead make
direct use of Lemma 6.2 and Theorem 5.3.

We assert that if f has a continuous second derivative on the closed
interval [0, 1] then lim Ωnf = Ω'f. To prove this, observe first that for

n—>oo

the constant function 1, for g(y) — y, and for h(y) = y2, simple calcula-
tions from the elementary formulas for the mean and variance of a
binomial distribution give

8 Goldberg [12] discusses the solutions of the equation df/dt = Ω'f under various
boundary conditions.
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Ωnl = 0 = Ωl

Ωng(y) - s - (r + s)y = Ωg(y)

Ωnh(y) = (1 + 2s)y — (1 + 2r + 2s)y2 + O(n~ι)

— Ωh(y) + O(n~ι) .

It is also easy to verify (for instance, by estimates obtained from the
normal approximation to the binomial distribution) that for any ε > 0,

Vn{y) = 1 dμn

y(z) = o(n-τ)

\z-V\>*

uniformly in y. Then using a second-order Taylor expansion, any/with
a continuous second derivative can be approximated over the interval
(y — £, y + ε) by a linear combination of 1, g, and h so that the error
at z is less than (y — z)2E2 where E2 is the maximum oscillation of D2f
on any interval of length 2ε. Estimating/by such a linear combination,
we obtain

Since Es can be made arbitrarily small by suitable choice of ε and for
each such choice nps

n(y) — o(l), our assertion holds as stated.

We shall complete the proof that the random walks (6.13) converge
to a diffusion process associated with the operator (6.14) by showing
that (if a suitable boundary condition is imposed in the regular boundary

case) all functions in Ό{Ω), where Ω is defined as in Lemma 6.2, have
continuous second derivatives on the closed interval. Then we shall
have Km Ωn densely defined and R(λ — lim Ωn) dense, so that Theorem

5.3 will apply to give the desired conclusion. Of course, every / e D(β;)
has a continuous second derivative on the open interval, but since the
coefficient of Dz in Ω1 vanishes at the end-points, the continuity of Ω'f
on [0,1] does not imply the continuity of D2f there.

The homogeneous equation (λ — Ω')u = 0 may be put into the form
of the standard hypergeometric equation

2/(1 — y)vl\y) + {c — (a + b + l)y}'(y) — abu = 0 by determing α, b,
and c from the equations

c = 2s

a + b + l = 2r + 2s

ab = 2λ .

The solutions of this equation are given in terms of hypergeometric
functions in section 2.3.1 of [2], whose notation we adopt. In the
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of a non-regular boundary there is a unique solution which is bounded
at 0. This solution is

u = yF(a — c + 1, b — c + 1; 2; y)

for the exit boundary case, c = 2s = 0, and

u = F(a, b; c; y)

for the entrance boundary case, c — 2s > 1. Since the hypergeometric
function is analytic at the origin, it has a continuous second derivative
there.

In the case of a regular boundary, 0 < c = 2s < 1, there are two
independent solutions which are bounded at 0, namely

uλ = F(a, b; c; y)

and

u2 = yι~cF(a - c + 1, b - c + 1; 2-c y).

We now impose the reflecting barrier condition, dfidx -> 0 as x -* 0.
From (6.15)

4^
ax

and it is easily verified that duλ\dx -» 0 at the boundary, but that du^dx
does not. Thus solutions of the homogeneous equation which satisfy
the boundary condition imposed are multiples of ul9 and have a con-
tinuous second derivative at 0.
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