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1. Introduction. The usual methods for numerically computing
the solution of a partial differential equation consist in replacing the
differential operators by difference operators which approximate them,
and taking the solution of the resulting difference equation as an ap-
proximation to the solution of the original equation. The question of
convergence then arises; that is, when will a sequence of difference
equations have the property that their solutions converge to the solution
of a given differential equation ? We treat this question in an operator-
theoretic fashion, and our discussion has much in common with that of
Lax and Richtmyer [17], as is pointed out in more detail below. The
reader is referred to the bibliography of [17] for a list of the principal
papers dealing with this question of convergence.

Our discussion will be limited to the initial value problem (Cauchy
problem) for linear equations in the form

1.1) %u(t, @) = Qult, ) ; w0, ) = f(@)

in which 2 is linear and constant in time. Here ¢ is a non-negative
real variable, and x is a point in some space S. Equation (1.1) is form-
ally of parabolic type, but, as is shown in [14, Chap. XX], the initial
value problem for hyperbolic equations can also be put into this form.
Lateral conditions (i.e., boundary conditions such as are needed for the
heat equation on a finite interval) are considered to be incorporated into
the definition of £ as restrictions on its domain [8, 17].

The process of setting up a sequence of finite difference approxi-
mations to (1.1) may be deseribed in the following general terms. For
each n, take a positive number %, and a set S, < S whose points form
a suitable grid. The solution to the nth approximating equation is de-
fined inductively, for ¢ an integral multiple of %4, and z a point of S,
by the following system of equations :!

1 Sometimes only the space variable is made discrete, so that u, is defined by a finite
set of simultaneous differential equations (cf. {13, p. 233]). Theorem 5.2 can be applied
to this situation just as Theorem 5.3 can be applied to the case in which the time variable
is made discrete and the w, are defined by (1.2).

This paper was originally accepted by the Transactions of the American Mathematical
Society, Received July 3, 1957, by Trans. Amer. Math. Soc. Research done at Princeton
University and supported in part by the Office of Ordnance Research U.S. Army.
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(1.2) (e + Vg @) = Touallchy, ) k=012, --
un(oy .’E) - fn(x)

where T, is a linear operator and f, is a function defined on S, which
suitably approximates f. For example, f, may be simply the restriction
of f to S,. (Other possible ways of defining f, are discussed in § 2.)
It will be convenient to extend the definition of u, to all ¢ by setting

(1.8) Un(t, @) = wn(lchn, @) for khy < t < (k + Lh, .

In some numerical methods, the relation between the values of wu, at
steps £ and k + 1 is given by a set of simultaneous linear equations,
so that T, is defined implicitly rather than by explicit formulae; the
particular way in which T, may be defined will be irrelevant to our
discussion.

If the operators £, defined by

converge to 2 in some suitable sence, then (1.2) converges formally to
(1.1) as n — oo, and it is plausible that under certain conditions the
functions u, will converge to the solution of (1.1).

It was observed by von Neumann [20] that a system like (1.2) may
be unstable in the sense that small errors in the initial data may lead
to errors in u,(t) which become unbounded as 7 — o. The definitions
of stability given in the literature vary slightly in detail. We adopt
essentially the same definition as that used in [17]. We suppose that
the space of functions on S, is normed as a Banach space. (Examples
of how such a norm may be defined are given in §2.) Then the norm
of T, as an operator on this space is defined. We shall say that the
system (1.2) is stable if

(1.5) | T% || < Me¥*n

for some constants K and M independent of n and k. The simpler
condition || T,]| =1 is satisfied in many applications, and clearly implies
(1.5).2

Although it is possible to find an example of an unstable system
whose solutions converge to the correct result if the approximating
functions f, are appropriately chosen [18], Lax and Richtmyer [17] have
shown that in general an unstable system cannot converge. On the
other hand, they have shown that stability, together with some reasonable

2 Jt should be pointed out that we are concerned only with the behaviour of the exact
solutions of (1.2). In actual computation the effect of round-off errors must be considered,
and the situation becomes more complicated.
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assumptions on the limiting behaviour of the 2,, is sufficient to imply
convergence. Our main result is very similar ; however, our hypotheses
differ in two respects from those of [17].

In the first place, we do not require that the limit function # and
the approximating functions wu, all belong to the same Banach space.
Frequently, the T, arise most naturally as operators on functions which
are defined only at a grid of points in the space S. In most practical
applications the T, can be modified so as to become operators on func-
tions defined on the whole space, and this is assumed in [17]. Such
modification, however, is usually unnatural, and in the case of random
walks and diffusion processes which we discuss in §6 it is not neces-
sarily possible. Consequently it seems worth while to eliminate this
assumption. We introduce the notion of an approximating sequence of
Banach spaces and define associated concepts of convergence of vectors
and operators. Section 2 is devoted to setting up the definitions and
giving examples ; it also includes some lemmas on the convergence of
operators. Section 3 contains some remarks on the adjoint spaces of an
approximating sequence which have application in §6. Kantorovich [16]
uses a similar sort of approximation of one Banach space by another,
but requires the approximating space to be isomorphic to a subspace
of the approximated space. This requirement is unnecessarily restrictive
for our purposes.

To explain the second difference, we must describe more precisely
what we mean by a solution of (1.1). We give an abstract formulation
in terms of a semi-group of operators [14, chap. 20; 15]. Let X be some
suitable Banach space of functions on S, and let 2 be a linear operator
on X. Suppose that 2 is densely defined and has the property that
for every f in its domain there exists a unique function u(¢, x) satisying

(1.6) (i) u(t, ) and %u(t, @) are in X for all ¢ = 0

(ii) %u(t,w):.@u(t,x) for ¢ =0

(iii) [lu(t, @) —f(@)||>0 as t—>0
(iv) llu(t, 2) || < Ml f@)ll for 0<¢ <1
Where M is a constant independent of f. Then for each ¢, setting
(1.7) [T@)S1(=) = u(?, x)

defines an operator on the domain of 2. Since 2 is densely defined,
T'(t) (which is bounded by 1 + M'*!) can be extended to all of X by
continuity. The operators 7T'(t) then form a semi-group with Q as
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infinitesimal generator, which is (hypothesis (iii)) strongly continuous at
the origin. The conditions (1.6) express the requirement that the initial
value problem (1.1) be ‘‘ well-posed *’ [ef. 17].

In [17] it is assumed that an operator 2 is given which leads to a
well-posed problem, and the operators 2, are required to satisfy a con-
sistency condition which may be translated into our terminology as
follows :

There exists a dense set of functions f such that || (2, — DT@)f |l
tends to zero uniformly for ¢ restricted to a bounded interval.
Our condition is that lim 9, be densely defined, and that for some

Nn—roo

positive 4, lim (A — 2,) have a dense range. (The precise meaning we

attach to ‘‘limit of a sequence of operators’ is given in §2.) It is
part of our conclusion that the operator to which the 2, converge gives
rise to a well-posed problem. Although our condition appears to be quite
different from that of Lax and Richtmyer, we have found no example
in which we could show that one condition was satisfied and the other
was not. Our condition seems to be easier to verify in the case of the
applications made in § 6.

Our proof of convergence is based on the relation between a semi-
group and its resolvent which is made explicit in the Hille-Yosida
theorem [14, 22]. In §4 we develop the relevant facts in a form con-
venient for our discussion. All the results in this section are well-
known ; the proof of Theorem 4.1, however, is new.

Section 5 is concerned with the convergence problem proper, and
the theorems of this section represent the principal results of the paper.

In §6 we consider in some detail the convergence of random walks
to one-dimensional diffusion processes, and discuss several examples.

This paper is based on a thesis submitted to the Department of
Mathematics of Princeton University in June 1956. I wish to thank
Professor W. Feller for his guidance in the writing of the thesis, and
the National Research Council of Canada for fellowship support during
the academic year 1955-56.

2. Approximating sequences of Banach spaces. Let X be a Banach
gspace. A sequence of Banach spaces {X,} together with a sequence of

linear maps P,: X — X, is called a sequence’® of Banach spaces approximat-
ing X if

3 We could equally well define a system of Banach spaces approximating X using an
arbitrary directed set as index set. The proofs of all the main theorems of this paper
require only trivial changes of language to adapt them to the more general situation. Un-
less X is assumed to be separable, it is necessary to use nets in discussing some of the
properties of the adjoint approximating sequence (§ 3).
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(2.1) NP1l =1
and
(2.2) lim || P.f]l = ||f|| for every fe X.

Condition (2.2) obviously implies that in some sense the maps P, become
isomorphisms ‘‘in the limit’’. The following lemma gives a precise
expression to this idea.

LEMMA 2.1. Let X' be any finite-dimensional subspace of X, and
let Q, be the restriction of P, to X. Then Q, is one-to-one if n is suf-
Siciently large, and lim || Q;'| = 1.

n—co

Proof. Take any ¢ > 0, and let {f;} be a finite set of vectors of
unit length in X' such that the e¢-neighbourhoods of the f; cover the
unit sphere in X'. Now take N sufficiently large that for all n = N,
max, (|| ;|| — || P.fi ) <e. Then for any ¢ on the unit sphere in X',
| Pugil > 1 — 2¢ for all n = N. Hence @, is one-to-one and

l=ll@ll' =l =0 —297.

We now define convergence for sequences of vectors and operators.
We shall use the following terminology and notation. By ‘¢ operator
on X we shall mean ¢ linear transformation defined on a linear subset
of X and taking values in X’’. If A is an operator on X, the linear
subset of X on which A is defined is the domain of A, written D(A).
The range of A, denoted by R(A), is the linear subset consisting of all
¢g € X for which there exists an fe D(4) with g = Af. If A and B are
two operators such than D(A) c D(B) and Af = Bf for all fe B(4)
then we call B an extension of A and write A c B. The identity
operator on any space will be denoted by I.

A sequence {f,}, where f, € X, converges to fe X if lim|| f,—P,f ||=0.
It is easy to see that (2.2) implies that a sequence cannot converge to
more than one fe X. A sequence is convergent if there exists an
fe X to which it converges; we call f the limit of {f,} and write

f=lm/f,.

n—oo

The Zimit of a sequence of operators {A,}, where A, is an operator
on X,, is the operator on X whose domain consists of those fe X for
which {A,P,f} converges and whose value for such an f is lim A4,P,f.

n~»00

ExXAMPLES.
(1) Let X be an arbitrary Banach space, and for every n let
X,=X and P,=1. Then the convergence of vectors is ordinary
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convergence, and convergence of operators is the usual strong conver-
gence. Lemmas 2.2, 2.3, and 2.4 below then become results on the
strong convergence of operators.

(2) Let X be the space of bounded continuous functions on some
topological space S, with the uniform norm. For each =, let S, be a
subset of S and let X, be some Banach space of functions on S, (with
the uniform norm) which contains all the restrictions of elements of X,
For fe X, define P,f to be the restriction of f to S,. (Note that there
is no requirement that the projection P, map X onto X,.) Condition
(2.1) is obviously satisfied, and if the sets S, become dense in S in the
sense that every open set U C S contains points of S, for n sufficiently
large, then (2.2) is also satisfied. In this case {f,} converges to f if
and only if

lim sup | ful@) — f@) ]| =0.

(8) Let S be a region of Euclidean space with Lebesgue measure,
and let X be L?(S). For each n, let S be partitioned into measureable
sets S, ;, each with finite measure m,, > 0. Let X, be the subspace of
X consisting of functions constant on the S, ;. For fe X, define P,f to

have the value m;“ig S,: f(@)dx. Condition (2.1) is always satisfied. If

each partition is a refinement of the preceding one, and if the partitions
become sufficiently fine in the sense that the Borel field generated by the
collection of all the S, ; contains all Borel-measureable subsets of S, then
(2.2) will be satisfied. It is clear that a similar procedure can be followed
to get an approximating sequence to the L*-space over any measure space.
Essentially this type of approximation (with p = 2) has been used by
Douglas [4].

The following lemmas will be needed for later use. Lemma 2.2 is
a generalization of the Banach-Steinhaus lemma [1, p. 79], and Lemma
2.3 similarly generalizes an obvious fact about the strong convergence
of operators. Lemma 2.4 is a more special result which is used in the
proof of Theorem 5.2.

LEMMA 2.2. For each n, let A, be an operator on X,, with domain
all of X,. If there exists o constant M such that || A, || < M for all n,
and if A =lim A, is densely defined, then A is defined on all of X and

hAn=m

Proof. By hypothesis, for any fe X it is possible find a sequence
{f"* converging to f, with every f’in D(A). This, by definition, means
that for each f’ there exists a ¢’ € X such that
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VAP, f’— P,g’|l—>0 as n —> . For any 4,7,
llg* = ¢’ Il = lim || Po(g" — &)l
= lim [| A,P.(f* — ) |

sMlrt =51

Since the f* form a convergent sequence, it follows that the ¢° form a
Cauchy sequence and consequently have a limit g. Now

“Anpnf—PngH é “AnPn(f_fi)“'l_ “Anpnft_PngtH + “Pn(gi_g) “ .

The first and last terms on the right may be made arbitrarily small by
taking 4 sufficiently large, independent of %, and the middle term goes
to zero as n — . Hence Af is defined and equal to g. It is obvious
that || 4 || < M.

LEMMA 2.8, Let {A,} be a sequence of operators satisfying the
hypotheses of Lemma 2.2, and converging to A. For each n, let B, be
an operator on X, and let B =lim B,. Then AB C lim A,B,.

Nn—oo n-—->co

Proof. Suppose f € D(AB). Then
P,ABf — A, B,P,f = (P, ABf — A,P.Bf) + A,(P,B — B,P,)f.

The first term on the right tends to zero because A =lim A,. The

n->c0

second term on the right is dominated in norm by M || P,Bf — B,P,f ||
and this tends to zero because f e D(AB) < D(B).

COROLLARY. Let {A,} be a sequence of operators satisfying the
hypotheses of Lemma 2.2 and converging to A. Then for any positive
integer k, lim At = Ak,

LEMMA 2.4, For each n, let A, be an operator on X, with an in-
verse B, defined on all of X,. Suppose that ||B,|| < M for all n, and
that both the domain and range of A =1lim A, are dense in X. Then

n—»00

B =1lim B, is defined on all of X, and has a dense range. B has an

n—>co

snverse if and only if A has a closed extemsion, and then B~ is the
closure of A.

Proof. Consider an arbitrary g € R(4), g = Af.
Then
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Since g = lim A,P,f, the term on the right goes to zero, and conse-

n—r00

quently B,P,g — f. Since R(4) is dense, it follows from Lemma 2.2
that B=1im B, is defined on all of X. Since Bg=f if g = Af,

BA c— I. Hence R(B) D D(4) and is dense in X.

If B! exists it is a closed operator because B is closed; since BA C I,
it is an extension of A. Conversely, suppose A has a closed exten-
sion A’. Then, since B is bounded, A’B is a closed extension of AB.
But for g = Af e R(4), we have ABg = AB(Af) = A(BA)f = Af =g,
so that AB coincides with I on a dense set. Hence A'B = I; therefore
B has an inverse, and A’ is an extension of it. This is true for any
closed extension of A, and consequently B-! is the closure of A.

3. Adjoint spaces. If {X,} is a sequence approximating X, with
associated projection operators P,, then the adjoint spaces X¥ are con-
nected with X by the adjoint operators P%: X — X*, Condition (2.1)
of course implies that ||P|| < 1. Condition (2.2) clearly should imply that
in some sense the images of the P} become dense in X* in the limit.
This is not generally true in terms of the norm topology on X*—it is
eagy to give an example in which the union of the images of the P} is
nowhere dense in X* with respect to this topology. It is more appropriate
to consider the weak topology [1] (often called the weak* topology) on
X*. For any f*e X* f, -+-, fn€ X, and ¢ > 0 we write V, x(f, -+, fin; €)
for the set {g* ¢ X*:|/*(f)—g*(f) | <ei=1,2, ---, m}. The collection
of the ‘‘cubical neighourhoods’”’ forms a base for the neighbourhoods
of f* in the weak topology.

LEMMA 3.1. Let f* be any element of X* and V = V. x(f1, ++«, fin; €)
a cubical neighbourhood of it. Then for all sufficiently large n, there
exists an f¥e X, with [fXUZ20/*]| and [P, e V.2

Proof. Let X' be the subspace of X spanned by fi, --+, fm, and as
in Lemma 2.1, let @, be the restriction of P, to X'. Let f* be the
restriction of f* to X'. Let n be sufficiently large that @;' exists, and
define ¥ = f*Q;'. It follows directly from the definitions that f¥P,f,=
S*(f;) for any one of the f,, so that f*P,e V. Since ||Q;'||— 1, the
condition on the norm of f} is satisfied for sufficiently large .

If {fX*} is a net with f¥ e X;fw for each «, we say that {fX} con-
verges weakly to f* if n,—> « and {fiP,} converges weakly to f*.
The net {f}} is said to be bounded if || f7% || is bounded uniformly with

* We write adjoint operators on the right when applied to a vector (dropping the “‘star’’
since the position of the operator indicates that it is the adjoint).
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respect to «.

From Lemma 3.1 we obtain at once the proposition: for every
f*e X* there exists a bounded net {f}} with /e X %, which converges
weakly to it. To construct such a net, let the index set consist of the
cubical neighbourhoods of f*, ordered by inclusion. For each such
neighbourhood «, we can pick an f} e X;‘w,nw > ¢! (where ¢ is the
positive number used to define the cubical neighbourhood «), with
lfsll=2|lf*Il and fiP, e a. This net converges to f*. If X is
separable there exists a uniformly bounded sequence {f}} with f¥ e X%
which converges weakly to f*. To show this, let 13, f., - -- be a sequence
which is dense in X, and let X, be the subspace of X spanned by the
first m vectors of the sequence. Using the construction of Lemma 3.1
we can define N,, inductively so that N,,., > N, and for N,, £ n < N,
there exists an f¥ e X} with ||[f*lI S 2||Ff*|l and f}P.f, = f*(f) for
2 < m. Then ||f}P,|| is uniformly bounded and lim f}P,f; = f*(f;) for

n—o0

all the f,. Hence by a theorem of Banach [1, Theorem 2 of Chapter
71, {fP,} converges weakly to f*.

For each n let B, be an operator on X}. The weak Ilimit of the
sequence {B,} is defined to be an operator B on X*, with domain con-
gisting of all f* e X* such that for every bounded net {(f}} with
f*e X?;a which converges weakly to f*, the net /f ;'“anan} converges
weakly to a unique limit. For f* e D(B), f*B is defined to be this
limit.

LeMMA 3.2. For each n let A, be a bounded operator on X, with
domain all of X,, and suppose that A = lim A, is defined on all of X.
Then the adjoint operators A} converge weakly to A*.

Proof. Take any f*e X*, and let {f}} be any bounded net converg-
ing to it weakly. We must show that for every fe X. {f¥4, P, f}
converges to f*Af. We have

;‘:Aannwf _f*Af - f;&k(Aannw - P’nwA)f -+ (f:;Pnd, "'f*)Af .

The first term on the right goes to zero because n,—> o, A4 = lim 4,

n—oo

and the /¥ are uniformly bounded. The second term on the right goes
to zero because /f}l converges weakly to f*.

4, Semi-groups and resolvents. Throughout this section we shall
be dealing with a fixed Banach space X. Convergence of operators is
to be interpreted as strong convergence.

A (one-parameter) semi-group of operators is a family {T'(t)} of
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bounded operators on X, ¢ ranging over the non-negative real numbers,
which satisfies the relation

(4.1) Tt +s)=T@#)T(s) t,s=0,

with 7'(0) defined to be I. We shall consider only semi-groups for which
(4.2) ltl_lblol T@t)=1

and

(4.3) T ll=M allt

for some constant M. Semi-groups satisfying (4.2) and (4.3) will be
called proper.®

The operator
(4.4) Q =lim ¢ X(T(¢) — I)

is the infinitesimal generator of the semi-group and is always closed and
densely defined. One has g = 2f if and only if

(4.5) T@)f = f + S:T(s)g ds .

For every 1 > 0 there is a bounded operator

(4.6) JO) = (A — 9) = re‘“T(t) dt .
0

The family {J()} is called the resolvent family of T'(t). The operators
J(2) satisfy the relations

4.7) JQ) — J() = (2 — DI ()
(4.8) | amdm(2) || < M 1>0,m=1,2 -
(4.9) lim 2J(2) = 1I.

A—oo

A family of operators satisfying (4.7) will be called a resolvent famaily,
and one which satisfies (4.8) and (4.9) as well, a proper resolvent family.

If {J(2)} is a resolvent family it is clear that any f annihilated by
one of the J(1) is annihilated by all of them, and also that R(J(1)) is
independent of A. These remarks, together with (4.9), show that the
operators of a proper resolvent family are one-to-one transformations with

5 Condition (4.3) is not a serious restriction. If a semi-group satisfies (4.2) then || 7(¢) ||
must be bounded for ¢ near zero. It is then well-known [14] that || T(t) || < MeXt for
some K, so that the closely related semi-group 7"(t) = e~X¢T(t) will be proper. We use
this trick in proving Theorems 5.2 and 5.3.
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dense range. Hence for each 2, {J(1)}* is a densely defined operator.
It is easy to show from (4.7) that

(4.10) Q=2—{J)}

is independent of 2; we call it the infinitesimal generator associated with
the resolvent family {J(2)}.

A proper semi-group is uniquely determined by its resolvent family.
Suppose {T'(¢)} and {T"(t)} are two proper semi-groups with the same
resolvent family {J(1)}. For any fe X, f* e X* 'the function f*(J(2)f)
will be the Laplace transform of both f*(7'(¢)f) and f(Z"(¢)f). The
classical uniqueness theorem for the Laplace transform [21, p. 63] then
‘implies the identity of the last two functions (since both are bounded
and continuous), and since f and f* are arbitrary it follows that T'(t)=
T'(t). This fact shows that {J(2)} is the resolvent family of the semi-
group 7'(¢) if and only if the operator £ defined by (4.10) is the same
as that defined by (4.4).

The question still remains as to whether every proper resolvent
family is the resolvent family of some proper semi-group. The Hille-
Yosida theorem [14, 22] provides an affirmative answer. Our next
theorem gives an expression for the semi-group in terms of the re-
solvent. (cf. [14, p. 234]; the proof given there depends on the Post-
Widder inversion formula for the Laplace transform.)

THEOREM 4.1. Let {J(2)} be a proper resolvent family. Then the
operators

T(¢) = lim {AJ(1)} t=0

are defined on all of X and form a proper semi-group which has {J(2)}
as tts resolvent family.
We first prove several lemmas.

LEMMA 4.1 Let A and B be two operators which commute and have
the property that || A ||, || B' || £ M for all positive integers 1.
Then, for any f,

I (A» — BYf | =nd* || (A — B)f .
Proof. Since A and B commute
(M~my=gm+@m—mﬁ

The right hand side contains n terms, each with norm less than or equal
to M*|| (A — B)f .
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LEMMA 4.2. For any f e D(2) (where 2 is defined by (4.10))
H@J() — Dl < 2 M 251
Proof. This follows from (4.8) since for f e D(®),
(4.11) QJQA) = Df =JN) LS.
LEMMA 4.3. For any f € D(2)
H{aJ(2) — (2 2HPLf 1l = @1)M* || 27 |-
Proof. Note that
(4.12) J(2) — J(22) = AJ(2)J(22)
is a special case of (4.7). Now

WO — QU@ = WJQA) —D)f — (20J@22) + I)2AJ(22) — I)f

= J()2Sf — (20J(22) + DJ@NQS by (4.11)
= {J(2) — J(21) — 222N} 2f

= J@){2J(2) — 2222} 2f by (4.12)
= J@){AJ() — I — 22J(22) + I} 2f

= JEN{JQ) — J@)}2f by (4.11)
= WD) by (4.12) .

The conclusion follows from this identity and (4.8).

Proof of Theorem 4.1. Let r be an arbitrary positive number which
will be assumed fixed throughout the following discussion. Write r, as
an abbreviation for 2. Define

(4.13) T(n, t) = {r.J(r,)} = .
From the definition we have

T(n + 1, t) = {2r,J(2r,)} ]
= {27-"J(2rn)}2[trn]+s
where ¢ = [2tr,] — 2[tr,] =0 or 1. Thus
T(n + 1, t)f — T(n, t)f = {2r,J@2r,) 1Y ({2r,J(2r,)} — I)f
+ ({20, (2r) Pl — (1, J(r)} Ead) f .

Estimating the first term on the right by Lemma 4.2 and the second
term by Lemmas 4.1 and 4.3, we obtain, for f e D(2?),



APPROXIMATION OF SEMI-GROUPS OF OPERATORS 899

4.14) [{T(n+m, )= T(n, YIF I S IH{T (v + k+ 1, ¢) — Tn + k, §)11 |l

rI2T M| LF N+ M2 )
=2 (MRS + M 1L 21 -

m=-1
>
k=0
oo
>
k=0

Since the right-hand side goes to zero as m — o, the vectors T(n, t)f
form a Cauchy sequence and therefore converge. It should be remarked
that the convergence is uniform over every bounded t-interval. D(£2?)
is dense in X since it includes R(J%(2)), and the latter is dense because
of (4.9). From (4.8), ||T(n,t)|| £ M for all n. Hence, by the Banach-
Steinhaus theorem

(4.15) T(t) = im T(n, t)

is everywhere defined and satisfies (4.3). Taking n =0 in (4.14) and
letting m — o, we obtain the estimate

(4.16) | {rJ ()} f — TR 1| < 20 (M || QF || 4 eM* || 25 ||

for any f e D(Q%).
For any n,

T(n,s + 1) — T(n, s)T(n, t) = T(n, s)T(n, )({r.J(r,)}€ — 1),

where ¢ = [r,(s + t)] — [r.s] — [r,t] = 0 or 1.
Consequently (Lemma 4.2)

(4.17) H{T(n, s + t) — T(n, )T(n, O} || = ra’M || 2 ||

for any f e D(2). Taking the limit as n — o in (4.17) shows that the
operators defined by (4.15) satisfy (4.1) on a dense subset of X, and
hence on all of X, by continuity.

From Lemmas 4.1 and 4.2 we get

(4.18) H{T(n, ) — I}l S v’ [t ]M° | QF || = M2 | 21 ]

This inequality must hold also in the limit and shows that lim 7'(¢)f = f
t=0

for all f in the dense set D(£2). By the Banach-Steinhaus theorem it
follows that the operators defined by (4.15) satisfy (4.2).

This completes the proof that the operators 7(¢) which we have
constructed form a proper semi-group. The construction, however, de-
pended on the choice of a number r, and we still have to show that
the result is independent of this choice. We shall show that the semi-
group has the given family {J(2)} as its resolvent family, and since the
resolvent family of a semi-group determines it uniquely, it will follow
that the result of our construction is independent of r.
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We show that {7'(t)} has the original {J(1)} as resolvent family by
demonstrating that the operator 2 defined by (4.10) is the infinitesimal
generator of the semi-group as defined by (4.4). Suppose f e D(2) and
g = 2f. For convenience, let ¢ be such that »,t is an integer for
sufficiently large n. Such values of ¢ are dense in the line. Then

|7 51 ds = { {radrayiond 0f ds

= S ()RS
k=1
k=tr

= 3" {rd@)} ()0 f

k=1

+ r(0F — T(n, 905
= S P ) — 1L
+r(0F — T, 907}

Letting n— o we obtain formula (4.5). (Passage to the limit under
the integral sign is justified since T(n, t)f converges uniformly on every
bounded ¢-interval.) The number ¢ was any one of a dense set, and by
continuity, (4.5) must in fact hold for all ¢. This shows that g = Q2f
with Q defined by (4.4), and the proof of Theorem 4.1 is complete.

5. Convergence of Semi-groups. Throughout this section {X,} will
be a sequence of Banach spaces approximating X, with associated pro-
jections P,. We shall use the notational convention that vectors with
subscript n are elements of X,, and operators with subscript » are
operators on X,; vectors and operators without subscript will be as-
sociated with X.

A sequence of semi-groups {T,(¢)} or resolvent families {J"()} will
be said to be umiformly proper if each member of the sequence is
proper, and the constant M in conditions (4.3) or (4.8) may be taken
independent of n.

THEOREM 5.1. Let {T,(t)} be a uniformly proper sequence of semi-
groups, and {J,(3)} the sequence of associated resolvent families. Then
of the operators J(2) = lim J,(2) form a proper resolvent family, the

sequence {T,(t)} comverges to T(t), the proper semi-group having {J(2)} as
resolvent family.

Proof. Since the T,(t) are uniformly bounded, it will be sufficient,
by Lemma 2.2, to prove that T,(¢)f converges to T'(¢)f for a set of f
which is dense in X. It has already been remarked (in the paragraph
following (4.9)) that any operator in a proper resolvent family has a
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dense range. By similar considerations it is easy to show that the
square of any operator in a proper resolvent family has a dense range.
Hence we need only consider f such that f = J(¢)g for some g and g.
Define ¢, = P,g and f, = Ji(1)g,. Letting 2, be the infinitesimal gener-
ator of T,({) we have

(5.1) 1 2.5 11 = 1 (edu(r) — DJu(#)g ||
SpeMA+Dilgll =M+ Dol =K

and

(5.2) 120l = 1 (e u(r) — IVgall
SWM+1)gll=M+1) gl =K
for some sufficiently large constant K; we also have || 21 ||, ||2*( ]| £ K.
Now
+ P {rd(r)} 7 — {rd (1)} "I P, f
+ {TJn(/r)} [M](Pnf - fn)
+ ({ru(r)}0 — T ()

Applying (4.16), (5.1), (5.2) and the uniform boundedness of the T.(t),
this yields

| P.T@) S — Tn@)P.f || < 4 K(M + tM*) + 2M || P,/ — f. |l
+ || P {rd (r)}If — {od, ()} " P, f | .
For any fixed r, the last two terms go to zero as n — <, because f,— f

and {rJ(r)}* = lim {rJ,(r)}* for any fixed k. Thus

lim sup [| P,7@)f — To(O)Puf || = 40— K(M + tM") .

Since r may be taken arbitrarily large it follows that T(#)f = lim
T.@®)P,f.

LEMMA 5.1, Let {J,(2)} be a uniformly prover ssquence of resolvent
Samilies, such that for some positive p, lim J,(¢) is densely defined and

has a dense range. Then for every 2, J(1) = lim J,(1) is defined on all
of X, and {J(2)} is a proper resolvent family.

Proof. That J(u¢) is everywhere defined follows immediately from
Lemma 2.2, To show that lim J,(4) is everywhere defined we make
>0
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use of the relation [14, p. 119]
(5.3) T — ) = ST
k=1

where, provided that |v| < p, the series converges in the uniform
operator norm, uniformly in n. This follows from the formula

Tolpe = ) = IR (1) + 34 TE()

which is easily derived from (4.7) by induction on m, condition (4.8),
and the assumption that the J,(1) are uniformly proper. For each %,
lim J%(y) is everywhere defined, by the corollary to Lemma 2.3, and

n->00

the uniform convergence of (5.3) implies that lim J, (1) is everywhere

n—o0

defined for 2¢ > 1 > 0. Repetition of the argument, replacing ¢ by,
say, 3¢/2, shows the convergence of {J,()} for 3# > 2 > 0. By further
repetitions of the argument it can be shown that J(1) = lim J,(1) is

everywhere defined for all 2 > 0. Relation (4.7) holds for each n, and
by Lemma 2.3 it continues to hold in the limit. Condition (4.8) is
clearly satisfied by every J(1). To complete the proof it is only neces-
sary to demonstrate (4.9). Since any f e R(J(#)) is in D(2), where 2
is defined by (4.10), it follows from Lemma 4.2 that (4.9) holds on
R(J(#)), which is dense by hypothesis. Since the operators AJ(1) are
uniformly bounded, the conclusion follows by the Banach-Steinhaus
theorem.

THEOREM 5.2. Let {T,.(t)} be a sequence of semi-groups satisfying
(4.2) and the stability condition

N TW@) = || = Me™*

where M and K are independent of n and t. Let 2, be the infinttesimal
generator of T,.(t) and define 2 =lim 2,.

N—»co

Suppose that
(i) 0 4s densely defined
(ii) for some 2 > K, R(A — Q) is dense in X.

Then the closure of 2 is the infinitesimal generator of a semi-group T(t)
which satisfies (4.2), and T(t) = lim T,(¢).

Proof. Define T,(t) = e =T, (t) and 2, = 2, — K. Then 2, is the
infinitesimal generator of T'.(t) and the semi-groups T',(¢) from a uniform-
ly proper sequence. Also 2" =lim @2, is densely defined and R(2 — K — Q')

n-»o0

is dense in X, The sequence J,(1 — K) = (41— K — 2,)"! is uniformly
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bounded, From Lemma 2.4 it follows that J(A — K) is everywhere
defined and has a dense range. By Lemma 5.1, the operators J'(1) =
lim J;(1) form a proper resolvent family, which by Theorem 5.1 is the

fN—>o0

resolvent family of a semi-group 7"(¢) such that 7"(¢) = lim T7(¢). Since

J’(2) has an inverse, this inverse (by Lemma 2.4) is the closure of
A— K — ', and it follows that the closure of £’ is the infinitesimal
generator of 7"(¢). The results stated for 7'(¢) follow immediately from
what we have proved about 7"(¢).

LEMMA 5.2. Let h be a given positive number, and T an operator
such that || T* || < M for all n. Then Q2 = h(T — I) is the infinitesimal
generator of a semi-group S(t) such that || S(t) || < M.

Progf. Define
S(0) = 3, (k )70 = 7" 35 (b ) (thT)-

That @ is the infinitesimal generator of S(¢) can be verified by term-
by-term differentiation of the first expression given. From the second
expression we obtain

IS® 1 = 6™ 5 (e )7 (Eh™)M = M.

LemMMmA 5.3. Let h, T, 2 and S(t) be as in Lemma 5.2. For a fived
t, let k= [th™']. Then for any f,

W S@S — T Il = RGN 271 + 251D -

Proof. Iteration of (4.5) gives

S(h)f = f + gfsmw dt

— F + hOS + S:S:S(t)mf dtds
= Tf 4+ S:SZS(t)QZf dtds .

Hence || S(2)f — Tf || = $2* || °f|l. By Lemma 4.1
| S(kh)f — T*|| < :MPER? || f || < M2ht || F ||
when k=[th']. Also
1 S@t)f —S(kh) £l = || S(kh){S(t — kh) — I} f || < hME| QF || .

THEOREM 5.3. Let {h,} be a sequence of positive numbers converging
to zero, and {T,} a sequence of operators satisfying the stability condition
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NTZ I = MeX*"n

where M and K are constants independent of n and k. Let Q,=h;*(T,—1I)
and define @ = lim Q,. Suppose that

f—oo

(1) £ 4s densely defined
(ii) Sfor some 2 > K, R(A — Q) is dense in X.

Then the closure of Q2 is the infinitesimal generator of a semi-group
T(t) and

T(¢) = lim T,[th; ] .

n-—>oo

Proof. Define T, = e %"aT,, so that forany k, ||T/%|| £ M. Then

O =h' (T, —1)=¢%"Q, —h;'(1 —e %)
and
Q=lmQ,=020—K.

Hence Q' is densely defined and R(2 — K — ') is dense. Let S,(t) be the
semi-group generated by 2,. Lemma 5.2 shows that the hypotheses of
Theorem 5.2 are satisfied and hence there is a proper semi-group 7V(t)
= lim S,(¢), with infinitesimal generator the closure of £2’. For a fixed

n—rco

t, define k, = [th;']. We shall show that lim7.*» = T"(t). As in the

N0

proof of Theorem 5.1 it suffices to show that 7"(¢)f = lim TP, f for f

n—>o00

of the form f = J¥1)g for some g and 1. Define f,=J%(1)P,g; then as
in the proof of Theorem 5.1 there exists a constant C such that || 221, 1,
| 2.1l £ C for all n. Then

| Su(t) — TWFn)Pof || £ Su(E)Pof — f) |l
+ I (Sa(@) — T) fo |
= 2M || f. — P.SI| + A MPC(E + 1) .
Since f, = f and A, — 0 this shows that

lim TP, f = lim S,(t)P.f = T'(¢) .

n-—roo n—>co

Hence
lim T% = lim e®"s*=T"*» = eX*T" (%) ,

which is a semi-group 7'(¢) with the closure of Q" + K = Q as infini-
tesimal generator.

6. Random walks and diffusion processes. Throughout this section,
S will denote either the compactified real line [— o, =], or some closed
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subinterval of it. Let S be any Borel subset of S, and suppose that
for every x ¢ S’ a positive Borel measure p, is given such that

(1) m(S)=1
(i) p(S—8)=0
(iii) g, (A) is a Borel function of = for every Borel set A.

We consider a particle which executes a random walk in the fol-
lowing way. Let % be a positive constant. If the particle is at a point
x € S at time ki (k a non-negative integer) then it remains at « during
the interval [k%, (k + 1)2) and at time (k + 1)2 ‘‘ jumps > so that the
probability that it goes to any Borel set A is g, (4). (If 1 (S) < 1 then
the particle disappears with probability 1 — #,(S) .) The number % is
the basic time-interval of the random walk, and the measures g, are
the one-step transition probability distributions. The set S* is the support
of the random walk. If a probability distribution » on S’ for the initial
position of the particle is fixed, then the random walk gives rise to
what is essentially a discrete parameter Markov process with stationary
transition probabilities. For rigorous definition and further details [3,
p. 190 ff.] may be consulted.

For any bounded Borel function f on S, the random walk deter-
mines a new function 7'f defined by setting

@@ = | @) d) zes.

Condition (iii) implies that Tf is again a Borel function. The one-step
transition operator T is obviously linear and positivity preserving. The
space of bounded Borel functions on S’ is a Banach space under the
norm || f|| = sup [f(x)], and || T'|| < 1 relative to this norm. The adjoint

transformation may be considered as acting on the Borel measures on
S’, and for any such measure », »T is given by

(T)A) = STxA d

where A is an arbitrary Borel set and y, is its characteristic function.
If v is a probability measure giving the distribution of the initial posi-
tion of the particle then »T% is the distribution for its position after k
jumps [cf. 3, p. 191]. Thus a random walk is completely characterized
by its support, its basic time-interval, and its one-step transition oper-
ator, and we may speak of ‘‘the random walk {S', 4, T}".

A diffusion process (with stationary transition probabilities) on S is
characterized by giving for each ze S and £ > 0 a measure pg,, such
that gz, (S) <1, which is to be interpreted as the probability distribution
for the position at time s + ¢ of a particle which is at « at time s, To
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begin with, it is necessary to have g, ,(A) a Borel function of x for
every t and every Borel set A [3, p. 255]. Then a family of operators
T(t) on the space of bounded Borel functions can be defined by setting

TOF (@) = | £ @) dpe(@)

As in the case of a random walk, we may consider the adjoint trans-
formation ; for » a Borel measure on S

GT(H)A) = ST(t)xA d

for every Borel set A. If » gives the distribution for the initial position
of the particle then »T'(¢) gives the distribution for its position at time
t. The further conditions which the measures p,, must satisfy are
most easily expressed in terms of the operators 7'(¢), which we call the
transition operators of the process. In the first place, we impose the
condition that p,, be a continuous function of x with respect to the
weak topology on the measures; this is equivalent to requiring that
T(t)f be continuous when f is continuous (cf. [11]). Secondly, we would
like to require that for any continuous f, T'(¢)f converge uniformly to
S as t - 0, but certain processes (those with absorbing barriers) do not
satisfy this condition. One or both end-points of S may be absorbing
barriers ; intuitively speaking, an end-point is an absorbing barrier if a
diffusing particle disappears immediately when it reaches that point.
In such a case, the range of T'(t) contains only functions which vanish
at the absorbing barrier(s). Throughout the rest of this section, let X
be the Banach space of continuous functions on S which vanish at those
end-points which are absorbing barriers for the diffusion process under
consideration. We shall require that T(¢)f converge uniformly to f as
t— 0 for all fe X. For the process to have the Markov property, the
operators 7'(t) must have the semi-group property (4.1). It is obvious
that || T(¢) || £ 1. The conditions imposed so far may be summarized as:
The operators 7'(¢) form a proper semi-group of operators on the
space X.
