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THE MAXIMAL IDEALS OF CERTAIN FUNCTION

ALGEBRAS

RICHARD ARENS

l Introduction* In this paper we discover the space of maximal
ideals for each Banach algebra of the following concrete type. Select
an open subset G of S, the compactified complex plane, and let H(G) be
the class of complex functions continuous on S and moreover holomor-
phic on G. This is a Banach algebra, and its space of maximal ideals
is shown below to be precisely S, except in that case in which G is so
large as to force H(G) to consist only of constant functions.

Algebras of this type were introduced and studied by J. Wermer
[4] and W. Rudin [3]. Wermer pointed out that H(G) need not reduce
to the constants even if S — G is required to be (merely) an arc. He
also showed distinct points of S determined distinct maximal ideals.
Rudin raised the question as to the space of maximal ideals.

K. M. Hoffman, reporting (April 18, 1958, Symposium on Banach
algebras and Harmonic analysis) on work by I. M. Singer and himself
jointly, showed that the space of maximal ideals of H(G) is S when
S — G has positive upper density at each of its points. On the follow-
ing day, H. L. Royden's proof was presented in which the same desired
conclusion was obtained if S — G has dimension zero. Our technique
may be regarded as a refinement of Hoffman and Singer's.

Our methods apply equally easily to more general, although perhaps
less interesting, algebras. Let Z be a compact subset of S9 and let G
be an open subset of Z. Let H(GjZ) be the functions continuous on Z
and holomorphic on G. Then Z is the space of maximal ideals, unless
the algebra reduces to the constants.

For some algebras in this larger class, the problem can also be
solved by an appeal to Mergelyan's theorem [5], namely for those H(G/Z)
where Z Φ S and G is the interior of Z.

2 An approximation theorem. Let Z be a Borel set in the ex-
tended complex plane. Let G be an open set included in Z. We denote
by H(GjZ) the class of complex-valued functions which are defined, con-
tinuous, and bounded on Z, and are holomorphic on G. H(G/Z) is
evidently a Banach algebra with unit, providing that for each / e H(GjZ)
the norm is defined by

11/11 = sup |/(C)[.
_ _ ζez
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642 RICHARD ARENS

In our study of the maximal ideals of such an algebra, we have
been led to an approximation Theorem 2.7 involving functions defined
as follows

( 2 " •• - C - ,
where

(2.1.1) μ is plane Lebesgue measure restricted to a disc, and then normalized
to make the measure of that disc equal to 1.

However, it happens that functions defined as in 2.1 are useful in
studying H{G\Z) in still another way. They can sometimes be used to
show that there are non-constant elements in H(G/Z). We consider this
matter again briefly in § 4. The properties of h needed for this purpose
naturally suggest a condition on μ, namely that given by 2.2.3 (which
involves 2.2, 2.1.2). Now it turns out that with no added effort, and
very little loss of clarity, a generalization 2.6 of our real objective, 2.7,
can be proved which involves only the quantity I(μ) of 2.2.3, and hence
is not confined to the case 2.1.1. It is hoped that some use for the
approximation Theorem 2.6 may emerge.

Let μ be a regular Borel measure in the plane, finite on bounded
sets. For r ^ 0 define

(2.1.2) m(r) = s u p μ{\z - ζ \ < r} .
ζ

Let \\μ\\ = supr m(r) and let

(2.2) J(μ)

be the least upper bound, for 0 < tL < tL < < tn of the sums

(2.2.1)

This is nothing but the Stieltjes integral

(2.2.2)
Jo

The class B of measures with which we shall deal are those for
which

(2.2.3) I(μ) < co .

There are measures in B with O-dimensional support (see § 4). For
our immediate purpose, those given by 2.1.1 are the most important.
(Their support is, of course, 2-dimensional). We note the relation of I(μ)
and \\μ\\ in this case.

2.3 LEMMA. Let D be a disc of positive radius δ in the plane. For
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each Borel set E let μ(E) be the plane measure of E[\D. Then δ I(μ) =
2 II μ ||, and \\μ\\ = πδ\

Some properties of 2.1 will now be described.

2.4 LEMMA. Let μ e B, and let f be a bounded Borel-measurable
function defined on the plane. Then

h(z) = \ f{0 μ(dζ)
J c — zC

defines a continuous function on the plane. It is holomorphic on each
open set of μ-measure 0. If μ has bounded support, h is holomorphic,
and 0, at oo and h is bounded.

Proof. We treat first the case / = 1. We will show now that the
set functions defined by

FZ{E) = [ AdO (E a Borel set)
JE ζ — Z

are uniformly absolutely continuous (see [2, p. 170]). Suppose ε is a
positive number. Find a number t such that, in the notation of 2.2,

(2.4.1)

Let δ = et/2. Suppose μ(E) < δ.
Then

We break E into two parts : Es, the part on which \ζ — z\ < t and
Et, the part on which | ζ — z | Ξ> t. It is obvious that

< i = A
k l c I ί 2 "

By breaking Ex into concentric annuli, and approximating the integral

(2.4.2) f - ^ \ = h
h1 |C - z\

by finite sums, it can be shown that

(2.4.2.1) Ix S Jo r

This shows that | FZ(E) | < ε for μ(E) < δ, independently of z, as was to
be shown. We may thus apply Proposition 29.6s of [2, p. 171] to con-
clude that if zn -> z, then

1 1
(2.4.3) μ(dζ) ~> 0 .
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Returning to h(z) as defined by 2.3, we observe that

\h(zn)-h(z)\tί\\f\\\ μ(dζ).

In view of 2.4.3, the continuity of h is apparent. The holomorphicity
at points bounded away from the support of μ is a similar, actually
simpler, proposition. Thus 2.4 is substantially proved.

We now wish to show that with a modified formula we can arrive
at a function which is holomorphic wherever / is, even at paints of the
support of μ.

2.5 LEMMA. Let μ be a measure in B with bounded support. Let

f e H(G/Z). Select any complex number λ, \λ\ g [ [ / | | , and define f(z) = λ

for zφ Z. Define

(2.5.1) h{z) = \ ^ ^ ^
J ζ — z

Then h e H(G/Z), and \\h\\^ 2I(μ)\\f\\. Moreover, h is independent of λ.

Proof. We write

(2.5.2) h£z) = ( -£Q-Kdζ), fφ) = M \ ^ d ζ ) .
J ζ - z J ζ — z

By 2.4, these are continuous on Z. If / is holomorphic at oo, then
hu h2 are holomorphic there. Now let z0 be a finite point of G. Indeed,
assume z0 = 0. Then / is holomorphic at 0. If f(0) = 0 then hly h2 are
both differentiate there. Indeed

and
hjz) - fφ) =

z z J C — z

Each of these has a limit as z ~> 0 because f(t)/t is bounded for all t,
and continuously definable near 0. If /(0) =£ 0, we replace / by / —/(0).
This does not change h. Thus Λ is differentiate at each z0 e G.

The main result of this section is as follows :

2.6 THEOREM. Let z0 be a point of Z, z0 Φ oo, and let μu μ.z, be
a sequence of measures in B such that

(2.6.1) the support of μn lies in the δ^-neighborhood of z0 where

(2.6.2) δn-+0

and such that for some M < oo,
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(2.6.3) dJ{μn)<M\\μn\\.

Let f e H(G/Z), and define1

(2.6.4) hn(z) = -~1 --- J / ( C> ~ fΦμn(dζ) .

2%βw K e H(G/Z), \\hn|| rg 2M3;1 (|/||

(2.6.5) | | / - f(zQ) - ( z - zQ)hn || - » 0 .

Proof. It will suffice to treat the case | |μw | | = 1, and zQ — 0. At
first we shall deal with just one μn, and therefore omit the suffix. We
may also confine attention to the case f(z0) = 0.

We commence our calculations by observing that

zh(z)-f(z) =

Let

δ(r) = sup{|/(z)|: |«| ^ r} .

Now suppose μ is supported by the ^-neighborhood of za = 0. Then we
may make an estimate

(2.6.6) I zh(z) - f(z)\ ^ (Iz \ b(d) + δ \f(z) |) ( μ ( ^ .
J |C — z\

For the integral in 2.6.6 there are two possible estimates:

!

1

S - - --- when \z\ > o

\z\ — d
Ύ/ λ in general.

The latter of these results from 2.4.2.1 for t-> oo.
Now let ε be any positive number. Select a real number & > 1

such that

(2.6.8) 2 | | / | | < ( & - l ) ε .

Let μ in the preceding discussion be one of the μn. Then 2.6.6, 2.6.7
hold with δ = δn. Consider first a point z e Z such that \z\^kδn. We
then obtain from 2.6.6, 2.6.7, 2.6.8, that

1 We extend the definition of / to the whole plane, if necessary, by making it have
the value f[zo) everywhere outside of Z.
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Il/H

(2.6.9) <£ - .-V^ ) + r-
& — 1 A; —

< I + «„.
Next consider the case \z\ < kdn. Using 2.6.6, 2.6.7 we obtain

< M(kb(dn) + b(kdn)) .

The numbers b(Sn) and b(kdn) tend to 0 since / is continuous at z0 = 0.
Therefore there is an N such that \\zhn-f\\<e for n > N.

This concludes our proof of 2.6.

2.7 THEOREM. Let z0 be a point of Z(z0Φ oo), and let fe Έί(G\Z).
Then there exist functions hu h2, . . . in H(G/Z) such that

\\f-f(zQ)-(z-z0)hn\\-+0.

This emerges from the combination of 2.6 and 2.3.

3 Application to maximal ideals«.

3.1 THEOREM. Let Z be a compact set in the extended complex plane.
Let G be an open subset of Z. Then the space of maximal ideals of the
Banach algebra H(G/Z) is naturally homeomorphic to Z, provided H(G/Z)
does not reduce to the constant functions.

Proof. If the set G if void, then the proposition reduces to a case
of [1, p. 54]. If G is not void, but Z is a proper subset of the ex-
tended plane, it is natural to change coordinates so that Z lies in the
finite plane. However, the most interesting case, Z = the extended
plane, is best treated by having G be a neighborhood of oo. For
economy, if not clarity, we perform a conformal transformation, if
necessary, to make G (whenever it is not empty) a neighborhood of oo.

Let F be a multiplicative linear functional of H(G/Z). If G{f) —
/(oo) for all / in H(G\Z), then F (or its kernel) corresponds to oo.
Having disposed of that unique multiplicative functional, let F be some
other one. Then F{fλ) = 1 for some fτ e H(G/Z) such that Λ(oo) = 0.
Then z/L e H{GjZ). Let zΛ = F{zfλ). Then F((z - zQ)h) = 0 for each
h 6 H(G\Z), such that (z - zQ)h e H(G\Z). Because

F((z - zύ)h) = F((z - zQ)h)F(A) - F(h)F((z - zQ)A) = 0.
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Now suppose / e H(G/Z). By 2.7, there exist hn, rn in H(G\Z) such
that

(3.2) / _ / ( s o ) _ ( z _ Λ = , r w

where | | r j | ~» 0. Hence F(rn) ~> 0. Also, F((z — zQ)hn) = 0. Hence
F(f~f(zQ)) = 0, F{f) =f(zύ). Then we say that F corresponds to z0.

We have thus shown that to every maximal ideal, or multiplicative
linear functional F, there corresponds a point zQ. There might be several
such points corresponding to a given F. The situation is completely
illuminated by a device of Wermer's [4, p. 269] which shows that either
H(G/Z) consists only of the constant functions, or some triad of functions
separate all pairs of points on Z. This completes the proof of 3.1.

We can now acknowledge the relation of our argument to that of
Hoffman and Singer. They construct an hn, define rn as in 3.2, and
show ( | rJ |-»0; and so forth. Their choice of hn(z)9

(3.3) j\z)-± - α ς α ? /ζ = ς + iη)m j 7,7 y f
n " n " S

where En is the intersection of a <?w-disc about zQ, with S ~ G, and mn

is the measure of raw, is effective only when mw > 0 as δn -> 0. Hence
they assume that S — G has positive upper density at zQ.

4 Remarks on the dimension of H(G/Z). We return to the ques-
tion, when does H(G/Z) contain non-constant functions ? A sufficient
condition is that S — G carry a measure of type By for then 2.4 provides
such functions. The formula 2.4.3 is used in [3, 4] for this very
purpose, but the measures there employed are absolutely continuous.
For this reason it is desirable to point out that there are measures in
B that have zero-dimensional support of plane measure zero. An example
can be obtained from a well-known function, which increases only at
points of the Cantor set. Calling this function /, as in [2, p. 49], we
form the measure on the line and then we form the product measure
μ of this measure with itself. It is not hard to see that I(μ) ^
16-i/2Γ(l - λ)-1 where <?= Iog4/log3.

Questions analogous to the above are discussed in [6, 7].
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AN OPERATOR IDENTITY

GLEN BAXTER

l Introduction. Recently, some combinatorial results by Andersen
[1, 2], Spitzer [5], and others have been applied quite successfully to
problems in probability theory. Many of these applications have given
rise to results which are entirely analytical in nature. For example,
Spitzer used a combinatorial theorem to find the distribution function
for the maximum of the partial sums Su S.l9 , Sn for a sequence {Xk}
of independent, identically distributed random variables. His final result
is a functional identity,

(1.1) t

where φn(t) is the characteristic function of max (0, Sl9 , Sn) and where
ψic(t) is the characteristic function of max (0, Sk). One of our purposes
in this paper is to generalize (1.1) to an identity involving operators.
Our proofs involve more or less analytical methods and thus show that
the combinatorial methods hitherto employed can be avoided. We also
obtain certain results concerning max(X0, Xl9 , Xn) when {Xk, k > 0}
forms a stationary Markov process.

To illustrate the results we consider a simple example. Let N be
an n x n matrix and let N+ be the matrix formed from N by replacing
with zeros all elements of N which are either on or below the diagonal.
Let N~ = N — N+, and suppose that N+ and N~ commute. Now con-
sider the matrix equation

(1.2) PQ = eN = / + N + iV2/2 ! + . . .

where P-I (I is the identity matrix) has non-zero terms only above the
diagonal and where Q — I has non-zero terms only on or below the
diagonal. The properties of Λ7"+ and N" imply that

(1.3) P = eN+ - / + N+ + (N+Y/2 ! + •••,

Q = eN" = I + N- + (N~fl2 ! + . . .

satisfy (1.2) and have the proper form for P and Q. In particular,
exp(iV+) has the proper form for P by virtue of the fact that the product
of two matrices with non-zero elements only above the diagonal is a

This paper was originally accepted by the Trans. Amer. Math. Soc. Presented to the
American Mathematical Society August 28, 1957; received by the editors of the Trans.
Amer. Math. Soc, July 29, 1957. This work was supported by the United States Air Force
under Contract No. AF18(603)-30 monitored by the Office of Scientific Research.
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650 GLEN BAXTER

matrix of the same type. A similar statement holds for exp(iV~). It
is not hard to see that P and Q are uniquely determined by (1.2). Thus
(1.3) is the unique solution of (1.2).

Suppose further that in some neighborhood of s — 0, N = Nxs + N%s2

+ , where convergence of the infinite series of (n x n) matrices is
equivalent to convergence of the series of ijtYi elements for all fixed i
and j . Relations (1.3) may be rewritten as power series in s

which converge in some neighborhood of s = 0. It follows from the
form of P and Q that Pl9 P2, have non-zero elements only above the
diagonal while QL, Q2, have non-zero elements only on or below the
diagonal. Certain problems will lead directly to an equation of the form
(1.2) where P and Q have the form (1.4). For example, in one case
we will have

(1.5) PQ = (I- sM)-1 = exp { Σ ^~sh \ .
U-i Jc )

Under the appropriate commutativity conditions it will follow that

.6) P = e x p ^ Σ v ' sk\ , Q —

We see later that (1.6) is the operator analogue of Spitzer's identity
(1.1) whenever the operator M has a special form.

Equation (1.5) is of particular importance in finding the distribution
of max(X0, Xl9 , Xn) when {Xk, k > 0} is a Markov process with a
stationary transition probability matrix M. In this case the matrix M
in (1.5) is identified (see § 4) with the stationary transition probability
matrix M. Unfortunately, in the general Markov chain, the commuta-
tivity conditions which give (1.6) as the solution of (1.5) are not satisfied.
Some information can be obtained directly from (1.5).

In the next section we give general definitions and a few preliminary
results. The main theorems are proved in § 3 and illustrated in § 5.
A probabilistic interpretation of the theorems is contained in § 4.

2. Definitions and preliminaries Let Lo be the space of bounded
Baire functions (real-valued and Borel measurable) f(x) on the infinite
interval — oo < x < ^ . We will deal with bounded linear operators M
defined over Lύ which have the form

(2.1)
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where m(x A) is a function of a real number x and a linear Borel
measurable set A such that

(i) for each fixed set A, m(x A) is a Baire function of a?,
(2.2) (ii) for each fixed x, m(x A) is a signed measure in A on the

linear Borel sets.

The norm of the operator M is defined in the usual way in terms of
the norm | | / | | = max \f(x)\ in the Banach space Ld. Let μ(x A) and
v(x Λ) be, respectivery, the upper variation and the lower variation of
the signed measure m(x A) (see [4, page 122]) The boundedness of M
in (2.1) implies that

I \β{x dy) + v{x dy)]
(2.3) J -

< max 1 [μ(x dy) + v{x dy)] = || M || < oo .
-oo<χ<0oj_co

We call m(x A) the kernel of the operator M. The notation which will
be used for integration with respect to a given measure is indicated in
(2.1). From now on when we call M a bounded linear operater of the
form (2.1), we imply that (2.2) is also satisfied. As a matter of fact,
with proper understanding of the notation, (2.2) follows directly from
(2.1). If Mi and Λfa are bounded linear operators of the form (2.1) with
kernels m^x A) and m.z(x A), respectively, then MτM2 is also of the
form (2.1) with kernel

(2.4) m{x A) = \ wφj A)mι(x dy) .

We now let [x] be the greatest integer less than or equal to x.

DEFINITION 2.1. Set Bn{x) = {y:y> [2nx + 1]/2W}. For any bounded
linear operator M of the form (2.1) with kernel mix A), define

(2.5) m+(x A) Ξ= lim m(x Bn(x)A) ,

and let M+ be the operator of form (2.1) with kernel m+(x A). Finally,
set, Λf- = Λf — M+.

Almost directly from the definition of M+ follow certain useful facts
which we list below. The bounded, linear operators M, Ml9 M29 etc. are
all of the form (2.1) / denotes the identity operator, which is also of
the form (2.1) and s, α, and β, are real numbers :

(i) /- = / ,
(ii) (ilf+)+ = M* , (iϋ) (Λf-)- = M~ ,
(iv) {MϊMty = MtMi , (v) {MTM Y = M M; ,
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(vi) I | M + | | < I I M | | , (vii) \\M-\\<\\M\\,

(viii) (aM1 + βM2)
+ = aMϊ + βM+ ,

(2.6) (ix) if Mo + ikf2 + is a strongly convergent series of bounded,
linear operators of the form (2.1), i.e. if ||AfnH \-Mm || -> 0
as n, m -> oo, then T = Mo + Mτ + M2 + is of the form
(2.1), and Mo

+ + Λfί + Af? + and Mό + Mΐ + M; +
are both convergent in the strong sense. Moreover, T+ =
Mo

+ + Mΐ + M2

+ + and T" = Mό + Mr + M* + . . .

We prove only (ix) of (2.6). Let Tn = Λf0 + + Afn, let ίn(a? A) be
the kernel of Tn, and let χ^ be the characteristic function of a measura-
ble set A. If T = lim Γn, we note that || T \\ is finite. Now

I tn{x A) - tjx A) \ = \ (Tn - Tm)χA \ < \\ Tn - Tm \\ ,

so that lim tn(x A) = ί(a; A) exists uniformly in A. If A = 2Άfc where
the Afc are disjoint, then by the Moore double-limit theorem

(2.7) Σ t(x A4) = lim lim Σ ί»(« Λ ) = lim ί«(» -A) = *(« J A) .

This shows that ί(α; A) is a signed measure. Since TχA — t(x A), a
simple argument shows that t{x A) is the kernel of T. Finally, since
II T+ - Γ ί | | <\\T ~Tn II, it follows that Γ+ = lim T7:. In terms of Mn

this means T+ = ilί0

+ + Λfί + M2

+ + . A similar argument gives Γ" =
Mo +M{ + M; + •••.

It is interesting to note that the proofs of the main theorems will
depend only on the facts listed in (2.6). Before proceeding to the next
section we mention two special subclasses of operators which have the
form (2.1).

Case 1. Let M — {mi5) be a matrix for which uniformly in i

(2.8) Σ\miΛ<C
a)

for some constant C. For any Borel measurable set A and any real
number x define

f Σ mij x — i (an integer)
(2.9) m(x A) = jeA

10 x Φ [a?].

Condition (2.8) insures the existence of a bounded linear operator of
form (2.1) with the kernel m(x A) of (2.9). Certainly the operator given
by (2.1) in this case and the original matrix M can be identified. In
fact, Lo could be replaced here by the class of bounded, doubly infinite
sequences {ak}, that is ak =f(k)(— OD < k < oo) where f(x) e Lo. It will
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be convenient whenever possible to think of the matrix M rather than
the operator M. Note that the matrix M+ is formed from the matrix
M by replacing with zeros all elements of M either on or below the
diagonal. Moreover, the matrix M+ satisfies (2.6).

Case 2. Let m(x, y) be Borel measurable and integrable over the
plane and such that for some constant C

(2.10) \~Jm(x,y)\dy< C

uniformly in x. For any Borel measurable set A and any real number
x, define

(2.11) m(x A) = \m(x, y)dy .
A

Then, (2.1) gives a bounded, linear operator M which has the form

(2.12) M = Γ m(x, y)dy ,
J -oo

and M+ becomes simply

(2.13) M+ = (~ m{x, y)dy
Jx

with a similar formula for M~.

3. The theorems. When we say a sequence of operators {Mn} con-
verges to an operator M, we mean it converges in the strong sense,
that is \\Mn — M \\ ~> 0 as n becomes infinite.

LEMMA 3.1. Let {Kk}, {Pk}, and {Qk}, k = 1, 2, 3, •••, be sequences

of bounded, linear operators of the form (2.1) for which P£ = Pk and

Qk = Qk' For any \ s \ < s0, let

P = I + P l S + Pβ2 + ,

(3.1) Q = I+Ql8 + Q^ + ,

K = / + K\s + Kβ2 +

converge. If PQ — K for all \s\< sQ, then {Pk} and {Qk} are uniquely
determined by {Kk}.

Proof. Equating coefficients of like powers of s on the two sides
of the equation PQ — K we obtain

(3.2) ±P*Qn-* = Kn.



654 GLEN BAXTER

If Pu P2, *",Pn^1 and Qlf Q2, •• ,Qn~1 have been uniquely determined
by K1} Kz, •• ,ifn_1, then we may write (3.2) as

(3.3) Pn+Qn = Jn

where Jn is determined uniquely by Kl9 K2, , Kn. Since P~ = Q+ = 0,
we have Pn = J ^ and Qw = Jΰ and the proof follows by induction.

The next theorems give results in the direction of solving equations
which involve the operation " + " . Later we give a probabilistic interpre-
tation of these equations. As we will see, in certain cases the equations
may be solved completely in terms of the known operator M.

THEOREM 3.1. Let M be a bounded, linear operator of the form (2.1).
Define the sequences {Pk}, {QΛ}, {Rk}9 and {Tk} by

Po = Qo = 19 RQ — ^ o — 0 ,

(3.4) Pn+1 = (MPnY , Qn+1 = (QnMY ,

Tn+λ = {MPnY , Rn+1 = (QnM)+ ,

and let the generating functions of these sequences be

P=±Pns
n , Q = Σ Qns

n ,
(3.5) n-° n~a

Then, the series' in (3.5) all converge for \s\< l/[[Λf ||, and, moreover,
they are the unique bounded, linear operators of the form (2.1) which
satisfy.

( 3 6 ) P=I + s(MP)+ , T = s{MPY ,

Q = I + s(QM)~ , R = s(QM)+ .

Proof. Let P be a bounded, linear operator of the form (2.1) which
satisfies the first equation of (3.6). By iteration we may write P =
1 + P,s + P2s

2 + + Pns
n + Ln, where Lo = s(MP)+ and Ln = s{MLn^Y

and where Pl9 P2, •••, Pn are determined in (3.4). Property (vi) of (2.6)
implies that [ [ L w [ [ < | s [ w | | M | [ w l [ P [ | which approaches zero as n becomes
infinite for all [s | < 1/||M||. Thus, the solution (if it exists) of the
first equation of (3.6) is unique. Let {Pk} satisfy the conditions of (3.4).
By property (vi) of (2.6), it follows that | | P n | | < \\M\\\ For \s | < 1/|| Afl|,
the power series in (3.5) for P converges and by property (ix) of (2.6)

(3.7) P - I = Σ Pn+ιsn+1 = Σ (MPn)
+sn+\ - ( Σ MPns

n+1) = s(MP)+ .

The proofs of the other parts of the theorem follow similarly.
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THEOREM 3.2. Let \s\< l/||Λf || and let P and Q be the bounded,
linear operators of the form (2.1) which satisfy the equations of (3.6). Then,

(3.8)

SP' = P(QP - iy , BQ = (QP - IYQ ,

where ' indicates derivative with respect to s.

Proof. From (3.6) we find t h a t \\Q\\< 1/(1 - | s \ \\ M \\) and

Thus, for 1 s 1 < (1 - 1 s 11| M | |)/ | | M ||, the operator (/ - R)'1 is a bounded
linear operator of the form (2.1) and has a convergent power series
expansion in s. But Q = / — R + sQΛf, or equivalently, (I — R)~ιQ =
(/ — sM)"1. Similarly we show that (/ — T)'1 is a bounded linear operator
of the form (2.1) which has a convergent power series expansion in s for
I s | < (1 - I s III MID/H Λf ||, and that P(/ - T)-1 = (I - sM)'\ Applying
Lemma 3.1 in the common interval of convergence of P, Q, (/— Γ)" 1

and (ί — R)~ι, we deduce that

(3.9) P=(I- R)-1 , Q = (I- T)~ι .

and hence that PQ = (/ — sM)~\ Since P, Q, and (/ — sM)~ι all converge
for U | < 1/H Λf ||, we have finally PQ = (I - sM)-1 for all | s | < 1/|| Λf ||.
To show the second half of (3.8), we consider {PQ)f = P'Q + PQ' =
(/ - sikf)-2Λf. It follows that

(3.10) (PQY - s(PQY = (/ - sM)-2(/ - aflf) = PQ .

Multiplying on the left of (3.10) by P~ι and on the right by Q~ι (take
I β | < (1 - 1 β 11| ilf ID/ll M ||) we obtain

(3.11) QP - 8(P-Ψ' + Q'Q-1) - / .

By properties (iv), (v), and (ix) of (2.6), it is not hard to see that
(P-1P')+ = P-1P' and (QVΨ = Q'Q"1. From (3.11) we find sP; = P(QP-I)+

and sQr = (QP — /)~Q. These latter equations can certainly be extended
to hold for all \s\ < 1/||M||, and the theorem is proved.

THEOREM 3.3. Let {ak} be a sequence of real numbers such that
axs + a2s

2 + α3s
3 + has a positive radius of convergence. Let M be a

bounded, linear operator of the form (2.1) such that (Mk)+M = M(Mlύ)+

for all k = 1, 2, 3, . Then for \ s \ such that

(3.12) Σ K I I | M | | f c | s | f c < l ,
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there is a unique pair of bounded linear operators P and Q of the form
(2.1) which satisfy

(3.13)
P = i + Γ Σ (MΓV)P"Γ ,

Lfc=1 J

Moreover, the solution of (3.13) is

P = exp IΓ- log (I - £ MίV)?l ,
(3.14) ( L fc=1 J j

Q = exp { [ - log (I - Σ αfcM

Before proving Theorem 3.3 we mention a result of particular interest
which occurs when both Theorems 3.1 and 3.3 apply, i.e. when αx = 1
and a2 = a3 = = 0 .

COROLLARY 3.1. Let M be a bounded linear operator of the form
(2.1) such that (MψM = M{MhY for all A; = 1, 2, 3, •-., αrod Zβfi ίAe
sequences {Pk} and {Qfc} δe defined as in (3.4) . 7%βw, for all \s\ < 1 / | | M | | ,
the P and Q of (3.5) have the form

(3.15) P = exp {Σ ^ - V l , Q = exp

Proof of Theorem 3.3. Let | s | satisfy the condition of (3.12), and
let

L = Σ αfcikfV ,
(3.16) fc=1

N = log(/ - Σ ^Mfcsfc) = Σ Lηk .
fc=l fc=l

Both L and iV are bounded linear operators of the form (2.1). The
commutativity of (Mk)+ and M together with property (ix) of (2.6) im-
plies that L+L = LL+. Again by property (ix) of (2.6) and the second
relation of (3.16), we deduce that N+N= NN+. In terms of iVthe first
equation in (3.13) may be written in the form

(3.17) P=I+ [(I-eN)Py.

Using that (exp(- N+))+ = e x p ( - N+) - I and that (exp(iV~))+ = 0, it is
easy to show by substitution that P = exp(— N+) is a solution of (3.17).
To show that this solution is unique we apply Theorem 3.1, where the
operator "M" of Theorem 3.1 is now
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(3.18) i > s M V
fc=ί

and the number " s " of Theorem 3.1 is now 1. In a similar manner
we can show that the Q of (3.14) is the unique solution of the second
equation in (3.13). This finishes the proof.

Before proceeding into the next section, we point out some implica-
tions of the theorems above. In Theorem 3.3, the operators P, Q, M, M+,
and M~ all commute. Thus, the order of the factors Q and Mk or of
P and Mk in (3.13) is unimportant. In the s interval determined by
(3.12), there is a power series expansion in s for the solutions of (3.13).
The coefficients in this power series satisfy

Po = Qo — I,

(3.19) Pn+ι = {aλMPn + azM*Pn-ι + '•••+ an+Mn+1Y ,

Qn+ι = (aLQnM + a,Qn-xM* + + an+ιM
n+1)~ .

If the M in Theorem 3.1 is a matrix of finite order, the P and Q of
(3.5) can be conveniently evaluated in terms of subdeterminants of the
matrix / — sM (See example 3, § 5).

4 Probabilistic interpretation* In this section we give a probabi-
listic interpretation of the sequences {Pk}, {QΛ}, {̂ 4}, and {Tk} of
Theorem 3.1. Let m(x 4̂) be a function of a real number x and a
linear Borel measurable set A such that

(i) for each fixed set A, m(x A) is a Baire function of x,
(4.1) (ii) for each fixed %, m(x A) is a probability measure in A on

the linear Borel measurable sets.

Let {Xk, k > 0} be a stationary Markov process for which m(x A) =
P{Xfc+Le A[Xfc = x] is defined and satisfies the conditions of (4.1) (see
[3, pp. 18, 26-27]). We deal here only with processes of this type. By
(2.1) and (2.3) each Markov process under consideration has associated
with it a bounded linear operator M, with | | M | | = 1. We call this the
transition probability operator of the process.

Two subcases of special interest may be mentioned. The first one
is that of a discrete Markov chain (countable state space). In this case
the transition probabilities form a matrix M = (mi3). The connection
between the matrix M and the function m(x A) has already been dis-
cussed in § 2, case 1. The second type process of interest is the one
for which the joint distributions have densities. In this latter case, there
exists a transition probability density function m(x, y), and the connec-
tion with m(x A) is given in § 2, case 2.

For convenience in stating the next theorem we introduce a random
variable Ln.



658 GLEN BAXTER

/4 g) Ln : the index k (= 0, 1, 2, •) for which max(X0, Xu

= X* and max(Zo, Xx, ., X ^ ) < Xk .

Note in particular the meaning of the statements Ln = w and Lw = 0.
In Theorem 4.1 and thereafter we will have occasion to refer to the
kernel associated with a given operator of the form (2.1). If the operator
is denoted by some capital letter, the kernel will be denoted by the
corresponding small letter.

THEOREM 4.1. Let {Xk, k > 0} be a stationary Markov process with
transition probability operator M, and let {PJ, {Qk}> {Rk} and {T^} be
defined as in (3.4). Then, if the right hand members of (4.3) are defined
and satisfy (2.2), we have

pn(x A) = P{Ln = n, Xn e A \ Xo = x) ,

(4.3) q»(χ ; A ) = PίLn = °' Xn 6 A I X o = ^ '
rn(x A) = P{Ln - n, Ln^ = 0, Zw e A 1 Xo - x} ,
ίn(α? A) = P{LW = 0, max(ii, , Zw-,) < Zn, Zw e A | Xo = x} .

Proof. We prove only the first one of the relations in (4.3). Our
proof is by induction. Since Po = I, it follows that

(4.4) po(x A) = P{X0 e A \ Xo = x} = -f1 x G A

(0 x$ A .

Now assume the first relation of (4.3) is true for the case n and set
BN{x) - {y: y> [2Nx + l]/2^} f or N - 1, 2, 3, . . Then,

P{Ln+1 = n + 1, Xw + 1 6

= Γ P{max(ii, , XJ < Xw+1, Xn+1 e BN{x)A \X1 = z}
J-oo

(4-5) -P{̂ i edz\X0 = x}

= (" {Ln = n,Xne BN{x)A IXo = z}P{X1 edz\X0 = x}
J-oo

= I pn(z 5^(α;)A)m(^ dz) .

From (2.4) we see that the last term of (4.5) is the kernel of MPn eval-
uated at x and BN(x)A. Set Ax = A Π (x, oo), and note that for any
^ > 0,

Thus, by Definition 2.1 and (4.5)
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pn+ι(x A) = lim pn(z BN(x)A, m(x dz)
N->oo J -oo

(4.6) = lim P{Ln+1 = n + 1, Xn+1 e 5Λ(ar)A | Xo = x}

1 = rc + 1, Xw+1 e Ax I Xo = ^}

1 = n + 1, Xw+1 e A [ Xo - x} ,

and the proof follows by induction.
Combining the first and second of the relations in (4.3) we get certain

additional information about max(X0, « ,XW). In fact, we can evaluate
the generating function

(4.6) Σ P{max(Xc, . ., Xn) e A | Xΰ - x}sn

n = 0

in terms of the kernels of P and Q. Let S = (—cvf oo). Then, by
Theorem 4.1

P{max(X 0 , .. ,Xn)eA\X0 = x}

= Σ P{Ln = Λ, max(X0, . , X J e A | Xd = x}

(4.7) = Σ ί P{Ln_ t = 0 IZ o = y}P{Lk = k,Xkedy\X0 = x}

n f
= Σ g»-fc(2/ S)pk(x d2/) .

λ;=0 JA

Multiplying through (4.7) by sn and summing over s = 0, 1, 2, we
obtain

(4.8) ( q(y S)p(α dy) = Σ P{max(X0, . , X J e A \ Xo = x}sn .

Relation (4.8) takes on a particularly simple form if q(y S) is in-
dependent of y (See example 2, § 5). In fact, in this special case we
have the following Corollary to Theorem 4.1 :

COROLLARY 4.1. Let {Xfc, k > 0} be a stationary Markov process with
transition probability operator M and let P and Q be defined as in Theorem
3.1. Furthermore, let q(x A) be the kernel of Q, and let Φ be the
bounded, linear operator of the form (2.1) determined by

(4.9) Ψ(x A) = Σ P{max(X 0 , ••-, Xn) e A\Xd = x}sn .
71=0

Then, if q(x S) = q is independent of x,

(4.10) Φ = qP.

Relation (4.10) is an operator analogue of Spitzer's identity (1.1).
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5. Examples* We now give applications of the theorems to some
particular examples.

EXAMPLE 1. Let the operator of form (2.1) be (See case 1, §2)

b

(5.1) Af

so that for k — 1, 2, 3,

a 0

(a — c)dlb c

0 0

(5.2) Λf* = (ak - ck)dlb

0

kak~Lb 1

kak~ιd

0

It is not hard to see that (Mk)+M = M(Mk)+ in this case so Corollary
3.1 applies here. The solution of P = I + s(MP)+ for \s\< 1/||M | | <
1/1 a I is

P = exp Σ — i
=i k

= e χ P

(5.3) {'•'

= exp

0 bsl(l - as)

0 cfe/(l - as)

0 0

0
0

0

0

1

0

a'-'d

0

1
1

6β/(l -

ώ/(l -

1

as) '

as)

In a similar manner it follows that the solution of Q = I + s(QM)~ for
1 β | < 1/U Λf H < l / m i n ( | α |, \c\) i s

(5.4) Q =

1/(1 - as) 0

(α - c)άs/6(l - αs)(l - cs) 1/(1 - cs)

0

0

0 0 1/(1 - as)

These solutions are easily checked by substitution.

EXAMPLE 2. Let {Xk}(k = 1, 2, 3, •) be a sequence of independent,
identically distributed random variables with a common density function
f(x), and let Sn = Xλ + — + XM. If To is any random variable inde-
pendent of {Xk}, and if we set Tn = Sn + Ta(n = 1, 2, 3, ••), then
{ΓM, JZ > 0} is a stationary Markov process with transition probability

(5.5) m(x A) = P{Tk+1 eA\Tk = x} = - x)dy .

The conditions (4.1) are satisfied by m(x A) (as well as by the right
hand members of (4.3)) in this case so we so may talk about the
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transition probability operator M associated with {Tni n> 0}. This oper-
ator has the form

(5.6) M =\~_ f(y-x)dy.

Using (2.4) and (5.6) it is not hard to deduce that Mk also has a kernel
with a density. In fact,

(5.7) Mk - = Γ -My-x)dy,
j -°°

where fk(x) is the jfc-fold convolution of f(x) with itself.
By (5.6), (5.7), and (2.4) we see that the kernel of (Mk)+M has a

density of the form

(5.8) \ f(y — w)fi{w — x)dw = \ f(y — w)fk(w — x)dw .

We now make the change of variable z = y + x — w in the second in-
tegral of (5.8) to get

(5.9) \~fk(y - z)f(z - x)dz = [" fi(y - z)f(z - x)dz .

The second term of (5.9) is the density of the kernel of M(Mk)+. Thus,
{Mk)+M = M{Mk)+ in this case and Corollary 3.1 applies. If P and Q are
as defined in Theorem 3.1, then for \s \ < 1 (that is ||Λf || = 1)

(5.10) P = expIf {-Mm , Q = exp I f ^
( k ) t f c i A:

Since (Mk)~ has a kernel with a density of the form fk(y — x), we
deduce that Q must have a kernel with a density of the form q(y — a;).
This means

(5.11) q(x S) = Γ g(2/ - a?)di/ = exp Γ f
k

is independent of x and Corollary 4.1 applies. Spitzer's identity (1.1)
is found in this case from (4.10) by operating with each side on the
function g(y) = exp(ity). In fact, in the notation of (1.1)

φg = eitx Σ Γ eu(v-χ>P{max(T0, -, Tn) e dy\T0 = x}sn

(5.12) = eu* Σ (" eίί!/P{max(0, Slt , Sn) e dy}sn

J
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Now in the special case of the exponential function g(y) = eιtv,

(5.13) (Mh)+(Mη+gβ-Ux

From (6.10), we find1

i k
(5.14)

= eu* expΓf, ζ- Γ eι»P{Sk e
Lfc=i A: Jo

Putting (5.11), (5.12), and (5.14) into (4.10), it follows that

(1.1) Σ Ψn(t>n = exp [ Σ ~ Γ e"*P{max(0, Sk) e dy}l .

In passing we note that the existence of a density is convenient
but not necessary for the derivation of (1.1) from (4.10). In general,
we can replace (5.5) by

(5.15) m{x A) - P{(Xχ + x) e A} ,

which is Borel measurable in x for each fixed set A. The conditions
(4.1) are satisfied and the derivation continues in the obvious manner.

EXAMPLE 3. Let M be a matrix of finite order. We denote by Dk

the subdeterminant formed from the determinant of / — sM by crossing
out all but the first k rows and columns. Moreover, Dk(i j) (1 <i,j< k)
will denote the cofactor of the ijth element in Dk. Finally, for any
matrix N, let N(k) denote the matrix formed from N by crossing out
all but the first k rows and columns.

Let {Pn}, {Qn}> P =• (Pij), a n d Q = (Qtj) denote the matrices defined
by (3.4) and (3.5) when Theorem 3.1 is applied to M. We may also
apply Theorem 3.1 to M(k). It is not hard to show by induction that
{Pn(k)}9 {Qn(k)}, P(k), and Q(k) are the matrices defined by (3.4) and
(3.5) when Theorem 3.1 is applied to M(k). Thus, by (3.8)

(5.16) P(k)Q(k) = [I(k) - sMik)]'1 .

Equating elements of the last row (the A th row) in the matrix product
of (5.16), we find

(5.17) qkJ = Dk(j k^D, , j = 1, 2, . . . , k .

Using (5.17) and the elements of the last column of the product in (5.16),
it follows that

(5.18) vac - Dk(k i)IDk-τ , ί - 1, 2, . . , k .

1 The referee points out that (5.14) holds if and only if g is the exponential function.
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Let M be the transition probability matrix of a stationary Markov
chain {Xfc, k > 0} with states ax < a2 < • < <xN. From (4.3), we find

(5.19)
P{Ln = 0, Xw = Λ j I Xo = α4} = Z)t0' i)/A , (i < j) .
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AUTOMORPHIC GROUP REPRESENTATIONS

ROBERT J. BLATTNER

1. Introduction In this paper we investigate certain representations
of groups as * -automorphisms of rings of operators. More particularly,
we are interested in finding conditions on the group, representation, and
ring which guarantee the production of outer automorphisms of the ring.
The exhibition of outer automorphisms has been considered before, nota-
bly by Singer in a paper [9] which intensively analyses the automorphism
group of one of the finite factors constructed by von Neumann. Although
we also shall be concerned with finite rings, our results do not overlap
Singer's.

Segal, in [8], introduced the notion of skew distribution over a real
Hubert space §. He singled out one in particular, the Clifford distribu-
tion over ξ>, which admits a representation Γ of the orthogonal group
^(£>) of § into the automorphism group of the ring 51 associated to
the distribution. Section 2 of the present paper gives (mostly without
proofs) a variant of Segal's construction of 21 and Γ, which is more
suitable for our calculations. Section 3 states and begins the proof of
Theorem 1, which completely classifies (vis a vis innerness) the auto-
morphisms of 31 arising from Γ. The proof is completed in § 4 and 5.

In § 6, we introduce the notion of a continuous automorphic group
representation and show that any locally compact group satisfying the
second axiom of countability may be represented as outer automorphisms
of the Clifford distribution ring. Finally, Theorem 2 shows that any
continuous automorphic representation of an open simple Lie group on
a finite ring is essentially outer.

We shall make free use of the standard theory of operators and
rings of operators as found in [6] and [3]. For the theory of measurable
operators and gage spaces see [7].

The author would like to thank I. E. Segal for bringing the problems
solved in this paper to his attention.

2 Preliminaries* Let § be a real Hubert space, X the tensor
algebra over ξ>, $ the ideal generated by elements of the form x®x— (x, x)l.
Set (£ = £/$, the Clifford algebra over £> with respect to the quadratic
form x -> (x, x), and * = the main anti-automorphism of (£ = the anti-
automorphism of © arising from the anti-automorphism of % which sends

#1 (8) (X) %n -+ %n (X) * (X) Xl

Received April 10, 1958.
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As usual, we will consider ξ> as embedded in (£.

Any central linear functional θ on (£ has the property that
0(χι xn) = 0 whenever {χ19 •••,»„} are an orthogonal set in φ.
Since those elements, together with 1, span E, there is (up to a multi-
plicative factor) at most one such ί on K. Let us produce one. Follow-
ing Chevalley [2], we let @ = the exterior algebra over ξ>, multiplication
indicated by Λ, and ^ = the algebra of endomorphisms of @. ξ> is
considered embedded in g. For each a? e £>, let 4 be the unique anti-
derivation of (g such that <5X2/ = (a?, y)l for all j/ e ξ>, and let ^ be the
operator of left multiplication by x in @. The mapping a; -> ^ + dx of
§ into ^ T extends to a homomorphism f of S into ^#. We let
τ(%) = Ψ(u)l for ^ e (£. It is easy to show that τ is a one-to-one linear
map of (£ onto @.

Now the inner product (. , •) on ξ> extends to a real Hubert inner
product, also called ( , •), on ©. We set θ(u) =z (τ(u), 1). It is clear that
0 is linear and that 0(1) = 1. We shall show that θ(v* u) = (τ(u), τ(v)).
This will establish the centraϋty of θ and wϋ] also show that (uf v) =
θ{v*u) is a Hubert inner product on K making τ into an isometry. It
suffices to prove the above when u = x1 a?^ •••?/,. and v — a?x χn

zx zs where {^, •• 9xn,y1, , yr, ^, , ^} (w, r, s possibly 0) form
an orthonormal set in £>, since the u(x)v for all such pairs u, v span
£ <g) K. But

β( v* % ) = 0(^g . . . ^a?n . χxxλ xnyι yr) ^ θ(zs . zλyλ . j/r)

= «β Λ Λ «i Λ 2/i Λ Λ 2/r, 1) = 1 or 0

according as r = s = 0 or not. Thus

φ * v) = ( α h Λ •-- Λ X n Λ V i Λ --- Λ y r , X i Λ --- Λ X n Λ Z i Λ •-- Λ z 8 )

a^ desired.

Let 3) be the complexification of (£ and extend the inner product
on & in the usual way to a (complex) Hubert inner product on ®. Let
$ be the completion of £>. * may be extended fay conjugate Ήnearity
and closure to be a conjugation on $. We note that if {βj is an ortho-
normal basis for £>, then {eh eh-- eir}{iλ < i2 < . . . < i r r = 0,1, .)
is an orthonormal base for ffi, where the indices i have been linearly
ordered in some fashion. We shall adopt the notation eΛ, A a finite set
of indices, to mean eh eH. . eif where %<•••< ir and A = {ilf , i } .
Conventionally eφ = 1.

For any element w e ® , let L'ή be the operator with domain 3) defined by
L'Jα = ^α, α e S , It is easily seen that L'ή, x α unit vector of φ, is an
isometry of © onto ®. Since Φ is spanned algebraically by products
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of the form xλ xn, xt unit vectors in ξ>, we conclude that L'ύ9u e ®,
is a continuous operator on the normed linear space ®. Thus (ί£, ©, *)
forms a Hubert algebra, the left ring 31 of which is a factor of type
II, when fg is infinite dimensional, which is the only case we shall con-
sider [8]. Let S3 be the algebra of all bounded elements of (&, ®, *).
La and Ra, a e S3, will denote the closure of the left and right multipli-
cation operators respectively by a on the domain S3. The maps a -> La

and a -> Ra are an isomorphism and anti-isomorphism of 33 onto 21 and
2Γ respectively. For x e S, we define L̂  as the operator with domain
S3 such that L'xa — Rax, a e S3. Then Lx is defined to be (14*)*, the
notation agreeing with the above when x e S3. Lx is always measurable
with respect to 21 [7].

3. The representation Γ. Any orthogonal transformation U o$ ξ>
extends canonically to an automorphism of % which leaves $ invariant
and thus induces an automorphism of (£, which we denote Γ(U). Γ(U)
is defined by

Γ(U)(xι xn) = (Ux1 Uxn) for a?χ, , xn e £> .

Clearly Γ{U) commutes with *. The functional θ o Γ(U) is again a
central linear functional on (£ and Θ(Γ(U)1) = 0(1) = 1. Hence ί o Γ(U) = Θ
so that /'(ί/) is an isometry on ©. The automorphism /χ?7) then ex-
tends to an automorphism of (®, ®, *) which leaves ® invariant. /̂  is
clearly a faithful representation of the orthogonal group of ξ> into the
automorphism group of (β, ©, *). β will denote the automorphism Γ( —I).
β2 = /, so that S is the direct sum of two subspaces $ + and' $~ defined
by Ωx = x or — x according as x e B+ or ffi~.

Γ(ί7) is an mwβr automorphism if there exists a unitary element
u e S3 such that Γ(U) = LURU*. Since 2ί is a factor, % is determined up
to a multiplicative constant of modulus 1 by Γ(U). Now

-I)) = ΩLURU*Ω = (ΩLUΩ)(ΩRU*Ω)

Hence βw = ^ , /ί a constant. Clearly Λ = ± 1 so that either u e B+ or
u e $~. In the former case Γ(Z7) is called even, in the latter, odd.
Those inner automorphisms /"XΪ7) which are even form a subgroup of
the group of all inner automorphisms of the type Γ(U).

In order to classify the automorphisms Γ(U) according to the above
categories, we introduce the following notation : Let ^ + be the set of
orthogonal transformations U on ξ> such that / — U is of Hilbert-Schmidt
class and whose eigenspace belonging to — 1 has even dimension let
^ " contain all those U such that / + U is Hilbert-Schmidt and whose
eigenspace belonging to + 1 has odd dimension. Set S7Q = 2^+ U g^~.
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THEOREM 1. Γ(U) is inner if and only ifUe %?Q. If Γ(U) is inner,
it is even if and only if U e & + .

Let {eL}ieJ be an orthonormal basis of §, where J is a totally ordered
index set, and let U be a fixed orthogonal transformation. Set/ 4 = Uet

and Vt = LTiRu.

LEMMA 1. The subspace 8 of vectors left invariant by all the Vt has
dimension — 0 or 1. // dim 8 = 0, Γ(U) is outer if dim 8 — 1, 8 con-
tains a unitary element u e S3 such that Γ(U) — LURU*.

Proof. Suppose Γ{U) = LuRu*y u a unitary in S3. Then Γ(U)ei —
LuRu*ei or ft — Ueι = uetu*, all i. Thus ftuet = u or F4% = u, all i.
Therefore dim8 ^ 1 if Γ(U) is inner.

Next suppose dim 8 ;> 1 and let 0 Φ x e 8. Then i?/ έ#* = Le%x% so

that Lί x* = LR x*. For any element a e S3, L^ x*a = RaLe.x* = Le Rax*

= LeL'x*a so that LLQ X* = LeL'x*. Similarly Z4 x* = L'xX
r

fi. Taking ad-

joints, we have

(L'Le x,)* a (L;,)*L * = LxLe. and (Li ..)* 3 (L'f/(Li,)* = L, Lx .

Therefore, using to indicate strong product [7], Lx Le. = Lft Lx.
Again taking adjoints, Le Lx = L* L r.. This implies L r Lx L* =
Lx - L* - Lf. that is, the positive measurable operator A.LJ commutes
with each Lfi. Thus every spectral projection of LxLξ commutes with
each Lf . But the {Lf} are a self-ad joint set of generators for Sί and
Sί is a factor. Therefore each spectral projection of LXL* is either 0
or /, whence LXL^ = λl, λ a positive constant. A similar argument
shows that L*LX = λl. Thus we have shown that Lx is bounded and
that λ~ι!2Lx is unitary so that λ~Ύl'ιx is a unitary element in S3 Π 8.

Let u — λ~ιl2x. Then fiUβi = u, and hence ue%u% — f^ Therefore
the automorphisms Γ(U) and LURU* agree on the {β4} which are a set
of generators for (β, ®, *) that is, Γ(U) — LURU*. Suppose now that
0 Φ y G 8 also. Then y e S3, yy% — y*y — μl, μ a positive constant, v —
μ~ll2y is also a unitary e S3 Π 8 and Γ(U) — LυRυ*. But this implies that
v — ζu, ζ a constant that is, y = μll2ζu. Hence dim 8 = 1.

DEFINITION 1. For any orthogonal transformation U on ξ>, the sub-
space 8 of $ is called its characteristic subspace.

It is clear from Lemma 1 that the characteristic subspace depends
only on U and not on the choice of a basis {et} for £>.

4. The determinant condition. In this section we will show that if
Γ(U) is an even inner automorphism, then / — U is Hilbert-Schmidt,
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This will be achieved in a series of lemmas. We adhere to the notation
of §2.

LEMMA 2. Let U be an orthogonal transformation on ξ> and let P
be the projection on its characteristic subspace. Then

lim det (2-1(/ + U)ek, et) = (PI, 1) .
A k,l€A

(Here " lim " means limit according to the set of finite subsets A of J,
directed upward by inclusion. The determinant is expanded with respect
to the total order on the elements of A.)

Proof. We first introduce some notation : fΛ will denote Γ(U)eA

Pi = the projection on the invariant subspace of Vi (see Lemma 1) if
A - {ily , ir}(ix < • < ir) then PA = Ph • . Piγ.

Since the Vι mutually commute, the PA are projections which mutally
commute. Clearly P — strong-lim4 PA. In addition, V\ — I, all i.
This imples that P% = 2'\I + Vt) that is, Pta = 2-\a + fae,) for a e 33.
Iterating this, we calculate that

where r is the cardinality of A. Hence (PA1, 1) = 2~r ]
Fix B <Ξ A and suppose B = {λ, , js}(jL < < j s ) . Then

(βfl, Λ) = (Φ*), τ(Λ)) (see § 2) = ( ^ Λ Λ eJgf fh Λ /,,)

= det (eΛ, f) — det (efc, ZJβJ — det (Z7βfc, βz) .
k,lβB k,l€B k,lβB

Hence

( P A 1) - 2" r

BΣdetjZ7β f c, O ,

which we recognize to be

det (2-1(/ + C/K, βθ .

Passing to the limit on A, we have the lemma.
Note that the lemma shows that lim^ det kjieA(2~χi + U)βk, et) depends

only on U and not on the particular choice of basis. Hence we may
write det (2"1(/ + U)) without fear of confusion. This motivates the
following.

DEFINITION 2. An operator T on ξ> will be said to have a determi-
nant if, for every choice of an orthonormal basis {eJ i e J (J totally
ordered), limAdetk>ιeA(Tek, et) exists and is independent of the choice of
basis. We write det(Γ) for the common limit. (Cf. the treatment in [5].)
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To make use of the conclusion of Lemma 2, we must prove a short
preliminary result. For any operator T, σ(T) will denote the spectrum
of T.

LEMMA 3. Let S be a self-adjoint operator on ξ> and let {Sa} be a
net of self-adjoint operators and {Q*} a net of projections (same index
set) such that:

( 1 ) S = strong-lim* Sa

( 2 ) Sa = QJS*QΛ and / = strong-lim* QΛ.
Then σ(S) S topological lim inf* <r(SΛ\Q*&).

Proof. Let λ e σ(S) and ε > 0 be given. Since <S is self-ad joint, we
can find a unit vector x e £> such that \\(S — λl)x\\ < ε/4. We may then
find an index aQ such that a>aQ implies H(£α—S)a?|l < ε/4 and HQrtα;[[ ̂  1/2.
Then \\(SΛ - λl)x\\ < εfi, whence \\(S0 - λQa)(Qax)\\ < ε/2. Set yΛ =
Q«vl\\Q€&\\ Then yΛ is a unit vector in QJQ. We have shown that
\\(Sa — λQa)ya\\< ε. This implies that <r(Sa\QΛlQ) contains a point within
ε of λ, a > aQ.

We shall apply this to the situation in the following lemma.

LEMMA 4. Let the operator Tonfe have a determinant det(Γ) = c Φ 0
and suppose \\T\\ ^ 1. Then I — T*T is of trace class.

Proof. Chose a basis {et}i€j9 J totally ordered. We shall take as
our index set the set of all finite subsets A of J. QA = the projection
on the subspace of ξ> spanned by the eif i e A. Clearly QA -•/strongly.
Set S=T*T,SA = QAT*QATQA, and TA = QATQA/QA$. Then SA-+S
strongly and SJQj® = T%TA. Lemma 3 asserts that σ(T*T) g topological
lim inf̂  σ(ΓJΓκ).

Now det(ΓJΓ^) = (det Γ^)2 so that the hypotheses of the lemma assert
that lim^ d e t ( T ^ ) = <? Φ 0 and |[T*T|1 ^ 1, implying each \\TΪTA\\ ^ 1.
Clearly σ(Γ*Γ) and <r(TϊTA) S [0,1]. Given ε < 1, let N(A, e) = card-
inality of σ(ΓίΓ^) Π [0, ε) and N(ε) = cardinality of σ(Γ*Γ) n [0, ε). Choose
a set Ao such that det(T*7^) ^ 2"V for A a Ao. Since det(ΓίΓ^) is the
product of the eigenvalues of T^TAy we must have that N(A, ε) S
log2-V/logε for A^A0. Therefore N(ε) ̂  log 2'V/log ε. This shows
that <r(T*T) is pure point spectrum except possibly for the value 1 and
that <r(T*T) has only 1 as a cluster point.

§ is the direct sum of the eigenspaces of T*T. Choose a new
basis, again called {ej ί e j, adapted to this direct decomposition of ξ>.
We use the notation of the previous paragraphs (with respect to the
new basis). Each et is an eigenvector belonging to an eigenvalue λt of
T*T. For every finite subset A of J we have
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iβA

But

Γ * Γ | Q ^ - T*TA = QAT*(I - QA)TQA\QJQ ,

a positive operator on QAξ>. Now the determinant of the sum of two
positive operators on a finite dimensional Hubert space is greater than
the determinant of either operator. Hence

ίβA l ~

As A t , YlίEA λi i since 0 ^ Λt <* 1 for all i e J. It follows that IL Λ*
exists. Moreover, Π« h ^ c3 > 0 since lim^ det(T^TA) = &. Therefore
Π« ̂ i converges absolutely, so that Σ*(l ~ *̂) < °° 5 ^hat is, / — Γ*Γ is
of trace class.

LEMMA 5. Let Γ(U)LURU*, u a unitary operator of S3 Π St+. Then
I ~ U is Hilbβrt-Schmidt.

Proof. Fix a basis {<?Jί6J, J totally ordered. Each e% is a self-
adjoint unitary element of S3. Hence for any finite subset A of J, eA

(notation as in § 2) is a unitary in S3. For each et we define Ue. to be
that orthogonal transformation on ξ> which leaves et invariant and mul-
tiplies the other elements of the basis by —1. It is easy to see that
Γ(Ue.) = Le.Re.. In general, we define Ue to be Ue. •••Z7e. where

i ί i A \ T

A = {ilf . . . , ir}(ii < < ir). Then Γ(Uej = LeJteA* and UβAeg?+ or
^ " and /^(ί/e ) is even or odd according as A has even or odd cardi-
nality. It is clear that all the V&A are self-adjoint.

Let Γ(U) = LURU*, u a unitary element of S3 Π $ + . Then u = Σ^ ^ ^ ,
the summation being extended over the A of even cardinality. Pick
a λB Φ 0. Then % = ^ ( Σ ^ Λ>A), λ'A 's different constants, Setting v =
Σ^ ^^> v is a unitary in S3 Π ̂ + such that (v, 1) = λ'φ = λB Φ 0. Set
y - ^ ? 7 . Then

Γ(V) = Γ{Ueβ)Γ{U) = (LeBMeB)(LuRu*) = LβB*uRCβji.u> = L,β,* .

Since UeBe ^ + , I - U will be Hilbert-Schmidt if and only if / - F is.
Thus we may assume without loss of generality that (u, 1) Φ 0.

If P is the projection on the characteristic subspace of U, our as-
sumption implies that (PI, 1) Φ 0. Setting T = 2-χ(I + Ϊ7), we conclude
from Lemmas 2 and 4 that / — T*T is of trace class. This says that
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is of trace class. Hence 27 - U - £7* = (/ - Z7)*(J - U) is of trace
class so that 7 — U is Hilbert-Schmidt.

5. Completion of proof*

LEMMA 6. If U e ^ + [respectively gf"], then Γ(U) is an even [odd]
inner automorphism.

Proof. We use the notation of Lemma 5. Let U e S^+ [respectively
5/~~]. Then the eigenspace 3Jί of Z7 belonging to the eigenvalue —1 [+1]
is of even [odd] dimension. Let {et}ieΛ be a basis for 3B. Then Z7e 6 g^ +

[2?'] . Set V=UejU. It is easily seen that F e g " + and that the
eigenspace belonging to —1 has dimension 0. If the lemma can be
proved for V, it will follow for U since U — Ue V will then be the
product of an even [odd] and an even inner automorphism. Thus we
may assume without loss of generality that f/e ^ + and that U has no
eigenvectors belonging to — 1 .

£> is the direct sum of the eigenspaces of (7 — Z7)*(/ — 17). These
spaces are all finite dimensional except possibly that belonging to 0.
These subspaces all reduce U and on the 0-eigenspace U = I. Using the
classical reduction of an orthogonal transformation on a Euclidean space
and remembering that U has no eigenvectors belonging to — 1 , we see
that § is the direct sum of a countable number of 2-dimensional sub-
spaces $Qn{n = 1, 2, •) and a subspace £>0> each of which reduces U, and
such that U is irreducible on every φ n and U = I on ξ>0. Let { β j i e j be
a basis for £> adapted to this direct decomposition. With respect to this
basis

(
sin θn cos β

o < β n < π

(where the basis elements of § have been suitably ordered). We readily
calculate det (2"1(7 + U)) to be

For any operator T, we denote its Hilbert-Schmidt norm by \\T\\2.
Then

117 - Z7||l - Σ IK* - U)\§n\\l = 4 Σ (1 - cos 0n) = 8 Σ f
n n n \

Hence

1 + cos θn
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converges absolutely. By Lemma 2, this says that (PI, 1) Φ 0, where
P is the projection on the characteristic subspace of U. Thus P Φ 0
and Γ{U) is inner by Lemma 1. Finally, Γ(U) must be even. In fact,
suppose Γ(U) = LuRφy u unitary in S3 Π Sϊ~. Since P is the projection
on the subspace generated by u and since l e S + , we conclude P I = 0,
a contradiction.

LEMMA 7. // Γ(U) is inner, then U e γy\.

Proof, Suppose Γ(U) is odd. Let eγ be a unit vector in ξ>. Then
Γ(Uβι) (notation as in Lemma 5) is odd. It follows that Γ(UeU) is even,
so that / — UeU is Hilbert-Schmidt. Since / + UH is Hilbert-Schmidt,
so is 1 + U = (J + Ue) - Ueβ ~ UHU).

Let now Γ(U) be even [odd]. We know that / — U [respectively
I + U~\ is Hilbert-Schmidt. Suppose that the eigenspace of U belonging
to — 1 [ + 1] is of odd [even] dimension. Then — U e ^"[respectively
gf+] so that Γ(-i7)is also inner by Lemma 6. Therefore Ω = λΓ(U*(—U))
is inner. We shall be through if we can show that Ω is outer.

Suppose then that Ω is inner., Since / — ( — / ) is not Hilbert-Schmidt,
Lemma 5 implies that Ω must be odd. Let Ω = LURU*, u unitary in
S3 Π ίϊ~. Picking a basis {e j i e j , J totally ordered, for ξ>, u = ^ λAβA,
the summation being extended over all finite A g J of odd cardinality.

We let S be the characteristic subspace of — / and adopt the notation
of Lemmas 1 and 2. We have Ptu = u for each i e J . Now

PiU = Σ *A
A

Since A has odd cardinality, eieAeι = eA or —eA according as i e A or
i 0 A. Hence λA = 0 unless i $ A for all i that is, all λA — 0, which is
ridiculous. This concludes the proof of Lemma 7 and, with it, Theorem 1.

6. Automorphic representations of topological groups* The map-
ping Γ is a representation of the orthogonal group ^p(ξ>) of φ as auto-
morphisms of the Hubert algebra (ξ), D, *). Every automorphism of the
Hubert algebra gives rise to an automorphism of its left ring 21 via
the isomorphism b <-> Lb of the bounded algebra 33 and 2ί. Conversely,
every * -automorphism of 2ί gives rise to one of the Hubert algebra
(by the uniqueness of the normalized central trace on S3) and the cor-
respondance is univalent. Henceforth we identify these two types of
automorphisms.

Let S/ be the * -automorphism group of 21. If a e s>f, T e 21, T*
denotes the image of T by α. We have then

Lϊw = LΓ(w)δ = Γ(U)LbΓ(Ur
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for U e £?(§) and b e 33. Now it is easy to check that the maps
U -+ Γ(U)b, 5 e ® , are continuous in the norm of ® when £?(§) is given
the strong operator topology (as henceforth it shall be). Hence Γ is
continuous from ^(ξ>) to the unitaries of B in the strong topology. It
follows that, for each T e 31, the map

is continuous from <£?(«£) to 21 in the strong, and hence the weak
topology. Γ is thus a continuous automorphic representation, in the
following sense.

DEFINITION 3. Let SI be a ring of operators, J%f its * -automorphism
group, G a topological group. A representation p of the abstract group
G into s/ is called a continuous automorphic representation on%\ί, for
every T e 31, the map g -> T^g) of G into 2ί (in the weak topology) is
continuous.

This continuity restriction is the weakest that can reasonably be
imposed on p and is independent of the particular spacial representation
of 3ί. We note that if p is continuous in the above sense, then g —• ?7p(flr)

is strongly continuous. In fact, let gΛ~-> g. Then

{Tp{g^ — τ p ( g ) ) * (Tp(9^ — Tp{9))

— ( T ^ T ) P ( 0 ^ — (T*)p(9<χ)Tp(o:> — (27*)p(»f l»)j7p(1/) + (T*T)P<:9) -• 0 w e a k l y .

Let now G be a topological group, τ a continuous representation of
G into £?(&), 31 the left ring of our Hubert algebra, and s/ its auto-
morphism group. Any α e j y which leaves § invariant will be called
special, p = JΓ o r is then a continuous representation of G as special
automorphisms. Conversely, let /o be a special continuous automorphic
representation on 31. Then p — Γ o r, where r is a representation of the
abstract group G into ^(£>) (merely restrict ^ to φ). Let α, δ e £>.
Then ^ -> (τ(g)a, b) — (Ifa

{g)l, b) is continuous so that τ is continuous.
With this in mind, we see that Theorem 1 has the following easy

consequence.

COROLLARY. Let G be a locally compact group satisfying the second
axiom of countability. Then G has a special continuous automorphic rep-
resentation p such that if p(g) is inner, then g — e.

Proof. Let ττ be a faithful continuous representation of G into
some orthogonal group ^(£>:), & a real Hubert space of countable
dimension e.g., the left regular representation of G (real functions).
Let ^r be the cardinality of a basis for ξ>. Then ξ) is the ^-fold direct
copy of ξ>! so that the direct sum of ^- copies of τl9 call it r, can be
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taken as a representatation of G into ^(ξ>) Since ^r is infinite, it is
clear that τ(g)ε% if and only if τ(g) = I that is, g = e. Set p = Γ o τ.

It can also be deduced from Theorem 1 that for any special continuous
automorphic representation p of an open simple Lie group on 21,
p-1 (inner automorphisms) is central. But this will follow from the more
general statement in Theorem 2.

THEOREM 2. Let G be an open simple Lie group, 2ί a finite ring of
operators, and p a non-trivial continuous automorphic representation of G
on 21. Then p(g) is inner only if g is central.

The essential step is Lemma 8 below. It, together with an exten-
sion of a result of Kadison and Singer [4] to continuous projective
unitary representation (for definitions, see below), will imply our theorem.
Let 91 be any ring of operators, s/ its automorphism group, S/o the
subgroup of inner automorphisms, and "?/ the group of unitary operators
in SI. The map π : <2S-+sfo defined by T^ = UTU*, Ue W, T e 21,
is a homomorphism onto J>/o whose kernel is the center ^ of ff. If
^/ is given the strong operator topology, then π is a continuous auto-
morphic representation. We set ^ — ̂ /\{6? with the topology induced
from ^/ and, with some abuse of language, call & the protective
unitary group of 21 any continuous group representation into & will
be called a continuous projective unitary representation on 2ί. π clearly
induces a continuous isomorphism π of & onto s/o.

Let τ be a continuous projective unitary representation of the
topological group G on 21. Then p — π o τ is an inner continuous auto-
morphic representation of G on 21. Lemma 8 gives a partial converse.

LEMMA 8. Let G be a locally compact group satisfying the second
axiom of countability and let 21 be a ring of operators on a separable
Hilbert space £). Let p be an inner continuous automorphic representation
of G on 21. Then p is induced by a continuous projective unitary repre-
tation on 21.

Proof. Let 2ίx be the unit sphere of 21 in the weak topology. Ŝ
is a compact separable metric space (since ξ> is separable). G is a complete
separable metric space and bears its left Haar measure μ. Let {TJ be
a dense sequence in 2IX, and let @ be the set of all (g, U) e G x 2It such
that U is unitary and UTi = Tfg) U for all i. The argument of Lemma
2(b), section 6, § 2, Chapter II of [3] shows that @ is a Borel, and hence
an analytic, subset of G x %. Let ζ be the canonical projection of
G x % on G. Since p is inner, C(@) = G. By Appendix V oί [3], there
exists a measurable map (in the sense of Bourbaki [1]) g -> Ug of G into
2Xx such that (#, E7,) e &, g e G.
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Thus we have a measurable map g -> Ug of G into <%S in the weak,
and hence strong, topology such that !Γ?(ί7) = UgTJJ*, all i. Taking weak
limits of {ΓJ, we have Tp(g) = UgTU* for all T e SIX, and hence in St.
Let φ be the canonical projection of *%/ on £P and set τ(g) = ψ(Ug).
We know that g -> p(g) = π(Ug) = π(r(#)) is a representation. Since Sr is
univalent, r is a representation. Since ψ is continuous, r is measurable
from G into ^ . Hence there exists a compact K^G such that μ(i?) > 0
and τ I K is continuous. Using the representation property of r we see
easily that τ \ KK"1 is continuous. But KK'1 is a neighborhood of e in
G [10]. Therefore τ is continuous, as desired.

Proof of Theorem 2. For any ring of operators, the group of inner
automorphisms is invariant in the full group of automorphisms. Let G
be an open simple Lie group and C its center. Since every proper
abstract invariant subgroup of G is contained in C, the theorem asserts
the non-existence of non-trivial inner continuous automorphic represen-
tations of G on finite rings. Suppose, on the contrary, that p is such
a representation on the finite ring Si on the Hubert space £>. We shall
first show that ξ> may be assumed separable.

For eace geG choose a unitary Ug e 31 such that UgTU* = Tp(9\ Te SI.
Let {gt} be a dense sequence in G and let 33O be the * -algebra (with
unit) generated by the UOt over the complex rationale. 33 o is countable.
Let 33 be the weak closure of 33O, a finite ring of operators. Clearly
each p(gi) leaves 33O, and hence 23, setwise invariant. The continuity
of p then implies that p(g) leaves 33 setwise invariant, geG. Set
°id) — Pie) I S3- Then σ is a continuous automorphic representation on
S3 and each σ(^) is inner by construction. The argument of the last
paragraph shows that σ-(#) is inner, geG.

We next assert that Uσ

g

(0^Ug* Φ /for some i,j. Otherwise UgUg} —
UOjUgi9 whence pfagj) = pig^d, all i,j. Taking limits, we see that p
maps the commutator subgroup of G (=<r itself) into the identity, a
contradiction. Let then x e ξ> be a vector not invariant under all the
Uσ

g^Ug*. Set SI equal to the closure of ?bx and P equal to the smallest
central projection of 33 such that Px = x. $ reduces every T e 33 and
the homomorphism T -> T \ K of 33 onto 33 | ̂  is faithful and onto on the
direct summand 33P of 33. Since each σ(g) is inner, each leaves the
center of 33 elementwise invariant. Therefore σ induces by restriction
an automorphic representation σ of G on 33P and hence, via the above
isomorphism, on 33 | S. Clearly σ is continuous and inner. It is also
non-trivial, since a e i Lastly, 33O# is a countable dence subset of $.

We thus see, returning to the first paragraph of the proof, that
we can assume ξ> separable. Lemma 8 then implies the existence of a
non-trivial continuous representation of G into the projective unitary
group & = ^7<ίf of 31. We follow now the methods of [4]. Since
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ξ> is separable, SI is countably decomposable and hence carries a faithful
normal positive (finite) central trace ω. The space 21 is then a pre-
Hilbert space in the norm || T \\l = ω(T*T) and the unitaries of SI form
a topological group %ζ in the metric d(U, V) — \\ U — F| | 3. The identity
map of ^/ onto % is continuous, hence so is the identity map of &
onto &i— ^ι\%7. Therefore G has a non-trivial continuous representa-
tion into &i. The metric g on %ζ is both left and right invariant.
Hence &ξ has a metric similarly invariant. The Lemma in [4] shows
that G has arbitrarily small invariant neighborhoods of the identity, an
impossibility. This contradiction proves Theorem 2.
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ISOMORPHISM ORDER FOR ABELIAN GROUPS

STEVEN BRYANT

In the theory of isometric embedding in metric spaces the following
theorem is proved : Let M be a metric space every n + 3 points of
which can be mapped isometrically into Euclidean %-space, then there
exists an isometry from all of M into Euclidean w-space. Because of
this theorem Euclidean %-space is said to have congruence order n + 3.
Cl].

L. M. Blumenthal has raised the question as to whether a notion
analogous to that of congruence order could be developed for algebraic
systems. In this paper a definition of isomorphism order is introduced
for groups and a complete description of all Abelian groups having finite
or kyperfinite isomorphism order is obtained.

First a well known definition to avoid any possible misunderstanding
of the use of the concept of rank.

DEFINITION. A group G is said to have rank n if every finitely
generated subgroup can be generated by n or fewer elements and n is
the smallest natural number with this property.

For convenience we introduce the following definition.

DEFINITION. If k elements gl9 g2, * ,gk of a group G generate a
subgroup of G which is isomorphic to a subgroup of a group H, we
will say that gl9 g2, , gk are emheddable in H and that the subgroup
generated by the #'s is embeddable in H.

Now we are ready for the definition of isomorphism order.

DEFINITION. A group G is said to have isomorphism order k if and
only if any group H is embeddable in G whenever every k of its ele-
ments are embeddable in G.

In the above definition k may be any cardinal number, however, in
this paper k will always stand for a natural number.

If A and B are two cardinal numbers such that A is less than or
equal to B then it is easy to see that if a group G has isomorphism
order A then G has isomorphism order B.

Every group has some isomorphism order, since if G is a group of
cardinality M then G has isomorphism order N where N is any cardinal

Presented to the Society November 17, 1956; received by the editors May 14, 1958,

679



680 STEVEN BRYANT

number which is larger than M. Since the cardinals can be well ordered
every group has a smallest isomorphism order. However, in what is
to follow, if we say G has isomorphism order k we will not mean that
k is the smallest isomorphism order of G unless we explicitly say so.

The following lemmas lead to a theorem describing all Abelian groups
having finite isomorphism order.

LEMMA 1. Let k be a natural number and p a fixed prime. Let G
be a direct sum of k groups each of which is a cyclic group of order a
power of p or a group isomorphic to Z (Poo), Then G has isomorphism
order k + 1.

Proof. Let H be a group every k + 1 elements of which are
embeddable in G. H is primary and has rank k. From this the conclu-
sion easily follows. (Exercise 49, [2])

LEMMA 2. An Abelian torsion group G has isomorphism order k if
and only if G is a direct sum of fewer than k subgroups of the rationals
mod one.

Proof. Let G be an Abelian torsion group having isomorphism order
k. Write G as a direct sum of primary groups that is G — ̂  Gp, where
p ranges over the primes and Gp consists of all elements whose order
is a power of p. Now Gp does not contain the integers mod p taken
k times for, if it did, arbitrarily large groups constructed by taking
direct sums of the integers mod p would (by hypothesis) be embeddable
in G. From this it follows that Gp has rank less than k. Hence (exer-
cise 49, [2]) Gv is a direct sum of fewer than k subgroups of Z(P oα),
and therefore G is a direct sum of fewer than k subgroups of the
rationals mod one by rearrangement of summands.

Conversely, let, G be a direct sum of fewer than k subgroups of
the rationals mod one. Let H be a group every k elements of which
are embeddable in G, so that H is torsion. Write H — Σ Hp and consider
Hp. Every k elements of Hp are embeddable in Gpy but by Lemma 1,
Gp has isomorphism order k, hence Hp is embeddable in Gp and so H
is embeddable in G.

LEMMA 3. A torsion free Abelian group has isomorphism order k if
and only if it is a vector space over the rationale of dimension less than k.

Proof. Let G be a torsion free Abelian group having isomorphism
order k. Now G does not contain the direct sum of the integers taken
k times, for, if it did, the group consisting of the direct sum of the
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integers taken a greater number of times than the cardinality of G
would have every k elements embeddable in G and hence by hypothesis
would be embeddable in G, a contradiction.

Let m be the maximal number of elements of G which are independ-
ent over the integers. By what was just said m must be less than k.
Any m dimensional vector space over the rationals is embeddable in G,
by hypothesis. So G contains a vector space over the rationals of dimen-
sion m, call this space V. The space V is a divisible subgroup of G
and hence is a direct summand so G — A + V. Let a be a nonzero
element of A. Since m is the maximal number of independent elements
of G, na is in V for some nonzero integer n, but since na is in A it
is zero and therefore a is zero and so G = V.

Conversely, if G is a vector space over the rationals of dimension
less than k and H is a group every k elements of which are embeddable
in G then H is embeddable in G. To see this, observe that H can be
embedded in a vector space over the rationals consisting of all couples
of the form (n, h,) when n is a nonzero integer and equivalence is
defined in the natural way, and the dimension of this space is less than
k for if not, there exist k elements of H not embeddable in G, which
completes the proof.

THEOREM 1. An Abelian group G has isomorphism order k if and
only if G is the direct sum of two groups, one torsion, the other torsion
free. The torsion free group is a vector space over the rationals of
dimension less than k, while the torsion group can be written as a direct
sum of fewer than k subgroups of the rationals mod one.

Proof. Let G be an Abelian group having isomorphism order k.
The theorem follows from the lemmas if G is torsion or torsion free.
Now G contains a vector space V over the rationals of dimension n less
than k where n is the maximal number of elements of G which are
independent over the integers. This holds by an application of the
argument of Lemma 3. Regard V as a group, then V is a direct sum-
mand of G since V is divisible. So G = A + V and A is torsion, for
if x is in A then mx is in V for some nonzero integer m, hence mx — 0.
Now apply Lemma 2 to A and obtain the necessity of the theorem.

To prove the sufficiency, let G be an Abelian group such that G =
T + V where T = Aτ + Aλ + + As and each At is a subgroup of the
rationals mod one and s < k, and V is a vector space over the rationals
of dimension less than k.

We must show that if H is an Abelian group, every k (or fewer)
elements of which are embeddable in G, then H is embeddable in G.

H does not contain k elements which are independent over the
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integers. Hence H contains at least one subgroup Hd such that h e H
implies rh e Ho for some natural number r and such that Ho is embed-
dable in G.

Let T* be the direct sum of the rationale mod one taken s times.
Let G* = T* + V. We will show that if φ is an isomorphism from i?3

into G* then if HQ Φ H, φ can be proporly extended. Then the embed-
dability of H in G* can be obtained by a transfinite argument. Finally,
we will see that H is embeddable in G.

So let Ho be a subgroup of H such that h e H implies rh e Ho for
some integer r and let F be an isomorphism from Ho into G*. If Ho =
H we are done, if not, let h $ HQ, and m the smallest natural number
such that mh e HQ.

Case 1. m = p, p a prime. Let M = [z\pz = F(ph), z e G*]. For
convenience, we will refer to M as the set of all the "p th roots " of
F(ph), and note that M is finite, and that the number of elements in
M is exactly the number of " pth roots " of 0 in G*. Now, not every
element of M is in F(H0), for if so, a glance at the inverse images
will show that the inverse image of every element of M is a "p th
root" of ph. But F{ph) has at least as many " p t h roots" in G* as
ph has in H. Hence h itself is in Ho a contradiction.

We conclude that some element of M, call it z, is not in F(HQ).
Furthermore, if 0 < n < p, then nz 0 .F(iϊo) and hence .F7 can be extended
in the natural way.

Case 2. m not a prime, then m = qt where q is a prime. Apply
the argument of Case 1 to the set of all gth roots of F(mh).

This shows that H is embeddable in G*. But by Lemma 2, if T
is the torsion subgroup of H, T' is embeddable in T. Hence it is easily
seen that H is actually embeddable in G, which completes the proof.

In the above theorem, nothing hag been said about smallest isomor-
phism order. However, it is easy to see that, if G has smallest iso-
morphism order k then either the torsion free summand of G has rank
k-1 or the torsion summand cannot be written as a direct sum of fewer
than k-1 subgroups of the rationale mod 1.

The next step up in the hierarchy of isomorphism order is given
by the following definition.

DEFINITION. A group G is said to have hyperβnite isomorphism
order if, whenever every finitely generated subgroup of a group H is
embeddable in G, then H is embeddable in G.

The proof of the next theorem is similar to that of Theorem 1, and
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rests on the fact that a torsion group has hyperfinite isomorphism order
if and only if the rank of each primary subgroup is finite, while a
torsion free group has hyperfinite isomorphism order if it is a finite
dimensional vector space over the rationale.

THEOREM 2. An Abelian group G has hyperfinite isomorphism order
if and only if it is the direct sum of two groups, one torsion, the other
torsion free. The torsion free group is a finite dimensional vector space
over the rationals while the torsion summand has no primary subgroup
of infinite rank.

REMARK. If the smallest isomorphism order G has is hyperfinite,
then there is no upper bound on the ranks of the primary subgroups
of G.

This concludes the analysis of Abelian groups having finite or hyper-
finite isomorphism order.2 In a subsequent paper, we hope to give some
results concerning Abelian groups having transfinite isomorphism order.

Also, this notion can be carried over to other systems, such as
rings, a direction in which some preliminary results have been obtained.
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MODULES WHOSE ANNIHILATORS ARE
DIRECT SUMMANDS

CHARLES W. CURTIS

Introduction* Let B be a ring with an identity element, and let M
be a right i?-module. The set of all elements b in B such that Mb = (0)
is called the annihilator of M, and will be denoted by (0 : M), It is a
natural question to ask under what circumstances the ideal (0 : M) is a
direct summand of B. If B is a semi-simple ring with minimum con-
dition, for example, then every ideal is a direct summand, and there is
no problem. We shall be concerned with a ring B, not assumed to be
semi-simple, which is a crossed product Δ(G, H, p) of a finite group G
and a division ring Δ, with factor set p. In particular, B may be the
group algebra of a finite group with coefficients in a field. The purpose
of this note is to obtain necessary and sufficient conditions on the
structure of the module M in order that its annihilator (0 : M) be a
direct summand of B.

Our interest in the problem stems chiefly from the fact that the
the modules whose annihilators are direct summands turn out to be
precisely the modules for which the pairing defined in § 2 of [1] is
regular in the sense of [1, p. 281]. The main results of [1], given in § 5
and § 6, are based upon the assumption that the pairing is regular,
and establish a connection between the structure of the module M rela-
tive to the set of 5-endomorphisms of M and the structure of a certain
ideal in B, called the nucleus of Λf, which is the uniquely determined
complementary ideal to (0 : M) when (0 : M) is a direct summand.

2 Familiarity with crossed products and their connection with pro-
jective representations of finite groups is assumed (see [1, § 2]). In
this section we recall some of the properties of a crossed product, and
introduce, in a more general, and at the same time, much simpler fashion,
the pairing defined in a special case by formula (7) of [1]. Let G =
{1, 8, t, •} be a finite group, Δ a division ring and B = Δ(G, H, p) a
crossed product of G and Δ with correspondence s -> s = s11 from G to
the group of automorphisms of Δ, and factor set {pSίt} There exist
elements {blt bs, } in B in one-to-one correspondence with the elements
of G, such that every element of B can be expressed uniquely in the
form Σ bsζs, with coefficients ξs in Δ. The multiplication in B is de-
termined by the equations
(1) &A - bsίPs,t ξb, = bsξ% ξ 6 Δ .

This paper was originally accepted by the Trans. Amer. Math. Soc. Presented to the
Society April 20, 1957; received by the editors of the Trans. Amer. Math. Soc, August
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The fact that B is an associative ring implies that the factor set {p8tt}
satisfies the equations

( 2 ) Ps,tuPt,u = Pst.uPlt ,

for all s, έ, u in G. We shall assume that the factor set p is normalized
so that plft — ptΛ = 1 for all t in G then 6X is the identity element in B.

The additive group of B is a right vector space over Δ which we
shall denote by β ( r ) , if we define scalar multiplication by f e Δ by means
of the right multiplication ξr: x -> xξ. Similarly the additive group of
B can be regarded as a left vector space Bφ over Δ. The elements
blf bs, form bases for both of these spaces. Because both spaces are
finite dimensional, B satisfies both chain conditions for left and right
ideals.

The mapping λ : Σ b8ξs -> £i is a linear function on both vector
spaces 5 ( r ) and .Bc0 whose kernel contains no left or right ideal different
from zero. Therefore the mapping A : A(a, b) = λ(ab) is a non-degenerate
bilinear form on Bω x i? ( r ) -> A. Using the bilinear form A it is easy
to verify (cf. [1, p. 279]) that B is a quasi-Frobenius ring, that is, B
satisfies the minimum condition, and every right ideal in B is the right
annihilator of its left annihilator, and similarly for left ideals.

A right S-module1 M is a fortiori a right vector space over Δ since
ΔczB. For each s in G, the mapping Ts: x-> xbs is a semi-linear trans-
formation belonging to the automorphism s in this vector space. The
correspondence s -> Ts defines a protective representation of G. Each
transformation Ts has an inverse T~λ which is a semilinear transforma-
tion with automorphism s"1. Let M' be any left vector space over Δ
which is paired with M to Δ by a non-degenerate bilinear form / . Let
us assume also that the semi-linear transformations Ts all possess trans-
poses Tf with respect to the form /, such that

(3) f(ψ,xTs)=f(Tfψ,xy ,

for all xeM, ψeM'. If we define ( Σ W.)0 = Σ Γ ί W ) , then M' be-
comes a left β-module (see [1, p. 274]). When these conditions are
satisfied, we shall call the system (M',M,f) a pair of dual B-modules.

LEMMA 1. Let (M'', M,f) be a pair of dual B-modules. Then the
function

(4) τf(ψ, x) = Σ,f(Ψ, xTs)b^
seo

is a non-degenerate B-bilinear function on Mf x M-+ B (cf. [1, Proposi-
tion 1]).

1 We shall assume that the identity element of B acts as the identity operator on all
modules we shall consider.
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Proof. For any ueG we have

b?τf{T*φ, x) =

= Σ,f(Ψ, xT.Tjbfb;1 = τf(ψ, x)
sEG

by (1) and (3). Similarly, for all u,

τf(φ, χTu)Kι = τf(φ, X) .

Since the function τf is obviously bilinear as far as Δ is concerned, these
calculations establish that for all b e B,

bτf(φ, x) = τs(bφ, x) and τf(φ, xb) = τf(φ, x)b .

The non-degeneracy of τ1 follows at once from the non-degeneracy of /.
To each right J5-module M corresponds a two-sided ideal BM in B,

defined as follows. Find a left S-module M' which is paired with M to
Δ by a non-degenerate bilinear form / such that (M\ M,f) is a pair of
dual Z?-modules (for example, the space M' of all linear functions on M
can be used). Then by Lemma 1, the set BM consisting of all finite
sums Σ τAΦu Xi), Φi e M', xt e M, is a two-sided ideal in B. We shall
call BM the nucleus of M. We leave it to to the reader to verify that,
as our notation indicates, BM is independent of the choice of M' and /.

We now define a right J5-module M to be a regular module if BM

contains an element ε such that eb = be = b for all beBM. We remark
that the statement that M is a regular module is equivalent to the
statement, in the terminology of [1], that (M', M> τf) is a regular pair-
ing (see [1, p. 281]).

3, This section contains some lemmas on regular modules. We re-
mark first that if M1 and M2 are isomorphic S-modules, then BMι = BM2,
and hence regularity is preserved under isomorphism.

LEMMA 2. The nucleus BM and the annίhilator (0 : M) of a regular
module M are two-sided ideals in B generated by central idempotents, and

Proof. Let (M\ M,f) be a pair of dual β-modules, where M is the
given regular module. By Theorem 1, p. 282, of [1], we have Br =
(BM)r, and consequently B = BM + (0 : M). Let ε = X τf(φί9 xt) be the
identity element in BM. Then αeZ?M(Ί(0 : M) implies a — ea =
Σ TλΦί Xiθ) = 0, and the sum is direct. We have e' = 1 — ε e (0 : Λf),
and because 5 M and (0 : M) are ideals whose intersection is zero, ε and
ε' are orthogonal central idempotents which generate BM and (0 : M)

2 We take this opportunity to correct an error in [1]. The assertion made in example
(c) in §11, p. 291, of [1] that 0^(0: M)(^BM for a certain regular module M is false and
the assertion (c) should be deleted from [1].
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respectively.

LEMMA 3. Let M be a right B-module such that M — Mx © M 2 , where
M1 and M2 are submodules. Let Mr be the space of all linear functions
on M, paired with M to A by the function f defined by f(ψ, x) = ψ(x),
ψ e Mr, x € M. Then (M\ M,f) is a pair of dual B-modules, Let Mi and
Mi be the subspaces of M' which annihilate Mλ and M2 respectively.
Then M' = Mi ξ&Mi the restrictions fτ and f2 of f to M\ x Mλ and
Mi x M2, respectively, are non-degenerate and (Mi, Ml9 Λ), and
(Mi, M2,f2) are pairs of dual B-modules.

Proof. The semi-linear transformations Ts all possess transposes Tf
relative to the form /, such that formula (3) holds, and consequently
(Mf,M,f) is a pair of dual .B-modules. The sets Mi and Mi are sub-
spaces of M' such that MiΠMi = (0). If ψeMf, then ^ |M X = φx is a
linear function on Mα, which can be extended to a linear function φx in
Mf by setting φλ\M2 = 0. Similarly we define φ2. Then ψ = φ1 + φ2,
and we have proved that M' — Mi ©Mi. The restrictions fλ and / 2

defined in the statement of the lemma are clearly non-degenerate. Finally,
since Mt and M2 areB-submodules, it follows from (3) that Tf(Mi)^Mi,
i = 1, 2, and hence T8\Mt has the transpose Tf\Mt-ι, i = 1, 2, and the
proof is complete.

LEMMA 4. Let M = Mx 0 M2, where M1 and M2 are B-submodules of
M. Then BM = BMl + BMλ.

Proof. Let M' be the space of all linear functions on M, and define
f, fiy fz as in Lemma 3. Let τf, τf 9 r/ a be the corresponding functions
defined by (4). For xeMl9 φeMi, we have τfl(ψ, x) — τf(φ,x) and
BMl £ BM. Similarly BM2 S BM. Now let xe M, and write x — xL + x2,
xt 6 Mi and let ψ e M', φ = φτ + φ29 Φx e Mi, φ2 e Mi. Then since Mi
and M, are submodules we have

and the lemma is proved.

LEMMA 5. Let M— Mi 0 Ma w&βrβ Mα and M2 are regular B-modules.
Then M is a regular B-module.

Proof. By Lemma 4, BM = B i f χ + B^^. By Lemma 2, we have BMi = εέβ
where εέ is a central idempotent, i = 1,2. Then ε = Sj + ε2—sλε2eBM,
and be — eb — b for all δ 6 Z? ,̂ proving our assertion.

LEMMA 6. Let e be an idempotent in B. Then (Be, eB, A) is a pair
of dual B-modules.

Proof. We recall from § 2 that A is a non-degenerate bilinear form
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on JB ( 0 x S ( r ) -> Δ. The restriction of A to Be x eB is also non-degen-
erate (see [1], p. 279). It remains to verify that for all c, d in B,

( 5 ) Λ(c, dbs) = A(bsc,d)7.

For this it is sufficient to prove that if a = Σ ξubu = X ^ ί ^ then λ(abs) =

Λ(6sα)s for all s e G . We have ί(α6s) = fs-W1,*, while

by formula (2) of [1], and by (2) above we have

and the formula (5) is proved.

4* Now we shall formulate and prove our main result. Because B
satisfies the minimum condition, B = B x φ φ β π where the Bt are
uniquely determined indecomposable two-sided ideals, called the block
ideals3 of B. If we write 1 = εx + + εr, et e Bίf then the eι are mutually
orthogonal idempotents belonging to the center of 5, and ei is the identity
element in the block ideal to which it belongs. For any right 5-module
M, Mεi is a submodule of M, and M is the direct sum of the modules
Mεt. These submodules are called the block components of M the block
component Mst can also be described as the set of elements of M which
are left fixed by εt. The block components of (B, + ) , where (B, + ) is
viewed as a right .B-module in the obvious way, are the block ideals
Bet, Each block component Beί of B can be expressed as a direct sum
of the indecomposable right ideals ekB, e\ — βk, which belong to the block.
It is known that two indecomposable right ideals eB and e'B belonging
to distinct blocks have no isomorphic composition factors. The direct
sum of a full set of non-isomorphic indecomposable right ideals ekB be-
longing to the ίth block component Beί of B, or any right 5-module iso-
morphic to this module, is called a reduced block component of B.

Our theorem is stated as follows.

THEOREM. Let M be a right B-module with annihilator (0 : M). The
following statements are equivalent.

(A) (0 : M) is a direct summand of B
(B) every non-zero block component Mei of M contains the ίth reduced

block component of B as a direct summand
(C) M is a regular module.

Proof. The implication (C) —> (A) is the content of Lemma 2. We
prove next that (A) -> (B). Let Br be a two sided ideal in B such that

3 For the concepts of block ideals and block components see [3], and the references
given there.
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B — B' 0 (0 : M). By the uniqueness of the decomposition of B into
block ideals, Bf is a direct sum of certain of the block ideals Be^ Let
Me% be a non-zero block component of M then Bε% £ i?', and Mεi is a
faithful J5εέ module. Let eB be an indecomposable right ideal belonging
to the ίth block. By Proposition 4 of [1], eB contains a unique minimal
right ideal N Φ (0). There exists an element xeM such that xN Φ (0).
It follows that u-> xu is a ^-isomorphism of eB onto the submodule
P = xeB of Mεim We shall prove that there exists a submodule Q of
ilίSi such that Mεt = Q 0 P . Let M' be the set of all linear functions
on Mei9 paired with Mεi to Δ by the non-degenerate bilinear form /, so
that (M\ Meuf) is a pair of dual S-modules. Let P 1 be the submodule
of M' consisting of all elements ψeM' such that f(ψ, P) = (0). Then

(ikΓ/P"\ P,f) is a pair of dual S-modules, where / is the induced map-
ping on M'/P1 x P. On the other hand, by Lemma 6, (Be, eB, A) is a
pair of dual .5-modules. Using the fact that eB is a finite dimensional
space, it is easily verified that Be and M'/P"1 are isomorphic left J5-
modules. By Theorem 1 of [2], Be is an (M0)-module, and consequently
there exists a 5-submodule Q of Mr such that M' = PL®Qr. Let
Q = {x\xeMeίf f(Q',χ) = (0)}. Then Q is a submodule such that
PΠQ = (0). Moreover

since P is finite dimensional and Q =
The proof that Λfε̂  contains the reduced block component of Bβi as

a direct summand is now proved by induction. Let Met — R®S, where
R is isomorphic to a direct sum of a finite number of non-isomorphic
indecomposable right ideals belonging to the ith block, and let eB be an
indecomposable right ideal in Bet not isomorphic to any of the direct
summands of R. Let N be the unique minimal subideal of eB. If
RN Φ (0), then by the previous argument R contains a direct summand
isomorphic to eB, which contradicts the Krull-Schmidt theorem. Thus
RN — (0), and SN φ (0), so that S contains a direct summand isomorphic
to eB. This completes the proof of the induction step, and the implica-
tion (A) -> (B) is established.

Finally we prove that (B) -> (C). By Lemma 5, it is sufficient to
prove that each block component Mε2 of M is a regular module, and
for this it is sufficient to show that ε̂ e BMί whenever Mst Φ (0). Let us
consider a non-zero component Mεt. Let eβ, ---,esB be a full set of
non-isomorphic indecomposable right ideals belonging to the ith block.
For each j , 1 fj j ^ s, there exists a 5-direct summand Pό of Meί such
that Pj = eβ. By Lemma 4, BΓ. = Be B £ BMU. We prove that e} e Be >B.
By Lemma 6, (.B ,̂ βj-B, /I) is a pair of dual J5-modules. We assert that

( 6 ) βj = r Δ (βj, 0, ) .
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In fact, τA(ej9 βj) = Σ Λ(βjy eps)b;\ and if βj = Σ ξubu, then

A(eJf Gjbs) = λ{e5bs) = ξs-ψs-\s

while from bs-ibs = bLps-ιyS we have 6;1 = /os-i>s6s-i. From these remarks
(6) follows.

We have shown that ejeBMU. Since εέ is a sum of idempotents e
such that &B is isomorphic to one of the ideals e5B, 1 ^ j rg s, we have
ε4 e Siiίεj, and ΛίSί is a regular module. This completes the proof of the
theorem.
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ON THE RADICAL OF A GROUP ALGEBRA

W. E. DESKINS

A basic result in the study of group algebras and characters states
that the group algebra 3I(gp) of a finite group g" over the field g of
characteristic p Φ 0 has a nonzero radical 9ΐ if and only if p is a divisor
of o(gf), the order of g?. This suggests that 9i is related in some
manner to the Sylow ^-groups of g7 and that it may be possible to
define SR in terms of these subgroups. In [6] Jennings showed that if
o(g^) = pa, then 9ΐ is of dimension pa — 1 and has as a basis the set of
elements Pi — 1. As a generalization of this define 91' to be the inter-
section of all the left ideals of 2ί(S^) generated by the radicals of the
group algebras of the Sylow p-groups of &. Then 9t' is a nilpotent
ideal of §I(5f) (cf. [2]), and Lombardo-Radici has shown [8] that 9ΐ' =
9ΐ provided g^ has a unique Sylow p-group or o(g^) = pg where q is
also a prime. Also, in [9] he demonstrated that if g?7 is the simple
group of order 60 and if p = 2 or 3 then 9V is a proper subideal of 9Ϊ.
In this paper it will be shown that SR' = 3ΐ if one of the following
conditions is satisfied:

(A) 2^ is homomorphic with a Sylow p-group of g?.
(B) g" is a super-solvable group.
(C) gf is a solvable group with (o(gf), p2) = p.
In the last section of the paper an application to a related problem

is made. If gf contains an invariant p-group then SI(S )̂ is bound to
its radical 9ΐ (i.e., if a in 2ί(^) is an element such that α9ΐ = 9ΐα = 0,
then α is in 9ΐ). This raises the question : If Sϊ(gr) is bound to its
radical 9ΐ, does %? contain an invariant p-group ? This is equivalent to
the question: Does Sf contain an invariant p-group if 2^ possesses no
irreducible representation of highest kind ? (An irreducible representa-
tion of highest kind is one whose dimension is divisible by the highest
power of p which divides o(2^).) It is shown that if 2̂  is a group
such that 9ΐr = R and if the Sylow p-groups of gf are cyclic, then the
above question is answered affirmatively. Also an example is given
where the answer is negative.

1Φ Type A Let ^ be a group of order of order g — hpa, (h, p)
= 1, with a normal subgroup Sίfoi order h. And let g be an alge-
braically closed field of characteristic p. (The requirement that g be
algebraically closed is only a convenience since the dimension of 9V is
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unaffected by any extension of the ground field.)

THEOREM 1. The radical 31 of the group algebra U(^) of the group
3? over the field g equals ϊΐ', the intersection of all the left ideals of
2ί(^) generated by the radicals of the group algebras of the Sylow p-
groups of 5f'.

Let ^ be a Sylow p-group of g? : then 3?\3i? is isomorphic with
& and gf is an extension of Sίf by ^? Now Sί(^), the group algebra
of & over %, has the radical 5ft which is of dimension pa — 1 over %
and has as a basis the differences Pt — 1, all P̂  e P. Form 9JΪ, the left
ideal of 21(2?) generated by Sft. The ideal SDΐ is of dimension Λ(pα — 1)
over g, and we propose to show that 9Ϊ, the radical of 2ί(2^), is con-
tained in 2JΪ.

Now 2 ί ( ^ ) , the group algebra of Sίf over g, is expressible as
33X® ••• ®33W where 83* is a simple ideal of 2 t ( ^ ) . Let 33 be one of
these, and let &' be the subgroup of & consisting of elements Pt such
that P$ΆP? = S3, with o{^r) = r = pc, o ^ c ^ α. The elements i ϊ of

^g^ are represented by H in S3 and the i ί form a group if homomorphic
with 3ίZ Furthermore the elements of 33 can be expressed linearly in

terms of the elements of Sίf.
If P e &", then P corresponds to an automorphism of 33 since

P33P"1 = 33, and since 33 is central simple this automorphism is an inner

automorphism of 33. Thus P corresponds to a sum of elements of Sίf

and so leaves the conjugate classes of <§{f invariant since these classes

commute with the individual elements of ^ f Basically, therefore, we

are dealing with an extension 2? of Sίf by a p-group &' in which each

element of 3?' induces an automorphism A of ^f which leaves the

conjugate classes invariant. Since the order of S%f is prime to p it is

well-known [11, p. 123] that A is an inner automorphism of <%T Now

a result due to M. Hall [4, Theorem 6.1] implies that <& is a direct

product of 3^' and J£f and this leads to the conclusion that the elements

of &>' commute elementwise with S3. If £} = Σp^e^^Prδ, then the

radical £ιf of Π equals 33 times the radical of Sί(^ y), and therefore Q'

is contained in 3JΪ.
If t = pα~c is the index of ^' in ^f then there are t distinct ideals

33i in the decomposition of %{^f) which form a set of transitivity T
for ^ with 33X = 33. That is, P&jPϊ1 e T if 33, e T and Pte 3? and
furthermore, if 33t, 33j e T, then there is a Pfc e & such that 33̂  =
PJQjPfc1. Then the algebra £ = Σ Λ»j, all P, e ^ and 33j e T, is an
ideal of 2ί(Sf), and we assert that its radical is contained in 3ft. To
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see this consider the coset expansion of & relative to ^ ' , & — Σ ^ ^ '
= Σ ^'Si. Then clearly the algebra V = Σ L S&'Sj is a nilpotent ideal
of %, while the transitivity of T implies that £ — %' is a simple algebra.
Thus %' is the radical of % and obviously is contained in <ϋΰl.

As the choice of 33 was arbitrary in the decomposition of Sί(i^),
clearly the process above leads to the conclusion that 5R is contained in
9DΪ. Since the choice of & was arbitrary this enables us to conclude
that 3t' a 31. However 3T is known to be nilpotent (cf [2]), hence 9t'
= 3ft.

2. Type B* A group 2^ is defined to be super-solvable if it
possesses a sequence of subgroups 2^ = g?7 ID g?Ί D ID 2 Ŝ = 1 such
that gf4 is normal in 2^ and 2^/S^+i is cyclic. If in addition each g^/g^+i
is contained in the center of 2̂ 7 2^+1, then g^ is called a nilpotent
group. A basic result concerning nilpotent groups states that a nilpotent
group is a direct product of its Sylow groups. And a principal theorem
on super-solvable groups states that a super-solvable group is an exten-
sion of a nilpotent group by a nilpotent group. (For these results see
Kurosch [7, pp. 216 and 228])

THEOREM 2. The radical 9R of the group algebra Sί(S^) of a super-
solvable group & over the field % equals 91'.

By the theorems quoted above ^ contains a normal nilpotent sub-
group 2^ such that gf / 2^ is nilpotent while 5/i has a normal Sylow p-
group &{. Evidently ^ is normal in *&? since 2^ is a direct product
of its Sylow groups. Then the radical of 2I(^) generates a nilpotent
ideal Sϊt of 2ϊ(gf) and 21(5 )̂ — ?ftι is isomorphic with the group algebra
21(2^/^?) of 2 /̂̂ f. Now the group 2^/^? is a group of Type A which
was discussed in the preceding section. So if $ is a left ideal of §1(2 )̂
generated by the radical of the group algebra of ^ a Sylow p-group
of 2^, then §t(g?) — $ is a completely reducible left 2I(T£ )-module since

is a Sylow p-group of g^/^?. Hence 3ΐ = 3V.

3* Type C» Let ^ be a solvable group whose order is divisible
by p to the first power only. Then 2^ possesses a sequence of sub-
groups ^ 0 = ^ D g 7

1 D D 2^ = 1 such that 2̂ +i is normal in 2^ and
2̂ / g^+1 is a group of order q where q is a prime.

THEOREM 3. The radical 9ΐ of the group algebra SI(^) of the group
over ί/̂ β jίβM g equals 9Ϊ'.

The proof will be by induction on n, the length of the series defined



696 W. E. DESKINS

above. If n — 1 the theorem is trivally true so assume the result to
be true for groups of length less than n. Now consider ^ , which is
of length n — 1. If Sf/g^ is of order p, then the order of g^ is prime
to p and the result follows by Theorem 1. So we shall restrict our
attention to the case where Sf/^ is of order q, (p, q) = 1.

Now by a theorem due to P. Hall [5] gf contains a group Sίf of
order t, where pt = g, the order of Ŝ \ If ^ is a Sylow p-group ^ of
form 3f, the left ideal of 2I(5f) generated by the radical of Sί(^). Then
Sί(S^) — Sf = G is a left &-module representable by %{3ί?) and is a
completely reducible ^(S^-module. For 9 ,̂ the radical of 2ϊ(S î), is such
that 3̂ 21(5̂ ) is contained in $ and so S^Q = 0. So let Ox be an
irreducible left 2^-submodule of Q. Then £} may be written O —
Qi + O2 where Q, is a left S^gf^-module and Ox Π O2 = 0. Therefore
a projection T of Q onto D2 exists such that T annihilates the elements
of Oχ and is the identity operator on Q2 and such that T commutes
with (the representations of) the elements of 2I(S î). Now form the
projection T = t'1 Σ HiTHϊ1, summed over the t elements of Stf. Then
I" commutes with all the elements of & and hence the submodule
Qί = Γ Ώ of Q is a left 2I(^)-module. Furthermore Q = £\ + Q( where
Oχ Π Q( = 0. Thus Q is a completely reducible left Sί(^)-module and
so $ contains the radical of 2ί(2^). This proves Theorem 3.

4. A related problem* An algebra having the property that only
elements of the radical can be both left and right annihilators of the
radical has been termed a bound algebra by M. Hall [3],

THEOREM 4. // the group & contains an invariant p-subgroup ^ ,
then the group algebra 2ί(S^) of & over a field of characteristic p is a
bound algebra.

If & is of order pά — x and of index y, then the radical of
generates a nilpotent ideal $ of Sί(^) of dimension y(x — 1). Now the
element Pτ + ••• + Px, where P4 is in ^ , annihilates $ and is also in
the center of SI(S^). Hence it generates an ideal J of order y which
is contained in $ and $ J = J $ = 0. Since Sί(^f) is a Frobenius algebra,
a result due to Nakayama [10] states that the set of all right anni-
hilators of $ in Sϊ(5f) forms an ideal of dimension ?/. Hence $ contains
all of the right annihilators of $. Since $ s 5R, $ contains the right
annihilators of 5R, and so Sί(S^) is bound to 3Ϊ.

This raises the question : If ?ί(5f) is bound to its radical 5R ̂  0,
does 5^ contain an invariant p-subgroup ? A partial answer is provided
by

THEOREM 5. If the Sylow p-groups of c& are cyclic and if the
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radical 9ΐ of SΙ(ί^) equals 3Ϊ' then 97 contains an invariant p-subgroup
if' 2t(SO is δowzd ίo 3ϊ.

Let ^ and . ^ be two Sylow p-groups of Z? and let ^ and $ 2 be
the two left ideals of 21(2?') generated by the radicals of 2 ί (^) and
2I(^) respectively. Denote by r(%) and r(%) the right ideals of 2t(gτ)
consisting of all elements which annihilate ^ and $2> respectively, on
the right. Then since 5R g ΠS* and since r(9t) £ 5ft it follows readily
that r(3>t) and r($2) are contained in 31 = 31'. In particular, the sum
ί? of the elements of ^f is contained in $2. Now the only elements of
$2 which involve 1, the identity of %7, also involve other elements of
^ , so that the belonging of £ to $ 3 implies that ^ (Ί ^ is a group
containing more than one element. Then, since the ^ are all cyclic,
it follows readily that the p-subgroup ^? (Ί ̂ f is normal in gf.

Now 2ΐ(2O is bound to 31 if and only if Sf possesses no representa-
tion of highest kind (see [1]). If & is Sδ, the symmetric group of
order 120 and if p = 2, then the table of ordinary characters readily
demonstrates that 2^ has no representation of highest kind. Yet S5 has
no invariant 2-subgroup. It may be noteworthy that this example is
related to the one given by Lombardo-Radici [9] to show that 3ΐ is not
always equal to 3ϊr.
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EQUIVALENCE AND PERPENDICULARITY OF

GAUSSIAN PROCESSES

JACOB FELDMAN

l Introduction* In [6] S. Kakutani showed that if one has equiva-
lent probability measures μi and vt on the σ-field <9f of subsets of a
set Ωίy i = 1, 2, , and if μ and v denote respectively the infinite pro-
duct measures ®Π.i;"ί and ®T=ιVι on the infinite product σ -ring generated
on the infinite product set Ω, then μ and v are either equivalent or
perpendicular, and he obtained necessary and sufficient conditions for
equivalence to occur. The theorem here shown may be regarded as a
generalization of a case of the Kakutani theorem.

Similar dichotomies have revealed themselves in the study of Gaus-
sian stochastic processes. C. Cameron and W. T. Martin proved in [2]
that if one considers the measures induced on path space by a Wiener
process on the unit interval, then if the variances of the processes are
different the measures are perpendicular. This sort of result was
generalized by U. Grenander, starting from the viewpoint of statistical
estimation, and utilizing a Karhunen representation for the processes
involved. A wider sufficient condition for perpendicularity of the meas-
ures induced on path space by continuous Gaussian processes on the
unit interval was obtained by G. Baxter in [1]. Cameron and Martin
also examined the effect on the induced measure of taking certain types
of affine transformations of a Wiener process (see [3], [4]). I. E. Segal
extended their results in [8], and made the situation more transparent
by use of his notion of "weak distributions ", and in a large class of
cases got conditions for equivalence.

In the present note it is shown that the equivalence-or-perpendicu-
larity dichotomy holds in general for pairs of measures induced by
Gaussian stochastic processes, and Segal's necesssary and sufficient
conditions for equivalence are extended to cover the case of nonzero
mean. It has been pointed out to the author by C. Stein that one
could also give a proof, in the case of zero mean, by use of the techni-
ques of statistical testing of hypotheses.

2Φ Several lemmas. All Hubert spaces mentioned will be over the
reals.

Definition 1. An operator T from Hubert space H to Hubert space
K will be called on equivalence operator if

Received April 7, 1958.
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(1) T is one-to-one onto, bounded, and has a bounded inverse.
( 2 ) VT*T~ = I + H, where H is Hilbert-Schmidt.

LEMMA 1. If A is a self-adjoint bounded invertible operator on H
then the following statements are equivalent:

( a ) A—I is Hilbert-Schmidt
( b ) (A—If is Hilbert-Schmidt
( c ) A"1—/ is Hilbert-Schmidt.

If A, B satisfy (a), then so does ABA.

Proof. The first part is clear from consideration of the eigenvalues
of the operators. For the second part: write A — I + K, B = I + H.
Then ABA = (I + Kf + (I + K)H(I + K), and since the sum and product
of two Hilbert-Schmidt operators is Hilbert-Schmidt, ABA—/ is Hilbert-
Schmidt.

DEFINITION 1. An operator T from Hubert space H to Hubert space
K will be called an equivalence operator if

(1) T is one-to-one onto, bounded, and has a bounded inverse
( 2 ) VT^T — I i s Hilbert-Schmidt.

LEMMA 2. Products, conjugates, and inverses of equivalence operators
are again equivalence operators.

Proof. That they are one-to-one onto, and bounded, is clear (in
the case of the conjugate operator, use the fact that the nullspace of
T* is the orthogonal complement of the range of T).

Let T be an equivalence operator from H to K. Let Q—VT*T.
Then V = TQ-1 is an isometry from H onto K, and T = VQ. Thus
T-1 = Q-XF*, and (Γ' 1)*^" 1) = VQ~%V*. Since Q is the type of operator
occurring in Lemma 1, and (J7-1)*!7-1 is a unitary transform of Q~2,
we get the result. Similarly, (Γ*)*T* = 7T* = VφV*. Finally, let S
be an equivalence operator from K to L, and let P — Ί / S * S , U — SP"1.
Then

(ST)*(ST) = {VQUPY{VQUP) = PU*QV*VQUP = PU*QUP,

and again Lemma 1 tells us that V(ST)*(ST) is of the desired form.

DEFINITION 2. A function x on a measure space with measure μ of
total mass 1 is called Gaussian if either

(1) x is almost everywhere a constant, γ.
or

(2) there are numbers σ > 0 and γ (depending on x) such that
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μ{ω I X(ω) <£ λ} = - ^ P exp \\( l " ?Yi dt .

Case 1 may be thought of as Case 2 with σ = 0. Then in either case
we have

(the " mean " and " variance " of a;).

LEMMA 3. Let S%c ^f c δβ σ-fields of subsets of Ω, S^the smal-
lest σ-field containing their union. Let μ, v be probability measures in
Sf such that μi = μ \ Si is equivalent to vι = v \ Sζ. Let Λ, Aμi Av be
sets in S^ forming a Hahn decomposition of Ω that is, μ is equivalent
to v when both are cut down to subsets of A, and μ(Ay) = v(Aμ) = 0. Then
dμ^dvi converges almost everywhere with respect to μ + v to dμ\dv, if one
makes the convention dμjdv = 0 on J v and + °o on Aμ.

Proof. If At e Si, then

+ v) = μJίAt) - μ(A) ,

so that dμi\d(μ + v)« i s the conditional expectation of dμi\d(μ + v) with
respect to ^f and the measure μ + v. Of course ^ + v has total mass
2, but this is inessential one can always normalize things if so inclined.
The Martingale convergence theorem then tells us that

dμt __, dμ
d(μ + v)4 d(μ + v)

almost everywhere with respect to μ + v. Similarly

dvi dv

d(μ + v\ d(μ + v)

Now,

SO

dμt _
dv.

dut

dμt

~d{μ +

dμ
d(μ + v) 1

1 dv{

/ ~d(μ +

/ dv

' d(μ +

where we understand the right hand side to be + oo when the
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denominator but not the numerator is zero. Now dμ/d(μ + v) vanishes
precisely on Λμ, and dv\d{μ + v) vanishes precisely on AM all statements
being up to (μ + v) — measure 0. Whence the lemma.

The following fact is known, and we list it for reference :

LEMMA 4. // zt, z2, are measurable functions with independent
Gaussian distributions, mean 0, variance 1, then the product

a, exp j-1 Σ (1 - ά\)Z\
2

converges to zero almost everywhere if

and converges to a finite non-zero limit almost everywhere if

Σ 11 - a\ |2 < oo .

This can be proven, for example, by applying Kakutani's conditions
in [6] for equivalence of product measures.

LEMMA 5. Let R be a closed densely defined linear operator from
the Hiΐbert space H to the Hilbert space K. Then there is an equivalence
operator U from H onto H such that U*R*RU has pure point spectrum.

Proof. Let VWΆr =XλdF{λ). Let F.t = F{21) - F{2i-1)y i =
Jo

0, ± 1 , ± 2 , and let R, = VR*R I Hέ, where H* is the range of Ft.
By a theorem of von Neumann in [7] there is a self-adjoint Hilbert-
Schmidt operator Ht in H* whose Hilbert-Schmidt norm \\Ht ||2 ̂  2"2|*i-3,
and such that Rt + Ht has pure point spectrum. Now consider the
equation R^I + Kt) — Rt + Hίy that is RtKi = iϊέ. Since Rt is invertible
in Hέ, and, in fact, || J2, H"1 ̂  2"i+1, we get a solution i£έ = Rϊ1^ and

Let K be defined on H by setting K \ H4 = ̂ . Then

us = Σ lliUϊ^ Σ
~oo<i< + oo -oo<i<+o

so K is Hilbert-Schmidt, and Z7 = / + K is an equivalence. Further,
(/ + KiYR\(I + Ki) has a complete set of eigenvectors in H;. But this
operator is precisely the restriction of U*R*RU to H*. Therefore
U*R*RU has a complete set of eigenvectors in H.
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We shall be considering linear spaces of Gaussian functions. In
taking the closures of such linear spaces in the L2(A0 norm, the functions
obtained as limits will again be Gaussian, as is well known and easy
to show, the means and variances of a limit being in fact limits of the
means and variances of the approximating Gaussian functions. Further-
more, the topology of convergence in measure on Gaussian functions
agrees with L2(μ)-topology. This is shown in the mean zero case in
[8], and the general case can be reduced to this by showing the following :

LEMMA 6. Let xi be a net of μ-mβasurahlβ functions with Gaussian
distributions, converging in probability to zero. Then their means γt

converge to zero.

Proof. Suppose this does not occur. Then by cutting down to a
subnet if necessary, and occasionally using —x% instead of xt if necessary,
we can assume that there is some c > 0 such that r* ̂  c for all i.
Now,

μ{ω 1 xlω) - Ti > 0} = μ{ω \ Xι(ω) - Ti < 0} ,

so that

μ{ω i Xt{ω) > c} ^ μ{ω | x, (ω) > γt} = μ{ω \ X^ω) < r j

^ μ{ω I X^ω) < c] ^ μ{ω | | X^ω) \ < c} .

The sets on the two ends of the inequality are disjoint, and that on
the small end has measure converging to 1, which gives the desired
contradiction.

LEMMA 7. Let μ, v be nonperpendicular measures. Suppose xt is
Gaussian with respect to μ and v, xt -> 0 in μ-measurβ, and xt —> x in
^measure. Then x = 0 a.e.(v).

Proof. Since x is Gaussian under v, the assumption that it is not
zero a.e.(^) implies that it is invertible a.e.(^). Then x^x*1 -> 1 in v
measure^ whereas a?, -> 0 a,e,(^X which implies μ J_ ».

3. The theorem.

THEOREM Let L be a linear space of real-valued functions on a set
Q. Let 6^ be the smallest σ-field of subsets of Q with respect to which
all the functions in L are measurable. Let μ and v be probalήlity meas-
ures on <9\ Suppose all the functions of L are Gaussian via both meas-
ures. Then either μ ~ v or μ _L v. Necessary and sufficient for equivalence
is that if we let K be the linear space generated by L and the real-valued
constant functions, then the μ-equivalence cίusses of functions in K are
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the same as the v-equivalence classes, and the identity correspondence
between the two types of equivalence classes in K is induced by an equiva-
lence operator between the Tu2(μ)-closvre of the μ-equivalence classes and
the \i%(y)-closure of the v-equivalence classes.

Proof. First, assume μ not J_ v. Let J = {x — \xdμ \xe L}. For

any function χ9 let xμ (respectively xv) denote the equivalence class of
x modulo functions which are μ-null (respectively v-null), and, for a set
S of functions, let Sv, Sμ denote the corresponding set of equivalence
classes. Sμ will mean the L2(μ) closure of S.

All elements in K are Gaussian under μ and v, and the correspond-
ence x* <-> xy between Kμ and Kv is one-to-one and closable, by Lemma
5. So there is a one-to-one closed operator T from a dense subspace
DΓ of Kμ to a dense subspace RΓ of Kv such that Txμ = xv for all x in
K. Further, given any ξ in DΓ, there is some immeasurable x such
that ξ = x* and Tξ = x\ For choose xt in K such that xt -+ξ,xϊ~> Tξ.
By taking subsequences, the convergence can be made a.e.(μ) and a.e.(v)
respectively, so that ξ and Tξ must agree a.e.(/i Λ v).

Let S = T I Ότ n J μ . Then £ is closed, with dense domain in Jμ and
dense range in J v, by Lemma 6. Lemma 5 gives us an equivalence U
in J^ such that U*S*SU has pure point spectrum. Choose yl9 yi9

such that the 2/f are a complete orthonormal set of eigenvectors for
JJ-^U-1, with eigenvalues α|. Then the vectors U~:y^ are again orthog-
onal, and || U^ytW = aϊ1. Let £% be the sample space of 2/1, ••• , 2/̂ .
Put a new measure μr on ^ by letting yl9 y2, be Gaussian, independ-
ent, mean 0, variance 1/α?, l/αj, Then

which converges almost everywhere (/̂  + v) to a nonzero limit, so that
μr ^ μ.

Now we wish to show μ' ~ v. We have xv — Sfoμ for x e J, so xv=
(SUW-'x* = (SJ7)a^. Let Sr - Sϋ'. Then, taking a.e. limits on both
sides, one can for every ξ in D^ find some ^-measurable x such that
xμ' = ξ and #v = S'ξ. Now choose functions Zx, Z2, such that Zf' form
a complete orthonormal set of eigenvalues for S'*S'. The S'Zf = Zv are

also orthogonal and span J v . Define \ztdv = γt and j | Zi \2dv•= αf. Then

αέ is never zero, since S' is nonsingular, and \(Z? — ?Ό(^j — Γj)^ =

cc\dij — Tijj, where dυ is the Kronecker delta function. So the covariance

matrix of Zl9 ZN in v-measure is given by CN — AZ

N — γN (x) γN9 where

AN is the matrix
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Γ'
γN is the vector (γu - , γN), and the notation ~γN (x) γN represents a dyadic
operator. CN is, of course, nonnegative definite. Let δt — fi\au and

δjr = (dlf , δN) So ^ = A-/γNj and A^C^A^1 = / - 1N (x) 3^ is a non-
negative definite matrix. By conjugating with an orthogonal matrix,
this can be transformed into the equivalent matrix / — \\dN \fE, where

The determinant of this, and hence of I — δ^ (x) 3^, is / — || ^ ||2. Thus

I CNI = I A N |2 i 1 - ||~δN | |21 = a\ ^ ( 1 ~ Σ « ) .
ί - l

Observe that

δ = r* =

where ( , •) denotes the inner product in L2(v), so that, since

1 0 Λ, Σ ^2 < (1, 1) = 1- Thus I CN ( Φ 0, and C^ is nonsingular. The
inverse matrix to CN is

-> -> 4 ~ 2 r 6?) ^1 ~ 2 r
^N — V^i iV / JV VA/ IN) — Ή-N "T ^

111 4iy II2

TN 11

Now let ^N be the sample space of Zl9 , ZN and let ^ = μr

— v\&^N' Then dvN\dμN is precisely

^ > - <C~N\ZN - γN\ (ZN - £,)

where Z^ = (Zlf , Z^). A calculation shows that the exponent can
be written

Consider the convergence of dvNjdμN. At this stage one could already
conclude from the zero-one law that {ω \ dvN\dμN (ω) -> 0} has measure
0 or 1, since the set is independent of Zl9 , ZN for each N. However,
we wish to get precise conditions for when this occurs.
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( a ) Suppose

Σl ί - i r = c o

Consider the factor

V\ CA -1 exp j ^ [ | | ZN II' - II AγZs

= (1 - Σ m-H- -1-) exp \ Σ (l - ^)Zl.

Applying Lemma 3, this factor converges to zero almost everywhere
with respect to μ'. The other factor of dvN\dμN, namely

e x p

2 r
is clearly bounded above, so in this case dvN\dμN -> 0.

( b ) Suppose

i-^-
Then, again by Lemma 3, the factor

1
<xx aN 2 i-i V cc

converges almost everywhere // to a finite limit. The remaining factor
is, except for a constant,

If _ 1 ___ ($ δiZ,
21 i - Γi^ii

Since ΣΓ-i<5« < 1, everything in sight converges, because ΣΓ-i(^ί/^i)3 < °°.

So μf ~ v, and S' is an equivalence from Jμ to Jv. Then S is likewise,

and therefore T is an equivalence operator.

Conversely if L consists of Gaussian functions under μ and ι>, and

the correspondence #μ + c <-» #v + c, a? e L, is the restriction of an equiva-

lence operator T from Kμ to Kv, then again choosing a basis of eigen-

vectors for T 1 Jμ, we get convergence of the Radon-Nikodym derivatives

to a non-zero limit, because of Lemma 3, and therefore get equivalence

of the induced measures.

4. An example* Let T be a set, Ω the set of all real-valued functions
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on T. Let xt(ω) — ω(t), and let & be the smallest σ-algebra with
respect to which all the xt are measurable. Let μ, v be measures on
c$f by each of which xt becomes a Gaussian stochastic process. Let

m(t) = \xtdμ, ρ(s, t) = \x8xtdμ — m(s)m(t),

f Γ
n(t) = \a;tαv, σ(s, ί) = \α;sα;tdv — n(s)n(t) .

Let r be a measure on Γ such that p, σ, m, n, become measurable. De-
fine, for τ-measurable /

°(8, t) + m(s)m(t))f(s)f(t)dz(s)dτ(t) ,

σ(β, ί) + φ

and [/,/] - [/,/]μ + [/,/]v. Let Lo be those / for which [/,/] <

Then we get inner products [/, g\, etc. on Lo. Define \f(t)xtdτ(t) as

an L2(μ + ι>) valued integral, for / e Lo. This can be done, and in fact

[/, gl =

Let L = \x I there is some / in Lo for which x has as its μ + v equiva-
( f )

lence classl/(£)sc{cZr(£)k L is a linear set of functions, all Gaussian with

respect to either μ or v. Let μo = μ\Sζ and u0 = v | .5 .̂ We know from
our theorem that μ0 and v0 are either equivalent or perpendicular. Let
H and K be the Hubert spaces gotten by completing the /^-equivalence
classes of Lo in L2(/Ό and the ^-equivalence classes in L2(y). The inner
products then come from [/, g\ and [/, g]v. Necessary for equivalence
is that the identity map on Lo induce an equivalence operator from H
to K, and in order to get sufficiency we just have to be sure that if
Lo is enlarged to include multiples of the identity, the identity map
still induces an equivalence operator on the Hubert spaces. This amounts
to requiring that 1 be an L2(μ) limit of functions in La if and only if
it is also an L2(v) limit.
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MINIMAL COVERINGS OF PAIRS BY TRIPLES

M. K. FORT, JR. AND G. A. HEDLUND

1. Introduction^ Let F be a finite set with n members, n ^ 3. An
F-covering of pairs by triples, which we abbreviate .F-copt, is a set S of
triples of distinct members of F which has the property that each pair
of distinct members of F is contained in at least one member of £. If
n is a positive integer, n ^ 3, then an %-copt is an .F-copt for the set
F = {1, 2, •••,%}. We assume throughout that n ^ 3.

For any finite set A, let C(A) denote the number of members of A,
An F-copt S is minimal if C(S) ^ C(S') for every F-copt S\ If n = 1
(mod 6) or n Ξ= 3 (mod 6), then a minimal %-copt S turns out to be exact
in the sense that each pair is contained in exactly one member of S.
Such exact coverings are called Steiner triple systems. The existence of
Steiner triple systems for all n (of form 6h + 1 or 6h + 3) was proved
by M. Reiss [2] in 1859.

Let S be a minimal %-copt and let C(S) = μ(n). The main result
of this paper is obtained in §2, where we determine μ(n) explicitly for
n ^ 3. In § 3 we discuss certain properties of minimal w-copts, and
give several methods for constructing minimal w-copts.

2. Determination of μ(ri). Let S be a minimal w-copt. For each
integer i, 1 ^ i ^ n, we define a(i) to be the number of members of S
that contain i. Then

Since i must appear in members of S with n — 1 other numbers we
have α(i) ^ [^/2]. ([ίc] is the largest integer which is not greater than
x.) Thus,

( i ) M^)

Since (%/3) [̂ /2] may not be an integer, we define ψ{n) to be the least
integer which is not less than (nβ) [w/2]. It is easy to compute

φ(n) =

W76 if n = 6fc ,

(n? + 2)/6 if n = 6A: + 2 or % = 6fc + 4 ,

(^2 - w + 4)/6 if w = 6/b + 5.

Received May 26, 1958. The preparation of this paper was sponsored in part by the
Office of Naval Research. Reproduction in whole or in part is permitted for any purpose
of the United States Government.
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We may clearly improve (1) to

( 3 ) μ(n) = C(S) ^ φ(n) .

Our main theorem proves that in (3) equality holds for every n.

Let A, B and C be pairwise disjoint sets, each having the same
number n of members. A tricover for the system {A, Bf C) is a set K
of triples (x, y,z), xeA,yeByzeC such that each pair uv, u and v in
different ones of A, B, C, is contained in exactly one member of K.

LEMMA 1. If n is a positive integer and A, B, C are pairwise disjoint
sets each of which has n members, then a tricover K for (A,B, C) exists.
Moreovery ifaeAybeB and ce Cy then Kmay be chosen so that (a, δ, c) e K.

Proof. Let the members of A, B, C be respectively

a19 a%y , an bί9 δ 2 , , bn clf c2 , cn ,

where ai = α, δx = δ, c1 = c. We define K to be the set of all triples
(aif bjy ck) for which k == i + j — 1 (mod w), 1 ^ i, j , k ^ ?z. The set K
obviously has the desired properties.

REMARK. Any tricover for (A, B, C) must have n2 members.

LEMMA 2. Let A, By C be pairwise disjoint setsf each having n
members. Let p be an integer such that 0 < p ^ n/2. Let A * c 4 , £ * c J 5 ,
C* aC be sets, each of which has p members and let K* be a tricover for
(A*, JB*, C*). Then there exists a tricover K for (A, By C) such that

Proof. Let

A = {alf a2y , an) ,

B = {blf δ2, , bn} ,

C = {Cly C,y , Cn} .

We can assume that

A* = {al9 a,, , ap} ,

£ * = {&i,δ« ,δp} ,

C* = {clf c2, , cp} .

For 1 ^ iyj ^ pt let mζ be the unique integer k such that
(o>u bjy ck) e K*. Clearly 1 ^ m% ^ p and the square array (m*5) is a
Latin square of order p. It follows from a theorem of Marshall Hall
[1] that there exists a Latin square (m^), 1 ̂  i, i ^ nf such that m έ j = m*j9
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1 ^ i, j ^ P Let

K = {(αt, δ, , cw..) [1 ^ i, i ^ n) .

The set if is the desired tricover.
In order to produce an inductive proof of our main theorem, it is

convenient to restrict ourselves to a special type of minimal %-copt for
the case n = 5 (mod 6). Also, for n = 3 (mod 6), there is a special type
of minimal w-copt whose existence we wish to establish, and it is possible
to include this result in our main theorem. For these reasons we intro-
duce the notion of " admissible .F-copt."

An F-copt S is admissible if C(S) = φ(ri), n — C(F), and :
(1) n ΞΞΞ 0, 1, 2, or 4 (mod 6)
(2) n ΞΞΞ 3 (mod 6) and S contains a set of pairwise disjoint triples whose
union is F or
(3) n = 5 (mod 6) and S contains four elements of the form (α, δ, x),
(α, 6, y), (a, δ, 2), (a?, 2/, 2).

THEOREM 1. // n is a positive integer, n >̂ 3, £&e% ί^erβ exists an
admissible n-copt.

Proof. Our proof is by induction on n. However, it is neces-
sary to prove independently that there are admissible ?z-copts for
n — 3, 5, 7, 9, 11, 13, and 15. We accomplish this by exhibiting such
admissible w-copts.

n — S n = 9 n = 13

(1,2,3)

71 = 5

(1,2,3)

(1,2,4)

(1,2,5)

(3,4,5)

n = 7

(1,2,3)

(1,4,5)

(1,6,7)

(2,4,6)

(2,5,7)

(3,4,7)

(3,5,6)

(1,2,3)!
1(4,5,6)1

ΪTJM
(1,4,7)

(1,5,9)

(1,6,8)

71 =

X.l,_2,_3)l

;αΓ27~4):
1(1, 2, 5)(

K3Γ47~5)j

(1, 6, 7)

(1, 8, 9)

(1,10,11)

(2, 6, 8)

(2, 7,10)

(2, 9,11)

(2,4,9)
(2,5,8)

(2,6,7)

(3,4,8)

(3,5,7)

(3,6,9)

11

(3, 6,10)

(3, 7, 9)

(3, 8,11)

(4, 6,11)

(4, 7, 8)

(4, 9,10)

(5, 6, 9)

(5, 7,11)

(5, 8,10)

(1, 2, 3)
(1, 4, 5)

(1, 6,13)

(1, 7, 8)

(1, 9,12)

(1,10,11)

(2, 4,10)

(2, 5, 6)

(2, 7, 9)

(2. 8,12)

(2,11,13)

(3, 4,11)

(3, 5, 7)

(3, 6,12)
(3, 8,13)

(3, 9,10)

(4, 6, 7)

(4, 8, 9)

(4,12,13)

(5, 8,11)

(5, 9,13)

(5,10,12)

(6, 8,10)
(6, 9,11)

(7,10,13)

(7,11,12)
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(1727Ί3)

(1, 4,14)

(1, 5, 9)
(1, 6,10)

(1. 7,12)

(1, 8,15)

(1,11,13)

(2, 4,12)

(2, 5,13)

(2, 6, 8)

(2, 7,14)

(2, 9,11)
(2,10,15)

(3, 4, 7)

(3, 5,11)

(3, 6,15)

(3, 8,10)

(3, 9,13)

n = 15

(3,12,14)

(4, 8,13)~
(4, 9,10)

(4,11,15)

(5, 7,15)

(5, 8,12)

(5,10,14)

(6, 7.11)

( 6, 9,14)

( 6,12,13)

KAADJ
( 7,10,13)

( 8,11,14)

( 9,12,15)

K10,ll,12)|

,(13,14,15)|

Our proof now divides into six cases. In Case r, 0 ^ r ^ 5, we
assume that n = r (mod 6), that n > 3 and that there exist admissible
m-copts for 3 ^ m < n. We then show that these assumptions imply
that there exists an admissible w-copt.

Case 0. Let Ŝ  be an admissible (n — l)-copt having (1, 2, 3), (1, 2, 4),
and (1, 2, 5) as three of its members. If we delete (1, 2, 3) from St and
add

(1, 3, n), (2, 3, n), (4, 5, n), (6, 7, n), , (n - 2, w - 1, n) ,

we obtain a set S of triples which is an %-copt. Since £x has

[(n - I)2 ~ (n - 1) + 4]/6 = (n2 - 3n + 6)/6

members, £ has

{n% -Sn + 6)/6 - 1 + rc/2 = ^2/6 = y(%)
members.

1. We have exhibited admissible %-copts for n = 7 and ^ = 13.
Therefore we may assume n = 6^ + l , & > 2 .

We consider two subcases.
Subcase i. Either h == 0 or h Ξ= 1 (mod 3). Then there exists ^

such that 2h + 1 = 6k + 1 or 2h + 1 = 6A: + 3.
L e t

A χ = {1, . . . , 2 Λ , w }

and let S3 be an admissible A^-copt for j = 1, 2, 3. Let Γ be a tricover
for ({l,...,2fe},{2fe + l , . . . ,4Λ}, {4Λ + 1, ,6A}) We now define
S = Sλ U S z U £3 U T. It is easy to verify that S is an rc-copt, and that
S has

members.

3 . (2A±l)2λ + ( 2 Λ ) . = ^ΦL^
6 6
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Subcase ii. h = 2 (mod 3). In this case there exists k such that
2h + 1 = 6k + 5. We define Al9 A2, A, as above. Now, for j = 0,1, 2,
we let Sj+1 be an admissible Aj+1-copt such that SJ+1 contains a subset
Rj+1 whose members are :

(2jh + 1, 2jh + 2, 2jh + 3)

(2jh + 1, 2jh + 2, 2jh + 4)

(2jh + 1, 2j& + 2, w)

+ 3, 2jh + 4, n) .

Let T be a tricover for ({1, , 4}, {2h + 1, , 2h + 4},
{4A + 1 , . . ,4& + 4}), and let JP* be a tricover for ({1, , 2^},
{2A + 1, , 4Jι), {Ah + 1, , 6h}) that is an extension of Γ. Since
h ^ 5, the existence of such a tricover follows from Lemma 2. We
next take an admissible copt U for

Finally, we define

r y / r̂ f τr-> \ i i / Π 73 \ ι i / O ~D \ ι ι ί?T1 ?K A#I\ I I 7" 7"

It is easy to check that S is an w-copt. The number of member of S is

-26

nr* , r n(n — 1)
= 6Λ-2 + h — -v—-——.

6

Thus, S is admissible.

Case 2. Let Sx be an admissible (n — l)-copt. We define S to be
the set of triples obtained by adding to Si the triples

(1, 2, n), (3, 4, w), , (n — 3, n — 2, ra), (w — 2, w — 1, n) .

Then, S is an w-copt and 5 has

(n - 1)(^ - 2) ^ = tf + 2
6 2 6

members. Thus S is admissible.

Case 3. There exists A such that n = 6A + 3. Since we have listed
admissible w-copts for n = 3, 9, 15, we may assume h>2. We consider
two subcases.



714 M. K. FORT, JR. AND G. A. HEDLUND

Subcase i. h = 0 or h = 1 (mod 3). In this case there exists k
such that 2h + 1 = 6k + 1 or 2h + 1 = 6k + 3. Let Sx be an admissible
(2h+l) — copt. For each triple (α, 6, c)eS1 we choose a tricover for ({3α—2,
3α - 1, 3α}, {36 - 2, 36 - 1, 36}, {3c - 2, 3c - 1, 3c}). The union of all
such tricovers, together with the triples (1, 2, 3), (4, 5, 6), , (n—2, n—1, n)
is an w-copt S. The number of members of S is

9 . y^^rj-lU^L + (2h + 1) - (2λ -
6 o

If follows that S is admissible.

Subcase ii. h = 2 (mod 3). In this case there exists k such that
2h + 1 = 6k + 5. We choose an admissible (2h + l)-copt Sτ that con-
tains the triples (1, 2, 3), (1, 2, 4), (1, 2, 5), (3, 4, 5). If (α, 6, c) is any
other member of Si, we choose a tricover for ({3α — 2, 3α — 1, 3α},
{36 - 2, 36 - 1, 36}, {3c - 2, 3c - 1, 3c}). Let S2 be the 15-copt exhibited
at the beginning of our proof. We now define S to be the set whose
members are the members of S2, the members of the chosen tricovers,
and the triples (16, 17, 18), , (n — 2, n —1, n). S is an w-copt, and the
number of members of S is

3 5 + 9 V{2h+J.J[- (2& +JL) + 4 _ 4 Ί + n - 15 = n(n - 1)
L Ό J 3 6

Since S has (1, 2, 3), (4, 5, 6), , (n — 2, n — 1, n) as members, S is
admissible.

4. For this case, the construction is exactly the same as in
Case 2.

Case 5. We first observe that numbers of the form 6h + 5, h a
non-negative integer, form the same set as numbers of the form 3s — 4,
s an odd integer and s > 1. We have listed an admissible 5-copt, and
an admissible 11-copt. Thus, we may assume n — 6h + 5 = 3s — 4, s > 5.
We consider two subcases.

Subcase i. There exists k such that s = 6k + 1 or s — 6k + 3. In
this case, we let

Λ - { s - 1 , . . . , 2 s - 4 }

A3 = {2s - 3, , 3s - 6} .

There is a tricover K of (Ax, A2, A3) such that (1, s - 1, 2s - 3) e K. For
i = 1, 2, 3 we define
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Rt = A, U {3s - 5, 3s - 4} .

and let St be an admissible i?Γcopt such that (1, 3s — 5, 3s — 4) 6 Slf

(s - 1, 3s - 5, 3s - 4) e S2 and (2s - 3, 3s - 5, 3s - 4) e S3. We define
S = K U Si U Sλ U S3. It is easy to see that S is an n-copt, and that S
has

, o γ , , 3s(s - 1) _ 3s*2 - 9s + 8 _ ri2 - n + 4
( β - 2) + -

members. Since (1, 3 s-5 , 3s-4), ( s - 1 , 3 s-5 , 3s-4), (2s-3, 3s-5 , 3s-4),
(1, s — 1, 2s — 3) are members of S, S is admissible.

Subcase ii. There exists k such that s = 6k + 5. We define

A2 = {s - 1, « ,2s - 4}

A, = {2s - 3, - . . ,3s - 6}

and let Rt = A, U (3s - 5, 3s - 4} for i = 1, 2, 3. By the inductive hy-
pothesis, there exists an admissible iϋΓcopt St such that St contains the
set Biy where

Bλ = {1, 2, 3), (1, 3s - 5, 3s - 4), (2, 3s - 5, 3s - 4), (3, 3s - 5, 3s - 4)} ,

B.λ = {(s - 1, s, s + 1), (s - 1, 3s - 5, 3s - 4), (s, 3s - 5, 3s - 4),

(s + 1, 3s - 5, 3s - 4)} .

Bd = {(2s - 3, 2s - 2, 2s - 1), (2s - 3, 3s - 5, 3s - 4), (2s - 2, 3s - 5, 3s - 4),

(2s - 1, 3s - 5, 3s - 4)} .

Let G = {1, 2, 3, s - 1, s, s + 1, 2s - 3, 2s - 2, 2s - 1, 3s - 5, 3s - 4}.
G has 11 members, and hence there exists an admissible G-copt M.

We choose a tricover 2\ for ({1, 2, 3}, {s - 1, s, s + 1}, {2s - 3,
2s — 2, 2s — 1}) and extend T1 to a tricover T for (A1? A2, A3).

We now define

S=(S1- Bλ) U (Sa - # 2) U (S3 - 53) U M U (Γ - TO .

It is a routine matter to verify that S is an w-copt. The number of
members of £ is

= 3s2 - 9s + 8 = r? ~ n + 4
2 6

Since SZDM and ikf is admissible, it follows that S is admissible.

3* Properties of minimal w-coρts. Let S be a minimal w-copt. If
n ΞΞΞ r (mod 6), for r = 0, 2, 4, 5, then the covering is not exact and some
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pairs must be contained in more than one member of S. However, it
is possible to state precisely the way in which this sort of '' multiple
covering" takes place. Our results are contained in the next three
theorems.

THEOREM 2, Let n = 6k, and let S be an n-copt for which C(S)— φ(n).
There exists a partition of {1, 2, •• ,n} into 3k pairs Pi, P2, , P^,
ewh of whivh is contained in exactly two 'members of S. Every other
pair (u, v), 1 ^ u < v ^ n, is contained in exactly one member of S.

Proof. For 1 ^ j ^ n, let f(j) be the number of members of S that
contain j . It is clear that f(j) is at least n\2, so that f(j) = n/2 + g(j),
Q{j) ̂  0. We obtain

Thus

We see that g(j) = 0 for j =^ 1, , n and /(i) = nj2. Since for each
fc Φ j there is at least one member of S which contains (j, k), there
must exist j * Φ j such that (j, j*) is contained in exactly two members
of S, and (j9k) is contained in exactly one member of SΐorjΦkΦj*.
Moreover, i** = j , and hence the pairs (j, j*) are the n\2 pairs
pτ,p2, . . . , p 8 ϊ .

THEOREM 3. Lβί w t= 6fc + 2 or w = 6λ; + 4, and let S be an n-copt
for which C(S) = ψ(n). There exist n\2 + 1 pairs Pu , Pw/2+i which
are contained in exactly two members of S. Every other pair is contained
in exactly one m&v&bθr &f S. There exists an integer m which is contained
in exactly three of the pairs Pu ••, Pn/a+i Every other integer is con-
tained in exactly one of the pairs Pu , Pn/a+i.

Proof Let f(j) be the number of members of S that contain the
integer j . Since /(j) ^ n\2y we can write

Then
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Σ / ω = ~ + ΣffO") = 3 φ(n) = 5-±A .
>i 2 j-i 2

Thus Σ?-ι0θ') = l There exists an integer m such that #(m) = 1 and
g(j) = 0 for i =£ ra.

Now suppose j Φ m. There must exist j * such that (?, i*) is con-
tained in exactly two members of S, and (j, h) is contained in exactly
one member of S for j Φ h φ j * .

Since there are n/2 + 1 members of S that contain m, and each pair
(m, j) is contained in at least one and not more than two members of
S, there exist a, 6, c, such that (m, α), (m, 6), (ra, c) are each contained
in exactly two members of S, and (m,j) is contained in exactly one
member of S if j Φ a, j Φ b, and j Φ c.

If j is a member of Γ = {1. , n} — {m, a, δ, c}, then j**=jm

Hence T is partitioned into pairs Px, P2, , P(w_4)/2, each of which is
contained in exactly two members of S. These pairs, together with
(m, α), (m, 6), (m, c) form the set Plf , Pn/a+i.

THEOREM 4. // ^ = 6k + 5 cmeZ S is a minimal n-copt for which
ψ{n) = (^2 — n + 4)/6, ί/̂ β̂  o^e pair is contained in three members of S
and every other pair is contained in exactly one member of S.

Proof. For 1 ^ j <̂  n, we define /(i) to be the number of members
of S that contain j . Clearly f(j) ^ (n - l)/2. We define ^(j) = f(j) -
(w - l)/2. Since Σ?-i/C?) = 3 ^ W = (n2 - n + 4)/2, we obtain

There exists JΊ such that g(jτ) > 0. Since there are more than (n — l)/2
triples of S that contain j l 9 there exists j2 such that the pair (j19j2) is
contained in at least two triples (j19j2,33), (Ji,J2,Jd The integer j2 must
be in triples with n — 4 integers other than ^Ί, j3, j±, and it requires at
least (n — 3)/2 triples to satisfy this condition. Thus/(j2) ^ (n + l)/2 and
0θ'a) > 0. We now see that g(jτ) =g(j2) = 1 and ^(i) = 0 if j1 Φ j Φ j 2 .

It now follows that if (u, v) is a pair for which g(u) — 0 or g(v) = 0,
then ( ,̂ v) is contained in exactly one member of S. Since 3ψ(n) —
n(n — l)/2 + 2, the pair (jl9 j2) must be contained in three members of S.

Our Theorem 1 is of a constructive nature, and indicates how
minimal w-copts can be constructed out of minimal m-copts for m < n.
There are other methods, however, of constructing minimal %-copts out
of minimal m-copts for m < n. We give a lemma and theorem due to
Reiss [2] which are useful in this connection. Our final theorem is
analogous to the Reiss Theorem.
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REISS LEMMA. Let n be a positive integer. Let

P= {(%, v) 11 ^ u < v ^ 2n} .

Then there exists a partition of P into sets S19 Si9 , S2n-l9 each contain-
ing n elements, such that for each i, i = 1, 2, , 2n — 1, the coordinates
of the n pairs in S% constitute the integers 1,2, , 2n.

Proof. Let j be an integer such that 1 ̂  j ^ 2n — 1. We define

Tj = {(α, 6) 11 £ a < b ̂  j + 1 and a + b = j + 2}

and

22j = {(α, 6) | i + 1 < a < b < 2n and α + δ = j + 2rc + 1} .

Let S2n_! = Γ2n-lβ For i even, 1 ̂  i ^ 2^ - 2, let

For j odd, 1 ̂  j ^ 2τz - 3, let

S} = T} U R, U

It may be verified that the sets Sj have the desired properties.

REISS THEOREM. Let m be odd and let S be an m-copt for which
C(S) = ψ(m). Then there exists a (2m + l)-copt T such that T Z) S and
C(T) = φ(2m + 1).

Proof. Let P = {(u, v)\m < u < v ^ 2m + 1}. We use the Reiss
lemma to partition P into sets Sl9 , Sm9 each containing (m + l)/2
elements, such that for each i9 i = 1, 2, , m, the coordinates of the
(m + l)/2 pairs in St constitute the integers m + 1, m + 2, , 2m + 1.
We now define

T = SU {(<,i, k)\l ^ i ^ m and (j, k) e S,} .

It is easily verified that T is a (2m + l)-copt. If m = 1 or m Ξ 3 (mod 6),

then

C(S) = m ( m ~ )̂ J- m ( m + 1 ) = 4m2 + 2m = (2m + l)(2m) _. ,g
V ^ 6 2 6 6

If m = 5 (mod 6), then

— m'2 ~ m + 1 i ^ ( ^ + 1) _ 4m2 + 2m + 4
~ " ""'~6 """""" 2" 6



MINIMAL COVERING OF PAIRS BY TRIPLES 719

THEOREM 5. Let n be an even integer and let S be an n-copt for
which C(S) = φ{ri). Then there exists a 2n-copt T such that C(T) = φ(2n)
and S c T.

Proof. According to the Reiss Lemma there exists a partition of
the set

P = {(%, v)\n + 1 ^ u < v g 2n}

into n — 1 sets Alf A2, , An-L such that for each i, i — 1, 2, , n — 1,
the coordinates of the n\2 pairs in Â  constitute the integers
{n + 1, , 2^}. Let An = Aw_x, and let

Γ - S U {(i,j,fc)|i = l ,2 , . . . , w ; (i, fc) e AJ .

It is easy to prove that T satisfies the desired conditions.
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ON THE THEORY OF (m, w)-COMPACT

TOPOLOGICAL SPACES

I. S. GAL

In a recent paper I introduced the following generalization of the
notion of compactness :

A topological space X is (m, n)-compact if from every open covering
{Of} (i 6 /) of X whose cardinality card I is at most n one can select a
subcovering {O^} (j e J) of X whose cardinality card J is at most m.

A similar definition wτas introduced earlier by P. Alexandroff and
P. Urysohn [1]. If no inaccessible cardinals exist between m and n the
two definitions are equivalent. The present definition has the advantage
that in applications the question of the existence of inaccessible cardin-
als does not generally come up. The basic results on (m, w)-compact
spaces were published by me in [8] and a detailed study of generalized
compactness in the Alexandroff-Urysohn sense was made by Yu. M.
Smirnov in [14] and [15]. The special case m — ω and n — co was first
studied much earlier by C. Kuratowski and W. Sierpinski in [13] and
[10]. These spaces are generally known as Lindelof spaces.

The present paper contains four types of results on (m, ̂ -compact-
ness which were obtained since the publication of [8]. The problems
and the principal results are stated in the beginnings of the individual
Sections 1, 2, 3, and 4.

The following notations will be used : A and A* denote the closure
and the interior of the set A. The symbols O and C stand for open
and closed sets, respectively, φ denotes the empty set. Nx is an arbi-
trary neighborhood of the point x and Ox denotes any open set con-
taining x. Filters are denoted by j ^ ~ , nets by (xd) (d e D) where D
stands for the directed set on which the net is formed. The set of
adherence points of S^" is denoted by adh ^ , Similarly the set of
adherence points of a net is denoted by adh(a?d). The set of limit points
is denoted by lim j^~ and lim (xd), respectively. A topological space X
is called normal if for any pair of disjoint closed sets A and B there
exist disjoint open sets OA and OB such that A^OA and B <^= OB.

Uniform structures for a set X will be denoted by %?. The symbol
V\x\ stands for " t h e vicinity U e "?/ evaluated at x e X" so that
U[x] = [y : (a?, y) e U]. The composition operator is denoted by o and
so U o V consists of those ordered pairs (x, z) e X x X for which there
is a y 6 X with (x, y) e U and (y, z) e V.
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1# Characterization of (m, n)~compactness by filters and nets* A
topological space X is compact if and only if every filter ^ in X has a
non-void adherence. A similar characterization of compactness can be
given also in terms of nets (χd) (d e D) with values in X As a matter
of fact it is sufficient to prove only one of these propositions. For one
can associate with every filter jg^ in X a net (xd) (d e D) with values
in X such that adh J^ = adh (xd) and lim j ^ ~ = lim (xd) and conversely
given any net with values in X there is a filter j ^ ~ in X having the
same adherence and limit as (xd) (deD). The equivalence of filters and
nets relative to adherence properties is due to R. G. Bartle [3] and the
equivalence relative to both adherence and limit properties is discussed
in [9].

It is natural to ask whether (m, %)-compactness can be character-
ized in term of filters and nets. We shall prove here that such charac-
terization can be given both in terms of filters and nets. Namely for
every pair of cardinals m < n a class of filters called (m, w)-filters can
be selected such that X is (w, w)-eompact if and only if each of these
filters has adherence points. Similarly we can define the class of (m, n)-
nets with values in X such that X is (m, ̂ -compact if and only if
adh (xd) is not void for every one of these nets (xd) (deD). This in-
dicates that there is a natural correspondence between the class of
(w, ^-filters and the class of (m, %)-nets and one can expect that these
two classes exhibit the same adherence and limit phenomena. However
it will be seen that this is not the case. Hence if we consider filters
and nets in a topological space X not as whole classes but in their finer
classification then their behavior relative to convergence is not the same.

In the next definition we use the concept of '' m-interseetion pro-
perty " . A family {Ct}(i e I) of subsets of a set X is said to have the
m-ίntersβction property if every subfamily of cardinality at most m has
a non-void intersection. If every finite subfamily of {Ci}(i e I) has a
non-void intersection we say that the family has the finite intersection
property or 1-intersection property.

DEFINITION 1.1. A filter ^ is called an (ra, w)-filter if it has the
m-intersection property and if it has a base & of cardinality card
& ^ n.

If ^ is a filter which has a base of cardinality at most n then
is called an ^-filter or an (1, ̂ )-filter. If the filter j^~ has the m-

intersection property we say that ^ is an (m, co)-fi]ter. A (1, cα)-
filter means a filter in the usual sense.

DEFINITION 1.2. A directed set D is called an (m, ^-directed set if
every subset S g D of cardinality card S <^ m has an upper bound in
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D and if card D ^ n.

If every subset S^D of cardinality card S <L m has an upper
bound in D or in other words if for every S with card S ^ m there is
a d 6 D such that s ^ d for every s e S then Z) will be called an m-
directed set or an (m, oo)-directed set. If card D <̂  n we speak about
a (1, n)-directed set. A (1, oo)-directed set means a directed set in the
usual sense.

DEFINITION 1.3. An (m, w)-net (xd)(d e D) with values in a set X
is a function a? defined on an (m, ^-directed set Z> whose function
values xd belong to the set X.

If the directed set D is linearly ordered we call (xd)(d e D) a line-
arly ordered (m, n)-net.

It is known that filters and nets exhibit the same convergence and
adherence phenomena. The following lemmas show that the same holds
for the more restricted class of (m, oo)-filters and (m, oo)-nets:

LEMMA 1.1. Let X he a topological space and let (xd)(d e D) be an
(m, n)-net in X. Then there exists an (m, n)-filter S^ in X having the
property that adh ̂  = adh (xd) and lim ̂  = lim (xd).

Proof. For every d e D we define Bd = \xs: d ^ δ]. Since D is
an (m, ^-directed set the family έe? — {Bd] (d e Z>) has the m-intersec-
tion property and card & ^ n. Let J^~ be the (m, ^)-filter generated
by the filter base ^ . One shows that ^ satisfies the requirements.

LEMMA 1.2. Let ^ be an (m, ̂ )-filter in a topological space X.
Then there is an (m, oo)-net (xd)(deD) with values in X and having the
property that adh (xd) = adh J^~ and lim (xd) — lim ^ Γ

Proof. Let us consider the set D of all ordered pairs d = (a?, F )
where a; 6 F e ^ Γ We say that dλ ^ d2 if JP\ a F a . Under this ordering
D becomes an (m, co)-directed set. In fact if dt = (aj<, Ft) for i e ί and
card I <L m then dt <^ d for every d = (a?, F ) where x e F — Π Ft e ^
An (m, oo )-net can be defined on D with values in X by choosing xd — x
for every d — (a?, F ) e D. Let a? e lim J^ and let JVX be arbitrary.
Then there is an F e J ^ such that Fg=Nx. Hence if δ = (?, (P) satis-
fies d ^ d, or in other words if ΦS-F then a7ό = 6 e (? g FgΞ iVx and so
a; is a limit point of (xd)(d e D). Conversely let x e lim (xd) and let Nx

be given. Then there is a cZ = (a?, F ) such that #δ € iV^ for every ^
satisfying d ^ δ. Using this for every δ — (ξ, F)(ξ e F ) we see that
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Xδ = ξ e Nx for every ξ e F and so Fξ^Nx. This shows that x e lim
and lim (xd) = lim J^Γ

Now we suppose that x e adh J^ so that Nx Π JFVΦ for every neighbor-
hood Nx and for every F e JK Given Nx and d = (a?, F) we choose
6 in Nx Π F and consider δ = (f, F). Then d ^ δ and xδ == ξ e Nx and
so a? e adh (xd). On the other hand if x e adh (xd) then given f e J ^ and
Nx there is a δ e D such that d — (x, F) ^ δ = (ξ9 Φ) and xδ e Nx. In
other words xδ = ξ e Φ Π Nx^F f] Nx and so ί7 and Nx intersect for
every F e ^ and for every Nx e ^y\x). This proves that x e adh ^
and adh (xd) = adh ^ "

Using the same reasoning similar results can be derived for (m, n)-
filters. For instance we can easily prove that if X is an (m, w)-filter
in a space X and if card F <^ n for some JP e ^ " then there is an (m, n)-
net (xd)(d 6 D) with values in X and having the property that adh (xa) =
adh ^ and lim (xd) — lim J^Γ If the hypothesis card F ^ n is dropped
we can find only an (m, %)-net satisfying adh Jf 3 adh (xd) and lim J ^ g
lim(^). None of these results will be used in the sequel.

We can easily find examples where only the strict inclusion
adh J^ 3 adh (xd) can be realized. For instance let X be a non-coun-
table set and let X be topologized by the discrete topology. If ^ con-
sists of the single element X then J?~ is an (m, %)-filter for any pair
of cardinals m and n. Moreover adh J^~ = X and so the cardinality of
adh J^~ is greater than that of JK On the other hand if (xd)(d e D) is
a (1, ω)-net with values in X then the cardinality of adh (xd) is at most
ω. Hence adh J ^ ID adh OJ for every (1, ω)-net in X

This example shows that (m, ^-filters and (m, ^)-nets in arbitrary
topological spaces have different adherence properties. Nevertheless the
following theorems show that both (m, %)-filters and (m, w)-nets can be
used to characterize (m, ̂ )-compactness.

THEOREM 1.1. A topological space X is (m, n)-compact if and only if
every (m, n)-filter in X has a non-void adherence.

Proof. In [8] we proved that X is (m, %)-compact if and only if every
family {C,} of closed sets C j g l having the m-intersection property
also has the ^-intersection property. We apply this result: Let X be
(m, ^-compact and let έ% with card & ^ n be a filter base for an (m, n)-
filter ^ in X. Then the family {B} ( δ e ^ ) has the m-intersection
property and so it has the ^-intersection property. Since card & <: n

this implies that (15 = adh & is not void. Conversely if X is not
(m, 7z)-compact then there is a family ^ of closed sets with card έ% g n
and having the m-intersection property but with total intersection void.
Thus & is a filter base for an (m, w)-filter ^ and adh ^ — Φ.
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THEOREM 1.2. A topological space X is (m, n)-compact if and only if
every (m, n)-net with values in X has a non-void adherence.

Proof. If there is an (m, ̂ )-net with values in X whose adherence
is void then by Lemma 1.1 there is an (m, n)-Slter without adherence
points and so by Theorem 1.1 the space X is not (m, w)-compact. Next
we prove that if every (m, n)-net with values in X has a non-void ad-
herence then the same is true for every (m, n)-Ά\ter in X. By Theorem
1.1 this will prove that X is (m, w)-compact. Let £$ = {Bd}(d e D) be
a filter base for an (m, Ή,)-filter j ^ ~ in X and let card D <; n. We order
D by using inverse inclusion of έ%?\ d1 <; d.z if Bdl^>Bd.z. Under this
ordering D becomes an (m, ̂ )-directed set. We form a net (xd)(d e D) by

choosing xd in Bd. By hypothesis (xd)(d e D) has an adherence point x.
Given any neighborhood Nx and any d e D there is a S ;> d such that
xδ e Nx. Hence NXΠB8 Φ Φ and so by B8 g Ba also NxΠBd Φ φ. Con-
sequently x e Bd for every d e D and so # e adh .^Γ

2 Uniformizability and (m, ̂ )-comρactness* This section contains
the generalization to infinite cardinals of the following results :

A space X is countably compact if and only if every infinite set
S<Ξ:X has an accumulation point in X.

If X is a metric space such that every infinite set S g J has an
accumulation point in X then the open sets of X have a countable base
and so X is a Lindelof space.

Countable compactness will be replaced by (m, m^-compactness where
m is an infinite cardinal and m' denotes the first cardinal succeeding m.
If m denotes the symbol 1 then V is defined to be ω. Instead of ac-
cumulation points we must consider m-accumulation points :

DEFINITION 2.1. A point x of a topological space X is called an m-
accumulation point of a set S^X if for every open set Ox containing x
we have card (Ox Π S) > m.

If m is 0, 1 or ω then the relation card (Ox Π S) > m means that
Ox Π S is not void, not finite or not countable. If card S ^ m the set
of its m-accumulation points is void. In particular if S is countable
then it has no ω-accumulation points and if £ is finite then it has no
1-accumulation points. The notion of an m-accumulation point is related
to Frechet's "point d'accumulation maxime " (see [7]).

The metrizability condition can be rephrased as follows : There is
a uniform structure *ZS which is compatible with the topology of X and
has a countable structure base. This hypothesis will be replaced by
another which requires the existence of a structure base of cardinality
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at most m.

DEFINITION 2.2. A uniformizable space X is said to be of uniform
cardinality u if there is a base %SB for a uniform structure fS com-
patible with the topology of X whose cardinality card WB is at most u.

Every pseudo-metric space is of uniform cardinality ω. If for every
uniform structure ^ compatible with the topology of X and for every
base ^ of ^ we have card ^ ^ u where u is a uniform cardinality
of X then we say that X is of uniform cardinality exactly u. The exact
uniform cardinality of a pseudo-metric-space is at most ω it can also
be 1.

The first result which we mentioned in the beginning is a special
case of

THEOREM 2.1. Let m be an infinite cardinal and let m! denote the
next cardinal. Then a topological space X is (m, m')-compact if and only
if every set SQX of cardinality card S > m has an m-accumulation
point in X.

Proof. First we prove the necessity of the condition. If X con-
tains sets of cardinality greater than m which have no m-accumulation
points in X then we can select a set S of cardinality exactly ΎΠ! such
that it has no m-accumulation points in X. Let J^ denote the set of
all those sets FξΞ^S whose cardinality is at most m. For every x e X
there is an open set Ox such that Ox Γ) S e J^7 We define OF for every
F e ^ a s θ , = U [Ox: OxΓiS = F]. The family {OF}(F e j r ) is an
open cover of X whose cardinality card J^ is m'. Since every subfamily
of cardinality at most m would cover at most m points of S the family
{OF}(F e J*~) cannot contain such subfamilies. Hence X is not (m, m')-
compact.

The deeper part of the theorem is the sufficiency of the condition.
Here we need the axiom of choice both in the form of Zorn's lemma
and also in the form of the well-ordering theorem. Suppose that X is
not (m, m/)-compact. Let {OJ(i e /) be an open cover of cardinality
card / = mr which contains no subcovers of cardinality at most m. Let
the index set I be well ordered. Since X is not (m, m^-compact there
is a point x2 e X such that χ.λ 0 Oλ. More generally for every positive
integer n > 1 there are points x2, •••,#„ such that x3 <fi Oτ u U O3-x

for every j ^ n. In general we consider segments J oϊ I such that a
segment (or net) of points (xj) can be selected so that x3<£ U \Oό: i < j]
for every j e J. Let s/ denote the family of ordered pairs (J, (xj))
where J denotes a segment of / and (xj) a segment of points associated
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with J. We order Stf as follows : (Jl7 (xj)) ̂  (J2, (y3)) if Jτ g J2 and
^ — ̂  for every j e Jx. Clearly every linearly ordered subfamily of J^f
has an upper bound in Sf and so by Zorn's lemma Sf has a maximal
element, say (J, (xj)). The maximality of (J, (xj)) implies that J is a
limit ordinal and {Oj}(j e J) is a cover of X We claim that the set
S = {xj}(j e J) has no m-accumulation points in X. For if x e X then
x e Oj for some j e J and so

card (Oj n S ) ^ card [xt: i < j] <̂  m .

Finally card S — mf because card £ = card J and {CλJO* 6 J) is a cover
of the not (m, m')-compact space X.

THEOREM 2.2. // the uniformizάhle space X is of uniform cardin-
ality u and if there is an m such that every set S^X of cardinality
card X > m has a non-void derived set then the open sets of X have a
base of cardinality at most max (m, u).

Proof. Let *Z/B = [U] be a base of a uniform structure ^/ for
X and let card ^/B<,u. We may suppose that every U e WB is sym-
metric. We fix a vicinity U e ^/B and consider systems of points {xt}
(i e I) having the property that U[Xi] Π U[xj] is void for every i Φ j .
Let Szf be the set of all such systems {xi}(i e J). The set s/ is not
void for such systems exist at least in the case when the index set /
consists of a single element. We order S/ by inclusion : {xt} fg {y^ if
{aiJSll/j}. Every linearly ordered subset Sf of Ssf has an upper
bound in JK namely U [{#J : {xt} e ^f} is in S/ and it majorizes
every {xt} e S/. Hence Zorn's lemma can be applied to show the ex-
istence of a maximal system which we denote by {xt}(i e /). If
y e U [U[Xi]: i e I] then by the maximality U[y~] Π U\x^\ is non-void
for some i e I. Hence by the symmetry of U we have ye (Uo U)[xi'].
Therefore the family {(Uo U)\_x^\}{% e I) is a cover of the uniform space
X.

Let S= {Xi){i e I) so that card S — card J. We show that the
derived set of S is void and so card I <L m: Let V be a symmetric vicinity
in "?/ such that Fo FgC/ and let x be an arbitrary point in X If
x e 7fe] for some i e / then F[>]g(Fo 7)[ajjS Z7[a?4] and so V[x]Γ\S
is void or contains at most the point x%. If x 0 Ffe] for every i e ί
then by the symmetry x%φ V[x] for every iel and so FjVjnS is void.
It follows that card I rg m.

The family {(£7o £/")[#*]}(i e /) is a cover of X and so the interiors
of the sets (E7Ό C/o Z7)[a?J(i € J) form an open cover of X Its cardin-
ality is at most m. Hence the cardinality of the union of these families
for every choice of U e f/B is of cardinality at most max (m, u). Since
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for every vicinity V e W there is a Z7 e ^ such that U o U o U C V
these sets form a base for the open sets of X

The results of this section can be combined to obtain the following

THEOREM 2.3. If X is a uniformizable space of uniform cardinality
u which is (m, n)-compact for some cardinals m and n where m < n then
X is (m, <^)-compact or (u, ^-compact according as m ^ u or u > m.

Proof. By Theorem 2.1 every set S of cardinality greater than m
has an m-accumulation point and so its derived set is not void. Theo-
rem 2.2 implies the existence of a base of cardinality at most max (m, u)
for the family of open sets of X Hence the space X is (max (m, u), oo)-
compact.

This proof did not make use of the full force of Theorem 2.1. It
is sufficient to know for instance that every set of cardinality card S>m
has a 1-accumulation point whenever the space X is (m, %)-compact for
some n > m. This weaker statement can be proved without using the
axiom of choice or the well ordering theorem. Nevertheless the axiom
of choice is used in the proof of Theorem 2.2.

3. Dense sets, (m, %)-comρact spaces and complete structures. It is
knownthat if X is a compact topological space then every net with values
in X has a non-void adherence and conversely if the adherence of every
net with values in X is not void then X is compact. We can raise the
following question : Suppose A is a dense subset of X and that adh (xd)
is not void for every net (xa)(d e D) with values in A. Does it follow
that X is compact ? We shall prove a theorem a special case of which
states that for regular spaces the answer is affirmative. The result can
be formulated also in terms of filters : Every filter ^ in A is a filter
base in X If the adherence af the filter generated by the base ^ is
not void we say that the filter ^ has a non-void adherence in X It
was proved earlier that if X is regular and if every filter in the dense
set A has a non-void adherence in X then X is compact. (See [4] p. 109
Ex. 1 a.)

The same type of question can be raised when the net (xd)(d e D)
is subject to additional restrictions : For instance we can assume that
every countable net with values in A has a non-void adherence in X
and ask whether this implies that X is countably compact. It will be
proved that the conclusion holds under the assumption of normality and
countable compactness.

As is known a family Jίf of sets Si^X is called a locally finite
system if every x e X has a neighborhood Nx which meets only finitely
many sets of the family jgf We shall deal only with locally finite
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systems which consist of open sets.

DEFINITION 3.1. A topological space X is called %-paracompact if
every open cover {Ot}(i e I) satisfying card I <̂  n admits a refinement
{Qj}(j € J) which is a locally finite system.

Clearly every topological space is 1-paracompact and we agree that
oo-paracompactness means paracompactness in the usual sense. Using
this definition we can state the following

THEOREM 3.1. Let X be a normal n-paracompact space which con-
tains a dense set A such that every (m, m')-net with values in A (or every
(m, m')-filter in A) has a non-void adherence in X. Then X is (m, n)-
compact.

Since every regular paracompact space is normal in the special case
when n — + co normality can be replaced by the formally weaker re-
quirement of regularity. However this is not a real improvement of
the result. If m = 1 then by our agreement mr = ω and so if X is count-
ably compact then every (m, m')-net with values in X has a non-void
adherence. Hence as a corollary we have the following result due to
R. Arens and J. Dugundji [2]:

COROLLARY. // X is regular, paracompact and countάbly compact
then X is compact.

Since every pseudo-metric space is paracompact (see [17]) the corol-
lary is a generalization of the following known result: If the pseudo-
metric space X is countably compact then it is compact. A weaker
form of the corollary was obtained by Miss A. Dickinson who proved
in [5] that every uniformizable space with a unique structure is countab-
ly compact and a paracompact space with a unique structure is compact.

In the proof of the theorem we shall use the following known
lemmas :

LEMMA 3.1. If {Si}(i e I) is a locally finite system of sets then

\JSt = U

A short proof can be found for instance in [16].

LEMMA 3.2. Let {04}(i e I) be a locally finite open cover of the
normal space X. Then there is an open cover {Qi}(i e I) of X such that
Qi E Ot for every i e I.
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Proofs of this lemma can be found in [12], [9], [6] or [11],

LEMMA 3.3. If {a>i}(i e /) is a set of ordinals such that ωt < m' for
every i e I and if card I ^ m then lub {ωj < m'.

Proof. Since m! is the first ordinal of cardinality ml we have
cot < m', that is, card ωt ^ m for every i e I. Hence by card I ^ m the
cardinality of lub {ωj is m.

Proo/ o/ Theorem 3.1. We assume that X is normal and ^-para-
compact but it is not (m, %)-compact. We shall construct a linear
(m, m')-net (^)(d 6 D) with values in A and such that it has no adher-
ence points in X. Then the sets [# δ : d ^ S](d e D) form a filter base
for an (m, m') filter in A which has no adherence points in X

Let {OJ(i e J) be an open cover of cardinality at most n which
contains no subcover of cardinality at most m. Since X is n-paracom-
pact {04}(i e /) admits a refinement {QJKJ e J) which is a locally finite
system of open sets. The space being normal by Lemma 3.2 we may
assume that Qj £ Ot for every j e J and for a suitable i — i(j) e I. Since
{Qj}(JεJ) is locally finite Lemma 3.1. can be applied to any subfamily
of this cover.

Let the index set J be well ordered for the sake of simplicity we
assume that the elements of J are ordinals. Denote by Sk the open set

S , = Q f c - U [ Q j : j < k ] .

Let D be the set of thosέ indices keJ for which Sk is not void. We
prove that K = card D ^ m'.

For let ^ be the class of those initial segments KξΞ=J for which

U [Qj: j e K\ S U [Q^ : i e D]. Then ^ is not void because (1, , K) e c^
It can be ordered by inclusion : Kλ ^ K2 if Kλ S K2. There is a max-
imal element in ^f namely ifm = U [K: i ί e ^ ] itself is an element of
^Γ We prove that Km — J . For let Ke^ be a proper subset of J
which contains /c and let kf be the first index not in K. We set Kr =

fcr} and obtain by /c < k'

[JlQj: j 6 K'] = ΌlQj: i

£ U[Qj: i e Z ) ] .

Hence i ί r e ^Γ and if is not maximal. Consequently Km — J and this
implies that

U[Qj: 3 e J ] g \J[Qj: j e D] .

However on the one hand {Qj}(j e J) is a cover of X and so X =
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U[Qj: j € D\. On the other hand {Qj}(j e J ) is a refinement of {Ot}
(i 6 /) and by hypothesis {Ot}(i e /) does not contain a subcover of
cardinality at most m. Hence we have cardD ^ mf.

The well-ordered set D is order isomorphic to an initial segment of
the ordinals which segment contains every ordinal preceding m!. If
we discard from D every element corresponding to m! and to the
ordinals succeeding mf we obtain a subset of D of cardinality at least
m\ We denote this subset again by D. By Lemma 3.3 the new D is
an (m, m')-directed set.

The open sets Sd are not void for every d e D and A is dense in
X. Hence we can choose a point ad e A in each of the sets Sd(d e D).
The linear net (ad)(d e D) is an (m, m')-net with values in A and it has
no adherence points in X: In fact {Qj}(j e J) being locally finite for
every point x e X we can find an open set Ox such that Ox Π Qd is not
void only for finitely many indices d e D. If d is larger than any of
these finitely many indices then Ox Π Qs = Φ for every S ̂  d and so
αδ 0 Ox for every d ;> d. This, however, shows that α is not an adher-
ence point of the net (ad)(d e D). This completes the proof of Theorem
3.1.

Now we turn to uniformizable spaces :

THEOREM 3.2. Let X be a uniformizable space of uniform cardin-
ality u. Suppose that X contains a dense subset A such that every (m, n)-
filter in A has a non-void adherence in X. Then X is (m, <χ>)-compact.

It is sufficient to prove that X is (m, ̂ -compact. The (m, ^-com-
pactness follows from Theorem 2.3. The proof of the (m, w)-compact-
ness can be modified such that we obtain the following known result
(see [7] p. 150, Proposition 7):

Let A be a dense subset of a uniform space X with uniform struc-
ture % If every Cauchy filter in A is convergent to some point of X
then the structure Ήf is complete.

Proof. Let ̂  be a filter (or an (m, u)-fΛter) in X. Consider the
family & = {U[F]nA} (U e <2S and Fe ^). Since A is dense in X
every set U[F] Π A is non-void and

(tφΉnA) n (U[F2]oA) a c/Knf jn i .

Hence & is a filter base in X. (Moreover if j / ^ is an (m, w)-filter and
f/ is of uniform cardinality u then & is a base for an (m, w)-filter in

A.) If S^ is a Cauchy filter then & is a base for a Cauchy filter
because if F x F g V where V is symmetric then F[F] x V\_F~\ £
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Fo Fo F : In fact if x e V[F] and y e V[F] then (x, a) e V and
(δ, y) e F for some α, δ e ί 1 . Thus by (α, b) e F x JF1 s F we have
(a , 7/) = (a , α) o (a, b) o (6, y) e F o F o F. By hypothesis ^ as a Cauchy
filter base in X (as a base for an (m, %)-filter in X) is convergent to
some point x e X. We show that x e adh ^ which is equivalent of
saying that x e lim ̂ C Given any an open neighborhood Ox of x there
is a Z7 e ^ such that Σ7[#] £ Ox. We determine the symmetric F e ^
such that Vo V ^ U. Since a; 6 adh ̂  and F[F] n i is an element of
έ% we have V[x]Π F[F] =£ φ for every Fe ^Γ Hence there is an aeA
and a n / e F such that (a?, α) e Fand (α,/) e F. Therefore (a?,/) e Fo Fg£7
and /eZ7[#]RF. This shows that U[x\ and F intersect for every
U e ^/ and for every .F1 e ̂ Γ Thus a? e adh

4» Additional results and notes. In my first paper on (m, ̂ -)-compact-
ness I introduced the notion of a hereditary or completely (m, ̂ -com-
pact topological space : X is completely (m, w)-compact if every subspace
Y of X is (m, n)-compact. It can be easily proved that if every open
set Y is an (m, %)-compact subspace then X is completely (m, ̂ -com-
pact. In the same paper I gave a number of equivalent characteriza-
tions of complete (m, %)-compactness. At that time time I did not
notice that one of these criteria (Theorem 4, condition (ii) in [8]) in-
volves n only in a formal way.1 I should have added as a corollary the
following.

THEOREM 4.1. If X is completely (m, n)-compact for some cardinals
m < n then X is completely (m, oo)-compact.

Proof. Suppose that X is not completely (m, c»)-compact. Then

there is a family of open sets Ot (i e /) in X such that U Oέ. is a pro-

per subset of U Ot whenever card J ^ m. Let the index set / be well

ordered. Let Oiχ be the first non-void Oh and let Oί2 be the first Ot

such that O|2 ξ£ O .̂ In general we consider initial segments J of the

ordinals 1,2, •••,;/, and sets O« .(j e J) such that for every j eJ the

set Ot is the first O* set which is not a subset of U [Ot : & < j]. By

hypothesis {04}(i 6 /) does not admit a subfamily {Oim}(J e J) satisfying

yθi = Uθ« with card J ^ m. Hence using Zorn's lemma we can find

initial segments J and corresponding sets O4 such that card J ^ mr

where mr is the first cardinal greater than m. We restrict ourselves to

ordinals preceding m! so that J = [j : j < m'] and O4. ξ£ U [O4 : k < i]

for every j" 6 J. The family {Oi}(j e J) is of cardinality card J = m!

and if card K < m! where KaJ then by Lemma 3.3
1 This was first noticed by Mr. R. D. Joseph.
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U[Oijfc: keK]cz U [0,.: j e J] .

This shows that X is not completely (m, m')-compact and so the theorem
is proved.

Let &? — {B} be a base for the open sets of a space X and let
Γ g l Then &γ = {Bf] Y}(B e & } is a base for the subspace Y.
Hence if & is a base for the topology of the space X then every sub-
space of X is (card ^ , co)-compact. Applying this remark to the situa-
tion described in Theorem 2.3 we obtain

THEOREM 4.2. Let X be a uniformizάble space of uniform cardin-
ality u. If X is (m, n)-compact for some m < n then X is completely
(m, co)-compact or completely (u, co)-compact according as m ^ u or m ^ u.

If n — co this result can be obtained directly by using the defini-
tion of (m, CO )-compactness and of hereditary (m, oo)-compactness.

The product of a (1, cχD)-compact space with an (m, w)-compact space
is (m, %)-compact. This was proved a few years ago by Yu. M. Smirnov
[14]. Not knowing the existence of this paper, I proved in [8] (Theo-
rem 8) the result in the special case when n =oof but a slight modifica-
tion in my reasoning gives a new proof of Smirnov's theorem : Start
again by replacing the open cover {Oi}(i e 1) where cardi<:% by a
family of sets 0% x 0%. However instead of forming the intersection
O i Π ••• Π 0 > form the intersection of those sets 0{ζ\ ••., OlyJ of the
given family which have the property that

0\ x Op S 0{ξ\ ., Olm x 0 > S 0[» .

Since card I ^ n there are at most n distinct ones among the finite in-
tersections Qy = 0^ Π Π Oly). The rest of the reasoning then is the

1 m

same as in [8].
We end by stating two unsolved problems : Professor Erdos men-

tioned to me that he was thinking without success of the following
problem : Let m be an infinite cardinal. We say that X is [m]-com-
pact if from every open covering of X one can select a subcovering
having fewer than m elements. Is there an infinite cardinal m such
that the product of any two [m]-compact spaces is again [m]-compact ?

It is known that given any filter ^ in a set X there exists an
ultrafilter ^ such that J?" £ ^ . Let ^ be an (m, cx))-filter. The
corresponding ultrafilter ^// need not be an (m, oo )-filter and in general
there is no (m, oo )-ultrafilter ^ satisfying the requirement j ^ ~ £ ^ C
We can ask the following question : Is there any infinite cardinal m
such that for every (m, co)-filter ^ the ultrafilter ^/£ can be chosen
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such that ^ is an (m, oo)-filter and j ^ ~ gΞ
I do not know to what extent %-paracompactness is necessary in the

hypothesis of Theorem 3.1. The only example that I know of shows
that there exists a non-compact space X which contains a dense set A
such that every filter in A has a non-void adherence in X: We choose
X to be the interval [—1,1] and call O open if it can be obtained from
an open set in the usual sense by omitting points of the form x — ± 1,
± i, . We can choose A = X — {± 1, ± J, }. The space X is
neither regular nor compact. It can be proved that X is not countably
paracompact.
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A NOTE ON POLYNOMIAL AND SEPARABLE GAMES

DAVID GALE AND OLIVER GROSS

l Introduction. A two-person zero-sum game Γ is called poly-
nomial-like or separable if its payoff function is of the form

M(x, y) - Σ/*(aj)flr«(2/),
i = l

where x and y are elements of any strategy sets X and Y. Important
special cases of separable games are those in which X and Y are
bounded (usually compact) subsets of Euclidean spaces and M is a poly-
nomial in the coordinates of x and y. These latter are called polynomial
games.

It is a basic and fairly elementary fact concerning separable games
[1], that, if optimal strategies exist, then these can always be chosen
to be finite mixed strategies. We consider here the inverse question :
Given a pair of finite mixed strategies, does there exist a separable
(respectively, polynomial) game whose unique optimal strategies are the
given pair ? In case either X or Y is finite the answer is known to
be in the negative. We here show, however, that.

THEOREM 1. If X and Y are metric spaces containing infinitely many
points and μ and v are any finite mixed strategies on X and Y respec-
tively, then there is a payoff M, bounded continuous and separable on
X x Y, such that the associated game has μ and v as unique optimal
strategies.

COROLLARY. If X is a metric space containing infinitely many points
and μ is any finite mixed strategy on X, then there is a skew-symmetric
payoff M, bounded continuous and separable on X x X such that the as-
sociated symmetric game has μ as the unique optimal strategy.

For the case of polynomial games we show :

THEOREM 2. If X and Y are bounded subsets of Euclidean spaces
whose closures contain infinitely many cluster points, then for any finite
mixed strategies μ and v there exists a polynomial payoff function M such
that the associated game has μ and v as its unique optimal strategies.

(An analogous corollary holds here, also.)
Concerning Theorem 2, we remark that Glicksberg and Gross, [2],
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have shown that any pair of mixed strategies can be the unique solution
of a continuous game on the unit square. For finite mixtures, however,
their construction is complicated, involving consideration of four special
cases, and the payoff function is not a polynomial, nor even separable.
The rather simple construction involved in our proof of Theorem 2 shows
that their result still holds under the much stronger requirement that
the payoff be a polynomial.

Finally, we credit Dresher, Karlin and Shapley, [1], for their rather
exhaustive study of the structure of solutions of separable and poly-
nomial games. However, their results do not include the theorems proved
in this note. Indeed, one of the above authors has pointed out that
the construction of the next section provides a counter-example to one
of the conclusions of a structure theorem in [1], and fortunately (for
mathematics) an error in the proof of that part of the theorem1 was
subsequently uncovered.

2, Polynomial games with prescribed unique solutions* This section
contains the proof of Theorem 2. Let X and Y be sets satisfying the
hypothesis of the theorem (We pause to note that boundedness of X
and Y is required to insure integrability, since polynomials may other-
wise be unbounded.). Let μ be the mixed strategy which assigns the
weight μt to the point xi of X, i — 1, , m, where Σ μ% = 1. Similarly,
let v assign the weight vό to the point yό in Y, j = 1, •••, n where

The set of points {xl9 •• ,#TO}, the spectrum of μ, will be denoted
by σ{μ). Similarly, σ(v) will denote the spectrum of v.

We now define the following set of polynomials :

/o(*)= Π

/ . ( * ) = II \X~X}~ , i = !,-••,m,

where \x — x'\ is the usual Euclidean distance from x to x'.
It is clear that the above functions are polynomials however, aside

from continuity, the only properties of them which we shall use are
the following :

Six) > 0 for all x e X and fQ(x) = 0

if and only if x e σ(μ).

fi{x) > 0 for all x e X and ft(x) = 0

if and only if x e σ(μ) — {α?J, (i — 1, , m).

1 Theorem 6, fourth inequality pp. 175-176 of [1].
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fi(Xt) = 1, i = 1, •••, m .

In a precisely analogous manner we define the polynomials gQ and
gJf J7 = 1, , w, on the set Y.

Next, let <x0, au , an be n + 1 distinct cluster points of X (the
closure of X) which do not meet σ(μ) (these exist by hypothesis), and
define polynomials φ and φJf j — 0, , n on X via

= Π I x - ock |
2, i = 0,

The only properties of these functions we shall use are that they
are all non-negative, that φ vanishes only on the ak, and that φ5 van-
ishes only on ak with k Φ j .

Finally, let βQ, , βm be m + 1 distinct cluster points of Y which
do not meet σ(v), and define polynomials ψ and ψ% on Y analogous to
the functions φ and φj above.

We now define the desired payoff M by

M(x, y) =fQ(χ)Φ(χ)(gϋ(y)ΦQ(χ) + Σ (gAv) ~ ^)ΦA^
J~ι
in

ί

We show first that /* and v are optimal strategies. If we compute
M{x, v) (in the usual extension), we obtain

( 2 ) M(x,v)= -(fϋ(x)Ψ(x)f<0.

To see this, it is sufficient to observe that, according to the properties

noted above, \gόdv = v5 and gQ and ψ vanish on σ-(v). Similarly, we

obtain

M(μ, y) - (gQ(y)Φ(y)f > 0.

Thus μ and v are optimal and 0 is the value of the game.

It follows also from (2) above that if μ' is any optimal strategy
for player /, then the spectrum of μ' is contained in the zeros of foφ.
Thus any optimal μ' has weight only on the pure strategies x% and aJf

and similarly any optimal v for player // restricts its weight to

We now show that v is the only optimal strategy for player //.
For suppose */ is optimal. Then, in the expression for M(x, v)f the
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second and fourth terms in (1) drop out in view of the remark of the
preceding paragraph and the payoff becomes

M(x, vr) = / B ( Φ ( » ) [ φ ) j ^ + Σ ψA

For x close to <x0 the expression in brackets above approaches

Ψo(ao) \9odv, and since φQ(aQ) is positive we must have \gϋdv — 0. Other-

wise the a -player by choosing x sufficiently close to αa could achieve a

positive payoff, contradicting the optimality of ι/. Next, since \gQdv'=0, v

must concentrate all of its mass on the zeros of g0, that is, on the
points Vj. Finally, if v'k Φ v% for some index k then the x-player could
again achieve a positive payoff by choosing x sufficiently close to xk.
It follows that v = v as asserted.

Thus, Theorem 2 is established.

3* Metric space games—construction of payoff This section is dedi-
cated to the construction of the payoff required for the establishment
of Theorem 1 and its corollary, which will be proved in the final section.
The construction and method of proof are quite similar to those used
in proving Theorem 2 however, to preserve continuity of presentation,
we shall paraphrase identical details.

Therefore, let X and Y be the respective spaces according to hy-
pothesis, μ and v the respective finite probability measures on them, μ
and v will be described with the same notations used previously. Final-
ly, let p and p' denote the associated metrics of X and Y respectively.
Then, without further ado, we initiate our construction.

The basis of our construction hinges on the fact that any infinite
metric space contains a sequence of disjoint neighborhoods. To see this
for X, say, there is no loss in generality in assuming that X has a
cluster point, for otherwise we are guaranteed a sequence by the dis-
crete topology induced by p and the infiniteness of X Therefore, let
x* denote a cluster point of X. First, choose a± Φ X*, and, for i > 1
choose a% so that 0 < p{x*, at) < p(x*, αz_1)/2. Then, as our sequence of
neighborhoods, {iV*.}, we set

#* t = ix 1 K»ι ad < Λ} , i = 1, 2, f

where rt = p(x*, cc^/S. It is easy to verify, using the triangle inequality,
that these neighborhoods are disjoint.

Therefore, let {Nai} denote a sequence of disjoint neighborhoods
contained in X (spheres of radius rt centered at at). Define functions
φjf j = 0, , n, as follows :
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ry ___ f)(Ύ f)f \ 1

—-— r v - — *;- -7-if x e Naι. for some i (at most one) and
φjW = * i = j (mod (w + 1))

v0 otherwise.

One verifies that φ3 is a bounded continuous function on X into the
non-negative reals, and which, moreover, satisfies

ί— if i = j (mod (n + 1))
(6) ΦJ(*i)= *

I 0 otherwise.

Next, let the function φ be given by

m

( 7 ) φ(#) = Π p(%, #0, # e X,
ί-l

(where, as previously, {#J = <r(μ)). There is no question about conti-
nuity here. We note merely that

/o\ (= 0 if α e σ(μ)
( 8 ) φ(a ) j

I > 0 otherwise.

Finally, we define functions /_,, j = 0, , m, as follows :

v *J ) J ϋV ̂ / — Ψ\^) y

and, for i e {1, , m}, set

(10) / ^ ) = Π p(χ' Xi\ .
i^J P\Xj, X%)

Here, again, continuity is immediate, and we note merely that

(11) fj(xt) = δυ, i, j = 1, , m,

where δ is Kronecker's delta. Moreover, to insure boundedness of these
functions, if such is not the case, we need only replace p by the func-
tion pl(l + p) in the formulas (7) and (10) without affecting subsequent
arguments.

The remainder of our construction involves defining certain bounded
continuous functions on Y into the non-negative reals. To accomplish
this we merely repeat the foregoing construction with the replacements:

ί ί

ί (

(ί

i ί

(i

p " ->

x" ->

α " ->

r " ->

Y
P'
y'
β'

y

y y

y

\

y

y

y

"m" ->
" n " - > •

"φ" -+ '

" / " -»> '

"a" -> '

"n",
"m"

"Φ",
"9",
"u".
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In terms of these functions, then, and using the convention μ0 =
vQ = 0, we define our bounded continuous polynomial-like payoff M as
follows :

M(x, y) = -Φ{y) Σ

Σ

(x, y) e X x F. This completes our construction.

4«, Verification, of solution and proof of uniqueness* To verify
that (μ, v) is a solution, we calculate first the expectation M(μ, y):

M(μ, y) = ψ{y) Σ ΦAvf > 0, all neΓ.
J-0

To see this, we note that the remaining sums vanish by virtue of (8),

(9), and (11), i.e. φ vanishes on σ(μ) and \fjdμ = μj9 j — 0. « ,m.

Similarly,

(12) M{x, v) = -φ(x) Σ Φj(*Ϋ ^ °̂  a 1 1 x e x-
j = 0

Thus, (μ, v) is a solution and 0 is the value of the game.
To show uniqueness for the first player, let μ' denote an optimal

strategy for him. From the non-negativity of the functions φ, φ3 in

(12), we see that \φφ2jdμf = 0 for all je {0, •••,%} and hence that

φφβμ' = 0; for otherwise, by (12), a counter strategy is provided by

v. Thus, if μ' is optimal, we have

(13) M(μ', v) = -Φ(y) Σ (β - μ3)ΦAy) + <Kv) Σ ΦAvf,
J0 j 0

) Σ
j=0

where we have written μ] — \fjd^, j = 0, , m. Next, suppose μό =

ί j

/oc£// =̂= 0 (and hence, positive). Choose as possible counters a subse-
quence of the β's, {βΛi} such that nt = 0 (mod (m + 1)). Then, by virtue
of the minimizer's counterpart of (6), (13) becomes

(14) M(μ', βn) - ~ 1 V

nt
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Since ψ vanishes only on a finite set and is positive elsewhere, we see
that the expression above can be made negative for i sufficiently large.
Hence μ'Q — 0, and if follows from (8) and (9) that σ(μ') c σ(μ), i.e. any
optimal μr must restrict its spectrum to the set {xl9 , xm}. Thus,
finally, to establish uniqueness, we need only show that the correspond-
ing weights are equal. Let μ\ denote the weight on xi placed by μ'.
Substituting in our payoff M we obtain (noting μ'o — 0),

(15) M(μ\ y) = -φ(y) Σ G4 - ^)ΦAv) + Φ(v) Σ ΦM

Now suppose μh Φ μk for some ke {1, •• ,m}. Then, since

Σ μ's = Σ μ, = l ,

we would have some j — jQ e {1, , m} such that μ'j0 > ^ j 0 But, by
choosing the subsequence {βn,} with nt = j0 (mod (m + 1)), by the iden-
tical argument used before, we would find a counter rendering the
expectation (15) negative. Hence μ] — μ3 and thus μf = μ. Uniqueness
for the minimizer can be established in a similar manner, as is clear.
So Theorem 1 is proved.

Finally, to establish the corollary, we need only make the appropri-
ate identifications in our payoff to ensure that M(x, y) = ~M(y, x).

The authors would like to thank Dr. Irving Glicksberg for his
valuable comments on this paper. As a matter of fact, Dr. Glicksberg
suggested an alternate proof for Theorem 1 which extends it to com-
pletely regular spaces X, Y. The gist of his proof involves obtaining
the extended theorem by making it a corollary of Theorem 2 via a
mapping : X -> if1, Y -> R"1.
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ON THE NUMBER OF BI-COLORED GRAPHS

FRANK HARARY

1. Introduction. This is an extension of papers [2,3,4] whose
notation and terminology will be used. The main result is a formula-
tion of the generating function or counting polynomial of bicolored graphs,
obtained by the enumeration methods of Pόlya [6]. A modification of
the method yields the number of balanced signed graphs, solving a pro-
blem proposed in [5]. In the process of enumerating bicolored graphs,
we consider two binary operations on permutation groups called '' car-
tesian product" and "exponentiation" which are abstractly but not
permutationally equivalent to the direct product and Pόlya's " Gruppen-
kranz " [6], respectively.

A graph consists of a finite set of points together with a prescribed
subset of the collection of all lines, i.e., unordered pairs of distinct
points. Two points are adjacent if there is a line joining them. A graph
is k-chromatic1 if each of the points can be assigned one of k given
colors so that any two adjacent points have different colors. A graph
is fc-colored if it is ^-chromatic and its points are colored so that all k
colors are used. More precisely, a λ -colored graph is a pair ((?,/) where
G is a graph and / is a function from the set of points of G onto the
set of numbers 1,2, , k such that if a and b are adjacent points, then
f(μ) Φf(h). Two graphs are isomorphic if there exists a one-to-one
adjacency preserving transformation between their sets of points. Two
^-colored graphs are chromaticallg isomorphic if there is a color preserv-
ing isomorphism between them. Thus (G^fJ is chromatically isomor-
phic with (G2,f2) if there is an isomorphism θ: G1-^G2 and a permuta-
tion ω: {1, , k) ~* {1, ., k) such that ω(f1(a)) =/2(0(α)) for every
point α in G1( Let g^l be the number of chromatically nonisomorphic
fc-colored graphs with p points and q lines, and let the corresponding
generating function be

ί>(P-D/2

( l ) g(Ά%)= Σ gf>q

<Z = 0

We first derive the number of bicolored graphs, k — 2, and then
discuss the formula for k — 3. The problem remains open for k > 2.

Received November 4, 1957, and in revised forms March 28, 1958, and June 16, 1958.
This work was supported by a grant from the National Science Foundation. The author
is deeply grateful to the referee for making several insightful comments of clarification.

1 This definition is different from that of Dirac [1]. According to Dirac, a graph has
chromatic number k if it is ^-chromatic but not (& —1)-chromatic as defined here.
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In precisely the form in which we require it, Pόlya's enumeration
theorem is reviewed briefly in §2 of [2]. Therefore, we shall not repeat
here the definitions leading up to it, but shall only restate the theorem
itself.

POLYA'S THEOREM. The configuration counting series F(x) is obtained
by substituting the figure counting series φ(x) into the cycle index Z(Γ) of
the configuration group Γ. Symbolically,

(2) F(x) = Z(Γ,φ(x)).

This theorem reduces the problem of finding the configuration count-
ing series to the determination of the figure counting series and the
cycle index of the configuration group.

2 Bicolored graphs the cartesian product of permutation groups*
Let Kn be the complete graph of n points, in which any two points are
adjacent. Let Kmn be the bicolored graph whose m + n points are
alf a2, , am, blf b2, , bn and whose mn lines are all those of the form

Clearly if a graph is ^-colored then its point set is partitioned into
k disjoint non-empty subsets such that no two points in the same subset
are adjacent. Hence a bicolored graph with p points is a " line-sub-
graph " (as in [3]) or a spanning subgraph2 of a graph Kmn for which
m + n = p. Let gmn>p be the number of chromatically nonisomorphic
spanning subgraphs of Kmn having q lines, and let

ran

( 3 ) Qmn(%) = ΣΣ

Then

(4) g,m(χ)= Σ flU«),

where the sum is taken over all m and n such that m + n = p. There-
fore in order to obtain a formula for the counting polynomial (4), it is
sufficient to find that for (3). In this section, we find gmn{x) for the
case mΦn using the " cartesian product" of two permutation groups.
In the next section we see that this combinatorial technique is not valid
for m — n and formulate gnn(x) in terms of the " exponentiation " of
the appropriate two permutation groups.

By Theorem 1 of [3], the counting polynomial gmn{%) for the

2 A spanning subgraph of a graph G is one whose set of points coincides with that
of G,
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number of spanning subgraphs of Kmn is obtained by substituting
1 + x into the cycle index of the line-group3 of Kmn:

(5) gU^^ZiΓ^K^l + x).

We note that this equation can also be obtained from the main re-
sult, equation (5), of [4]. For the subgraphs of Kmn correspond to the
different supergraphs of the union Km U Kn of two complete graphs on
disjoint point sets. The derivation of Z(Γj(Kmn)) f° r the case m φ n is
parallel to and algebraically simpler than that of Z(ΓΎ(K^)), which ap-
pears in §3 of [2]. Throughout the rest of this section we assume
m Φ n.

The line group of Kmn may be described as an appropriately for-
mulated product of the symmetric groups Sm and Sw. This product can
be generally defined for any two permutation groups in the following
way. Let A and B be any two permutation groups with object sets
X and F, degrees d and e and orders m and n respectively. The car-
tesian product A x B of these two permutation groups has degree de
and order mn. Its object set is the cartesian product of X and Y and
each of its permutations (a, β) is the cartesian product of permutations
a and β from A and B defined by (a, β)(x, y) = (ax, βy). As an abst-
ract group, the cartesian product is isomorphic to the direct product
AB, but they are not permutationally equivalent. For the degree of
the direct product is d + e since the group AB has X u Y as its object
set.

There is a precise method for finding the cycle index of a cartesian
product in terms of the cycle indices of the two permutation groups.
We first illustrate the method by finding Z^^K^)). The line group of
Kz3 is the cartesian product of S, and S3 which is a permutation group
of degree 6 and order 12, written ΓΊ(KΛ3) = S, x S3. Let αα, a, be the
indeterminates occurring in Z(S2) and blybIf b3 be those in Z(S Λ) so that

Z(S2) = \ (at + a,) and Z(SS) - \ (6? + 36A + 263) .

Then we write4

Z(Γτ(K2,)) = Z(S2 x S3) = Z(8t) x Z(S3)

? + 3(Xi x bj).z + 2a\ x bό + at x b[ + 3α2 x 6 ^ + 2α2 x δ3) ,

3 The line group Γχ(G) of a graph G is the collection of all permutations on the set
of lines of G consistent with the automorphism group Γ (G) of G; see [3].

4 By the following formulas we mean that the cartesian product of two permutation
groups can be extended to the cartesian product of their cycle indices in the indicated
manner.
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and give each of these six terms in Table 1, in which cλ to c6 denote
the indeterminates in Z{Γλ{K^).

Table 1

Term of Z(S2

 χ S3) a\ γ.b\ a\ x b\b2 a2 x 63 α 2 x 63 α 2 x b\b2 a2 x 63

Term of c\c\ c\ c\ cl c3

We illustrate Table 1 for the term a2 x b&λ. Let the 2-cycle (pλp2) stand
for at and the 1-cycle and 2-cycle (q1)(q2q3) for bλh2. The admissible lines
of Kx are only those of the form ptq3. The pair p1q1 is transformed
into p2qu and then back again to give the cycle of length 2 in the corre-
sponding permutation of /\(iΓ23) of the form (p^p^t). Similarly the
transpositions {pτq2 p2qd) and (pλq3 p2q2) are factors of this element of Γ^K^).
Altogether there are three transpositions, so the corresponding term of
ZCΛCiQ) is d

In general, we have

( 6 ) α îcφ . . . a^m x δ/iδ^ δ̂ » = Π (aχΛ x Hβ)

and

( 7 ) i bjβ - **>β*<* »

where cZ(α, /9) and m(α, β) are the greatest common divisor and least
common multiple.

The cycle index of Sp is

8 Z(8P) = - V Σ T j-.ΓT^-1—Γ^T Λ i l * * ^p ! co l J i^ i ! p ^ ^ p !

where the sum is taken over all partitions (j) = (jlf j2, , jp) of p such
that

Ui + 2j2 + + pi, = p .

The last four equations together with

(9)

provide a formula for ^mn(^) when m Φ n.
We use Table 1 to illustrate equation (9) by finding gjix). Here

) = }o (el + 3cld + 2cl + 4cl + 2c6) ,

so that
g2S(x) = 1 + x + Zx% + Sx3 + 3a;1 + af + xe .
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The bicolored graphs with two points of one color and three points of
the other color which correspond to the coefficients in the preceding
counting polynomial are shown in Figure 1.

• : < <

Fig. 1.

3» Bicolored graphs; exponentiation of permutation groups* We
now turn to the enumeration of bicolored graphs for the case m = n.
As in the preceding section, we again have equation (5) holding for this
special case:

gnn(x) = Z(ΓiKnn), 1 + x).

However, it is not true that Γ^Knn) = Sκ x SM since Sn x Sn is a proper
subgroup of Γ^Knn). The remaining (n\f permutations in Γ^Knn) are
obtained on interchanging the two colors in accordance with the defini-
tion of chromatic isomorphism.

Fig. 2.

For example, all the (chromatically nonisomorphic) bicolored graphs for
m — n = 2 are shown in Figure 2, so that g22(x) = 1 + x + 2x* + x> + x\
However, the formulas in the preceding section give

Z(S2 x S2,1 + x) = 1 + x + 3x2 + x3 + x*,

since the permutations in S2 x S2 distinguish between the two bicolored
graphs in Figure 3, in which the color assigned to each point is in-
dicated by one of the integers 1 or 2.

With the appropriate definition of group exponentiation, we will
express Γ^Knn) as Sn raised to the power S2. We first review the
definition of the " composition " of two permutation groups (the " Grup-
penkranz " of Pόlya [6]). Let A and B be any two permutation groups
as in the preceding section. Then using the notation of Pόlya [6] the



748 FRANK HARARY

composition A[B] of A with B has object set X x Y (as for the car-
tesian product). However, it is more convenient to regard the object
set here as a d by e matrix M = (xi3). Then the elements of A [B] are
the permutations of the entries of M constructed as follows. First
permute the rows of M in accordance with an element of A. Then
permute the column indices in each row separately using one element

of B for each row, repetitions permitted. Hence the degree of A [B]
is de and the order is mnd.

The exponentiation BA of A with B is that permutation group whose
object set is Yx

y the collection of all functions from X into Y, and whose
elements are constructed as follows. It is assumed that the objects
xXi xi9 •••, xd m X are indexed. First permute the objects in X in ac-
cordance with an element a of A. Then for each object x1 in X,
permute the e objects of Y into which it can be mapped, using a per-
mutation βi from B. More precisely each selection of a e A and
βiy fc"*,!5^ B (not necessarily distinct) determines a permutation of
Yx which takes the function / into the function / * defined by:

/*(α?f) = βifiaxt) for all x.t e X; i = 1, 2, . , d .

It can easily be shown that distinct selections of a, βu •••, βa lead to
distinct permutations of Yx and that these permutations form a group.

The degree of BA is ed and the order is mnd. It follows at once
from their constructions that the group BA and A[B] are isomorphic as
abstract groups. But they are not equivalent as permutation groups
since they have different degrees.

With this definition of exponentiation, it follows at once that the
line group of Knn is given by

(10) Γ^Knn) = Sg» .

Before calculating the cycle index of Sfj*, we illustrate for n = 2 and 3.
Since S?a = S2[SJ = D4, the dihedral group of degree 4 and order 8, its
cycle index in terms of the indeterminates cu c2, c3, c4 is given by

Z(D4) = A(cί + 3c2, + 2c\c2 + 2c,) .
o

The correct polynomial g22(x) which verifies Figure 2 follows at once from
this cycle index.
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For n — 3, let the object set of Γλ(KZ3) be denoted:

X = {11', 12', 13', 21', 22', 23', 31', 32', 33'} .

Then Γλ{Kπ) — Spa contains the (3!)2 permutations in S3 x S3 and also the
(3!)2 permutations obtained from these on multiplying each of them, by
the following reflection p which interchanges primed and unprimed digits
in the objects in X:

P = (11') (22') (330 (12' 21') (23' 32') (31' 13') .

Symbolically, we write

Λ ( i Q = 8f* = (S3 x S3) U P(S, x S3) .

Then

Z(S3 x S3) = - 1 -- (c? + 6c& + 8cS + 9dcJ + 12c3c6) ,

and a straightforward calculation gives (using not quite proper notation
since cycle index is defined for groups rather than cosets) :

3 x S3)) - -/o* - (6cK + 1&V5Ϊ + 12c3c6) .

Combining these, we have

1 + 24c3c6) ,

from which one readily calculates using (10) and (5),

g33(x) = 1 + x + 2x2 + Ax" + 5xι + 5x" + AxQ + 2x7 + xs + x9 .

We now proceed to obtain a closed formula for Z(S%?), thereby com-
pleting the explicit solution of the enumeration of bicolored graphs. The
process of finding this cycle index is also analogous to the calculation of
of ZiΓ^Kp)) which appears in §3 of [2]. Clearly, the automorphism
group of Knn is S2[SW]. For the complement K'nn consists of two disjoint
copies of Kn. By a result in Pόlya [6], the cycle index of the composi-
tion of two permutation groups is the composition of their cycle indices.
For example,

+ {a\

But we require here the cycle index of the line group of Knn. There
is a one-to-one correspondence between the terms of the cycle indices
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and ^(S2[SW]) with the same integral coefficients. Analogous to the
terms in the above illustration of ^(S2[S3]), let us write

(Π) Z(SlSn]) = h(Z(Sn)Y + Z(Sn(2))] .
Δ

Thus Z(SW(2)) is obtained from Z(Sn) on replacing each indeterminate /fc

by / „ .
The term of Z(Sg») corresponding to the first term of the right hand

member of equation (11) is Z(Sn x Sn). For bicolored graphs with m Φ n,
this is the result of the preceding section. The term of Z(S%2) corre-
sponding to the term Z(Sn(2)) of (11) is derived as follows. Let the
general term of Z(Sn(2)) be given by

(12) flift—f*.

This term (12) occurs in the cycle index of the point group of Knn.
We require the corresponding term in the cycle index of the line group
obtained by calculating the induced permutation on pairs of points from
two disjoint sets. Let the letters c* be the indeterminates in the cycle
index Z(8&). There are two contributions to Z(S§a) arising from (12):
those from each of the n factors fh separately, and those from pairs of

factors fj

2r f^s, r Φ s.

The contribution to the cycle index due to each factor in (12) is

It is convenient to express the contribution of fj* separately for k even

and k odd:

I (^kk/'zy%k y k even

fit -

Similarly, the contribution from pairs is given by

r < s ,f r f s + c r s
J 2r J 28 2m(r,s) '

where m{r, s) and d(r, s) are the least common multiple and greatest
common divisior respectively.

Collecting these observations, we find

*ή - hz(Sn x SJ + ZΓi, where
Li
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Z> = A. Σ nl c « v ^ ( | * ) π (
7l\ (J) ΣlkJkJkl Λ even 2fc A; odd

This formula for Z(S|a) together with equations (10) and (5) give the
number of bicolored graphs for m — n. For n — 3, this expression for
Z' specializes to that for Z(p(S3 x S3)) in the above example.

The only other known cycle index of the exponentiation of two
permutation groups also involves complex combinatorial calculations and
is worked out in Slepian [8]. Consider the counting polynomial bn(x) =
ΣfinmX™, where bnm is the number of symmetry types of boolean func-
tions of n variables having m nonzero terms when written in disjunctive
normal form. Pόlya [7] showed that

K{x) = Z(Qn, 1 + x ) ,

where Qn is the automorphism group of the %-cube. It is easily seen
that Qn — Sj?» and in fact Pόlya [7, footnote 7] comments that Qn and
Sn[S2] are isomorphic as abstract groups. Slepian [8] completed the
enumeration problem for bn(x) by providing a calculus for an explicit
formulation of Z(Sfn)f although using different terminology and notation.

It would be interesting to solve the general problem of obtaining
an expression for Z(BA) in terms of Z(A) and Z(B). This would be
analogous to equations (6) and (7) which give Z(A x B) in terms of
Z(A) and Z(B).

To summarize, the counting polynomial gmn(x) for bicolored graphs

is given by

(Z(Sm x Sn, 1 + x) when m φ n

t g i , 1 + x) when m = n .

4 k*colored graphs* We illustrate the general problem for k = 3.
Here we have, analogous to equations (3), (4) and (5), and with similar
notation:

(4') gf{*)= Σ flw(«),

(5') gmnt{x) = Z(ΓiKmnt\ 1 + x ) .

Thus Kmnt is the complete tricolored graph with m + n + t points

Vu Pz>' * * $ Pmf Qu $2, '•*, Qn, rlf r2, " ,rt and all mn + nt + tm lines of the
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form ptqjf qjTkf and rkpt. Similarly gmnt>q is the number of spanning sub-
graphs of Kmnt having q lines, etc. We distinguish between three cases:
(a) m,n,t distinct, (b)m = nΦt, and (c) m = n = t. These are illustrated
in Figures 4 (a), (b), and (c).

Fig. 4.

Only in case (a) have we obtained an algorithm for Z(Γ ίJζ.mn$) in
closed form. The result analogous to (9), derived in same manner, is
as follows. Let aλ to am, bL to bn, and cλ to ct be the indeterminates in
Z(Sm), Z(Sn), and Z(St) respectively. Let the indeterminates in (Γ^JS^))
be du dif . Let A, B, and C denote arbitrary terms of Z(Sm), Z(Sn),
and Z(St) respectively. Then in this notation the left-hand member of
equation (6) is A x B and the term of Z^^K^)) obtained from A, B,
and C is,

(15) (A x B){B x C)(C x A) ,

where each of the three factors in the expression (15) is a product of
the indeterminates d% using equations (6) and (7). For example,

Z{ΓlK^ί) - }o (d[ι + Sdldl + 2d\dl + didl + 3dΆ + 2d5dόd2)

is the cycle index of the line group of the tricolored graph Km shown
in Figure 4 (a).

Referring to Figure 4(b), one can find

)) - I (dl + 2dt + Mid] + d\) .

The group ΓΊ(Km) appears to be irreducible by any of the operations
of direct product, cartesian product, composition, or exponentiation.
However, it is abstractly isomorphic to D4 and can be obtained from
two copies of D± defined on disjoint object sets {1,2,3,4} and {5,6,7,8}
by the following operation.

Let the set X be the union of the disjoint sets Xλ and X2. Let A1

and A2 be permutation groups defined on Xx and X.z respectively, such
that h is an abstract isomorphism of A1 onto A2. Then the permutation
group Aj 0 A A2 can be defined as follows: The function / from X onto
X belongs to Ax φ Λ A2 if and only if there exist ax e A2 and at e A2
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with <x2 = hax such that f(x) = cφc) if xeX1 and f(x) = a2(x) if xeX2.
Clearly A = Aτ φh A2 is abstractly isomorphic to Ax.

Now let D4)1 be the dihedral group of degree 4 generated by the
permutations (1234) and (12)(34), let D4)2 be generated by (5678) and
(57)(6)(8), and let h be the isomorphism between them which preserves
respective generators. Then

Finally, it is easy to see that ΓΊ(K2n) is abstractly isomorphic to
S3[SJ and that

Z(Γi(Km)) = ^ [ ( c Γ + 3c& + 4c6

2) + 3-2(2^ + 2c3,) + 2 - 2 ^ + cζ)]

= -1-- {cf + Scfci + 4c6

2 + 8cl + Scl + Ylc& + 12cS) .
48

It is clear that the line group of Knnn is abstractly isomorphic to the
automorphism group of Knnn. Its complement K'nnn consists of three
disjoint copies of Kny so that the group of Knnn is /S3[Sn]. But an
explicit expression for Z^^K^) does not appear to be obvious. (For
the particular case n = 3, it can be shown that Γλ{K^) is permutationally
equivalent to S&.) It does not appear that the operations considered
here will suffice to enumerate even the tricolored graphs.

5 Connected k-colored graphs* Let

, v) = Σ g(pk)(χ)yp

be the generating function for all (connected or not) k-colored graphs,
and let c(x, y) be that for the connected ones only. Then to find the
number of connected A -colored graphs, we substitute into equation (33)
of [2] to get

(16) 1 + g{x, y) = exp (f, - ί φ w , yn))
n = l n

or equivalently,

(160 Σ — ΦΛ yn) = Σ ( " i r + 1 9n(χ,v)
n=Ί n w=i n

From either of these last two equations, the number of connected
ά-colored graphs of p points can be computed recursively in terms of the
total number of fc-colored graphs.
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6. Balanced signed graphs* Signed graphs are obtained by assign-
ing either a positive or a negative sign to each line of a graphs. It was
indicated in [5] how one could enumerate all signed graphs by a varia-
tion in one of the formulas of [2]. The sign of a cycle is the product
of the signs of its lines, and a signed graph is balanced if all its cycles
are positive. The problem of enumerating balanced signed graphs was
proposed in [5]. The result is derivable by an appropriate modification
of the generating function for bicolored graphs.

It was shown in [5] that a signed graph is balanced if and only if
its set of points can be partitioned into two disjoint subsets such that
each positive line and no negative line joins two points in the same sub-
set. In view of this characterization, called the " structure theorem for
balance ", on deleting all the positive lines of a balanced signed graph
one obtains a bicolored graph. Let Gt and G% be arbitrary graphs with
m and n points respectively, m < n, and let p = m + n. Let Γ(Gλ) and
Γ(G2) be the groups of Gτ and G2 respectively. Let bq(Gu G2) be the
number of nonisomorphic balanced signed graphs with q negative lines,
whose positive lines generate the (disjoint) graphs Gt and G2 in accord-
ance with the structure theorem for balance. Let

6(Gi,G,, a?) = Σ &«(<?!, W
<2 = 0

be the desired configuration counting series. Then the figure counting
series is 1 + x. For the figures are the mn pairs of points (c, d) where
ceG1 and d e G2. The content of a figure (c, d) is 0 if c and d are not
joined by a negative line and is 1 if they are.

Analogously to the situation for bicolored graphs there are two pos-
sibilities. If Gx and G2 are not isomorphic, then the configuration group
is Γ(G^) x Γ(GZ). But if they are isomorphic, the configuration group is

Hence an application of Pόlya's Theorem yields

(17) b(Glf Gt, x) = f ( Γ ( G l ) X Γ ( ^ ' X + x) W h e n ^ * G

I y , + x) when Gx ~ G

It is clear for the special case where G1 and G2 are the totally discon-
nected graphs of m and n points that b(Gu G2, x) = gmn(x), Γ(Gλ) = Sm,
and Γ(G2) = Sn. Thus the formula (17) is a generalization of that for
bicolored graphs.
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CENTRALIZERS IN JORDAN ALGEBRAS

BRUNO HARRIS

Introduction. The aim of this paper is to prove for Jordan algebras
some theorems on centralizers of subalgebras analogous to known results
in the theory of associative algebras (contained in [6, Chapter 3] and
[7, Chapter 6], for instance).

The definition of the centralizer of a subalgebra in a Jordan algebra
is based on the concept of " operator commutativity" introduced by
Jordan, von Neumann and Wigner in [17]: two elements x, y of the
Jordan algebra J operator commute if the operators Rx: a -»ax and
Ry: α -» ay, acting on J, commute, that is (ax)y = (ay)x for all elements a
of J. In § 1 we study this concept, extend the results of [8] to algebras
over fields of characteristic not two, and show that for many types of
Jordan algebras obtained from associative algebras by introducing the
Jordan product aob — ab + ba (ab the associative product), the centralizer
of a subalgebra is just the set of elements commuting in the associative
multiplication with the elements of the subalgebra. Thus some of our
later results can be regarded as generalizations of the associative algebra
results if we convert the associative algebras into Jordan algebras by
means of the Jordan product.

In §2 we generalize some of the theory of a single linear trans-
formation in a finite dimensional vector space (see [6, Chapter 3] and
[13]) to the subalgebra generated by a single element in a simple finite
dimensional Jordan algebra. We show that such a subalgebra is equal
to the centralizer of its centralizer, and we also generalize to any central
simple Jordan algebra a formula of Frobenius giving the dimensionality
of the centralizer of a single linear transformation in terms of the
degrees of its invariant factors. A special case of this formula—namely,
the formula for the central simple Jordan algebra of all symmetric
matrices—was proved earlier, and by a different method, by H. Osborn
(to appear in these Transactions).

In §3 we study the centralizer theory of a simple subalgebra in a
central simple Jordan algebra. We show that the analogues of the
centralizer and double centralizer theorems for simple finite dimensional
subalgebras of the associative algebra of all linear transformations on
a vector space ([15]) also hold for simple finite dimensional Jordan sub-

This paper was originally accepted by the Transactions of the American Mathematical
Society, Received July 10, 1957, by Trans. Amer. Math. Soc. Most of the material of this
paper is contained in the author's doctoral dissertation, Yale University, 1956. Some of
the results were presented to the Society in October, 1955 and April, 1957. The author is
a National Science Foundation Postdoctoral Fellow, 1956-57.
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algebras of the Jordan algebra of all self-adjoint linear transformations
on a vector space with inner product. Incidentally we show that some
of the results of [15] can be generalized from the class of rings of all
continuous linear transformations on a vector space to the larger class
of primitive rings with minimal ideals. In the same way the Galois
theory of automorphisms of [16] can be generalized to primitive rings
with minimal ideals.

In conclusion we would like to express our gratitude to Professor
Nathan Jacobson who suggested these problems and gave much stimulat-
ing advice.

Preliminary Notions* A Jordan algebra is a linear algebra, whose
multiplication we shall denote by x o y, satisfying the following identities

( 1 ) Xoy=yox

( 2 ) ((x o x) o y) o x = (x o x) o (y o x) .

We shall always assume that the base field has characteristic different
from 2.

A special Jordan algebra is a subspace of an associative algebra
(with associative multiplication xy) closed under the composition xoy^z
xy + yx. The special Jordan algebra whose underlying vector space
coincides with that of the associative algebra SI and whose multi-
plication is x o y = xy + yx (xy the multiplication in 21) will be denoted
by δίj. If 31 is an associative algebra with an involution, the subset of
elements left fixed by the involution is also a special Jordan algebra,
which will be denoted by ί?(2I). The same notation will be used for the
set of elements left fixed by an involution in a possibly non-associative
algebra 21: this set may or may not be a Jordan algebra.

We shall have to consider sometimes matrix algebras with coefficients
in a (possibly non-associative) algebra with identity element. A set of
matrix units in an algebra of all n x n matrices (n ̂  2) will mean a set
of elements eiJf i, j = 1, , n which associate with every pair of elements
of the algebra (i.e. lie in the nucleus) and satisfy

( 3 ) eijβu — djAi (δjk the Kronecker delta)

βπ + * + &nn = 1> the identity element.

If we consider Jordan algebras (with identity) of all hermitian matrices
with coefficients in an involutorial algebra we are led to consider elements
(which we shall also call matrix units) eii9 uu with i < j , i,j = 1, ..., w,
n ^ 3, such that

( 4 ) βH o eu = 2eu , eu o utJ = ui3 , ui5 o ui3 = 2(eu f eυ)

Uij ° ujk = uik if i, j , k are distinct, Yβu = 1
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and all other products are zero. As shown in [9], Th. 9.1, any set of
elements eiu ui} satisfying (4) leads to a representation of the Jordan
algebra as the subalgebra of n x n hermitian matrices of an algebra Sίj
where 31 is the algebra of all n x n matrices with coefficients in an in-
volutorial algebra, and, if fi3\ i,j = l,...,n are the matrix units in 31,
then

( 5 ) fu = eu , utJ = ftj + fji (i < j) .

If the base field is algebraically closed and $ is the exceptional
simple Jordan algebra of all 3 x 3 hermitian matrices with coefficients
in the Cayley algebra, then given elements eu, i = 1, 2, 3, in $, satisfy-
ing eu o βjj =28^j we can find elements uvz, ul3 (in many different ways)
satisfying ul2 o ιι12 = 2(eL1 + e22), u13 o u13 = 2(en + β33) such that the eti, uvzy u13

and u2d — un o %13 satisfy the conditions (4) and hence are the ' ' matrix
u n i t s " of another representation of ^ as 3 x 3 hermitian matrices with
Cayley number coefficients.

Finally we shall summarize briefly the classification of the finite
dimensional central simple Jordan algebras. For further references
about classification, structure, or representation theory of Jordan alge-
bras, one should consult [9].

First, assume the base field algebraically closed. Then the algebra
has an identity element if the identity element can be written as a
sum of n, but not more, mutually orthogonal idempotents, then the
algebra is said to have degree n. (β is an idempotent if βoβ = e).

If n = 1, then the algebra is one-dimensional, [10]. If n = 2, the
algebra is a vector space direct sum of the subspace generated by 1
and of a vector space V of dimension at least 2 with non-degenerate
symmetric scalar product. The multiplication is

(αl + x) o (βl + y) = [aβ + (x, y)]l + ay + βx

α, β scalars, x, y in V and (x, y) their scalar product. Such an algebra
is said to be of type D.

If n ^ 3, there are 4 types : A, B, C, E. Types A, B, C are special,
while type E is the exceptional algebra described above. To each of
the types A, B, C (and also to D) corresponds an associative algebra 11
such that if the corresponding Jordan algebra is contained in an algebra
Sίj, 3ί associative, then the associative subalgebra of Sί generated by $
(enveloping algebra of $) is a homomorphic image of U.

Type A: ^ = Sί̂ , §t the associative algebra of all n x n matrices
over the base field, n ^ 3. U = 21® 2ΐ

Type B: $ is the algebra of all n x n symmetric matrices, n ^ 3.
U = §ί (21 as for type A).

Type C: $ is the algebra of all 2n x 2n symplectic-symmetric
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matrices, isomorphic to the set of all self-adjoint linear transformations
on a vector space V with non-degenerate skew-symmetric scalar product.
U is the algebra of all linear transformations on V.

Type D: U is the Clifford algebra determined by the space V and
the inner product.

If the base field is not algebraically closed, then the algebras which
become of type A on extension of the base field are of two subtypes:

Aλ\ $ = H(W), 31 a simple algebra with involution such that the
involution is not the identity automorphism on the center of SI. U — 31.

A2: $ = 31 j , 31 a central simple associative algebra.
U = 3I®3I', 3Γ anti-isomorphic to 31.

The algebras that become types B or C are of the form $ = iϊ(3I),
31 simple involutorial with the involution acting as the identity auto-
morphism on the center. U = 31.

Algebras of type D over an arbitrary base field are as described
above for an algebraically closed base field. 11 = C, the Clifford algebra.

Algebras of type E need not be algebras of all 3 x 3 hermitian
matrices if the base field is not algebraically closed, according to recent
unpublished work of A. A. Albert.

Section 1* Operator Commutativity We will consider Jordan alge-
bras over fields of characteristic different from 2 this assumption on
characteristic will be made throughout this paper.

The concept of Operator-Commutativity, introduced by Jordan, von
Neumann and Wigner in [17], is the natural analogue of the concept
of commutativity of two elements in an associative algebra, as some
of the following propositions will show. Some of these results were
proved for characteristic zero in [8].

Let S be a Jordan algebra, x and y elements of $. Let x o y denote
their product and write x2 for i(χoχ). We denote by Rx the linear
transformation a -> a o x acting in $.

DEFINITION. TWO elements x, y of $ operator-commute (we will
write also: o-commute) if RxRy = RyRx.

The set of elements of $ o-commuting with x will be denoted by
©s(#). If $ is a subalgebra of $, the set of elements of $ o-commuting
with all elements of β will be denoted by Ks(β).

If 31 is an associative algebra and 33 an associative subalgebra, we
will wτrite (£$(23) for the subalgebra of elements of 31 commuting with
the elements of S3. &2ί(3l) is the center of 31—its elements will be
called "central".

The following example, due to McCoy [14], and Jacobson [8], shows
that the set &%(x) of elements of $ o-commuting with an element x of
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3> is not necessarily a subalgebra of S : S will be a special Jordan
algebra (product x o 2/ = xy + 2/0?) consisting of 6 x 6 matrices whose
coefficients are rational numbers, namely the Jordan algebra over the
field of rational numbers generated by the following matrices α, δ, 1
(using ekl to denote the matrix with 1 in the k, I position and zeros
elsewhere, k, I = 1, ..., 6) : a = eu + e25 + 2βί6, h = β4a + e53 + e65, and
1 — eu + + e66. Let c = αδ — &α, then c = β12 + β23 + ei5 and c2 =
βχ3 Φ 0. Also αc = ca, be = cδ, so that c commutes with every polynomial
in a and δ. Consider now &%(a): we claim (£s(a) contains 6 but not δ2.
The equation (α o x) o 6 = α o (# o 6) becomes, on replacing y ozby yz + zy,
[[α, &], a;] = 0 where [y, z] denotes yz — zy. But [α, 6] = c and c clearly
commutes with every element of the Jordan algebra generated by a and
δ, so δ o-commutes with a. We compute [α, δ2] and show this element
does not commute with every x in $ :

[α, δ2] = [α, 6]& + δ[α, δ] = be + cδ = 2δc = 2[α, δ]δ

[[α, δ2], α] = 2[δc, α] = 2[δ, α]c + 26[c, α] = -2[α, δ]c = -2c 2 as [α, c] = 0

but & Φ 0, and 2c2 Φ 0, thus δ2 is not in (£s(α). We note also that δ
does not o-commute with a1 and that [α, δ]2 Φ 0.

In the preceding example, δ did not o-commute with all elements of
the subalgebra generated by a and 1. One may ask whether (£s($) is
a subalgebra if ® is a subalgebra. This is so in many cases, as the
following propositions will show, and we conjecture that it is true in
general. Some of the following results were proved in [8] for charac-
teristic zero.

We say a finite dimensional Jordan algebra $ over a field F is
separable if it is semi-simple and the algebra $ ® F E obtained by
extending the base field to E is also semi-simple for any extension field
E of F. We note at this time a few simple facts about the effect of
field extension on centralizers: if x and y are elements of $, they 0-
commute in $ if and only if they o-commute in $ (x) E also, since the
equation RaRb — RbRa expressing that two elements a and δ o-commute
is linear in each, it follows that if S is a subalgebra of $, then
©8®ί?($ (x) E) = Ks($) (x) # , and this allows us to extend the base field
in many of our arguments.

PROPOSITION 1.1. Let $ be any Jordan algebra (possibly infinite
dimensional), B a separable subalgebra. Then (£s(S) is a subalgebra of

Proof. First we show that if β is an idempotent in $, then
is a subalgebra. Let $ = So + 3»i/a + Si be the Peirce decomposition of
S relative to e, i.e. $ 4 = {x e J | β o a? = ix], i = 0, 1/2, 1. (We will also
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write $β(i) for &.) $ 0 and & are subalgebras, and ^ ^ = 0, $0$i/2 S Sfi/3,
3L$I/3 S 3ίi/2- From these relations it follows that Ss(β) = & + & : let
x be in Kg(β), and let x — xQ + #J/2 + #L, ^ in $i Then 0 o (e o #) =
# o (e o 0) = x o 0, but a? o β = (l/2)#1 / a + a?x, and e o (# o β) = (l/4)a?1/2 + a?lf

so α1/a = 0 and x is in $ 0 + &. Conversely, let a; be in $ 0 , 2 = z0 + zm + z1

in $. a? o (β o z) — x o [(l/2)s1/2 + JSJ = l/2(a? o zφ), whereas e o (x o z) =
e o (x o zQ + x o z1/2) — Ij2(x o zφ) since x o z0 is in 3»0, ^ o ̂ 1/2 is in 3f1/a

thus x o-commutes with β, and similarly if x is in $1 it o-commutes with
e. On extending the base field F of 5̂ to its algebraic closure, ffi remains
semi-simple, and we will conclude the proof by showing that a semi-
simple Jordan algebra over an algebraically closed base field has a basis
consisting of idempotents—for if el9 ...,en are this basis, then (£s(&) is
the intersection of all the &S(A) and the latter are subalgebras. From
the structure theory, it is known that S is a direct sum of simple
algebras, and each simple algebra is either of degree one, i.e. of the
form F e, e an idempotent, or else is a vector space sum of algebras
of degree two. An algebra of degree two has a basis of elements
eu e%, xl9 ..., xn where the et are idempotents with eλ + e2 = e being the
identity element of the algebra, and xt o χi — β. Then l/2(β + xt) is also
an idempotent, and ely e21 l/2(e + Xχ)f ..., l/2(β + xn) is a basis consisting
of idempotents, which we had to show.

The next proposition shows that for a large class of special Jordan
algebras, including all that we will be concerned with in later sections,
the set of elements o-commuting with the elements of a subalgebra is
the same as the set of elements commuting with them in the associative
multiplication. In particular, if $ = 315 is such an algebra, where 3ί is
associative, and ί£ = 33j? where 95 is an associative subalgebra of 21, then

PROPOSITION 1.2. Let 3 be a special Jordan algebra with envelop-
ing associative algebra 21, and assume 31 has no central nilpotent elements
(e.g. 31 any semi-simple algebra). Let S be a Jordan subalgebra of $,
y an element of $. Then y is in (£$($) if and only if xy = yx for all
x e Si. Thus (£s($) consists of all elements of $ commuting in the
associative multiplication with the elements of ®, and @s(®) is a sub-
algebra of 3f.

Proof. We make extensive use of the assumption that 2 ^ 0 . Also,
we note that the equation z(RxRy — RyEx) = 0 is equivalent to [|>?/]2]
= 0, where [α&] = ab — &α. Let now x e S, y e (£s($). Since β is a
subalgebra, # o α? = 2x<i e β, and x1 e ^ so that [[#2/M — 0 a n ( i [[̂ 22/]̂ ] = 0
for all z e 3f. Since 2ί is the enveloping algebra of Qf, [xy] and [α;2 ]̂
are in the center of 21. But [x'y] = \xy\x + x\xy] — 2x[xy] since [xy] is
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in the center of 3ί. [x2y] e the center of 21 implies that

0 = [y[x*y]] = 2[y, (Φy~m = 2[yx][xy] + 0 = ~2[xyf .

Thus [xyf — 0, so by hypothesis on Si, [xy] = 0. Conversely, if [xy] — 0,
then [[##]2] = 0 so that x o-commutes with y. The statements on &s($)
now follow.

Let 31 be a possibly non-associative algebra with multiplication
denote by xy. We again introduce the new multiplication x o y =
xy + ?/#. Let 35 be a subspace of 3ί closed under x o y, then we
denote by Rv the operation x -> x o y — χRy acting in S3, where x, y are
elements of 33. As before we say x and y o-commute if RXRV = i ? ^ .
We can make a remark in case 3ί is a matrix algebra with canonical
involution and S3 is the set of self-adjoint elements (see [9]), i.e. 3ί is a
matrix algebra Dn over an algebra D with identity 1 and involution

d~>d in D, and 31 has involution a = Σi,Ai3ei5 -> Σ*,j?71dίj7'<0ji where
the β t j are matrix units, γλ = 1, γ2, ..., r« ^ r e self-ad joint elements of the
nucleus of D having inverses, and n ^ 2 S3 is the set of self-ad joint
matrices, denoted by H(Dn). Such algebras have been studied in [9],
and include all simple Jordan algebras of degree greater than two over
algebraically closed fields.

LEMMA. Let 3ί = Dn be a matrix algebra with canonical involution,
93 = H(Dn), x, y elements of S3. // x and y o-commute, then [xy] — d /,
where d is a skew element of D, and I is the unit matrix.

Proof. Since x and y are self-adjoint, [xy] is skew. S3 contains the

elements eu and d[i, j] = detj + yildy%en for i Φ j . Since x and y o-
commute, we have (eu o x) o y = (eu o y) o x, which is equivalent to [0ϋ[#?/]]
= 0, i = 1, ..., n, since eu is in the nucleus of 3ί. The matrix [xy] thus
has zeros off the main diagonal. The elements l[ij] = etj + yj^tβ^ are
in the nucleus since the y% and ei5 are, so that

K^u + rjYίβjO, M ] = 0
or

edxy] + yj^iβjlxy] = [χy]ei3

Denote by \xy\iS the i,j entry of [xy] for i,j — l,...,n. Then

[αs/L^ + yj'ylxy^iβji = [^J^β^ + M ^ r j Y ^ ^ for i ^ j .

Since the coefficients of βfj in the above equation must be equal,

= d for all i, i .

Thus [ίc?/] = d/, ^ = — d, which completes the proof.
From this lemma we can derive conditions for the centralizer of a
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subalgebra of H{Dn) to consist of the matrices commuting with the
matrices of the subalgebra. We denote by Z the set of elements of D
commuting with every element of D, and by N (nucleus) the set of
elements of D associating with every pair of elements of D.

PROPOSITION 1.3. Let S3 = H(Dn), n^2.
(a) Let n not be divisible by the characteristic of F. If x and y

are two matrices of S3 such that the coefficients of x commute with
those of y and if x and y o-commute, then they commute. In particular
if x has coefficients in Z and y o-commutes with x, then xy — yx.

(b) Let & be a subalgebra of H(Dn) such that every element of ®
has coefficients in N, the nucleus of D. If Z contains no skew-elements
whose squares are zero then y is in (£»(®) if and only if xy — yx for
all x in $, so (£$($) is a subalgebra. In particular, if D is associative
with no central skew elements of square zero, the conclusion holds for
any subalgebra $ of H(Dn). If 33 is an exceptional simple Jordan
algebra, then D is a Cayley algebra and Z — N — F 1, F the base
field, so that the conclusion holds for subalgebras $ whose elements have
coefficients in F.

Proof, (a) By the lemma, if y o-commutes with x, then [xy] — dl,
d 6 D, I = identity matrix. Let us now take the trace of the elements
on each side of this equation. If the coefficients of x commute with
those of y, then tτ(xy) = tr(yx) so tr{\xy\) — 0 = tr(dl) = nd. Since
nd = 0 implies d = 0, xy — yx.

(b) Let every x in B have coefficients in N. Then (xy)z = x(yz)
for all y,z e Dn. Let now y e ©$($). Then (# o z) o 2/ = (?/ o 3) o a? for
all z in 33, which is equivalent to : [[#?/]£] = 0 for all z in 33. \xy] — dl,
so dzij — Zijd for each coefficient zi5 of 2. Since n ;> 2, for any a e D,
there is a 2 in 33 with #12 — α. Thus d is in Z. Since #2 is in $t also,
[#22/] = / / where / is a skew element of Z. The calculation of Proposi-
tion 1.2 is still valid since x and x1 associate with any two elements of
33, and we conclude that d2 = 0 and so d = 0, or xy = ?/#. The remain-
ing statements of the proposition are now obvious.

PROPOSITION 1.4. Let Wl be an exceptional central simple Jordan
algebra, and 5£ a separable subalgebra of Tl containing the identity.
Then Kaκ(S) is separable, and, if the base field is algebraically closed,
2Jί can be represented as an H(C3) such that (£gjί(fi) consists of the
matrices in 9Jϊ commuting with those in &.

Proof. We first assume the base field F algebraically closed, and
$ semi-simple. 9Ji is then of degree 3, i.e. if 1 = et + + βr, β%

primitive mutually orthogonal idempotents in 9Jί, then r = 3, and 2Ji is
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a vector space sum Σ« j ^ u > i ^ 3> i> 0 = 1, 2, 3 where

Win = {x e MI 0« o x = (l/2)a? = ^ o #} for i =£ i, and

3Jίu = {a? 6 Λf I β4 o x = x] = Fβf .

These facts limit S to a few possibilities:

1. $ not simple: then S = S 1 9 φ S r , ®t simple and r = 2 or
3, since the identity element 1 of 33ΐ is also in ®, and ! = % ! + • • • + % „
%i the identities of $ΐim

(a) r = 3. Then ul9 u2, u3 are primitive (in 9Ji) orthogonal idem-
potents and each S4 is of degree 1 so that we may take ei = %4. We
now represent 3W as fl"(C3) with β4 = (l/2)0f4. We have S4 = 2 ^ and
eaR(Λ) = n4esw(β4). But <εsκ(β,) = 2tt4< + 271^ + 9Jϊjfc + m^ where i, A;
^ i since with respect to ei9 Tlτ — 5Πii4 and 2Jf0 = Σj.^t^ΠljΛ Hence
(Ea^β) = Sΰlu + 9Ji22 + 9Ji33 = β. It is clear that the matrices of <£a»(iB)
commute with those of ϋ . Conversely, any matrix commuting with elf

©a, β3 is a linear combination of ^, e2, e3, and thus in Saκ(S).

(b) r = 2. Then 5Ϊ = ^ x φ ^ 2 and β t has identity n%. Since 1 =
nx + %2, one of the ut must be primitive in 2JI, say %], and the other
one not: uL — eL, u2 = e2 + 03, e4 primitive orthogonal idempotents. Again
write 9Jί = H(C3), (l/2)0it = 04. Here there are two cases

(i) ίϊ!2 is of degree one: 5Ϊ2 = i*^2. Since ίϊj = i^^i,

n ( 2 )
9Jί22 + m 2 3 + aκ3 3) n

But 3Dΐ22 + 2JΪ23 + 3Jί33 is a simple Jordan algebra Tin of degree two, so
that Kaκ(β) = 3ftu φ 3Kπ is semi-simple. The matrices of ©gκ(ίt) are
evidently just those matrices commuting with e1 and eλ + β3 and therefore
with the matrices of S.

(ii) β 2 is of degree two: ^ = 0̂  + 03 where both e.λ and ez are in
S2. Then β.2 is a simple Jordan algebra of degree two, and so contains
an element a with a o α = 4(e2 + β3), α 6 3Ji23. Since 0X, β2, e3 all belong to

S ^ 1 + Fe2 + Fβ3. Also, since eaRfa) = 2Jίπ + % + 90ΐ23 + 3W33

we see that Fβx o-commutes with £, i.e. Fβx s fejc(^). Let now
βe3 belong to ESDΪ(^) : then this element o-commutes with α, so

[0a o (αβ2 + /?03)] o α = ae2 o α = (l/2)αα = (β2 o α) o (ae2

Thus α = /9, i.e. Kgκ(fl) s ί7^ + F(β2 + β3). On the other hand, (e2 + β3)
e <εaκ(S£) since S E 3TOX1 + % , so Ssw(^) = Fex + F(β2 + β3), and evident-
ly these matrices commute with the matrices in ί£. Conversely, let
x — ̂ ii^jxij> χij e 9Jiίj, commute with the matrices of Si. Since elf e2, e3
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are in Sϊ, x = αex + βet + re3. Letting β4J, i φ j denote the matrix units,

the element α of S can be written as a — de23 + de32, d an element of

C, and ao a — A(dde2 + dde3) = 4(#2 + e3), thus dd — dd — 1.

ax = (de23 + de^)(aeL + βe2 + γe3) = (l/2)(dre& + dβe32) a, β,γ e F .

xa — (aeλ + βe2 + γe^{de^ + cte32) = (ll2)(βde2S + yde32) .

Since we are supposing α# = #α, we have βd — dγ, but dγ = yd as 7* 6 ί7,
so /9 = 7-, i.e. x = aeL + β(e2 + e3) and a? is in

2. β is simple then ffi has degree one, two, or three
(a) β has degree one: S = F 1. Then (£2κ(S£) = 9Jί, and the

matrices of 501 commuting with those of ® are just the elements of Satt(®).
(b) fi has degree two : we show this is impossible. For let 1 =

uλ + u2, Uι primitive idempotents in $. Then, as in case lb, we may
assume ut is primitive in 3D? and u2 not, so that ux = elf n% — e2 + e3.
Since $ is simple of degree two, it contains an element x such that
x o x =z 2x2 = u1 + u2 and uλoχ = (l/2)a? = ^ o #. Let a? = Σi^j^j* χi5 m

SDΪίj. Since βx o α? = (l/2)α;, α? = xn + a?13, therefore x o a? = a?12 o a?12 +
^13 ° #13 + 2# 1 2 o a?13. B u t

xi2 o a 12 = χfa + βa), a?13 o x13 = λ2{eλ + e3), λt e F, xl2 o xl3 e 9Ji23

so a; o x — (λx + i2)eL + ^ ^ + ^2β3 + 2#12 o x13 — uλ + n2 — eL + e2 + β3. Since
9Jί is a direct sum of the SSJli)f 2x12 o αr13 = 0, ^ + λ2 = 1, ^x = 1, λ2 = 1,
a contradiction.

(c) ffi has degree three : Then S contains idempotents ^, e2, e3 and
the subspaces ^ = $ 0 5 0 ^ are all non-zero. $ contains the subalgebra
$11 + fiaa + 2̂3 + $33 of the type considered in lb (ii), and the centralizer
of this subalgebra, as well as the set of matrices commuting with its
elements, is Fe1 + F(e2 + e3). Arguing the same way but replacing the
index 1 by 2 and then 3, we see that Ea«(β) = F(e1 + e2 + e3) = F 1,
and that any matrix commuting with the elements of ί£ is in F- 1.
Conversely, the matrices in FΛ obviously commute with those in $. We
have shown that in each case Kaκ(β) is semi-simple.

If now F is not necessarily algebraically closed, the centralizer of
& in 2JΪ remains semi-simple on extending F to its algebraic closure, so
that ©g#(S) is separable. Also, in the algebraically closed case, we have
shown that for every β there is a matrix representation of 9Jί such
that the elements of Eg#($) are represented by the matrices commuting
with the matrices representing the elements of ££. This concludes the
proof.

2. Subalgebras Generated by a Single Element. In this section we
study the centralizer and double centralizer in a central simple Jordan
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algebra of the subalgebra generated by one element, and generalize to
Jordan algebras some of the known results on simple associative algebras
contained in, say, [6], Chapter 3.

If x is an element of $, we denote by (x) the subalgebra generated
by x and 1. The following facts are known about ©s((a?)) if $ = Sίj and
SI is the associative algebra of all n x n matrices over a field F:

1. Let x have invariant factors δl9 ,δr of respective degrees
dx ^ d2 ^ ^ dr. Let (F[λ~])r be the algebra of all r x r matrices with
coefficients polynomials in an indeterminate λ, (δ) the matrix diag
(δi(λ), , δr(λ)) and S3 the subalgebra of matrices (α) in (.F[Λ])r such that
(cc)'(δ) = (<?)(/?) for some (/?) in (F[Λ])r, which condition we will also write
as (δyWiδ) = (β) e (F[X])r, (a)' denoting the transpose of (a). Let 5R
be the ideal in 93 of matrices of the form (β)(δ). Then &w((x)) is
isomorphic to 33/3Ϊ, so that by the results of section 1, (£s((#)) is
isomorphic to 83^/9 .̂ From 1. easily follows the following theorem of
Frobenius :

2. Let x be as above with invariant factor degrees dL^ ^ dr.
Then ©2l((α)) is of dimension Σί:1

0(2fe + l)dfc+1.

3. Finally, ©5ί(S5ί((̂ ))) = (a?).

We will give appropriate generalizations of these results for Jordan
algebras. The method will be to examine one by one the various types
of simple algebras. In this way we will obtain some information on
each of the various types of simple Jordan algebras, but it would also
be interesting to have a general method which works for all the algebras
at once.

Since all the special algebras $ that occur will have semi-simple
enveloping associative algebras, we will be able to apply Proposition 1.2
to obtain that Ks((a?)) is just the set of elements of $ commuting with
x. Proposition 1.3b will be used in a similar way for the exceptional
algebras.

In most proofs the key case will be that of a nilpotent element x,
and the reduction to that case will be made by using a special case of
the decomposition of an associative algebra over a perfect field into a
direct sum of a semi-simple algebra and the radical: if we consider the
associative commutative subalgebra (x) of ^ and decompose it, then we
can write x — s + n, s a linear combination of orthogonal idempotents
β4 in (x) and n a sum of nilpotent elements nt in (x) such that e^ = ni9

ejΐbi = 0 for j Φ i.

The known theorems about the algebra of all linear transformations
quoted above are best proved by considering the vector space V on
which the given transformation x acts as a module over a principal ideal
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ring and decomposing it into a direct sum of cyclic modules. If we are
interested in vector spaces with inner product we have to try to obtain
orthogonal decompositions into cyclic subspaces. This is done in the
first two lemmas (which are essentially known, see e.g. [13], last
chapter, for algebraically closed fields, but hard to find in the literature
in a form useful for us).

Let V be a finite dimensional left vector space over an involutorial
division ring D. We will use the letters x, y, for elements of F, α,
β, for scalars in D, a -» a' denoting the involution, and A, N, for
linear transformations. We will assume V is a self-dual space, i.e. it
has a non-degenerate scalar product (x, y) which is either hermitian:
(y} x) = (x, y)', (ax, βy) = a(x, y)β', or else alternate : (x, y) = — (y, x) and
D is a field with a! — a. V will be called hermitian or alternate,
respectively. The characteristic is assumed to be different from two.

LEMMA 2.1. Let V be a finite dimensional self-dual hermitian space
over Ό, and F the subfield of self-adjoint elements of D. Let A be a
self-adjoint linear transformation which is algebraic over F, i.e. A
satisfies a polynomial equation over F, and assume also that ifDΦF
then the roots of this equation lie in F. Then V can be decomposed into
a direct sum of mutually orthogonal non-isotropic spaces which are
indecomposable cyclic for A. If A is nilpotent, then each cyclic subspace
has a basis of the form {x, xA, , xA71'1} such that (xA% xAj) = 0 if
i + j Φ n — 1, and (xA\ xA71'1'1) — μ for all i, μ a self-adjoint non-zero
element of D.

Proof. If the minimum polynomial of A over .Fhas distinct prime
factors, then corresponding to these there exist mutually orthogonal
idempotents Et with sum 1 which are polynomials in A with coefficients
in F, and so are self-adjoint. Then V= Σ θ VEi, and (VEt, VE3) =
(VEtEj, VEj) = 0 for i Φ j . Thus the Vt = VEt are mutually orthogonal
and so are themselves hermitian self-dual spaces, and the linear trans-
formation induced by A on each of these satisfies a primary polynomial
p(λ)n over F. Thus it is sufficient to assume the minimum polynomial
of A over F is of the form p(λ)n, and by assumption p(λ) = λ — a, a in
F, if D is not equal to F. Moreover, if p(λ) = λ — a, then it is
sufficient to prove the first statement of the lemma for A — al instead
of A, that is, we may assume A nilpotent if D is not F. In what follows
we will often write p or pr for p(λ) or p(λ)r, and if m(λ) is a polynomial
over F in the indeterminate λ, we will write zm(λ) or zm for zm(A)y if
z is in V.

If a? is a vector of order pr, that is, xp(A)r — 0 and xm(A) = 0 im-
plies that pr divides m, then the vectors xA° = x, xAs, 0 < s < degree
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of pr, form a basis for the cyclic subspace generated by x. This is
well known if D — F, and if D φ F, then p(λ) = λ and so xAr = 0,
xAr~1 Φ 0, and it is easy to check that the vectors x, xA, , xAr"1 are
linearly independent over D. We also note that p(λ)n

f the minimum
polynomial of A over F, is also the minimum polynomial of A with
coefficients in D, since if p(λ)n = λn, the only monic factors of p(λ)n are
the polynomials λr which have coefficients in F. From now on all poly-
nomials we will consider will be assumed to have coefficients in F.

Since p(λ)n is the minimum polynomial of A over D, there is an x
in V of order pn. Let U be the cyclic subspace generated by x, and
suppose U is isotropic. We show that this implies (xpn~ι, x) = 0 : first
let D — F} and let xq(A) be a non-zero vector in the radical of U. Then
(xq(A), xt(A)) = 0 = (w(A)ί(A), x) for all £ = t{λ). Since a?g(A) =£ 0, there
is a £ such that xq(A)t(A) = xp{A)n~\ If D Φ F, let z = ΣX-ϊr&A* be
non-zero and in the radical of Z7. Suppose γk Φ 0, and γ3 = 0 for j < &.
Then 0 = (z, xAn'1-k) = n(xAk, xAn~ι-k) = γk(xAn-\ x). We now show
that we can find a non-isotropic cyclic subspace ?7 of maximum order :
once we have it, its orthogonal complement U1- will also be invariant
for A, and will satisfy the same hypotheses as A but will have lower
dimension, and we can use induction. Therefore, suppose (x, xp71'1) — 0.
There exists y in V such that (y, xpn~ι) = 1 = (ypn~\ x). Thus yp71"1 Φ 0,
and we may assume (y, yp71'1) = 0, otherwise y generates the desired
cyclic space. Consider now the cyclic subspace spanned by x + y :

(x + y, (x + y)pn~1) = (x, xpn~ι) + (y, yp71-1) + (x, yp"-1) + (y, xpn~l)

= 0 + 0 + 1 + 1 = 2 ^ 0 .

Thus, in particular, x + y has order pn, and it generates a non-isotropic
cyclic space of order pn. This completes the proof of the first state-
ment of the lemma.

Suppose A is nilpotent and V is cyclic of dimension n. Let x, xA,
• , xAn~ι be a basis for F. Clearly (xAn~ι, xA1) — 0 for i ^ 1, so we
may assume (#, α A7""1) = μ Φ 0. If ^ = 1, there is nothing to prove, so
let n ^ 2. Suppose & is some integer such that 0 ^ & < n — 1 and
(a?, #Ar) = 0 for all r satisfying A < r < n — 1. We show that x may
be replaced by another cyclic generator y such that (y, yAr) = 0 for
fc — l < r < w — 1 : Let y = x + a^Aw-1~fc, α an element of D to be
specified shortly. For k < r ^ n — 1, ?/Ar = α^Aw~1+r~fc + a;Ar = â Ar since
An = 0 in particular ί/A71"1 ^ 0 so 2/ is a cyclic generator also. Further,
for k < r < n — 1,

(2/, 2/Ar) = (2/, a?Ar) = (x

= (a?, a;Ar) + α(a?, xAn-1+r-k)

— (x, xAr) since r — k > I .
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Finally,

(V, yAk) = (x + axAn-ι-k, xAk + axA"-1)

= (x, xAk) + a(x, xAn~ι) + (x, xAn-ι)a! + a{xAn~ι-\ xAn~λ)a! .

The last term is zero since n — 1 — k ^ 1, and (x, xAn~x) — μ Φ 0. Let
α = -(l/2)(a?, xA«)μ-\ then a(x, xAn~ι) = aμ = - (l/2)(a?, #Afc) = (α?, αA""1)**'
since // = μ, and so (?/, yA*) = 0 also. This completes the proof.

This last type of basis can be used to give a relation between the
index of the hermitian form and the index of nilpotency of a nilpotent
self-ad joint linear transformation. Let V have dimension m and index
r9 that is, r is the dimension of any maximal totally isotropic subspace,
so that m ^ 2r. Let N be nilpotent of index n9 i.e. Nn = 0, Nn~ι Φ 0,
and self-adjoint. Then : n ^ Min (m, 2r + 1), (i.e. if m = 2r then w ^ 2r
and if m > 2r then ^ ^ 2r + 1), and equality is achieved for some N).
To see this, choose a set of vectors x, xN, , xNn~ι satisfying (xNJ, xNk)
= 0 for j + kΦn — l, (xnj, xNn~ι-j) Φ 0. The vectors xNJ for j <

(n — l)/2 then span a totally isotropic subspace of dimension [̂ /2]
(greatest integer <̂  w/2) so [w/2] ^ r and w ^ 2r + 1. The condition
n ^ m is always satisfied. Conversely, let F have index r. Then we
can find vectors x19 , xr and yl9 -- -,yr spanning totally isotropic spaces
respectively and satisfying (xt9 y3) = γδtj9 γ any preassigned element of
D. First assume m > 2r then we can find a vector z orthogonal to
the space spanned by the xt and yt such that (z9 z) φ 0. We may assume
(%u Vi) — ϊ — (̂ > ̂ ) f ° r aH ί Now define a linear transformation Λ/" as
follows :

xLN = a?a, ̂ 2iV = a?3, , ^r_iiV = a?r, ίrriV = z9

zN = yr, yrN = i/r_x, , ί/2iV = yl9 yxN == 0.

Let Z7 be the space spanned by the xi9 yi9z; U is non-isotropic, so
U ® Ux = V9 Ux denoting the orthogonal complement of U. Define N
to be zero on U1. It is clear that N is nilpotent of index 2r + 1 with
cyclic subspace Z7, and self-adjoint. If m = 2r, we merely omit 2 and
define iV by : xτN = α?2, , ̂ r_xiV = »r, ^riV = 2/r, 2/riV = yr-19 , 2/2iV =
yl9 y1N = 0, where (a?4, ̂ ) = 3 i j β

Lemma 2.1 is a generalization of the result that a hermitian self-
dual finite-dimensional space has an orthogonal basis, the one-dimensional
orthogonal subspaces being replaced by cyclic subspaces of a self-ad joint
linear transformation. We obtain an analogous generalization of a
symplectic basis (i.e. (xi9 yΛ) = δi3 = —(yj9 a?t), (a?t, x3) = 0 = (^, 3/,)) for a
symplectic space:

LEMMA 2.2. Leέ F be a symplectic space and A a self-adjoint linear
transformation in V. Then V can be decomposed into a direct sum of
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indecomposable cyclic subspaces Uiy U[ such that Z7* and U[ are isomorphic
as (A) modules omd totally isotropic and Ui + U[ is non-isotropic and
orthogonal to U5 + U] if i Φ j . If A is nilpotent and £7, V are a pair
of isomorphic cyclic subspaces icith U + Ur non-isotropic, then we can
find bases of the form {x, xA, , xAr~u

s, {y, yA, , yAr~1} for U, V
respectively such that (xA\ yA''"1'1) = 1 = — (yA\ xAr~1-1), and all other
scalar products are zero.

Proof As in the hermitian case, we can immediately reduce the
proof to the case of a primary minimum polynomial p{λ)n for A. We
note that every cyclic subspace is totally isotropic, for (xA\ xAj) —
— (xAj, xA1) since V is symplectic, but (xA1, xAj) = (xAj, xA1) since A is
self-ad joint, so (xA\ xAj) = 0. This implies that if U and Ur are cyclic
subspaces such that U + V is non-isotropic, then their intersection
contains just the zero vector, since any vector in the intersection is
orthogonal to both U and V and so is orthogonal to U + U'. As in the
proof of Lemma 2.1, it will suffice to find isomorphic cyclic subspaces
U, V such that U + U' is non-isotropic (and therefore the sum is
automatically direct).

Let x be a vector of maximum order pn in V, and let U be the
cyclic subspace generated by x. xpn~L is not zero, so there exists y in
V such that (xpn~\ y) = 1. Then also (x, ypn~ι) = 1, so ypn~x φ 0 and y
also has order pn. Let U be the cyclic subspace generated by y : then
Uf has order pn and so is isomorphic to U. Suppose z is in the radical
of U + U', and let z = xf(A) + yg(A), f, g polynomials. If f(A) is not
zero, then / is not divisible by pn, and so there is a polynomial h such
that f(A)h(A) = p{Af-\ Then

0 = (z, yh(A)) = (zh(A), y) - (xp(Aγ-' + yg{A)h{A), y)

= 1 since {xp{Af-\ y) = 1 and (yg(A)h(A), y) = 0 ,

a contradiction. Thus f(A) = 0, and since (yp(A)n~\ x) — — 1, we obtain
in the same way g(A) — 0, so z = 0. Thus U + V is non-isotropic.

Now assume A is nilpotent, and U, U' are isomorphic cyclic sub-
spaces such that U + Uf is non-isotropic. Let x, xA, , %Ar~ι, and
y, yA, , yAr"1 be bases for U, U respectively, and Ar = 0. (yAr~\ xA1)
= {yAr+i~1, x) = 0 if i > 1, and also (yAr~1

f z) ~ 0 for every £ in ϋ 7 , thus
we must have (yA7"1, x) Φ 0 since otherwise 2/Ar"L is in the radical of
U + E/7. Replacing x by a scalar multiple if necessary, we may assume
(x, yA*-1) = 1.

Fix k, 0 <; /b < r — 1, and assume that (α, ι/Aj) = 0 for yk < j < r — 1.
Let a?' = x + α^Ar-1"fc, α: a scalar to be specified shortly. Then xf is
also a cyclic generator of Z7, and

(x\ yAr~ι) = (x, yAr~ι) + a{xAr~ι'\ yAr~ι) = (a?, M7'"1) = 1
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since r — 1 — k Ξ> 1. Also, for k < j < r — 1,

(a?', ?/Aj) = (a;, ?/AJ) + aixA*-1-*, ?/Aj) = (a;, yA}) + a(x, yAr-1+)'k)

since j — k^ 1, so (a/, ?/Aj) = 0 for & < j < r ~ 1. Finally,

(a?', yAk) = (a?, ί/Afc) + α(a?, M'" 1 ) = (a?, 2/Afc) + oc .

Let α = —(a?, ?/Afc), then (a?', yAk) — 0 also. Proceeding in this way we
can obtain a cyclic generator x" of U such that

(a?", yA"-1) = 1 = -(2/, a?"^" 1), and (a?", ?/Aj) = 0 for j Φ n - 1 .

This completes the proof.
The above lemma has several immediate consequences:
1. The invariant factors δl9 •• ,δr of a self-ad joint linear trans-

formation in a symplectic space come in pairs : δτ = δ.if , <5r_x = <5r (and
r is even).

2. If V has dimension m there is a self-ad joint nilpotent linear
transformation of index of nilpotency m.

3. If the base field is algebraically closed, two self-ad joint linear
transformations are conjugate by an isometry of V if and only if they
have the same invariant factors.

The last statement, 3., is also valid for a space V with symmetric
scalar product over an algebraically closed field. This follows easily
from Lemma 2.1.

In order to extend the theorem of Frobenius mentioned above to
arbitrary central simple Jordan algebras, we have to define now invariant
factor degrees, and preferably also invariant factor polynomials, for an
element x of such a Jordan algebra. For characteristic zero, there is
a general method for doing this, due to Professor Jacobson (unpublished),
based on Lie algebra methods : it is proved that if x is a nilpotent
element, then there exists another nilpotent element y such that x, y
and the identity element of $ generate a semisimple subalgebra which
is a direct sum of simple algebras Hίy where Ht is the Jordan algebra
of all self-adjoint linear transformations in a vector space of dimension
rii with non-degenerate symmetric scalar product of maximal index,
and if nL ^ n% ^ ^ nr, then nL is the index of nilpotency of x. It
is then natural to define δ^λ) = Λ% d% — nit We shall use the full
statement of the above theorem only for the exceptional Jordan algebra
over an algebraically closed field. In this case of the exceptional algebra
the theorem has also been proved for characteristic p Φ 2 or 3, based on
(unpublished) work of Professor Jacobson on the representation theory of
a simple 3-dimensional Lie algebra, so that we have to assume characteris-
tic not 2 or 3 for the exceptional Jordan algebra in Theorems 2.2, 2.4.
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To avoid the difficulties of Lie algebra arguments in characteristic
p, we will define the dt differently, and will use the above theorem of
Professor Jacobson only in some of the proofs for the exceptional algebra.

Definition of the dt : Let $ be central simple, and extend the base
field to its algebraic closure. If $ becomes the algebra of all n x n
symmetric matrices (Type B) or all n x n matrices, Type A, take the
usual definition of di9 δt for the n x n matrix x. For Type C, the
" symplectic-symmetric " matrix x has invariant factors equal in pairs,
and we take for δt one member of each pair, and for d% the degree of
δ%. For type D, the element x satisfies a minimum polynomial μ of
degree one or two let δ2 = μ = δu dx — ά2 = 1 if μ is of degree one,
and δλ = μ, δ2 = 0, dy — 2, d2 = 0 if μ is of degree two. Finally, if $ is
an exceptional algebra, every element satisfies a minimum polynomial of
degree at most 3 ([5]): set dL = 3, d.λ = dx = 0, or dL = 2, d% — 1, d3 = 0,
or dx = d2 = d3 = 1 according as the degree is 3, 2, or 1 set δτ — mi-
nimum polynomial of x. Finally, if £5 is of degree one, then $ = F 1,
and we can set dΎ = 1, ^ = 0 for i > 1. In the following proofs the
case of $ of degree one will not be mentioned because of its triviality.

The du δi as defined above have the following properties :

(a) <5χ = minimum polynomial of x in $5. dL ^ dί+ί and ^ ΐ + 1 divides
δt whenever defined.

(b) dL ^ degree of 5̂ (defined as the maximum number of ortho-
gonal idempotents in a decomposition of the identity when the base field
is extended to its algebraic closure). Σ A = degree of $ .

(c) If $ is special (Types A-D) and the base field is algebraically
closed, two elements are taken into one another by an automorphism of
$ leaving the center fixed if and only if they have the same invariant
factors. The same thing is true for $ an exceptional algebra, at least
for characteristic zero, as will become apparent from some of the later
proofs. However, we will not use this, and so do not give the details
of a proof.

The next theorem describes the structure of &%((x)) if $ is central
simple over an algebraically closed field and special. The exceptional
algebra is studied during the proof of the succeeding theorem, but we
cannot give a simple statement for it.

THEOREM 2.1. (a) Let $ be the Jordan algebra of all n x n sym-
metric matrices over an algebraically closed field F, N a nilpotent element
of $ with invariant factors δίy &2, , δr where δi+1 divides δ t. Let {F[λ])r

be the algebra of all r x r matrices with coefficients polynomials in the
indeterminate λ, U the subalgebra of matrices (β) — (βij(λ)) satisfying
(δ)-τ(βy(δ) = (β) where (δ) = diag (δl9 , δr) and (β)' is the transpose of
β, and 91 the ideal in ^ of matrices (β) of the form (β) = (oc)(δ) for some
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(a) in (F[λ])r. Then &%((N)) is isomorphic to $£/3ΐ. If A is an arbitrary
element of $, then ©s((A)) is a direct sum of algebras ^J5R«, one for
each characteristic root. Jf $ consists of all hermitian matrices over an
arbitrary field and N is a nilpotent element, then &%(N) is as above with
St replaced by (Xiδiy at a self-adjoint scalar, and (β)f the conjugate trans-
pose of (β).

(b) Let $ be the Jordan algebra of all n x n symplectic-symmetric
matrices over an arbitrary field, N a nilpotent element with invariant
factors δl9 « ,(5r in $ (i.e. the δt are every other one of the ordinary
invariant factors). Then K^((iV)) is isomorphic to ®/9l where & is the
subalgebra of (F[X])2r of matrices (β) satisfying (£)-1(β)'(<5) = (β), (δ) =
δγ(en — e21) + 32(eu — e^) + + δr(elr-lt2r — e2r>2r^) (etj matrix units in
(F[X])2r), and 9ΐ is the ideal in ^ of matrices of the form (β) = (ά)(δ).

(c) Let ΐ{$ be the algebra (Fn)j of all n x n matrices over F, A an
element of $ with invariant factors δly •••,<?,.. Let St be the subalgebra
of (F[λ])r of all (β) such that (δ)-\βY(δ) is in (F[ϊ])r, (δ) as in (a), 3ΐ
the ideal of (β) of the form (β) = (a)(δ), (a) in (F[λ])r. Then Ss((A)) is
isomorphic to

(d) Let $ be central simple of Type D. Then (£$((#)) = (x) if x is
not in the center of $, and (£s((#)) = $ otherwise.

Proof, (a) We take $ to be the set of all self-adjoint linear
transformations in a hermitian self-dual space V, and N a nilpotent
element of $ . Let xl9 , xr generate cyclic non-isotropic mutually-
orthogonal subspaces of orders dt = degree of δif i = 1, , r and satisfy
(xi7 XiN^1) — ai Φ 0 if j = di — 1, (xu XiN3'1) = 0 otherwise.

Let B be any linear transformation commuting with N and write
x.B = Σ5-i^u(^)» βij polynomials. Since xA(N) = 0, δφ^ = 0 (mod δj).
Also, since BN = NB, (xtN

pB9 XjNq) = (xtN
p+qB, x3), so that B is self-

adjoint if and only if (XiN^B, Xj) — (XiN*, XjB) for all i, '̂, ̂ .
Now fix i, j , 1 <g i g i ^ r and let

AJ(^) = A* + ̂  + + /W" 1, p = ^
Λi(^) = v» + »ι* + + Kz-i^-1 , q = dt.

Since (^ , ^iV*) = aj9 (xi9 XiNq) = α:^ and (^, ^iVfc) = 0 for k Φ q,

we have the condition :

*-1, x5) =

for all Λ, that is a^μ,^ = αj 1^-!-* or a^βM) = λ^ra0aγβ3i(λ)'
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(1) βM) = [ar

βji(λ)' denoting the conjugate of βn(λ).
Since δt(λ)βij(λ) = 0 (mod δj(λ)) is a consequence of the condition (1),

every matrix (β) satisfying the above condition (1) defines a B in &s((A0)
if we define for all i, k x^B — Σtjχjβij(N)Nk, and conversely every B
in &s(iV) gives rise to such a matrix. Since δ5 is the order of xj9 it is
clear that B is zero if and only if βi3 ΞS 0 (mod δό). This proves the
isomorphism for Λ7" nilpotent. if A is an arbitrary element of g, in the
symmetric case, and all the characteristic values Λ4 of A lie in F, then
we can write A = Σ*Λ42?4 + M» the 2£4, JV4 being the idempotent and
nilpotent elements of A. Set F t = VEi9 then Ks(A) is the direct sum
of (£s<((JVi)), 3f< the symmetric linear transformations on Vt. lί F is
algebraically closed, we may assxime α4 = 1 ΐor V symmetric.

(b) We denote by A the nilpotent symplectic-symmetric matrix under
consideration. Regarding the elements of $ as self-adjoint linear trans-
formations in V, we can choose a canonical basis faA*, ViA*} as in
Lemma 2.2 : (α?4A*, &) == 1 = —(ytA*, xt) if k - dt - I, all other scalar
products are zero. Let 5 be a linear transformation in V commuting
with Ay and let

Then

(XiA\ xβ) = (XiA*, ViΦniA)) - (xtψ5i{A)A\

(2/4A*, 2/̂ 5) = (ytA\ Xi

Thus 5 is self-adjoint if and only if

k

9 Vj) = (xtpji(A)Ak

9

Since (a?4A*, yd = 1 if Λ = d4 - 1, = 0 otherwise, we have, exactly
as in the symmetric case,

( 2 ) φi5 = δ?pHδ3, φij = -δϊψjiδj, Vij = -δϊhjjβj .

To B we now assign the 2r x 2r matrix (βu,υ(/ί)) where
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βϊi-l.V —Φu3

P H,2j-l = Vi, j

β2i,2j = Pi, 3 ifj = 1, * ,r

i.e. we arrange the elements φ, ψ,ηf p in 2 x 2 blocks

If now (δ) is the matrix with the blocks

α. :*)
on the main diagonal and zeros elsewhere, condition (2) in matrix form
is (3)" W(<5) = (β).

If B corresponds to (β), clearly B = 0 if and only if φiJf ψijf ηtj, ptJ

are all Ξ= 0 (mod δ3), i.e. (β) = (a)(δ) for some (a) in (F[^]).r. It is now
clear that the map B into β gives an isomorphism of Ss((A)) and

(c) This case is treated in [6], Chapt. 3, where however the defining
relation for ffi is

( 3 ) δφi3 = 0 (mod δj) .

However, the condition δtβtJ = 0 (mod δ3) is clearly equivalent to (<5)"1(/̂ )/(̂ )
being in (F[λ])r, i.e. to the existence of (γ) in (F[λ])r such that (β)'(δ) =

(d) Let $5 of be type D, then 3 = F l φ F , 1 the identity element
and V a vector space of dimension at least two and with non-degenerate
symmetric scalar product (x, y). $ can be considered as a subspace of
the Clifford algebra C determined by V, and the product in $ can be
written as χo y = xy -\- yχf where xy is the product in C. The vector
space C can be identified with the vector space of the exterior algebra
E over V, with multiplication x A y, in such a way that xy = x A y + (x, y)l
for x, y in V (See [3]). Let now a — αl + v, a 6 F, v e V be an element
of 3 . Clearly Ss((α)) = (£3((tf)), and Es((a)) = $ if v = 0. Let now
i; =£ 0 : we have to show Ks((v)) = (v). Let w e F and w e Ks((v)). As
shown in § 1, w; = î v, but vw = v ΛW + (v, w)l, so VΛW = WΛV = 0,
thus w is in (v). This proves (£$((?;)) = (v) if v is not zero, and com-
pletes the proof of the theorem.

COROLLARY 2.1. If ^ is a central simple Jordan algebra of type B
with enveloping associative algebra 2ί and x is any element of $, then
the enveloping associative algebra of (&,%((x)) is (£$((#)). The same state-
ment does not hold if $ is of type C,
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Proof, As usual, we assume the base field F is algebraically closed,
and consider first the case of a nilpotent element x. Then, in the nota-
tion of previous theorem, (£$((#)) can be identified with the associative
algebra $/9t, $t the subalgebra of (F[λ\)r of matrices (a) such that
(δ)-ι(a)\d) is in (F[λ])r and ϊR the ideal of matrices of the form (a)(δ),
while (£s((αθ) is the Jordan subalgebra (H + 3ΐ)/3ϊ of ®/3ϊ, i? denoting
the matrices (α) such that (δ)"1(a)f(δ) = (α). It is sufficient to prove
that the enveloping algebra of H in (F[λ])r contains every element of
5?. If r > 1, H contains elements φeu and ψei3 + δίδj1φeji for 1 ^ i < j ^ r
and ψ any polynomial. Thus the enveloping algebra contains e^φe^ +

Wjtyβji) = Wj f o r ^ < i a n d a l s o SiδΊιψeji = (f β u + <5iδ7VeJt)eit as well
as y>eίt for all i however the elements φeijf i ^ j , and ^β.^ with 0 = 0
(mod δiδj1) for i > i, clearly are a basis for ίΐ. Note that if r = 1, then
©8(0*0) = Esjr((a?)). If now a? is not nilpotent, we write x — Σ^*β< + w*>
β4 idempotent and n% nilpotent as before, and set §I4 = ^21^^ ^ 4 = e$βi.
Then esr((a?)) = Σ* θ ®%(M), Ks((a?)) = Σ Θ ^((w,)), therefore the
enveloping algebra of Ks((a?)) is Ksί((aτ)). If $5 is of type C, and A is a
nilpotent 2n x 2w symplectic-symmetric element of $ of index of
nilpotency n, i.e. r — 1, ^ = /lw, then it is easy to see that (£$((#)) = (x)
and is a commutative associative algebra, whereas E2ϊ((#)) ίs n 0 ^ com-
mutative.

THEOREM 2.2. Lei ^s be a central simple Jordan algebra, n its degree
and n + (Ij2)n(n — l)s its dimension [thus s •==• 1, 2, 4, 8 if n ^ 3, s = 1,
2,4 if n > 3 , s ^ 1 if w = 2]. Lβέ ^ δβ an element of $ wi£/& invariant
factor degrees dv ^ d2 ^ >̂ dr, as defined before. Then &%((x)) has
dimension ΣlZl(sk + l)dk+1. If s = 8, w;̂  assume characteristic Φ 2 or
3.

Proof. We may assume the base field is algebraically closed.
(a) Let $ be of type A : this is the theorem of Frobenius and follows

from Th. 2.1, part C). Here s = 2.

(b) $ of type 5 . First let x be nilpotent. We merely have to
calculate the dimension of the space of matrices (β) with (δ)-ι(βY(δ) = (β)
and subtract the dimension of the (β) of the form (a)(δ), i.e. reduce
βtJ mod δj9 Clearly (β) is determined by the elements βi} with i ^ j and
/?o of degree <Ξ d,, thus the dimension is dL + 2d, + + rd r, and here
s = l . If x is not nilpotent, x = ^ΣΛaiei + nu and K^((^)) is a direct sum
of the algebras (£s((ra)), S = 3i(0i) a n d ^ = w« T h e Sι(^<) a r e again
algebras of all symmetric matrices (of degree ^ 1), and the invariant
factor degree dk of x is the sum of the djjii). Thus the formula holds
also for x.

(c) Type C. Again we need only consider nilpotent elements, and
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the calculation of the dimension is like that for symmetric matrices,
using Th. 2.1 b and its proof.

(d) $ of type D. Let x = al + v, v e V, using the notation of the
proof of Cor. 2.1. If the minimum polynomial δx has degree one, then
v = 0, dτ = d2 = 1, and (£s((#)) = $• Here 2 + s = dimension of $, so
Σϊ=o(s& + l)̂ fc+i — ^i + (s + 1)̂ 2 — s + 2. Let now the minimum poly-
nomial have degree two, then d1 = 2, d2 = 0, and v is not zero, so
= (x) has dimension 2 = Y,r

kZ
ι

0(sk +

(e) $ the exceptional algebra, type I?. We use the previously
mentioned result of Professor Jacobson that if x is a nilpotent element
of $, with αw = 0, of""1 =£ 0, then (x) can be imbedded in a direct sum
of algebras ίf(ί) of all nt x w4 symmetric matrices with n = ^ ^ w2 ^
• ^ n r. The identity element of $ is in (x) and 3 has degree 3, so
r is at most 3, and x satisfies a cubic polynomial over the center F.
Thus we have only a small number of cases to consider. Let the cubic
polynomial be (λ — a^)(λ — <x2)(Λ — α3), at e F.

(1) The cti are all equal, say to α1# Since Ks((# — α^l)) =
we may replace x by a? — α^l, and thus have x nilpotent.

( i ) Let x3 = 0, x2 Φ 0. Since no element of a 2 x 2 or l x l
matrix algebra can satisfy this condition, HQ) must be of degree 3, and
H(ί) — 0 for i > 1. Then Hσ) contains primitive orthogonal idempotents
et with sum 1, and elements u12, uu, u.# with ui5 o %υ = 4(β4 + βj), %w o wjfc

= ^ i fc for i, j , k distinct, and βt o %4j = (l/2)%ijβ By Theorem 9.1 of [9],
$ can be represented as ίί(C3) with these elements as matrix units and
involution ^ci3ei5 -» ^ci3eiU (eu = 2βt, βtJ + en — utj). The element x is
represented by a matrix iV with elements in F. Since Λ7"3 = 0, N2 Φ 0,
and iV is a 3 x 3 symmetric matrix, it follows from the remarks after
Lemma 2.1 that there is an orthogonal matrix T with elements in F
such that TNT-1 = M,

a e F and a2 = —1

since also M3 = 0, ikP =£ 0. The matrix T is in the nucleus of C3 (i.e.
associates with all elements), and so X-+TXT'1 — XA is an auto-
morphism A of iϊ(C3). Using the matrix units ef, ufj9 by Th. 9.1 of [9]
we may represent $ as H(C3) with involution the ordinary conjugate
transpose operation with x being represented by M. Since M has
coefficients in the center of C, by Proposition 1.3b, Ks((Λf)) is just the
set of matrices commuting with M: these turn out to be all matrices
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of the form

such that the γ* are in F, x-5 = xi9 y2 = 2/2, zΊ = ^ =

and ft + α % = γ-ό = γ.Λ — ax-ό .

Thus the xu y.l9 zi are in F, and X = (TΊ + αa?3)l + α^ikf + ?/2.M
2. Hence

es((a?)) = (a;). Also, dt = 3, d2 = dL = 0 and Σ(8fc + l)dfc+1 = 3 = dimen-
sion of (x).

(ii) x2 — 0 : then iί ( 1 ) is of degree two, so H^ must be of degree
one and equal to Fe, e a primitive idempotent. We note for future
reference that H™ φ HCZ) is contained in $ c(l) + 3ίe(0) = {α in $ such
that eo a = a or βoα = 0} and so β is in (£$((#)). ί ί ( 1 ) contains primitive
orthogonal idempotents βt, β2 and an element uVi with u12 o %12 = 4(βx + βa).
Write β3 for β, then there are elements v13, w23 in ^ such that v13 o v13 =
4(0χ + ^ ) , ^23 ° ^23 = 4(β 2 + β d), u12 o ι;13 = m i 3 , % 1 2 o ^ 2 3 = v 1 3, a n d v13 o m i 3 =

w12 (this can be seen, for instance, by writing $5 as H(C3) with 2β4 = eH,
so that %12 = cen + cβ21 where cc = 1 in C, and setting w13 = ce13 + ce31,
W23 — e>& + β32). As before we can write Qf as fί(C3) using the st, %12, v^,
m23 as matrix units : then x is a linear combination of eu e2, u12, and e3

and so is represented by a matrix with elements in F. Since a?2 = 0,
the coefficient of e3 must be zero, and as before the 2 x 2 symmetric
matrix yλeλ + γ2eΛ + γ3(β12 + e2l), n in ί7, may be transformed to the form
a(e1 — βa) + β13 + e21 by a 2 x 2 orthogonal matrix T with coefficients in

0
F. Then the 3 x 3 orthogonal matrix Tx —

T

0 0
induces an

automorphism of H(C3), taking x into

N =
a.
1
0

1
—a

0

0
0
0

= — 1

Again we have only to find the matrices commuting with N, which turn
out vto have the form

, ft in F, z3 in C .

Thus the dimension of <£s((a?)) is 3 dim ί 1 + dim C = 11 also dλ = 2,
d2 = 1, d3 = 0 so Σ(8& + l)dk+1 = 2 + 9 = 11.

(2) The cubic polynomial of x has two distinct roots. Then (x)
contains two orthogonal idempotents e, f with sum 1, which we may
write as e — eά, f = ex + ei9 where the e.t are orthogonal primitive
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idempotents in $ . Then x = γτf + n + γ3e, where n is nilpotent, in fact
n2 = 0, eo n — ύ, f o n — ny and β,/, w are all in (x). Note that (a?) s
Je(0) + e/e(l) and β is in Ks((a?)). Suppose first that 92 = 0. Then Ks((»))
= (£s(β) = Ss(/) = 3fβ(0) + ^e(l) and has dimension 11, while dλ = 2, d2 = 1
and Σ(8& + l)dfc+1 = 11. Now suppose w ^ 0, and let y be in Ks((α?)).
Since y o-commutes with e, y = y0 + Vi, y% in $e(i). Since $e(0) is an
algebra, y0 o-commutes with n in 3fe(0)—a simple algebra of degree two
thus by part (d) of this theorem, y0 is a linear combination of / and n
since n is not in the center of $e(0). Also, yτ is a scalar multiple of e
since $ e(l) = ^ 5 thus 2/ = Vo + 2/i belongs to (a?) and Ks((a?)) = (a?) and
has dimension 3. dt = 3, d2 = 0 and Σ(8& + l)^+i = 3.

(3) The cubic polynomial has 3 distinct roots. Then (x) = Fex +
Fe2 + Fe3, β4 mutually orthogonal, and Ks((a?)), being the intersection of
the 3fe(0) + 3fe(l) for e = ex, e2, e3 respectively, equals (x). Here ds = 3,
d2 — dx — 0, and Σ(8& + l)eZfc+1 = 3 = dim Ks((a;)). Incidentally, we also
note that for each x in $ there is a representation of $ as ίί(C3) such
that the matrices of Ks((a?)) are just those commuting with the matrices
of (x).

COROLLARY 2.2. Let ^be a central simple Jordan algebra of degree
n, (n ^ 1), x an element of Qf. Then the minimum polynomial of x in
$ has degree at most n, and equals n if and only if &%((x)) = (x).
Elements x with minimum polynomial of degree n always exist.

Note, such elements with minimum polynomial of degree equal to
the degree of the algebra are a natural generalization of non-derogatory
n x n matrices in the Jordan algebra (Fn)j.

Proof of the Corollary. Since the dimension of (x) is d±, the degree
of the minimum polynomial of x, and (x) is always contained in (£s((#)),
we see that ΣίzKsk + l)eZfc+1 = d1 if and only if d2 — = dr — 0. But
since d1 + + dr = n, this means d1 = n. If the base field is alge-
braically closed, hence infinite, and elf * *,en are primitive orthogonal
idempotents with sum 1, then x — aλex + + anen is of degree n if
the a% are distinct. Since the degree of the minimum polynomial is
unaffected by field extension, there must exist elements with dx — n in
a central simple $ over any base field.

We next consider the double centralizer Ks(Ks(^))> and prove that
it is always equal to (x): a known theorem for 3 the algebra of all
n x n matrices over a field. We can also prove this for $ a Jordan
algebra analogous to a finite dimensional Jordan algebra of type A, B, or
C but obtained from a simple ring with minimum condition instead of
a simple algebra.
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THEOREM 2.3. Let 21 be an involutorial simple ring with minimum
condition, F the set of self-adjoint elements of the center of 21, and ^
the set of self-adjoint elements of 21, regarded as a Jordan algebra over
F. Let x be an algebraic element of 3> i e. (%) is finite dimensional over
F. Then ea(es((a?))) = (x).

Proof. We can also consider 21 as an algebra over F, and if K is
a finite extension field of F containing the eigenvalues of x, form
21 <&FK, $ ®FK, noting that the involution in 21 can be extended to
21 (x) K by letting it be the identity on K = 1 (x) K and that 3 (x) K is
then the set of self-ad joint elements of 31 (x) K. We then need only
prove that if x is an algebraic element of $ (x) JK" with eigenvalues in
K, then (a?) is its own double centralizer.

Case 1. Let E, the center of 21, equal F. Then 21 (x) Jί is again
an involutorial simple ring with minimum condition so that we may as
well assume F already contained the eigenvalues of x. We may represent
21 as the algebra (over F) of all linear transformations on a finite
dimensional vector space F, over an involutorial division ring D with
center F, with a non-degenerate scalar product which either is hermitian
or else is symplectic and D = F.

(a) Hermitian scalar product. We use the following lemma:

LEMMA 2.3. Let V be a vector space of dimension n ^ l with non-

degenerate hermitian scalar product over a division ring D. Let F be

the subfield of self-adjoint elements of D, £y the Jordan algebra, over F,

of self-adjoint linear transformations in D. Let A be an element of $

such that An = 0, An~ι Φ 0 (set A° = 1). Then Ks(®s((-A))) = (A).

Proof. First consider the case n — 1, that is V = D (as left D
space). Then (A) = F, ©s((^)) = S- Now it is known that either g
generates D or else % = F ([7], P- 187). In either case, <£s(3) =
©S(es(A))) = (A) = center of $ = F. Let now n>l. By Lemma 2.1
we can find a basis for V of the form (v, vA, , vAn~ι) such that
(vA*, vAj) = λy a self-adjoint non-zero element of D, iί i + j — n — 1, and
(vA\ vA3) — 0 otherwise. Let B be a self-ad joint linear transformation
commuting with 2ί, and let vB = ftv + /̂ vA + + ^.^A^ 1 , /9t in D.
Then

(v, vA^-iB) = (v, ftvA^-1) = λβί

for all i, and conversely, any linear transformation B commuting with
A such that the ft satisfy ft; = λβ[ is self-adjoint, (i = 0,1, , n — 1).
For r in D, let 7-* = ^^"1- Then γ -> 7-* is an involution in D, and /??
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= βt. The self-adjoint elements of this new involution either generate
D or else lie in the center of D. First suppose they lie in the center
of D: then βf = β't = βi so the βi are in F, and B is in (A), (B =
βol + β,A + . + A ^ A - 1 ) i.e. Gs((A)) - (A) so Ks(e3((A)))=IEa((A)) = (Λ).
Next suppose that the self-ad joint elements of * generate D, and let j|f be
in C£s((£s((A))). Since A is in (£s((A)), Λf commutes with A and so vM
= W + " + μn-ivA71"1. Also Λf commutes with the linear transforma-
tion BQ(β): /OVA* -* pβvA1 (i = 1, w - 1, in D) for every /? such that /? = β*.
Thus ΐλB0M = βμQv+ + βμn-ivA"-1 = vMB0 = ftβt; + h μ^βvA"-1 so
that the ^^ commute with all such β, and since the latter generate D,
every μt is in the center of D, so μf — μ[ — μi and the μ4 are in F.
Thus J5 is in (A). This completes the proof of the lemma.

Let now A be an algebraic element of $ with eigenvalues in F:
thus A = ΣhEi + Nt with λt distinct, in F, and Nt nilpotent, EuNi

being in (A). First let the degree of the minimum polynomial of A on
V equal the dimension of V. Then V is a direct sum of the non-isotropic
mutually orthogonal subspaces Vi = VEi and the index of nilpotency of
Ni = EtNt equals the dimension of Vt. Since the Et are in (A) and so
in (£s((A)), every element of Ks(^s((A))) maps each Vt into itself, com-
mutes with Ni on Vif and is self-ad joint on Vt. By the lemma the
induced transformation on Vt is a polynomial ψi(A) with coefficients in
F. Since the minimum polynomials of A in F4 are relatively prime in
pairs, there is a polynomial <p(λ) such that φ{A)Ei — φi(A)Ei, that is φ(A)
induces φ%(A) on Vt. Thus every element of (£s((£s((A))) is a polynomial
in A. Finally, consider the general case. Then V is a direct sum of
cyclic mutually orthogonal subspaces Wt such that Wi+1 is a homomorphic
image of W% as A-space and the minimum polynomial of A on Wt has
degree equal to the dimension of TΓί# Since the orthogonal projections
of V on TFί are self-adjoint and in (£s((A)), every element C of ©S(KQ((A)))

maps each Wt on itself. Let St be a self-ad joint linear transformation
of WΊ into itself which commutes with A on Wt. St can be extended
to V by letting it act as zero on the W3 with j Φ i, and will then belong
to (£s((A)). Thus C commutes with Sif and so on each Wu C is equal
to a polynomial ψ%{A). Finally, we must show that all the Ψι(A) may
be assumed equal. Let xt be a cyclic generator of Wl9 and xt its image
under an A-homomorphism of Wτ onto W2. Then x.z is a cyclic generator
of W2. Denote by T the mapping of W1 on TF2 with xLT = xif and
define T = 0 on IF* for i ^ 2. Let T be the adjoint of T. Since
(TΓjΓ, TΓX) - 0, (W3, W1T) - 0 for all j , so W1T = 0. Let 5 = T + Γr,
then JSΓ = T on T7X, Sf is self-ad joint and since TA = AT, also Γ Ά = AT
and SA = AS. Thus S is in Ks((A)), SC = CS, and ^ S = α?a. For all i,

XtC = XiΦi{A). Since a?2 = xλS, xψlA) = α;2C = ^ S C = ^ C S = x1ψ1(A)S =

Thus ^i(A) = ^XA) on TF2, and in the same way
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φλ{A) = φ^A) on W% for all i. Thus C = Λ(A) on 7.

(b) Skew-symmetric scalar product: We now write A for the
element x of Qf. By Lemma 2.2, we can write V as a direct sum of
cyclic totally isotropic spaces Wt, WΊ such that PFέ + WΊ is non-isotropic
and orthogonal to WJ+WJ for i ^ i , W% is isomorphic to W{, and
Wi+1 is a homomorphic image of Wt as (A) modules. Let Vt = TF̂  + ΫFί
and A4 the restriction of A to F 4 . Let $ 4 be the algebra of self-ad joint
linear transformations on F 4 by Corollary 2.2, (£^((Λ)) — (A4), since
the degree of Qf4 equals the dimension of Wt. Let 2?4 be the self-ad joint
projection on Vl9 and let C be in Ks(Es((A))) then C commutes with
the Eι and maps Vt on itself, inducing Ct on Vt. Since C4 is in (£^((Ai)),
Cέ is a polynomial ψi(A). To show the <̂  are all equal, we choose cyclic
generators xu x\ of Wif W\ and define a linear transformation T by :
TA = AT, a?4Γ = # i + 1 , # T = a?ί+1, and T is zero on Fj for j φ i. As in
the symmetric case, the adjoint T of T is zero on Vi9 so if we set S =
T + T\ then a?4Sf = xi+1, x[S = :α/ i + ι and S is in (£3((A)). Then ^ S C =
xi+1C = a?ί+1^4+1(A) = ί^CS = a?4+1^4(A), and similarly, x'i+1φi+1(A) = a?f

ί+1^4(A).
Thus C — ^(A) = ^i(A) on all of F. This completes the proof of Case 1.

Case 2. E, the center of 21, is a quadratic extension of F. Just
as in the case of finite dimensional algebras, the ring 21 <&FE is a direct
sum of two copies 3ίx, 2t3 of 2ί and if we extend the involution of 21 to
2t (x) E by letting it be the identity on 10 E (i.e. if a ~> a' is the in-
volution in 21, we set (a 0 e)r = a! (x) e for e in IS1) then the involution
maps Stx on 2ΐ2, 2ΐ2 on 2i1# Thus the Jordan algebra $ ®*J£ of self-
ad joint elements of 21 ® F E is isomorphic to the set of elements aι © a[
of 2ίiφ3ί 2 , where aλ is in 2Ii and a[ the image of aι under the involu-
tion; as 2ίχ is isomorphic to 21, %s(&FE is also isomorphic to 31, (i.e. 2ί
with the Jordan product). In 21 j , the set of elements o-commuting with
an element x is just the set of elements commuting with it in the
ordinary multiplication, and the double centralizer of (x) for an algebraic
element x (over the base field E) is (x): the usual proof for matrices
over a field goes over for a division ring, since we can quickly reduce
it to the case of a cyclic nilpotent matrix x and note that for such an
x, every matrix commuting with it is a polynomial in x and 1 with
coefficients in the division ring, and every matrix commuting with these
is a polynomial in x with coefficients in the center E of the division
ring. This completes the proof.

THEOREM 2.4. Let ^ be a central simple Jordan algebra and x an
element of $ . Then ®s(£s((a?))) = (a?). // $ is exceptional we assume
the characteristic is not 2 or 3.
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Proof. Theorem 2.3 covers algebras of types A, B, C. Let $ be
of type D : then, by Th. 2.1 d, if α̂  is not in the center of $ then
(£s((#)) = (x) so (£s((£3((#))) = &%((%)) = (x), whereas if x is in the center
of $, then Ks((a?)) = 3 , and (^(^((a;))) = Center of $ = (a?).

It remains to consider the exceptional Jordan algebra $ over an
algebraically closed field F. If the minimum polynomial of x is of
degree three, then by Corollary 2.2, (£s(0*0) = (x) so Ks(Es((a?))) = (x)
also. If the minimum polynomial is of degree one, then (x) — Center
of 3, so (£s((£s(0&))) = (χ) Finally, let the minimum polynomial be of
degree two : then there are two cases—minimum polynomial has one
root or distinct roots.

Let the minimum polynomial of x be (x — γlf. Replacing x by
x — γl does not change (x), and so we may assume xz — 0, x Φ 0. In
the proof of Theorem 2.2, we showed that there is a representation of
$ as H(CS) sΐich that x is represented by the matrix a(en — e22) + e12 + e21,
where a is in F and a1 — — 1 , and so the elements of H(C3) o-commut-
ing with x are exactly the matrices commuting with the matrix of x.
We also showed that e3 = (l/2)β33 is in (£3(0*0). Let y be in ©3((£3((aO)):
then y o-commutes with e3 and y is also in Ss((a;)) so that its matrix is
as in the proof of Theorem 2.2, and the element z3 is zero since y o-com-
mutes with β3. Thus y also belongs to the simple subalgebra $ϊ of H(C3)
of elements with coefficients in F. Since y o-commutes on $ with every
element of Ks((#)) a n ( i since (£s((a?)) £ ®s((^)) (each consists of the
matrices, in $ΐ or $ respectively, commuting with x), y o-commutes on
$ with every element of (£&((#)). and in particular y o-commutes on ^
with every element of (£&((#))• As ?/ is in 5£, we have shown that y is
in efi(Kfi((α?))), that is, that Ks((Es((a?))) S ^(fe((^))) . But β = H(F3) is
a simple Jordan algebra of degree three and type B, and we have
already proved for such algebras that Kg(Ssϊ((a?))) = (x). Thus also

(E3((E3((«))) = (x).
The only case left is that of a minimum polynomial of degree two

and distinct roots. Here x — ae + β(l — e), e a primitive idempotent
and a Φ β. Clearly (x) = (β), so we may assume x = β. Ks((β)) =
3fβ(0) + &(1). Let ?y be in ^((£^((0))). Then, since 2/ is in ©s((β)), 2/ is
in ^ ( 0 ) + 3fe(l) and y o-commutes on 3, and therefore on $e(0) + 9fe(l)
also, with every element of 3fe(0) + $5e(l). Thus 2/ is in the center
of this algebra which is the sum of the centers of $e(0) and $ e(l),
central simple algebras with respective identities 1 — e and e. Thus
y — γ{\ — e) + de belongs to (β), and Ks(Ks((»))) = 0*0 This completes
the proof.

Section 3. Centralizers of Simple Algebras* In this section we study

the centralizer and double centralizer of a simple subalgebra in a central



CENTRALIZERS IN JORDAN ALGEBRAS 785

simple Jordan algebra. We are also able to study the centralizer theory
in certain infinite dimensional Jordan algeberas, namely the algebras
of all self-adjoint linear transformations on a self-dual vector space
which may be infinite dimensional, such as a Hubert space. The
method is much simpler than that of the last section: we use the
enveloping associative algebra and the known centralizer theory of
simple associative algebras (see [7] and [15]).

We shall prove analogues of the following theorems on associative
algebras ([15]): Let M, N be left and right vector spaces, respectively,
over a division ring D, dually paired by an inner product (x, y) (i.e. if
(x, z) — 0 for all z in N, then x = 0, and similarly (u, y) = 0 for all u
in M implies y — 0). Denote by 21 = L(M, N) the ring of all linear
transformations on M having adjoints on N, regarded as an algebra over
its center. (M = N, that is, M is self-dual, if and only if 2ί has an in-
volution ([6]). The involution can be assumed to be the adjoint map.)
Let S3 be a simple subalgebra of 31 containing the identity element.
Then:

1. (£̂ i(S3) is also isomorphic to a ring L(V, W) for a pair of dual
spaces V and W. If Si is a simple finite dimensional algebra then so
is e (̂SB).

2. (̂ ((&>i(S3)) = S3.
Actually we will also generalize the above associative theorems from

rings L(M, N) to the more general primitive rings with minimal ideals,
and obtain a corresponding generalization for Jordan algebras. In what
follows the term "simple algebra" will be used only for finite-dimen-
sional algebras.

THEOREM 3.1. Let 3f be a special central simple Jordan algebra, β
a semi-simple subalgebra containing the identity of $. Then <£s(®) is
semi-simple. The same result holds for ^ an exceptional algebra provided
Sΐ is separable.

Proof. If $ is of degree one then & = $ and (£<3(jϊ) = $ = S. Next
let $ be of degree two. Then $ = F 1 + V, V a vector space with
symmetric scalar product. Since F 1 is in fi, ί£ = F 1 + Sΐ Π V. If
S ί l F is one-dimensional, then (£s(S) = & if $t Π V has dimension
greater than one, then Ks(ffi) = F- 1, and if & Π V= (0) then ®s(β) = $:
these statements follow immediately from Theorem 2.Id. Thus Ss(^)
is semi-simple.

Finally, let $ have degree three or more, and be special. If $ is
of type A2, i.e. isomorphic to 31̂  for a central simple associative algebra
21, and ffi has enveloping associative algebra S3 in SI, then (£s(S) = (£̂ (33)̂ .
But S3 is a semi-simple associative algebra, therefore Ew(S3) is also semi-
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simple, and so (£$(33)̂  is a semi-simple Jordan algebra. The only remain-
ing possibility is that $ = iϊ(2I), §1 a simple involutorial algebra. Let
33 be the enveloping algebra of Λ. Then Ks(Λ) = (Esί(83) n 9f = set of
self-ad joint elements of (&#(33). But 33 and (£$(33) are semi-simple, and
(£$(33) is a self-adjoint subalgebra of 2ί since 33 is self-ad joint. Therefore
the set of self-ad joint elements of (&a(33) is a semi-simple Jordan algebra:
(£$(33) is a direct sum of simple ideals which are either self-adjoint or
interchanged in pairs by the involution, their self-ad joint elements are
simple Jordan algebras of types Alf B, C or type A2 respectively. This
completes the proof for special algebras $. The exceptional algebra
case was proved at the end of Section 1.

As we saw in the above proof, if $ is of type A2, i.e. $ = 21^ 2ί
a central simple associative algebra, and $ is a simple subalgebra of $
with enveloping algebra 33, then Ks(ffi) = (£5ί(33)J also, if $ is central
simple and $ contains the identity, then (£s#((£s#(33)) = 33, so that
(£3(<£s(SΪ)) = 33,. Thus <£s(&3(®)) = Sϊ if and only if Sϊ = 33 j is also an
algebra of type Ai9 and the centralizer theory here is identical with the
associative theory. The theory for algebras of degree two is not very
interesting, since we will always have (£s(®) = $, ίϊ, or center of $, as
we have seen in the proof of the above theorem.

The remaining type, $ = iϊ(2I), 21 an involutorial ring of linear
transformations, is the only interesting one. We note first of all that
the double centralizer of a simple subalgebra Sΐ may be actually larger
than ffi, as is shown by the following examples:

1. Let $ = F 1 + V, V even-dimensional, be an algebra of type
D and let 2t be the Clifford algebra determined by V. We may then
assume that $£ is contained in 21. 21 has an involution such that the
elements of SB are self-ad joint let $ = iϊ(2ί), then $ is a simple Jordan
algebra of degree greater than two if V has dimension greater than
two, and $ properly contains ffi. Kg(ffi) = F 1 since Jϊ generates 21,
and Ks(®s(β)) = 3> We may also embed 7 in a larger space TΓ with
symmetric non-degenerate scalar product, and take 21 to be the Clifford
algebra of W, 3f = iϊ(2I). If 33 is the enveloping algebra of 5£, then
Ks(Ks(ffi)) will contain i?(33), so will be larger than SI. To exclude this
possibility we will at least have to assume that if 33 is the enveloping
algebra of ®, then ίf(33) = Sϊ, that is, that $ is not of type D.

2. Let $ — H(Qn), the algebra of n x n hermitian matrices with
quaternion coefficients, n ^ 3, and ® the subalgebra of n x n symmetric
matrices, H{Fn). It is easy to see that (£s(SΪ) = center of $ = 2^-1,
and (£s((£s(ffi)) = 3f Here $ is the set of self-ad joint linear transforma-
tions on an ^-dimensional space and 5? generates an irreducible algebra
of linear transformations on the same space, i.e. S is almost all of $.
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To rule out such a case we will have to assume the dimension of the
vector space on which $ operates is not too small relative to ίϊ.

3. Let $ = H(Cn), ordinary n x n complex-hermitian matrices for
a suitably large n—an algebra over the field of real numbers, and ffi
the subalgebra of matrices with r equal s x s symmetric (i.e. with real
coefficients) matrix blocks on the main diagonal and zeros elsewhere
(rs = n). Then & is isomorphic to H(RS), and if r, s ^ 2, Ks(S) is
isomorphic to H(Cr), and &3((£3($)) to H(C8) which properly contains ®.
To exclude this, we will assume that the center of the enveloping
associative algebra of K contains the center of the enveloping associative
algebra of $.

We start with a discussion of centralizers of simple subalgebras of
a primitive ring with minimal ideals and identity element. Let M, N
be dual left and right spaces over the division ring D with center F.
Then F 1 is the center of the ring L(M, N). Let F(M, N) be the socle
of L(M, N), i.e. the linear transformations whose range is finite-dimen-
sional. We will consider primitive rings 3ΐ containing F 1 and such
that L{M, N) a 3t D F{M, N).

LEMMA 3.1. Let 2ί be a ring of endomorphisms of a module M, and
@ a right ideal in 2ί such that M© — M. If e is an endomorphism of
M commuting with every element of ©, then e commutes with every
element of 21.

Proof. Let s, a belong to @, 21 respectively. Then s(ea — ae) =
esa — sae since es — se, but since sa is in @, e(sα) = (sα)e, so s(eα — αβ)
= 0 for all s in @. Since M@ = If, Λf(βα — ae) = M&(ea — αe) = 0.
Thus eα = αβ.

THEOREM 3.2. Leέ SI = L(M, iV) 3 5R 3 F(M, iV) + F 1, αncZ ίβί 33
α simple finite-dimensional subalgebra, over F, of 31 which contains F 1.

(£ = (£afi(S3) is αfeo a primitive ring with minimal ideals and identity
element, and

Proof. The above theorem is a generalization of a result of Rosen-
berg, [15], but follows immediately from his result and the above lemma.
(£gϊ(33) = (£s)ί(33) Π % since 5R £ 21. As shown in [15], (£sί(S3) is a ring
of the form L( F, IF) for dual spaces V and W, and the socle @ of &w(23)
is contained in F(M, N). Since F(Λf, iV) c SR, © c 31, and so
@ c fe(S3) c &4S3) = L(F, TF). Thus ^(33) is a primitive ring with
minimal ideals and identity, since 33 and 5R contain the identity of 21.
This proves the first statement.

It is known that M© = M ([15]). Since © is a two-sided ideal in
), it follows from the lemma that &w(®)=&w(&w(%>)), and (£^((£^(33))=33
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by [15]. Thus (£<&(©) £ &2ί(©) = 23. Since @ c
(£sκ(@) £ S3, but <&R(@;»t(S3)) 3 53 always, so 6^((&H(33)) = S3, which we had
to prove.

The method of the above proof can be used to extend the Galois
theory of rings L(M, N), contained in [16], to primitive rings with
minimal ideals.

We state now the main result of this section:

THEOREM 3.3. Let M be a self-dual space (see § 2 for the definition)
over a division ring D, E the center of D, and F the subfield of self-adjoint
elements of E. Let SI = L(M, N), $ = iϊ(3I), the Jordan algebra (over
F ϊ) of self-adjoint linear transformations, and $ΐ a simple subalgebra
of 3> of degree greater than two containing F 1 and finite dimensional
over it. Assume that S3, the enveloping associative algebra of & in SI,
contains E 1. Then :

1. If ^ is of type A2, thus is isomorphic to L(V, W)5 for a pair of
dual spaces V and W, then &%(&) is isomorphic to L(P, Q)j for a pair of
dual spaces P, Q.

2. If Si is of type Alf B or C, i.e. is isomorphic to H(L(V, V)) for
a self-dual space V, then ©s(^) isomorphic to H(L(P, P)), P self-dual.

3. (£s((£8($)) = $, provided the dimension of M is greater than twice
the dimension over D of any minimal right ideal of 33 D, the ring of
endomorphisms of M generated by 33 and the scalar multiplications by
elements of D.

Proof. Let $ be of type A2. Then its enveloping associative algebra
33 is a homomorphic image of the "universal" enveloping algebra U of
S, and U = Ui © U2 where 112 is anti-isomorphic to Uτ and l^ and U2 are
simple algebras. Thus either 33 is isomorphic to VLτ or else 33 is isomor-
phic to U. 33 is a self-ad joint subalgebra of 31 since B consists of self-
ad joint elements. Moreover the dimensions over F of Uτ and & are the
same, so if 33 is isomorphic to ttj then 33 = $. Since 5Ϊ has degree at
least three, 33 is not commutative and so cannot consist only of self-
adjoint elements. Thus 33 = 33iφ332, where 33̂  is isomorphic to 11^
Since 33 is self-adjoint, either 33χ and 332 are also self-adjoint, or else
S52 — 35^ the image of 33! under the involution in SI. But if the 33« are
self-ad joint we again get a contradiction: for each k in $, write k =
kΎ + h, kt in 33; and self-adjoint. Then the map k into kx is a homomor-
phism of Jordan algebras and so is either zero or an isomorphism since
$ is simple. If it is an isomorphism it is onto 33χ since 33X and ££ have
the same dimension over F. But then 33X consists of self-adjoint elements
and this is impossible, as before. If the map k into kx is zero then the
map k into kt must be onto, which is equally impossible. Hence 33 =
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Let e% be the identity of S34, i = 1,2. Then et = βί and ^ + e.z = 1,
β ^ = 0. Let Λf4 = Me*: then M = Mι φ Mλ and the Λf4 are each totally
isotropic, for (Meh Me,t) — (M^β , Me^ — 0 since e%e\ = 0. As M is self-
dual, Λίi and M2 are dually paired by the scalar product in M.

Let (£ = (£$(33). Since S3 contains βx and β2, clearly

κ - κ n βiSίβxφ e n ^2ie2 = ex φ ea

= centralizer of 33X in β ^ ^ φ centralizer of 332 in β22ϊβ2.

Since 332 = 33ί, E2 = (£(. Also, by § 3.20 of [16], e ^ is isomorphic
to L(Melf Me[) — L(Mτ, M2) and in the same way e23Ie2 * s isomorphic to
L(M2, Mi). Ki, being the centralizer in L{MU M2) of the simple subalgebra
3BX which contains the center E 1, is a ring Z (JVi, N2), by [15], and
(£2 = Kί. Thus Ks(β) - J?(Ki φ eί) is isomorphic to (KOJ, i.e. to L(JVlf iV2)j.
This proves statement 1.

Let £ be of type A2 as above, and let M satisfy the dimensionality
condition of 3. Since E is the center of D and S3 contains E 1, 33 D
is isomorphic to 33 ®ED and so 33 D - ^ D φ S3, D - S3X φ^Z) φ
S3J ®#£) As the 33; are simple and contain Eet in their centers, 33̂  D
is a simple ring with minimum condition operating on Mt and therefore
Mi is completely reducible and homogeneous as 33̂  D (right) module.
By the dimensionality assumption, Mt is a direct sum of at least two
irreducible submodules. Let M be finite dimensional, then E* is the
ring of all endomorphisms of M commuting with 33 D and so is a
matrix ring Gn over a division ring G with n ^ 2, i.e. &L = Z,(iVi, ΛQ
and Nλ is a vector space of dimension greater than one. If M is infinite
dimensional, so is Nτ. From this it follows that the enveloping ring in
21 of (£ Π $ contains the socles of (£x and (£2: for Kx is not commutative
and so contains elements a and h with α6 ^ ha. Then α + α/, b + V and
6α + α'δ' all belong to (£ Π 3ί, so (α + α;)(& + V) - (ba + a'V) = ah - ba is
in the enveloping ring of (£ Π $. Also (ab — ba)(g + #') = (αδ — ba)g and
{Q + /)(^δ — δα) = g(ab — ba) are in this enveloping ring for all g in (£
(since KK' = (0) = (S/(£), and so this ring contains a non-zero two-sided
ideal in Gt̂ . Since every two-sided ideal contains the socle, the envelop-
ing ring does also. If F, W are dual spaces and 3Ϊ is a subalgebra of
L(V, W) which is the centralizer of a simple finite dimensional subalgebra,
then the socle F of 31 satisfies VF = F (see [15]). Therefore if F x is
the socle of (Ex, M ^ = Mx. By Lemma 3.1, the centralizer of Fτ in
L(Mlf Ma) is also the centralizer of ^. Thus Ks(©s(^)) = 3 Π (&»(&).
But (£5ί((£) is just e^ίKi φ (£2) and the latter is 33.Φ33, since 33X is the
centralizer of &τ in ^21^ = L(Mly M2) and similarly for 332. Therefore
KsίKsί^)) = S3 Π $ and it is known that 33 Π S = flί^ φ 33ί) = ® since
S is of type A2.

Next let £ be of type Ax, B, or C. Then 33 is simple and SB = iϊ(33).
= g5ί(33) Π 3 But (Ϊ5ί(33) is self-adjoint and so is of the form



790 BRUNO HARRIS

L{P, P) for a self-dual space P, since S3 is simple and contains the
center E 1 of 51. This proves statement 2.

Let now M satisfy the dimension condition of 3. 33 D is a simple
ring with minimum condition since S3 is simple and contains E 1, and
so is homogeneous completely reducible on ikf, and M is a direct sum
of at least three irreducible submodules, i.e. P has dimension at least
three. Write (£ for (^(S3) and F for the socle of (£. Then F i s locally
canonically matrix of degree ^ 3, [12], and so is generated by its self-
adjoint elements—i.e. the enveloping ring of (£s(ίE) — H(&) contains F.
Therefore &κ(F) = (^(g) = &%(&%(&)) and (^((g) = S3. Thus e3(®s(Λ))
= <£*(<£:) Π 3 = S n S , and finally 33 Π % = Sϊ since $ is of type Alf S
or C. Thus (£s(®3(®)) = ®. This concludes the proof.
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MODULUS OF A BOUNDARY COMPONENT

MARTIN JURCHESCU

§1. PRELIMINARIES AND SUMMARY

1.1 Preliminary definitions. Let R be an open Riemann surface,
and let {Gn} (n — 1, 2, •) be an infinite sequence of subregions of R
such t h a t :

(a) the relative boundary of each Gn is compact,
(b) Gn z> Gn+1, and

(c) nGn = o.
W - l

{Gn} is said to define a boundary component γ of R in the sense of
Kerekjartό [6] and Stoilow [16]. Here two sequences of subregions {Gn}
and {G'n) are considered to be equivalent and to define the same γ if
each region Gn includes a region G'm. That this is a proper equivalence
relation follows immediately.

Let r be a boundary component of R, and let S be a subregion of R.
If there exists a defining sequence {Gn} of γ with Gnΰ = S, for some n0,
we call S SL neighborhood of γ. Throughout this paper we shall consider
only neighborhoods S of γ such that the relative boundary of £ is a closed
analytic Jordan curve γQm

By an exhaustion of i?, we mean an infinite sequence {Rn} (n —
1,2, •••) of subregions of R as follows (see [16]):

(1) each Rn is compact relative to R and the relative boundary βn

of Rn consists of a finite number of closed analytic Jordan curves βnt,
(2) RnaRn+1,

(3) u Rn = R, and

(4) each connected component Sni of R — Rn is non-compact (rela-
tive to R) and its boundary consists of a single curve βni.

Each set R — Rn is said to be a boundary neighborhood of i2. It is
easy to see that, for any boundary component γ of R, there exists a
single connected component Snί which is a neighborhood of γ.

A property is said to be a boundary property (respectively a γ-pro-
perty) if the following is true. If a Riemann surface R has the property
then every Riemann surface R which admits a conformal mapping from
a boundary neighborhood of R (a neighborhood of γ', where f is a boundary

Received April, 1, 1958, and in received form May 1, 1958. This paper is a part of the
author's dissertation realized under the guidance of Professor Stoilow at Mathematical
Institute of the R. P. P. Academy, Bucarest. The author wishes to express his gratitude
to Professor Stoilow for his encouragement and permanent support. The author is also
indebted to Dr. Kotaro Oikawa of Tokyo Institute of Technology who read the manuscript
and made valuable remarks.
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component of Rf) onto a boundary neighborhood of R (a neighborhood
of γ) has the property.

Let u be a harmonic function on a subregion S of R. We shall
denote by ΰ the conjugate harmonic function of u and by D(u S) the
Dirichlet integral of u over £.

1.2. Capacity of a boundary component. Let γ be a boundary com-
ponent of an open Riemann surface R, P o a point of R, and ifz: | z | ^ 1
a fixed parametric disc on R with 2? = 0 corresponding to Po. Let {Rn}
be an exhaustion of R with Po 6 Rlf and let rw denote the curve βni

which separates γ from Po. This means that γn separates a neighborhood
of γ from Po.

We consider the class {t}y of single-valued functions on R which
satisfy the following conditions:
(1.1) each t is harmonic on R — Po and has the form

ί = log M + λ(*)

in Kzf where h is harmonic and h(0) — 0.

(1.2) \ di = 2π and ( dί = 0 , for all n ,
J Ίn J βni^yn

where rw and j8ni are described in the positive sense with respect to Rn.
We further consider the corresponding class {t}yn on Rn, and we

denote by tn the function of this class with tn = kn on γn and tn = fewi

on j8n4 ^ r«» where kn and A:wi are real numbers.
The following theorem due to Sario is proved in [14] (see also Savage

[15]). Let t e {t}y, and let

I(t) = lim ί [ tdt .
2π Jβn

THEOREM 1. The sequence of functions {tn} is compact. Let ty denote
a limit function of {tn}. Then we have the following conclusions :

(1.3) ty 6 {t}y and, for any t, min I(t) = I(ty) .

(1.4) I(t) = I(ty) + D(t-ty;R).

(1.5) kn ^ kn+1 and I(ty) = lim kn = ky.

By (1.4), for ky < oo, the minimizing function ί7 is unique. ty is called
the capacity function of i2 for γ, and the quantity cy = e~ky is called the
capacity of 7- (with respect to Kz). Let ^ = az + , a Φ 0, be a new
local parameter in the neighborhood of Po, and let c'Ί denote the capaci-
ty of γ with respect to this local parameter. It follows, from the de-
finition of the capacity, that



MODULUS OF A BOUNDARY COMPONENT 793

(1.6) cy=\a\c'y .

Hence, the condition cΫ = 0 is independent of the local parameter
which is used in the neighborhood of Po. Using Green's formula, it is
easy to see that this condition is also independent of Po. A boundary
component γ is called weak if it has a capacity cy = 0. The class of
Riemann surfaces for which all γ are weak is denoted by Cy. The
boundary of a Riemann surface R belonging to Cy is called absolutely
disconnected [14, 15].

1.3. Summary. Let R be an open Riemann surface, γ a boundary
component of R, S a neighborhood of γ, and γQ the relative boundary of
S. The present paper deals with a conformal invariant of S which is
denoted by μ(S;γQiγ) (or, simply, for fixed S, by μΊ) and is called the
modulus of S for γ0 and γ (the modulus of γ).

In §2 harmonic functions u on S with u = 0 on γ0 and satisfying
conditions (2.3) are considered, and a theorem is proved which establishes
the existence of a minimizing function uy = u(z; S; γQ, ΐ) for the Dirichlet
integral D(u; S). The modulus is defined by setting μy = D(uy; S). The
notion of a parabolic boundary component is defined by the condition
μΊ = CXD , and a theorem is proved which shows the equivalence of para-
bolicity and weakness.

In §3 measurable conformal metrics are considered. An important
minimal property of the conformal metric py = | grad uΊ \ corresponding
to a result of Wolontis [17] and Strebel [18] is proved, which connects
μΊ with the extremal length of a certain family of curves on S. As an
application, a characterization of a parabolic boundary component is
obtained in terms of conformal metrics. Another characterization of
a parabolic boundary component is given by means of the divergence of
a modular series Σi"(^») ϊn-u 7n)> The sufficient part of this theorem
implies the modular criterion of Savage [15]. A theorem shows the
equivalence of perimeter in Ahlfors and Beurling's sense and capacity
in Sario's sense.

Section 4 deals with the class My of Riemann surfaces for which
all r are parabolic in the case of a finite genus. The conformal mapping
properties of uΊ and ty are discussed, and, for planar Riemann surfaces,
the equalities OSB — My = OSD [1, 14] are proved. Finally a theorem is
proved which shows the connection between My and the class of Riemann
surfaces for which the continuation is topologically unique, or which do
not possess essential continuations.

§2. HARMONIC FUNCTIONS AND MODULUS

2.1. Moduli of a compact subregion. Let So denote a relatively
compact subregion of a Riemann surface R. We assume that the boundary
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of So is a set γ0 U aQ, where γ0 is a closed analytic Jordan curve and a0

consists of a finite number of closed analytic Jordan curves α01, , aok

(k ^> 1). We assign to each aQί(i — 1, •••, k) as positive orientation the
positive sense with respect to SQ and to γ0 the sense for which γQ and
a0 are homologous.

If u is a harmonic function on So then we denote the conjugate

period of u around aoi by Pι(u). This is defined by the integral I dΰ,

where <x'oi is any closed Jordan curve on So such that aQi and α'oί are

homologous. If u is harmonic on So U aQi then clearly p^u) = I dΰ.

The period vector {p^u), •••,?>*(%)) will be denoted by p(^)

LEMMA 1. T/zere is a harmonic function uQ — u(z; SQ) γQf kQ1) on SQ

satisfying the following conditions:

(a) u0 — 0 on γQ and u0 = μQi — const, on aQi(i = 1, , &) ,

(b) p(u o) = ( l , O > . . . , O ) .

(c) 0 < uo(z) < μ01 on So and on the boundary curves am , aQJ6 .

Proof. Denote the harmonic measure of aQί with respect to SQ by
ωif and consider the function

(2.1) u(z) = Σ W . W ,
i = l

where //4 are arbitrary real numbers. Clearly, this function is harmonic

on So = SQ U ΓO U oίQ. Setting atj — v^ω^), we obtain

du = Σ

We assert that this linear mapping of the fc-dimensional cartesian space
into itself is one-to-one. In fact, from Green's formula

D{μ) = D(u;SQ=Σx[ udu =

we see that the condition pέ(%) = 0, for all i, implies D(u) = 0, that is
u Ξ= 0 (since % = 0on fo) and consequently ^ t = 0, for all i, which proves
our assertion. Hence we deduce in particular that the above linear
mapping is onto, i.e., for any p, there is a function u = ΣΛiωi(z) such
that p(u) = p. Let u0 denote the function (1.1) corresponding to p0 =
(1,0, « ,0). This is clearly the unique bounded harmonic function on
So satisfying (a) and (b).

Now denote the maximum and the minimum of u0 on the boundary
of So by MQ and m0 respectively. From the maximum principle, we have
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mQ < uQ(z) < MQ on So. It follows that dujdn ^ 0 on each boundary
curve ϊ(MQ) on which uo(z) — MQ. Here djdn denotes the derivative in
the direction of the interior normal. Since uQ is not constant and duo/dn
is continuous, there exists a subarc of r(Λf0) on which duoldn < 0 and
therefore

f dΰ
o
=-[

dn

where τ(M0) is described in the positive sense with respect to SQ. This
and condition (b) implies that γ(MQ) coincides necessarily with aQ1, whence
Mo = μQ1 and this maximum is attained only on aQ1. Similarly, it can be
proved that m0 = 0 and that this minimum is attained only on γQ This
completes the proof of Lemma 1.

LEMMA 2. The function uQ gives the minimum of D{u),

min D(u) = D(uQ) ,

in the class of all harmonic functions u on So with u = 0 on γ0 and p(u) —
(1,0, . . . , 0 ) .

Proof Clearly, the function uQ belongs to the class of admissible
functions and, by Green's formula,

k

D(uQ) — Σ PoiPi(uo) — μ*ι < °° .

Let u be any admissible function with D(u) < oo. Setting u — uQ = h,
we have

D(u) - D(u0) + D(h) + 2D(uQ, h) ,

where D(u0, h) = D(u0, h So) is the mixed Dirichlet integral of u0 and h

over So. We shall show that D(uQ, h) = 0. lΐ u is harmonic on SQ then

Green's formula gives immediately

C _ fc
D(uQ, h) = I uodh = Σ A)t Vi(h) = 0

since, for all i, p4(A) = ^(^) — 2?i(%0) = 0. If the above assumption is not
true, we consider the open set SQ(ε) — So — U Li EQi(e), where ε is a positive
number, sufficiently small, and Ea(ε) is the set (of points of SQ for which)
μQi — e ^ ^o(̂ ) ^ μQί + ε. The boundary of >S0(ε) consists only of level
lines of uQ. On the other hand each level line c(μ): uo(z) = μ (0 < ^ < μ01,
/i ^ ^ 0 O ί = 1, . . . , k) is a dividing cycle on So (that is, c(/̂ ) is homologous

with a sum of aQi) and therefore \ dh = 0. Hence, Green's formula
Jc(μ)

gives again JD(^0, /̂  ^(ε)) — 0 and, as ε -> 0, D(Wo, A) = 0. We conclude
finally that
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(2.2) D(u) = D(u0) + D(u - u0) ,

which proves our lemma.
The uniqueness of the minimizing function u0 is an immediate con-

sequence of (2.2). For, if D(u) = D(u0), we conclude from (2.2) that
D(u — u0) = 0, that is u = u0, since u — u0 — 0 on γ0.

The function u0 = w(#; £ ; TO, α01) will be called the extremal function
of SQ for 7Ό and α01. The quantity //01 = Z)(^o) will be called the modulus
of £0 for To and α01 and denoted generally by μ(SQ; γQ9 aQ1).

2.2. Modulus of a boundary component. Let us consider a boundary
component γ of an open Riemann surface R, and let £ be a given
neighborhood of γ. Let γ0 be the relative boundary of S (see 1.1). An
exhaustion of S is a sequence {Sn} (n = 1, 2, •••) of subregions of i?
such that : (1) Sn is a relatively compact subregion of R and the relative
boundary of Sn is a set γ0 U <*w, where Γo Π <Λ;W = 0 and an consists of
a finite number of closed analytic Jordan curves ani, (2) Sn c Sn+1, (3)

\J Sn = S, and (4) each connected component of S — Sn is non-compact
n+l

and its relative boundary consists of a single α n ί . We assign to each
ani as positive orientation the positive sense with respect to Sn and to
γQ the sense for which γQ and an are homologous.

Let γn be the curve ani which separates γ from γQ, and let {n}y be
the class of all harmonic functions u on S with w = 0 on γ0 and

(2.3) ( dΰ = 1 and ( dS = 0 ,

for all ?z. It is easy to see, using Green's formula, that conditions (2.3)
are independent of the particular exhaustion which is used.

THEOREM 2. In {u}y there exists a function uy with the property

min D(u;S) = D(uy; S) .

Moreover, for any u,

(2.4) D(u; S) = D{uy; S) + D(u - uy; S) .

Proof. Denote by un the extremal function of Sn for γ0 and γn9 and
put μn = D(μn Sn) — value of un on γn μn is the modulus of Sn for γ0

and rn-
Since the restriction of un+1 to Sn satisfies the condition of Lemma

2 (where So is replaced by Sn and α01 by γn), we have

^ n = D(un;Sn) ^ D(un+ι;Sn) ^ D(un+1; Sn+1) = /^n+1 .

Similarly, we see that ^ n ^ / γ̂, where />ίv is the greatest lower bound of
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D(u;S) for u in {u}y. Thus, limμw exists and we have

lim μn ^ μΊ .

For a fixed N, let s be the bounded harmonic function on SN with
s = 0 on TO and s = d on α^, where d is a constant value determined by

I ds = 1. From Green's formula \ unds — sdΰn) = 0 and the boundary

behavior of un and s, we obtain

I unds = d ,

for all n ^ N, whence mmΛNun ^ eZ. It follows from Harnack's principle
that the sequence {un} is compact. A subsequence, say again {un}f

converges, uniformly on each SNi to a function u- . Obviously this func-
tion belongs to {u}y, so that

μΊ ^ D(uy S) .

On the other hand, the lower semicontinuity of the Dirichlet integral
gives

D(uy S) ^ lim D(un Sn) = lim ^ .

From the three preceding inequalites we conclude that

D(uy S) = lim μn = μΊ ,

which proves the first assertion of Theorem 2.
Let us now prove equality (2.4), for any u in {u}y. This is evident

if D(u S) — co. Suppose D(^ S) < oo, and put u — uy = h. For any
real number ε, uy + eh e {u}y, and therefore

J9(^7 + εΛ) = D(uy) + 2εZ}( γ̂, Λ) + ε2D(h) ^ D(%y) .

Since D(uγ + eh) < oo, this is possible only if D(%v, h) = 0, so that, as
ε = 1, we obtain (2.4).

As in Lemma 2, the uniqueness of the minimizing function nΊ in
the case μ, < oo is an immediate consequence of (2.4).

The function uy will be called the extremal function of S for f0 and
γ and denoted generally by u(z; S; γQ, γ). The conformal invariant μ, —
D(uγ,S) will be called the modulus of S for r0 and γ or, simply, for
fixed S, the modulus of ?\ It will be denoted generally by μ(S;γ{],γ).

2.3. Parabolic boundary components. Let γ be a boundary com-
ponent of an open Riemann surface R. Consider any two neighborhoods
5 and Sf of r, and denote by γ0 and y\ the relative boundaries of S and
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S' respectively. Set u(z S; γ0, γ) = uy, u(z S' fQ9 γ) = u'Ύ, μ(S; γ0, γ) =

' rΌ, r) = ^Ύ

LEMMA 3. 7%0 moduli μΊ and μ'Ί are simultaneously finite or infinite.

Proof. Suppose first S c S', and let {S'n} be an exhaustion of S'.
The regions Sn = S Π £>'„ give, for w sufficiently large, an exhaustion of S.
Set u(z 7Ό, r«) = un, u(z Sf

n f0, γn) = ^ r

w, ^(Sw r0, rn) = /"», μ(S'n rΌ» Γn) =

From Green's formula

I (u'ndΰn - wwcZw'w) = 0

it follows

μ'n - μn = I %'»d%«.

Hence, as w —> oo, we obtain

This proves our lemma in the particular case S a S\
Let us now consider the general case, and construct a third neigh-

borhood S" of γ such that S" c S Π Sr. Let r"0 denote the relative
boundary of S", and put μ(S" r"o, r) = μ"v As before, ^ γ and μ"Ί are
simultaneously finite or infinite. The same is valid for μ'y and μ"Ί and
consequently for μΊ and /irγ, which completes the proof of Lemma 3.

A boundary component γ of R is called parabolic if μΊ = oo and
hyperbolic if μγ < oo. From Lemma 3, this condition is independent of
the neighborhood S which is used, i.e. the parabolicity of a r is a r-
property of R. The class of all Riemann surfaces for which all boundary
components are parabolic will be denoted by My. The property R e My

(or R $ My) is a boundary property of R.
Consider now the capacity function ty of R for γ with respect to

a fixed parametric disc | s | <£ 1. Let λ denote a positive number which
is sufficiently small such that the level line c(λ): ty(z) = logΛ is a closed
Jordan curve and the set tΊ(z) <̂  logΛ is compact. The set S(λ): tΊ(z) > logΛ
is then a neighborhood of γ. Put u(z S(λ) c(λ), γ) = %Yiλ, μ(S(/l) c(^), r) =

LEMMA 4. /f λ satisfies the above conditions, then

(2.5) ty(z) - lOg λ =
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and

(2.6) ky - \θgλ = 2πμyΛ .

Proof. Consider an exhaustion {Rn} of R as in 2.1. The regions
Sn(λ) = Rn Λ S(λ) give, for w sufficiently large, an exhaustion of S(λ). Set
u{z Sn(Λ) c(λ), γn) = %Wιλ, μ(Sn(Λ) c(λ), γn) = / ,̂λ, ί, - 2τmγ,λ = h,tn- 2πunπ =
&n, where ίw is the function on i2ro defined in 1.2. From Green's for-
mula, we have

D(K Sn(t)) = \ hndhn — I hndh = — I hndhn ,
)βn Jc(λ) JcCλ)

since An = const, on βni and \ dAn = 0, for all βni. Hence, by the lower

semicontinuity of the Dirichlet integral,

c(λ)

since h — const. — log λ on c(λ) and \ dh = 0. We conclude that & Ξ=
Jc(λ)

log/ί, which proves (2.5).
Now apply Green's formula on Sn(λ) to unΛ and tn. We obtain

fcn - 2πμnΛ = I ίndSnlλ ,
JcCλ)

w h e n c e , a s n -> oo,

fcγ — 27Γ/iγ)λ = I tΫdUytλ = log Λ ,
Jc(λ)

which completes the proof of Lemma 4.

THEOREM 3. A boundary component γ of R is parabolic if and only
if it has a vanishing capacity.

Proof. This is evident from Lemmas 3 and 4.

COROLLARY. My = C .

§3 MODULUS AND CONFORMAL METRICS

3.1. Definitions. Consider a non-negative function p(z) which is
defined on each parametric disc Kz\ \z\ ̂  1 of a subregion S of R and
satisfies

dz
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at corresponding points z, zr of any two overlapping Kz and Kz,. We
say that p is a conformal metric on S. We define the ^-length of any
cycle c (finite set of closed Jordan curves) on S by the lower Darboux
integral (see [4])

KP C) = I p(z)\dz\.

A conformal metric p is said to be measurable on S if its restric-
tion to any parametric disc is measurable in Lebesgue's sense. If p is
a measurable conformal metric on S, we define the p-area of S by the
Lebesgue integral

A(p;S)=\ P\z)dσz,

where σz is the Lebesgue measure on Kz. A measurable conformal metric
p defined on S is said to be A-bounded on S if A(p S) < oo .

3.2. Extremal conformal metrics. Consider first the relatively com-
pact subregion So of 2.1. We prove the following

LEMMA 5. The conformal metric p0 = |gradwo| gives the minimum of
A(P;S0),

(3.1) mm A(p; So) = A(po;So) ,

in the class of all conformal metrics satisfying I (p c) I> 1, for all dividing
cycles c on SQ which separate a01 from γQ.

Moreover, for any admissible p,

(3.2) A(p SQ) > A(Po SQ) + A{P - Po So) .

Proof. Clearly the conformal metric p0 satisfies the condition of the
lemma, and A(p0; So) = D(uQ; SQ) = μQ1 < oo. Let p be any admissible
conformal metric on Sϋ with A(p So) < oo.

We evaluate the integral

Take wQ = u0 + iΰ0 for the local parameter on So, so that pQ(w0) = 1.
Denote the level line uQ(z) = μ (0 ̂  μ ^ //01; see Lemma 1) by
From Fubini's theorem,

I p{z)plz)dσz = Γ 0 1 φ 1 p{wQ)du o .
J S 0 JO JcCμ)
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Here the integral \ p(wo)duQ exists almost everywhere, for μ on the

closed interval [0, μ01]. But c(μ) is, for any μ φ μoi, a dividing cycle on
So which separates a01 from γ0 and therefore, almost everywhere,

f P(wQ)dU0 = \ p(z) \ d z \ ^ \ P(z) \ d z \ ^ l
Jc(μ) Jc(μ) JcQ/J

From the two preceding relations it follows that

1 P(z)po(z)dσ-β ^ An .

Now put p = p0 + (p — Po) in A(p So) we obtain

A(p; So) = μ01 + A(p - po; So) + 21 ppodσ - 2//01

and, from the preceding inequality, we conclude finally that

A(p So) ^ ^ 0 1 + A(p - po; So) ,

which proves our lemma.

Clearly the admissible conf ormal metric which minimizes A(p SQ) is
unique. For, if A(p; So) = A(p0; So) = μQ1 < c», we deduce from (3.2)
that A(/? — pQ; SQ) = 0, i.e. p = p0 almost everywhere on SO.

Now let γ be a boundary of R, and let S be a given neighborhood
of γ. Let {joj γ denote that class of all measurable conf ormal metrics
defined on S which satisfy the condition

(3.3) l ( P ; c ) ^ l ,

for all dividing cycles c which separate γ from rυ. If it e {u}Ίy then
obviously |gradw|e {p}y. This is valid, in particular, for the conf ormal
metric pΊ = [grad^l. The pγ-area of S is A(py; S) = D(^ γ ; S) — /iY.

THEOREM 4. In {p}y the con formal metric py — |grad%| gives the
minimum of A(p; S):

(3.4)

Moreover, for any p,

(3.5) A(p S) ^ A(Py S) + A(P - Py S) .

Proof. If A(/>;S)= oo, (3.5) is evident. Assume now that there
exists in {p}y SL conf ormal metric p which is Λ-bounded.

Set |grad^w | = pn (see 2.2). Since A(p; S) ^ A(p; Sn), we conclude
from Lemma 5 that
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As n-+ oo, Fatou's Lemma gives immediately

A(p; S)^μy + lim inf A(p - Pn; Sn) ^ μΊ + A ^ - ^ S) ,

which proves (3.5) and the theorem.
As in Lemma 5, the uniqueness of the minimizing conformal metric

py in the case μi < oo is an immediate consequence of (3.5).
By Theorem 4, the quantity λΊ = μf1 is equal to the extremal length

of the family of all dividing cycles c on S separating γ from γ0 ([1], [5]).

3.3. Parabolic boundary components. We return to the condition
μΊ = oo studied in 2.2.

THEOREM 5. A boundary component γ of R is parabolic if and only
if, for any neighborhood S of γ and for any A-bounded conformal metric
p on S, there exists a dividing cycle separating γ from γ0 with an arbit-
rarily small p-length.

Proof. If μΊ < oo, the conformal metric pΫ is A-bounded and satis-
fies l(p; c) ;> 1, for all dividing cycles separating γ from γ0. Conversely,
if there is an A-bounded conformal metric p on S satisfying l(p c) ̂  ε > 0,
for all dividing cycles c separating γ from γ0, the conformal metric
JO* = (l/ε)/> is A-bounded and belongs to {p}y. Therefore, by Theorem 4,
μΊ < oo.

THEOREM 6. Suppose R is imbedded in a larger Riemann surface i2*.
// a boundary component γ of R or a part of γ realized on R* contains
a continuum 7**, then γ is hyperbolic.

Proof. Let i£* : |z*| ^ 1 denote a parametric disc on R* for which

J5L* Π r* contains a continuum, say again 7-*. Since 7-* is a boundary

continuum of R, there exists a disc iϋ0 c K* Π iϋ. In if* let Q = αδα'δ'

be a rectangle such that its side a is completely interior to Ro and its

opposite sides b, V have common points with 7-*.

Set R — RQ = S. We define a conformal metric p0 on S by setting
pQ(z*) — 1 on Q Π S and #, = 0 otherwise. Clearly p0 is A-bounded and
satisfies l(pQ; c)^lQ> 0, where lQ is the length of a in if* and c is any
dividing cycle separating γ from TV Hence, by Theorem 5, γ is not
parabolic.

Let S be a given neighborhood of a boundary component 7- of R, and
let {Sw} be an exhaustion of S as in 2.2. Let En denote the connected
component of Sn — Sn^ whose boundary includes γn^ and γn. We as-
sert that
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(3.6) μ(S; γ0, γ) ^ Σ/"(#»; r»-i, r») .

In fact, since the restriction of pΊ to Z£w is admissible in Lemma 5 (where
So is replaced by En, γQ and a01 by τ-w_i and γn respectively), we conclude

CO

that A(py; En) ^ μ(En; γn-i, Tn) Therefore, μ(S; γQ, ϊ) ̂  Σ A(py; En) ^
w = i

oo

wϊΓw-i>Γw)» which proves (3.6).

Similarly, it may be proved that

(3.7) μ(S; TO, r) ^ M^i; r0, n) + μ(S\; γlf r),

where S\ is the connected component of S — S1 whose relative boundary

is ri.

THEOREM 7. A boundary component γ of R is parabolic if and only
if there exists an exhaustion of S for which

(3.8) ΣΛ;r,-i,r.)= °° .
W = l

Proof. By (3.6), the condition (3.8) is sufficient for the parabolicity
of γ.

Conversely, assume that γ is parabolic, and let {Sn} be a given
exhaustion of S. Since

lim μ(£n; γQ, γn) =

we can choose nL ^ 1 such that ;"(£„; TΌ> ϊn) ^ l Let AS*WI denote the

connected component of S — Sni whose relative boundary is γni. S*ni

is a neighborhood of γ. Since γ is parabolic, we have

lim μ(S\ n; γn, γn) = μ(S\; γnχJ r) = °° ,
W-» oo

where S*Ui>n — S*ni Π Sw. Therefore, we can choose n2 > nt such that
*ni,n2\ ϊnvϊn) ^ 1- Continuing this procedure, we obtain an exhaustion

({SnJ (k — 1, 2, •) of S, which satisfies condition (3.8). Thus Theorem
7 is established.

3.4. Perimeter and capacity. Let \z\ fg r0 be a fixed parametric
disc on JR, and let S(r) denote the complement of the disc | z \ ̂  r (0 < r ̂
r0) with respect to R. Set ^(S(r) \z\ = r, r) = ^v,r. By (3.7), for r ' < r,
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or

— 2πμy>r, — l o g r ' ^ —2πμyir — logr .

Therefore,

πy = lim — β-^v.r
r->0 7*

exists. According to Ahlfors and Beurling [1], we call πy perimeter of
γ with respect to the fixed parametric dies \z\ ̂  r0. Let s' = λ(z) —
az + , α Φ 0, be a new local parameter in the neighborhood of the
point Poe R corresponding to 2 = 0, and let πy denote the perimeter of
γ with respect to the parametric disc \z'\ ̂  r'o. Set \z\ = r and \z>\ — rr.
For corresponding r and r' by ^ = /ί(^), we have

where er is a positive function of r and εr -> 0, as r -» 0. It follows,
from the conformal in variance and the monotony of modulus, that

(3.9) πy =\a\π'y .

We now prove the following.

THEOREM 8. // the perimeter πy and the capacity cr are defined with
respect to the same parametric disc \z\ :£ rQ, then πy — cy.

Proof. From (1.6) and (3.9), it is sufficient to prove the required
equality for a particular parametric disc of the point Po. We choose
this parametric disc, say again \z\>,r09 such that ty = \og\z\ on | ^ | ^ r 0 .
Then, by (2.6), we conclude immediately that

πy = l i m — β"27ίμv»λ = β"fcv = cy ,

which proves our theorem.

COROLLARY. If Py denote the class of Riemann surfaces defined by
πΊ — 0, for all γf then Py = cy = My.

§ 4. RIEMANN SURFACES OF FINITE GENUS

4.1. Planar subregions. Let γ be a boundary component of an open
Riemann surface R, and suppose that γ is hyperbolic and possesses
a neighborhood S which is planar.

Set, as usually, u(z; S; γύ, γ) — uy, μ(S; γQ, γ) — μy, and consider the
function w = Fy (z) defined by
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(4.1) Fy(z) = exp 2π(uy(z) + iuy(z))

Consider an exhaustion {Sn} of £ as in 2.2. Since S is planar, the
homology group H^S) is generated from the boundary curves ani of
Sn(n = 1, 2, •), and we conclude by (2.3) that Fy is single-valued. We
now prove the following [7]:

THEOREM 9. The function w = Fy(z) maps the region S univalently
onto the annulus

slit along a set of circular arcs around the origin. Here the boundary
circumferences \w\ = 1 and \w\e2icιλy correspond to γ0 and γ respectively.
The total area of the slits vanishes.

Proof. We define the function w = Fn(z) on Sn by

Fn(z) = exp 2π{un(z) + iu(z)),

where un — u(z; Sn; γϋJ γn). As before, we see that Fn is single-valued,
for all n.

The function w — Fn(z) gives a one-to-one conformal mapping of
Sn onto the covering surface Sn,w = (Sn9w = Fn(z)). By the definition of
un> \Fn(z)\ assumes constant values on the boundary curves of Sn and
satisfies on Sn:

It follows that SntW is an unlimited covering surface of the annulus
AQφ slit along a finite number of circular arcs. On the other hand,
evaluate the ^-area of SnιW, where

2π\w\ 2π
-— logw
dw

Since, for w = Fn(z),

pn(z) = \gradun(z)\ = —- -— logw
dz dz

we obtain

; Sn>w) = A(pn; Sn) =

This is equal to the pQ- area of the annulus AQ^ . It follows that the
covering surface Sn>w consists necessarily of a single sheet, that is the
function Fn is univalent. Since Fn ~> FΊ uniformly on each SN, FΊ is
also univalent.
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Let us now consider the image Sw — Fy{z). Denote the connected
components of the boundary of Sw which correspond to γQ and γ by γ°w

and γw respectively. Clearly fw is the circumference \w\ = 1. Further,
since μn ^ μy, for all n, Sw is included in the annulus 4>,μv As before,
the iO0-area of Sw is

A(p0; Sw) = A(py; S) = μy ,

since

(w =

This is equal to the ^-area of the annulus AQifJ.r Accordingly, the com-
plements of Sw with respect to A0>fl has a (logarithmic and Euclidian)
vanishing area.

Assume finally that the set A0>μy — Sw possesses a connected com-
ponent γ*w which is not a point or a circular arc around the origin.
Construct two circumferences \w\ = rt (i = 1, 2; r < rτ < r2 < e27ίμγ) hav-
ing common points with γ*w, and consider a point w0 in the annulus
rx<\w\ < r2. Let Kζ be the disc \w — wo\ ^ ε. Obviously, for ε suf-
ficiently small, the conformal metric pi9 defined by p9 — 0 on Ks and
^e^) = pQ(w) on *SW — ifε, satisfies the condition (3.3), for all dividing
cycles c on Sw separating γw from γ°w. This contradicts Theorem 4, since
A(ps Sw) < A(/o0; Sw) — μ . Therefore, the continuum r*w does not exist.
In particular, γw coincides with \w\ = β27ίμγ. Theorem 9 is completely
proved.

4.2. Planar Riemann surfaces. Suppose now that R itself is planar.
Let \z\ ^ 1 be a fixed parametric disc on R, γ a hyperbolic boundary
component of R, and cγ > 0 the capacity of γ with respect to \z\ ^ 1.
Consider the function w = Ty(z) defined by

Ty(z) = cy exp(ty(z) + ity(z)) .

By Lemma 4 and Theorem 9, we have the following [14]:

THEOREM 10. The function w — Ty(z) is univalent and single-valued
on R and maps R onto the unit circle slit along a set of circular arcs of
vanishing total area. The boundary component γ is mapped into the unit
circumference.

Let SB (SD) be the class of univalent single-valued analytic func-
tions having a bounded modulus (a finite Dirichlet integral), and let
OSB(OSD) be the class of Riemann surfaces with no functions belonging
to SB(SD).

THEOREM 11. [1, 14] For planar Riemann surfaces,
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(4.2) OSB - My = OSB .

Proof. Assume first that the planar surface R possesses a hyperbolic
boundary component γ. Then, the function Ty of Theorem 10 obviously
belongs to the class SB and SD.

Conversely, suppose that there exists on R a function w = T(z)
which belongs to the class SB or SD. In both cases, the image Rw =
T(R) has a finite Euclidian area. Let Ks: \w — wo\ <£ s be a disc which
is completely included in Rw. Denote by γw the connected component of
the boundary of Rw which separates w = 0 from w — co or contains w — oo,
The conformal metric p{w) = l/2πε is clearly A-boundary on Rw — i£ε

and satisfies condition (3.3), for all dividing cycles on Rw — KB which
separate γw from \w — wQ\ = s. We conclude that the boundary com-
ponent f of R which corresponds to γw is hyperbolic.

4.3. Riematm surfaces of finite genus. A continuation of a Riemann
surface i2 is defined by (1) another Riemann surface Rr and (2) a one-
to-one conformal mapping T:R-> R\ T(R) c R\ [2, 4, 8, 9, 11, 12]. If
R! is a compact Riemann surface, the continuation is called compact. If
Rf — T(R) contains interior points, the continuation is called essential
[9, 12].

Let R be a Riemann surface of finite genus. We say that the con-
tinuation of R is topologically unique if, for any two compact continua-
tions Tv: R-> R\(v — 1, 2) of R, there exists a topological mapping
h\ = JBΊ -» R\z, h\(R\) = B'a, with ft*12 Γ^Λ) = Λ12, where h12 = T2T{~\
If, in addition, λ*12 is always a conformal mapping, the continuation of
R is said to be conformally unique.

Let O p̂ denote the class of Riemann surfaces with no non-constant
single-valued analytic functions having a finite Dirichlet integral. It is
well known that the continuation of a Riemann surface R of finite genus
is conformally unique if and only if R e OAD [1, 8, 12]. We now prove
the following

THEOREM 12. For Riemann surfaces of finite genus, the following
conditions are equivalent:

(1) Re MΊ

(2) The continuation of R is topologically unique.
(3) R does not possess an essential continuation.

Proof. (1) -+ (2). If Re My and TV:R~± R\ (v = 1,2) are compact
continuations of R, then, by Theorem 6, the sets βv = R\ — TV{R) are
totally disconnected. Set T2T{-τ = h12. We define a topological mapping
Λ*12 of R\ onto Rr

2 as follows. First, set A*la(Pi) = hviPλ), for any
P x e T^i?). Now let Px 6 /?!. Since βλ is totally disconnected, there is
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a fundamental sequence {Un} of neighborhoods of Px such that the open
sets Vn = Un Π TL(R) are connected. Set E ^ ) = n«M~F»). Clearly this
is a closed and connected set. On the other hand, E(P1) c β2 and, since
& is totally disconnected E(Pτ) contains a single point P2. Set h*n(P^) =
P,. It is easy to see that h% is a topological mapping between R\ and
# , .

(2)-»(3). If R possesses an essential continuation Tτ: R-+ R\, we
may construct in an evident manner another compact continuation
T2: R -> JSr

2 of i? such that R\ and i2'2 have different genera.
(3) ~»(1). Assume that R 0 Λf-, i.e. R possesses some boundary

component γ which is hyperbolic. Let S be a neighborhood of γ. We
have μΫ < oo. By Theorem 9, there is a one-to-one conformal mapping
of S> into the finite annulus 1< \w\ < e2πμy. Let Kw denote the set \w\ > 1.
Clearly the Riemann surface R! = (R — S) U Kw defines an essential con-
tinuation of jβ, and therefore (3) -» (1). Thus, Theorem 12 is established

COROLLARY 1. For Riemann surfaces of finite genus, we have
OAD C My.

Note that by a theorem of Ahlfors and Beurling [1] this inclusion
is strict.

COROLLARY 2. Let R e My — OAD and of finite genus. Then there
exist two compact continuations Tv: R-+ R\ (v ~ 1, 2) of R such that the
corresponding topogical mapping h% is not a conf or mal mapping.

In particular, we conclude from Corollary 2 that there exist Pom-
peiu functions which are univalent (see [3], [10], and [16]).
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RUNS

H. KENYON AND A. P. MORSE

1. Introduction. A relation is a set of ordered pairs. If R is a
relation then it helps our intuition to sometimes think that y comes after
x if and only if {x, y) e R. With this in mind we search among relations
for directing mechanisms among which are to be not only those familiar
ones considered by Moore-Smith, but enough more to handle1 topological
convergence.

We agree that

dmn R = domain R = Ex [(a?, y) e R for some y]

= the set of points x such that (x, y) e R for

some y,

and that

rng R — range R — Ey [(a?, y) e R for some x] .

Now suppose

Γ= Eα(0 £ x < oo)

and

ω = the set of non-negative integers.

Also suppose

R, =- Ex, y(0 ^ x ^ y < oo)

and

R2 = E#, 2/(a? e ω and 0 ^ a ; ^ 2 / < oo),

so t h a t (x, y) e Rτ if and only ifO<x^y<oD and (a?, y) 6 i22 if and

only if x e ω and 0 ^ x <̂  ?/ < oo.

Clearly

rng i?2 = r n g R1^= Γ

but on the other hand

dmn R.λ — ωΦ dmn Rλ — Γ ,

Nevertheless, iϋ2 and i^ are intuitively equivalent directing mechanisms.
Now suppose :

Received February 17, 1958.
i See Remark 5.2.
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I = Έt(O ^ t ^ 1)

Γ = The set of functions on I to Γ

ωf = The set of functions on 7 to ω

R[ = Ex, y[x 6 Γ' and y e Γf and #(£) ^ ?/(£) whenever ί e / ] ;

jRa = E#, y[x e ω' and y e Γ' and ατ(ί) ^ ?/(£) whenever ί e l ] .

Very much as before

dmn R'2 = ω' Φ dmn i?ί = Γ',

but nevertheless #2 and R[ are intuitively equivalent directing mecha-
nisms.

Let us look more closely at R2, R2 is clearly transitive. That is,
{x, z) e R2 whenever (x, y) and (y, z) both belong to R2. In other words,
if y comes after x and z comes after y, then z comes after x. More-
over if x e dmn R'2 and y e dmn R2 then there is a 2 e dmn R2 which
comes after both x and y. That is, corresponding to each x e dmn #2
and each y e dmn R2 there is a z e dmn i?2 for which

(#, 2) 6 i?2 and (i/, 2) 6 i?2

We are thus led to

1.1 DEFINITION. R is a direction if and only if iϋ is such a non-
vacuous transitive relation that corresponding to each x e dmn R and
each y e dmn ϋ? there is a 2 e dmn i? for which

(#, z)eR and (?/, z)eR .

Evidently the directing mechanisms of Moore-Smith are directions,
but it turns out that even directions are not topologically adequate.1

If R is a direction then clearly for each x e dmn R and each y e dmn R
there is a z e dmn R such that anything which comes after z also
comes after x and after y. We are now on the right track.

1.2 DEFINITION. R is a nm if and only if R is such a non-vacuous
relation that corresponding to each x e dmn R and each ι/ e dmn R there
is a z e dmn iϋ for which

(x, t) e R and (y, t) e R

whenever t is such t h a t (z, t) e R.
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From 1.1 and 1.2 follows

1.3 THEOREM. Every direction is a run.

As we shall indicate, runs are topologically adequate. For that mat-
ter, so are the filter-bases of Cartan, the nets of Kelley, and the syntaxes
of McShane. But among these we do not find such an old friend as the
Moore-Smith direction Rλ.

It is a curious fact that one can come across situations in which the
effect of a direction cannot be duplicated by a filter-base.2 Suppose

R3 = Eα, b[a c b and 6 is a finite set] .

Clearly, Rό is a direction. Moreover, it is a direction which has been put
to use in defining unordered summation. However, no filter-base can do
the work of R3, since in many set theories the family of all finite super-
sets of a given finite set is a class incapable of belonging to anything.3

The runs which first come to mind are directions. However, some
runs are very unlike the directions they generalize. The domain of a
run is merely an indexing set of sign-posts which seem to say, " Beyond
here is far enough." It may be that many things follow such a sign,
post yet no sign-post at all is among them. To savor some possibilities
along this line let us examine briefly two more runs.

Assume T topologizes S and that p e S and check intuitively that

Eβ, x[p 6 β e T and x e β]

is a run which converges to p in the topology T.
Next assume p metrizes S and p e S and check intuitively that

Er, x [0 < r < oo and p(x, p) <| r]

is a run which converges to p in the metric p.
It must be admitted that filter-bases are less intricate than runs.

Moreover, filter-bases handle theoretical limits with less emphasis on
inessentials than any other method known to us. What disturbs us and
others about filter-bases is that in many specific situations, such as limit
by refinement, the filter-bases do not correspond vividly enough to the
limiting concept one pictures. Perhaps it is for this reason that direc-
tions, though inadequate, are still very much with us. We feel that
runs retain the virtues of directions and at the same time remove their
inadequacies.

2 A filter-base is a non-empty family of non-empty sets such that the intersection of
any two of them includes a third.

3 In this present paper we have in mind a set theory similar to that employed by J.L.
Kelley, General Topology, pp. 250 ff. New York, 1953.
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2 Some definitions.

2.1 DEFINITIONS.

1. ~B — The complement of B
2. <rF=Έx(x e β for some β e F)
3. πF = E#(a? e β for every β e F)

2.2 REMARK. Thus cr.F is the union and πF the intersection of all
members of F. If A is the set whose sole member is x, then <?A = # =
7z\A. We assume the integer 0 and the empty set are the same and
notice that σθ = 0 and πθ — the universe.

With vertical and horizontal sections in mind we make the following
definitions.

2.3 DEFINITIONS.

1. vsRx = Έy[(x,y) e R\.
2. hs Ry = Ex[(x, y) e K\.

When R is a run then we sometimes think :

y € vsRx if and only if y comes after x

x e hsRy if and only if x comes before y.

There is no magical significance, as often in analytic geometry, at-
tached to the letters used. Thus we sometimes think :

x e vs Rδ if and only if x comes after δ

or even

x 6 vs Ry if and only if x comes after y.

2.4 DEFINITIONS.

1. *RA — Έy [(a?, y) e R for some x e A]
2. *RA = Έx[{x, y) e R for some y e A]

2.5 DEFINITION, inv R = inverse R = E#, ?/ [(?/, x) e R\.

2.6 DEFINITION. R: S =ΈX,Z[There is a j/ such that (x, y) e Sand
(y, z) € Λ.]

A function is the same as its graph and is hence a special kind of
relation. If / and g are functions, then / : g is that function A such
that h(x) = f(g(x)) for each a?.

2.7 DEFINITION, ret AB = rectangle AB = Ex, y(x e A and yeB).
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3* A few properties of relations*

3.1 THEOREM. // R is a relation and f is a function, then :

1. *J?(A U B) = JRA U
2. A c B implies *RA c
3. *R(A Π B) c *iM Π
4. *i2A =
5. γ(4n
6. *f*fA = A n r n g /
7. *J2+ΛA ID A n dmnΛ.

3.2 THEOREM. // R and S are relations and f is a function, then :
1. vs (R : S)x — *R vs Sx for each x
2. S Π , S A c *S((*SB) Π A)
3. ίn#/A = */((*/B)n4)

4. S ί l */A ^ 0 implies (*fB) ί lA^O.

4# Properties of runs.

4.1 THEOREM. R is a run if and only if R is such a non-vacuous
relation that for each x and y in the domain of R there exists a zin the
domain of R for which vs Rz c vs Rx Π vs Ry.

Accordingly if some vertical section of R is a set belonging to the
universe,3 then the vertical sections form a filter-base theoretically as
useful as R itself. Only in the peripheral situation that every vertical
section of R is a class incapable of belonging to anything are runs more
effective than filter-bases. However, runs do operate on an essentially
different and, we feel, more convenient level.

The passage from a filter-base W to a run R can always be success-
fully accomplished by putting R — Έβ, x(x e β 6 W).

4.2 DEFINITIONS.

1. R runs in A if and only if R is a run and rng R a A.
2. R is eventually in A if and only if R is a run and vs

Rx c A for some x e dmn R.
3. R is frequently in A if and only if R is a run and vs

Rx Π AφO for each a? e άmnR.

4.3 THEOREMS.

1. If R runs in A then R is eventually in A.
2. If R is eventually in A, then R is frequently in A.

4.4 DEFINITIONS.

1. S is a subrun of R if and only if S is a run, R is a run,
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and for each x e dmn R there exists such a y e dmn S that
vs Sy c vs ito.

2. .R runs the same as S if and only if R is a subrun of S
and S is a subrun of R.

We agree that S is a cowm of i2 if and only if there exists such an
A that R is frequently in A and S = R Π Ex, y(y e A).

If £ is a corun of R then S is a subrun of i2. However coruns are
often inadequate in that S may be a subrun of R and yet no corun of
R will run the same as S.

4.5 THEOREMS.

1. If R is a run, then R is a subrun of R.
2. If R" is a subrun of R and R' is a subrun of R, then R"

is a subrun of R.
3. If R is frequently in A and S — R Π E#, y(y e A), then S is a

subrun of R, dmn S = dmn R, and vs Sx = A Π vs Rx for
each x.

4. If R! is a subrun of R and R is eventually in A, then Rf is
eventually in A.

4.6 THEOREMS.

1. If S is a relation and R is frequently in dmn S, then S: R
is a run, dmn (S : R) — dmn R, and vs(£ : R)x — %S vs Rx for
each x.

2. If S is a relation and R is a run, then R is frequently in
dmn S if and only if dmn (S : R) = dmn R.

3. // S is a relation, R' is a subrun of R, and R is frequently
in dmn S, then S : R is a subrun of S : R.

4. If S is a relation and R is eventually in dmn S, then R is a
subrun of (inv S): (S : R).

5. If f is a function and R is eventually in rng /, then
f: (inv / ) : R runs the same as R.

4.7 DEFINITIONS.

1. merger RS = the set of points of the form ((x, y), z), where
x, y and z are such that R and S are runs, (x, z) e R, and
(y, z) e s.

2. R merges with S if and only if R and S are such runs that
vs Rx Π vs Sy φ 0 whenever x e dmn R and y e dmn S.

4.8 THEOREMS.

1. If R and S are runs and V = merger RS, then V is a relation,
dmn V c ret dmn R dmn S, and vs V(x, y) — vs Rx Π vs Sy
whenever (x, y) e dmn V.

2. If R merges with S and V— merger RS, then dmn V —
ret dmn R dmn S, and V is a subrun of both R and S.
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3. If W is a subrun of both R and S, then R and S merge and
W is a subrun of merger RS.

4.9 THEOREM. If f is a function, R is frequently in dmn /, and W
is a subrun of f: R, then there exists such a subrun V of R that W runs
the same asf: V.

Proof. Let V = (inv/): W, let V = merger V'R, and let W =f: V.

Use 4.6.1 to see that

dmn (/: R) — dmn R and dmn F — dmn W.

We complete the proof in three parts by showing that W and W
are subruns of each other.

Part 1. F merges with R, V is a subrun of V and R, W is a run,
and dmn W' = dmn V = ret dmn W dmn R.

Proof. Let x e dmn W and y e dmn R. Since W is a subrun of
f:Rwe have

0 φ vs Wx Π vs(/: R)y = vs Wx Π *fvsRy.

Hence, using 3.2.4, 3.2.1, and 3.1.4, we find that

0 Φ (*/vs Wx) ΓΊ vs Ry = vs Fa? Π vs ify.

Use of 4.6.1 and 4.8.2 completes the proof.

Part 2. I F is a subrun of W.

Proof. Use Part 1, 4.6.3, and 4.6.5 to see that W = / : V is a sub-
run of/: F = / : (inv / ) : W, which runs the same as W.

Part 3. W is a subrun of W.

Proof. Let x e dmn W and y e dmn R. Select #' e dmn TF so
that vs Wx' c vs(/: R)yf and select #" e dmn W so that vs Wx" c
vs TF# Π vs Wx'.
Then

vs W r CZYSWX Π vs(/: #)# = vs Wx Π

which in accordance with 3.2.3 equals

*/((*/ vs Wx) n vsify) = */[vs((inv/): W)x Π vsRy]

= */vs F(α, 2/) = vs W\xy y).

In view of Part 1 the proof is complete.
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4.10. REMARK. Theorems 4.6.1, 4.6.3, and 4.9 show us that under
any properly chosen function /, a run R is mapped into a run S = / : R,
subruns of R are mapped into subruns of S, and any subrun of S runs
the same as the map of some subrun of R.

4.11 DEFINITION, indexrun R = Έx, y[R is a run, x e dmn R,
y € dmn R, and vs Ry c vs Rx\.

4.12 THEOREM. / / R is a run and D = indexrun R, then D is a
direction, dmn D = rng D = dmn iϋ, (a?, x) e D whenever x e dmn Z), αraZ
i2 = 72: D.

4.13 REMARK. According to Theorem 4.12, every run is the com-
position of a relation with a reflexive direction. In fact, every run runs
the same as the composition of a function with a reflexive direction. Sup-
pose R is a run and D is the set of pairs of the form ((x, y), (x\ yf)),
where x, y, xf, and yf are such that (x, y) e R, (x\ y') e R, and vs Rxr c
vs Rx. Let / be such a function that f(x, y) = y whenever (x, y) e dmn
D. It is easy to check that D is a reflexive direction and that R runs
the same as / : D.

In this connection it should be remarked that if (/, D) is a net in
the sense of Kelley (op. cit.) then f:D is a corresponding run. The
above construction gives a method for passing from a run back to a cor-
responding net.

4.14 DEFINITIONS.

1. R is a full run if and only if R is a run which runs the
same as all of its subruns.

2. R is fillable if and only if there exists a full subrun of R.

4.15 THEOREMS.

1. If R is a full run and R is frequently in A, then R is
eventually in A.

Proof. Note that R is a subrun of R Π Ex, y{y e A).
2. R is a full run if and only if for every A, R is either

eventually in A or eventually in ~A.
3. If R is a full run, f is a function, and R is frequently in

dmn /, then f: R is a full run.

Proof. Use 2.
4. If S is a full run which merges with R, then S is a subrun

ofR.

4.16 DEFINITIONS.
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1. N is R nested if and only if R is a relation and either
or y — x(x, y) e R U inv R whenever x and y are in iV.

2. N is nested if and only if either α c β or /5 c α whenever
a and β are in N.

4.17 DEFINITIONS.

1. F is R capped if and only if R is a relation and correspond-
ing to each R nested subfamily N of F there is a 2 e F
such that (#, z) e R whenever x e N.

2. F is capped if and only if corresponding to each nested
subfamily N oί F there is r € .F such that &N c r

We have found quite useful the following inductive variants of Zorn's

4.18 LEMMAS.

1. If R is transitive and F is R capped, and if corresponding to
each x e F~ K there is a y e F for which (x, y) e R <^ inv R
then F Π KφO.

2. If F is capped and if each member of F~ K is a proper
subset of some member of F, then F Π K Φ 0.

4.19 REMARK. In accordance with the terminology used by Kelley
(op. cit.), we agree that a set is a class which is small enough to belong
to the universe.

4.20 THEOREMS.

1. If R is a full run, then R is eventually in some set.

Outline of proof. Otherwise according to 4.15.2 R is eventually in
r^A whenever A is a set. Advantage may be taken of this fact to con-
struct by transfinite induction two classes B and C for which B ft C = 0,
R is frequently in B, and R is frequently in C. In view of 4.15.1 this
is impossible.

2. R is fillable if and only if R is frequently in some set.

Proof. If R is fillable it is easy to check with the help of 1. that
R is frequently in some set. We now assume that R is frequently in
some set A and show that R is fillable.

We agree that sng x is the family whose sole member is x, and that
G n Π H = Er [r = a n β f or some a e G and β e H].

Let B = Eα [a c A and R is frequently in a], let F = ETF[T7 is a
filter-base and W c B], and let K — E IF [for each a a A there exists a
β e W for which either βaaoγβc:A~a. I f i V i s a nested sub-
family of F then : if N = 0 then σN = 0 c sng A e F; if N Φ 0, then
<r N c σ N 6 F. Accordingly F is capped.
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Now suppose W e F ^> K, and select such a set a that β ΓΪ CCBB

and β ~ a Φ 0 whenever β e W. Let W = "^ U (W Π Π sng α) and
check that W e F and that W is a proper subfamily of W. According
to 4.18.2 we conclude that F Π KΦ 0 and select V e F Π K, so that F
is a filter base, ϋ? is frequently in every member of V, and for each a a A
there exists such a β e V that β a a or /? c A ~ α.

Let & = E/3, a? [# 6 j9 6 V] and notice that S is a full run which
merges with R. According to 4.15.4, S is a full subrun of R. This
completes the proof.

4.19 REMARK. The run R3 is not fillable.

5 Topological convergence.

5.1 DEFINITIONS.

1. R clusters about p in the topology T if and only if T is a
topology, p e <rT, and i? is frequently in every T neighbor-
hood of p.

2. R converges to p in the topology T if and only if T is a
topology, p 6 σT, and i? is eventually in every T neighbor-
hood of p.

3. R converges in the topology T if and only if there exists
such a point p that R converges to p in the topology T.

4. nhbdrun pT = the neighborhood run of p in the topology
T = E/9, χ[T is a topology, p e β e 2\ and x e β].

5. nhbdrun' pT — E/9, #[T is a topology, p e β e T,x e β, and

5.2 REMARK. If Γ is a topology, A c σϊ7, and ?? is a point in the
Γ closure of A, then E/9, x(p e β e T and a? € /3 Π A) runs in A and con-
verges to p in the topology Γ. It is possible that no run which runs in
A and converges to p in the topology T can also be a direction. This
can be seen by making use of the topology defined in Problem E on page
77 of Kelley (op. cit.).

5.3 THEOREMS.

1. R clusters about p in the topology T if and only if R merges
with nhbdrun pT.

2. R converges to p in the topology T if and only if R is a
subrun of nhbdrun pT.

As an application of the foregoing we offer the following characteri-
zations of compactness.

5.4 THEOREM. Each of the following is a necessary and sufficient
condition that a topology T be compact.



RUNS 821

1. Whenever R runs in σ T, then for some point p, R clusters
about p in the topology T.

2. Whenever R runs in <?T, then there exists such a subrun Rr

of R that R! converges in the topology T.
3. Whenever R is a full run which runs in &T, then R con-

verges in the topology T.

5.5 REMARK. The Tychonoff theorem,* which assures us that the
topological product of compact topologies is compact, we will now prove
following a well-known pattern. Suppose T is the product topology5 in
question and that R is a full run which runs in σT. Considering any
coordinate, let P be the usual projection which maps o T into the cor-
responding coordinate space. According to 4.15.3 and 5.4.3, P:R is a
full run which converges in the topology of the coordinate space. Conse-
quently R converges coordinatewise and hence converges in the topology5

T.

6* Limits.

6.1 DEFINITIONS.

1. far RxP if and only if R is eventually in ΈxP.
In 1. above we allow " P" to be replaced by an arbitrary formula

such as, for example,

"[y<x<x2]".

2. f(x) tends to p in the topology T as x runs along R if and
only if T is a topology, p e σT, and far Rx(f(x) e β) when-
ever β is a T neighborhood of p.

3. f(x) tends uniquely to p in the topology T as x runs along
R if and only if for every q(p = q if and only if f(x) tends
to q in the topology T as x runs along R).

4. lmt TxRf{x) = the limit in the topology T as x runs along
R of f(x) — πΈp [f(x) tends uniquely to p in the topology
T as x runs along jβ].β

Thus if f(x) tends uniquely to p in the topology T as x runs along
R we know that lmt TxRf(x) = p.

6.2 THEOREM. // T is a topology, p e σT, f is a function, and R
is eventually in the domain of f, then

1. f(x) tends to p in the topology T as x runs along R if and
only if f: R converges to p in the topology T and

2. lmt TxRf(x) = p if and only if f:R converges to p in the

4 See Kelley (op. cit.) p. 143.
5 See Kelley (op. cit.) pp. 88-92,
6 See Remark 2.2.
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topology T, and q = p for every q such that f:R converges
to q in the topology T.

Very elementary but of considerable use is the

6.3 THEOREM. // far Rx(u(x) = v{x)) then lmt TxRu{x) =

lmt TxRv{x).

6.4 REMARK. AS examples of specialized limit notations in which
either the run or the topology or both are suppressed, we give the fol-
lowing definitions. We agree that Jf is the usual topology for the ex-
tended real number system, and that

& — Em, n[m e ω and m 5g n e ω]t

6.5 DEFINITIONS.

1. lnt Tnu(n) = lmt ^~n&u(n)
2. lm x R f(x) = lmt ^~x R f(x)
3. lm x R f(x) = lmt J7~t indexrun R (sup x e (vs Rt) f{x))
4. ]mxRf(x) = lmt ^~t indexrun R (inf x e (vs Rt) f{x))
5. lim x a f(x) = lm a;(nhbdrunr a^~) f(x)
6. lin n n(n) = lnt

6.6 REMARK. In 6.5.1 we have a limit notation for ordinary
sequences. If u is a sequence, T is a topology, and p e σ-ϊ7, then
lnt Γ w w(w) = p if and only if p is the unique point such that u : &
converges to p in the topology T.

We give a few more simple but useful theorems.

6.7 THEOREMS.

1. If δ e dmn R and if far Rx {f(x ^ f(y)} whenever y e vs Rδ,

then — oo <^\mxR f(x) = sup # e vs iϋ<5 /(#) ^ oo.

2. Ifδe dmn Λ α^d i/ /αr i2^{/(^) <: /(?/)} whenever y e vs i25,

— oo <̂  lm a? J? /(^) = inf x e vs Rδ f(x) ^ oo.

From 1. and 2. we infer 3. and 4. below. These results are generali-
zations of the fact that non-decreasing and non-increasing functions have
limits.

3. // far Ry far Rx{f(x) ^f(y)} then

— oo <̂  lm x Rf(x) ^ oo.

4. // far Ry far Rx{f(x) ^ f(y)} then

— oo <: lm x Rf(x) ^ oo,
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6.8 THEOREM. // R is a run and — oo <£ a ^ oo, then

\mxRa = a .

6.9 THEOREM. If A = lmxRu(x) and B = \mxRv(x), then :
1. i / - c o ^ Λ + 5 ^ c x 3 , έ^en 1m x R{u(x) + v(α)} = A + B
2. i / — o o ^ A ^ ^ o o , ί^β^ lm xR{u(x) v(a?)} = A B.

In connection with 6.9 above and 6.10 below it is understood that
oo — oo, 0 oo, and 1/0 are not real numbers.

6.10 THEOREM. If A — \mxRu(x) and — co <ς I/A <£ oo, £&β?z

lma?JB{l/%(a?)} = I/A.

From 4.15.3 and 5.4.3 we infer

6.11 THEOREM. // Rf is a full subrun of R and far

Rx(— oo <ς %(a ) ^ oo), then :

— oo ^ lm x R u(x) ^ lm x R! u(x) ^ lm x R u(x) ^ oo .

If R is fillable, then Theorem 6.11 furnishes us with a generalized
limit which, since it is expressed as an actual limit, automatically enjoys
the properties found in Theorems 6.8, 6.9, and 6.10. In the event u is
bounded, it does not at first glance seem too unreasonable to hope that
a similar generalized limit could be arrived at by some Hahn-Banach
technique. We, however, are inclined to think this impossible.7

We close with an application of limits to integration which expresses
the Lebesgue integral as a genuine limit of Riemann-like sums.

6.12 REMARK. Suppose that ^f is Lebesgue measure and Sβ =
E P [P is a countable disjointed family of non-empty jSf measurable
subsets of the unit interval for which o-P — the unit interval]. We
agree that Q is a refinement of P if and only if every member of Q is
included in some member of P, and agree that ξ is a selector function
if and only if ξ(β) e β whenever β e dmn ξ. Let

R± — EP, ξ[P 6 Sβ and ξ is a selector function whose
domain is a member of 3̂ and a refinement of P ] .

We now have the

THEOREM. [f(x) dx = lm ξ R, Σ β e dmn ξ{f(ξ (β))-£f
Jo

7 See R. P. Agnew and A. P. Morse, Extensions of linear functionals with applica-
tions to limits, integrals, measures, and densities, Ann. Math. Stat. 39, no. 1, January.
1938. Notice especially the first two lines on page 24.
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whenever f is a finite-value Jίf measurable function defined on the unit
interval.

We think it noteworthy that R± runs in the selector functions.
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TWO NON-SEPARABLE COMPLETE METRIC

SPACES DEFINED ON [0, 1]

BURNETT MEYER AND H D SPRINKLE

Let 2JΪ be the set of all Lebesgue measurable subsets of the closed
interval [0, 1], and let A, B e 2Jϊ. It is well-known that 9ft becomes a
pseudo-metric space if distance is defined by

d(A, B) = m(A -B) + m(B - A) = m[(A - B){j{B - A)] ,

m denoting the Lebesgue measure. See [1, pp. 31-32]. It is the purpose
of this paper to extend SSR to include the non-measurable sets and to
examine some of the properties of the resulting space.

If we remove the restriction that A and B be measurable, and let
them be any subsets of [0,1], then if

P(A, B) = m*(A - B) + m*(£ - A), and δ(A, B) = m*[A - B) U (B - A)]

(where m* denotes the exterior Lebesgue measure), it is easily seen that
pseudo-metric spaces @ and X are obtained, corresponding to p and δ
respectively. The properties which we discuss of @ and Z are the same
and are proved analogously, so we shall state and prove our results for
the space @ only, it being understood that similar theorems and proofs
hold for S.

LEMMA 1. A necessary and sufficient condition that p(A, B) = 0 is
the existence of sets Zγ and Z2, both of Lebesgue measure zero, such that

Necessity. If p(A, B) = 0, then m(A - B) = m(B - A) = 0. Since
A\J(B - A) = A[jB = B[jA = B{J(A - B), Zx and Z2 may be taken as
B — A and A — B, respectively.

Sufficiency. If A u ^ = δLJZ2, then

P{A, B) ^ piAtAΌZJ + p{A\jZl9 B[jZ,) + p(B\jZ%, B) = 0

The relation p(A, B) = 0 is seen to be an equivalence relation defined
on the elements of @ hence, those elements are partitioned into equiva-
lence classes. Let [A] denote the equivalence class which contains A.
It is clear that if C e [A] and D e [B], then p(A, B) = p(C, D). If @*
is the set of all equivalence classes defined above, and if /o([A], \E\) —
p{A, B), then @* becomes a metric space with the metric p([A], [B]).

Received June 11, 1958.
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LEMMA 2. // Bn e [An] for n = 1,2, --., then [ U ^ i Aw] = [ U ϊ - A ]

and [f|n=i An] = fln-i £»]-

LEMMA 3. if A is measurable and B e [A], then B is measurable.

There exist Zτ and Z2 such that A u ^ = 5 U ^ 2 with m(Zx) = m(Z2) = 0.

Let B denote [0,1] — B. Then B\JZ2 is measurable and since

B = (B{JZ2) - (JSΠZ2), S is measurable.
It follows from Lemma 3 that the sets in each equivalence class are

either all measurable or all non-measurable. Thus the space @*=9JΪ* (j ϊi*,
where 3JI* is the space of all equivalence classes of measurable sets, and
•Jϊ* is the space of all equivalence classes of non-measurable sets. It
should be noted that 3JΪ* is the metric space corresponding to the well-
known pseudo-metric space Wl defined at the beginning of the paper.

In the following we will omit the asterisks and square brackets,
and will write @ for ©*, etc., and p(A, B) for p([A], [B]). When we
write 4 e S , 4 may be considered either as an equivalence class or as
a representative element of that class.

THEOREM 1. The space @ is complete.

The proof is similar to that given in [1, p. 32].

THEOREM 2. For every A e & and every positive number e < 1, there
exists B 6 @ such that 0 < p{A, B) < e.

Proof Case I. m(A) = 0.
If m(A) = 0, then A e [φ], Φ denoting the empty set. Let B e @

be an interval of length < ε. Then p(A, B) = p(φ, B) = m(B) < e.
Case II. m*(A) > 0.

Let I e & be an interval of length < ε, such that m*(/ίl4) > 0.
If B = A - /, then

5) = p(A, A - /) = m*\_A - (A - /)] = m*(/ Π A) g m*(/) < ε .

COROLLARY 1. // in Theorem 2, Ae 9Jϊ, ίftera ΰ (as constructed) e 2B.

THEOREM 3. If Ae 5K awd ε > 0, ^ e ^ £ ^ 0 β îsίs C e ̂ J
0 < p(A, C) < e.

Proof Case I. m(A) = 0.
Let ikf be a set of real numbers such that for every measurable set

E, m*(M f] E)~m{E) and m*(MΓ\E)=0, m* denoting the interior Lebesgue
measure. (See [2], Theorem E, p 70.) In Case I of Theorem 2f let

Then



TWO NON-SEPARABLE COMPLETE METRIC SPACES DEFINED ON [0,1] 827

p(A, C) = p{φ, C) = m*(C) = m(B) < e and m*(C) = 0 .

II. m(A) > 0.
In Case II of Theorem 2, let C = A — (/flilί), Λf described above.

Then f>(A, C) = m*( A - C) = m*{AΠ/ΠM)^m(/)< ε, and m*( An / Π Λf) =
m(4f l/)>0, m*(An/ίW) = 0. Since (AΓUnikf) e % C e 31.

THEOREM 4. ϊ ϊ is open in @.

Proof. Assume Theorem 4 is false. Then there exists N e 31 and
sets Mm e 9JI, m = 1, 2, , such that limm_oo jθ(iV, ikfw) = 0. The sequence
Mm, m = 1, 2, , is, therefore, a Cauchy sequence in @ and so by
Theorem 1 has a subsequence MWn, n — 1, 2, •••, such that limw_oo ̂ (lim
supw Λf^, ΛfTO) = 0. Since lim supw Mmn is measurable, this means that
N is measurable by Lemma 3, a contradiction.

The last few results can be summarized as follows.

THEOREM 5. Wl is perfect and nowhere dense in © 5R is open and
dense in @.

The remainder of the work is valid for both spaces, as only the
equivalence classes are dealt with (these being the same for @ and Z).

After having proven completeness for @ in Theorem 1, a natural
question to ask is " I s the space separable ? " . The theorem proved
here which demonstrates the existence of 2C(= f), where 2̂ o = c equiva-
lence classes in @ answers this question (and a similar one about a
countable basis) in the negative. It is also interesting to note that the
space 9Jί has exactly c equivalence classes. (In the following work Ω
is the first ordinal belonging to c.)

THEOREM 6. There exist f equivalence classes in the space @.

Proof. It will be sufficient to construct a well-ordered family
{Aa 10 ̂  a < Ω} of mutually disjoint subsets of [0,1], each of which
has m*(A») = 1.

Consider {Bβ \0 ̂  β < Ω} as a well-ordering of all closed subsets
Bβ of [0,1] which have a positive Lebesgue measure. For each β, 0 ^
β < Ω, let {x% I 0 ̂  a ^ β} be a well-ordered subset of Bβ such that
#2 Φ nξ't if β Φ β' or a Φ a!. This selection is possible since, for each
β, the set of all xξf with 0 ̂  af ^ βf < β has a cardinal number < c.
Set AΛ = {α$ I α ̂  β < β}, for each α, 0 ̂  α < Ω. By a simple argument
AαjΠA .̂ = φ, for α =£ a!. Now consider any Aγ if m*(AΛ) Φ 1, then AΛ

is contained in some open set Y such that m(Y) < 1. The complement
of Y is closed and has m([0,1] - Y) > 0. But m{[0, α?]n([0,1] - Γ)}
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is a continuous function of x for 0 ^ x ^ 1 therefore, this function
takes on all values between 0 and m([0,1] — Y), inclusive. This means
that there are non-denumerably many closed sets whose measures are
greater than 0 and which do not intersect A*. This is, of course, im-
possible by the construction of AΛ. Therefore, m*(AΛ) = 1.

Form the set of all subsets of the set of AJs> and take the sum
of each element of this power set. Any two such sums belong to two
different equivalence classes since they disagree in a set of exterior
measure 1. This set of sums has cardinal f. There are, therefore, at
least f equivalence classes, at most f such classes hence, exactly f.
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CESARO PARTIAL SUMS OF HARMONIC SERIES

EXPANSIONS

M. S. ROBERTSON

1Φ Introduction. Let the harmonic function v(r, θ) have the sine
series expansion

(1.1) v(r, θ) = Σ αvr
v sin vθ ,

1

convergent for 0 ^ r < 1 and suppose that t>(r, 0) is non-negative for
0 < θ < π. Denote the nth partial sum of (1.1) by

(1.2) S(

n°\r, θ) = Σ αvr
v sin v0 ,

1

and the wth Cesaro partial sum of order k, by

(1.3) S(*\r, θ) = Σ CΪ+*-v<Wv sin ^ , fc = 1, 2, • .
1

It was shown by Fejer [2, p. 61] and Szasz [8] that when v(r, θ) ^ 0
for 0 < θ <τr, 0 < r < 1, then ^ ( r , <?) is also non-negative for all n
when 0 < θ < π, 0 < r ^ 1/4, and the constant 1/4 is sharp. Fejer [2]
showed that the functions <S(

W

3)(1, θ) are also non-negative for all n,
0 < θ < π. In addition, Szasz [8] showed that there exists an R£\ de-
pending upon n only, so that SΓ(r, 0) ^ 0 for 0 < r ^ iC\ 0 ^ β ^ r,
but not always for r > R(n\ and that

(1.4) lft« = 1 -
w n

In this paper we shall extend the results of Szasz to Cesaro partial
sums of integral order k, k = 1, 2, 3. For k — 3 the theorem obtained
is a sharpened form of the theorem of Fejer [2]. We prove the
following :

THEOREM 1. Let the harmonic series expansion

v(r, θ) = Σ a^ s i n vβ1

be convergent f o r 0 ^ r < 1 α ^ d Ze£ v ( r , ^ ) ̂  0 / o r 0 < ^ < π , 0 < r < 1 .
Then for k — 0,1, 2, 3 £/&ere βa isίs α positive number R^ depending upon
n only, so that

Received by the editors February 27, 1958, and in revised form June 3, 1958. The
author wishes to express his appreciation to the referee for helpful suggestions.
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(1.5) S™(r, θ)^0 for 0 ^ r ^ &*\ 0 ^ θ

always for r > R(

n

k\ and that

(1.6) Λ«> = 1 - (3 - ft)M». + M ί θ K » _ fl>_±o(l) , Λ = o, 1, 2,

where

gk = lo

where

_ (1 /or

max I sin A |A| = 0.217 ••• /or n odd;

(1.7)

(1.8) lim sup (2w - lXieff-x - 1) ^ a 0 = 1.07 . .

where a0 is the positive root of the equation

(1.9) 3 - a - 3μe« = 0 .

Moreover, R{n] is the largest r for which Φ(n}(rf θ) is non-negative for all
θ, where ψ(n\r, θ) is defined for k — 0,1, 2, 3 by the equations (2.18),
(2.19), (2.20), and (2.21).

Since v(r, θ) in (1.1) may be regarded as the imaginary part of the
analytic function

Oό

f(z) = Σ &vZv , z = reiθ , r < 1, Ov real,
1

the property v(r, β) ;> 0 for 0 < θ < π may be interpreted by saying
that f(z) is typically-real in the unit circle, that is $/(z) > 0 for $z > 0,
and $/(z) < 0 for 3ίs < 0, | z | < 1. In this case

(1.10) F(z) - ['
Jo

is schlicht and convex in the direction of the imaginary axis for \z\ < 1.
For from (1.10) we have

(1.11) ^F(reίθ) = - %zF'{z) = - 3/(z) < 0

for \z\ < 1, 0 < 0 < TΓ.
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DEFINITION. Let ^Γand ^ Γ * denote the families of functions

(1.12) F(z) = z + b2z> + + bnz
n + . . .

which are regular, real on the real axis, schlicht and convex in the
direction of the imaginary axis in \z\ < r, and in \z\ ̂  r respectively.

With the help of Theorem 1 we then obtain the following.

THEOREM 2. Let

(1.13) F(z) = z + bj? + + bnz
n +

be a member of the family J?\. Then for n — 1, 2, 3, the nth Cesaro
partial sum of order one of (1.13) is a member of ^}2*. The radius 1/2
cannot be replaced by a larger number. Also the nth Cesάro partial sum
of order k, k = 0, 1, 2, 3, is a member of ^* where

p0 = ] — Sn'1 log n + n~ι log {(3/4 — ε) log n} , n > nQ(e)>

f\ = 1 — 2n~ι log n + n~ι log {(1 — ε) log n} , n > ^(ε),

^ = 1 — n'1 log w + w"1 log {1/2 — ε) log n) , n> wa(e),

ί = 1, n even,
Pό I > 1, n odd,

and where ε > 0 is arbitrarily small and nk(e), k = 0, 1, 2, are positive
integers depending only upon ε. ϊ%# radii >̂fc are sharp to within 0(1/%).

2* Preliminary formulas. Before we proceed to the proof of The-
orem 1 we shall mention several formulas which will be needed. The
following sums are easily calculated :

)~2(2.1) S(z) = z + 2z> + + nzn + . = z(l - z)~

(2.2) SΓ(z) = * + 2z2 + + nzn = {z - (n + l)zn+1 + nzn+*}(l - z)~

(2.3) Sΐ\z) = S[*-»(z) + S^\z) + + SίTυ(z) , k = 1, 2,

(2.4) ^fc)(2;) = Cϊ**"^ + 2CΪ+*"V + + nC\zn ,

(2.5) ^1 }(^) - {nz ~(n + 2)z2 + (n + 2)zw+2 - n^+ 3}(l - z)-6 ,

(2.6) S;e

2)(̂ ) = —-{n(n + l)z - 2n(n + 3)z2 + (n + 2){n

- 2(n

(2.7) ^3 )(z) =~{n(n + l)(n + 2)z - 3n(n + l
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+ Zn(n + 3X» + 4)z3 - (n + 2)(n + 3)(«
+ 6(n + A)zn*1 -6nzn+b}(l

1 (fc + i fc-TO fc + i

(2.8) S?'(«) = i Σ ( - i r ' Π ( « + P) Π (n + q)zm

+ (-1)*-1*;! (w + k + l)zn+k+1 + (-Ifk! nzn+fc+*\(l -

where ΐlj

p=i(n + p) is defined to be 1 if i > i.
Let

(2.9) f(z) = Σ αvZv , «i > 0, αv real,
1

be regular and typically-real in \z\ < 1, which is to say that v(r, θ)=
$f(reiθ) is non-negative for 0 ̂  θ ̂  π, 0 < r < l , and f(z) is real on the
real axis. As I have shown elsewhere [3] the function f(z) may be
represented by the Stieltjes integral

(2.10) f{z) - ^ - Γ P ( Z , φ)da{φ) , \z\ < 1,
Joπ Jo

where a(φ) is a non-decreasing real function of φ in the interval [0, π],
and where P(z, φ) is the typically-real, schlicht and star-like function

(2.11) P(z, φ) = z{\ - 2z cos φ )-1 = ΣΣ sm φ

For φ = 0 we have P(z, 0) = ̂ (2) where S(z) is defined as in (2.1).
From (2.10) we have immediately that

(2.12) S«\r, θ) =^(*8P$W, φ)da{φ)
π Jo

where P(

n

k)(reiθ, φ) is the nth. Cesaro partial sum of order k of the power
series for P(z, φ) given in (2.11),

(2.13) %P%\reiθ, φ) = Σ Cr^V^^- sin vβ .

v-i smφ

By a lemma of L. Fejer [8], [9], [4], it follows that

(2.14) 3P(

n

k)(reiΘ, φ ) ^ 0 , O r g φ ^ τ r , 0^θ ^π,

if, and only if,
(2.15) $Slk)(reiθ) = ̂ P^ f c )(re ί θ, 0) = Σ vCS+*"vrv sin vfl ̂  0, 0 ̂  β ̂  π.

V = l

Thus, the behavior of the Cesaro partial sums of the Koebe function
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z(l — z)~2 determines the extremes to which the Cesaro partial sums of
the series expansion of an arbitrary typically-real function f(z) exhibit
their properties. Therefore, in order to prove Theorem 1 for the
imaginary part of an arbitrary typically-real function f(z) we may con-
fine ourselves to proving these results merely for the Koebe function
S(z) = z(l — z)-2. For this function the partial sums

(2.16) S™(z) = {z-(n

are known to be schlicht and star-like with respect to the origin in [1]

I z I ̂  1 — Sn'1 log n , n > n0 ,

and a fortiori typically-real in the same radius.
From formulas (2.2), (2.5), (2.6), (2.7), on letting z = reiθ we obtain

by simple, straightforward but long computations the following additional
formulas which we shall need.

(2.17) s k ! 11 - z \^$S(

n

k\reίθ) = r sin θψ™(r, θ) , fc = 0, 1, 2, 3,

where

(2.18) ψ™(r, θ) = 1 - r2 - (n + l)rw+2 ™^-----^
sin 0.

+ r-'(2n + 2 + »r«)̂ -n nθ - r"(n + 1 + 2nr^^±1)β

sin # sm 0

sin

(2.19) ψWr, θ)= {n + 6r2 - (n + 2)r4} - {(w + 2)r - ^ 2 !

~(n + 2)r^sϊΐ^n---1)θ + {(3n + 6)r-3 + TCr-5}-^^^
sin β sin <?

- {(3n + 6)r-« + ^ r - } - ^ ? + 1 } ^
sm σ

+ {(» + 2 ) r - + 3 ^ - } - s i n > - + ^ - m - « - ^ ί ? •+ 3 ) ^ ,
sm θ sm θ

(2.20) ^2 )(r, ί) = {n(n + 1) + (2τz2 + 18^)r2

- (2^2 - 6n - 36)r4 - (n2 + 5n + 6)r6}

S 1 n 2 /

sm σ

6n + (16w + 24)r2 - (2w2 ) }
sm

6 - + n)r}^^
sm θ

(2n + 6 ) r - β S i n {n ~ 1)θ + (Sn + 24
sin /?sin sm a
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36 + 8nr2)rn+i s m (n +

sinί?

sm

(2.21) ψ<n

- (2n + 6

3)(r, θ) = {n(n + 1)

—

- {Zn(n + l)(n

- 5 ( ^ + 4

+ {3n(n + S)(n

- {(n + 2)(n +

+ 8^2)r-!

in + 2) + &

5(» + 3)(n2

+ 4)r + 5(i

){riι - In -

+ 4)r2 + 3(

3X« + 4)r3

3in (n +
sin θ

n(n + i;

- iβy

r? + 15»i

12)r5 -

)(n + 2):

—

— n(n -

3)0 4

)(» +
~{n

(2 + 3

3w(n

!r4

3n(n

-2m " + 3 s i n ( w 4

sin ί

8)r2 + 60n(n +

+ 2)(n + 3X» π

2w)r3

Ay

h 4)r8}

+ 3Xw + A)r7} s i n 2 ~
sin 0

+ l)(n + 4)r6}

i + 2 ) r 5 } s ί n 4 ^
sin#

sin 30
sin<?

- {(60n + 2iO)r + 30nr}
sm θ

+ 120)rM+r + 6nrn + 9}--

sin (n + l)θ

w + 5 + 60nrn+7} i i n ^
sisin

}
sin θ

s ί n ^n + ^
sm θ

3 Proof of Theorem 1 for Ic = 1Φ We proceed now to the proof
of Theorem 1. For k — 0 Theorem 1 follows from the theorem of Szasz
[8]. For k = 1 we have ^S^ire19) ^ 0 for 0 < θ < π provided ψ(

n

ι)(r, θ)
;> 0 for all θ and r ^ i2^υ. From (2.19) we must determine the largest
r for which

(3.1) ψ™{r-f θ) = {n + 6r2 - (n + 2)r4} ~ {(n + 2)r - nr3}^™^-
s m ί
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- (n + 2 ) r « ^ s i n ( ! ^ - 1)θ + {(Sn + 6)r-3 + m"«}-B- n θ

sm θ sin θ

- { ( 3 n + 6 ) r " + 2 + Z n r ]
s i n t f

{{n
sin θ sin θ

is non-negative for all θ. We rewrite Φ{i\ry θ) in the form

(3.2) ψ(

n

υ(r, θ) = A + JB(1 — cos θ) — rw Σ ( — l^Cj—"J.?. ~_Ajt_-2.)̂ _
J=O sm θ

where

(3.3) A = n + 6r2 — (w- + 2)r* — (2n + 4)r + 2nr3

= w(l - r)3(l + r) - 2r(2 + r)(l

B — (2n + 4)r — 2nr3 ,

CO = (n + 2)r4 , Ci = (3^ + 6)r3 + nrδ ,

C2 — (3n + 6)r2 + 3nr* , C3 = (n + 2)r + 3nr3 , C4 = tw

Let

(3.4) r = β-f, ε = -

n

Then

For fixed A: we have

so that

— s2 + 0(ε3) ,

(3.5) CO = (n + 2) - (An + 8)ε + 8nea +

Ci = (4τz + 6) - (14w + 18)6

C2 = (6n + 6) - (18w + 12)e

C3 = (4ro + 2) - (lOn + 2)e + 14nε2 + O(ε3n)

To obtain an asymptotic estimate for ψn\r, θ) in (3.2) we shall make

use of the following lemma.
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LEMMA 1. Let ajy j — 0,1, , 5, be constants. Let n be a positive
integer and let

s = Σ (-lya^
j=o s in β

__ jsmjw — j j ^ ( — lya, cosjθ + cos (n — 1)6
sin θ j-o

(a) // Σ ( - I ) j ^ - 0, ίAew

— cos θ) + 1} max | α, | 0(1) as n

(b) If in addition to (a), Σ ( ~ l ) J i 2 ^ j = 0,

S = {%(1 — cos 0)3 + 1} max | a1 \ 0(1) as n -• oo.

(c) // m addition to (a) αwd (b), Σ ί — lVi^j = 0>

S = {n(l - cos ?̂)2 + (1 - cos θ)} max 1 a5 \ 0(1) as

The lemma is easily obtained by considering the limits

From (3.2) and (3.5) we obtain

(3.6) ψ^Xr, Θ) = A + B(1- cos θ) - rn[D0 - D1e + Dj? -

where

(3.7) DQ = (n + 2)ή^-Λ)l - {An + 6)^nnθ + (6n + 6) s

sin θ sin θ
^ {An + 6) + (6n + 6)

sin θ sin θ sin θ

+
sin 0 sin

= 4 βin(w + l ) g ( 1 _
sin (9

_ 4 sinjnj
sin

sm

- 4 cos O - 1)0(1 - 2 cos 0)(1 - cos θ)

- cos θf + (1 - cos θ)O{n) .
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(3.8) A = (in + S ) - 8 ^ ^ 1 ^ - (Un + 18) *****
sin θ sin θ

+ (18* + 12**J±1W *(10» + 2)
sm θ sm θ

sin θ

= {w(l-cos0) + 1} • n 0(1) .

(3.9) A = 8 w ^ - ( - ? — - ^ 2 6 ^ + 3 0 n ^
sin 0 s in θ s in

_ Unsin(n±2)θ + 2nsm(n±3)θ
sin (? sin θ

} -n- 0(1) .

(3.10) A = Σ O ( n ) - s ί n ^ ^ X ±
sin

(3.11) Do - D}ε + Aε3 - As? = 4 » - ™ i ^ ± ^ ( l - cos θf
sm ̂

+ (1 - cos θ)0{n) - {w2(l - cos θ) + l

sm

n / • \ n

_ cos /9)2 + (1 - cos <9)O(̂  log w) + O(log n)

(3.12) φ<»(r, θ) = 16 ( l o g - ? ) - + 8 log w(l - cos θ)

J»±l)?(i - cos
sm σ

+ (1 - cos tf)O(w log n) + O(log w

= 16V"*L!1L (1 + o(l)) + 8 log n(l + o(l))(l - cos θ)
n2

4 e

n sin θ

Thus the essential part of Λυ(r, θ) is the expression

(3.13) 4(1 - cos 5)log nΪ2 - - ^ - s i n i 9 l + 1 ) β ( i _ c o s

L n smθ

When w. is even, the minimum of the square bracket in (3.13) is reached
for θ == 7r, Thus 1 — e~^ must be non-negative. If p denotes a bounded
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function of n, p(ri), we then have \imn^βop(2n) = 0.
If n is odd, we let — μ = —0.217 ••• = the absolute minimum of

Q

sin hjh, which occurs in π < h < ——. If c0 is a sufficiently large con-

stant it is easily seen that the square bracket in (3.13) is positive for

0 < — ^ — < 0 < π - —^?—
n+1 n+1

and that its minimum occurs in the interval π — {(cQ)ln + 1} < 0 < TΓ for
large odd values of n. Let 0 = π — {(/&)M + 1}. Then for n odd

Γ2 - *2- «n(» + l)tf(1 _ c o s β ) | = 2 ( l + «-* «*A) + 0(1/0
L w sin 0 J V h J

= 2(1 - μe->) + O

It follows that

Km p(2n + 1) = log μ = -1.527 . . . .

It follows from the discussion above that we have

(3.14) ΈBP = 1 - w n n

where β = 0 = — logl, if w is even, and where

β = - l o g l max j »5A | l = - l o g ^ = 1.527 . . .

when 92 is odd. This completes the proof of Theorem 1 for the case
k = l.

We note that for 0 ^ r ^ 1/2, Λυ(r, 0) ^ 0 for all n and all θ. Indeed,
when r = 1/2, we obtain from (3.1) that Λυ(l/2, θ) ^ 0 provided

(3.15) (30rc + 44) sin θ - (12w + 32) sin 2Θ - (2w + 4)2~w sin (n - 1)0

+ (13rc + 24)2"w sin nθ - (30rc + 48)2"w sin (n + l)θ

+ (28n + 32)2"n sin (n + 2)θ - 8n 2~n sin (w + 3)0

^ 0 , 0 < θ < π .

Since | sin &0/sin θ\^k1 k = 1, 2, , (3.15) is satisfied if

(3.16) (6w - 20)2w ^ 73w2 + 192rc + 108 .

It is easily verified that (3.17) is true for n > 7. For 1 ^ n <: 7 the
author has verified that ^n(l/2, 0) ^ 0. The calculations are simple but
somewhat tedious, and will be omitted.
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4Φ Proof of Theorem 1 for ϊe = 2. From (2.20) we have

(4.•1)

where

(4.•2)

<

Pn(r, θ)

(r,θ)

= {n

+

= A

{<

{<

+

Pn(r

+ 1)

[2n2-

w +

5(1-

,0) r-

+ (2n2 •

h 6w)r -f

5^ + 6)

- cos θ)

+

-(:

+

0

18w>

I6n -

ca

4-24)r

ia + n)

— cos

ύn (n

In1 —

>3 — (!

s

ΘY,

sϊn

6n

2n2

nSt

1 + Λ<?
θ

- 36)r4

- ( » 2 +

+ 6»)r }

5w + 6)r6}

sin 2^

sin ^

(4.3) A = n2 + n - (4n2 + 12n)r + (5n2 + 33n + 18)r3 - (32n + 48)r3

- (5na - 3n - 36)r» + (4n2 + 12w)r5 - (ri1 + 5n + 6)r6

= - ( 1 - rY(n* + 5n + 6) + (1 - r)5(2n2 + 18n + 36)

- (1 - r)\\2n + 54) + 24(1 - r ) 3 ,

(4.4) B = (An* + 12n)r - (8n2 + 40w + 48)r2 + (32n + 48)r3

= - r ( l - r)4(4w2

- r(l - rf(16n - 48) - 48r(l - r ) .

(4.5) C = (in2 + 20n + 24)r2 - (in2 + 4w)r4

CB = (2n + 6)r6

C, = (8« + 24)r6 + 2nr7

C3 = (12ra + 36)r4

(4.6) C3 = (8n + 24)r3

C4 = (2n + 6)r2

C5 = 2nr 3 .

Lett ing

r = β - β e = log w_ __ J o g b g w_ + g_

w w n

σ-Q 1 _ ^ — 1 _ l °? w 4_ log log ^ — q nffI°£nW

n n w n

we obtain

(4.7) AS2MΪ, iίssiM^, Cs8nlogίί,
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(4.8) Co = (2w + 6) - (12n

Cx = (lOn + 24) - (5

Cz = (20n + 36) - (9

C3 = (20M + 24) - ( 8
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+ 36)ε + (36w + 108)ε2

- (72n + 216)ε3 + 108rcε4 + O(ne?)

n + 120)ε + (149w + 300)e2

- (281n + 500)ε3 +

144)ε + (240rc + 288)ε2

- (416w + 384)ε3

72)ε + (186re + 108)ε2

+ 108)ε3 +

C4 = 6) - 12)ε + (68n + 12)ε3

- (88M + 8)ε3

nε
\Δ

560wε4

- - n ε 4

260
3 '

O(nε6)

O(ns?)

= 2^ - 6n ε + 9n ε2 -
97

ε3 + Δ-L
4

O(ne5) .

We now write

(4.9) ψ%\r, Θ) - cos θ) + C(l - cos θf - rn

From (4.1), (4.2), and (4.8), we find

A sin 0 = (2rc + 6) sin (n - 1)0 - (lOn + 24) sin ^0

- (20n + 36) sin (n + 1)0 + (20^ + 24) sin (n + 2)0

- (lOw + 6) sin (n + 3)0 + 2n sin (n + 4)0 ,

COS I + 3 ) ^

c o s -

sin (TZ + 1)0
sin0

(1 - cos 0)\

A sin 0 = (12rc + 36) sin (n - 1)0 - (54rc + 120) sin ^0

+ (96rc + 144) sin (n + 1)0 - (84^ + 72) sin (n + 2)0

+ (36rc + 12) sin (n + 3)0 - 6n sin (w + 4)0 .

By Lemma 1, we obtain

A = [n(l - cos θf + (1 - cos 0] [O(n) + 0(1)] 0(1)

= \n\l - cos θf + n(l - cos 0)] 0(1) .

A sin 0 = (36n + 108) sin (n - 1)0 - (149n + 300) sin nθ

+ (2A0n + 288) sin (n + 1)0 - (186w + 108) sin (w + 2)0

+[(68n + 12) sin (% + 3)0 - 9n sin (n + 4)0 f
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A = [n\l - cos θf + n(l - cos 0)] . 0(1)

+ [n(l - cos 0) + (1 - cos 0)] 0(1) .

A sin 0 = (72rc + 216) sin (n - 1)0 - (281rc + 500) sin TC0

+ (416rc + 384) sin (rc + 1)0 - (286^ + 108) sin (n + 2)0

+ (88n + 8) sin (n + 3)0 - 9n sin (n + 4)0 ,

A = -Ml - cos 0) + 1} . n 0(1) = [ή\l - cos 0) + w]O(l) .

A sin 0 = lQSn sin (w - 1)0 — 4 9 0 1 w sin TC0 + 560^ sin (n + 1)0

- — - sin (n + 2)0 + -2^~n sin (n + S)θ - 2 7 n sin (n + 4)0 ,
Δ ό 4

A = cos θ) + 1} n - 0(1) = [n2(l - cos θ) + n\- 0(1) .

A = O(n) •Σ
sin (n — 1

sin

(4.10) A - Aε + Aε2 - Aε3 + As4 - Aε

= Γ_
L cos (9/2

- c o s β y

+ [«2(1 - cos θf + n{\ - cos βy]O(l)ιo-en

n

+ [n2(l - cos θf + n(l - cos

+ in\l - cos θ) + n\O(l)(^~Y
\ n /

+ [W'(l - cos 0) +

n

n n

= Γ
L 2 4

sin 1)0+ 2 4
cos 0/2 sin0

+ (1 - cos 0) O(log n) +

j

riι

From (4.7), (4.9), and (4.10), we have

(4.11) ψ%\r, 0) = +
n

- cos 0) + 8n log w(l - cos θf

n

cos (2n + 3)0/2^ + 24sin_(_w +
cos 0/2 sin 0

+ O(n log rc)Ί(l - cos 0)2

- cos 0)O(logn) + θ(
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= L n3 β ' V ^rf~
Γ Π Λ Λ ™\3 / /IΛΛ. ™\2\-|

— cos 0)
n \ n

8log[
cos β\2 n sin θ

+ e~q O(log %)Ί(1 - cos

From (4.11) it is seen that we must have the quantity L >̂ 0 where

(4 12) L = 1 + e-*Γ

L
i ^ i/__ - 24 - ^ ( ^ + IW]
ncoa(ΘΪ2) n2 smθ J '

For w even the minimum of L is attained for θ = π and equals

1 _ e - / 2 n _ + 3 + 2^»
\ n n

Thus if q — q(ri), a bounded function of n, we require

(4.13) lim q(2n) = log 2 .

If 7i is odd, we let θ = π -(2h)j2n + 3 and find that

L = 1 + 2β- 5 ^ I 1 A
h

and

where

i

It

(4.14)

where

= 0.217

follows

minL

• = max

that we

Iff = 1

r

h

have

n

_< log 2,

== 1 —

, and

log lo^
n

if n

lim q(2n

n

is even,

- i )

V n

I log (2μ), if w is odd.

This completes the proof of Theorem 1 for the case k = 2.
In the case & — 0, which was investigated by Szasz [8], if we employ

procedures analogous to those above for k — 1 and 2, we are led to the
expression
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(4.15) 3 1 ° ^ _ M " , - . . 2n(l - cos β)
v ' n ri> cos 0/2

when

r = 1 _ 3 ]og^ + Jogjogjz, _ J_ ^
n n n

With arguments similar to those used above, we find that the " correct "
value of t is log (4/3) when n is even (as Szasz obtained [8]), and log (4/*/3)
when n is odd, the latter result being new.

5. Proof of Theorem 1 for Ic = 3. The theorem of Fejer [2], quoted
in the introduction, states that

(5.1) i ^ 3 ) ^ l , w = l , 2 , 3 , . . . .

We shall give a new and simple proof of (5.1), and also give a
demonstration of the sharpened result

(5.2) R$> = 1 , R&U > 1 , w = 1, 2, 3, • • f

and

(5.3) lim sup (2w - l)(fl^)_1 - 1) ^ ^ = 1.07 . .
W-»oo

where CCQ is the positive root of the equation

(5.4)

where

μ =

3 -

max

a —

sin
h

3μe*

h

= 0

0.217

From (2.7) we have

(5.5) 6(1 - zYSSUz) = n(n - l)(n - ΐ)z - S(n - l)(n2 - 4)z2

+ 3(w + l)(n2 - 4)2;3 - n(w + l)(n

+ 6(n + 2)zn+2

Letting 2 = eίθ in (5.5) we have for n > 2

(5.6) aSBΛ) = 3 - 2 ^ - [ ( » - - 4) cos I - »• eoS

+ (« + 2) cos (2» - 1)A - (n - 2) cos (2n + 1)-^
i^ 2

sin <? _ Γ 2 sin w^ _ „/ sin nθJ2 V~|

16 sin^/2) L sίn^ V s i n ^ / J "
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In earlier papers we have shown [5], [6], that

(5.7) n2 + n*^ - 2 f s ί n ^ / 2 Y ^ 0 ,
smθ \ sm θ\2 1

for all integers n and all θ. From (5.6) and (5.7) we have at once that

(5.8) 3S(

n

3\eiθ) ^ 0 , 0 ̂  θ ̂  π , n = 1, 2, .

However, the function

(5.9) ^)='(β- 1-β)S?>(β)

is analytic in | z | ^ 1, and 9ϊF(eίθ) = 2 sin Θ^S(

n

3)(eίθ) ^ 0. Since the mini-
mum of the harmonic function ϋ\F(z) in | s | ^ 1 occurs on | s | = 1 we
have ΐRFiz) > 0 for \z\ < 1. From the representation (5.9) it follows
from the work of Rogosinski [7] that S(^(z) is typically-real in the unit
circle, which is to say that

(5.10) $S(

n

3)(reίθ) ^ 0 , • 0 ̂  θ ̂  π, 0 ̂  r ^ 1.

The theorem of Fejer, or inequality (5.1) follows from (5.10) and the
remarks made in section two.

We now attack the problem from an alternative point of view for
the case k — 3. From (2.17) and (5.6) we write

(5.11) ψ%\r, θ) = 384 sin'-ξT(n + 2f + (n i ^ ± ^
2 L
ξT(n + 2f + (n + 2 ) ^
2 L sm θ

_ of Bin(M
V sin θ[2

+ ΨΛr, θ) - ψ«\l, θ)~\ .

Let r = 1 + α/% where α = a(n) — 0(1) > 0. Then rk — 1 =
&α:/w + O(α2/n2), fc — positive integer independent of w, rn+k — 1 =
ef* - 1 + rc-^W + Oίw-^V). From (2.21) and (5.11) we then obtain for
r = 1 + ajn asymptotically,

(5.12) φi3)(r, θ) - ψ<*\l, θ) ~ 2Sn2a + 56n2a cos θ - 12rc2α(4 cos2 θ - 1)

- 2π2α(4 cos θ - 8 cos3 θ) ~
sin

2 sin0

where

S = 6n sin (w - 1)0 - 36rc sin ?z0 + 90n sin (w + l)θ - 120n sin (w + 2)0

+ 90rc sin (n + S)θ - 36rc sin (n + 4)θ + 6n sin (n + 5)θ

= -384^ sin (w + 2)0 sin6— ,
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(5.13) #»(r, θ) - Λ3 )(l, θ) ~ 128 sin6—\zn{e? - 1) s l n (^,+ M - ariz~] .

2 L sin θ J

Since for suίRciently large values of n we can only have

Ψ(n\r, θ)^0 or r = 1 + w-1^, α = <φ) > 0 ,

provided

(5.14) 3[(n + 2Y + (n + 2 ) ^ ^ ^ - 2 ^ ? > - ± ? W 2 Y]
L sin θ \ sin 0/2 ' J

8in(rc + 2)fl _ ^ :> 0 ,
smtf

we see that, when n is even and θ — π, we must have

(5.15) -3(e« - l)w(w + 2) - n2α ^ 0 .

(5.15) implies that a is non-positive, contrary to our assumption that
a > 0. Hence a = 0 for w even and sufficiently large. However, it is
easily seen that a = 0 for all even w. by the following argument. Since

(5.16) S<*\z) = ±ι>Q+*-W ,
V = l

and because of the identity

(5.17) Σ (-l)V(w + 1 - v){n + 2 - v){n + 3 - ») = 0 , w even,
V l

it follows that the derivative of S^3)(z) vanishes at z = — 1 for w even.
S ^ ) , typically-real in \z\ ^ 1, therefore cannot be typically-real in | s |
^ r for r > 1, w even. Thus α: = 0 for all even n, and R$ = 1, w =
1,2,. . . .

The situation for w odd is not so simple. Fejer has pointed out [2]
that 3f5ίs)(βw) > 0, 0<θ<π, from which it follows that $? }(1, fl) > 0 for
all 5 with the possible exception of the values θ = 0 and π . When ^ is
odd, however, it is easily seen from (5.6) and (2.17) that Λ3 )(l, π) > 0.
From (5.16) it also follows that

C

Km JV

Consequently %>S(

n

3)(eiθ) cosec θ > 0 for all # when w is odd, and so
R?n-ι > 1, w = 1, 2, . To obtain an asymptotic upper bound for itS-i
we shall show that (5.14) is not verified, when n is sufficiently large,
for all θ when a exceeds <x0 — 1.07 , aQ being the positive root of the
equation (5.4).

Letting θ = π — [hl(n + 2)], w odd, we find that the left hand side
of inequality (5.14) is asymptotically equal to the expression
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from which (5.4) and (5.3) follow. It should be noticed that the constant
a0 in (5.3) could be replaced by a smaller one. Indeed, for θ = xjn, the
left-hand side of (5.14) is asymptotically equal to

(5.18) n* h - a +
L x \ x\2

Calculation of the smallest positive a for which the expression (5.18) is
non-positive for some x >̂ π would lead to a smaller constant to replace

From (2.3) and (5.1) it follows at once that R^ ^ 1 for k ^ 3 and
all positive integers n.
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ON THE DETERMINATION OF NUMBERS BY THEIR

SUMS OF A FIXED ORDER

J. L. SELFRIDGE AND E. G. STRAUS

1. Introduction. We wish to treat the following problem (suggested
by a problem of L. Moser [2]):

Let {x} = {xu •••,#„} be a set of complex numbers (if one is
interested in generality, one may consider them elements of an algebra-
ically closed field of characteristic zero) and let {σ } = {σlf , σ ,nΛ be

\s)

the set of sums of s distinct elements of {x}. To what extent is {x}
determined by {σ} and what sets can be {σ} sets ?

In § 2 we answer this question for s = 2. In § 3 we treat the
question for general s.

2. The case s = 2.

THEOREM 1. If n Φ2k then the first n elementary symmetric func-
tions of {σ} can be prescribed arbitrarily and they determine {x} uniquely.

Proof. Instead of the elementary symmetric functions we consider
the sums of powers, setting

Σfc — Σ σ ί *

Then

( 2 )

(l) Σ* = i>?= Σ (χh + χHr = \ Σ

Σ K + Xi/ - Σ (2a?4)*) .

Expanding the binomials and collecting like powers we obtain

= lA2n - 2«)Sk + I

Thus, since the coefficient of Ŝ  does not vanish, we can solve re-
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cursively for Sk in terms of Σi> > Σ* I*1 particular Σi> > Σn deter-
mine Su , Sn—and hence xL, , xn—uniquely.

THEOREM 2. If n — 2k then Σi> "•> Σ&+i wwsί satisfy a certain
algebraic equation and {σ} will not always determine {x}.

Proof. Equation (1) for Σ f c + 1 yields

/ Q \ v-i J. ^-i I rC "T" 1 A n C

(2) Σ.« = - 2 Σ ( z jSΛ+1.,

where Sl9 , Sfc are expressed by (1) as polynomials in Σi> *φ t Σfc
To prove the second part of the theorem we proceed by induction.
Assume there are two different sets {xlf ••, x2k-i}, {Vi, ••• *,:ί/a*-i}-

which have the same {σ}. Then consider the two sets

{X} = [χλ + α, , a^-! + α, 2/i, , 2/2Λ-I}

= {xi9 , Λj.fc-i, y\Λ~ a, , 2/.fc-i 4~ <̂ }

Clearly every sum of two elements of {X} is either σt or σ4 + 2α
or a?< + 2/j + α and the same holds for the sum of two elements of {Y}.

The sets {X}, {F} will clearly be different for some α. To show
that they are different for any a Φ 0, rearrange {x} and {y} so that
α?4 = 2/i * = 1, 2, , m m > 0, and #, =̂ ι/fc for j , k > m. Then since
2/4 + α = a?t + α i = 1, 2, , m, the sets {X} and {Y} will be different
if {xj \j>m} is different from {x3 + a \ j > m}. But this is clear for
any α Φ 0.

Since {σ} clearly does not determine [x] for n = 2 the proof is
complete.

In a sense we have completed the answer of the question raised in
the introduction for s = 2, however there remain some unanswered
questions in case τι = 2\

1. 7/ {σ} does not determine {x} can there be more than two sets
giving rise to same {σ} ?

The answer is trivially " yes " for k — 0,1 and is " no ?> for k = 2.
It seems probable that the answer is "no " for all & > 2, however we
can see no simple way of proving this.

2. For what values of n does there exist for all {real) {x} a trans-
formation yL — A (xlt , xn), different from a permutation, so that {x}
and {y} give rise to the same {σ} ?

This question was suggested by T. S. Motzkin who gave the answer
for s = 2.
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LEMMA 1. // n > s and the above functions fi exist then they are
linear.

Proof. The sets {y}, {x} are connected by a system of equations

ViL + + Viβ = xh + + x,t .

Here the indices il9 « , i s are themselves functions of {x}. However,
since they assume only a finite set of values, there exists a somewhere
dense set of {x} for which the indices are constant. We restrict our
attention to that set. Let Δ^y% =f.(xl9 , xk + h, , xn) -fi(xu ,
#fc> •••,#») then we obtain

( 3 ) Δ^yh + + 4 X - 0 or A .

If we let Ui be the difference of 4Λ)2/« for two different sets of
values of {x} then, since the right-hand side of (3) is independent of
the choice of {x}, we obtain

( 4 ) uh + . + uis = 0 .

Summation over all sets {il9 , is} c {1, , rc} yields

( 5 ) %t + u.z + + un = 0 .

Now let £ be the least positive integer so that uiχ+ + n%% — 0 for
all {ij, , i j c {1, , n}. Then ί | n, for w = mi + r with 0 < r < ί
implies

wh + + n%r = ux + u2 + + un - Yiμh + + u3) = 0

for all {ilf , ir} c {1, , n}, contrary to hypothesis.
Since n > s > t we must have n> 2b. If t > 1 then

Uj= — (uh + + uitmmi) for every j $ {iu , it-i} .

But there are more than t such j , say j u •• ,^ t. Hence

MJt + * + Uh = - ί(%tl + + M*tβl) = 0

or uh + + ^ ί _ 1 = 0 for every {il9 , it-i} c {1, , w} contrary to
hypothesis. Thus £ = 1 and

^ — u^— = ^w = 0 .

In other words Δ^y^akV = const. Thus 4Λi>2/ι + J ^ v ^ = ^'^Vi s o

that a(^ = aikh and

2/ι = Σ ^i^fc
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THEOREM 3. If n > s and there exists a nontrivial transformation
Vι = fifaif , xn) which preserves {σ} then n = 2s and the transformation
is linear with matrix (up to permutations)

-1
s

1
8

1
s

8-1

s

1
s

1

s

1
s

8 - 1

Proof. We know by Lemma 1 that the transformation must be
linear. Let yi = ^kaikxk then

( 6 ) yh + + ylg = Σ K* +

Hence, for fixed fe, we have

+

( 7 )
o for

= ̂  +

sets {iif

+

l for ( g l J ) sets {ilf . . . , i β } .

Since w > s two elements α i fc, α j f c in the same column satisfy

aίk + α<lJfc + + aι&_ik = 0 or 1 ajk + ahk + + α i g_ i f c = 0 or 1

} — {ΐ, j } .where {iu •••,*,-,] e {1,
Hence

(8) α, = Q>)k o r = ajk ±

Let the two values assumed by terms in the fcth column be ak and
1 + αfc. From (6) we see that both values must occur. On the other
hand if both ak and 1 + ak would occur more than once then
max(αilJb + + at k) — min(d|lfc + + aisk) > 2 in contradiction to (7).

If 1 + ak is assumed only once, say akk = 1 + aΛ, then 0 = sak or

( 9 )
θ i Φ k .

According to (6) we have

(10)

We now repeat the argument that led to equation (8). Since n > s
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we can write for any pair (i, j)

Σ (<V + + a*, .*) + Σ αiJfc = Σ (<V + + α, ,) + Σ <*>,-* = §

where {i^ , is-τ} c {1, , n) - {i, j}. Hence Σ L i aiJb = Σ*-i ^» and
according to (10), s Σ ϊ - i aM = ^ so that

(11) Σα<fc = 1 i = 1, •••, w .

Combining (9) and (11) we obtain

(12) akj = ί 1 '̂ = *
10 i =£ fc .

In other words, every column contains 0 and therefore ak — 0 for
k = 1, , ?2. Thus the transformation is a permutation.

The only nontrivial case arises therefore if the value ak occurs only
once, say akk = αfc. Then s — 1 + sak = 0 and

Combining (11) and (13) we obtain

/-, ,x Λ ^i n(n — 1) s — 1 w / ^

fc = l i = l S S S

and hence n = 2s. It is now clear from (11) that each row and column
contains exactly one term — (s — l)/s and that the matrix (up to per-
mutation) is the one given in the theorem.

3. General s. The procedure which led to Theorem 1 can be
generalized. First we define, for every s, a function which is a poly-
nomial in n, 2k, 3fc, , sfc. Let

(15) j\n, k) - A Σ ( - irv-1 Σ V
S P i Ί

where the outer summation is over all permutations P on β marks, each

permutation being composed of a% i-cycles i = 1, * , r , and ί =

tti + + ar. Thus

(16) /(n, fe) = n-1 - -|(« - l)(2fc + s - 2)w-a + (s - l)(β - 2)[A(3* + s - 3 )

+ —(β - 3)(2fc+1 + s - 4)~LS-3 + ( - l)s(s - i;

o J
- ( - l)s(s - 1)! β*"1 .
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THEOREM 4. For every s consider the system of Diophantine equations
f(n, k) = 0 k = 1, 2, , n. If n satisfies none of these then the first n
elementary symmetric functions of {σ} can be prescribed arbitrarily and
they determine {x} uniquely. If f(n, k) = 0, then the first k elementary
symmetric functions of {σ} must satisfy an algebraic equation.

Proof. In the notation of Theorem 1 we have

(17) Σ* = Σ K + *«,+ •••+ χhf = —. Σ K + + *«,)*

where by D(t) is meant summation over all sets of subscripts i5 at least
t of which are distinct. Hence

s ! Σ * = Σ K + ••• + a?, )* - ( | ) Σ (2a?4l + α?<a + + a?,f x)
fc

* + + *./ - (J)

Continue cancelling terms until each summation is over D(l). The
coefficient of ΣA(m1xiι + ••• + mtxit)

k is just (— l)s~"f times the number
of permutations on s marks which are conjugate to one having cycles
of length ml9 •••, mt. This can be shown by a method quite similar to
that used by Frobenius [1]. Hence we may write

(18) β ! Σ» = Σ (~ 1 ) " Σ ( ^ + + mtxhy
P ) X fΣ
P

where the outer summation is over all permutations P on s marks, and
wfci> ' * > m ί a r e the lengths of the cycles of P. Now from the multinomial
expansion we have

Σ (m^ + + m^ Y = Σ Γ Ί V ^ 1 m ^ ^ S

)
 1 ι ih!.+i^kh! . . . it I λ ι

and the coefficient of Sk is (m* + + m*)So-ι. Substituting in (18)
and using (15), we obtain

(19) ( β - l ) I Σ » = Λ Λ , * )&+•••

where the terms indicated by dots do not involve Sk. Thus, if f(n, k) φ 0
for k = 1, , n, then (19) can be solved recursively for Si, , Sn in
terms of Σi> •••> Σn

On the other hand, if f(n, k) = 0 and /(rc, j) Φ 0 f or j = 1, , Jfc - 1
then (17) expresses ΣΛ a s a polynomial in Si, •• ,Sfc-i which in turn
are polynomials in Σi» ' * > Σ t - i
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COROLLARY. If f(n, k) = 0 then n divides (s - 1) ! sn~\
Thus {x} will always be determined by {σ} if s is less then the

greatest prime factor of n.

EXAMPLE 1. s — 3. Here (18) becomes

6 Σ * = Σ K + α?la + α?l3)* - 3 Σ (2a?tl + α?J* + 2 Σ (3α?4)
fc .

Expanding and collecting the coefficient of Sk, we get

f(n, k) = ri2- (2fc + l)w + 2 3*-1 .

This has obvious zeros at n — 1, k = 1 w = 2, & = 1, 2 n — 3, & = 2, 3.
Also, as we know from Theorem 3, there are zeros at w = 6,& = 3,5.
For all these values of n the set [σ] does not, in general, determine
{x} uniquely.

In addition we observe that f(n, k) = 0 has the solutions n = 27,
& = 5, 9 and n — 486, fc = 9. We do not know whether for these values
of n the set {σ} determines {x} uniquely or not. However we do know
that these are the only cases left in doubt.

THEOREM 5. // s = 3 then f(n, k) = 0 has solutions only for k =
1, 2, 3, 5, 9.

Proof. If /(?z, fc) = 0 then

(20) n = 2α 3δ with α = 0 or 1 .

Substituting (20) in j\n, k) = 0 we obtain

(21) 2α 3δ + 2τ-α 3*-*-1 = 2fc + 1 .

Let n be the smaller zero of f(n, k) for a fixed &. Then the other
zero is ri = 2χ-α 3*"6-1 and 6 < k - b - 1. Hence

(22) 2* = - 1 (mod 3δ)

and since 2 is a primitive root of 3&,

(23) k = 3&-T (mod 2 3&"T) .

But by (21) we have

3*-*-i < 2fc < 3a*/3 or A; < 3(6 + 1)

so that

3*"1 < k < 3(6 + 1) and hence 6 < 4 .
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If 6 = 3 then k = 9 (mod 18) and k < 12 so k = 9.
If 6 == 2 then 4 = 3 (mod 6) and k < 9 so k == 3.
If 6 = 1 then fe == 1 (mod 2) and fc < 6 so k = 1, 3, 5.
If δ = 0 then 4 < 3.

EXAMPLE 2. s = 4. Here (18) becomes

(24) 2 4 Σ * = Σ (%h + zh + xh + xhy

- 6 Σ (2xh + xh + xhf + 8 Σ (3α?4l + xi)
k

«Γ*2 '3 Ί ' Ί

+ 3 Σ (2a?4l + 2xhY - 6 Σ (4α?4)* .
V ' λ 2 4

Hence /(w, fc) = 0 becomes

(25) n3 - 3(2fc"1 + l)n2 + (2(3* + 1) + 3 . 2k'τ)n - 3 22*"1 = 0 .

We first note that this has solutions n = 1, k — 1 ) n — 2f fc = 1, 2 ;

w = 3, 4 = 1, 2, 3 n = 4, & = 2, 3, 4 n = 8, fc = 3, 5, 7. For these values
of n, the set {σ} does not generally determine {x}. When n = 12, k = 6
is a solution, and this case is left in doubt.

THEOREM 6. If s — 4 then f(nf k) = 0 &as solutions only for n —
1, 2, 3, 4, 8, 12.

Proo/. Let n = 3α 2δ where α = 0 or 1. Now if n > 3(2fc"1 + 1)
then 2 3kn > 3fc+1 2* > 3 22*"1 and the left side of (25) is positive.
Hence n < 3(2fc-χ + 1 ) < 2fc+1 if k > 3 and so b < k. (For k < 3 we have
listed all solutions of (25)). If k is even then 2(3* + 1) == 4 (mod 8) and
if fc > 4 then 8ra divides the other terms unless b < 2. Similarly if &
is odd then 2(3* + 1) == 8 (mod 16) and if k > 5 then b < 3. So b < 3
in all cases. Now suppose a = 1. Then (25) becomes

2rc - 3 22*-1 = 0 (mod 9)

or

2δ+1
 ΞΞ 22*-1 == 2 (mod 3)

and 6 is even. Thus n must be 1, 2, 3, 4, 8, or 12. It is easy to check
that none of these is a root for k > 7.

The corollary to Theorem 4 shows that exceptional pairs (s, w) are
in a certain sense quite rare. Of course it is trivial to remark that if
(s, n) is exceptional, then (n — s, w) is exceptional. Hence the remarks
for s = 2 apply equally well to s = w — 2 and we obtain the exceptional
pairs (6, 8), (14, 16), (30, 32), . But there are other cases with n > 2s
which our method leaves in doubt,
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THEOREM 7. We can construct arbitrarily large values of s such that
f(n, k) = 0 for some n > 2s.

Proof. If n < s then Σ f c = 0 but Si, •••,£» may be prescribed
arbitrarily. Hence the coefficient of Sk in the expansion of Σfc must be
zero if k < n. If n = s then Σ * = £* but S2, -- -> Sn may be prescribed
arbitrarily. Hence w = s is a zero of /(w, A:) for k — 2, , n. Thus
/(™, 1) = Πί: ϊ (n - i) /(rc, 2) = Πί-ifa ~ *) and/(w, 3) - (n - 2s) Πf-s (w - i).
If we divide f(n9 4) by its known factors then we obtain for s > 2

(26) /(rc, 4) - [̂ 2 - (6s - l)n + 6s2] Π (n - i)
4 = 4

and the equation

(27) n2 - (6s - l)n + 6s2 = 0

can be rewritten

(2n - 6s + I)2 - 3(2s - I)2 = - 2 .

The Pell equation ^2 — 3v2 = — 2 has the general solution

u + n / 3 ~ = ± (1 + i/3~)(2 + i/3") r r = 0, ± 1, .

Since u and v are odd, n and s are integers. It is interesting that all
positive solutions are obtained in the following simple way. When
k = 4, (s, n) = (2, 8) is a solution. Hence (6, 8) is a solution and putting
s — 6 in (27) yields (6, 27). Continuing in this way, we obtain (21, 27),
(21, 98), (77, 98), (77,363),.-. .

In a similar manner we obtain for s > 3

(28) j\n, 5) = O 2 - (12s - 5)n + I2s2](n - 2s) Π (n - i)
4 = 5

and all integer roots of the quadratic factor may be obtained with the
aid of the general solution of the Pell equation uz — 6v* = 75. Or we
could start with (2,16) and obtain successively (14,147), (133, 1444),
Starting with (3, 27) yields (24, 256), (232, 2523), . . . .

4. Concluding remarks. If we let {r} = {τlf «-, τnS} be the set of
sums of s not necessarily distinct elements of {x}, then {x} is always
determined by {r}. A method similar to the proof of Theorem 4 applies
with the coefficient of Sk always positive. Alternatively, if the xi are
real, xx < x% < < xn, we may determine them successively by a simple
induction procedure.

Our method is applicable to the case of weighted sums σt ..g | =
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Σ5-iαj#i/ The resulting Diophantine equations will however be of a
rather different nature. Thus, if the aό are all distinct then the ana-
logue to f(n, k) = 0 is

(29) (αf + a\ + + a^n8-1 = 0 .

In other words the uniqueness condition is independent of n and
depends on the at alone. For example if αL + a2 + + as = 0 then
{σ} remains unchanged if we add the same constant to all x. It is not
as easy to see what happens if (29) holds for some k > 1.
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A GENERAL SOLUTION FOR A CLASS

OF APPROXIMATION PROBLEMS

ANNETTE SINCLAIR

l Introduction* This paper generalizes a class of theorems show-
ing the existence of an approximating function which may be required
to satisfy certain auxiliary conditions.

Various theorems in analytic function theory which prove the ex-
istence of a function fulfilling specified conditions in an open set R have
been proved by using a method of the following type. The set R is
covered by an increasing sequence of sets {Rt}. Then the existence of
a convergent sequence of functions {fι(z)} is shown such that each fn{z)
behaves properly in Rn and such that {fi(z)} converges to a function
satisfying the required conditions everywhere in R. Examples of theo-
rems in which such a method of proof can be applied are furnished by
the Mittag-Leffler Theorem, the Carleman Approximation Theorem [1],
some rate of growth theorems proved by P. W. Ketchum [2], and the
author's generalization of Runge's Theorem [5]. W. Kaplan considered
certain problems of this type and remarked, [1], that Brelot has pointed
out that this type of proof is valid for approximation to a function
Q(x19 x2 ,xn) continuous for all (xL9 xi9 , xn) by a function
u(x19 x2, , xn+1) harmonic for all (xl9 xi9 , xn+1).

The present paper attempts to give an abstract solution for this
general class of problems. Examples are also given of some new results
obtainable by applying Theorem 1 and fundamental approximation
theorems.

In Theorem 3 approximation by an analytic function is considered
on a point set S consisting of an infinite number of circular discs tan-
gent on the real axis. It is shown that a function w(z) analytic at
interior points of S and continuous on the closure of any finite number
of the circular regions—hence, continuous at their points of tangency—
can be approximated by an integral function f(z). Moreover, f(z) can
be chosen so that the approximation is stronger than uniform approxi-
mation—so that corresponding to any {εj there exists f(z) such that

\f(z) - w{z) I < εt on Si9

where St is the ith. circular region.
Theorem 2 combines some previously obtained results [5] by requir-

ing that certain auxiliary conditions be satisfied simultaneously.
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Theorem 1 can sometimes also be used to show that when an ap-
proximation is known to be impossible in the infinite case that analogous
results cannot hold in the finite case. An example of this usage is
given.

In Part II a topological abstraction is made of Theorem 1 in which
the sets of functions are topologized and the system so obtained inter-
preted as an inverse mapping system. It is then shown that Theorem
1 can be regarded as a special case of Theorem 5.

PART I

2. Fundamental theorem* Let R be an open subset of a topological
space. A sequence of sets {iϋj which satisfy the following conditions
will be called an increasing sequence of R-covering sets.

(1) RiCiR;

(2) Rt is interior to Ri+1;

( 3) u Hi = -K

Wi U ̂ U such that Wk Π Wm = φ for k Φ m is said to be a
decomposition of a set S if S = Wt U W2 U . An R-covering sequence
{Rt} for R and a decomposition Wx U W2 U of a set Sa R are said
to correspond if, for every n, Wn c Rn, but Wn+1 Π Rn = φ.

For a given set S c R suppose that an increasing sequence {i?J of
iϋ-covering sets and a decomposition Wx U W2 U of S correspond.
Let there be defined classes of functions ^ and &n transforming Wn

and Rn respectively into the complex plane, n — 1, 2, . Suppose that
each function of &n defines a function of &n-l9 n = 2, 3, .

THEOREM 1. Let S, R, Rn, Wn, &n, and 30£, n — 1, 2, , be defined
as above. Suppose that

(1) // {gι(X)} is a sequence of functions of &n+1 which converges
on Rn+ι and uniformly on any closed subset of Rn+ι, lim^o. gι(X) defines
a function of &n;

and (2) Any function defined on Rn by an arbitrary function of
the class &n and on Wn+1 by a function of f̂+1 can be uniformly ap-
proximated arbitrarily closely on Rn U Wn+ι by a function of &n+lf n = 0,
1,2, (where RQ is the null set.).
Let w(X) be a function defined on S in such a way as to determine a
function of ^ffor each i. Then, corresponding to any {εj, there exists
r(X) defined on R which determines a function of &n for each n such
that

I r(X) - w{X) I < ε, when X e Wt, i = 1, 2, . . ,
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Proof. Suppose {εj and w(X) preassigned. When n is taken as
0, (2) implies the existence of rλ{X) of . ^ such that

1 rτ(X) - w(X) I < εx/22 when X e Wλ .

In general, for n — 1,2, •••, choose rn(X) of έ%n so t h a t

\rn(X)-rn-1(X)\< £ ^ on Rn.λ

and

^ on Wn ,

where ε(w) = mm*, {elf ε2, , εn}.
Since {r4(-3Γ)}t.t+1 converges in Bk+U for arbitrary A;, and uniformly

on any closed subset of Rk+U it follows from (1) that lim r^X) — r(X)

defines a function of &k for k = 1, 2, .

It remains to show that r(X) satisfies the assigned approximation
conditions. For any fc, there exists m > k so that

I r (Z) - rm(X) I < ε- when X e Rk .
Li

Now

I r(X) - w(Z) I < I r(X) - rJX) \ + I rJX) - w(X) |

< I r(Z) - rm(X) I + Σ I rAX) - r^X) \ + \ rk(X) - w(X) \

V + ?< V + ,.?., 2-
Thus, I r(X) - w(Z) I < ε(fc)^εfc when X e Wk. This completes the proof
of the theorem.

3 Applications to specific problems* In Theorem 2 we consider
approximation on a Q-set of the complex plane having an infinite number
of components. A set S is a Q-set if its component are closed and its
set of sequential limit points lie in C(S), the complement of S. (A
sequential limit point of S is a limit point of a set of points chosen one
from each component of S. We note incidentally that a Q-set in the
complex plane has at most a denumerable number of components and
that its set of sequential limit points may separate the plane [5].)

A set in C(S) is called a B*(S)-set if it contains the set B of
sequential limit points of £ and exactly one point of each component
Ik(S) of C{S) such that IK(S) ΓΊ B = φ.
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The author has shown [5] that if S is any Q-set of the complex
plane and 2?* any 2?*(S)-set there exists an increasing sequence {ϋ?J of
closed covering sets for C(B) such that

( 1 ) If St is any component of S and if St Π Rn Φ Φ, then StaRn;
( 2 ) If Ir(Rn, S) is any component of C(Rn U S),

Ir(Rn, S)ΠB*Φφ.

When we set Wt = S Γ\RtΓ\ C(Rι-ύ, we obtain a decomposition
W1U W2\J " of S which corresponds to the increasing sequence {ϋJJ
of covering sets for C(B).

A function is meromorphίc on a set if it is single-valued and ana-
lytic in a neighborhood of each point of the set except for poles.

THEOREM 2. Suppose S is a Q-set, B its set of sequential limit
points, and J5* any B*(S)-set. Let {Rt} be an increasing sequence of
covering sets for C(B) as described above which determines the correspond-
ing decomposition Wτ (J W2 U of S. Suppose w(z) is meromorphic on
S and that I denotes the set of points of S at which w(z) has poles. Then,
corresponding to any sequence {εj of positive constants, there exists r(z)
meromorphic in C(B) and analytic in C(J5* u /) such that

I r(z) — w(z) I < ε̂  when z e (Wt — I), i = 1, 2, •

It can be required that
( 1 ) The poles of r(z) at points of I have the same principal parts

as w{z)
and ( 2 ) If K is an isolated interior subset of S such that K f) I = φ,

r(z) can be chosen so that r(k) = w(k) at each point k of K. If J3* has
no limit point on S, r(z) can be required to have the same multiplicities
at points of K as w(z).

Proof. Define ^ f as the set of those functions meromorphic on Wt

and analytic on (Wi — I) which have poles with the same principal parts
as w(z) on ( I n Wt) and fc-points with the same multiplicities as w(z) on
(i£ Γl Wi). In ^ include those functions meromorphic on Rt and ana-
lytic in Rt — (I U B*) which have poles with the same principal parts as
w(z) on (I n Rι) and k-points with the same multiplicities as w(z) on
(K Π Rι), also those functions which are identically constant on a com-
ponent of Ri which contains no point of I.

Suppose {gi(z)} is a sequence of functions of &n+1 which converges
in Rn+1 and uniformly on any closed subset of Rn+1 (where any points
of (I U B*) are deleted from a closed subset which contains them). Then
lim gι{z) is meromorphic on Rn and analytic in Rn — (I U B*) with poles
and jfc-points identical with those of w(z) at points of I and K, except
that lim g^z) may be identically constant on a component of Rn which
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contains no points of I. Thus, Km gt(z) e &n and (1) of Theorem 1 is
satisfied.

Before applying Theorem 1 it remains to show that for any g(z)
of &n and v(z) of ^ + 1 , corresponding to arbitrary ε > 0, there exists
f(z) of &n+1 such that

\f{z) - g(z) I < ε when z e Rn,

and \f(z) — v(z) \ < ε when z e Wn+ι .

This follows from Walsh's generalization of Runge's Theorem [7,
p. 15] and from another theorem of Walsh [7, p. 313] after it is noted
that a finite number of poles on Rn U Wn+1 cause no real difficulty. Just
apply the general Mittag-Leffler Theorem [4] to show the existence of
a function h(z) meromorphic in C(B) whose poles coincide with those of
g(z) and v(z) on Rn and Wn+L respectively with the same principal parts.

Then define F(z) = \g(-z) ~ ***> o n R -
^v(z) — h(z) on Wn+ι.

Since F(z) is analytic on Rn U Wn+1, by Walsh's generalization of
Runge's Theorem [7, p. 15], there exists a rational function k(z) whose
poles lie in B* such that | F(z) — k(z) \ < ε when z e (Rn U Wn+1). An-
other theorem by Walsh [7, p. 313] implies that k(z) can be chosen so
that k(z) = F(z) at points of K and so that k(z) has the same multi-
plicities at these points as F(z). Set f(z) = h{z) + k(z).

Now f(z) is meromorphic on Rn+1 and its poles on Rn+ι lie at points
of / u (Rn+1 Π B*) with those on / having the same principal parts as
h(z)f hence as g(z) or v(z), and so the same as w(z). Also

\9(z) - f(z)\ = \[g(z) - h(z)] - k(z)\

= I F(z) - k(z) I < ε when z e Rn

and similarly | v(z) —f(z) \ — | F(z) — k(z) | < ε when z e Wn+1. Since
k(z) = F(z) at points of K,

f(z) = h(z) + k(z) - ΛCίδ) + F(z) = h(z) + g(z) - Λ(2)

= flr(«) on Rnf]K

and, similarly, v(̂ ) on Wn+1 Π iί.
This completes the proof that the hypothesis of Theorem 1 is satis-

fied. Hence, by Theorem 1, there is a function r(z) defined on C(B)
(where oo is allowed as a functional value) which determines a function
of &n for each n such that

1 r{z) — w(z) I < εt when z e Wi} i = 1, 2, .

Thus, r(z) is meromorphic in C(B), analytic in C(I US*), and has poles
and ^-points of w(z) on S as specified and also satisfies the required
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approximation condition. {In general, r(z) is not identically constant on
a component of C(B).)

In Theorem 3 S consists of circular discs tangent on the real axis.
More precisely, let Wt = {z\\z — i\< 1/2}, except that z = i — 1/2 is
deleted, and define S as UΓ=i ^ Set JBt = {zj\z \ < i + 1/2} and let
R be the finite plane. Then {iί j and the decomposition Wx U W2 U of
AS correspond.

THEOREM 3. Suppose S defined as in the preceding paragraph. Let
w(z) be any function analytic at interior points of S and continuous on
the boundary except at infinity. Then, corresponding to any {sj, there
exists an integral function r{z), such that \ r(z) — w(z) \ < et when z e Wt

and r(i + 1/2) = w(i + 1/2), i = 1, 2, - - .

Proof. Let ^ be the set of all functions f(z) analytic on Bi such
that f(k + 1/2) = w(k + 1/2) for k = 1, 2, , i. Let ^ f be the set of
all functions f(z) analytic at interior points of W% and continuous on
Wt such that f(i + 1/2) = w(i + 1/2) and lim^ f(z - 1/2) = w(i - 1/2),
( z - l / 2 ) e IF ti = l,2, . . . .

If {gi(z)}, where g^z) is a member of ^ + 1 , converges on Rn+1,
uniformly on any closed subset of JBW+1, lim gt{z) gives a function of

By a theorem of ΫFalsh [7, p. 47] a function g(z) analytic interior
to and continuous on a closed set C which does not separate the plane
and which is bounded by a finite number of Jordan curves, as is the
case if G = Rn U Wn+1, can be uniformly approximated on C by a poly-
nomial p(z). Then by another theorem of Walsh [7, p. 310], p(z) can
be chosen so that p(k + 1/2) = g(k + 1/2), k = 1, 2, , n + 1. If
0(& + 1/2) = w(fe + 1/2) then p(z) e &n+ι. Thus, the hypothesis of Theo-
rem 1 is satisfied and the required conclusion follows.

The next theorem is an extension of the Carleman approximation
theorem in that values of ahe approximating function are preassigned
at certain points.

THEOREM 4. (Carleman Approximation Theorem). Let w(x) be a
continuous complex-valued function of x for — oo < x < oo. Then, cor-
responding to any {εj, there exists an integral function f(z) such that

\f(x) — w{x) I < Si when i — 1 < | x \ < i, i = 1, 2, -,

and such that f(i) = w(i), i = ±1, ± 2 ,

Proof. The proof is like that of Theorem 3 when Wt is defined
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as {xji — 1 < I x I < i) (except that Wτ also includes the origin) Rt as
{z/\ z \ < i} R as the finite plane Wf as those functions continuous
on Wt such that f(±i) = w(±i) and \imx^{±iτι) f(x) — w(± i =f 1) and
&t as those functions f(z) analytic on Rt such that f(k) = w(k), k ==
± 1, ± 2, ..-, ± i .

Theorem 1 can sometimes be used to show that certain requirements
on the approximating function cannot, in general, be made, even when
the approximation is on a set having only a finite number of components.
Next an application of this type is indicated.

When approximating a function analytic and simple on each com-
ponent of a closed set C by a function f(z) analytic in a preassigned finite
region D containing C, one cannot, in general, require that f(z) be
simple in D. To verify this we consider a Q-set S whose components
are simply connected and which has infinity as its only sequential limit
point. Suppose {Rt} is an increasing sequence of ίϋ-covering sets, as
described for Theorem 2, which gives the corresponding decomposition
Wi U W2 U " of S. Let ^ (and W£) consist of all functions analytic
and simple on Ri(W^ί also all constants. We note that (1) of Theorem
1 is satisfied [6, p, 203]. If (2) were also satisfied, Theorem 1 would
imply that arbitrary w(z) simple on S could be approximated on S by a
function simple in the whole finite plane. Since w{z) can be chosen so
that f(z) would necessarily have an essential singularity at oo f this does
not hold. We conclude that (2) is not, in general, satisfied.

Theorems 2, 3, and 4 and the illustration just stated are examples
of some of the applications which can be made of Theorem 1.

PART II

4 Topological abstraction of Theorem 1. Theorem 1 can be in-
terpreted as a density result for a Cartesian product space. The author's
original version treated the ,^ ' s of Theorem 1 with the respective
topologies induced by the metrics

diCΛ g) = sup \f(X) - g(X) I

as a nested sequence of spaces. The interpretation given in Theorem 5
as an inverse mapping system was suggested by Prof. Hans Samelson
of the University of Michigan. In addition to having the advantage of
conforming to convention, this formulation applies to classes of functions
other than analytic functions.

If {Wι} is any sequence of topological spaces, W°° denotes the
Cartesian product space WΊ x TΓ3 x . We shall be concerned with
the box topology for W°° in which a neighborhood of w = (wlf wi9 ) is
defined as N ί̂TFΊ) x NW2(ΐF2) x . . . .
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If {Ri}T=i is a denumerable system of T2-spaces and if for n = 2,3, ,
there is defined a continuous transformation Πί-i of Rn into Rn_u the
system Σ = {Rt, IT} of the U4's and Π's is an inverse mapping system,
[3, p. 31]. The subset R of R~ = RL x Λ2 x . . . of all those points
x = {a?,} such that Πi+1^+i = x% is called the Kmiί space of the inverse
mapping system Σ

In Theorem 5 we suppose that Rl9 R2J are given sets and that
for each i, and arbitrary points p, q e Ru there is defined a metric
di(p, q), where oo is allowed as a possible value. Then Ri with the
neighborhood system induced by dt(p, q) is a T2-space. If, for i = 2,3, ,
a transformation Π«-i °f R% into Rt-i is defined which is a contraction
(that is, di-idlί-iP* ΓΠ-i#) < ^ife #))> then the Π's are continuous and
{Ru Πί-i} is an inverse mapping system.

Before stating Theorem 5 we note that the iϋ/s of this theorem are
analogous to the &£% and the Wt'a to the ^ p s of Theorem 1.

THEOREM 5. Let {TFjΓ-i δβ a system of topological spaces and let
{Ri, ΓF} be an inverse mapping system as described in the preceding
paragraphs. Suppose that for each i there is defined a continuous trans-
formation ft which maps Rt into Wt. Suppose also that the following
conditions are satisfied:

(1) If {p(jn)} T=i is a Cauchy sequence in Rn, its image {ffi=iP$w)}j°=i
is convergent in Rn-i',

( 2) fiRx) is dense in WΊ and, when n > 1, Πί-i x fn(Rn) is dense
in Rn-x x Wn.
Then under the transformation { x/J the image of the limit space R of
the inverse mapping system Σ ^s dense in W°° by the box topology.

Proof. Let w = (wlf w2, ) be any point of W°° and let Nw =
NWl(TFχ) x tίw(W2) x ••• be an arbitrary neighborhood of w.

Since f^RJ is dense in Wl9 there is a point rλ e Rλ such that
MrJ 6 N W l ( n There exists N^RJ c &»&), where N^ =
{p 6 RJd^p, TΊ) < α}. Since Λ is continuous and i^ is regular, we can
suppose Nr^RJ chosen so that f^N^cz N^WΊ).

In general, since ffi-i x fn(Rn) is dense in Rn.λ x Wn, there exists
rn e Rn so that ΠS-i x / W € N^JR^) x 2Vkn(TFn). There exists
Nrn(Rn) c NΫjf^XRn). Since /n and Π5-i a r e continuous and i2w is regu-
lar, we can suppose NrJiRn) chosen so that Nrγι{Rn) c N^f\Rn) and so
that

The sequence {nS+^»+i}Γ-o, where Πn+ί = ΠΓ 1 IKίί-i, is a Cauchy
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sequence in Rn. For, corresponding to any ε > 0, there exists m > n so
that l/(2—2) < ε then

2 ^wVllrc 'ra+i + l> l ira ' m + ij

The first inequality follows from the triangle inequality, the second
from the fact that the Π's are contractions, and the third holds since

Π m + i + l r (2 Kf (J? \ <

m + i I m + i + 1 fc iy/rm + iK-K"m + l) ^

By (1) the image of the Cauchy sequence above is convergent in

jβn-i. Hence, we let r(n'υ denote l i m ^ H%±\rn+i in Rn-λ. Now

r»-» e N^iRn.J and fn^ (N^ (Rn^)) c NWn_± {Wn-i). Hence,

To complete the proof of the theorem it is sufficient to show that
{r(*-υ}r=2 belongs to the limit space, that is, that r(w~2) = lll'-Y71^ for

n = 3, 4, . . . . Since {ΠS-ί ^n+J converges to r(n~O in Rn-iy corresponding
to any <5>0, there exists k such that i>k implies dw_1(Πw-ί^+i^ ( w"1 ))<^
Then, since the π's are contractions, dn-..£Π.%ilrn+i9 ΠS-ϊ^""1^ < ^ f° r a ^
ΐ > k. Now lim ΠS^»+* is unique in Rn^, and so UZ'Y71^ =

oo ΠS-ί̂ n+ΐ = r(w"2). This completes the proof of Theorem 5.

If a function of &n defines a function of Ύ/^ n — 1, 2, , Theorem
1 can be obtained from Theorem 5. Since each function of &n in
Theorem 1 defines a function of &n-λ (and in the case just specified,
also Ύ/n)y transformations Π ϊ - i a n ( J Λ are determined of &n into ^ w _ i
and ^Γ. Let us define a metric dn(f, g) for each &n (also ^ ) as
sup2ei2w(or w ) l/(-X) — ̂ (-X) l Thus, Tropologies are determined for &n

and Φ^ respectively. If /, g e &n then,

sup \f(X) - g(X) I < sup \f(X) - g(X)
n-j Or Wn XR

and so Π^-i and fn are contractions and hence continuous. We note
that {^, Πί-J i s a n inverse mapping system X. The hypotheses (1)
and (2) of Theorem 1 correspond to (1) and (2) of Theorem 5. By Theorem
5 the image of the limit space & of the inverse mapping system Σ is
dense in ^^°°. This is just a statement that corresponding to any
function w(X) which defines a point w of Ύ/^°° and to any {εj there
exists r(X) which determines a function of &n for each n such that
\r{X) — w(X) 1 < et when X e W+. In this way Theorem 1 can be re-
garded as a special case of Theorem 5.
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(C, oo) AND (H, oo) METHODS OF SUMMATION

G. SZEKERES AND A. JAKIMOVSKI

1. Introduction. Let

T: ί» = Σ r » , α , , n = 1, 2,

be a linear transformation of the sequence a = {αw} into the sequence
0 = {βn} we write

β = Ta, βn = (β)n = (Ta)n.

a is said to be summable T to the value a if

(1)

and Ϊ7 is said to contain T if every sequence summable T to the value
a is also summable U to α. In particular T is called regular if it con-
tains the identity transformation /.

We shall generalize the concept of regularity in several directions.
A sequence of transformations {Tk} (k Ξ> 0, To = I) will be called regular
if each Tk is included in Tk+1. As an example of a regular sequence
we mention the iterates of a regular transformation T they are defined

Ta = a , Γfc+1<α = T{Tkά) , fc = 0, 1, 2, .

Given a regular sequence of transformations, {Γfc}, we say that α is
summable T^ to a if

lim (Tka)n = αw

exists for rc ^ ^0 and lim^oo^ = a. For T^ to be significant, it is plainly
desirable that it shall contain each Tk. A regular sequence {Γfc} will
be called strongly regular if, whenever for some k lim^oXΪVx),, = a, then
α is summable IL to α. With trivial modifications these definitions also
apply to families of transformations Γλ which depend on a continuous
real parameter Λ ;> 0.

Of particular interest are sequences of transformations of the type

( 2 ) {Tka)n = i ^

where ε is the unit sequence εw = 1, ra = 1, 2, , and Γ is a transforma-
tion such that Tke exists for k ^ 0. By an extension of the concept of
regularity we say that T is strongly regular if the particular sequence (2)
is strongly regular, and summability T^ for this sequence will be denoted

Received Jaunary 27, 1958.
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by summability (Γ, oo).
To examine the usefulness of these concepts and in particular the

possibility of 'infinite iteration', let us consider the Holder process

(Ha)n = i- f ocm .
n m-i

It follows from

1 1
/ TTIr.4.1 Λ . \ i •*• /ΓTfcΛΛ( f f « α ) M = ^ _

ft ro-1 ft ft

by induction on ft, that

lim (ΈPa)n = α x ,

for every ft. Thus we find the disconcerting result that every sequence
is summable (H, oo) to the first term of the sequence.

Similary if (Ca)n = Σ ϊ = A > we have

ΎYI + k — 1\ /^fc x _ /ft + Λ — 1
ft — m y m > i , λι — ^ % _ i

a n d h e n c e

for every ft. As in the case of (H, oo), we find that the (C, oo) limit
always exists and is equal to the first term of the sequence. Thus
neither the Holder, nor the Cesaro process is strongly regular, and
infinite iteration gives nothing useful.

In the next section we shall reconsider the problem of (H, oo) and
(C, oo) from the point of view of generalized limits of functions; this
will lead quite naturally to strongly regular transformations. Here we
mention an interesting example of a strongly regular family of trans-
formations, known as the 'circle methods' of Hardy and Littlewood.
For λ > 0 define

( 3) (Tκa)n = />••! Σ (™) (1 - P)m-nam , n ^ 0 ,
m = w \ft /

where p = e'λ (3) certainly exists if

(4) Ϊim|<xw|1/M ^ 1

If a satisfies this condition and μ > λ ;> 0, then Tμ contains Tλ this
follows from the regularity of Tk and the formula

( 5 ) Tμa = Tμ.κ(Tλa)

which is valid for sequences satisfing (4) (See [4, p. 218]). It is seen



(C, oo) AND (H, oo) METHODS OF SUMMATION 869

directly from the definition of Tλ that if lim an = a then for every

fixed n ^ 0,

lim {Tλa)n = a

it follows, by (5), that lim^JT^cήn = α for some λ > 0 implies
liniμ^T/x)?* — α Hence TΌo contains 2\, and the family ϊ \ is strongly
regular, at least for sequences which satisfy the condition (4).

2. (C, oo) and (H, oo) limits. Let us consider the problem of in-
finite iteration from the point of view of generalized limits of functions.
For the sake of definitness we consider limits at x = oo. We say f(x)
has a (generalized) limit a at x — oo by the process

( 6 ) Γ: Tf(x)= \\(x,t)f(t)dt
Jo

if \imx^coTf(x)ITe(x) = α, where e(x) is the unit function e(x) = 1 for all
a? > 0 we assume that

T«e{x) = Γτ(tf, ίOciίxΓτίt!, ί2)dί2 \~(tk-lf tk)dtkJ J J

S CO

φ(t)dt are understood
0

to be improper Lebesgue integrals in the following sense : φ(t) is assum-
ed to be L-integrable in every interval 0 < ί 1 ^ ί ^ ί 2 < o o and

[°φ(t)dt = lim [φ(t)dt + lim
Jθ 8 j θ J ε a Too

The domain of T is the class of functions f(x) for which the integral
(6) exists but since we are interested in the limit of f(x) when x -> oo f

it is convenient also to consider the subclass of these functions in the
domain of T for which f(x) — 0 for x < x0 (where xQ is not necessarily
the same number for every /(#)). This subclass will be called the
essential domain of T.

The definitions given in § 1 apply equally well to transformations of
the form (6) in particular, T is called strongly regular if the sequence

( 7 ) TM = %$\, £^o,
Tke(x)

is regular and lima!_>ββ2
7

fc./](aθ = a for some k > 0 implies

lim lim Tkf(x) = a .

The natural analogues of the Cesaro and Holder limits at x = oo
are obtained by the transformations

1 Unless the contrary is stated, letters k.m.n, denote non-negative integers,
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Cf{x) = [f(t)dt
Jo

Hf(x) = —\Xf(t)dt = Fflαί)dί
a? Jo Jo

and

their domain is the class of functions L-integrable over every interval

0 < tλ ^ t ^ t2 < oo for which \f(t)dt (as an improper integral) exists.
Jo

Denote this class by Φ1>0. Clearly f(x) e Φ1>0 implies the existence and
continuity of Cf(x) for x > 0 and \imxί0Cf(x) = 0 therefore Ckf(x) exists
for every k > 0. On the other hand Hkf(x) does not always exist when
f(x) 6 0 M for example f(x) = (a? log2^)"1 is in 0ljO, but notf(x) = (x log a?)"1,
so that IΓf(x) does not exist We denote by Φky{) the class of functions
for which EPf(x) exists Φ^^ denotes the intersection of all classes Φk>0

0o,o denotes the class of functions L-integrable over every interval
0 < tτ ^t ^t2 < oo. For later use we also define : ΦQtVaf the class of
functions s(x) such that f(x) = s(l/#) is in Φm>0 Φkm = 0fc>o Π ΦQ,m. If
s(x) 6 Φfc>m then /(^) = β(l/a?) e (?m)fc. Finally 0, shall denote the class of
functions for which \ f(t)dt exists, and ΦB is the subclass of bounded

Jo

functions of Φ0}0 clearly Φ1 is a subclass of Φ1Λ and ΦB is a subclass of
^ 0 0 , 0 0 .

The examination of the infinite iteration of the C and H methods
for functions leads to a result which is analogous in some respects to
the corresponding result for sequences. It turns out that the limit by
(C, oo) or (H, oo), if it exists at all, depends on the behaviour of the
function in the neighbourhood of zero rather than infinity. If in parti-
cular \imxίQf(x) = a exists then

lim HkJ\x) = lim Ckf(x) = a
fc->oo fc->oo

for all x > 0. More generally we shall show :

THEOREM 1. Suppose that f(x) e ΦlιQ and

( 8 ) lim Ckf(x) = a
310

for some k ^ 0. Then

( 9 ) lim Cnf(ξ) = a
n—>oo

for every fixed ξ > 0 .

T H E O R E M 1 * . Suppose that f ( x ) e Φkf0 for some k^O and

(8*) \im Hkf(x) = a,
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Then f(x) e ΦootQ and

(9*) lim Hnf(ξ) = a

for every fixed ξ > 0.

Theorem 1 and Theorem 1* show that although C and H are not
strongly regular with respect to x f oo , they are strongly regular with
respect to limits of the form

(10) lim CJ{x) and lim HJ{x) .

Generalized limits of the type (10) were first considered by Hardy and
Littlewood in connection with the summability problem of Fourier series
[5] in the present context they appear as natural extensions of the
Cesaro and Holder processes distinguished by the property that they
admit infinite iteration.

Proof of Theorem 1. For k > 0 we find by repeated integration by
parts

(ID c«f(χ) = TΓ—TT \\* - ty-
(k — 1)! Jo

(11*) C*e(x) = -A-xk, x > 0
kl

and

(12) Ckf(x) = ftf\l - t)k-ιf(xt)dt , fc > 0 .
Jo

The relations (11) and (12) define Ck and Ck also for non-integral k > 1.
The existence of Cσ/(#) for σ > 1 can be seen from

the expressions on the right have a limit when ε | 0, since limxioQf(a?) = 0.
Clearly Cσf(x) is continuous for σ ^ 1, a; > 0, and \imxi0C°f(x) = 0. By
partial integration we obtain, for fixed ξ > 0 and σ- > & 2

(13) cσ/(f) = - ^ i L
/χ& + l)Γ(σ — k)

This can be regarded (for fixed ξ and k) as a transformation from
Ckf(ξt) to Cσf{ξ) and Theorem 1 is proved if we can show that this
transformation is regular. Now regularity follows immediately from a
remark to § 3.5(3) in [4, p. 61], since the following three conditions are
satisfied:

2 This is a well-known identity; see for example [2, p. 3],
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(1)

(2)

Γ(k
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Γ(σ + 1) n _ ty-*-φ ^ 0 far σ>k, O ^ t ^ l .
σ-k)

Γ(σ

TJk""
(3) For a fixed x, 0 < x < 1, and a fixed k,

lim
Γ(k k)

f' (l - = 0

since

0 <
l)Γ(

1) f1 (i _ tY-k-ι
-k-ιtkdt

Γ(λ; + l)Γ(σ - Λ) .

Γ(fc + V)Γ{p -k + 1)
as

Proof of Theorem 1*. We note first that Hke{x) = 1 for every & ̂  0,
a? > 0, and conditon (8*) implies that EPf(x) is bounded for 0<#^ikf+oo.
Therefore Hmf(x) exists for m ^ ί; and hence /(#) e Φoo,0. Condition (8*)
implies

(14) Hkf(x) = a + ψ{x)

where \ιmxiQψ(x) = 0 we have to show that \imn^<x>H
nψ{x) = 0. For

bounded functions repeated partial integration gives

(15) H*+f(x) = -^(Ylog ±)kf(xt)dt , A; ̂  0 .

Thus the statement to be proved is, that for any fixed ξ > 0,

(16) lim [—(log λ)nψ(ζt)dt - 0 .
rctoo Jon I \ t /

Choose 5 > 0 so that | <p(ξt) \ < ε/2 f or 0 < t < δ and let | ψ(ξt) \ < K for
0 < t ^ 1 then

n\ Jo
i
2

for

which proves (16) and our theorem.
The proof of Theorem 1 suggests that limn_ooCn/(£) = a implies

limσTooCσ/(?) = a. The following lemma shows that this is in fact so.

LEMMA 1. Suppose that g(x) e Φ1)Q and
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(17) lim n I (1 — t)n~ιg(t)dt = α .
n^oo Jo

(18) lim σ P(l - tγ-ιg{t)dt = α .
σjoo Jo

Proof. The proof follows easily on integration by parts and by

noticing that the function G(x), defined by G(x) — \ g(t)dt, is bounded
Jo

for 0 < x < 1 and that \imxί0G(x) = 0.
In the formulation of Theorem 1 and Theorem 1* we have made a

distinction between the limits (8) and (8*). This is not really necessary :
the two limits are equivalent.

THEOREM 2. f(x) e Φkι0 and

(19) lim Ckf(x) = a

for some k > 0 imply

(20) lim Hkf(x) = a .

Conversely, f(x) e Φk)0 and (20) imply (19).

THEOREM 2*. f(x) e ΦliQ and

(19*) lim Ckf(x) = α

/or some h > 0 impfo/ ίAαί /(#) 6 Φfci0

(20*) lim Hkf(x) = α .
l Oa s l O

*)Conversely, f(x) e Φk>0 and (20*) impZi/ (19*).

Theorem 2 and Theorem 2* are the continuous analogues of the
well-known Knopp-Schnee equivalence theorem for sequences. Note that
in the first statement of Theorem 2 it is necessary to assume f(x) e Φtet0

otherwise it may happen that Hkf(x) does not exist, for example f(x) =
(#2 log x)'1. This is not a serious restriction, though, since the assump-
tion only affects the behaviour of f(x) in the neighbourhood of 0 and is
obviously satisfied in the essential domain of (C,k). There is no restric-
tion of this kind in Theorem 2* where the assumption f(x) e Φlt0 and
the existence of the limit (19*) automatically ensures that f(x) e ΦkiQ.

Theorem 2 is due to Landau [7] Theorem 2 is stated (without proof
and without specifiying the precise conditions of f(x)) by Hardy and
Little wood [5, p. 96]. It can be proved by an argument similar to the
one used in [4, p. 112].
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Once we have established the strong regularity of the limits (10),
there is no difficulty in constructing strongly regular methods for x t °°
and hence for sequences. We first note that limits at 0 by any method
T can be converted into limits at oo by a ' reciprocal' method T* which
is defined as follows.

Suppose that T is given by

Tf(x) = f
Jo

t)f(t)dt .

To indicate clearly the function that is transformed and tne point where
the transform is taken, we shall use the notation

Tf{x) = T[f(t)](x) .

By an obvious change of variable

θ = \"Aτ

= !"[/(j
where

τ*(x, t) = t-h(K
\χ

Clearly

T"[/(ί)](-ί) = T** [/(y)](«) - k = 1, 2,

Therefore

implies

and conversely. Also

Km Tt[Λt)l(-) = Hm Γ*Γ/(i-)Ί(α;) ,

in the sense that if one of the expressions exists then so does the other
and the two are equal. It follows therefore that if T is strongly regular
with respect to x \ 0 then T* is strongly regular with respect to α? | °° •
In particular

(25) Q*s{x) = [~t-2s(t)dt,
Jx
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and

(26) fl*φ) = α J Yaβ(*)dί = (°°^s{xt)dt

are strongly regular for x\ oo. Note that the domain of C* and if* is

0o.i.

The processes (25) and (26) can easily be converted, if we wish,
into strongly regular methods for sequences for instance

(27) (H*a)n = n± /V-n
m=n m(m + 1)

is such a method. Its strong regularity is proved if it is shown that
βn-+0 implies limfc_>oo(ίZ'*A: )̂w = 0 for every fixed n. This can be shown
for instance by comparing the sequence (H*kβ)n with suitable integrals
and applying Theorem 1*.

Altough the method (27) is equivalent (in the ordinary sense) to
(H, 1)3, the two methods behave very differently from the point of view
of iteration. The Holder process has no useful infinite iterate whereas
the process (27) has an infinite iterate which contains (and is compatible
with) every finite (iϊ*, k). There exist in fact sequences (both bounded
and unbounded) which are summable (if*, oo), but not summable by any
finite (if*, k) and (if, k) 4. On the other hand, there exist (unbounded)
sequences which are summable (Ht k), but not by any (H^f k), k > 0
for instance (H^y 1) is not even applicable to an = ( — l)nn(n + 1). This
raises the question of the relative strength of (H^f k) and (Hy k) we
shall consider the problem only for the continuous case.

The following theorem is due to R. P. Agnew [1] it is the con-
tinuous analogue of Knopp's equivalence theorem and asserts the equiva-
lence of H and H^ for functions.

THEOREM 3. f(x) e Φ0A and

(28) lim x f V2f(t)dt = a

imply f(x) e Φhl and

(29) lim x-1 [Xf(t)dt = a .
z j O Jo

Converesely, f(x) e Φ10 and the existence of the limit (29) imply
f{x) 6 Φltl and (28).

A similar statement (with Φ01 and ΦhQ interchanged) holds when
x 10 is replaced by α? f oo.

3 A proof is given in [6, p. 487].
* Examples for the continuous case will be given below.
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In the general case of (C, k) and (C*, k) or (H, k) and (iϊ*, k) a
stronger assumption on f(x) is necessary. Because of the Theorem 2
and Theorem 2* it is sufficient to consider one of the possible combina-
tions, say C and C*.

THEOREM 3.* Let f(x) e Φhl and suppose that for some n > 0y

(30) lim C:f(x) = a

then

(31) Km Cnf(x) = a .

Conversely, the existence of the limit (31) and f(x) e Φltl imply (30).
A similar statement holds when x I 0 is replaced by x f oo.
Theorem 3* shows that (C, n) and (C*, n) are equivalent within Φ1Λ,

that is within the class of functions to which both methods are applic-
able. However, if we disregard the difficulty that f(x) may behave
badly at oo (0) when we are interested in the limit at 0 (oo), that is, if
we restrict ourselves to the essential domain of the two methods, then
it appears that C* includes C for limits at 0, and C includes C* for
limits at oo. C* is actually stronger than C for x I 0, as shown by the
example f(x) — 2x'3 sin ar a. In fact C[2£~3 sin t~2](x) does not exist since
the function is not integrable down to 0, but

C*[2r3 sin t'*](x) = — i + sin - ί

\χ

hence

This example shows that the condition f(x) e Φltl cannot be relaxed and
for instance f(x) e ΦO>1 and the existence of lima.10C*/][ίi?) = a does not
imply f(x) e Φltl.

For the proof of Theorem 3 we need the following lemma.

LEMMA 2. Given oo ̂  αx ̂  α2 ̂  ^ an > 0, n > 0, andf(x) e ΦλΛ.
Let fk(x) for k = 0, 1, , n be defined by

fix) =J\χ) , fk(χ) = I t-%^(t)dt for k>0 .

Then

l i m xkJrlfk{x) — 0 for k = 1, 2, , n ,
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rx

Proof. \ f(t)dt exists by assumption. Therefore given ε > 0 we
Jo

can choose a positive δ such that
[f(t)dt < ε

for every 0 < ξ < η < δ. Let ξ < δ. By the second mean value theorem

HV2/(ί)cZέ = [f(t)dt

for some ^ in the interval (ξ, δ). Hence

Also

\'t-2jχt)dt

1 (

< e for every 0 < ξ < δ .

< ε for every 0 < ξ < ξQ g

provided that £0 is sufficiently small. Therefore

< 2ε for every ξ in (0, £0).

This proves the lemma for fc = 1. Suppose now that k > 1 and Λ-i(a?) =
o(α?-fc), as α?|.O. Given ε > 0 choose δ ^ aft so that |Λ-i(£)| < εέ~fc for
0 < t < δ. For 0 < x < δ

) I ^ +
But

and
k + 1

k + 1

provided that x is sufficiently small, 0 < x < x0 <£ (5, say. Therefore
) I < εa?-fc-1 for all a;, 0 < x < a?0 = a?0(ε).

COROLLARY. For k > 0 cmd

0.
have C*kf(x) =

Proof o/ Theorem 3*. For simplicity we shall write D = C* through-
out the proof. It is convenient to prove the first statement of the
theorem in the following more general form : Suppose that f(x) e Φ1Λ

and for some n > 0 and p ;> 0,

(32) lim p)ϊ xn+pDn+pf{x) = α ,
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t~2f(t)dt then for every r ^ 0, a ̂  0
X

(33) lim (S + n) ΛP + r) . .χ-Cn*s)Qn^.p+r+8j)i

The proof is by induction on n. We first note that (32) implies

(34) Dmf(x) = —-L ar™ a + o(x~m) , as x | 0,
m !

for every m ̂  n + p. Now let k ̂  0 and m ̂  ?z + p. We have, by
partial integration,

k(m - 1 ) ! a?

= -k(m - 1 ) ! χ-k[tm+kDmf{t)]x

0

+ k(m - 1)! (m

The first expression on the right is — k(m — 1)! xmDmf(x) which, by (34),
tends to — (kjnήa when a? J, 0 similary, the second term tends to
[(m + fc)/m] α. Hence

(35) lim k(m - 1)! x~* [ V^-'Z^-yiφdέ - α .
x i o Jo

This proves (33) for n = 1 (with & = s + l, m = p + r + l). Note that
f(x) e (̂ 0)1 and the existence of the limit (32) implies the existence of
the integral in (35) therefore in particular f(x) e Φo>1 and (28) in Theorem
3 implies f(x) e Φ1Λ and (29). Suppose now that n > 1, and write
m = n + p + r, r ^ O . We have

k(m - 1 ) ! χ-x

- k(m - 1) ! x-^tΓ^dt, [°t^dtz f" tZ^dtnS t-*D^f{tn)dtn
Jo J f l Jίn-a J i n-1

= k(m - 1)! χ-k\lJM-1f(x)[Xt?+k-*dt1 + D^fix^tr+^dtX t;2dt2
{ Jo Jo Jtj_

(m + k — l)!i.^i

(36)

The last expression in the brackets is obtained by repeated partial
integration, and using Lemma 2 Equations (35) and (36) give
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J——α
p + r)l

*vι 0" + k + P
(k + p + r)ϊ

Hence

(A; - 1)!

(ί» + r)J_(»_+_Λ + p + r - . 1 ) ! α

(& + p + r ) ! (n + p + r - 1)!

_ t ι (w + k - 1)! (k + i +_p_+r - 1)! (Pjf r ) ! —-*+ i
j-i (Λ + p + r)!(Λ"-ΊL)Γ~

+ o(l) .

Here we have, by the induction hypothesis (33), applied to Df{x) instead
of f(x) and n — 1, p + 1,

l a c ? [ ί Z ) / ( ί ) ] ( a j ) = α
A/ !

Hence by (37)

_ (p + r ) ! Λ ! ί(n + k + p + r - 1\ »=} (j + k + p + r - 1\\ .

= α + o(l) .

This proves (33). The proof of the converse is very similar. With the
notation s(x)~f(ljx) the converse statement can be formulated as
follows :

(30*) Km n ! xnDns(x) = a

implies

(31*) Km n \χ-nCns{x) = a .
X T *

The proof is identical with the derivation of (31) from (30) except that
f(x) has to be replaced everywhere by s(x) (which is also in Φltl) and
x I 0 by x t oo.

3* The relative strengh of the (H, oo) and (C, oo) methods. So far
we did not consider the relative strengh of the (H, oo) and (C, oo)
methods. We know from Theorem 1 and Theorem 1* that both these
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methods include the finite (H, k) and (C, Jή methods for x \ 0, more
precisely, if

lim CJ{x) = lim Hkf{x) = a

exists for some k ^ 0 then

/ ( ^ ί ^ / ^ ) and C/fr) = lim C^a;)
TO T oo TO ΐ oo

exist for every x > 0 and are in fact the constant function H«,f{x) =
Coo/M = α.

Now the following theorems show that this is always so : whenever
CΌo/fa) and Hoof{x) exist at all, they are a constant.

THEOREM 4. Let /(#) e Φz and suppose that for some fixed ξ > 0

(38) lim Cnf(ξ) = a

then

(39)
σ|oo

Conversely, f(x) e Φt and (39) imply

lim Cw/(#) = a

for every x > 0.

THEOREM 4*. Let f(x) e Φ^^ and suppose that for a fixed ξ > 0,

(40)

ίΛew /or βi βr?/ a; > 0

lim Hnf{x) = α .

Theorem 4 shows that (C, oo) is essentially equivalent to the Abel-
Poisson method L :

(41) Lf(x) = [°°e-f(xt)dt
Jo

in the. sense that limxί0Coof(x) — a if, and only if, limxl0Lf(x) = a provided
that f(x) is in the essential domain of the two methods. As a corollary
we find that L includes every (C, k)5 but we know of no example to
show that (C, oo) or L is actually stronger than the collection of every
(C,k). For bounded functions (C, oo) is equivalent to (C, 1) more
generally the following is true.

5 A dual of this statement, referring to x -> <», is proved by G. Doetsch in [3, p. 204].
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THEOREM 5. f(x) e ΦlιQ, f(x) = 0 for x ^ a?0, /(#) = O£(l) αrccZ C^fiμs)
= a, x > 0, im^%

lim Cx/(a?) = α .

Proof of Theorem 4. By Lemma 1 we can replace the integral
variable n by the continuous variable σ. The assumption f(x) e Φj im-
plies that JFXa?) = Cf(x) is bounded for x > 0 and \imxi0F(x) = 0. There-
fore we obtain f or σ > 1

(42)

ξ Jo

!ΓΎl - ».rVί!L
Jo \ σ/ \ σ*

= (σ - l)["e-σtf{ξt)dt
J

where all 0 and o symbols refer to fixed ξ and σf oo, Hence limσίooCσf(ξ)

= a implies limσίooσl e"σtf(ξt)dt = α. Therefore
Jo

lim p\ e~puf(xu)du = α
Pί«> Jo

for any fixed x > 0. By (42) we see that limpTooCp/(#) = a.

Proof of Theorem 5. Theorem 5 is an immediate consequence of
Theorem 4 and the following lemma, which is a special case of a well-
known Tauberian theorem for the Laplace transform (see [3, p. 210,
Satz 3]).

LEMMA 3. Suppose that g(x) = OL(1), \ e~σtg(t)dt converges for all
Jo

σ > 0 and

Then

lim — 1 q(t)dt = a .

lim σ\ e~σtg(t)dt = a .
σToo Jo

lim—I £
JC I 0 O* J 0
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The statement remains true if σ- \ oo is replaced by σ 10 and x \, 0 by x f oo.

Proof of Theorem 4*. Without loss of generality we may assume
a = 0 otherwise consider f{x) — a instead of f(x). Let xl9 x2 be two
fixed positive numbers a?x < ξ < a?Jβ Write gr(a?) = Hf(x). Then Hnf(x) =
Hn-τg{x\ for n > 0, and limn_oofl*0(6) = 0. We shall show that

(40*) Km Hng(x) = Km Hn+1f(x) = 0, uniformly for ^ ^ a? g a?a.

Denote

= — upper bound {\g(x) | xλ ^ a? ̂  x2} < + °° ,

We

(44)

u* = ι ip
prove that

l ^ ( * ) l
^ ξ

for

n I
V l

1

&> 0 .

x - ξ

X,

P

&n-p for a;

For n — 0 the statement follows from (43) suppose therefore that n > 0
and that (44) is true for n — 1.

— Hn-ιg(t)dt
X Jo

c Jo
+

.y.2

'fit)

n-i

•Σ
$ ; •

1

p\

t-ξ
xτ

e.-ι}

which proves the statement for n. From (44) we obtain, by writing

λ = max {£ — a?χ, a;2 — ζ},

(45)

But for any λ > 0,

a?) | ^ -^- Σ
a? o

p)!

is a regular transform of the sequence {sfc}, fc ^ 0 it follows therefore
that the expression on the right side of (45) tends to zero when n -> oo.

By Theorem 5 (C, oo) does not extend the range of (C, 1) for bounded
functions. This is in striking contrast with {H, oo) which is decidedly
more powerful for bounded functions than (H, 1). An example is
furnished by cos log #, or more conveniently by e~ίlogx. We find by
induction
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which has no limit at x = 0 by Theorem 2* and Theorem 5 it has
therefore no limit by (C, oo). On the other hand it has limit zero by
(ff,co):

\imHk[e'ίlost](x) = 0 for every x > 0 .
fc->oo

Also for unbounded functions (H, oo) appears to be more effective than
(C, oo) a suitable example is — x~lβ cos log # or x~ll2e'ilosX which can
be shown to have no limit by (C, oo), and limit zero by (H, oo). These
examples reveal a remarkable difference (in favour of the Holder process)
between the Cesaro and Holder processes which remains completely
hidden when finite iterations alone are considered.

For bounded functions repeated partial integration gives

(46) H^f(x) = yytYlog -f Xf(xt)dt
k ! JoV t /

and we find the following analogue of the equivalence of (C, oo) and L
for (if, oo):

THEOREM 6. Let f(x) e ΦB and

I0(x) EE J0(ix) = Σ y ^
(ft !

(47) lim f'-1 (log λ)njχt)dt = lim β- [f(t)lh(v log 4-)
w ̂ oo J o n ! V ί / «̂ oo Jo \ V t /

ijf one side exists then the other side exists too and
they are equal.

By making use of the well-known asymptotic expression

IQ(x) = (2τr)-1/2^-1/4^(l + 0 (—Y) , as x t 00 ,

Theorem 6 can be put in a more convenient form. For bounded func-
tions we have

lim eA
JO

= lim ±π-
lise-Λ f(t)( v log — ) exp 2( v log — ) \dt

»too 2 J o V ί / L \ ί / J

- lim π-A~f{e-u") β-c—)2 . ( ^ d u
σfoo Jo \ σ J

(by the substitution v = σ2, ί = β~w2), and the latter is easily seen to be
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equal to

lim π-^
σt°° JO

This gives

THEOREM 6*. Let f(x) e ΦB then \\mx[j{x) = a by (H, oo) if, and
only if,

lim π M Λ β ) β d u lim
Jo ι>t~ 2

The following estimate of (H, oo) for bounded functions is weaker,
but it has the advantage of great formal simplicity.

THEOREM 7. he f(x) e ΦB and suppose that for a fixed ξ > 0

then

Theorem 6, Theorem 6* and Theorem 7 do not remain valid for
unbounded functions a suitable counter example is ar1 / 2coslog(l/#). Also
the converse of Theorem 7 is not true a counter example is furnished
by f(x) = exp (i(log l/a?)1/2). Clearly

λ[xf(e-nt)dt = — ("exp (ir1/2)dέ = O(xιlί) -> 0 when x | 0 .
07 Jo ί» Jo

On the other hand

lim Γ^-flog 1Y exp \i (log i)1/2]di
w->oo J o w l V έ / L V ί / J

does not exist for otherwise by Theorem 6*

lim 7r"1/2\ exp {in — (u — σf)du
σΐoo Jo

= lim 7r"1/2 exp ( —— — iσ ) \ exp — ( u — σ ) \du
o-Too V u /Jo L V 2 / J

existed, But the last expression is asymptotically equal to e~ιlί"iσ when
CΓ I o o .

In the proof of Theorem 6 we use

LEMMA 5. Let f(x) e ΦB. Then for every fixed ξ > 0,

O(n-^) as n-+oo .
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Proof. Observing the relations

885

— [°un+1e-udu - —
(n + 1)1 Jx n\

= - 1 \une~udu - ί \ %n+

rc! Jo (n + 1)! Jo

we obtain

n ! ~ v/2πnn+ll2e~n ,

\f(t) \ ̂  K for a suitable constant K > 0 ,

1 \n fl 1 / 1 \w + l
• -1) dί - /(et)7_iττ(iog i ) dt

t s Jo (w + 1) ! \ t '

dt

-Λ: n\
e~udu

(n + 1)!

^ V2π " Vn"+Ϊ *

Proof o/ Theorem 6. By the regularity of the Borel transform,
im ôoŜ  = a implies

lim e~υ V, -8n.~ vw = a .

Hence

(48)

implies

lim Θ -
( I) V t

= lim β -

- l imβ- l o g -(49)

the interchange of the order of summation and integration is clearly
permissible if f(t) is bounded. Conversely, from Lemma 5 and the
Tauberian theorem of Hardy-Littlewood for the Borel transform [4, p.
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220, Theorem 156] we conclude that (49) implies (47).

Proof of Theorem 7. If in the proof of Theorem 6 we use the Abel
transform instead of the Borel transform, Theorem 7 is obtained. First

w — I at = α
7 z ! V £

implies

α = lim (1 - v) Σ ίVω-V(^log-Y^
f » τ i w=ojo n ! V ί /

= lim(l - v)(/(^"^
»t i Jo

= lim \~f(—)u-σ+1du
<r|0 Jl \ % /

= lim σ\
σjO JoJo

and this implies by Lemma 3

Km λ[xf(e-t)dt = lim #1/(0]0*0 = α -

By Theorem 3 the last equation is equivalent to

lim L[*f(e-U')dt = li
a lO X Jo x

= a .
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APPROXIMATION OF SEMI-GROUPS OF

OPERATORS

H. F. TROTTER

1. Introduction. The usual methods for numerically computing
the solution of a partial differential equation consist in replacing the
differential operators by difference operators which approximate them,
and taking the solution of the resulting difference equation as an ap-
proximation to the solution of the original equation. The question of
convergence then arises that is, when will a sequence of difference
equations have the property that their solutions converge to the solution
of a given differential equation ? We treat this question in an operator-
theoretic fashion, and our discussion has much in common with that of
Lax and Richtmyer [17], as is pointed out in more detail below. The
reader is referred to the bibliography of [17] for a list of the principal
papers dealing with this question of convergence.

Our discussion will be limited to the initial value problem (Cauchy
problem) for linear equations in the form

(1.1) £-u(t, x) = Ωu(t, x) u(0, x) = f(x)

in which Ω is linear and constant in time. Here t is a non-negative
real variable, and x is a point in some space S. Equation (1.1) is form-
ally of parabolic type, but, as is shown in [14, Chap. XX], the initial
value problem for hyperbolic equations can also be put into this form.
Lateral conditions (i.e., boundary conditions such as are needed for the
heat equation on a finite interval) are considered to be incorporated into
the definition of Ω as restrictions on its domain [8, 17].

The process of setting up a sequence of finite difference approxi-
mations to (1.1) may be described in the following general terms. For
each n, take a positive number hn and a set Sn c S whose points form
a suitable grid. The solution to the nth approximating equation is de-
fined inductively, for t an integral multiple of hn and x a point of Sn

by the following system of equations 1

1 Sometimes only the space variable is made discrete, so that un is defined by a finite
set of simultaneous differential equations (cf. [13, p. 233]). Theorem 5.2 can be applied
to this situation just as Theorem 5.3 can be applied to the case in which the time variable
is made discrete and the un are defined by (1.2;.

This paper was originally accepted by the Transactions of the American Mathematical
Society, Received July 3, 1957, by Trans. Amer. Math. Soc. Research done at Princeton
University and supported in part by the Office of Ordnance Research U.S. Army.
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(1.2) un((k + l)hnf x) = Tnu{khn, x) k = 0, 1, 2, . . .

Un(0,X) =fn(x)

where Tn is a linear operator and /„ is a function defined on Sn which
suitably approximates /. For example, fn may be simply the restriction
of / to Sn. (Other possible ways of defining fn are discussed in § 2.)
It will be convenient to extend the definition of un to all t by setting

(1.3) un(t, x) = un(khn, x) for khn ^ t < (k + ΐ)hn .

In some numerical methods, the relation between the values of un at
steps k and k + 1 is given by a set of simultaneous linear equations,
so that Tn is defined implicitly rather than by explicit formulae the
particular way in which Tn may be defined will be irrelevant to our
discussion.

If the operators Ωn defined by

(1.4) Ωn = h-\Tn - I)

converge to Ω in some suitable sence, then (1.2) converges formally to
(1.1) as n-+ co, and it is plausible that under certain conditions the
functions un will converge to the solution of (1.1).

It was observed by von Neumann [20] that a system like (1.2) may
be unstable in the sense that small errors in the initial data may lead
to errors in un{t) which become unbounded as n -> oo. The definitions
of stability given in the literature vary slightly in detail. We adopt
essentially the same definition as that used in [17]. We suppose that
the space of functions on Sn is normed as a Banach space. (Examples
of how such a norm may be defined are given in § 2.) Then the norm
of Tn as an operator on this space is defined. We shall say that the
system (1.2) is stable if

(1.5) || Tl || £ MeKkhn

for some constants K and M independent of n and k. The simpler
condition | | Γ n | | ^ 1 is satisfied in many applications, and clearly implies
(1.5).2

Although it is possible to find an example of an unstable system
whose solutions converge to the correct result if the approximating
functions fn are appropriately chosen [18], Lax and Richtmyer [17] have
shown that in general an unstable system cannot converge. On the
other hand, they have shown that stability, together with some reasonable

2 It should be pointed out that we are concerned only with the behaviour of the exact
solutions of (1.2). In actual computation the effect of round-off errors must be considered,
and the situation becomes more complicated.
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assumptions on the limiting behaviour of the Ωnf is sufficient to imply
convergence. Our main result is very similar however, our hypotheses
differ in two respects from those of [17].

In the first place, we do not require that the limit function u and
the approximating functions un all belong to the same Banach space.
Frequently, the Tn arise most naturally as operators on functions which
are defined only at a grid of points in the space S. In most practical
applications the Tn can be modified so as to become operators on func-
tions defined on the whole space, and this is assumed in [17]. Such
modification, however, is usually unnatural, and in the case of random
walks and diffusion processes which we discuss in § 6 it is not neces-
sarily possible. Consequently it seems worth while to eliminate this
assumption. We introduce the notion of an approximating sequence of
Banach spaces and define associated concepts of convergence of vectors
and operators. Section 2 is devoted to setting up the definitions and
giving examples it also includes some lemmas on the convergence of
operators. Section 3 contains some remarks on the adjoint spaces of an
approximating sequence which have application in § 6. Kantorovich [16]
uses a similar sort of approximation of one Banach space by another,
but requires the approximating space to be isomorphic to a subspace
of the approximated space. This requirement is unnecessarily restrictive
for our purposes.

To explain the second difference, we must describe more precisely
what we mean by a solution of (1.1). We give an abstract formulation
in terms of a semi-group of operators [14, chap. 20; 15]. Let X be some
suitable Banach space of functions on S, and let Ω be a linear operator
on X. Suppose that Ω is densely defined and has the property that
for every f in its domain there exists a unique function u(tf x) satisying

(1.6) ( i ) u(t, x) and —u(t, x) are in X for all ί ^ 0
Uv

( i i ) — u(t, x) = Ω u(t, x) f or t ^ 0
dt

(in) \\u(t,x) -/(aOH->0 as t ~> 0

( i v ) \ \ u ( t , x ) \ \ ^ M \ \ f ( x ) \ \ f o r O ^ έ ^ l

Where M is a constant independent of /. Then for each t, setting

(1.7) ίT(t)f](x) = u(t, x)

defines an operator on the domain of Ω. Since Ω is densely defined,
T(t) (which is bounded by 1 + Mt+1) can be extended to all of X by
continuity. The operators T{t) then form a semi-group with Ω as
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infinitesimal generator, which is (hypothesis (iii)) strongly continuous at
the origin. The conditions (1.6) express the requirement that the initial
value problem (1.1) be " well-posed " [cf. 17].

In [17] it is assumed that an operator Ω is given which leads to a
well-posed problem, and the operators Ωn are required to satisfy a con-
sistency condition which may be translated into our terminology as
follows :

There exists a dense set of functions / such that || (Ωn — Ω)T(t)f\\
tends to zero uniformly for t restricted to a bounded interval.

Our condition is that lim Ωn be densely defined, and that for some
n-*oo

positive λ, lim (λ — Ωn) have a dense range. (The precise meaning we
attach to "limit of a sequence of operators " is given in § 2.) It is
part of our conclusion that the operator to which the Ωn converge gives
rise to a well-posed problem. Although our condition appears to be quite
different from that of Lax and Richtmyer, we have found no example
in which we could show that one condition was satisfied and the other
was not. Our condition seems to be easier to verify in the case of the
applications made in § 6.

Our proof of convergence is based on the relation between a semi-
group and its resolvent which is made explicit in the Hille-Yosida
theorem [14, 22]. In § 4 we develop the relevant facts in a form con-
venient for our discussion. All the results in this section are well-
known the proof of Theorem 4.1, however, is new.

Section 5 is concerned with the convergence problem proper, and
the theorems of this section represent the principal results of the paper.

In § 6 we consider in some detail the convergence of random walks
to one-dimensional diffusion processes, and discuss several examples.

This paper is based on a thesis submitted to the Department of
Mathematics of Princeton University in June 1956. I wish to thank
Professor W. Feller for his guidance in the writing of the thesis, and
the National Research Council of Canada for fellowship support during
the academic year 1955-56.

2Φ Approximating sequences of Banach spaces. Let X be a Banach
space. A sequence of Banach spaces {Xn} together with a sequence of
linear maps Pn: X-* Xn is called a sequence3 of Banach spaces approximat-
ing X if

3 We could equally well define a system of Banach spaces approximating X using an
arbitrary directed set as index set. The proofs of all the main theorems of this paper
require only trivial changes of language to adapt them to the more general situation. Un-
less X is assumed to be separable, it is necessary to use nets in discussing some of the
properties of the adjoint approximating sequence (§ 3).
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(2.1) II P» l l ^ l

and

(2.2) lim \\PJ\\ = | | / 1 | for every fe X

Condition (2.2) obviously implies that in some sense the maps Pn become
isomorphisms " i n the limit". The following lemma gives a precise
expression to this idea.

LEMMA 2.1. Let X be any finite-dimensional subspace of X, and
let Qn be the restriction of Pn to X. Then Qn is one-to-one if n is suf-
ficiently large, and lim || Q~ι \\ — 1.

n-*co

Proof Take any ε > 0, and let {/J be a finite set of vectors of
unit length in X such that the ε-neighbourhoods of the ft cover the
unit sphere in X. Now take N sufficiently large that for all n ^ N,
maXidl/s || — \\Pnft ||) < ε. Then for any g on the unit sphere in X,
\\Pnΰ II > 1 — 2ε for all n ^ N. Hence Qn is one-to-one and

l ^ II Qn II -1 ̂  II Qΰ1 II ̂  (1 - 2s)-1.

We now define convergence for sequences of vectors and operators.
We shall use the following terminology and notation. By "operator
o n l " we shall mean '' linear transformation defined on a linear subset
of X and taking values in I " . If A is an operator on X, the linear
subset of X on which A is defined is the domain of A, written Ό(A).
The range of A, denoted by R(A), is the linear subset consisting of all
g e X for which there exists an / e D(A) with g = Af. If A and B are
two operators such than Ό(A) c D(B) and Af = Bf for all / e B(A)
then we call B an extension of A and write A a B. The identity
operator on any space will be denoted by /.

A sequence {/„}, where fneXn, converges to f e X iί lim\\fn—Pnf\\ = 0.
It is easy to see that (2.2) implies that a sequence cannot converge to
more than one f e X. A sequence is convergent if there exists an
/ e X to which it converges we call / the limit of {fn} and write
/ =

The limit of a sequence of operators {An}, where An is an operator
on Xn, is the operator on X whose domain consists of those f e X for
which {AnPnf} converges and whose value for such an / is lim AnPnf.

n-*oo

EXAMPLES.

(1) Let X be an arbitrary Banach space, and for every n let
Xn — X and Pn — L Then the convergence of vectors is ordinary
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convergence, and convergence of operators is the usual strong conver-
gence. Lemmas 2.2, 2.3, and 2.4 below then become results on the
strong convergence of operators.

(2) Let X be the space of bounded continuous functions on some
topological space S, with the uniform norm. For each n, let Sn be a
subset of S and let Xn be some Banach space of functions on Sn (with
the uniform norm) which contains all the restrictions of elements of X.
For / e X, define Pnf to be the restriction of ftoSn. (Note that there
is no requirement that the projection Pn map X onto Xn.) Condition
(2.1) is obviously satisfied, and if the sets Sn become dense in S in the
sense that every open set U c S contains points of Sn for n sufficiently
large, then (2.2) is also satisfied. In this case {/„} converges to / if
and only if

lim sup \fn(x) -f(x)\ = 0 .
rc-> oo xESn

( 3 ) Let S be a region of Euclidean space with Lebesgue measure,
and let X be LP(S). For each n, let S be partitioned into measureable
sets SnΛ, each with finite measure mnΛ > 0. Let Xn be the subspace of
X consisting of functions constant on the SnΛ. For fe X, define Pnf to

have the value m~]\ SnΛ f(x)dx. Condition (2.1) is always satisfied. If

each partition is a refinement of the preceding one, and if the partitions
become sufficiently fine in the sense that the Borel field generated by the
collection of all the SΛti contains all Borel-measureable subsets of S, then
(2.2) will be satisfied. It is clear that a similar procedure can be followed
to get an approximating sequence to the Lp-space over any measure space.
Essentially this type of approximation (with p = 2) has been used by
Douglas [4].

The following lemmas will be needed for later use. Lemma 2.2 is
a generalization of the Banach-Steinhaus lemma [1, p. 79], and Lemma
2.3 similarly generalizes an obvious fact about the strong convergence
of operators. Lemma 2.4 is a more special result which is used in the
proof of Theorem 5.2. ,

LEMMA 2.2. For each n, let An be an operator on Xn, with domain
all of Xn. If there exists a constant M such that \\ An \\ ̂  M for all n,
and if A = lim An is densely defined, then A is defined on all of X and

n-+oo

IIA II £M.

Proof. By hypothesis, for any / 6 X it is possible find a sequence
{/•>} converging to /, with every fJ in D(A). This, by definition, means
that for each fJ there exists a gj e X such that
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| AnPnf
3 - Png>\\ -+ 0 as n -* « . For any i, j ,

II ff* - flfJ II = Mm \\Pn{gι - g})\\
n-*oo

= \im\\AnPn(Γ-fi)\\

Since the /* form a convergent sequence, it follows that the gι form a
Cauchy sequence and consequently have a limit g. Now

II AnPnf - Pwg || ^ || 4 Λ ( / - / ' ) || + || AnPnf - Png
ι \\ + \\ Pn{gι - g) \\ .

The first and last terms on the right may be made arbitrarily small by
taking i sufficiently large, independent of n, and the middle term goes
to zero as n-> oo. Hence Af is defined and equal to g. It is obvious
that | | A || ^M.

LEMMA 2.3. Let {An} be a sequence of operators satisfying the
hypotheses of Lemma 2.2, and converging to A. For each n, let Bn be
an operator on Xn and let B — lim Bn. Then AB c lim AnBn.

Proof. Suppose / e D(AB). Then

PnABf - AnBnPnf = (PnABf - AnPnBf) + An(PnB - BnPn)f.

The first term on the right tends to zero because A = lim An. The

second term on the right is dominated in norm by M\\PnBf — BnPnf\\
and this tends to zero because fe Ό(AB) c Ό(B).

COROLLARY. Let {An} be a sequence of operators satisfying the
hypotheses of Lemma 2.2 and converging to A. Then for any positive
integer k, lim An = Ak.

LEMMA 2.4. For each n, let An be an operator on Xn with an in-
verse Bn defined on all of Xn. Suppose that \\Bn \\ ̂  M for all n, and
that both the domain and range of A — lim An are dense in X. Then

W->oo

B = lim Bn is defined on all of X, and has a dense range. B has an

inverse if and only if A has a closed extension, and then B'1 is the

closure of A.

Proof. Consider an arbitrary g 6 R(A), g — Af.
Then

IIBnPng - P J | | = | |B n (P n g - AnPJ) \\^M\\ Png - AnPJ\\ .
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Since g = lim AnPnf, the term on the right goes to zero, and conse-

quently BnPng~*f. Since R(A) is dense, it follows from Lemma 2.2
that B = lim Bn is defined on all of X. Since Bg — f if g = A/,

SA c /. Hence R(B) Z) D(A) and is dense in X

If B~ι exists it is a closed operator because S is closed; since BA c J,
it is an extension of A. Conversely, suppose A has a closed exten-
sion Ar. Then, since B is bounded, A'B is a closed extension of AB.
But for g = Af e R(A), we have ABg = A5(A/) = A(5A)/ =Af=g,
so that AS coincides with / on a dense set. Hence AB = / therefore
5 has an inverse, and A is an extension of it. This is true for any
closed extension of A, and consequently B~ι is the closure of A.

3Φ Adjoint spaces. If {Xn} is a sequence approximating X, with
associated projection operators Pn, then the adjoint spaces X% are con-
nected with X* by the adjoint operators P* : X* -> X*. Condition (2.1)
of course implies that I|P*H ^ 1. Condition (2.2) clearly should imply that
in some sense the images of the Ft become dense in X* in the limit.
This is not generally true in terms of the norm topology on X*—it is
easy to give an example in which the union of the images of the P* is
nowhere dense in X* with respect to this topology. It is more appropriate
to consider the weak topology [1] (often called the weak* topology) on
X*. For any/* e X*,flf ,/m e X, and ε > 0 we write Vf*(f19 ,/m; ε)
for the set {</* e X* : !/*(/*)-#*(/*) | < e, i = 1, 2, .. , m). The collection
of the " cubical neighourhoods '' forms a base for the neighbourhoods
of / * in the weak topology.

LEMMA 3.1. Let / * be any element of X* and V = Vf*(f19 ,/w; ε)
a cubical neighbourhood of it. Then for all sufficiently large n, there
exists an f* e X*, with \\f* |[ ^ 2 | | /* [| and f*Pn e V."

Proof. Let X! be the subspace of X spanned by flf , fmf and as
in Lemma 2.1, let Qn be the restriction of Pn to X'. Let /* r be the
restriction of / * to X!. Let n be sufficiently large that Q"1 exists, and
define / * =/* / Q- 1 . It follows directly from the definitions that/JP n / 4 =
/*(/,) for any one of the fi9 so that /*P W e V. Since |[ Q~ι || ~> 1, the
condition on the norm of / * is satisfied for sufficiently large n.

If {/*} is a net with f* e X*^ for each a, we say that {/*} con-
verges weakly to / * if n* -» oo and {f%Pncύ} converges weakly to /*.
The net {/*} is said to be bounded if H/* || is bounded uniformly with

4 We write adjoint operators on the right when applied to a vector (dropping the " s tar"
since the position of the operator indicates that it is the adjoint).
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respect to <x.

From Lemma 3.1 we obtain at once the proposition: for every
/ * e X* there exists a bounded net Γ/ί} with/ί e X* which converges

OCi

weakly to it. To construct such a net, let the index set consist of the
cubical neighbourhoods of /*, ordered by inclusion. For each such
neighbourhood a, we can pick an / * e X* , nΛ > ε"1 (where ε is the

cύ

positive number used to define the cubical neighbourhood a), with
l l / ί l l ^ 2 | | / * | | and f*Pn e a. This net converges to /*. If X is

Oti

separable there exists a uniformly bounded sequence {/*} with / * 6 I J
which converges weakly t o / * . To show this, \etflff,, be a sequence
which is dense in X, and let X'm be the subspace of X spanned by the
first m vectors of the sequence. Using the construction of Lemma 3.1
we can define Nm inductively so that iVm+1 > Nm, and for Nm <£ n < Nm+1

there exists an / * e X* with | | /* H ^ 2 [|/* || and /*P»/4 =/*(/*) for
i < m. Then \\f*Pn || is uniformly bounded and lim/ίP*/, = /*(/*) for
all the / t . Hence by a theorem of Banach [1, Theorem 2 of Chapter
7], {fnPn} converges weakly to /*.

For each n let Bn be an operator on X*. The weak limit of the
sequence {Bn} is defined to be an operator B on X*, with domain con-
sisting of all / * 6 X* such that for every bounded net {/£} with
/ * 6 XJα which converges weakly to /*, the net \ftBnPn^ converges
weakly to a unique limit. For / * e D(.£), f*B is defined to be this
limit.

LEMMA 3.2. For each n let An be a bounded operator on Xn with
domain all of Xn, and suppose that A = lim An is defined on all of X.
Then the adjoint operators A* converge weakly to A*.

Proof. Take any / * e X*, and let {/J} be any bounded net converg-
ing to it weakly. We must show that for every / e X. {/ίAn PΛ /}
converges to f*Af. We have

ΠAnPnJ - f*Af = ft(AnPna - PnA)f + (f*Pna - f*)Af .

The first term on the right goes to zero because wβ-> oo, A — lim An,

and the / ί are uniformly bounded. The second term on the right goes

to zero because *f£} converges weakly to /*.

4 Semigroups and resolvents. Throughout this section we shall
be dealing with a fixed Banach space X. Convergence of operators is
to be interpreted as strong convergence.

A (one-parameter) semi-group of operators is a family {T(t)} of
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bounded operators on X, t ranging over the non-negative real numbers,
which satisfies the relation

(4.1) T(t + β) = T(t)T(s) t, s > 0 ,

with T(0) defined to be /. We shall consider only semi-groups for which

(4.2) lim T(t) = I

and

(4.3) \\T(t)\\£M all ί

for some constant M. Semi-groups satisfying (4.2) and (4.3) will be
called proper.*

The operator

(4.4) Ω = lim t~\T(t) - I)
t->-0

is the infinitesimal generator of the semi-group and is always closed and
densely defined. One has g — Ωf if and only if

(4.5) T(t)f = f+ [T(s)gds.
Jo

For every λ > 0 there is a bounded operator

(4.6) J{λ) = (λ - Ω)'1 = [~e-λtT(t) dt.
Jo

The family {J(λ)} is called the resolvent family of T(t). The operators
J{λ) satisfy the relations

(4.7) J(λ) - J(μ) = (μ- λ)J{λ)J{μ)

(4.8) \\λmJm{λ)\\^M λ > 0, m = 1,2, •••

(4.9) lim λJ(λ) = / .

A family of operators satisfying (4.7) will be called a resolvent family,
and one which satisfies (4.8) and (4.9) as well, a proper resolvent family.

If {J{λ)} is a resolvent family it is clear that any / annihilated by
one of the J(λ) is annihilated by all of them, and also that R(J(λ)) is
independent of λ. These remarks, together with (4.9), show that the
operators of a proper resolvent family are one-to-one transformations with

5 Condition (4.3) is not a serious restriction. If a semi-group satisfies (4.2) then | | T(t) \\
must be bounded for t near zero. It is then well-known [14] that 11 Tit) \ \ ^ Meκt for
some K, so that the closely related semi-group Tr(t) = e~κtT(t) will be proper. We use
this trick in proving Theorems 5.2 and 5.3.
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dense range. Hence for each λ, {J(λ)}-1 is a densely defined operator.
It is easy to show from (4.7) that

(4.10) Ω = λ- {Jiλ)}-1

is independent of λ we call it the infinitesimal generator associated with
the resolvent family {J{λ)}.

A proper semi-group is uniquely determined by its resolvent family.
Suppose {T(t)} and {Tf(t)} are two proper semi-groups with the same
resolvent family {J(i)}. For any / e X, f* e X* the function f*{J{λ)f)
will be the Laplace transform of both f*(T(t)f) and f(T(t)f). The
classical uniqueness theorem for the Laplace transform [21, p. 63] then
implies the identity of the last two functions (since both are bounded
and continuous), and since / and / * are arbitrary it follows that T{t)~
T(t). This fact shows that {J(λ)} is the resolvent family of the semi-
group T(t) if and only if the operator Ω defined by (4.10) is the same
as that defined by (4.4).

The question still remains as to whether every proper resolvent
family is the resolvent family of some proper semi-group. The Hille-
Yosida theorem [14, 22] provides an affirmative answer. Our next
theorem gives an expression for the semi-group in terms of the re-
solvent, (cf. [14, p. 234]; the proof given there depends on the Post-
Widder inversion formula for the Laplace transform.)

THEOREM 4.1. Let {J{λ)} be a proper resolvent family. Then the
operators

T(t) = lim {λJ(λ)}ίλtl t ^ 0
λ-»oo

are defined on all of X and form a proper semi-group which has {J(λ)}
as its resolvent family.

We first prove several lemmas.

LEMMA 4.1 Let A and B be two operators which commute and have
the property that \\Ai\\,\\Bi\\SM for all positive integers i.

Then, for any /,

\\(An - Bn)f\\ ^nM*\\(A - B)f\\ .

Proof. Since A and B commute

(An - Bn)f = ZA^-WiA - B)f .

The right hand side contains n terms, each with norm less than or equal
to M}\\(A-B)f\\.
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LEMMA 4.2. For any f e Ό(Ω) (where Ω is defined by (4.10))

\\{λJ{λ) - l)f\\<λ-W\\Ωf\\ .

Proof. This follows from (4.8) since for / e Ό(Ω),

(4.11) (λJ(λ) - I)f = J{λ) Ωf .

LEMMA 4.3. For any f e D(ί?)

i| W ) - (2λJ{2λ)f}f\\ < (2Λ)-2M21| Ω\f\\ .

Proof. Note that

(4.12) J(/i)

is a special case of (4.7). Now

λJ{λ)f - {2λJ{2λ)Yf - {λJ{λ) -I)f - {2λJ(2λ) + I){2λJ{2λ) -

= J{λ)Ωf - {2λJ{2λ) + I)J{2λ)Ωf by (4.11)

= {J{λ) - J{2λ) - 2λJ\2λ)}Ωf

- J{2λ){λJ{λ) - 2λJ{2λ)}Ωf by (4.12)

= J(2λ){λJ{λ) - I - 2λJ{2λ) + I}Ωf

= J(2λ){J(t) - J(2λ)}ΩY by (4.11)

= λJ{λ)J\2λ)Ω*f by (4.12) .

The conclusion follows from this identity and (4.8).

Proof of Theorem 4.1. Let r be an arbitrary positive number which
will be assumed fixed throughout the following discussion. Write rn as
an abbreviation for 2nr. Define

(4.13) T(n,t) = {rJ(rn)}^ .

From the definition we have

where ε = [2ίrre] - 2[ίrM] = 0 or 1. Thus

T(n + 1, t)f - T(n, t)f = {2rnJ{2

)Y^ - [rj(rn)} i"J

Estimating the first term on the right by Lemma 4.2 and the second
term by Lemmas 4.1 and 4.3, we obtain, for / 6 D(ί22)>
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(4.14) || {T(n + m, ί) - T(n, t)}f || r ^ Σ II {T (n + k + 1, t) - T(n + fc, ί)}/ ||

^ Σ r-^-^-^M || β/1| + tM' || β2/1|)

^ 2 r " W I | £ / H + tM*\\Ωf\\) .

Since the right-hand side goes to zero as n -* oo, the vectors Γ(n, ί)/
form a Cauchy sequence and therefore converge. It should be remarked
that the convergence is uniform over every bounded t-interval. D(ί23)
is dense in X since it includes R(e/2(Λ)), and the latter is dense because
of (4.9). From (4.8), || T(n, ί)\\^M for all n. Hence, by the Banach-
Steinhaus theorem

(4.15) T(t) = lim T(n, t)

is everywhere defined and satisfies (4.3). Taking n = 0 in (4.14) and
letting m -* oo, we obtain the estimate

(4.16) || {rJ(r)} Wf - T(t)f\\ £ 2r-\M\\ Ωf |[ + tM* \\ Ωf \\

for any fe D(β2).
For any n,

T(n, s + i)- T(n, s)T{n, t) = T(n, s)T(n, t)({rnJ(rn)}e - I) ,

where ε = [rn(s + t)] - [rns] - [rnt] = 0 or 1.
Consequently (Lemma 4.2)

(4.17) || {T(n, s + t)~ T(n, s)T(n, t)}f\\ ̂  r?M\\ Ωf\\

for any / e D(β). Taking the limit as n -> oo in (4.17) shows that the
operators defined by (4.15) satisfy (4.1) on a dense subset of X, and
hence on all of X, by continuity.

From Lemmas 4.1 and 4.2 we get

(4.18) || {T(n, t) - I}f \\ £ rΛrnt]M> \\ Ωf \\ ^ tM* \\ Ωf \\ .

This inequality must hold also in the limit and shows that lim T(t)f = /
ί = 0

for all / in the dense set D(β). By the Banach-Steinhaus theorem it
follows that the operators defined by (4.15) satisfy (4.2).

This completes the proof that the operators T(t) which we have
constructed form a proper semi-group. The construction, however, de-
pended on the choice of a number r, and we still have to show that
the result is independent of this choice. We shall show that the semi-
group has the given family {J(λ)} as its resolvent family, and since the
resolvent family of a semi-group determines it uniquely, it will follow
that the result of our construction is independent of r.
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We show that {T(t)} has the original {J(Λ)} as resolvent family by
demonstrating that the operator Ω defined by (4.10) is the infinitesimal
generator of the semi-group as defined by (4.4). Suppose / e Ό(Ω) and
g — Ωf. For convenience, let t be such that rnt is an integer for
sufficiently large n. Such values of t are dense in the line. Then

[τ(n, s)gds = [ {ruJ(rn)}ίr»* Ωfds

{rnJ(rn)}^J(rn)Ωf

+ r~ι{Ωf - T(n, t)Ωf]

= T(n, t)f-f + r'ι{Ωf - T(n, t)Ωf) .

Letting n —• oo we obtain formula (4.5). (Passage to the limit under
the integral sign is justified since T{n, t)f converges uniformly on every
bounded ^-interval.) The number t was any one of a dense set, and by
continuity, (4.5) must in fact hold for all t. This shows that g = Ωf
with Ω defined by (4.4), and the proof of Theorem 4.1 is complete.

5 Convergence of Semirgroups Throughout this section {X?} will
be a sequence of Banach spaces approximating X, with associated pro-
jections Pn. We shall use the notational convention that vectors with
subscript n are elements of Xn, and operators with subscript n are
operators on Xn vectors and operators without subscript will be as-
sociated with X.

A sequence of semi-groups {Tn(t)} or resolvent families {Jn(λ)} will
be said to be uniformly proper if each member of the sequence is
proper, and the constant M in conditions (4.3) or (4.8) may be taken
independent of n.

THEOREM 5.1. Let {Tn(t)} be a uniformly proper sequence of semi-
groups, and {Jn(λ)} the sequence of associated resolvent families. Then
if the operators J{λ) = lim Jn{λ) form a proper resolvent family, the

ίl-oo

sequence {Tn(t)} converges to T(t), the proper semi-group having {J(λ)} as
resolvent family.

Proof. Since the Tn(t) are uniformly bounded, it will be sufficient,
by Lemma 2.2, to prove that Tn(t)f converges to T{t)f for a set of /
which is dense in X It has already been remarked (in the paragraph
following (4.9)) that any operator in a proper resolvent family has a
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dense range. By similar considerations it is easy to show that the
square of any operator in a proper resolvent family has a dense range.
Hence we need only consider / such that / = J\μ)g for some g and μ.
Define gn — Png and /„ = Jl(μ)gn. Letting Ωn be the infinitesimal gener-
ator of Tn(t) we have

(5.1) || ΩJn\\ = \\{μJn{μ) - I)Jn{μ)gn II

^ μ-\M + 1) || gn II ̂  μ-\M + 1) || g \\ =S K

and

(5.2) \\&nfn\\

for some sufficiently large constant K we also have || Ωf\\, \\Ω2f\\ sΞ K.
Now

PnT(t)f - Tn(t)Pnf = Pn(T(t) - {rJ(r)}™)f

+ Pn{rJ{r)} f •]/ - {rJn{r)} ^PJ

)}W - Γn(ί))Λ

Tn(t)(fn ~

Applying (4.16), (5.1), (5.2) and the uniform boundedness of the Tn(t),
this yields

PnT{t)f - Tn{t)PJ || ^ Ar-ιK(M + tM*) + 2M || Pnf - /„

+ \\Pn{rJ(r)}Wf-

For any fixed r, the last two terms go to zero as n -> oo, because fn ->/
and {rJ(r)}k = lim {rJn(r)}* for any fixed k. Thus

lim sup || PwΓ(ί)/ - Γn(ί)iVII S Aτ~ιK{M + ίMJ) .
7l->oo

Since r may be taken arbitrarily large it follows that T(t)f — lim

Tn{t)PJ.

LEMMA 5.1. Let {Jn{λ)} be a uniformly proper sequence of resolvent
families, such that for some positive μ, lim Jn{μ) is densely defined and

tt->oo

has a dense range. Then for every λ, J(λ) ~ lim Jn{λ) is defined on all

of X, and {J{λ)} is a proper resolvent family.

Proof. That J{μ) is everywhere defined follows immediately from
Lemma 2,2, To show that lim Jn{λ) is everywhere defined we make
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use of the relation [14, p. 119]

(5.3) Jn(μ -v) = Σ / - % )

where, provided that \v\< μ, the series converges in the uniform
operator norm, uniformly in n. This follows from the formula

which is easily derived from (4.7) by induction on m, condition (4.8),
and the assumption that the Jn(λ) are uniformly proper. For each k,
lim Jn{μ) is everywhere defined, by the corollary to Lemma 2.3, and

the uniform convergence of (5.3) implies that lim Jn(λ) is everywhere

defined for 2μ > λ > 0. Repetition of the argument, replacing μ by,
say, 3/*/2, shows the convergence of {Jn(λ)} for Sμ > λ > 0. By further
repetitions of the argument it can be shown that J(λ) = lim Jn{λ) is

everywhere defined for all λ > 0. Relation (4.7) holds for each n, and
by Lemma 2.3 it continues to hold in the limit. Condition (4.8) is
clearly satisfied by every J(λ). To complete the proof it is only neces-
sary to demonstrate (4.9). Since any / e R(J(μ)) is in D(β), where Ω
is defined by (4.10), it follows from Lemma 4.2 that (4.9) holds on
R(J(μ)), which is dense by hypothesis. Since the operators λJ(λ) are
uniformly bounded, the conclusion follows by the Banach-Steinhaus
theorem.

THEOREM 5.2. Let {Tn(t)} be a sequence of semi-groups satisfying
(4.2) and the stability condition

\\Tn(t) = || <Meκt

where M and K are independent of n and t. Let Ωn be the infinitesimal
generator of Tn(t) and define Ω = lim Ωn.

Suppose that

( i ) Ω is densely defined

( i i ) for some λ > K, R(λ — Ω) is dense in X.

Then the closure of Ω is the infinitesimal generator of a semi-group T(t)
which satisfies (4.2), and T(t) = lim Tn(t).

Proof. Define Tn{t) = e~κtTn(t) and Ω'n = Ωn - K. Then Ω'n is the

infinitesimal generator of T'n(t) and the semi-groups T'n(t) from a uniform-

ly proper sequence. Also Ω' — lim Ω'n is densely defined and R(Λ — K — Ωf)

is dense in X The sequence J'n{λ — K) — (λ — K — Ω'n)~ι is uniformly
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bounded, From Lemma 2.4 it follows that J\λ — K) is everywhere
defined and has a dense range. By Lemma 5.1, the operators J\λ) =
lim J'n{λ) form a proper resolvent family, which by Theorem 5.1 is the

resolvent family of a semi-group T'(t) such that T(t) = lim T'n(t). Since

J'(λ) has an inverse, this inverse (by Lemma 2.4) is the closure of
λ — K — Ω\ and it follows that the closure of Ω' is the infinitesimal
generator of T'(t). The results stated for T(t) follow immediately from
what we have proved about T\t).

LEMMA 5.2. Let h be a given positive number, and T an operator
such that |1 T« || ^ M for all n. Then Ω = h~\T - I) is the infinitesimal
generator of a semi-group S(t) such that \\ S(t) \\ ^ M.

Proof. Define

S(t) = Σ (fc !)"W) fc = e~th~l Σ (k \Y\th-ιTf .
fc0 0

That Ω is the infinitesimal generator of S(t) can be verified by term-
by-term differentiation of the first expression given. From the second
expression we obtain

II S(t) II ̂  e-th~ι Σ (k \γ\th-λfM ^ M.

LEMMA 5.3. Let h, T, Ω and S(t) be as in Lemma 5.2. For a fixed
t, let k = [th"1]. Then for any f,

|| S(t)f - TV II ^ ^M2(iί || β 2/| | + || Ωf\\) .

Proof. Iteration of (4.5) gives

S(h)f = f+ [hS(t)Ωfdt
Jo

= / + hΩf + [h['S(t)Ω*f dtds
Jo Jo

dtds .

H e n c e |[ S(h)f -Tf\\^ W II β 2 / II. B y L e m m a 4 . 1

| | S(kh)f - TY\\ ^ \WkW \\Ωf II ^ iΛ^Λί | | Ω2f \\

when fc=[iA-1]. Also

|| S(t)f -S(kh)f\\ =

THEOREM 5.3. Let {hn} be a sequence of positive numbers converging
to zero, and {Tn} a sequence of operators satisfying the stability condition
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HI'S II ^Meκkhn

where M and K are constants independent of n and k. Let Ωn=hn\Tn — I)
and define Ω = lim Ωn . Suppose that

( i ) Ω is densely defined

(ii) for some λ > K, R(λ — Ω) is dense in X.

Then the closure of Ω is the infinitesimal generator of a semi-group
T(t) and

T(t) = lim Tn\th~ ] .
71-*°°

Proof. Define T'n - e~KllnTn, so t h a t for a n y k, \\T'*\\^M. Then

Ωn = h? (T; - I) = β-**»Ωn - Λ;1 (1 - β-«» )

and

Ω' = lim Ω'n = Ω - K .

Hence Ω' is densely defined and R(λ — K — Ω') is dense. Let Sn(t) be the
semi-group generated by Ω'n. Lemma 5.2 shows that the hypotheses of
Theorem 5.2 are satisfied and hence there is a proper semi-group T'(t)
= lim Sn(t), with infinitesimal generator the closure of Ω\ For a fixed

ί, define kn = [ίfe-1]. We shall show that lim T'*n = Tr(i). As in the

proof of Theorem 5.1 it suffices to show that °T\t)f = lim Γ;*»Pn/ for /

of the form / = J\λ)g for some g and /ί. Define fn^J'ίi^PnU then as
in the proof of Theorem 5.1 there exists a constant C such that || Ω\fn ||,
l|β»/«ll ^ C for all w. Then

II sn(t) - τ ; f c n ) p w / II <ς s
+ II (Sn(t) - T?*)fn II
+ IITXΛ - Pw/) II

^ 2Af||/n - P n /[ | + hnΛPC(t

Since fn-*f and hn-* 0 this shows that

lim Γ > P n / = lim ^ ( ί ) P , / = T(t) .

Hence

lim T%* = lim eκhnknT'n
kn == eκtT(t) ,

which is a semi-group Γ(ί) with the closure of β r + if = β as infini-
tesimal generator.

6 Random walks and diffusion processes. Throughout this section,
Swill denote either the compactified real line [— oo, oo], or some closed
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subinterval of it. Let S' be any Borel subset of S, and suppose that
for every a e S ' a positive Borel measure μx is given such that

( i ) μx(S) ^ 1

(ii) μa(S-S') = 0

(iii) μx(A) is a Borel function of x for every Borel set A.

We consider a particle which executes a random walk in the fol-
lowing way. Let h be a positive constant. If the particle is at a point
x G Sf at time kh (k a non-negative integer) then it remains at x during
the interval [kh, (k + l)h) and at time (k + l)h " jumps " so that the
probability that it goes to any Borel set A is μx(A). (If μx(S) < 1 then
the particle disappears with probability 1 — μx(S) .) The number h is
the basic time-interval of the random walk, and the measures μx are
the one-step transition probability distributions. The set S' is the support
of the random walk. If a probability distribution v on S' for the initial
position of the particle is fixed, then the random walk gives rise to
what is essentially a discrete parameter Markov process with stationary
transition probabilities. For rigorous definition and further details [3,
p. 190 if.] may be consulted.

For any bounded Borel function / o n S', the random walk deter-
mines a new function Tf defined by setting

y) xe S'.

Condition (iii) implies that Tf is again a Borel function. The one-step
transition operator T is obviously linear and positivity preserving. The
space of bounded Borel functions on S' is a Banach space under the
norm | | / | | = sup \f(x) |, and || T \\ ̂  1 relative to this norm. The adjoint

transformation may be considered as acting on the Borel measures on
S', and for any such measure v, vT is given by

where A is an arbitrary Borel set and χA is its characteristic function.
If v is a probability measure giving the distribution of the initial posi-
tion of the particle then vT* is the distribution for its position after k
jumps [cf. 3, p. 191]. Thus a random walk is completely characterized
by its support, its basic time-interval, and its one-step transition oper-
ator, and we may speak of " t h e random walk {S',h,T}".

A diffusion process (with stationary transition probabilities) on S is
characterized by giving for each x e S and ί > 0 a measure μXit such
that μXyt(S) <̂  1, which is to be interpreted as the probability distribution
for the position at time s + t of a particle which is at x at time β. To
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begin with, it is necessary to have μXft(A) a Borel function of x for
every t and every Borel set A [3, p. 255]. Then a family of operators
T(t) on the space of bounded Borel functions can be defined by setting

As in the case of a random walk, we may consider the adjoint trans-
formation for v a Borel measure on S

for every Borel set A. If v gives the distribution for the initial position
of the particle then vT{t) gives the distribution for its position at time
t. The further conditions which the measures μx>t must satisfy are
most easily expressed in terms of the operators T{t), which we call the
transition operators of the process. In the first place, we impose the
condition that μXtt be a continuous function of x with respect to the
weak topology on the measures this is equivalent to requiring that
T(t)f be continuous when / is continuous (cf. [11]). Secondly, we would
like to require that for any continuous /, T(t)f converge uniformly to
/ a s t -> 0, but certain processes (those with absorbing barriers) do not
satisfy this condition. One or both end-points of S may be absorbing
barriers intuitively speaking, an end-point is an absorbing barrier if a
diffusing particle disappears immediately when it reaches that point.
In such a case, the range of T(t) contains only functions which vanish
at the absorbing barrier(s). Throughout the rest of this section, let X
be the Banach space of continuous functions on S which vanish at those
end-points which are absorbing barriers for the diffusion process under
consideration. We shall require that T(t)f converge uniformly to / as
t -> 0 for all f e X. For the process to have the Markov property, the
operators T(t) must have the semi-group property (4.1). It is obvious
that |1 T(t) || ^ 1. The conditions imposed so far may be summarized as :

The operators T(t) form a proper semi-group of operators on the
space X.

Finally, in order to restrict attention to diffusion processes rather than
more general types of Markov process, we suppose that

The infinitesimal generator of the semi-group T(t) is a restriction
of an operator of the form

(6.1) β' = d d

dm dx

where m is a strictly increasing function of x.
It has been shown by Feller [10, 11] that all one-dimensional diffusion
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processes satisfying certain regularity conditions have associated semi-
groups whose infinitesimal generators can be put into the required form
by a suitable choice for the coordinate function x.

Suppose that for each n a random walk {Sn, hn, Tn} is given, and
that a diffusion process with transition semi-group T(t) is also given.
We shall say that the sequence of random walks converges to the dif-
fusion process if

( i ) For every probability measure ι> on S, there exists a sequence
of probability measures vn converging weakly to it, with the support
of vn contained in Sn.

(ii) For every such sequence vn9 and every t > 0, the probability
distribution for the position at time ί of a particle starting with initial
distribution vn and executing the nth random walk converges weakly
to the probability distribution at time t for the position of a particle
starting with initial distribution v and following the diffusion process.
The weak convergence referred to above is weak convergence relative to
the space X.

Now let Xn be the Banach space of bounded Borel functions on Sn,
and define Pn : X -* Xn by taking Pnf to be the restriction of / to Sn

for any f e X. Suppose that the Sn become dense in S, as in Example
2, § 2 then the Xn form a sequence of Banach spaces approximating
X. The adjoint space to X consists of the Borel measures on S (with
the exception of measures giving non-zero mass to end-points which
are absorbing barriers). The Borel measures with support included in
Sn may be considered as elements of X*, and for any such measure
vn, vnPn = *v It is clear that condition (i) will be satisfied. Condition
(ii) may be restated as follows. For any sequence of probability meas-
ures vn converging weakly to y, vnTnί

thnl1 converges weakly to vT(t).
Thus as a direct consequence of the definition of weak limit in § 3, (ii)
will be satisfied if T*(ί) is the weak limit of T*ttΛΛ1]. Finally, appealing
to Lemma 3.2, we obtain the following sufficient condition for con-
vergence.

In order that a sequence of random walks converge to a diffusion
process as described above, it is sufficient that the Sn become dense
in S and that T(t) = lim T J ^ A

Our subsequent discussion will be directed to giving conditions under
which this criterion holds.

The simplest example is the convergence of the symmetric random
walk to Brownian motion [6, Chap. 14]. Let S be the real line. The
standard Brownian motion process is obtained by taking
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} dy.

The nth symmetric random walk has the integral multiples of n"1 for
support, and basic time-interval hn — n~2. For x e Sw,

μx = I δ(x + n~ι) + ±δ(x - n-1) ,

where S(x) denotes the measure giving unit weight to the point x.

The convergence in this case follows immediately from a special
case of the central limit theorem (namely, the normal approximation
to the binomial distribution). From more general versions of the central
limit theorem it may be shown that many different random walks con-
verge to Brownian motion. The precise form of the one-step transition
probability distributions is largely irrelevant essentially all that matters
is the behaviour of the mean displacements and mean square displace-
ments. Our goal is to establish similar results for the more general
diffusion processes described above.

Before giving our next set of definitions, we must fix some nota-
tional conventions. Assuming that some definite diffusion process is
under discussion, we normalize the function m occurring in (6.1) so that
it is continuous on the right in the interior of S and continuous (possibly

fδwith values ± oo) at the end-points. The expression! fdm denotes the
Jα

integral over the half-open interval (α, 6] if a < &, and the negative of
the integral over (6, α] if a > b. The derivatives of functions in Ό(Ω)
may have simple discontinuities at the discontinuities of m [cf. 10], and
we use f'(x) to denote always the right-hand derivative of / at x.

The necessary and sufficient conditions for the central limit theorem
[5] involve truncated means and variances of the distributions concerned,
rather than the actual means and variances (which need not exist).
Let C be a covering of S by intervals, and for every x e S define Cx

to be the union of those elements of C which contain x. Then for a
random walk with transition probabilities μx we introduce the following
functions, defined for all x in the support of the random walk.
The residual probability at x is

(6.2) P°(x) = μx(S - Cx) .

The truncated mass defect at x is

(6.3) qc(x) = 1 - μ,(Cx) .

The truncated mean displacement at x is
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(6.4) W{χ) = ( (y-x)dμx(y).

The (generalized) truncated mean square displacement at x is

(6.5) s%x) = f vx(y) dμx(y) .

where

5 y

{m(u) — m(x)} dn
X

is the solution of Ωv — 1 which satisfies the conditions v(x) = ΐ^(#) = 0.6

For functions in Ό(Ω) we obtain the "Taylor expansion "

(6.6) f(y)=f(x) + \Vf'(u)
Jx

du

= /(«) + (V -

- f(x) + (y- x)f\x) + vx(y)Wf(v) + E{xf y))

where E(x, y) is an error term whose absolute value does not exceed
the oscillation of Ωf on the interval (x, y). Putting this estimate to-
gether with the definitions (6.2) — (6.5), we obtain

(6.7) Tf{x) = ( f(y) dμx{y) + \ f(y) dμx(y)
Jcχ )s-ox

= f(x) + sc(x)Ωf(x) - qc(x)f(x)

+ kc(x)f(x) + sG(x)E(x)

+ O(p%x)\\f\\)

where | E(x) | does not exceed the oscillation of Ωf on the interval Cx.

A family of coverings will be said to contain arbitrarily fine mem-
bers if it contains a refinement of every finite covering of S by open
intervals.

Suppose a diffusion process with transition semi-group T(t) and a
sequence of random walks {Sn, hn, Tn] are given and that the space X
and the approximating sequence Xn, Pn are defined as described above.
Define Ωn = h~ι(Tn - I).

LEMMA 6.1. Suppose that there exists a family of coverings contain-
ing arbitrarily fine members such that for every covering C in the family

6 In the case of Brownian motion, m(x) = 2x, vz{y) = (x - 2/)2 and s°(x) is the usual
truncated mean square displacement. The remark that the definitions given above furnish
the appropriate generalization is due to W. Feller.
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V°Jx) — o(hn) and s%(x) — O(hn), uniformly for x e Sn as n -» OD J Then
for any f e Ό(Ω),

lim sup I QnPnf(x) - Ωf(x) |

Ξg lim sup A M - gί(x)f(x) + K(x)f'(x) + (<φ;) - W f ( » ) I

Proof. The functions in X are continuous on a compact set hence
Ωf in particular is uniformly continuous. For any ε > 0, there is a
covering C in the postulated family which is sufficiently fine that the
oscillation of Ωf on any Cx is less then ε. Then for any x e Sn, (6.7)
gives

(6.8) ΩnPJ{x) - Ωf{x) - h?{- qc

n(x)f(x) + K

+ (s%x) - K) Ωf(x) + O(εs%x) + v%x) 11/II)} .

From the assumptions, the last term on the right is O(e), uniformly in
n, and since ε is arbitrary, the conclusion follows.

In order to apply Theorem 5.3 to show that lim T ^ 1 ] = T(t) we

must show that lim ΩnPnf = Ωf for sufficiently many functions /. Ac-

cording to the definition, this means that we must show that

lim sup I ΩnPJ{x) - Ωf(x) | = 0 .

We shall in all cases assume the following

Condition A. There exists a family of coverings such that the
hypotheses of Lemma 6.1 are satisfied, and such that

( i ) qcn(x) = o(hn)

( i i ) k°(x) = o(hn)

( i i i ) s°n(x) = hn + o{hn)

as n -» oo, uniformly for x bounded away from the end-points of S.

We remark that since / and Ωf are bounded for any / e D(β) while f
is bounded except perhaps near the end-points of S, these conditions
imply that

(6.9) -g°n(x)f(x) + K{x)f{x) + (sc

n(x) - hn)Ωf - o(hn)

for any / e D(β), uniformly for x bounded away from the end-points
of S.

7 The first assumption is essentially the Lindeberg condition [9], strengthened by the
requirement of uniformity, and implies that lim Ωn is of local character.

W-»oo
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The conditions to be imposed on q, k, and s near the boundaries
are more complicated and will depend on the boundary conditions used
to define Ω as a contraction of Ω''. The classification of types of bound-
aries and possible boundary conditions has been given in [8], and justifi-
cation for the assertions made in what follows regarding the behaviour
of the solutions of the homogeneous equation (λ — Ω')n = 0 is to be
found there. In [8] a different canonical form for the operator Ωf is
used, so that the statements require some translation to fit our situation;
[19] contains a summary of what we need in terms of the present nota-
tion. For simplicity, we shall consider only boundary conditions under
which Ω is of local character at the end-points of S as well as in the
interior. This restriction rules out any interaction between the bound-
aries of the sort described in [8] and they can be considered separately.
We shall discuss in detail only the left-hand boundary. The modifications
necessary to deal with the right-hand boundary will be obvious.

Since T(t) is a proper semi-group, the resolvent (λ — Ω)"1 is defined
on all of X (From here on we take λ to have some fixed positive
value.) Let Y be the linear subset of X consisting of all functions
which are constant in some neighbourhood of each end-point. Suppose
g e Y has the value c in a neighbourhood of an end-point, and let
f=(λ- Q)-Xg. Then (λ - Ω)(f - cλ'1) = g - c = 0 on this neighbourhood.
Hence in this neighbourhood, / has the form

(6.10) f(x) = bu(x) + constant

where b is some constant and u is the solution (unique up to a constant
multiple) of (λ — Ω')VL = 0 which satisfies the boundary condition for Ω
at the end-point in question.

LEMMA 6.2. Let Ω be the restriction of Ω to those functions in Ό(Ω)
which are of the form (6.10) in some neighbourhood of each boundary.
Then Ω is densely defined, and R(Λ — Ω) is dense in X.

Proof. It is clear that Ω is densely defined. From the remarks
preceding the lemma, R(Λ — Ω) Ό Y which is dense in X

Let r denote the left-hand end-point of S. We first consider the
case where r is a natural boundary, so that no additional boundary
condition may be imposed. The functions u(x), u'(x), and Ωu(x) all tend
to zero as x approaches r. Hence for / 6 D(ίJ), f and Ωf tend to zero
as x -» r. Then if

Condition B.I. For every covering of the family postulated in
condition A
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Q°n(x) = O(K)

¥n{x) = O(hn)

sc

n{x) = O(hn)

uniformly in some neighbourhood of r,

is satisfied, it is clear that for every / e Ό(Ω) and every ε > 0, there
exists a neighbourhood N of r such that

(6.11) lim sup A;11 - ςfn(x)f{x) + K{x)f{x) + {s%x) - hn)Ωf(x)\^e.

In the case of an exit boundary, we shall suppose that the absorb-
ing barrier condition f(r) = 0 is imposed. Then the functions u(x) and
Ωu(x) vanish at r, while u'(x) is continuous at r and has a finite non-
zero value there. Since f(r) = 0, any / e Ό(Ω) is a multiple of u in
some neighbourhood of r. At an exit boundary, r is finite and we may
integrate to obtain

f(x) =f(r) + (x~ r)f(r) + o(x - r) .

Making use of this and the continuity of / and Ωf, we see that if

Condition B.2. For every covering of the family postulated in
Condition A

( i ) (x - r)q%x) - O(K)

( i i ) K{x) =* O(hn)

(iii) s°n(x) = 0{hn)

(iv ) -(x - r)qG

n{x) + kc

n(x) = o{hn)

uniformly in some neighbourhood of r,

is satisfied, then for any / e Ό(Ω) and ε > 0 there exists a neighbourhood
of T on which (6.11) holds.

At an entrance boundary r is infinite while m is finite. The func-
tion u has the property that u\r) = 0. Hence for / e D(β), f(r) = 0,
and integrating with respect to m yields

f(x) — {m(x) — m{r)}Ωf{r) + o(m(x) — m(r)) .

Using this it is easy to see that

Condition B.3. For every covering of the family postulated in

Condition A

( i ) {m(x) - m{r)}¥n(x) - C(hn)

(ii) sσ(x)
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(iii) {m(x) - m(r)}k°n(x) + s%x) - hn = o(hn)

(iv) q%x) = o(hn)

uniformly in a neighbourhood of r,

implies (6.11) for some neighbourhood N.

At a regular boundary, m and r are both finite, and the boundary

condition is of the form

(6.12) aΩf(r) + bf(r) + cf(r) = 0

where α, 6, and c are constants, not all zero. For / e Ό(Ω) we have

Ωf(x) = Ωf(r) + o(l)

and by integrating obtain

f{x) = f(r) + {m(x) - m(r)}Ωf(r) + o(m(x) - m(r))

and

f{x) =f(r) + (α? - r)f(r) + vr(x)Ωf(r) + o(vr(x)) .

Under these circumstances, the following condition is sufficient to give

the conclusion (6.11) for any ε > 0 and any f e Ό(Ω).

Condition B.4. For every covering of the family postulated in

condition A

( i ) vr(x)q°n(x) = O(K)

(ii) {m(x) - m(r)}k°n(x) = O(hn)

(iii) 8°(x) = O(hn)

(iv) c{K(x) -(x- r)qcn(x)} + bqc

n(x) = o(hn)

( v ) a{kc

n(x) -(x- r)q%x)}

~b{sc

n(x) -hn+ {m(x) - m(r)}kc

n(x) - vr(x)qc

n(x)} = o{hn)

(v i ) c{sG

n(x) - hn + {m(x) - m(r)}k*(x) - vr(x)qc

n(x)}

+ aqc

n{x) = o(hn) ,

omitting (vi) if a = b = 0.

The last three conditions are of course not independent, and if neither
a, &, nor c is zero any two of them imply the third. Condition (vi) can
be omitted if a = b — 0 because this is the absorbing barrier condition and
hence for fe Ό(Ω),f(r) = Ωf(r) = 0.

Putting all these results together, we obtain as the final result

THEOREM 6.1. If a diffusion process and a sequence of random walks

are such that
( i ) The supports Sn become dense in S and
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(i i) Condition A and the appropriate conditions from among B.I,

B.2, B.3, B.4, and their analogues for the right-hand boundary

are satisfied

then the random walks converge to the diffusion process.

Proof. For any ε > 0 and any / e Ό(Ω) the conditions imposed

near the boundaries imply the existence of neighbourhoods of the bound-

aries on which (6.11) holds. Taken with Condition A and Lemma 6.1,

this implies that for / e D(β), lim ΩnPnf = Ωf. Hence, from Lemma

6.2, lim Ωn is densely defined and λ — lim Ωn has a dense range. Since

the operators Tn are all bounded by 1, Theorem 5.3 applies to give the
desired conclusion.

For our first example we shall take Brownian motion on the half-
line [0, oo], for which there is a regular boundary at the origin and a
natural boundary at infinity. Let {hn} be a sequence of positive num-
bers converging to zero, and define dn = h]l2. Consider a sequence of
random walks, with the nth. walk having a basic time interval hn and
support Sn consisting of the non-negative integral multiples of dn. Away
from the origin take the ordinary symmetric random walk with

μl = \δ(x + dn) + \δ(x - dn)

for x e Sn, x Φ 0. The behaviour at the origin will, of course depend
on the boundary condition to be imposed on the diffusion process. As
the family of coverings required in condition A we shall take the family
of all finite coverings of [0, oo] by open intervals. Since dn -* 0 it is
easy to see that for any fixed covering, for sufficiently large n, p°n{x) —
q°n(x) = k°n(x) = 0 and s°n(x) = hn for all x e Sn, x Φ 0. Thus Condition A
is satisfied, and so is Condition B.I at the natural boundary. Further-
more, whatever condition of type B.4 is imposed at the regular boundary,
it will automatically be satisfied in any neignbourhood of that boundary
except at the origin itself. At the origin the Conditions B.4 reduce to

( i ) eZ(0) = O(A»)

(ii) ck°(0) + bq°n(0) = o(hn)

(iii) aJφ) - b{sϋ

n(0) - hn} = o(hn)

(iv ) c{s°M - hn) + aqc

n(0) - o{hn)

where (iv) can be omitted in the absorbing barrier case.

In order to obtain convergence to the absorbing barrier process, it
is sufficient that no particle which reaches the origin returns to the
interior of the interval (i.e., once a particle is at the origin, it either
stays there or disappears). In this case, &£(0) = s£(0) = 0, and since in
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the absorbing barrier process a — b — 0 and condition (iv) can be omitted,
the conditions are satisfied.

It is slightly more complicated to obtain a sequence of random
walks converging to a diffusion process with an elastic barrier condition
α = 0, 6 = 1, c = — α (which by taking a = 0 specializes to the reflecting
barrier condition). It can be done by letting a particle reaching the
origin be " reflected " to the point dn with probability (1 + adn)~ι and
disappear with probability adn(l + adn)-\ This gives qG

n(0) = adn(l + adn)-\
kc

n(0) = dn(2 + adn)~\ and s°(0) = d2

n(l + adn)-1. Remembering that dJ=Λ»,
it easy to verify that the conditions given above are satisfied.

As a further variation of Brownian motion, let us consider the dif-
fusion process on [—00, 00] defined by taking

mix] = 2a? - 1 x < 0

= 2α + 1 x ^ 0 .

This is known to give a Brownian motion process modified by the in-
troduction of a " delay '' at the origin so that the set of times for which
a particle is at the origin is a nowhere-dense set of positive Lebesgue
measure. We shall show that this process is the limit of symmetric
random walks, modified so that a particle at the origin has probability
1 — dn of staying there at the next jump, and probability dn\2 of jump-
ing to each of its neighbours. (We use hn and dn with the same meaning
as in the previous example). As before, we have q°n{x) — k°n{x) — 0 for
all x e Sn, while s°nlx] = hn for all x Φ 0. Noting that vo(y) = y2 for
2/^0, and vo(y) = yλ + 2 | y \ for y < 0, we obtain

82(0) = dn(di + dn)

= hn + dl = hn + o(hn) .

The boundaries are both natural and Conditions A and B.I can obviously
be satisfied by taking the required family of coverings to consist of all
finite coverings of the line.

As a final example, in which it is not so evident a priori what the
appropriate boundary conditions are, we consider the limiting behaviour
of a sequence of random walks encountered in genetic theory. These
processes are discussed in [7, p. 232 if.] and their genetic interpretation
is described there. We have made some inessential changes in notation
for purposes of convenience.

The processes take place on the interval 0 ^ y ^ 1. (We use y as
coordinate to reserve x for the natural scale used to express Ωr in the
form (6.1).) The nth random walk has basic time-interval hn = n~l

and support the integer multiples of n'1. The one-step transition
probabilities are
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(6.13) //»= i(:)p£.,<rtr»*(y*)

so that

Tnf(y) = Σ M.ytftfG/*)

where 2/Λ = λ^"1, pΛtV — 1 — gΛfV = 2/(1 — ra~ι) + (1 — y)sn~\ and r and s

are non-negative constants.

It is easy to check that the formal limit of the operators Ωn =

n(Tn — I) is the differential operator

(6.14) Ω' = * ?/(l - y)Ί? + {s - (r + %}D

where D denotes differentiation with respect to y.8 The natural scale
a;, and the monotone function m needed to express β' in the form (6.1)
may be taken as [10, formula 4.2]

(6.15) x(y) - ( v z~2s(l - z)~*r dz
Jl/2

l /2

- zf7"1 dz .

The nature of the boundary at y = 0 depends on the value of s the
nature of the boundary at y — 1 depends similarly on the value of r.
We shall discuss only the left-hand boundary in detail, since there is
obviously a complete symmetry. Checking with the criteria given in
[8] or [19], we see that the boundary at y — 0 is an exit boundary if
s — 0, a regular boundary if 0 < 2s < 1, and an entrance boundary if
2s > 1.

It would presumably be possible to show that the sequence of
random walks under consideration satisfies our Condition A and the
appropriate conditions at the boundary, but the functions x and m are
not elementary, and it would be complicated to obtain satisfactory
estimates for the mean displacements, etc. We shall instead make
direct use of Lemma 6.2 and Theorem 5.3.

We assert that if f has a continuous second derivative on the closed
interval [0, 1] then lim Ωnf = Ω'f. To prove this, observe first that for

n—>oo

the constant function 1, for g(y) — y, and for h(y) = y2, simple calcula-
tions from the elementary formulas for the mean and variance of a
binomial distribution give

8 Goldberg [12] discusses the solutions of the equation df/dt = Ω'f under various
boundary conditions.



APPROXIMATION OF SEMI-GROUPS OF OPERATORS 917

Ωnl = 0 = Ωl

Ωng(y) - s - (r + s)y = Ωg(y)

Ωnh(y) = (1 + 2s)y — (1 + 2r + 2s)y2 + O(n~ι)

— Ωh(y) + O(n~ι) .

It is also easy to verify (for instance, by estimates obtained from the
normal approximation to the binomial distribution) that for any ε > 0,

Vn{y) = 1 dμn

y(z) = o(n-τ)

\z-V\>*

uniformly in y. Then using a second-order Taylor expansion, any/with
a continuous second derivative can be approximated over the interval
(y — £, y + ε) by a linear combination of 1, g, and h so that the error
at z is less than (y — z)2E2 where E2 is the maximum oscillation of D2f
on any interval of length 2ε. Estimating/by such a linear combination,
we obtain

Since Es can be made arbitrarily small by suitable choice of ε and for
each such choice nps

n(y) — o(l), our assertion holds as stated.

We shall complete the proof that the random walks (6.13) converge
to a diffusion process associated with the operator (6.14) by showing
that (if a suitable boundary condition is imposed in the regular boundary

case) all functions in Ό{Ω), where Ω is defined as in Lemma 6.2, have
continuous second derivatives on the closed interval. Then we shall
have Km Ωn densely defined and R(λ — lim Ωn) dense, so that Theorem

5.3 will apply to give the desired conclusion. Of course, every / e D(β;)
has a continuous second derivative on the open interval, but since the
coefficient of Dz in Ω1 vanishes at the end-points, the continuity of Ω'f
on [0,1] does not imply the continuity of D2f there.

The homogeneous equation (λ — Ω')u = 0 may be put into the form
of the standard hypergeometric equation

2/(1 — y)vl\y) + {c — (a + b + l)y}'(y) — abu = 0 by determing α, b,
and c from the equations

c = 2s

a + b + l = 2r + 2s

ab = 2λ .

The solutions of this equation are given in terms of hypergeometric
functions in section 2.3.1 of [2], whose notation we adopt. In the
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of a non-regular boundary there is a unique solution which is bounded
at 0. This solution is

u = yF(a — c + 1, b — c + 1; 2; y)

for the exit boundary case, c = 2s = 0, and

u = F(a, b; c; y)

for the entrance boundary case, c — 2s > 1. Since the hypergeometric
function is analytic at the origin, it has a continuous second derivative
there.

In the case of a regular boundary, 0 < c = 2s < 1, there are two
independent solutions which are bounded at 0, namely

uλ = F(a, b; c; y)

and

u2 = yι~cF(a - c + 1, b - c + 1; 2-c y).

We now impose the reflecting barrier condition, dfidx -> 0 as x -* 0.
From (6.15)

4^
ax

and it is easily verified that duλ\dx -» 0 at the boundary, but that du^dx
does not. Thus solutions of the homogeneous equation which satisfy
the boundary condition imposed are multiples of ul9 and have a con-
tinuous second derivative at 0.
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A FIXED POINT THEOREM FOR

MULTI-VALUED FUNCTIONS

L. E. WARD, JR.

1. Introduction. If Y is a topological space then S(Y) denotes
the space of closed subsets of Y, endowed with the finite topology [2].
We say that a multi-valued function F: X ~» Y is continuous provided
F(x) is a closed set for each x e X, and the induced (single-valued)
function/: X-±S(Y) is continuous in the usual sense. This definition
of continuity for multi-valued functions is equivalent to that of Strother
[4]. The space X is said to have the F.p.p. (= fixed point property
for continuous multi-valued functions) if and only if for each such
function F: X->X, there is an xeX such that xeF(x). The space X
has the f. p. p. if it has the fixed point property for continuous single-
valued functions. It is hardly surprising that the !\-spaces with the
F. p. p. constitute a fairly small subclass of those with f. p. p. Indeed,
Plunkett [3] has shown that a Peano continuum has the F. p. p. if and
only if it is a dendrite. It is worth noting that Plunkett's argument
employs the convex metric of a dendrite in much the same manner as
the author [7] has used the order structure of certain acyclic continua
to obtain fixed point theorems. A related argument has been used by
Capel and Strother [1] to show that a tree has the fixed point property
for continuous multi-valued functions for which the image of each point
is connected. Their proof depends on being able to produce a con-
tinuous selection, in the sense of Michael, on the class of subcontinua
of a tree.

In this paper an order-theoretic characterization of a wide class of
acyclic spaces is given. This characterization is in the same spirit as
the analogous results of [6] and [7] for trees and generalized trees. It
is then shown, using their order properties, that such spaces have the
F. p. p. To some extent the argument borrows from all of the proofs
cited above.

2» Topologίcally chained continua. If X is a space and ^ is a
partial order on X, we write L(x) — {a: a <£ x] and M(x) = {a : x <Ξ a}.
It is natural and convenient to define

[a?, y] = M(x) π Uy)

and, if A c l , we write M(A) for the union of all M(x) for which

Received August 7, 1957, and in revised forms November 4, 1957, and February 6, 1958.
Presented to the American Mathematical Society, August 29, 1957,
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x e A. An antichain of X is a subset in which no two distinct ele-
ments are related under the partial order. A zero of a subset A of X
is a member aQ of A such that AaM(aQ).

In what follows it will be convenient to use two theorems from
[5]. These are stated below as Theorems A and B. The partial-order
^ is said to be upper (lower) semicontinuous provided M(x) (L(x)) is
closed, for each x e X. It is semicontinuous if it is both upper and
lower semicontinuous.

THEOREM A. If the compact space X is endowed with an upper
(lower) semicontinuous partial order then X admits a maximal (minimal)
element.

THEOREM B. If the compact space X is endowed with an order-dense
semicontinuous partial order and if the set of maximal elements or the
set of minimal elements is connected, then X is connected.

Recall that a continuum (= compact connected Hausdorff space) is
unicoherent if it cannot be represented as the union of two subcontinua
whose intersection is not connected. A continuum is hereditarily uni-
coherent if each of its subcontinua is unicoherent.

A continuum is topologically chained if each pair of points is con-
tained in a subcontinuum which has exactly two non-cutpoints, and
such a subcontinuum is called a topological chain. This concept is a
natural generalization of the notion of an arc. Note that, if x and y
are distinct elements of a continuum which is topologically chained and
hereditarily unicoherent, there is a unique subcontinuum C(x> y) which
is irreducible about x and y. Moreover, C(x, y) is a topological chain
with x and y for endpoints.

Consider the following five properties enjoyed by some spaces X
admitting a partial order, ^ .

I. [x, y] is closed and simply ordered for each x and y in X.
II. ^ is order-dense.
III. There exists e e X such that M(e) — X,
IV. // x and y are points of the subcontinuum Y and x ^ y, then

lχ, y\ c Y.
V. // A is an antichain of X and P is a continuum contained in

M(A), then PdM(x) for some x e A.

LEMMA 1. If X is a compact Hausdorff space with a partial order
satisfying I and II, and if x < y in X, then [x, y] is a topological chain,
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Proof. For each t e [x, y] the sets

L(t) Π [a?, y] = [x, f],

M(t) Π [a?, y] = [t, y]

are closed so that <Ξ is semicontinuous on [a;, y]. Since [a?, ?/] has only
one minimal element it is connected by Theorem B. If x < t < y then
the continua [x, t] and [£, 2/] have only the point £ in their intersection,
so that x and y are the only non-cutpoints of [a;, y\\ that is, \x} y\ is a
topological chain.

LEMMA 2. If X is a compact Hausdorff space with a partial order
satisfying I, III, and V, then each continuum contained in X has a
zero.

Proof. By I and III the set L(x) = [β, a?] is closed for each x e X
and consequently, by Theorem A, each compact subset of X contains a
minimal element. If Y is a subcontinuum of X then the set A of
minimal elements of Y forms a nonempty antichain. It follows from
V that A contains only one element, that is, Y has a zero.

THEOREM 1. A necessary and sufficient condition that X be a
topologically chained, hereditarily unicoherent continuum is that X be a
compact Hausdorff space which admits a partial order satisfying I-V.

Proof. Necessity. Let X be a topologically chained, hereditarily
unicoherent continuum. Fix e e X and let x ^ y mean that x e C(e, y).
Then L(x) = C(β, a?) and I, II and III are easily verified. If x < y and
x and y are elements of the subcontinuum Y then, by hereditary
unicoherence, [a?, y] Π Y is connected. Since a? and 2/ are elements of Y
it follows that [x, y] c Y. This establishes IV. To see that V is satis-
fied let A be an antichain of X and suppose that P is a continuum
contained in M(A). If P meets M(x) and M(?/) where x and 2/ are dis-
tinct points of A, we may select p e M(x) Π P and g 6 Λf(i/) Π P. In
view of I the points p and q are not comparable. Therefore, the
continua L(p) U P and L(#) U P meet in the non-connected set
P U (£(#) IΊ L(y)), and this contradicts the hereditary unicoherence of X

Sufficiency. Let X be a compact Hausdorff space which admits a
partial order satisfying I-V. By Lemma 1 each set L(x) = [e, x] is a
topological chain and therefore X is a topologically chained continuum.
Now suppose A and B are subcontinua of X and that a; and y are distinct
elements of A f] B. In order to show that AC] B is connected and thus
that X is hereditarily unicoherent it is sufficient to prove that

Z = [z, x\ Όlz,y]cz Af) B,
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where z is the supremum of L(x) Π L(y). The existence of z is assured
by Theorem A. By Lemma 2, A has a zero, α0, so that aQ is a pre-
decessor of # and y and hence also of z. By IV,

[2, x\ c [α0, a?] c A .

It is clear that, by a sequence of analogous arguments, ZCZAΓΪB.

3 The fixed point theorem* The proof of Theorem 2 which fol-
lows is patterned after that of Theorem 10 in [7] where it was assumed
that the partial order had a closed graph. In view of our weaker
hypotheses it has been necessary to revise that argument extensively.
For the remainder of this paper the term sequence is used in its general-
ized sense, that is, a function defined on the predecessors of some
ordinal number. If a? is a sequence then a subsequence of x is the
restriction of x to some cofinal subset of its domain.

A useful continuity property of a partial order satisfying I-V is
given by the following lemma.

LEMMA 3. Let X be a compact Hausdorff space which contains no
indecomposable continuum and which admits a partial order satisfying
I-V. // x is an increasing sequence in X then lim x exists and xa 5g lim
x for each a in the domain of x.

Proof. Let x0 be a limit point of x and suppose x0 e X — M(xβ)
for some β. Without loss of generality we may take β = 1. Let C be
the union of the topological chains [xa, xai], a! > a. If σ is the zero of

C then xQ e C implies <r < #1# If K is a subcontinuum of C which con-
tains the values of some subsequence of x, then by IV, xa e K implies
\xa, xj] c K for each a! > a and hence K contains xQ and σ-. Again by

IV, K = C. It follows that C is the union of no two proper subcontinua
and this contradicts our hypothesis that X contains no indecomposable
continuum. Hence x# ̂  x0 for each a in the domain of x. If y e X is
not a predecessor of x0 then y is a member of the open set
U = X — L(x0). Since xa e X — U for each a, y is not a limit point
of x. Therefore x0 is the unique limit point of x, that is, xQ = lim x.

LEMMA 4. Let K be a connected topological space and let F be a
continuous multi-valued function defined on K. Suppose that F(x) is a
compact set for each x e K. If Q is a quasi-component of F{K) then
F(x) Π Q is nonempty for each x e K.

Proof. By definition Q = Π {Va) where {VΛ} is the family of open
and closed sets containing Q. If F(x) meets each Va then, by the
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compactness of F(x), it meets Q and therefore F~\Q) = Π {F'\Va)}. By
an elementary continuity argument it can be verified that each set
F~\Va) is both open and closed and hence is equal to K. Therefore,
K = F~\Q) and the lemma follows.

For the remainder of this section, X denotes a topologically chained,
hereditarily unicoherent continuum which contains no indecomposable
subcontinuum, and F: X-^Xis a continuous multi-valued function. By
Theorem 1 the space X admits a partial order satisfying I-V. Let J
be the set of all elements x of X such that (i) there exists a minimal
element tx in the set F(x) Π M(x), and (ii) if x < p ^ tx then F(p) and
[p, tx~\ are disjoint.

LEMMA 5. If F is fixed point free then J is not empty. Indeed if
a e X such that F(a) Π M(a) is not empty then M(a) Π J is not empty.

Proof. By Lemma 2, X has a zero and hence there exists a e X
such that F(a) Π M(a) is not empty. If b e F(a) η M(a) then by Theorem A
there is a minimal element ta in the compact set F(a) π \β, &]. Clearly
ta is minimal in F(a)nM(a). Let K denote the set of all p e [a, ta]
such that F(p)f][p, ta] is not empty. Then a e K and ta e X — K. If
xQ = sup K it is easy to construct an increasing sequence y in K such
that lim y = x0. For each a in the domain of y let 2Λ e ίX2/Λ) Π [2/Λ, ία]
Then the sequence £ has a limit point £0 and by continuity zQ e F(xQ).
Further, since ya < zΛ ^ ία for each a, it follows that 20 € [a?0> ̂ J a^cl
hence a?0 e iΓ. Now let tQ be minimal in JP(^0) Π [a?0, «0]- If ô < V ^ *o
and F(p) Π [p, ί0] is not empty then tQ ^ ta implies that F(p) Π [p, ία] i s

not empty. But this is a contradiction since xQ is the supremum of K.
Therefore F(p) and [p, t0] are disjoint, that is, xQ e J and the lemma is
proved.

Consider the set S of all sequences x such that J contains the range
of x and

Xι < X-z < * < XΛ < ' ,

£<* ̂  %a+ι for each α + 1 in the domain of x,

where ta = ίx . If J is not empty then S contains at least one nonempty
sequence. We partially order the elements of S in the following
manner : x precedes y provided x is an initial segment of y. Clearly,
if N is a simply ordered subset of S then U N is a member of S. By
Zorn's lemma S contains a maximal element.

LEMMA 6. If F is fixed point free and x is an element of S then
the domain of xc is not a limit ordinal.
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Proof. If the domain of a; is a limit ordinal, let xQ — lim x,
t0 = lim t. By Lemma 3, xΛ <: x0 and ta ^ tQ for each a. From the defini-
tion of J we have xΛ < tΛ for each a and hence xo^tQ. But by the
definition of S, tΛ+1 ^ #Λ for each a and hence tQ ^ a?0. This implies
that x0 — t0 is a fixed point of JF, which is a contradiction.

LEMMA 7. // JP is ./Z#βcZ pom£ free and x is an element of S then
the domain of x is finite.

Proof. Suppose the domain of x is not finite. We denote by ω the
first infinite ordinal. Then by Lemma 6, ω is a member of the domain
of x. From the definition of S it is clear that x, restricted to ω, is an
element of S9 contrary to Lemma 6.

THEOREM 2. Each topologically chained, hereditarily unicoherent
continuum which contains no indecomposable continuum has the F. p. p.

Proof. If F: X ~* X is fixed point free then, by Lemma 5, J is
not empty and hence S contains a maximal element, x. By Lemma 7
the domain of # is a set {1,2, ••• , N} of integers. We write tN —tx .
By Lemma 5 and the maximality of x it follows that M(tN) Π F(tN) is
empty. Now from Corollary 9.6 of [2] the set F([xN, tNJ) is compact
and hence its components and quasi-components are identical. Let D
be that component of F([xN, tN]) such that tN e D. By Lemma 4,
F(tN) Π D is not empty and hence D — M(tN) is not empty. Now D is
a continuum and hence has a zero z which precedes tN. By IV, [z, tN] c D
but since F is fixed point free there exists q e X with xN < q <tN such
that [ g , y c f l - F(tN). Let b be an infinite increasing sequence in
IQ? tir] s u c h that lim b — tN. For each ba there exists aa, xN < a% < tN,
such that bΛ e F{aoύ). Since xN e J we infer that 6Λ < aa. Clearly lim
a — tN from which it follows that tN e F ( ^ ) , a contradiction. Therefore
F cannot be fixed point free.

4 Remarks. The following question is of some interest. Can the
assumption of hereditary decomposability be omitted from the hypotheses
of Theorem 2? This assumption is essential to Lemma 3 so that an af-
firmative answer to our question would require a substantially different
proof. Even more difficult is the problem of characterizing the F. p. p.
among the topologically chained continua. In view of Plunkett's character-
ization [3] of the F. p. p. for Peano continua, there would seem to
be some hope of discovering a succinct characterization.
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ON THE NUMBER OF LATTICE POINTS IN tf + / =

R. E. WILD.

Introduction* Suppose that t is independent of n, n > 1 t =
(2ikf)/(2iV+l);M=l, 2, 3, . . ; N=0, 1, 2, . . . Λ f ^ J V + 1 , so that ί > l .
Let Lt{nt!'2) be the number of lattice points, (α;,2/), satisfying xι + yι ^ ntr\
Our main objective is the proof of the relation

(1.1) S(n) — ί/2 n1"112 \ Lt(wtl%)wtl2~ιdw
Jo

; cos(27α/w-« - ττ/(2ί))

V COS(^7Γ/f l /% — τr/4) , £)Λ/^~Λ

05 = 1

2ί 3

πVt-1

with t > i, * = _ J H
(ί +

, ,2 ,
(ί + 2)Γ(2/t) TΓC^1)/̂

-v + βtiv-Ό)«-vι*m The case t = 2 is known in connection with
the classical problem of the lattice points in a circle [4, pp. 221, 235].

By choosing t as specified above the analysis is less bulky than it
would be if we considered the slightly more general problem of Lτ(nτl2)
corresponding to the curve | x \ τ + \ y \τ = nτn with real T > 0. Expres-
sions and estimates for Lτ{nτrλ) have been obtained by Bachmann
[1, pp. 447-450], Cauer [2], and van der Corput [3]. In particular van
der Corput [3] found that

(1.2) Lτ(nτl2) = c[n - 8T<1

+ O(τz1/3), T > 3

- c[n - 8 Σ (- l) j + 1 (ψ)^- j

, = 2Γ(X}T)
1 ΓΓ

where

^(α;) = a? — [a;] — 1/2, [a?] is the integral part of x, ζ(s) is the Riemann

zeta function and (?) is the binomial coefficient. From (1.2) it follows

that

Received June 3, 1958. This paper is condensed from the author's Ph. D. thesis written
under the guidance of Professor E. G. Straus at U. C. L. A.
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(1.3) Lτ(nτl2) - c[n + O(n^- 1 ) / ( 2 Γ )), Lτ(nτ/2) = c[n + Ω(n^^^ , T > 3 .

These results in (1.3) and analogous results can be obtained from (1.1)
also. Our methods fail to establish the analogue of (1.1) for 0 < t < 1.

2 First auxiliary result. We first obtain the result

(2.1) S(n) = n* Σ Σ \[ (1 - xι - y*)cos 2πV

/^Γ(ax + βy)dxdy ,

In § 4 we prove that the double series is absolutely convergent.

We have [4, p. 205]

(2.2) \WLt(w)dw = [W Σ Σ I dw - Σ Σ Γ d w

= ΣΣ(^-i {-^)- Σ Σί^-i*-^).

To this we apply the Poisson summation formula [4, p. 204] to obtain

(2.3) Lt(w)dw = Σ \ /f cos 2ττα^ Σ (W - α?β - Jfe*)cte
J o Λ=-°° J - ^ V -ar-xt}1*'****-*')1"

= Σ

Integrating by parts and applying the second mean value theorem for
integrals, we have, for the inner integral,

sin 2πβy y^dy = v ; 1 sin 2πβydy ,

where 0 ̂  ξ < (W — x1)111, so that the sum over β is uniformly convergent

in x. Hence we can interchange the order of operations in \c£#Σ i n

(2.3) to obtain

Lt{w)dw = Σ Σ I cos 2κax cos 2πβy (W' — xι - yι)dxdy .

0 0--OO β=-OO J J

By symmetry we can replace cos 2πax cos 2τr/5t/ by cos 2π(ax + βy) . If
also we set w = zί/2, a? = TFi;V , y = "pri;is , TΓ = ̂ t/2, we reduce (2.4) to

(2.5) tβ^LXz^y^dz = wt/2+1 Σ Σ (f ( l~r t -
JO o;e-.oe β=-oβ J J

and then (2.1) follows upon multiplication of each side by
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3* Second auxiliary result* For t > 1, we shall obtain from (2.1)
the identity

(3.1) S(n) = Ί\ + T, + T3 + T, + T5

where

T, = c

where

and </,.(#) is the ordinary Bessel function of order r

Ts = c3n? Σ (V(^, ί) cos 2πVn~axdx , c3 = -^ ,
α - l JO t + 1

and /(a?, ί) = (1 - ^

Oi C6 OO I IOC _

Tδ = —n Σ Σ - - G(%, α, /3) cos 2πHVn v(u, a, β) v'(%, α, β)du ,

where

^ , α, /9) = H-'A^'Ku) , A4(%) = ( - l)ιa-\Pa - icy-1 + β-\Qβ + M

p = a l ~

G(u, a, β) = ^<^W-Jfo). - α_,(α, /?) sgn u[l - t;2^, α, β)]~iri ,
v'ίw, α, ^)Λ2(^)

a (a β) = ( ^ ) l / c w " l ) _

In the proof of (3.1) we make use of the following result on Bessel
functions [5, p. 366],

(3.2) P (1 - χψ-w cos Kxdx = Vπ2m-ΎKrmΓ(m + \\ΐ)JJK) m> - 1/2 .
Jo

First, it is convenient to break up the double sum in (2.1) as follows.
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(3.3) * ) = ΣΣ+ Σ Σ + Σ Σ
O β 0 β 0 0S

+ Σ Σ + Σ Σ + Σ Σ + Σ Σ
α=lβ = l Q;=_OO β=-oo a=-oo β = i α="lβ=-oo

By symmetry this can be written as

(3.4) S(n) = riι \ \ (1 - x% - yι)dxdy

xt+yt^l

+ 4?22 Σ \ I (1 — ̂  — 2/e) cos 2ττι/^ axdxdy
α - l J J

+ 4%2 Σ Σ \ \ (1 - & - yι) c ^ s 2τr]/7z(αa; + βy)dxdy
α = l β = l JJ

= Sτ + S2 + S3 .

Sτ can be evaluated in terms of gamma functions to obtain

(3.5) S, = — 2 Γ χ i / ί ) _ n, = 2

(ί + 2)Γ(2/ί)

Let /2 denote the integral in S2. Then

cos 2π\/naxdx\ (1 - xc - yι)dy
o Jo

Λ* fi
= ----- (1 - xψ+^ltcos2πλ/naxdx

t + 1 Jo

= (—) (! - xψ+Όlt cos 2τι/w α^α;

+ — \ Aχf ^) c o s 2τr i/^ ΛOTίί̂
4 Jo

by the definition of f(x, t) in (3.1). Applying (3.2) to (3.6) we have

(3.7) Sr

a = 4rc*ΣΛ = Γ*+ T*
05 = 1

Let /3 denote the integral in S3. Then by symmetry

(3.8) /3 = 2 if (1 - α;f - yι) cos 2τr-ι/̂ Γ(α^ - βy)dxdy .

The transformation

(3.9) a? - i?v(P - w/α) , 2/ - ffi;(Q + ujβ)
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transforms xt + yι = 1 into

(3.10) v = f f-W^W

where if, P, Q, and At(u) are defined in (3.1). The transformation (3.9)
is one to one for ax + βy ^ 0 and the absolute value of the Jacobian is

(3.11)
v,u/ aβ

The graph of (3.10) resembles that of v = 1/(1 + u2) except that the
curve is not symmetric to the v axis unless t — 2. The curve has a
relative maximum at (0, 1).

Applying (3.9) to (3.8) we transform xι + yι ^1 and ax + βy ;> 0
into v <; fl""1^17'^) and v ^ 0 respectively, so that (3.8) becomes

(3.12) Iό = \ du\ [1 — ̂ ^ ^ ( w ) ] ^ cos 2πHy/nvdv .
α/9 J-oo Jo

Upon integration by parts with respect to v9 the integrated terms vanish
and we obtain

(3.13) 73 = - — ~ — ί°° du \υ(U\l - (t + IWv'AM] sin 2πH\/nvdv
πVnaβJ-™ Jo

- - —β.— [ sin 2πHVnvdv (^^'[l - (t + l)ffVΛ,(w)]d%
7rV7zα:/5Jo J«β(ϋ)

where u+(v) and U-(v) refer to the first and second quadrant branches
of (3.10) respectively. Since

(3.14) Alu) = (- iya-'(Pa - u)^1 + β~\Qβ + uγ~\

we can write (3.13) as

(3.15) Iz— — ,-— I [u+(v) — HtvtA-ι{n+{v))'\ sin 2πH\/nvdv
πVnaβ Jo

\\-uJv[- u-(v) + HtvtA-1(u-(v))Ίi sin 2πHVnvdv .—^— Γ
πvnaβ Jo

By the change of variable (3.10) this can be written as

(3.16) I, = j [ n f" L - A z_MΊ Sin 2πHVnv(u) . ̂ (
πVnaβ J-~L Λ>(̂ ) J

From (3.14) we obtain
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(3.17) u - -A=M - Pal'^ ~ Qξ~ί + <

for large u, so that upon integrating by parts again we obtain

(3.18) I, = --1—τ [~ F(u)cos 2πHι/ΰv(u) v\u)du
2π2naβ J —

where

(3.19) i^) = F(u, a, β) = A^uψ^Mu)^ .

The function α_t sgn u[l — ̂ 2(^)]~1/2 is an asymptotic equivalent of
F(u) in the neighborhood of (0, 1), even though v(0) = 1 and v'(0) = 0,
if α_! = α_x(α, 8̂) is determined from

(3.20) α-χ = \imF(u)ι/l - v\u) = lim

— IllΎI x - —

- 1 1

From (3.10) and (3.14) we obtain

(3.21) v"M = - H^AϊVWiuyi- (t + l)Aϊ(w) + (t -

from which α_t, as given in (3.1), can be determined.

We now write (3.18) as

(3.22) I3 = - * ^ i - (°° sgn %[1 - i;»(u)]-1/a cos
2π2notβ J-~

f °
J2π2naβ J-oo

= _ i 0 ^ f' (1 - cos 2πH\/nvdv
πιnaβ Jo

\ G(u) cos 2πH\/nv(u) vr(u)du
J-oo

where G(α) = (?(M, α, j9) is defined in (3.1). Applying (3.2) to (3.22) we
obtain

(3.23) S3 = 4n2 Σ Σ h = T, + Tδ .
05 = 1 β - 1

Collecting the results of (3.4), (3.5), (3.7), and (3.23), we have (3.1).
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4 Convergence investigations* We next prove that the double
series in (2.1) is absolutely convergent. We write (3.18) as

2z Γ+Γ+Γ)
Jo Jσ }POCJ

2π2naβ 4 5 6

where 0 < σ < Pa.

First we consider

(4.2) I7 = [ F(u) cos 2πHVnv{u) i/

By (3.14) and (3.19) we have

(4 3) Fίu^HίPa-uY^W+uY'*^-Hla-\u~Pa)t±β^{u+Qβ)ψ''^lt

From (4.3) we find that

du (aβY ^ at

V2ί-1 4_ ^ ί / , . i

^ + QWI/^fa - Pα)1-C + β\n + Qβf-'Y

From (4.3) and (4.4) we derive certain information about the graph of
F(u), namely,

(4.5) F(u) > 0, F(u) < 0, 0 < u < Pa

F\Pa) = oo, 1 < t < 2 F/(Pa) = 0,2 <t;

F(u) < 0, Pa < % < oo

2P(H) = 0, % = ul9 Pa < ^ < oo., β > α

F(u) <0,Pa<u < co, β ^a .

The point (ulf vτ) is a relative minimum and from (4.3) and (4.4) we
find that

(4.6) u, =

Thus by (4.5) and the second mean value theorem for integrals we
have, for β > a, and Pα <Ξ £t < %x < £2 ̂  oo,

(4.7) I? = Γ1 + Γ = F(^) Γ1 + F{u{)
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= F(ut) 1 2 cos 2πHi/n v(u) v\u)du

by the inequality x2 + y2 ^ 2xy, x > 0, y > 0. Similarly, for β ^ a, and
Pa ^ £g < oo, we have

(4.8) /7 = Γ = *X«0 t" cos2πHVnv(u) vr

? ) ' - 1 ^ + ^)-c«-D/ίw-i/»} = 0{(naβ)-112} .

We next consider /5 in (4.1). By (4.3) we can write

(4.9) /5 = \ FAu) cos 2πH\/nv(u)du
Jo

where

(4.10) - JF\(%) =

_JAo^(O 0 ^
aβ2*«-1'>lt \ctβ

Therefore

(4.11) / l =

Turning next to I6 in (4.1), we note that by the first line of (4.5)
we can use the second mean value theorem to write, for some £4 satisfy-
ing σ < ξ4 ^ Pot,

(4.12) I6 = i?χσ) Γ4 cos 2πHVnv{u) . v'(M)d% = θ f - ^ % L ) .

To examine the question of the order of F(u) in 0 < u < Pα we
use (4.3) with, p — Pa — u, q = Q/5 + w, and write

(4.13) F(u) = - ^
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Since F2(0) = 0 and

ψ γ γ , + (̂
dw 2 L \ α / V g / q2 \β/ \p

we have, by the mean value theorem,

(4.15) F(u) £ -J%- { ^ ψ , λ = f """, 0<u<Pa,0<Ui<Pa.

Setting p-i = Pa — u3, q-i — QβΛ- u3, we obtain

(4.16) F(u) ̂  Hλ ViQi

I (a1 + β*)u

Hence combining (4.11), (4.12), and (4.16), we obtain

(4.17)

In the further analysis of /5 + / 6 we use the inequalities,

(4.18) 1 + xm < (1 + #)m, 0 < a? < 1, m > 1 ,

(4.19) (x + l ) m < 2m~\xm + 1), α? > 1, m > 1 .

In (4.17) suppose l < ί ^ 2 . Since H=(atl«-»+ βw^ψ-w and ί/(ί- 1) > ί,
we have by (4.18), H < (a1 + β*)1'*, and therefore, for 1 < t ^ 2, we
have

(4 20) H<^(L^1 < (

Hence from (4.17) and (4.20) we have, for 1 < t ^ 2,

(4.21) /B + /β = 0{(α/5)-ct-D/^-i/n .

If ί > 2 is (4.17), then ί > ί/(ί - 1) and so by (4.19) we have

(a1 + βψ2 (α* + ̂

2 ( ί " 2 ) / C 2 °
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Hence from (4.17) and (4.22) we have, for t > 2,

(4.23) Iβ + /.

By (3.10) v{— u, a, β) = v(u, a, β) so that an estimate for I6 + I6 + I7

holds also for Iά in (4.1). By this fact, and the results of (4.7), (4.8),
(4.21), and (4.23), it now follows that for S3, defined by (3.4), (3.23),
and (4.1), we have,

ΛJL OO OO -I poo

(4.24) S s =
 Δ™ Σ Σ - ~ F{u) cos 2πHVn v(u) v'(u)du

π ίt-iβ-i ctβ J-~

= O(n^), t > 1 ,

the double series being absolutely convergent.

Integrating by parts and applying the second mean value theorem,
we have, from (3.6), for xλ = {{t - l)/t]ιlt

f

(4.25) S, = - ^ - ^ 2 Σ (1 - ^ ) c t + 1 ) / t cos 2πVn axdx
t + 1 «=i Jo

= — w3'2 Σ -- \ (1 - α ) 1 " ^ - 1 si
π- «-i Oί Jo

ί(i *γι%*i f*1 sin

+ (1 - Qtf

the series being absolutely convergent. The absolute convergence of the
double series in (2.1) now follows from the results leading to (4.24) and
(4.25).

5. Proof of (1.1). Finally we deduce (1.1) from (3.1). We make
use of the asymptotic expansion for the general Bessel function, namely
[5, p. 368],

(5.1) Jn(K) = / ^ cos (K -m* -

for large K and m independent of K.
By (5.1) and the absolute convergence of the sum we have
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(5 2) T. = C.JI S ' 4 - 1 / ( ! 1 ) Σ a-3'*-11^cos

Q 5 - 1

or2"1" cos (2^1/no; - τr/(2ί))

In Γ3/(0, ί) = 0 and /<*>(1, *) = 0, fc = 0, 1, 2. Hence if we integrate
by parts twice the integrated terms vanish and we have left

(5.3) T, = - —•- n Σ 1 Γ/"(α, *) cos 2τn/nccxdx .
π2(ί + 1) β-iαa Jo

// ;(^, έ) is continuous in 0 <£ x ^ 1 and independent of n and α and so
it has a finite number, independent of n and a, of relative and absolute
extrema whose values are also independent of n and a. Hence dividing
the interval of integration into pieces in which f\x, t) is monotonic, we
obtain by the second mean value theorem, for appropriate ξj9 ξ], ξf

j+1 in
the interval from 0 to 1, the ξ's depending on n and a, the result,

(5.4) Γ s = - i* rc'/* Σ - i Σ / ' ( ^ , ί) fe?+1 cos 27ΓT/W αa άc - 0{Vn)

π\t + 1) a-ia1 3 Jξj

Applying (5.1) to ϊ\ we obtain

T 4 = — 2 ^ 3̂/4 v V COS (27rgl/^"— π /4)

π2λ/t — Γ α = lβ ( ^

Since

the double series are absolutely convergent so that

(5.5) Γ4 = - 2t-=— n
2 / ^ 1

3Ji cos (2πHVn - ττ/4)
— 1 ίΓiβ=i(Λi9)(«-a)/(2«-a)dgX3ί-i)/(2ί-2)

Next we consider T5. We have shown that — T± and S3 are absolutely
convergent double series for t > 1 and hence so is their term by term
sum which is identical with T5. We break up the interval of integration
in T5 into a finite number, independent of n, a, β, of subintervals in
which G(u, a, β) is monotonic and write

(5.6) T6 =
 2 t n Σ Σ --- Σ ΓJ+1 G(w, α, /̂ ) cos 2πHVnv{u) .

π2 «=iβ=iαj5 j Jgj
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Now G(u, α, β) is continuous in each ξ5 <: u £ ξj+1. The only doubt arises,
at u = 0 where v'(u) — (1 — v2)112 — 0, and at u = oo where ι/(%) = 0.
But, using the definitions in (3.1) and evaluating an indeterminate form,
we obtain

(5.7) G(0 +,a,β)= " HA'M - lim ( λ + -_2iL_ Λ

(0) , o
Άi'ιlt(θ) W^-1) +

which is bounded. On the other hand, by (4.3),

(5.8) G(oo, a, β) = - Hiaβy-^

which is also bounded.

Applying the second mean value theorem to (5.6) we obtain

(5.9) T5 =
 2 t n Σ Σ V Σ G(Ci, α, /?) ( ί j+1 cos 2πHVnv{u) v

7Γ2 Λ-lβ-1 α/9 j J ^

for appropriate ζ'Jf ζJf ζj+ι in the interval from ξ3 to fj+1. Further we
have

(5.10) Σ Σ

^ Σ Σ 4 ^ Σ
7Γ2 a-lβ-lCLβH J

by the absolute convergence of the double series.
The relation (1.1) now follows from (3.1), (3.5), (5.2), (5.4), (5.5),

and (5.10).
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