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THE MAXIMAL IDEALS OF CERTAIN FUNCTION
ALGEBRAS

RICHARD ARENS

1. Introduction. In this paper we discover the space of maximal
ideals for each Banach algebra of the following concrete type. Select
an open subset G of S, the compactified complex plane, and let H(G) be
the class of complex functions continuous on S and moreover holomor-
phic on G. This is a Banach algebra, and its space of maximal ideals
is shown below to be precisely S, except in that case in which G is so
large as to force H(G) to consist only of constant functions.

Algebras of this type were introduced and studied by J. Wermer
[4] and W. Rudin [3]. Wermer pointed out that H(G) need not reduce
to the constants even if S — G is required to be (merely) an arc. He
also showed distinet points of S determined distinet maximal ideals.
Rudin raised the question as to the space of maximal ideals.

K. M. Hoffman, reporting (April 18, 1958, Symposium on Banach
algebras and Harmonic analysis) on work by I. M. Singer and himself
jointly, showed that the space of maximal ideals of H(G) is S when
S — G has positive upper density at each of its points. On the follow-
ing day, H. L. Royden’s proof was presented in which the same desired
conclusion was obtained if S — G has dimension zero. Our technique
may be regarded as a refinement of Hoffman and Singer’s.

Our methods apply equally easily to more general, although perhaps
less interesting, algebras. Let Z be a compact subset of S, and let G
be an open subset of Z. Let H(G/Z) be the functions continuous on Z
and holomorphic on G. Then Z is the space of maximal ideals, unless
the algebra reduces to the constants.

For some algebras in this larger class, the problem can also be
solved by an appeal to Mergelyan’s theorem [5], namely for those H(G/Z)
where Z #+ S and G is the interior of Z.

2. An approximation theorem. Let Z be a Borel set in the ex-
tended complex plane. Let G be an open set included in Z. We denote
by H(G|Z) the class of complex-valued functions which are defined, con-
tinuous, and bounded on Z, and are holomorphic on G. H(G/Z) is
evidently a Banach algebra with unit, providing that for each fe H(G/Z)
the norm is defined by

Nl = sup O
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642 RICHARD ARENS

In our study of the maximal ideals of such an algebra, we have
been led to an approximation Theorem 2.7 involving functions defined
as follows

@.1) Iz) = S 4 (C) (de)

where

(2.1.1) e is plane Lebesgue measure restricted to a disc, and then normalized
to make the measure of that disc equal to 1.

However, it happens that functions defined as in 2.1 are useful in
studying H(G/Z) in still another way. They can sometimes be used to
show that there are non-constant elements in H(G/Z). We consider this
matter again briefly in §4. The properties of % needed for this purpose
naturally suggest a condition on g, namely that given by 2.2.8 (which
involves 2.2, 2.1.2). Now it turns out that with no added effort, and
very little loss of clarity, a generalization 2.6 of our real objective, 2.7,
can be proved which involves only the quantity I(z) of 2.2.3, and hence
is not confined to the case 2.1.1. It is hoped that some use for the
approximation Theorem 2.6 may emerge.

Let ¢ be a regular Borel measure in the plane, finite on bounded
sets. For r = 0 define

(2.1.2) m(r) = sup pi{lz — ¢l <r}.
¢
Let || #|| = sup, m(r); and let
(2.2) J(1)
be the least upper bound, for 0 < # < ¢, < --- < ¢, of the sums

(2.2.1) 7@;‘5) 4 I,’E(,,tz),; mt) L mlt) — : — Mtn-1)

This is nothing but the Stieltjes integral
(2.2.2) S:r‘ldm(r) .
The class B of measures with which we shall deal are those for
which
(2.2.3) I(p) < oo .

There are measures in B with 0-dimensional support (see §4). For
our immediate purpose, those given by 2.1.1 are the most important.
(Their support is, of course, 2-dimensional). We note the relation of I(x)
and || ¢#]] in this case.

2.3 LEMMA. Let D be a disc of positive radius o in the plane. For
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each Borel set E let p(E) be the plane measure of EnD. Then 0. I(¢) =
2l pll, and || p|| = =
Some properties of 2.1 will now be described.

2.4 LEMMA. Let pe B, and let [ be a bounded Borel-measurable
Sunction defined on the plane. Then

re) = | SO man

defines a continuous function on the plane. It is holomorphic on each
open set of p-measure 0. If p has bounded support, h is holomorphic,
and 0, at <o ; and h is bounded.

Proof. We treat first the case f = 1. We will show now that the
set functions defined by

F(E) = Spg(f:l (E a Borel set)

are uniformly absolutely continuous (see [2, p. 170]). Suppose ¢ is a
positive number. Find a number ¢ such that, in the notation of 2.2,

(2.4.1) S:-;l__dm(r) <<

Let 6 = ¢t/2. Suppose p(E) < 6.

Then
B < | A
@]

We break E into two parts: FE,, the part on which |¢ — 2| <¢; and
E,, the part on which |¢ — z| = ¢. It is obvious that

S,Aﬁ)<:6ﬂi

B, | — 2| t 2
By breaking E, into concentric annuli, and approximating the integral
(2.4.2) S mdy) g
B, | & — 2|

by finite sums, it can be shown that
(2.4.2.1) I < S’ldm(r) .
o

This shows that | F(E)| < ¢ for p#(E) < 9, independently of z, as was to
be shown. We may thus apply Proposition 29.6s of [2, p. 171] to con-
clude that if z, — 2z, then

(2.4.3) gz L N P

C—m -z
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Returning to A(z) as defined by 2.3, we observe that

Wz — k()| < IIF 1] S — 1 ).

(}W”
de-a T ts
In view of 2.4.3, the continuity of % is apparent. The holomorphicity
at points bounded away from the support of g is a similar, actually
simpler, proposition. Thus 2.4 is substantially proved.

We now wish to show that with a modified formula we can arrive
at a function which is holomorphic wherever f is, even at points of the
support of .

2.5 LEMMA. Let p be a measure in B with bounded support. Let
fe HGIZ). Select any complex number 2, | 2| < |[fl, and define f(2) = 4
for z¢é Z. Define

(2.5.1) ) = |10 par)
Then h e H(G[Z), and ||k|| < 2I(p)||f||. Moreover, h is independent of A.

Proof. We write
(A _ #(dg)
(2.5.2) hy(z) = S i -z-/(d,), hz(z)—f(z')g 2"

By 2.4, these are continuous on Z. If f is holomorphic at oo, then
hy, b, are holomorphic there. Now let z, be a finite point of G. Indeed,
assume z, = 0. Then f is holomorphic at 0. If f(0) =0 then hy, h, are
both differentiable there. Indeed

u(z) = (0) _ SO 1
. S c o zﬂ(dC )
and

hf2) = h(0) _ f(ﬁ)ﬁgﬁ(@@,

z z JC—2z

Each of these has a limit as z— 0 because f(¢)/t is bounded for all ¢,
and continuously definable near 0. If f(0) # 0, we replace f by f — f(0).
This does not change A. Thus 4 is differentiable at each z, e G.

The main result of this section is as follows :

2.6 THEOREM. Let z, be a point of Z, z, + o, and let py, p,, --- be
a sequence of measures in B such that

(2.6.1) the support of p, lies in the 0,~-neighborhood of z, where
(2.6.2) 0, =0
and such that for some M < oo,
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(2.6.3) 0 l(1,) < M| 12l
Let f e H(G|Z), and define'

(2.6.4) = b QT .
| ¢—z

Then hy, € H(GIZ), ||k, || < 2M05;" | ]

and

(2.6.5) I = fz) — (& — 2, || >0 .

Proof. It will suffice to treat the case ||,||=1, and 2z, =0. At
first we shall deal with just one p,, and therefore omit the suffix. We
may also confine attention to the case f(z,) = 0.

We commence our calculations by observing that

ah@) —1@) = | (7O 7TE — sy Jutaoy
- Sﬁ(c) = 8@ yary |
—z
Let
b(r) = sup {|f(2)]: |z| = r} .

Now suppose p is supported by the o-neighborhood of z, = 0. Then we
may make an estimate

(2.6.6) |2h(2) — f@)] < (121b() + 51/(2) |>g.| 2’(55;'# .
For the integral in 2.6.6 there are two possible estimates:
1 2
(2.6.7) S/{(dj) el =3 when |z| > o
¢ — 2]

I(p) . wn general.

The latter of these results from 2.4.2.1 for ¢ — oo,
Now let ¢ be any positive number. Select a real number % > 1
such that

(2.6.8) 20171l < (kB — 1) .

Let ¢ in the preceding discussion be one of the z,. Then 2.6.6, 2.6.7
hold with 6 = J,. Consider first a point z € Z such that |z| = ks,. We
then obtain from 2.6.6, 2.6.7, 2.6.8, that

1 We extend the definition of f to the whole plane, if necessary, by making it have
the value f(z)) everywhere outside of Z.
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Oy

_ |z| A
|2h,(2) — f(2)| = 2l - o, b(5,) + o, 1]
k 1
(2.6.9) = ’k*' Ib(an) + ki“f”
I3 k
St M

Next consider the case |z| < kd,. Using 2.6.6, 2.6.7 we obtain

|2h(2) — f(2) | < [K0.b(84) + Oub(kdn)] L(122)
< M(Rb(3,) 4 b(Ko,)) -

The numbers b(0,) and b(kd,) tend to O since f is continuous at 2, = 0.
Therefore there is an N such that |[zh, — f|| < ¢ for » > N.
This concludes our proof of 2.6.

2.7 THEOREM. Let z, be a point of Z(z,# ), and let f e H(G|Z).
Then there exist functions hy, h,, ... in H(G|Z) such that

I = fz) — (2 — 2)hal[— O .

This emerges from the combination of 2.6 and 2.3.

3. Application to maximal ideals.

3.1 THEOREM. Let Z be a compact set in the extended complex plane.
Let G be an open subset of Z. Then the space of maximal ideals of the
Banach algebra H(G|Z) s naturally homeomorphic to Z, provided H(G|Z)
does not reduce to the constant functions.

Proof. 1If the set G if void, then the proposition reduces to a case
of [1, p. 54]. If G is not void, but Z is a proper subset of the ex-
tended plane, it is natural to change coordinates so that Z lies in the
finite plane. However, the most interesting case, Z = the extended
plane, is best treated by having G be a neighborhood of <. For
economy, if not clarity, we perform a conformal transformation, if
necessary, to make G (whenever it is not empty) a neighborhood of .

Let F' be a multiplicative linear functional of H(G/Z). If G(f) =
f() for all f in H(G/Z), then F' (or its kernel) corresponds to co.
Having disposed of that unique multiplicative functional, let F be some
other one. Then F(f;) =1 for some f, € H(G/Z) such that fi(w)=0.
Then zf, e H(G|/Z). Let 2z, = F(zf;)). Then F((z — z)h) =0 for each
h € H(G|Z), such that (z — z)h € H(G|Z). Because

F((z — 2)h) = F((z — 2)R)F(f)) = F(R)F((z — z)f1) = 0.
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Now suppose f e H(G|Z). By 2.7, there exist A,, r, in H(G/Z) such
that

(3.2) f=f&) — (2 — 2)h, =7,

where ||7,||~ 0. Hence F(r,) — 0. Also, F((z — 2)h,) = 0. Hence
F(f —f(z)) =0, F(f) =f(2). Then we say that F corresponds to z,.

We have thus shown that to every maximal ideal, or multiplicative
linear functional F, there corresponds a peint z,. There might be several
such points corresponding to a given F. The situation is completely
illuminated by a device of Wermer’s [4, p. 269] which shows that either
H(G|Z) consists only of the constant functions, or some triad of functions
separate all pairs of points on Z. This completes the proof of 3.1.

We can now acknowledge the relation of our argument to that of
Hoffman and Singer. They construct an 4,, define », as in 3.2, and
show ||7,||— 0; and so forth. Their choice of %,(2),

My, iy, & — C
where E, is the intersection of a d,-disc about z, with S — G, and m,
is the measure of m,, is effective only when m, > 0 as 0, — 0. Hence
they assume that S — G has positive upper density at z,.

4. Remarks on the dimension of H(G/Z). We return to the ques-
tion, when does H(G/Z) contain non-constant functions? A sufficient
condition is that S — G carry a measure of type B, for then 2.4 provides
such functions. The formula 2.4.3 is used in [3, 4] for this very
purpose, but the measures there employed are absolutely continuous.
For this reason it is desirable to point out that there are measures in
B that have zero-dimensional support of plane measure zero. An example
can be obtained from a well-known function, which increases only at
points of the Cantor set. Calling this function f, as in [2, p. 49], we
form the measure on the line; and then we form the product measure
p# of this measure with itself. It is not hard to see that I(p) <
161/2(1 — 2)* where 2= log 4/log 3.

Questions analogous to the above are discussed in [6, 7].
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AN OPERATOR IDENTITY

GLEN BAXTER

1. Introduction. Recently, some combinatorial results by Andersen
[1, 21, Spitzer [5], and others have been applied quite successfully to
problems in probability theory. Many of these applications have given
rise to results which are entirely analytical in nature. For example,
Spitzer used a combinatorial theorem to find the distribution function
for the maximum of the partial sums S, S,, ---, S, for a sequence {X,}
of independent, identically distributed random variables. His final result
is a functional identity,

(LD St = exn {S 2 g0},
n=0 k=1 f{

where ¢,(¢) is the characteristic function of max (0, S, ---, S,) and where
¢(t) is the characteristic function of max (0, S;). One of our purposes
in this paper is to generalize (1.1) to an identity involving operators.
Our proofs involve more or less analytical methods and thus show that
the combinatorial methods hitherto employed can be avoided. We also
obtain certain results concerning max (X, Xj, -+, X,) when {Xi, k£ > 0}
forms a stationary Markov process.

To illustrate the results we consider a simple example. Let N be
an n x n matrix and let N+ be the matrix formed from N by replacing
with zeros all elements of N which are either on or below the diagonal.
Let N- = N — N*, and suppose that N* and N~ commute. Now con-
sider the matrix equation

(1.2) PQ=e"=14+ N+ N*}2!+ ...

where P-I (I is the identity matrix) has non-zero terms only above the
diagonal and where @ — I has non-zero terms only on or below the
diagonal. The properties of N* and N~ imply that

(1.3) P=e¢"" =]+ N* 4+ (N*P2! + -+,
Q=e¢"=I+N"+(NP2!+--

satisfy (1.2) and have the proper form for P and Q. In particular,
exp(N*) has the proper form for P by virtue of the fact that the product
of two matrices with non-zero elements only above the diagonal is a

This paper was originally accepted by the Trans. Amer. Math. Soc. Presented to the
American Mathematical Society August 28, 1957; received by the editors of the Trans.
Amer. Math. Soc., July 29, 1957. This work was supported by the United States Air Force
under Contract No. AF18(603)-30 monitored by the Office of Scientific Research.
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650 GLEN BAXTER

matrix of the same type. A similar statement holds for exp(N-). It
is not hard to see that P and € are uniquely determined by (1.2). Thus
(1.8) is the unique solution of (1.2).

Suppose further that in some neighborhood of s = 0, N = N;s 4+ N,s*
+ ..., where convergence of the infinite series of (n x n) matrices is
equivalent to convergence of the series of 45th elements for all fixed ¢
and 5. Relations (1.3) may be rewritten as power series in s

(1.4) P=3SPs, Q=30

which converge in some neighborhood of s =0. It follows from the
form of P and @ that P, P,, --- have non-zero elements only above the
diagonal while @, @,, --- have non-zero elements only on or below the
diagonal. Certain problems will lead directly to an equation of the form
(1.2) where P and @ have the form (1.4). For example, in one case
we will have

oo Mk
(1.5) PQ = (I — sM)" = eXp{z e } .

k=1
Under the appropriate commutativity conditions it will follow that
(1.6) P:exp{}f_‘;(M]:)+ s’“} , Q= exp{i(Mk)r—s"} .

We see later that (1.6) is the operator analogue of Spitzer’s identity
(1.1) whenever the operator M has a special form.

Equation (1.5) is of particular importance in finding the distribution
of max(X, Xi, -+, X,) when {X,, k> 0} is a Markov process with a
stationary transition probability matrix M. In this case the matrix M
in (1.5) is identified (see §4) with the stationary transition probability
matrix M. Unfortunately, in the general Markov chain, the commuta-
tivity conditions which give (1.6) as the solution of (1.5) are not satisfied.
Some information can be obtained directly from (1.5).

In the next section we give general definitions and a few preliminary
results. The main theorems are proved in §3 and illustrated in §5.
A probabilistic interpretation of the theorems is contained in § 4.

2. Definitions and preliminaries. ILet L, be the space of bounded
Baire functions (real-valued and Borel measurable) f(x) on the infinite
interval — o < x < . We will deal with bounded linear operators M
defined over L, which have the form

(2.1) wf=\" fmie; dy)
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where m(x ; A) is a function of a real number x and a linear Borel
measurable set 4 such that

(i) for each fixed set A, m(x; A) is a Baire function of z,
(2.2) (i) for each fixed x, m(x; A) is a signed measure in A on the
linear Borel sets.

The norm of the operator M is defined in the usual way in terms of
the norm ||f|| = max |f(x)] in the Banach space L, Let pmwx; A) and
v(x ; A) be, respectivery, the upper variation and the lower variation of
the signed measure m(x ; A) (see [4, page 122]) The boundedness of M
in (2.1) implies that

o |t s dy) + (a5 do

< max |7 [pe; ) + oo ] = 1M < o
We call m(x; A) the kernel of the operator M. The notation which will
be used for integration with respect to a given measure is indicated in
(2.1). From now on when we call M a bounded linear operater of the
form (2.1), we imply that (2.2) is also satisfied. As a matter of fact,
with proper understanding of the notation, (2.2) follows directly from
(2.1). If M, and M, are bounded linear operators of the form (2.1) with
kernels m(x; A) and my(x; A), respectively, then MM, is also of the
form (2.1) with kernel

(2.4) s 4) =" my; Ao dy) .
We now let [x] be the greatest integer less than or equal to x.

DeFINITION 2.1. Set B,(x) = {y:y > [2"x + 1]/2"}. For any bounded
linear operator M of the form (2.1) with kernel m(x ; A), define

(2.5) m*(; A) = imm(z ; B,(x)A) ,

and let M+ be the operator of form (2.1) with kernel m*(x; A). Finally,
set, M\~ =M — M*.

Almost directly from the definition of M* follow certain useful facts
which we list below. The bounded, linear operators M, M., M,, etc. are
all of the form (2.1); I denotes the identity operator, which is also of
the form (2.1); and s, «, and B3, are real numbers :

G I-=1,
(i) (M*)* = M+, (i) (M) = M-,
(v) (MM = MMy, (v) (MiM:)™ = MMy,
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(viy |M+||<|IMlf, (vii) [[M-lI< UM,
(viii)) (alM; + BM,)* = aMy + BM; ,

(2.6) (ix) if M, + M, + --- is a strongly convergent series of bounded,
linear operators of the form (2.1), i.e. if || M,+---+M,||— 0
as m,m — oo, then T'= M, + M, + M, + --- is of the form
(2.1), and My + My + M} + --- and My + M7 + M; + ---
are both convergent in the strong sense. Moreover, T+ =
M + My + M + «-- and T~ = Mg + M7 + M; + ---.

We prove only (ix) of (2.6). Let T, =M, + --- + M,, let t,(x; A) be
the kernel of 7,, and let y, be the characteristic function of a measura-
ble set A. If T = 1limT,, we note that || T || is finite. Now

so that lim¢,(x; A) = t(x; A) exists uniformly in A. If A = YA, where
the A, are disjoint, then by the Moore double-limit theorem

2.7 kzlt(x; A, = Ilvim lim ’itn(x; A) =limt(x; A) = tx; A) .
This shows that #(a; A) is a signed measure. Since Ty, = t(z; 4), a
simple argument shows that #(x; A) is the kernel of 7. Finally, since
T+ =T <||T —T,}|l, it follows that T+ = limT}. In terms of M,
this means T+ = M; + My + M; + ---. A similar argument gives T~ =
My + My + M5 + ---.

It is interesting to note that the proofs of the main theorems will
depend only on the facts listed in (2.6). Before proceeding to the next
section we mention two special subclasses of operators which have the
form (2.1).

Case 1. Let M = (m,;) be a matrix for which uniformly in ¢

(2.8) % |mg | < C

for some constant C. For any Borel measurable set 4 and any real
number « define

2.9) : 4) {%Ami 3 x = 1 (an integer)
. mA\x , =
0 z # [x].

Condition (2.8) insures the existence of a bounded linear operator of
form (2.1) with the kernel m(x ; 4) of (2.9). Certainly the operator given
by (2.1) in this case and the original matrix M can be identified. In
fact, L, could be replaced here by the class of bounded, doubly infinite
sequences {a;}, that is a, = f(k) (— o < k < ) where f(z) € L,. It will
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be convenient whenever possible to think of the matrix M rather than
the operator M. Note that the matrix M* is formed from the matrix
M by replacing with zeros all elements of M either on or below the
diagonal. Moreover, the matrix M+ satisfies (2.6).

Case 2. Let m(x, y) be Borel measurable and integrable over the
plane and such that for some constant C

(2.10) |- im@ iy < c

uniformly in z. For any Borel measurable set A and any real number
x, define

(2.11) i@ A) = Sm(x, Wy .

Then, (2.1) gives a bounded, linear operator M which has the form

(2.12) M- = r -, y)dy
and M* becomes simply

(2.13) M* - = r - i, y)dy

]

with a similar formula for M-.

3. The theorems. When we say a sequence of operators {M,} con-
verges to an operator M, we mean it converges in the strong sense,
that is || M, — M || — 0 as n becomes infinite.

LemmaA 3.1. Let {K\}, {P,}, and {Q.}, k=1,2,3, <+, be sequences
of bounded, linear operators of the form (2.1) for which P; = P, and
Q; = Q,. For any |s| <s,, let

P=I+Ps+ Ps + «--,
3.1) Q=I1+Qs+ Qs+ -,
K=I+Ks+ Ks+ ---

converge. If PQ = K for all |s| < s, then {P,} and {Q,} are uniquely
determined by {K,}.

Proof. Equating coefficients of like powers of s on the two sides
of the equation PQ = K we obtain
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It P,P,.--,P,., and Q, Q,, ---, @,_;, have been uniquely determined
by K, K,, --+, K,_,, then we may write (3.2) as

(3.3) P, + @, =J,

where J, is determined uniquely by K,, K,, ---, K,,. Since P, = Q; = 0,
we have P, =J; and @, = J, and the proof follows by induction.

The next theorems give results in the direction of solving equations
which involve the operation ‘‘ *+ >, Later we give a probabilistic interpre-
tation of these equations. As we will see, in certain cases the equations
may be solved completely in terms of the known operator M.

THEOREM 3.1. Let M be a bounded, linear operator of the form (2.1).
Define the sequences {P,}, {Q}, {R:}, and {T,} by

Po:Qo:I; R():To—_—oy
(3.4) Py= (MPn)+ ’ Qn+1 = (QnM)— ’
T7L+1 = (MPn)— ’ Rn+1 - (QnM)+ y

and let the generating functions of these sequences be

P:iPnSn, Q:iQnsn!
(3'5) n=0 =0

R = j;oRnsn . T= ;Tns” ,

Then, the series’ in (3.5) all converge for |s| < 1/| M|, and, moreover,
they are the unmique bounded, linear operators of the form (2.1) which
satisfy.

(3.6) P=1+ s(MP)", T = s(MP)~,
Q=1+ s(M) , R = s(QM)* .

Proof. Let P be a bounded, linear operator of the form (2.1) which
satisfies the first equation of (3.6). By iteration we may write P=
I+ Ps+ Ps*+ +++- + P,s* + L,, where L, = s(MP)* and L, = s(ML,_,)*
and where P, P, ---, P, are determined in (8.4). Property (vi) of (2.6)
implies that || L, || < |s|®|| M ||* || P|} which approaches zero as n becomes
infinite for all |s| < 1/|| M|l. Thus, the solution (if it exists) of the
first equation of (8.6) is unique. Let {P,} satisfy the conditions of (3.4).
By property (vi) of (2.6), it follows that || P, || < ||M||". For |s| < 1/|| M|,
the power series in (3.5) for P converges and by property (ix) of (2.6)

(B.7) P—1I= 3 Pos = 5 (MP)'s" = (f; MPns”+1>+ — s(MP)* .

The proofs of the other parts of the theorem follow similarly.
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THEOREM 3.2. Let |s| < 1/|| M| and let P and Q be the bounded,
linear operators of the form (2.1) which satisfy the equations of (3.6). Then,

3.8) PQ = (I— sM)™
sP'=P(QP—I)*, sQ =(QP—1)Q,

where ' indicates derivative with respect to s.

Proof. From (3.6) we find that || Q| < 1/(1 — |s||I M) and
NERI<IsIIMINIQI<IsIMI/Q— sl M) .

Thus, for |s| < (1 — |s||| M|)/|| M|, the operator (I — R)~'is a bounded
linear operator of the form (2.1) and has a convergent power series
expansion in s. But @ = I — R + sQM, or equivalently, (I — R)™'Q =
(I — sM)~*, Similarly we show that (I — T)! is a bounded linear operator
of the form (2.1) which has a convergent power series expansion in s for
[sI<@—1{stIMID/II M, and that P(I — T)"* = (I — sM)™". Applying
Lemma 8.1 in the common interval of convergence of P, Q, ([ — 1)
and (I — R)™, we deduce that

(3.9) P={UI-R)", Q=U-T)".

and hence that PQ = (I — sM)~*. Since P, @, and (I — sM)~" all converge
for |s| < 1/}l M ||, we have finally PQ = (I — sM)~* for all |s| < 1/|| M |.
To show the second half of (3.8), we consider (PQ) = P'Q + PQ =
(I — sM)*M. It follows that

(3.10) (PQ) — s(PQ) = (I — sM)™(I — sM) = PQ .

Multiplying on the left of (3.10) by P~' and on the right by Q' (take
ls| <@ —1stUMID/IMI) we obtain

(3.11) QP — s(P'P' + Q' Q) =1.

By properties (iv), (v), and (ix) of (2.6), it is not hard to see that
(P'P)*=P'P and (Q Q™) =Q'Q". From (3.11) we find sP’' = P(QP—I)*
and sQ = (QP — I)"Q. These latter equations can certainly be extended
to hold for all |s| < 1/|| M ||, and the theorem is proved.

THEOREM 3.3. Let {a,} be a sequence of real numbers such that
S + a.8® + a,8* + +-- has a positive radius of convergence. Let M be a
bounded, linear operator of the form (2.1) such that (MF*)*M = M(M"*)*
Jor all k=1,2,3,---. Then for |s| such that

(3.12) SlaclliMlFlsl <1,
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there is a unique pasr of bounded linear operators P and Q of the form
(2.1) which satisfy

P=1I+ [i (a,CM’cs’“)PT ,
(3.13) k=1
Q=I+[QS @] .
Moreover, the solution of (3.13) is

P= exp{[— log (I — glakM’“s")T} )

Q = exp {[— log (I — glakM’“s’“)]_} .

(3.14)

Before proving Theorem 3.3 we mention a result of particular interest
which occurs when both Theorems 3.1 and 3.3 apply, i.e. when a, =1
and g,=q; = --- = 0.

COROLLARY 3.1. Let M be a bounded linear operator of the form
(2.1) such that (M*)*M = M(M")* for all £=1,2,3, -+, and let the
sequences {P,} and {Q.} be defined as in (8.4). Then, for all |s| < 1/|]| M |},
the P and @ of (3.5) have the form '

(3.15) P = exp {,;:“}M;;)Jrsk} , Q = exp {gl%i)ﬂ—s’“} .

Proof of Theorem 3.3. Let |s| satisfy the condition of (3.12), and
let

L =S aMst,
(3.16)

N = log(I — S a,M*s*) = S\ L*k; .
k=1 k=1

Both L and N are bounded linear operators of the form (2.1). The
commutativity of (M*)* and M together with property (ix) of (2.6) im-
plies that L*L = LL*. Again by property (ix) of (2.6) and the second
relation of (3.16), we deduce that N*N = NN*. In terms of N the first
equation in (3.13) may be written in the form

(3.17) P=1+[(I— e")P]*.

Using that (exp(— N*))* = exp(— N*) — I and that (exp(N~))* = 0, it is
easy to show by substitution that P = exp(— N*) is a solution of (3.17).
To show that this solution is unique we apply Theorem 3.1, where the
operator ‘“ M’ of Theorem 3.1 is now
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(3.18) ElakM’“s’“

and the number ‘“s’’ of Theorem 3.1 is now 1. In a similar manner
we can show that the Q of (8.14) is the unique solution of the second
equation in (8.13). This finishes the proof.

Before proceeding into the next section, we point out some implica-
tions of the theorems above. In Theorem 8.3, the operators P, Q, M, M*,
and M- all commute. Thus, the order of the factors @ and M* or of
P and M* in (8.13) is unimportant. In the s interval determined by
(3.12), there is a power series expansion in s for the solutions of (3.13).
The coefficients in this power series satisfy

PO = Qu - I y
(319) Pn+1 = (a’lMPn _l— a’.zMz n—1 + e + an+1Mn+1)+ ’
Quir = (aliQnM -+ Clzan_lMZ 4oees anHMnH)- .

If the M in Theorem 3.1 is a matrix of finite order, the P and @ of
(3.5) ecan be conveniently evaluated in terms of subdeterminants of the
matrix [ — sM (See example 3, §5).

4. Probabilistic interpretation. In this section we give a probabi-
listic interpretation of the sequences {P.}, {Q.}, {R:}, and {T%} of
Theorem 3.1. Let m(x; A) be a function of a real number z and a
linear Borel measurable set A such that

(i) for each fixed set A, m(x; A) is a Baire function of z,

(4.1) (i) for each fixed =, m(x; A) is a probability measure in 4 on
the linear Borel measurable sets.

Let {Xi, # >0} be a stationary Markov process for which m(z; A) =
P{X;, € A| X, = z} is defined and satisfies the conditions of (4.1) (see
[3, pp. 18, 26-27]). We deal here only with processes of this type. By
(2.1) and (2.83) each Markov process under consideration has associated
with it a bounded linear operator M, with || M| = 1. We call this the
transition probability operator of the process.

Two subcases of special interest may be mentioned. The first one
is that of a discrete Markov chain (countable state space). In this case
the transition probabilities form a matrix M = (m,;). The connection
between the matrix M and the function m(x; A) has already been dis-
cussed in §2, case 1. The second type process of interest is the one
for which the joint distributions have densities. In this latter case, there
exists a transition probability density function m(z, ), and the connec-
tion with m(x; A) is given in § 2, case 2.

For convenience in stating the next theorem we introduce a random
variable L,.
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L,: the index £(=0,1, 2, ---) for which max(X,, X, --+, X,,)

(4.2)
= X, and max(X,, X, -+, X)) < X, .

Note in particular the meaning of the statements L, =n and L, = 0.
In Theorem 4.1 and thereafter we will have occasion to refer to the
kernel associated with a given operator of the form (2.1). If the operator
is denoted by some capital letter, the kernel will be denoted by the
corresponding small letter.

THEOREM 4.1. Let {X;, k > 0} be a stationary Markov process with
transition probability operator M, and let {P,}, {Qi}, {R} and {T,} be
defined as in (3.4). Then, if the right hand members of (4.3) are defined
and satisfy (2.2), we have

(@5 A) = P{L,=n,X, e A| X, = a},

G(x; A)=P{L,=0,X,e A| X, =z},

rie; A)=P{L,=n,L,.,.=0X,¢e Al X, =z},

tw; A) = P{L, =0, max(X,, --+, X,-) < X, X, e A| X, = a} .

(4.3)

Proof. We prove only the first one of the relations in (4.3). Our
proof is by induction. Since P, = I, it follows that

lxeAd

(4.4) mw;A):P{XoeAlXo:x}:{o o
X .

Now assume the first relation of (4.3) is true for the case » and set
By(x) = {y: y > [2"x + 1]/2} for N=1,2,3, .-+ . Then,

P{L,.;=n+1, X, € By(x)A| X, = =}
= {7 Pmax(X, -+, X) < Xoo Ko € By@)A 1 X = 2}
. P(X, € d2| X, = @)

(4.5) )
=" {L,=n X, e Bu@4| X = JP(X; € d2] X, = 0)

— rw a2 3 By(@)Aym(a ; dz) .

From (2.4) we see that the last term of (4.5) is the kernel of MP, eval-
uvated at « and By(x)A. Set A, = AN(wx, <), and note that for any
n > 0,

P{L,=nXe AlXy=2}=P{L,=n,X,e 4.| X, =2} .

Thus, by Definition 2.1 and (4.5)



AN OPERATOR IDENTITY 659

Daei( 3 A) = lim S Da2 3 Bu(@)A, iz ; de)
N-r00 ) —oo
(4.6) =lim P{L,;, = n + 1, X, € By(®)A| X, = «}

N—oo

=P{Ly=n+1 Xy e A, | X, = a)
=P{Ly=n4+1 XpeAlX, =a},

and the proof follows by induction.

Combining the first and second of the relations in (4.3) we get certain
additional information about max(X,, ---, X,). In fact, we can evaluate
the generating function

(4.6) S Pimax(X,, ---, X,) € A| X, = x}s"
n=0

in terms of the kernels of P and Q. Let S = (—o, ). Then, by
Theorem 4.1
P{max(X,, -+, X,) € A| X, = @}

' P{L, =k, max(X,, -+, X,) € A| X, — }

Il
™M

o
)i

¢ =0

[_\/J§

@n =5 Pl = 01X =yP(Lo=k X e dy| X, = 2}
A

k

I
=}

It
Ms

St Co-vy 5 S)p(@ 5 dy) .

=
i
=

Multiplying through (4.7) by s* and summing over s =0,1,2, --- we
obtain

(4.8) S o S)p(@; dy) = 3, P{max(X,, -+-, X,) € A| X, = a}s" .
4 n=0

Relation (4.8) takes on a particularly simple form if q(y; S) is in-
dependent of y (See example 2, §5). In faect, in this special case we
have the following Corollary to Theorem 4.1 :

COROLLARY 4.1. Let {X,, k > 0} be a stationary Markov process with
transition probability operator M and let P and Q be defined as in Theorem
3.1. Furthermore, let q(x; A) be the kernel of Q, and let @ be the
bounded, linear operator of the form (2.1) determined by

(4.9) o(@; A) = 3 P{max(X,, -+, X,) € A| X, = a}s" .

n=0
Then, if q(x; S) = q s independent of w,
(4.10) ¢ = qP.

Relation (4.10) is an operator analogue of Spitzer’s identity (1.1).
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5. Examples. We now give applications of the theorems to some
particular examples.

ExamMPLE 1. Let the operator of form (2.1) be (See case 1, §2)

a 0 b
(5.1) M=|@—adb ¢  df,
0 0 a
so that for £ =1,2,3, ---
a 0 ka®~'b
(-2) M= (@ —cdfp ¢ ka*'d
0 0 a®

It is not hard to see that (M*)*M = M(M*)* in this case so Corollary
3.1 applies here. The solution of P =1 + s(MP)* for |s| < 1/|| M| <
1/lal is

0 B=1p
= exp {i %(M’“V} = expfgls’“ 0 0 a*d )
. ) L o o0 o0 1
(5.3)
r 0 0 bs/(1—as) l 1 0 bs/(1—as)
=exp,| 0 0 ds/1—as) | ,=;{0 1 ds/(1— as)
L 0 0 0 J 0 0 1

In a similar manner it follows that the solution of Q = I + s(QM)~ for
ls| <YM < 1/min(lal, [cl) is

1/(1 — as) 0 0
(.4 Q=] (s — c)ds/b(l — as)l — ¢s) 1/(1 — es) 0
0 0 1/ — as)

These solutions are easily checked by substitution.

ExampLE 2. Let {X;}(k=1,2,3, ---) be a sequence of independent,
identically distributed random variables with a common density function
Sflx), and let S, =X, + --- + X,. If T, is any random variable inde-
pendent of {X.}, and if we set T, =S, +Ty(n=1,2,3, --.), then
{T,, n > 0} is a stationary Markov process with transition probability

(5.5) m(a; A) = P{T,.. e A|T, = o} = SAf(y — 2)dy .

The conditions (4.1) are satisfied by m(x; A) (as well as by the right
hand members of (4.83)) in this case so we so may talk about the
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transition probability operator M associated with {7, » > 0}. This oper-
ator has the form

(5.6) M=\ sy

Using (2.4) and (5.6) it is not hard to deduce that M* also has a kernel
with a density. In fact,

(5.7) Mr . = r [y — o)y,

where fi(x) is the k-fold convolution of f(x) with itself.
By (5.6), (5.7), and (2.4) we see that the kernel of (M*)*M has a
density of the form

68 | sw— e -odw =" - whiw - o,

We now make the change of variable z =% + « — w in the second in-
tegral of (5.8) to get

69 | Aw-ase-ade = fiw- e -,
The second term of (5.9) is the density of the kernel of M(M*)*. Thus,

(M*)*M = M(M*)* in this ease and Corollary 3.1 applies. If P and Q are
as defined in Theorem 3.1, then for |s| < 1 (that is || M| =1)

(6.10) P=e J ,,Q?‘ } Q= {S(M'ﬂ)s}_

Since (M*)~ has a kernel with a density of the form f,(y — %), we
deduce that @ must have a kernel with a density of the form ¢(y — ).
This means

T - Sk}

G1) e S) = [ ot — oy = exp[ 5 P800 ]

is independent of « and Corollary 4.1 applies. Spitzer’s identity (1.1)
is found in this case from (4.10) by operating with each side on the
function g(y) = exp(ity). In fact, in the notation of (1.1)

Oy = ot 3 S” -2 Pimax(T, «--, T,) € dy | Ty = a}s"

n=0

(5.12) =t S S“ GP{max(0, S,, -+ -, 8,) € dy}s

3
I
o

= g"® i A(T)s”.
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Now in the special case of the exponential function g(y) = €',
(5'13) (M")*(M”)*ge‘“” = [(M’ﬂ)*‘g@—“Z][(Mn)+ge—nz] .
From (6.10), we find!

[ + —~itx
Py = o= xp {5 00 )
k=1 k

= ¢!’ exp [i ij S” e'P{S, € dy}i‘ .
0

=1 k

(5.14)

Putting (5.11), (5.12), and (5.14) into (4.10), it follows that

1.1) g]l(pn(t)s" = exp [g“l-s;» S: ¢'P{max(0, S;) € dy}:l .

In passing we note that the existence of a density is convenient
but not necessary for the derivation of (1.1) from (4.10). In general,
we can replace (5.5) by

(5.15) m(w; A) = P{(X, + =) e A},

which is Borel measurable in « for each fixed set A. The conditions
(4.1) are satisfied and the derivation continues in the obvious manner.

ExaMPLE 8. Let M be a matrix of finite order. We denote by D,
the subdeterminant formed from the determinant of I — sM by crossing
out all but the first & rows and columns. Moreover, D,(i;7) 1 <4,5 < k)
will denote the cofactor of the 4jth element in D,. Finally, for any
matrix N, let N(k) denote the matrix formed from N by crossing out
all but the first £ rows and columns.

Let {P,}, {Q.}, P= (p;), and @ = (g;;) denote the matrices defined
by (3.4) and (3.5) when Theorem 3.1 is applied to M. We may also
apply Theorem 3.1 to M(k). It is not hard to show by induction that
{Py(k)}, {Qu(k)}, P(k), and Q(k) are the matrices defined by (3.4) and
(3.5) when Theorem 3.1 is applied to M(k). Thus, by (3.8)

(5.16) P(k)Q(k) = [L(k) — sM(E)]™ .

Equating elements of the last row (the kth row) in the matrix product
of (5.16), we find

(5-17) Gy = D5 ; k)| Dy i=12 - k.

Using (5.17) and the elements of the last column of the product in (5.16),
it follows that

(5.13) P = Di(k 5 9)[Dy -1, 1=1,2, - k.

1 The referee points out that (5.14) holds if and only if g is the exponential function.
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Let M be the transition probability matrix of a stationary Markov
chain {X,, £ > 0} with states a, < a, < - < ay. From (4.3), we find

(5.19) P{L,=n,X,=a;| X, = a,} = Dy(j; 9)/D;-, (<39,
P{L,=0,X,=a;| X, =a;} = Dyj; /D, (z <J).
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AUTOMORPHIC GROUP REPRESENTATIONS

ROBERT J. BLATTNER

1. Introduction In this paper we investigate certain representations
of groups as * -automorphisms of rings of operators. More particularly,
we are interested in finding conditions on the group, representation, and
ring which guarantee the production of outer automorphisms of the ring.
The exhibition of outer automorphisms has been considered before, nota-
bly by Singer in a paper [9] which intensively analyses the automorphism
group of one of the finite factors constructed by von Neumann. Although
we also shall be concerned with finite rings, our results do not overlap
Singer’s.

Segal, in [8], introduced the notion of skew distribution over a real
Hilbert space . He singled out one in particular, the Clifford distribu-
tion over O, which admits a representation I” of the orthogonal group
(D) of  into the automorphism group of the ring U associated to
the distribution. Section 2 of the present paper gives (mostly without
proofs) a variant of Segal’s construction of 2 and I, which is more
suitable for our calculations. Section 3 states and begins the proof of
Theorem 1, which completely classifies (vis @ wvis innerness) the auto-
morphisms of U arising from I°. The proof is completed in §4 and 5.

In §6, we introduce the notion of a continuous automorphic group
representation and show that any locally compact group satisfying the
second axiom of countability may be represented as outer automorphisms
of the Clifford distribution ring. Finally, Theorem 2 shows that any
continuous automorphic representation of an open simple Lie group on
a finite ring is essentially outer.

We shall make free use of the standard theory of operators and
rings of operators as found in [6] and [3]. For the theory of measurable
operators and gage spaces see [7].

The author would like to thank I. E. Segal for bringing the problems
solved in this paper to his attention.

2. DPreliminaries. Let $ be a real Hilbert space, ¥ the tensor
algebra over 9, I the ideal generated by elements of the form 2@ x— (x, x)1.
Set € = Z/¥, the Clifford algebra over $ with respect to the quadratic
form z — (x,2), and * = the main anti-automorphism of € = the anti-
automorphism of € arising from the anti-automorphism of ¥ which sends

q;1® cee ®xn-—}xn® e ®m1 .
" Received April 10, 1958.
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As usual, we will consider © as embedded in .

Any central linear functional # on € has the property that
O(z, --- 2,) = 0 whenever {@, ++-, ®,} are an orthogonal set in 9.
Since those elements, together with 1, span €, there is (up to a multi-
blicative factor) at most one such 6 on €. Let us produce one. Follow-
ing Chevalley [2], we let & = the exterior algebra over , multiplication
indicated by A, and _# = the algebra of endomorphisms of G. 9 is
considered embedded in . For each x € 9, let 8, be the unique anti-
derivation of € such that d,y = (x, y)1 for all y e O, and let [, be the
operator of left multiplication by = in €. The mapping = — I, + 8, of
® into 7 extends to a homomorphism ¥ of € into _z. We let
t(u) = ¥(w)l for u e €. It is easy to show that r is a one-to-one linear
map of € onto &.

Now the inner product (-, -) on  extends to a real Hilbert inner
broduct, also called (-, -), on €. We set 6(u) = (c(u), 1). It is clear that
0 is linear and that (1) =1. We shall show that 0(v* u) = (c(u), ().
This will establish the centrality of § and will also show that (u, ») =
0(v* u) is a Hilbert inner product on € making - into an isometry. It
suffices to prove the above when v =, -+ 2,9, -+ y, and v =2, --- @,
2u-er 2, where {ay, -+, @, Y, o0, U &y +++, 2} (n, 7, s possibly 0) form
an orthonormal set in O, since the v ®v for all such pairs u, v span
C®E. But

0(v*u)=5(%"'21%'--wxibz--'ivn%'--yr):ﬂ(zs-“21%--'?/7)
:zs/\ cne /\zl/\yl/\ see /\yr,l)_:l or O

according as » = s = 0 or not. Thus

0(’()*’0)2(.’171/\ °cc /\xn/\yl/\ KR NVANY 7S AVANKRR NZy, N2y N - /\Zs)
= (v(u), T(v)) ’

ay desired.

Let ® be the complexification of € and extend the inner product
on € in the usual way to a (complex) Hilbert inner product on ®. Let
R be the completion of D. * may be extended by conjugate linearity
and closure to be a conjugation on & We note that if {e;} is an ortho-
normal basis for ©, then {ene, e}t <i< oo <45 7r=0,1, -+ ‘)
is an orthonormal base for &, where the indices ¢ have been linearly
ordered in some fashion. We shall adopt the notation e,, A a finite set
of indices, to mean ¢; e, --- e; where 4, < ... <4, and 4 = {3, ---,4,}.
Conventionally e, = 1.

For any element u € D, let L, be the operator with domain D defined by
Lja=wua,aeD. It is easily seen that L., x ¢ unit vector of 9, is an
isometry of ® onto ®. Since D is spanned algebraically by products
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of the form z,--- x,, x, unit vectors in O, we conclude that L, u € 9,
is a continuous operator on the normed linear space ®. Thus (&, D, *)
forms a Hilbert algebra, the left ring 2 of which is a factor of type
II, when 9 is infinite dimensional, which is the only case we shall con-
sider [8]. Let B be the algebra of all bounded elements of (R, D, *).
L, and R,, a € B, will denote the closure of the left and right multipli-
cation operators respectively by o on the domain 8. The maps a — L,
and ¢ — R, are an isomorphism and anti-isomorphism of 8 onto 2 and
A’ respectively. For z e &, we define L, as the operator with domain
B such that Lo = Rax,aeB. Then L, is defined to be (L.)*, the
notation agreeing with the above when x € B. L, is always measurable
with respect to A [7].

3. The representation I'. Any orthogonal transformation U on $
extends canonically to an automorphism of ¥ which leaves J invariant
and thus induces an automorphism of €, which we denote I"(U). [I'(U)
is defined by

I'lUyw «--,) = Uz --- Ux,) for 2, --+,2,€ 9.

Clearly I'(U) commutes with *. The functional 6o I'(U) is again a
central linear functional on € and (/' (U)1)=0(1)=1. Hence § o I'(U)=0
so that 7'(U) is an isometry on €. The automorphism /'(U) then ex-
tends to an automorphism of (R, ®, *) which leaves ® invariant. ' is
clearly a faithful representation of the orthogonal group of  into the
automorphism group of (&, ®, *). 2 will denote the automorphism 7"(—I).
@* =1, so that & is the direct sum of two subspaces &* and R defined
by Qx = x or —z according as x € &* or & .

I'(U) is an inner automorphism if there exists a unitary element
u € B such that I'(U) = L,R,.. Since A is a factor, u is determined up
to a multiplicative constant of modulus 1 by I"(U). Now

riu)y=r(—-nu-1)) = Q2L,R,.2 = (2L,Q2)(2R,.2)
= LQuRQu* = LQuR(Qu)* .

Hence Qu = Ju, 2 a constant. Clearly 2 = + 1 so that either u € &* or
we ® . In the former case I'(U) is called even, in the latter, odd.
Those inner automorphisms /'(U) which are even form a subgroup of
the group of all inner automorphisms of the type I'(U).

In order to classify the automorphisms I'(U) according to the above
categories, we introduce the following notation: Let Z* be the set of
orthogonal transformations U on O such that I — U is of Hilbert-Schmidt
class and whose eigenspace belonging to —1 has even dimension ; let
%~ contain all those U such that I + U is Hilbert-Schmidt and whose
eigenspace belonging to + 1 has odd dimension. Set ©y= 2 *U & .
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THEOREM 1. [I'(U) is inner if and only if U € <, If I'(U) is inner,
it is even if and only if Ue <+,

Let {e;};es be an orthonormal basis of , where J is a totally ordered
index set, and let U be a fixed orthogonal transformation. Set f; = Ueg,
and Vi = LfiRe’l'

LEMMA 1. The subspace & of wectors left invariant by all the V, has
dimension = 0 or 1. If dim& =0, I'(U) s outer ; +f dim =1, £ con-
tasns a unitary element u € B such that I'(U) = L, R,..

Proof. Suppose I'(U) = L,R,., u a unitary in B. Then I'(U)e, =
L,R.e;, or f,= Ue, = ueu*, all . Thus fiue;, =u or Vu =u, all 1.
Therefore dim & = 1 if I'(U) is inner.

Next suppose dim€ =1 and let 0 =2 € &. Then R,iac* = Leiw* 80
that L’Leiz* = L}gnz*. For any element a e 5, L’Leiz*a = R, L, x* = L, Rz*
= L%L;*a so that Lieiz* = LeiL_;*. Similarly L}ef_x* = L;*L}i. Taking ad-
joints, we have ' '

(L, )" 2 (Le)*L, * = L.L, and (Lx, .)* 2 (L7)"(Li)* = Ly L. .

Therefore, using - to indicate strong product [7], L, - L, = L;, - L,.
Again taking adjoints, L, - L} = L} - L;. This implies L, - L, - L} =
L, - L; - L;, ; that is, the positive measurable operator L,L} commutes
with each L,. Thus every spectral projection of L,L} commutes with
each L,. But the {L;} are a self-adjoint set of generators for A and
A is a factor. Therefore each spectral projection of L,L* is either 0
or I, whence L,L* = 2I, 2 a positive constant. A similar argument
shows that L¥L, = 2I. Thus we have shown that L, is bounded and
that A-'2L, is unitary so that 2-'’¢ is a unitary element in BN L.

Let w = A"'?x. Then fue, =u, and hence weu® = f,. Therefore
the automorphisms I'(U) and L,R,. agree on the {e¢;} which are a set
of generators for (8,9, *); that is, I'(U) = L,R,.. Suppose now that
0+yelalso. Then ye DB, yy* = y*y = p1, ¢ a positive constant. » =
p "y is also a unitary e BN L and I'(U) = L,R,.. But this implies that
v = Cu, ¢ a constant ; that is, y = #*¢u. Hence dim £ = 1.

DEFINITION 1. For any orthogonal transformation U on 9, the sub-
space & of ® is called its characteristic subspace.

It is clear from Lemma 1 that the characteristic subspace depends
only on U and not on the choice of a basis {e¢;} for 9.

4. The determinant condition. In this section we will show that if
I'(U) is an even inner automorphism, then I — U is Hilbert-Schmidt.
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This will be achieved in a series of lemmas. We adhere to the notation
of §2.

LEMMA 2. Let U be an orthogonal transformation on O and let P
be the projection on its characteristic subspace. Then

lim det (2-'(I + U)e,, ¢) = (PL, 1) .
4 Kk, l€A

(Here “‘lim’’ means limit according to the set of finite subsets A of J,
directed upward by inclusion. The determinant is expanded with respect
to the total order on the elements of A.)

Proof. We first introduce some notation : f, will denote I'(U)e,;
P, = the projection on the invariant subspace of V, (see Lemma 1); if
A= {i, -+, 5} < +-+- <4,) then Py, =P, --- P, .

Since the V, mutually commute, the P, are projections which mutally
commute. Clearly P = strong-lim, P,. In addition, V=1, all 4.
This imples that P, = 2-'(I 4+ V,); that is, P,.a = 2"'(a¢ + f.ae;) for a € B.
Iterating this, we calculate that

Pl=273% fye;
BC A
where 7 is the cardinality of A. Hence (P,1,1) = 27" 3\ ,c, (25, f).
Fix B< A and suppose B = {j,, -+, 4,}(j, < --+ < J,). Then

(€5, [5) = ((25), 7(f5)) (see §2) = (91‘1 AR VAN I Jig N e fjs)
= det (¢, f)) = (_iet (ex, Ue,) = det (Uey, ¢,) .

Hence
(Pa1,1) = 27" 3 det (Ug, 2) ,

BC A k,lEB

which we recognize to be
det (2-'(I + U)e,, ) .
k,1€EA

Passing to the limit on A, we have the lemma.

Note that the lemma shows that lim, det , ,e,(27'({ + U)g,, ¢,) depends
only on U and not on the particular choice of basis. Hence we may
write det (2% + U)) without fear of confusion. This motivates the
following.

DEFINITION 2. An operator T on © will be said to have a determi-
nont if, for every choice of an orthonormal basis {e;};e; (J totally
ordered), lim, det, ,c(Te,, ¢, exists and is independent of the choice of
basis. We write det(7T") for the common limit. (Cf. the treatment in [5].)
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To make use of the conclusion of Lemma 2, we must prove a short
preliminary result. For any operator 7', o(T") will denote the spectrum
of T.

LEMMA 3. Let S be a self-adjoint operator on D and let {S,} be a
net of self-adjoint operators and {Q,} @ net of projections (same index
set) such that :

(1) S = strong-lim, S, ;
(2) S,=Q.,S.Q, and I = strong-lim, Q,.
Then o(S) < topological lim inf, o(S,|Q, D).

Proof. Let 1€ o(S) and ¢ > 0 be given. Since S is self-adjoint, we
can find a unit vector €  such that [|(S — AD)x|| < ¢/4. We may then
find an index «, such that a > «, implies ||(S,—S)x|| < ¢/4 and || Q. x|| =1/2.
Then ||(S, — A)x|| < ¢/2, whence ||(S, — 1Q)Q.2)ll < ¢/2. Set y, =
Q.2/l| Quzll. Then y, is a unit vector in Q,9. We have shown that
(S, — 2Q)y.ll < e. This implies that ¢(S,|Q.9) contains a point within
e of 2, a > a.

We shall apply this to the situation in '‘the following lemma.

LEMMA 4. Let the operator T on © have a determinant det(T) = ¢ #+ 0
and suppose ||T|| < 1. Then I — T*T is of trace class.

Proof. Chose a basis {¢;}.cs, J totally ordered. We shall take as
our index set the set of all finite subsets A of J. @, = the projection
on the subspace of © spanned by the ¢;,7 ¢ A. Clearly @, — I strongly.
Set S=17*T,5,=Q,T*Q,TQ,, and T,=Q,7Q,/Q,. Then S,— S
strongly and S,/Q,9 = TiT,. Lemma 3 asserts that o(7T"T) = topological
lim inf, o(T%T)).

Now det(T*T,) = (det T',)* so that the hypotheses of the lemma assert
that lim, det(T%5T,) = ¢ + 0 and ||T*T|| £ 1, implying each ||T3T,|| < 1.
Clearly o(T*T) and o(T%T,) = [0,1]. Given e < 1, let N(A,¢) = card-
inality of o(T%T,) N [0, ¢) and N(¢) = cardinality of o(T*T) N[0, ¢). Choose
a set A, such that det(T#T,) = 2-'¢* for A 2 4,. Since det(T*T,) is the
product of the eigenvalues of T*T,, we must have that N(4,¢) <
log 2-'¢/log e for A 2 A,. Therefore N(¢) < log 2-'¢*/log . This shows
that o(T*T) is pure point spectrum except possibly for the value 1 and
that o(T*T) has only 1 as a cluster point.

9 is the direct sum of the eigenspaces of T*T. Choose a new
basis, again called {e¢;};c;, adapted to this direct decomposition of 9.
We use the notation of the previous paragraphs (with respect to the
new basis). Each e, is an eigenvector belonging to an eigenvalue 4; of
T*T. For every finite subset 4 of J we have
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T4 = det(T*T|Q,®) .

But
T*T|Q» — T5T, = QT — Q)TQ,1 QD ,

a positive operator on @,9. Now the determinant of the sum of two
positive operators on a finite dimensional Hilbert space is greater than
the determinant of either operator. Hence

I 2 = det(T%T )

i€4
As A1, Jliea:i | since 0 <4, <1 for all 1 eJ. It follows that II;4;
exists. Moreover, [[, 4, = ¢’ > 0 since lim, det(T%T,) = ¢*. Therefore
II: 2, converges absolutely, so that S),(1 — ;) < oo ; thatis, I — T*T is
of trace class.

LEMMA 5. Let I'(U) L,R,., w & unitary operator of BN K. Then
I — U is Hilbert-Schmadt.

Proof. Fix a basis {e¢;}e;, J totally ordered. Each ¢, is a self-
adjoint unitary element of B. Hence for any finite subset A of J, ¢,
(notation as in § 2) is a unitary in B. For each ¢, we define Uci to be
that orthogonal transformation on © which leaves ¢; invariant and mul-
tiplies the other elements of the basis by —1. It is easy to see that
F(Uei) = L, R,. In general, we define U, to be UeiL --- U, where
A={iy -0} < --- <4,). Then I'(U,) =L, R, .; and U, e & *or
%~ and £’(U,,) is even or odd according as A has even or odd ecardi-
nality. It is clear that all the UeA are self-adjoint.

Let I'(U) = L,R,., u a unitary element of BN K*. Then u = >, 28,4,
the summation being extended over the A of even cardinality. Pick
a 1 0. Then u = e;(>, 14e,); 4, 's different constants, Setting v =
Siadies, v is a unitary in BN K* such that (v, 1) = iy = 2, # 0. Set
V="0U,U. Then

F( V) = ['(UeB)P(U) - (LeB*ReB)(LuRw*) - LcB*uR(eB*za)* - LvRu* .

Since UeB e &+, I — U will be Hilbert-Schmidt if and only if I — V is.
Thus we may assume without loss of generality that (u, 1) + 0.

If P is the projection on the characteristic subspace of U, our ag-
sumption implies that (P1,1) # 0. Setting 7 = 2-%(I + U), we conclude
from Lemmas 2 and 4 that I — T*T is of trace class. This says that

I- (1+U*)1+U)= ((21-U-U")
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is of trace class. Hence 2] — U — U*=(I — U)*(I — U) is of trace
class so that I — U is Hilbert-Schmidt.

5. Completion of proof.

LEMMA 6. If U e &+ [respectively < -], then I'(U) is an even [odd]
wnner automorphism.

Proof. We use the notation of Lemma 5. Let U e < * [respectively
%-]. Then the eigenspace M of U belonging to the eigenvalue —1 [+1]
is of even [odd] dimension. Let {e;}:c4 be a basis for M. Then U, e o+
[7]. Set V=U,U. It is easily seen that Ve &+ and that the
eigenspace belonging to —1 has dimension 0. If the lemma can be
proved for V, it will follow for U since U = UEAV will then be the
product of an even [0odd] and an even inner automorphism. Thus we
may assume without loss of generality that U e <+ and that U has no
eigenvectors belonging to —1.

9 is the direct sum of the eigenspaces of (I — U)*(I — U). These
spaces are all finite dimensional except possibly that belonging to 0.
These subspaces all reduce U and on the 0-eigenspace U = I. Using the
classical reduction of an orthogonal transformation on a Euclidean space
and remembering that U has no eigenvectors belonging to —1, we see
that  is the direct sum of a countable number of 2-dimensional sub-
spaces 9,(n =1,2, ---) and a subspace 9,, each of which reduces U, and
such that U is irreducible on every 9, and U =1 on 9,. Let {¢};c; be
a basis for $ adapted to this direct decomposition. With respect to this
basis

U, = (cos 0, —sin 0n> ’ 0<0,<n
sin 0, cos 0,

(where the basis elements of $ have been suitably ordered). We readily
calculate det (2-(I + U)) to be

T det (; <I n U)

o) =11 (52%).

For any operator T, we denote its Hilbert-Schmidt norm by ||T|l,.
Then

1= Ul = S = V)19l = 431 — cos 0,) = 831 (1 — -EL80).

Hence

=)
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converges absolutely. By Lemma 2, this says that (P1,1) 0, where
P is the projection on the characteristic subspace of U. Thus P 0
and I"(U) is inner by Lemma 1. Finally, I'(U) must be even. In fact,
suppose I'(U) = L, R, w unitary in BN K-. Since P is the projection
on the subspace generated by u« and since 1 € &*, we conclude P1 = 0,
a contradiction.

LemMMA 7. If I'(U) s inner, then U e <.

Proof. Suppose I'(U) is odd. Let ¢, be a unit vector in . Then
I'(U,) (notation as in Lemma 5) is odd. It follows that I"(U,U) is even,
so that I — U, U is Hilbert-Schmidt. Since I 4 U, is Hilbert-Schmidt,
sois I+ U=(I+U,)—-UI—-U,U).

Let now I'(U) be even [odd]. We know that I — U [respectively
I + U] is Hilbert-Schmidt. Suppose that the eigenspace of U belonging
to — 1[+ 1] is of odd [even] dimension. Then — U e % ~[respectively
< *] so that I'(—U)is also inner by Lemma 6. Therefore Q=21/"(U*(—U))
is inner. We shall be through if we can show that 2 is outer.

Suppose then that @ is inner. Since I — (— I) is not Hilbert-Schmidt,
Lemma 5 implies that £ must be odd. Let Q = L,R,., u unitary in
BN K-, Picking a basis {e;}ies;, J totally ordered, for 9, u = > Le,,
the summation being extended over all finite 4 & J of odd cardinality.

We let & be the characteristic subspace of — I and adopt the notation
of Lemmas 1 and 2. We have Pu — u for each 1 ¢ J. Now

Pu =1, ,,l(eA — eieAei> .
P 2

Since A has odd cardinality, e¢e.e, = ¢, or —e, according as 7€ A or
1¢ A. Hence 2, = 0 unless ¢ ¢ A for all 4; that is, all 1, = 0, which is
ridiculous. This concludes the proof of Lemma 7 and, with it, Theorem 1.

6. Automorphic representations of topological groups. The map-
ping I" is a representation of the orthogonal group ~7(9) of  as auto-
morphisms of the Hilbert algebra (9, D, *). Every automorphism of the
Hilbert algebra gives rise to an automorphism of its left ring A via
the isomorphism b <> L, of the bounded algebra B and 2. Conversely,
every * -automorphism of 9 gives rise to one of the Hilbert algebra
(by the uniqueness of the normalized central trace on ®B) and the cor-
respondance is univalent. Henceforth we identify these two types of
automorphisms.

Let &7 be the * -automorphism group of . If ae o7, Te A, T
denotes the image of 7' by «. We have then

Lg(u) = LT(u)b - [Y(U)LDF(U):‘:
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for Ue ~7(9) and be B. Now it is easy to check that the maps
U—TI'(U),be D, are continuous in the norm of & when (D) is given
the strong operator topology (as henceforth it shall be). Hence I is
continuous from <7(9) to the unitaries of & in the strong topology. It
follows that, for each T e 9, the map

U - Trw = [(UYTT(U)*

is continuous from () to A in the strong, and hence the weak
topology. " is thus a continuous automorphic representation, in the
following sense.

DEFINITION 3. Let 9 be a ring of operators, & its * -automorphism
group, G a topological group. A representation p of the abstract group
G into o7 is called a continuous automorphic representation on U if, for
every T e 2, the map g - T°@ of G into A (in the weak topology) is
continuous.

This continuity restriction is the weakest that can reasonably be
imposed on p and is independent of the particular spacial representation
of A. We note that if p is continuous in the above sense, then g — T?®
is strongly continuous. In fact, let g, —¢. Then

(Tp(aw) — Tp(g>)* (Tp(am) — Tp(a))
— (T*T)"“’“) _ (T*)P(gw)TP@) — (T*)p(aw)T;’(a) + (T*T)"(g) — 0 Weak]y.

Let now G be a topological group, r a continuous representation of
G into 2(9), U the left ring of our Hilbert algebra, and .o~ its auto-
morphism group. Any « e .7 which leaves O invariant will be called
special. p = I or is then a continuous representation of G as special
automorphisms. Conversely, let p be a special continuous automorphic
representation on 2. Then p = [" oz, where r is a representation of the
abstract group G into (D) (merely restrict p to ). Let a,be 9.
Then g — (z(9)a, b) = (L£”'1, b) is continuous so that r is continuous.

With this in mind, we see that Theorem 1 has the following easy
consequence.

COROLLARY. Let G be a locally compact group satisfying the second
axiom of countability. Then G has a special continuous automorphic rep-
resentation p such that +f p(g) is inner, then g = e.

Proof. Let r; be a faithful continuous representation of G into
some orthogonal group ~7(9)), . a real Hilbert space of countable
dimension ; e.g., the left regular representation of G (real functions).
Let & be the cardinality of a basis for . Then © is the {-fold direct
copy of , so that the direct sum of & copies of r,, call it r, can be
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taken as a representatation of G into #7(9). Since & is infinite, it is
clear that «(g)e%Z if and only if «(g) = I; that is, g =e. Set p=1"or.

It can also be deduced from Theorem 1 that for any special continuous
automorphic representation p of an open simple Lie group on A,
p~! (inner automorphisms) is central. But this will follow from the more
general statement in Theorem 2.

THEOREM 2. Let G be an open simple Lie group, W a finite ring of
operators, and p a non-trivial continuous automorphic representation of G
on . Then p(g) is inner only if g s central.

The essential step is Lemma 8 below. It, together with an exten-
sion of a result of Kadison and Singer [4] to continuous projective
unitary representation (for definitions, see below), will imply our theorem.
Let % be any ring of operators, .o~ its automorphism group, & the
subgroup of inner automorphisms, and %/ the group of unitary operators
in 2. The map =: Z — .o/ defined by T77 =UTU*, Ue % T e ¥,
is a homomorphism onto .27 whose kernel is the center & of Z If
7/ is given the strong operator topology, then = is a continuous auto-
morphic representation. We set F° = % [/«” with the topology induced
from % and, with some abuse of language, call &’ the projective
unitary group of A; any continuous group representation into & will
be called a continuous projective unitary representation on A. = clearly
induces a continuous isomorphism 7 of <° onto .o7.

Let r be a continuous projective unitary representation of the
topological group G on . Then p = 7o r is an inner continuous auto-
morphic representation of G on . Lemma 8 gives a partial converse.

LEMMA 8. Let G be a locally compact group satisfying the second
axiom of countability and let A be a ring of operators on a separable
Hilbert space . Let p be an inner continuous automorphic representation
of G on A. Then p is induced by a continuous projective unitary repre-
tation on A.

Proof. Let U, be the unit sphere of 2 in the weak topology. A,
is a compact separable metric space (since D is separable). G is a complete
separable metric space and bears its left Haar measure p. Let {7} be
a dense sequence in 2, and let & be the set of all (g, U) € G x U, such
that U is unitary and UT, = T2 U for all +. The argument of Lemma
2(b), section 6, § 2, Chapter II of [3] shows that & is a Borel, and hence
an analytic, subset of G x .. Let ¢ be the canonical projection of
G x U, on G. Since p is inner, ¢(®) = G. By Appendix V of [3], there
exists a measurable map (in the sense of Bourbaki [1]) g — U, of G into
A, such that (g, U,) € &, g € G.
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Thus we have a measurable map g - U, of G into % in the weak,
and hence strong, topology such that T% = U,/T,UF, all ¢. Taking weak
limits of {7}, we have T° = U,TUF for all T € %,;, and hence in 2.
Let ¢ be the canonical projection of %7 on & and set «(g9) = ¢(U)).
We know that g — p(g) = 7n(U,) = 7(z(g)) is a representation. Since 7 is
univalent, ¢ is a representation. Since ¢ is continuous, r is measurable
from G into Z”. Hence there exists a compact K = G such that p#(K) >0
and r| K is continuous. Using the representation property of r we see
easily that | KK-* is continuous. But KK is a neighborhood of ¢ in
G [10]. Therefore r is continuous, as desired.

Proof of Theorem 2. For any ring of operators, the group of inner
automorphisms is invariant in the full group of automorphisms. Let G
be an open simple Lie group and C its center. Since every proper
abstract invariant subgroup of G is contained in C, the theorem asserts
the non-existence of non-trivial inner continuous automorphic represen-
tations of G on finite rings. Suppose, on the contrary, that p is such
a representation on the finite ring 2 on the Hilbert space . We shall
first show that $ may be assumed separable.

For eace g € G choose a unitary U, e 2« such that U,TUF = T°@, T'e A.
Let {g,} be a dense sequence in G and let B, be the * -algebra (with
unit) generated by the U{,i over the complex rationals. 9B, is countable.
Let B be the weak closure of B,, a finite ring of operators. Clearly
each p(g;) leaves B,, and hence B, setwise invariant. The continuity
of p then implies that p(g) leaves B setwise invariant, g € G. Set
a(9) = p(9) |B. Then o is a continuous automorphic representation on
B and each o(g;) is inner by construction. The argument of the last
paragraph shows that o(¢) is inner, g e G.

We next assert that Ug;”z)Ug ;¥ = Ifor some,j. Otherwise U, U, =
Ung{,t, whence p(9:9;) = p(9,9:), all 4,7. Taking limits, we see that p
maps the commutator subgroup of G (= G itself) into the identity, a
contradiction. Let then z ¢  be a vector not invariant under all the
U‘;;"i’Ugj*. Set & equal to the closure of Bx and P equal to the smallest
central projection of B such that Pxr = z. & reduces every T'e¢ B and
the homomorphism 7'— T | K of B onto B|& is faithful and onto on the
direct summand BP of B. Since each o(g) is inner, each leaves the
center of B elementwise invariant. Therefore o induces by restriction
an automorphic representation o of G on BP and hence, via the above
isomorphism, on B|R. Clearly 5 is continuous and inner. It is also
non-trivial, since x ¢ & Lastly, B,z is a countable dence subset of &K.

We thus see, returning to the first paragraph of the proof, that
we can assume 9 separable. Lemma 8 then implies the existence of a
non-trivial continuous representation of G into the projective unitary
group & = Z'|% of A. We follow now the methods of [4]. Since



AUTOMORPHIC GROUP REPRESENTATIONS 677

9 is separable, 2 is countably decomposable and hence carries a faithful
normal positive (finite) central trace . The space 2 is then a pre-
Hilbert space in the norm ||7' |2 = o(T*T) and the unitaries of A form
a topological group %4 in the metric d(U, V) = || U — V||,. The identity
map of Z onto 74 is continuous, hence so is the identity map of &
onto % = Z4|%=. Therefore G has a non-trivial continuous representa-
tion into 2. The metric ¢ on %4 is both left and right invariant.
Hence <2 has a metric similarly invariant. The Lemma in [4] shows
that G has arbitrarily small invariant neighborhoods of the identity, an
impossibility. This contradiction proves Theorem 2.
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ISOMORPHISM ORDER FOR ABELIAN GROUPS

STEVEN BRYANT

In the theory of isometric embedding in metric spaces the following
theorem is proved: Let M be a metric space every n + 3 points of
which can be mapped isometrically into Euclidean n-space, then there
exists an isometry from all of M into Euclidean n-space. Because of
this theorem Euclidean n-space is said to have congruence order n -+ 3.
[1].

L. M. Blumenthal has raised the question as to whether a notion
analogous to that of congruence order could be developed for algebraic
systems. In this paper a definition of <somorphism order is introduced
for groups and a complete description of all Abelian groups having finite
or hyperfinite isomorphism order is obtained.

First a well known definition to avoid any possible misunderstanding
of the use of the concept of rank.

DEFINITION. A group G is said to have rank = if every finitely
generated subgroup can be generated by n or fewer elements and n is
the smallest natural number with this property.

For convenience we introduce the following definition.

DErINITION. If & elements ¢, g, --+, g: of @ group G generate a
subgroup of G which is isomorphic to a subgroup of a group H, we
will say that g, g,, -+, g; are embeddable in H and that the subgroup
generated by the ¢’s is embeddable in H.

Now we are ready for the definition of isomorphism order.

DEFINITION. A group G is said to have isomorphism order k if and
only if any group H is embeddable in G whenever every k of its ele-
ments are embeddable in G.

In the above definition & may be any cardinal number, however, in
this paper k will always stand for a natural number.

If A and B are two cardinal numbers such that A4 is less than or
equal to B then it is easy to see that if a group G has isomorphism
order A then G has isomorphism order B.

Every group has some isomorphism order, since if G is a group of
cardinality M then G has isomorphism order N where N is any cardinal

MVPresen"tgcrl to the Society November 17, 1956; received by the editors May 14, 1958,
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number which is larger than M. Since the cardinals can be well ordered
every group has a smallest isomorphism order. However, in what is
to follow, if we say G has isomorphism order ¢ we will not mean that
k is the smallest isomorphism order of G unless we explicitly say so.

The following lemmas lead to a theorem describing all Abelian groups
having finite isomorphism order.

LEMMA 1. Let k be a natural number and p @ fized prime. Let G
be a direct sum of k groups each of which is a cyclic group of order a
power of p or a group isomorphic to Z (P ). Then G has isomorphism
order k + 1.

Proof. Let H be a group every k 4 1 elements of which are
embeddable in G. H is primary and has rank 2. From this the conclu-
sion easily follows. (Exercise 49, [2])

LEMMA 2. An Abelian torsion group G has isomorphism order k if
and only of G is a direct sum of fewer than k subgroups of the rationals
mod one.

Proof. Let G be an Abelian torsion group having isomorphism order
k. Write G as a direct sum of primary groups that is G = >\ G,, where
p ranges over the primes and G, consists of all elements whose order
is a power of p. Now G, does not contain the integers mod p taken
k times for, if it did, arbitrarily large groups constructed by taking
direct sums of the integers mod p would (by hypothesis) be embeddable
in G. From this it follows that G, has rank less than k. Hence (exer-
cise 49, [2]) G, is a direct sum of fewer than %k subgroups of Z(P ),
and therefore G is a direct sum of fewer than % subgroups of the
rationals mod one by rearrangement of summands.

Conversely, let, G be a direct sum of fewer than %k subgroups of
the rationals mod one. Let H be a group every k elements of which
are embeddable in G, so that H is torsion. Write H = >’ H, and consider
H, Every k elements of H, are embeddable in G,, but by Lemma 1,
G, has isomorphism order %, hence H, is embeddable in G, and so H
is embeddable in G.

LEMMA 3. A torsion free Abelian group has isomorphism order k if
and only of it is & vector space over the rationals of dimension less than k.

Proof. Let G be a torsion free Abelian group having isomorphism
order k. Now G does not contain the direct sum of the integers taken
k times, for, if it did, the group consisting of the direct sum of the
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integers taken a greater number of times than the cardinality of G
would have every % elements embeddable in G and hence by hypothesis
would be embeddable in G, a contradiction.

Let m be the maximal number of elements of G which are independ-
ent over the integers. By what was just said m must be less than k.
Any m dimensional vector space over the rationals is embeddable in G,
by hypothesis. So G contains a vector space over the rationals of dimen-
sion m, call this space V. The space V is a divisible subgroup of G
and hence is a direct summand so G= A 4+ V. Let a be a nonzero
element of A. Since m is the maximal number of independent elements
of G, na is in V for some nonzero integer n, but since na is in 4 it
is zero and therefore a is zero and so G = V.

Conversely, if G is a vector space over the rationals of dimension
less than % and H is a group every k elements of which are embeddable
in G then H is embeddable in G. To see this, observe that H can be
embedded in a vector space over the rationals consisting of all couples
of the form (n,%,) when » is a nonzero integer and equivalence is
defined in the natural way, and the dimension of this space is less than
k for if not, there exist & elements of H not embeddable in G, which
completes the proof.

THEOREM 1. An Abelian group G has isomorphism order k if and
only if G s the direct sum of two groups, one torsion, the other torsion
Sfree. The torsion free group is a wvector space over the rationals of
dimension less than k, while the torsion group can be written as a direct
sum of fewer than k subgroups of the rationals mod one.

Proof. Let G be an Abelian group having isomorphism order £k.
The theorem follows from the lemmas if G is torsion or torsion free,
Now G contains a vector space V over the rationals of dimension n less
than k& where » is the maximal number of elements of G which are
independent over the integers. This holds by an application of the
argument of Lemma 3. Regard V as a group, then V is a direct sum-
mand of G since V is divisible. So G=A4 + V and A is torsion, for
if z is in A then ma is in V for some nonzero integer m, hence ma = 0.
Now apply Lemma 2 to A and obtain the necessity of the theorem.

To prove the sufficiency, let G be an Abelian group such that G =
T+ V where T= A4, + A4, + --- + A, and each A, is a subgroup of the
rationals mod one and s < k, and V is a vector space over the rationals
of dimension less than k.

We must show that if H is an Abelian group, every %k (or fewer)
elements of which are embeddable in G, then H is embeddable in G.

H does not contain % elements which are independent over the
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integers. Hence H contains at least one subgroup H, such that Ae H
implies rk ¢ H, for some natural number » and such that H, is embed-
dable in G.

Let T* be the direct sum of the rationals mod one taken s times.
Let G¥*=T*4+ V. We will show that if ¢ is an isomorphism from H,
into G* then if H, #+ H, ¢ can be proporly extended. Then the embed-
dability of H in G* can be obtained by a transfinite argument. Finally,
we will see that H is embeddable in G.

So let H, be a subgroup of H such that h € H implies r» ¢ H, for
some integer r and let F be an isomorphism from H, into G*. If H, =
H we are done, if not, let 2 ¢ H,, and m the smallest natural number
such that mh e H,.

Case 1, m =p, p a prime. Let M = [z|pz = F(ph),z € G*]. For
convenience, we will refer to M as the set of all the *‘ pth roots’’ of
F(ph), and note that M is finite, and that the number of elements in
M is exactly the number of “ pth roots’ of 0 in G*. Now, not every
element of M is in F(H,), for if so, a glance at the inverse images
will show that the inverse image of every element of M is a “‘pth
root’’ of ph. But F(ph) has at least as many ‘‘pth roots’’ in G* as
ph has in H. Hence & itself is in H, a contradiction.

We conclude that some element of M, call it 2z, is not in F(H,).
Furthermore, if 0 < n < p, then nz ¢ F(H,) and hence F' can be extended
in the natural way.

Case 2. m not a prime, then m = ¢t where ¢ is a prime. Apply
the argument of Case 1 to the set of all ¢th roots of F(m#).

This shows that H is embeddable in G*. But by Lemma 2, if TV
is the torsion subgroup of H, T is embeddable in 7. Hence it is easily
seen that H is actually embeddable in G, which completes the proof.

In the above theorem, nothing has been said about smallest isomor-
phism order. However, it is easy to see that, if G has smallest iso-
morphism order k& then either the torsion free summand of G has rank
k-1 or the torsion summand cannot be written as a direct sum of fewer
than k-1 subgroups of the rationals mod 1.

The next step up in the hierarchy of isomorphism order is given
by the following definition.

DEFINITION. A group G is said to have hAyperfinite isomorphism
order if, whenever every finitely generated subgroup of a group H is
embeddable in G, then H is embeddable in G.

The proof of the next theorem is similar to that of Theorem 1, and
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rests on the fact that a torsion group has hyperfinite isomorphism order
if and only if the rank of each primary subgroup is finite, while a
torsion free group has hyperfinite isomorphism order if it is a finite
dimensional vector space over the rationals.

THEOREM 2. An Abelian group G has hyperfinite isomorphism order
if and only if it is the direct sum of two groups, one torsion, the other
torsiton free. The torsion free group s a finite dimensional vector space
over the rationals while the torsion summand has no primary subgroup
of infinite rank.

REMARK. If the smallest isomorphism order G has is hyperfinite,
then there is no upper bound on the ranks of the primary subgroups
of G.

This concludes the analysis of Abelian groups having finite or hyper-
finite isomorphism order.” In a subsequent paper, we hope to give some
results concerning Abelian groups having transfinite isomorphism order.

Also, this notion can be carried over to other systems, such as
rings, a direction in which some preliminary results have been obtained.
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MODULES WHOSE ANNIHILATORS ARE
DIRECT SUMMANDS

CHARLES W. CURTIS

Introduction. Let B be a ring with an identity element, and let M
be a right B-module. The set of all elements b in B such that Mb = (0)
is called the annihilator of M, and will be denoted by (0: M). It is a
natural question to ask under what circumstances the ideal (0: M) is a
direct summand of B. If B is a semi-simple ring with minimum con-
dition, for example, then every ideal is a direct summand, and there is
no problem. We shall be concerned with a ring B, not assumed to be
semi-simple, which is a crossed product 4(G, H, p) of a finite group G
and a division ring 4, with factor set p. In particular, B may be the
group algebra of a finite group with coefficients in a field. The purpose
of this note is to obtain necessary and sufficient conditions on the
structure of the module M in order that its annihilator (0: M) be a
direct summand of B.

Our interest in the problem stems chiefly from the fact that the
the modules whose annihilators are direct summands turn out to be
precisely the modules for which the pairing defined in §2 of [1] is
regular in the sense of [1, p. 281]. The main results of [1], givenin §5
and 86, are based upon the assumption that the pairing is regular,
and establish a connection between the structure of the module M rela-
tive to the set of B-endomorphisms of M and the structure of a certain
ideal in B, called the nucleus of M, which is the uniquely determined
complementary ideal to (0 : M) when (0: M) is a direct summand.

2. Familiarity with crossed products and their connection with pro-
jective representations of finite groups is assumed (see [1, §2]). In
this section we recall some of the properties of a crossed product, and
introduce, in a more general, and at the same time, much simpler fashion,
the pairing defined in a special case by formula (7) of [1]. Let G =
{1,s,t, ---} be a finite group, 4 a division ring and B = 4(G, H,p) a
crossed product of G and 4 with correspondence s — s = s? from G to
the group of automorphisms of 4, and factor set {p,,}. There exist
elements {b, b,, ---} in B in one-to-one correspondence with the elements
of G, such that every element of B can be expressed uniquely in the
form 35,5, with coefficients & in 4. The multiplication in B is de-
termined by the equations

(1) bb, = bupse; €b; = biE, fed.

This p;iper was originally accepted by the Trans. Amer. Math. Soc. Presented to the
Society April 20, 1957; received by the editors of the Trans. Amer. Math. Soc., August
12, 1957.
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The fact that B is an associative ring implies that the factor set {p;}
satisfies the equations

(2) Ps,tuPt,u = pst,upT:,t ’

for all s, £, u in G. We shall assume that the factor set p is normalized
so that p,, = p,;, =1 for all ¢ in G; then b, is the identity element in B.

The additive group of B is a right vector space over 4 which we
shall denote by B™, if we define scalar multiplication by £ée 4 by means
of the right multiplication &,: o — «&. Similarly the additive group of
B can be regarded as a left vector space B® over 4. The elements
b, b, +-- form bases for both of these spaces. Because both spaces are
finite dimensional, B satisfies both chain conditions for left and right
ideals.

The mapping 1: 3. b6, — & is a linear function on both vector
spaces B™ and B® whose kernel contains no left or right ideal different
from zero. Therefore the mapping 4: A(a, b) = 2(ab) is a non-degenerate
bilinear form on B® x B®™ — 4. Using the bilinear form 4 it is easy
to verify (cf. [1, p. 279]) that B is a quasi-Frobenius ring, that is, B
satisfies the minimum condition, and every right ideal in B is the right
annihilator of its left annihilator, and similarly for left ideals.

A right B-module' M is a fortiori a right vector space over 4 since
4cB. For each s in G, the mapping 7', : x — xb, is a semi-linear trans-
formation belonging to the automorphism s in this vector space. The
correspondence s — T, defines a projective representation of G. Each
transformation 7', has an inverse T';* which is a semilinear transforma-
tion with automorphism s'. Let M’ be any left vector space over 4
which is paired with M to 4 by a non-degenerate bilinear form f. Let
us assume also that the semi-linear transformations T all possess trans-
poses T'F with respect to the form f, such that

(3) F(¢, 2T = F(TrP, =),

for all xe M, ye M’'. 1If we define (3 b)) = > T¥E¢), then M’ be-
comes a left B-module (see [1, p. 274]). When these conditions are
satisfied, we shall call the system (M’, M, f) a pair of dual B-modules.

LEMMA 1. Let (M', M,f) be a pair of dual B-modules. Then the
Sunction
(4) (¢, @) = S, T
18 a non-degenerate B-bilinear function on M’ x M — B (cf. [1, Proposi-
tion 1]).

1 We shall assume that the identity element of B acts as the identity operator on all
modules we shall consider.
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Proof. For any ue G we have

bu't (T3¢, x) = 2h0f(Tig, aT)bs?
= Sz:_:.}f(S[’, szTu)bmzlb;I = Tf(¢y .’U)

by (1) and (3). Similarly, for all u,
Tf(¢’ %'Tu)bil == Tf(S!}; x) .

Since the function z, is obviously bilinear as far as 4 is concerned, these
calculations establish that for all be B,

br(¢, ®) = t(b¢, x) and 7 (¢, xb) = (¢, )b .

The non-degeneracy of ¢, follows at once from the non-degeneracy of f.

To each right B-module M corresponds a two-sided ideal B, in B,
defined as follows. Find a left B-module M’ which is paired with M to
4 by a non-degenerate bilinear form f such that (M’, M, f) is a pair of
dual B-modules (for example, the space M’ of all linear functions on M
can be used). Then by Lemma 1, the set B, consisting of all finite
sums >\t ¢y, @), v.e M, x,e M, is a two-sided ideal in B. We shall
call B, the nucleus of M. We leave it to to the reader to verify that,
as our notation indicates, B, is independent of the choice of M’ and f.

We now define a right B-module M to be a regular module if B,
contains an element ¢ such that ¢b = be = b for all be B,. We remark
that the statement that M is a regular module is equivalent to the
statement, in the terminology of [1], that (M’, M, ;) is a regular pair-
ing (see [1, p. 281)).

3. This section contains some lemmas on regular modules. We re-
mark first that if M, and M, are isomorphic B-modules, then B, = By,
and hence regularity is preserved under isomorphism.

LEMMA 2, The nucleus B, and the annihilator (0: M) of a regular

module M are two-sided ideals in B generated by central idempotents, and
B=0:M)PBy.?

Proof. Let (M’, M, f) be a pair of dual B-modules, where M is the
given regular module. By Theorem 1, p. 282, of [1], we have B, =
(By),, and consequently B = B, + (0: M). Let ¢ = S 7,¢;, ;) be the
identity element in B,. Then ae B,N(0: M) implies a = ca =
St @) = 0, and the sum is direct. We have ¢ =1 —ce(0: M),
and because B, and (0: M) are ideals whose intersection is zero, ¢ and
¢’ are orthogonal central idempotents which generate B, and (0: M)

2 We take this opportunity to correct an error in [1]. The assertion made in example
(c) in §11, p. 291, of [1] that 0(0: M)”Bux for a certain regular module M is false and
the assertion (c) should be deleted from [1].
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respectively.

LEMMA 8. Let M be a right B-module such that M = M, @® M,, where
M, and M, are submodules. Let M’ be the space of all linear functions
on M, paired with M to 4 by the function f defined by f(¢, x) = {(%),
veM',xeM. Then (M', M,f) is a pair of dual B-modules, Let M and
M3 be the subspaces of M’ which annihilate M, and M, respectively.
Then M' = Mi{ @ My ; the restrictions f, and f, of f to M4 x M, and
Mi x M, respectively, are mnon-degenerate; and (M, M, f,), and
(M, M, f,) are pairs of dual B-modules.

Proof. The semi-linear transformations 7', all possess transposes T'f
relative to the form f, such that formula (3) holds, and consequently
(M’, M, f) is a pair of dual B-modules. The sets M- and M5 are sub-
spaces of M’ such that M NM;+ = (0). If ¢eM’, then ¢|M, = ¢, isa
linear function on M, which can be extended to a linear function ¢, in
M’ by setting ¢,|M, =0. Similarly we define ¢,. Then ¢ = ¢, + ¢,
and we have proved that M’ = Ms; @ M. The restrictions f, and f,
defined in the statement of the lemma are clearly non-degenerate. Finally,
since M; and M, are B-submodules, it follows from (3) that T¥(ML)=SM+,
¢ =1, 2, and hence T,|M, has the transpose T} |M;,, ¢+ =1, 2, and the
proof is complete.

LEMMA 4. Let M = M, M,, where M, and M, are B-submodules of
M. Then By = By, + By,

Proof. Let M’ be the space of all linear functions on M, and define
Sy fi, f. as in Lemma 3. Let 7, 7,, 7, be the corresponding functions
defined by (4). For we M, ¢e M, we have r,(¢, x) = ¢, x) and
By, E By. Similarly By, & B,. Now let xe M, and write z = z, + @,
;e M;; and let e M’', o = ¢, + ¢, e M7+, ¢,e M. Then since M,
and M, are submodules we have

(¢, @) = (P + &y (@0 + 2)0)0F
= > fil¢, 2:b)bst + Zfz(‘r/’zy x.b)b"
= Tfl(sbh 1171) =+ ng(S!’z, xz) ’
and the lemma is proved.
LEMMA 5. Let M = M, P M, where M, and M, are regular B-modules.
Then M is a regular B-module.
Proof. By Lemma 4, By = By, + By,. By Lemma 2, we have By, = ¢,B
where ¢; is a central idempotent, ¢ = 1,2. Then e = ¢, + ¢,—¢¢,€ By,
and be = ¢b = b for all be B,, proving our assertion.,

LEMMA 6. Lot ¢ be an idempotent in B. Then (Be, eB, A)is a pair
of dual B-modules.

Proof. We recall from § 2 that 4 is a non-degenerate bilinear form
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on B® x B® — 4. The restriction of 4 to B¢ x eB is also non-degen-
erate (see [1], p. 279). It remains to verify that for all ¢, d in B,

(5) Ae, dby) = A(bse, d)* .

For this it is sufficient to prove that if @ = > &b, = > b, then i(ab,) =
Ab,a) for all se G. We have A(ab,) = &,-1p,-1,, while

'{(bsa/)—s = Pg,s‘fijs—: f)is_lpgll,sés'lps_l,s
by formula (2) of [1], and by (2) above we have
pl,sp.g,s—l = ps,lps_l,s ’

and the formula (5) is proved.

4, Now we shall formulate and prove our main result. Because B
satisfies the minimum condition, B=B, @ --- P B,, where the B, are
uniquely determined indecomposable two-sided ideals, called the block
ideals® of B. 1f we write 1 = ¢, + .-+ 4 ¢, ¢, € B,, then the ¢; are mutually
orthogonal idempotents belonging to the center of B, and ¢, is the identity
element in the block ideal to which it belongs. For any right B-module
M, Me, is a submodule of M, and M is the direct sum of the modules
Me,. These submodules are called the block components of M ; the block
component Me; can also be described as the set of elements of M which
are left fixed by ¢;,. The block components of (B, +), where (B, +) is
viewed as a right B-module in the obvious way, are the block ideals
Be;. Each block component Bg, of B can be expressed as a direct sum
of the indecomposable right ideals ¢,B, ¢ = ¢,, which belong to the block.
It is known that two indecomposable right ideals ¢B and ¢ B belonging
to distinct blocks have no isomorphic composition factors. The direct
sum of a full set of non-isomorphic indecomposable right ideals ¢, B be-
longing to the 4th block component Bg, of B, or any right B-module iso-
morphic to this module, is called a reduced block component of B.

Our theorem is stated as follows.

THEOREM. Let M be a right B-module with annihilator (0: M). The
Sollowing statements are equivalent.

(A) (0: M) is a direct summand of B ;

(B) every non-zero block component Me, of M contains the ith reduced
block component of B as a direct summand ;

(C) M is a regular module.

Proof. The implication (C) — (A) is the content of Lemma 2. We
prove next that (A) — (B). Let B’ be a two sided ideal in B such that

3 For the concepts of block ideals and block components see [3], and the ‘references
given there.



690 CHARLES W. CURTIS

B=B ®0:M). By the uniqueness of the decomposition of B into
block ideals, B’ is a direct sum of certain of the block ideals Be;,. Let
Me, be a non-zero block component of M ; then Be, & B, and Me; is a
faithful Bs, module. Let ¢B be an indecomposable right ideal belonging
to the 7th block. By Proposition 4 of [1], eB contains a unique minimal
right ideal N =+ (0). There exists an element xe M such that «N = (0).
It follows that # — zu is a B-isomorphism of e¢B onto the submodule
P =xeB of Me,. We shall prove that there exists a submodule @ of
Me, such that Me, = QP P. Let M’ be the set of all linear functions
on Me;, paired with Me, to 4 by the non-degenerate bilinear form f, so
that (M', Me,, f) is a pair of dual B-modules. Let P! be the submodule
of M’ consisting of all elements ¢ € M’ such that f(¢, P) = (0). Then

(M'|P+, P, f) is a pair of dual B-modules, where f is the induced map-
ping on M'/PL x P. On the other hand, by Lemma 6, (Be, ¢B, 4) is a
pair of dual B-modules. Using the fact that eB is a finite dimensional
space, it is easily verified that Be and M’'/P! are isomorphic left B-
modules. By Theorem 1 of [2], Be is an (M;)-module, and consequently
there exists a B-submodule @ of M’ such that M' = P+ P . Let

= {zx|lve Me, f(Q,z)=(0)}. Then @ is a submodule such that
PNQ = (0). Moreover

M=(Pn@) =P +@Q)*=P+Q,
since P is finite dimensional and @ = (@')*.

The proof that Me, contains the reduced block component of Be, as
a direct summand is now proved by induction. Let Me, = RP S, where
R is isomorphic to a direct sum of a finite number of non-isomorphic
indecomposable right ideals belonging to the 4th block, and let ¢B be an
indecomposable right ideal in Be;, not isomorphic to any of the direct
summands of R. Let N Dbe the unique minimal subideal of e¢B. If
RN # (0), then by the previous argument E contains a direct summand
isomorphic to ¢B, which contradicts the Krull-Schmidt theorem. Thus
RN = (0), and SN = (0), so that S contains a direct summand isomorphic
to ¢B. This completes the proof of the induction step, and the implica-
tion (A) — (B) is established.

Finally we prove that (B)— (C). By Lemma 5, it is sufficient to
prove that each block component Me, of M is a regular module, and
for this it is sufficient to show that ¢; e B,; whenever Mg, = (0). Let us
consider a non-zero component Mes,. Let ¢B, ---,¢,B be a full set of
non-isomorphic indecomposable right ideals belonging to the ¢** block.
For each j, 1 <4 < s, there exists a B-direct summand P, of Me,; such
that P, = ¢;B. By Lemma 4, BP = B@ 3 & By:;. We prove that ejeBe .
By Lemma 6, (Be,, ¢,B, 1) is a palr of dual B-modules. We assert that

(6) e; = ta(ey, €5) .
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In fact, za(e;, e;) = > Aley, ¢;b)b;’, and if ¢, = > &,b,, then
A(GJ'! ejbs) = /I(ijs) = Evs_llus_l.s

while from b,-ib, = bp,-1, we have b;' = ps——lllsbs—l. From these remarks
(6) follows.

We have shown that ¢;e By.;. Since &; is a sum of idempotents e
such that eB is isomorphic to one of the ideals ¢;,B, 1 <j < s, we have
€, € Bye;, and Mg, is a regular module. This completes the proof of the
theorem.
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ON THE RADICAL OF A GROUP ALGEBRA

W. E. DESKINS

A basic result in the study of group algebras and characters states
that the group algebra (<) of a finite group © over the field F of
characteristic p += 0 has a nonzero radical R if and only if p is a divisor
of o(%’), the order of ¥°. This suggests that R is related in some
manner to the Sylow p-groups of % and that it may be possible to
define N in terms of these subgroups. In [6] Jennings showed that if
0o(<’) = p% then R is of dimension p* — 1 and has as a basis the set of
elements P, — 1. As a generalization of this define R’ to be the inter-
section of all the left ideals of (%) generated by the radicals of the
group algebras of the Sylow p-groups of ©@. Then R’ is a nilpotent
ideal of (%) (cf. [2]), and Lombardo-Radici has shown [8] that ' =
RN provided & has a unique Sylow p-group or o(%’) = pg where ¢ is
also a prime. Also, in [9] he demonstrated that if & is the simple
group of order 60 and if p = 2 or 3 then N is a proper subideal of 9.
In this paper it will be shown that R’ =R if one of the following
conditions is satisfied :

(A) < is homomorphic with a Sylow p-group of .

(B) % 1is a super-solvable group.

(C) Z is a solvable group with (¢(%), p*) = p.

In the last section of the paper an application to a related problem
is made. If & contains an invariant p-group then (%) is bound to
its radical R (i.e., if @ in A(Z") is an element such that aR = Ra = 0,
then ¢ is in R). This raises the question: If (%) is bound to its
radical R, does & contain an invariant p-group ? This is equivalent to
the question: Does ¥ contain an invariant p-group if % possesses no
irreducible representation of highest kind ? (An irreducible representa-
tion of highest kind is one whose dimension is divisible by the highest
power of p which divides o(%7).) It is shown that if %« is a group
such that " = R and if the Sylow p-groups of & are cyclic, then the
above question is answered affirmatively. Also an example iIs given
where the answer is negative.

1. Type A. Let & be a group of order of order ¢ = Ap®, (%, p)
=1, with a normal subgroup &7 of order . And let ¥ be an alge-
braically closed field of characteristic p. (The requirement that ¥ be
algebraically closed is only a convenience since the dimension of N is
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unaffected by any extension of the ground field.)

THEOREM 1. The radical R of the group algebra A(<€’) of the group
< over the field § equals N, the intersection of all the left ideals of
() generated by the radicals of the group algebras of the Sylow p-
groups of <.

Let <” be a Sylow p-group of « : then %/57 is isomorphic with
Z and ¥ is an extension of &7 by & Now A(F), the group algebra
of & over ¥, has the radical M which is of dimension p®— 1 over §
and has as a basis the differences P, — 1, all P, e P. Form I, the left
ideal of A(Z’) generated by M. The ideal M is of dimension A(p* — 1)
over ¥, and we propose to show that R, the radical of A(¥), is con-
tained in 9.

Now 2(5#), the group algebra of 5% over §, is expressible as
B,P.--PB, where B, is a simple ideal of A(S#"). Let B be one of
these, and let &%’ be the subgroup of <7 consisting of elements P, such
that P,BP;' = B, with ol P )=7r =9p°, 0 < ¢ < a. The elements H of
o7 are represented by H in B and the H form a group H homomorphic
with 54 Furthermore the elements of B can be expressed linearly in

terms of the elements of 577

If Pe &°, then P corresponds to an automorphism of B since
PBP-' =B, and since B is central simple this automorphism is an inner
automorphism of B. Thus P corresponds to a sum of elements of 57
and so leaves the conjugate classes of 57 invariant since these classes
commute with the individual elements of 5% Basically, therefore, we
are dealing with an extension & of 57 by a p-group .Z*’ in which each
element of &’ induces an automorphism A of 57 which leaves the
conjugate classes invariant. Since the order of 57 is prime to p it is
well-known [11, p. 123] that A is an inner automorphism of &2 Now
a result due to M. Hall [4, Theorem 6.1] implies that < is a direct
product of Z”’ and S and this leads to the conclusion that the elements
of .77’ commute elementwise with B. If Q = Zpie ' P;B, then the
radical Q' of L equals B times the radical of (.5”,), and therefore L’
is contained in IN.

If ¢ = p*° is the index of %’ in &7 then there are ¢ distinct ideals
B, in the decomposition of A(S7#") which form a set of transitivity T
for &} with B, =B. That is, PB,P7*e T if B,eT and P, e & and
furthermore, if B, B, e T, then there is a P, e < such that B, =
PB,P;*. Then the algebra T = >\ P8, all P,e & and B,e T, is an
ideal of A(%), and we assert that its radical is contained in M. To
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see this consider the coset expansion of .7 relative to &', & = 3. S,. 9"
= 3 Z'S;. Then clearly the algebra ¥’ = 3¢, S,Q’'S, is a nilpotent ideal
of ¥, while the transitivity of T implies that T — ¥’ is a simple algebra.
Thus %’ is the radical of ¥ and obviously is contained in k.

As the choice of B was arbitrary in the decomposition of A(Z#),
clearly the process above leads to the conclusion that R is contained in
M. Since the choice of & was arbitrary this enables us to conclude
that " 2 N. However N’ is known to be nilpotent (cf [2]), hence R’
= R.

2. Type B. A group < is defined to be super-solvable if it
possesses a sequence of subgroups ;=< D%, D .-+ D%, =1 such
that %, is normal in & and <&;/<,., is cyclic. If in addition each Z;/%;,,
is contained in the center of ¥/ <;,, then ¥ is called a nilpotent
group. A basic result concerning nilpotent groups states that a nilpotent
group is a direct product of its Sylow groups. And a principal theorem
on super-solvable groups states that a super-solvable group is an exten-
sion of a nilpotent group by a nilpotent group. (For these results see
Kurosch [7, pp. 216 and 228])

THEOREM 2. The radical R of the group algebra (<) of a super-
solvable group <& over the field ¥ equals N'.

By the theorems quoted above Z contains a normal nilpotent sub-
group <5 such that </ 2, is nilpotent while &, has a normal Sylow p-
group &;. Evidently &7 is normal in < since ¢, is a direct product
of its Sylow groups. Then the radical of A(.27) generates a nilpotent
ideal RN, of A(<’) and WA(Z") — R, is isomorphic with the group algebra
WZ|F) of /7. Now the group /. is a group of Type A which
was discussed in the preceding section. So if & is a left ideal of (<)
generated by the radical of the group algebra of &2 a Sylow p-group
of &, then A(Z) — & is a completely reducible left (< )-module since
Pl is a Sylow p-group of < [.&;. Hence RN = N.

3. Type C. Let Z be a solvable group whose order is divisible
by p to the first power only. Then £ possesses a sequence of sub-
groups &, =% D% D -+-- D %, =1 such that <, is normal in 7, and
2] Z.1 is a group of order ¢ where ¢ is a prime.

THEOREM 3. The radical RN of the group algebra (<) of the group
< over the field ¥ equals N'.

The proof will be by induction on =, the length of the series defined
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above. If n =1 the theorem is trivally true; so assume the result to
be true for groups of length less than ». Now consider %, which is
of length n — 1. If /%, is of order p, then the order of & is prime
to p and the result follows by Theorem 1. So we shall restrict our
attention to the case where </%; is of order q, (p, q) = 1.

Now by a theorem due to P. Hall [5] & contains a group 57 of
order ¢, where pt =g, the order of &. If &? is a Sylow p-group & of
form g, the left ideal of (%) generated by the radical of (7). Then
WZ)— =920 is a left < -module representable by A(2#) and is a
completely reducible A(<,)-module. For N, the radical of (<), is such
that RA(Z) is contained in ¥ and so R =0. So let O, be an
irreducible left < -submodule of Q. Then L may be written Q =
Q, + Q, where Q, is a left 9(<)-module and Q, N Y, = 0. Therefore
a projection 7' of Q onto L, exists such that T annihilates the elements
of Q, and is the identity operator on L, and such that 7 commutes
with (the representations of) the elements of (%)). Now form the
projection 7" = ¢t~* > H,TH;', summed over the ¢ elements of 5#. Then
T’ commutes with all the elements of < and hence the submodule
Q= T'Q of Q is a left A(<)-module. Furthermore L = L, + Q] where
0, NQ =0. Thus Q is a completely reducible left A(Z)-module and
so ¥ contains the radical of 2(<°). This proves Theorem 3.

4, A related problem. An algebra having the property that only
elements of the radical can be both left and right annihilators of the
radical has been termed a bound algebra by M. Hall [3].

THEOREM 4. If the group <& contains an tnvariant p-subgroup 7,
then the group algebra WA(<Z) of & over a field of characteristic p is «
bound algebra.

If &7 is of order p* = 2 and of index y, then the radical of A(<?)
generates a nilpotent ideal & of A(<”) of dimension y(x — 1). Now the
element P, + --- 4+ P,, where P, is in <7, annihilates & and is also in
the center of A(<°). Hence it generates an ideal J of order y which
is contained in ¥ and §J = JI = 0. Since (%) is a Frobenius algebra,
a result due to Nakayama [10] states that the set of all right anni-
hilators of & in A(2”) forms an ideal of dimension y. Hence & contains
all of the right annihilators of . Since § & R, & contains the right
annihilators of R, and so (<) is bound to NR.

This raises the question: If (<) is bound to its radical R =+~ 0,
does ¢ contain an invariant p-subgroup ? A partial answer is provided
by

THEOREM 5. If the Sylow p-groups of < are cyclic and if the
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radical N of (<) equals N then < contains an invariant p-subgroup
iof W(Z) is bound to N.

Let &7 and . be two Sylow p-groups of < and let & and &, be
the two left ideals of A(Z’) generated by the radicals of () and
A(.Z) respectively. Denote by »(J,) and 7(J,) the right ideals of (%)
consisting of all elements which annihilate &, and &, respectively, on
the right. Then since R < N\, and since »(R) < N it follows readily
that 7(3) and »($,) are contained in R = R'. In particular, the sum
S of the elements of < is contained in &,. Now the only elements of
3, which involve 1, the identity of ¢°, also involve other elements of
2, so that the belonging of S to &, implies that N < is a group
containing more than one element. Then, since the &7 are all cyclic,
it follows readily that the p-subgroup & N &% is normal in <.

Now 2(=’) is bound to RN if and only if & possesses no representa-
tion of highest kind (see [1]). If % is S;, the symmetric group of
order 120 and if p = 2, then the table of ordinary characters readily
demonstrates that £° has no representation of highest kind. Yet S; has
no invariant 2-subgroup. It may be noteworthy that this example is
related to the one given by Lombardo-Radici [9] to show that R is not
always equal to .
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EQUIVALENCE AND PERPENDICULARITY OF
GAUSSIAN PROCESSES

JACOB FELDMAN

1. Introduction. In [6] S. Kakutani showed that if one has equiva-
lent probability measures g, and v, on the o-field .7 of subsets of a
set 2,,¢=1,2,.--, and if ¢ and v denote respectively the infinite pro-
duct measures X,z and ®i>w; on the infinite product o-ring generated
on the infinite product set 2, then g and » are either equivalent or
perpendicular, and he obtained necessary and sufficient conditions for
equivalence to ocecur. The theorem here shown may be regarded as a
generalization of a case of the Kakutani theorem.

Similar dichotomies have revealed themselves in the study of Gaus-
sian stochastic processes. C. Cameron and W. T. Martin proved in [2]
that if one considers the measures induced on path space by a Wiener
process on the unit interval, then if the variances of the processes are
different the measures are perpendicular. This sort of result was
generalized by U. Grenander, starting from the viewpoint of statistical
estimation, and utilizing a Karhunen representation for the processes
involved. A wider sufficient condition for perpendicularity of the meas-
ures induced on path space by continuous Gaussian processes on the
unit interval was obtained by G. Baxter in [1]. Cameron and Martin
also examined the effect on the induced measure of taking certain types
of affine transformations of a Wiener process (see [3], [4]). I. E. Segal
extended their results in [8], and made the situation more transparent
by use of his notion of ‘‘weak distributions’’, and in a large class of
cases got conditions for equivalence.

In the present note it is shown that the equivalence-or-perpendicu-
larity dichotomy holds in general for pairs of measures induced by
Gaussian stochastic processes, and Segal’s necesssary and sufficient
conditions for equivalence are extended to cover the case of nonzero
mean. It has been pointed out to the author by C. Stein that one
could also give a proof, in the case of zero mean, by use of the techni-
ques of statistical testing of hypotheses.

2. Several lemmas. All Hilbert spaces mentioned will be over the
reals.

Definition 1. An operator T from Hilbert space H to Hilbert space
K will be called on equivalence operator if

Received April 7, 1958.
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(1) T is one-to-one onto, bounded, and has a bounded inverse.
(2) 7T =1+ H, where H is Hilbert-Schmidt.

LEMMA 1. IfA is a self-adjoint bounded invertible operator on H
then the following statements are equivalent :

(a) A—I is Hilbert-Schmaidt ;

(b) (A—I)* is Hilbert-Schmadt ;

(¢) A'—I is Hilbert-Schmaidt.
If A, B satisfy (a), then so does ABA.

Proof. The first part is clear from consideration of the eigenvalues
of the operators. For the second part: write A=I1+ K,B=1+ H.
Then ABA = (I + Ky + (I + K)H(I + K), and since the sum and product
of two Hilbert-Schmidt operators is Hilbert-Schmidt, ABA—I is Hilbert-
Schmidt.

DEFINITION 1. An operator T' from Hilbert space H to Hilbert space
K will be called an eguivalence operator if

(1) T is one-to-one onto, bounded, and has a bounded inverse ;

(2) v/7+7 — I is Hilbert-Schmidt.

LEMMA 2. Products, conjugates, and inverses of equivalence operators
are again equivalence operators.

Proof. That they are one-to-one onto, and bounded, is clear (in
the case of the conjugate operator, use the fact that the nullspace of
T* is the orthogonal complement of the range of T).

Let T be an equivalence operator from H to K. Let Q=1"T*T.
Then V =TQ ' is an isometry from H onto K, and 7 = VQ. Thus
T-'=Q'V*, and (T-)*(T") = VQ*V*. Since Q is the type of operator
occurring in Lemma 1, and (T-)*T-! is a unitary transform of Q-2
we get the result. Similarly, (I")*T™* = T'T* = V@*V*. Finally, let S
be an equivalence operator from K to L, and let P = /S¥S, U = SP-'.
Then

(STY*(ST) = (VQUPYY(VQUP) = PU*QV*VQUP = PU*QUP,
and again Lemma 1 tells us that /(ST)*(ST) is of the desired form.

DEFINITION 2. A function x on a measure space with measure g of
total mass 1 is called Gaussion if either

(1) =z is almost everywhere a constant, 7.
or

(2) there are numbers ¢ > 0 and r (depending on x) such that
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AL (e

Case 1 may be thought of as Case 2 with o = 0. Then in either case
we have

tolao(ow) =2} =

(the ““mean’” and ‘‘ variance’’ of ).

LEMMA 3. Let SfC .4 -+ be o-fields of subsets of 2, S the smal-
lest o-field containing their union. Let p, v be probability measures in
S such that p, = p| S5 is equivalent to v, = v|.55. Let A, A,, A, be
sets in & forming a Hahn decomposition of Q; that is, ¢ s equivalent
to v when both are cut down to subsets of 4, and p(4,) = (4,) = 0. Then
dp,|dy, converges almost everywhere with respect to p 4 v to dp/dv, if one
makes the convention dpldy =0 on 4, and + < on A,.

Proof. If A,e &, then

'd&fwd v) = p(4d;) = (4
SAZ- (e + v), (# +v) = p(4i) = p(4)

so that dg/d(p + v); is the conditional expectation of dp;/d(x + v) with
respect to .97 and the measure gz + . Of course ¢ -+ » has total mass
2, but this is inessential ; one can always normalize things if so inclined.
The Martingale convergence theorem then tells us that

dp

S Sl )

A+ vy d(e+ )

almost everywhere with respect to g + ». Similarly

- A,dyi - ‘,,i,d,‘u), .
(e + v) d(p + v)
Now,
dp, _ dp, Ay
dy; d(pe +v) [ dp+v),
S0
dey o dp | dv
dv, A +v) [ ety

where we understand the right hand side to be + o when the
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denominator but not the numerator is zero. Now dg/d(z + v) vanishes

precisely on Ay, and dv/d(y -+ v) vanishes precisely on 4,, all statements
being up to (# 4+ ») — measure 0. Whence the lemma.

The following fact is known, and we list it for reference :

LEMMA 4. If 2,2, -+ are measurable functions with independent
Gaussian distributions, mean 0, variance 1, then the product

h
Gy -+ @ €TP {»—1—~ > (1= a?)Z';-’}
2 i=1
converges to zero almost everywhere if
Sl —af =+ oo,
i=1

and converges to a finite non-zero limit almost everywhere if

3

11— atf < oo
1

4

n

This can be proven, for example, by applying Kakutani’s conditions
in [6] for equivalence of product measures.

LEMMA 5. Let R be a closed densely defined linear operator from
the Hilbert space H to the Hilbert space K. Then there is an equivalence
operator U from H onto H such that U*R*RU has pure point spectrum.

Proof. Let VRYR‘:S:A dF(2). Let F,=F(@2")— F(@2'-'), =
0, +1, +2..-, and let R, =1/ R*R | H,, where H, is the range of F,.
By a theorem of von Neumann in [7] there is a self-adjoint Hilbert-
Schmidt operator H; in H, whose Hilbert-Schmidt norm || H, ||, < 2-2%-3,
and such that R, + H, has pure point spectrum. Now consider the
equation R(I + K,) = R, + H,, that is R,K, = H,. Since R, is invertible
in H;, and, in fact, || B, ||™* < 27%+!, we get a solution K, = R;'H,, and

Kl = R H, |l < 2704 27208 < 2712,
Let K be defined on H by setting K|H, = K;. Then

K= > IKlEs > 272 =34.
~ooli< 400 — 00 <4< 400

so K is Hilbert-Schmidt, and U =1+ K is an equivalence. Further,

(I + K)*RYI + K,) has a complete set of eigenvectors in H,. But this

operator is precisely the restriction of U*R*RU to H,. Therefore

U*R*RU has a complete set of eigenvectors in H.
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We shall be considering linear spaces of Gaussian functions. In
taking the closures of such linear spaces in the L,(¢) norm, the functions
obtained as limits will again De Gaussian, as is well known and easy
to show, the means and variances of a limit being in fact limits of the
means and variances of the approximating Gaussian functions. Further-
more, the topology of convergence in measure on Gaussian functions
agrees with L,(#)-topology. This is shown in the mean zero case in
(81, and the general case can be reduced to this by showing the following :

LEMMA 6. Let @, be q net of p-measurable functions with Gaussign
distributions, converging in probability to zero. Then their means 7,
converge to zero.

Proof. Suppose this does not occur. Then by cutting down to a
subnet if necessary, and occasionally using —a; instead of «; if necessary,
we can assume that there is some ¢ > 0 such that 7, = c¢ for all 3.
Now,

[l{u) lx@'(a)) — T4 > 0} = #{CI) lxﬂ(w) — 7 < 0} [}
so that

o zo) > ¢t = plo |z, (0) > 1} = plo|z(w) < 71}
> plolz(w) < ¢} = pl{o||z(o)| <} .

The sets on the two ends of the inequality are disjoint, and that on

the small end has measure converging to 1, which gives the desired
contradiction.

LEMMA 7. Let 1, v be nonperpendicular measures. Suppose x; s
Gaussian with respect to p and v, x;— 0 in p-measure, and x, >  in
v-measure. Then x =0 a.e.(v).

Proof. Since w is Gaussian under v, the assumption that it is not
zero a.e.(r) implies that it is invertible a.e.(y). Then xw*—1 in v
measure, whereas «;, — 0 a.e.(#), which implies « | »,

3. The theorem.

THEOREM Let L be ¢ linear space of real-valued functions on & set
Q. Let S be the smallest o-field of subsets of Q with respect to which
all the functions in L are measurable. Let ¢ and v be probability megs-
ures on & Suppose all the functions of L are Gaussian via both meqs-
ures. Then either p~v or p | v. Necessary and sufficient for equivalence
s that if we let K be the linear space generated by L and the real-valued
constant junctions, then the p-equivalence clusses of functions in K are
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the same as the v-equivalence classes, and the identity correspondence
between the two types of equivalence classes in K s induced by an equiva-
lence operator between the Lp)-closvre of the p-equivalence classes and
the Ly(v)-closure of the v-equivalence classes.

Proof. First, assume g not | v. Let J = {x— Swdp |we L}. For

any function z, let a* (respectively 2”) denote the equivalence class of
2 modulo functions which are g-null (respectively »-null), and, for a set
S of functions, let S,, S, denote the corresponding set of equivalence
classes. §M will mean the L,(#) closure of S.

All elements in K are Gaussian under ¢ and », and the correspond-
ence 2 <> a* between K, and K, is one-to-one and closable, by Lemma
5. So there is a one-to-one closed operator T from a dense subspace
D, of KL to a dense subspace R, of K, such that Ta* = 2* for all  in
K. Further, given any ¢ in D,, there is some .S“measurable = such
that & = o* and T¢ = 2*. For choose z;, in K such that =y — &, a7 — TE€.
By taking subsequences, the convergence can be made a.e.(#) and a.e.(v)
respectively, so that € and T¢ must agree a.e.(z A v).

Let S=T|D,nJ,. Then S is closed, with dense domain in J, and
dense range in J_v, by Lemma 6. Lemma 5 gives us an equivalence U
in Jl such that U*S*SU has pure point spectrum. Choose y;, ¥, -«
such that the y* are a complete orthonormal set of eigenvectors for
U-*U-', with eigenvalues ai. Then the vectors U'y¢ are again orthog-
onal, and || U~ || = a;'. Let .54 be the sample space of y, ---, yy.
Put a new measure ¢ on & by letting ., ¥,, + - - be Gaussian, independ-
ent, mean 0, variance 1/a}, 1/a3, --- Then

L exp{% S —aet |,
i=1

which converges almost everywhere (2 + ») to a nonzero limit, so that
Yo~

Now we wish to show ¢/ ~v. We have a¥ = Sz* for w e J, so x”’=
(SU)U'a* = (SU)x*. Let S’ = SU. Then, taking a.e. limits on both
sides, one can for every & in Dy find some .5 -measurable = such that
" = ¢ and 2 = §’¢6. Now choose functions Z,, Z,, - -- such that Z* form
a complete orthonormal set of eigenvalues for S'*S’. The S'Z¥ = Z? are

also orthogonal and span J,. Define \Z,d, = 7, and S | Z; Pdv'= . Then
«; is never zero, since S’ is nonsingular, and \(Z, — r)(Z;, — r))dv =
aid,; — rir;, Where 6, is the Kronecker delta function. So the covariance

matrix of Z,, - .+ Zy in v-measure is given by C, = A% — Ty X 7, Where
Ay is the matrix
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)

;N is the vector (ry, - -, ry), and the notation _fN & ?N represents a dyadic
operator. C, is, of course, nonnegative definite. Let J; = r;/a;, and
Sy = (01, +++, ) S0 Oy = A5'7y, and A7*Cyd5;' =1 — 5y ® oy is a non-
negative definite matrix. By econjugating with an orthogonal matrix,

this can be transformed into the equivalent matrix I — || dy |[FE, where
10---0
E=(00---0].
0 «+e-0

The determinant of this, and hence of I — 8y ® &y, is I — ||y |P. Thus
Oyl =|Ay|*[1 — || 0y ||| = a2 -+ ag(1l — z.z{b‘%) ]

Observe that

8, = Ti (Z, 1)T ,
o7 V(4 Zs)

where (-, -) denotes the inner product in L), so that, since
1¢.Jy S6°<(1,1)=1. Thus |[Cy|#0, and Cy is nonsingular. The
inverse matrix to C, is
. 5 —g —2
Ci' = (A% — Tw @ Tw) = A + AT Tr @ A¥Tw
1-— ”Az_vlTNH2
Now let _#, be the sample space of Z, ---, Zy and let py, = ¢/'| %,
vy = vl _Zy. Then dvy/dp, is precisely

VICy 1 exp { 21, Zny = Cilw = ), B — 7o)}

where Z, = (Z, -+, Zy). A calculation shows that the exponent can
be written

13 . 1 2 = ;

—MZylP = WAV Zy P — o~ Oy, A5 Zyy — 17 — 1].

2 1 — oyl
Consider the convergence of dvy/dyy. At this stage one could already
conclude from the zero-one law that {w|dvy/dey(w)— 0} has measure
0 or 1, since the set is independent of Z,, --., Z, for each N. However,
we wish to get precise conditions for when this occurs.



706 JACOB FELDMAN
(a) Suppose

— 1P = oo

.Jg

S

s
i
R

Consider the factor
VIl exp {1 Zn I = 1| A I}

N
==t Dyep 25 (1- L)z,
=1 2 C(Z

i Ay b=

i=1

Applying Lemma 3, this factor converges to zero almost everywhere
with respect to 4. The other factor of dvy/dsy, namely

Oy, ASZ >— 1
exp L <<N, VAo~ 1Y),
2 1— {[oxIP
is clearly bounded above, so in this case dvy/dg, — 0.

(b) Suppose

0

13—1lz<00.

i=1|

i

Then, again by Lemma 3, the factor

N

1 exp I % (1 — l)Z”
A ees Ay 2 i o’

converges almost everywhere p/ to a finite limit. The remaining factor

is, except for a constant,

e @ T

Since >12.07 < 1, everything in sight converges, because 3.72,(8,/a;)* < oo.
So ¢/ ~y, and S’ is an equivalence from .TM to J,. Then S is likewise,
and therefore T is an equivalence operator.

Conversely if L consists of Gaussian functions under 2 and », and
the correspondence x, + ¢ <> @, + ¢, « € L, is the restriction of an equiva-
lence operator T' from K, to K,, then again choosing a basis of eigen-
vectors for T'| jﬂ, we get convergence of the Radon-Nikodym derivatives

to a non-zero limit, because of Lemma 3, and therefore get equivalence
of the induced measures.

4, An example. Let T be a set, 2 the set of all real-valued functions
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on 7. Let a(w)= w(), and let . be the smallest s-algebra with
respect to which all the =z, are measurable. Let g, v be measures on
% by each of which x, becomes a Gaussian stochastic process. Let

n(®) = [adp, pls, 1) = (adye — misyn(o),
n(t) = Sxtdu, o(s, 1) = Smsxbdu — n(s)n(t) .

Let = be a measure on 7 such that p, o, m, n, become measurable. De-
fine, for r-measurable f

11,51 = | [(ets, & + miymens )@y,
1,51 = ([, &) + nsme)r )7 @)

and [f,f]=[f,fl. + [,f]. Let L, be those f for which [f,f] < co.
Then we get inner products [f, g]., etc. on L,. Define Sf(t)x,dr(t) as
an L,(# -+ v) valued integral, for f e L,. This can be done, and in fact

11, 91 = (| r@ede) ([t )i

Lf 9l = S<Sf(t)x,dr(t))<Sg(s)xsdt(s)>dy .

Let L = {wl there is some f in L, for which z has as its ¢ + » equiva-
lence class|.f (t)x,dr(t)}. L is a linear set of functions, all Gaussian with

respect to either gz or v. Let g, = ¢|.% and », = v|.5% We know from
our theorem that g, and y, are either equivalent or perpendicular. Let
H and K be the Hilbert spaces gotten by completing the p-equivalence
classes of L, in L,(#) and the v-equivalence classes in L,(v). The inner
products then come from [f, g], and [f, g].. Necessary for equivalence
is that the identity map on L, induce an equivalence operator from H
to K, and in order to get sufficiency we just have to be sure that if
L, is enlarged to include multiples of the identity, the identity map
still induces an equivalence operator on the Hilbert spaces. This amounts
to requiring that 1 be an L,(x) limit of functions in L, if and only if
it is also an L,(v) limit.
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MINIMAL COVERINGS OF PAIRS BY TRIPLES

M. K. Fort, JR. AND G. A. HEDLUND

1. Introduction. Let F' be a finite set with n members, n = 8. An
F-covering of pairs by triples, which we abbreviate F-copt, is a set S of
triples of distinct members of F' which has the property that each pair
of distinct members of F' is contained in at least one member of S. If
n is a positive integer, n = 3, then an n-copt is an F-copt for the set
F=1{1,2---,n}. We assume throughout that » = 3.

For any finite set A, let C(4) denote the number of members of A.
An F-copt S is minimal if C(S) < C(S’) for every F-copt §'. If n=1
(mod 6) or n = 3 (mod 6), then a minimal n-copt S turns out to be exact
in the sense that each pair is contained in exactly one member of S.
Such exact coverings are called Steiner triple systems. The existence of
Steiner triple systems for all #» (of form 6~ + 1 or 64 + 3) was proved
by M. Reiss [2] in 1859.

Let S be a minimal n-copt and let C(S) = p(n). The main result
of this paper is obtained in §2, where we determine p(n) explicitly for
n=38 In §3 we discuss certain properties of minimal n-copts, and
give several methods for construecting minimal n-copts.

2. Determination of x(n). Let S be a minimal n-copt. For each
integer 4,1 < ¢ < n, we define «(z) to be the number of members of S
that contain <. Then

n

2 a(i) =3 ((S).

Since ¢ must appear in members of S with n — 1 other numbers we
have «a(i) = [n/2]. ([«] is the largest integer which is not greater than
2z.) Thus,

(1) pn) = (8) = [ 2]

Since (n/3) [#/2] may not be an integer, we define ¢(n) to be the least
integer which is not less than (n/8) [#/2]. It is easy to compute

7?6 if » = 6k,
n(n — 1)/6 if n =6k + 1 or n =6k + 3,
(n* +2)/6 if n =6k + 2 or n =06k + 4,
(n* —n + 4)/6 if n =6k + 5.
N Eﬁgived May 26, 1958. The preparation of this paper was sponsored in part by the

Office of Naval Research. Reproduction in whole or in part is permitted for any purpose
of the United States Government.

(2)  ¢n)=

709
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We may clearly improve (1) to
(3) wn) = C(S) = ¢(n) .

Our main theorem proves that in (3) equality holds for every n.

Let A4, B and C be pairwise disjoint sets, each having the same
number » of members. A tricover for the system (4, B, C) is a set K
of triples (x,y,2), € A,y e B,z¢e C such that each pair uv, v and v in
different ones of A, B, C, is contained in exactly one member of K.

LEMMA 1. If n is a positive integer and A, B, C are pairwise disjoint
sets each of which has n members, then a tricover K for (4, B, C) ewxists.
Moreover, if ac A, be B and ce C, then K may be chosen so that (a, b, ¢) € K.

Proof. Let the members of A, B, C be respectively
Ay Qyy =00y Uy 5 bubzy"'ybn; Ciy Cy***y Cp

where @, = a,b, = b,c, =¢c. We define K to be the set of all triples
(a;, b, ¢,) for which k=44 j—1(mod n), 1 <4,j,k <n. The set K
obviously has the desired properties.

REMARK. Any tricover for (4, B, C) must have n* members.

LEMMA 2. Let A, B, C be pairwise disjoint sets, each having n
members. Let p be an integer such that 0 < p < n/2. Let A*C A, B*CB,
C* c C be sets, each of which has p members and let K* be a tricover for
(4*, B*, C*). Then there ewists a tricover K for (A, B, C) such that
K*c K.

Proof. Let
A= { 1y a')., ’ an}
B = { 19 U2y b } ’
C = { 15 Cay %y Cn}

We can assume that

A* — {C(/lv a’“ e, a/p} ,
B* = {blv b, "'7b:n} ’
C*:{Clycz""ycp}'
For 1<4,7=<p, let m¥ be the unique integer k& such that
(a;, 0,,¢,) € K*. Clearly 1 <m} <p and the square array (m};) is a

Latin square of order p. It follows from a theorem of Marshall Hall
[1] that there exists a Latin square (my,), 1 <14, j < n, such that m,, = mf,
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154, <p. Let

K = {(dn, by, e )1 < 4,5 < m} .

The set K is the desired tricover.

In order to produce an inductive proof of our main theorem, it is
convenient to restrict ourselves to a special type of minimal %-copt for
the case n = 5 (mod 6). Also, for n = 3 (mod 6), there is a special type
of minimal n-copt whose existence we wish to establish, and it is possible
to include this result in our main theorem. For these reasons we intro-
duce the notion of ‘‘admissible F-copt.”’

An F-copt S is admissible if C(S) = ¢(n), n = C(F), and :

1) »=0,1,2, or 4 (mod 6);

(2) n =3 (mod 6) and S contains a set of pairwise disjoint triples whose
union is F'; or

(8) » =5 (mod 6) and S contains four elements of the form (a,d, 2),
(@, b,9), (a, b, 2), (z, ¥, 2).

THEOREM 1. If n is a positive integer, n = 3, then there exists an
admaissible n-copt.

Proof. Our proof is by induction on n. However, it is neces-
sary to prove independently that there are admissible n-copts for
n=3,5,17,9, 11, 13, and 15. We accomplish this by exhibiting such
admissible n-copts.

n=3 n=29 n=13
1,2,3) (1,2,3), (2,4,9) a, 2, 3) (3, 6,12)
4,5,6) (2,5,8) a, 4, 5) (3, 8,13)
(7,8,9) (2,6,7) 1, 6,13) (3, 9,10
n=>5 (1,4,7) (3,4,8) 1,7, 8 4, 6, 7)
1,2,3) 1,5,9) (3,5,7) a, 9,12) (4, 8, 9)
,2,4) (1,6,8) (3,6,9) (1,10,11) (4,12,13)
1,2,5) (2, 4,10) 5, 8,11)
(3,4,5) 2,5, 6) (5, 9,13)
n=11 2,7, 9 (5,10,12)
a, 2, 3y (3, 6,10 (2. 8,12) (6, 8,10
n="7 a, 2, 4 3, 7,9 (2,11,13) 6, 9,11)
1,2,3) (1, 2, 5) (3, 8,11) (3, 4,11) (7,10,13)
(1,4,5) (3, 4, 5) (4, 6,11) 3,5, 7 (7,11,12)
1,6,7) @, 6,7 @, 7, 8)
(2,4,6) 1, 8, 9) 4, 9,10)
2,5,7) (1,10,11) 5, 6, 9
(3,4,7) 2, 6, 8 5, 7,11)
(3,5,6) 2, 7,10 (5, 8,10)

@, 9,11)
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n=15

W, 2,9 2, 6, 8) (3,12,14) (6, 9,14)
(1, 4,14) (2, 7,14) 4, 5, 6) ( 6,12,13)
1,5, 9) 2, 9,11) 4, 8,13) (7,8, 9)
(1, 6,10) (2,10,15) 4, 9,10 ( 7,10,13)
a, 7,12) 3, 4, 7) (4,11,15) ( 8,11,14)
1, 8,15) @3, 5,11) G, 7,15) (9,12,15)
(1,11,13) @3, 6,15) o, 8,12) (10,11,12)]
2, 4,12) (3, 8,10) (5,10,14) (13,14,15)
@, 5,13) (3, 9,13) 6, 7.11)

Our proof now divides into six cases. In Case », 0 <r <5, we
assume that »n = r (mod 6), that » > 3 and that there exist admissible
m-copts for 8 <m < n. We then show that these assumptions imply
that there exists an admissible n-copt.

Case 0. Let S, be an admissible (r — 1)-copt having (1, 2, 3), (1, 2, 4),
and (1, 2, 5) as three of its members. If we delete (1, 2, 3) from S, and
add '

1,3,n),(2,8,n),(4,5,n),(6,7,n), -+, (n —2,n—1,n),

we obtain a set S of triples which is an n-copt. Since S, has
[(m — 1y —(n — 1) 4 4]/6 = (»* — 3n + 6)/6
members, S has

(n*— 3n + 6)/6 — 1 + n/2 = w6 = ¢(n)
members.

Case 1. We have exhibited admissible n-copts for » = 7 and n = 13.
Therefore we may assume n = 64 + 1, 2 > 2.

We consider two subcases.

Subcase i. Either A=0 or h=1 (mod 8). Then there exists k&
such that 22 +1 =6k + 1 or 22 + 1 = 6%k + 3.

Let

A =11, -+, 2h,n)

A= (2h + 1, -+, 4h, n}

A= {4h + 1, -+, 6k, n}
and let S; be an admissible 4,-copt for j =1,2,3. Let T be a tricover
for ({1,---,2n}, {2h 4+ 1, ---, 4R}, {4n + 1,---,6R}). We now define

S=8S,uUS,uS,UT. Itis easy to verify that S is an n-copt, and that
S has

3. @JLJFGJ)% + @hy = @(”6;.11 = o(n)

members.
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Subcase ii. h =2 (mod 3). In this case there exists & such that
2h +1 =6k + 5. We define A, 4,, 4; as above. Now, for 7 =0,1, 2,
we let S,., be an admissible A4,,,-copt such that S,,, contains a subset
R,., whose members are :

(25 + 1, 25 + 2, 25k + 3)
(25h + 1, 25h + 2, 2jh + 4)
(250 + 1, 25k + 2, n)
25h + 8, 25 + 4, n) .
Let T be a tricover for ({1,-:--,4}, {2h+ 1, -+, 2h 4},
{4h +1,---,4h + 4}), and let T* be a tricover for ({1,---,2h},
{2h 4+ 1, ---,4h}, {4h + 1, -.-,6h}) that is an extension of 7. Since

h =5, the existence of such a tricover follows from Lemma 2. We
next take an admissible copt U for

(1, e+, 4,20 +1,+++,2h + 4,40 + 1, ---, 4h + 4, n} .
Finally, we define

It is easy to check that S is an n-copt. The number of member of S is

3. [@Jﬂy —(@h+1)+4_ 4] + [(2h)2 _ 16] + 26

6

6

Thus, S is admissible.

Case 2. Let S; be an admissible (n — 1)-copt. We define S to be
the set of triples obtained by adding to S, the triples

(1,2,%),(3,4,%), ---,(n—3,n—2,n),(n~2,n—— lyn) .
Then, S is an n-copt and S has

(n—1n—-2), n _n+2
6 2 6

members. Thus S is admissible.

Case 3. There exists % such that n = 6% + 3. Since we have listed
admissible n-copts for n = 3,9, 15, we may assume # > 2. We consider
two subcases.
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Subcase i. A =0 or =1 (mod 3). In this case there exists k%
such that 22 +1 =6k + 1 or 22 + 1 = 6k + 3. Let S, be an admissible
(2h+1)—copt. For each triple (a, b, ¢) € S; we choose a tricover for ({3a—2,
3a — 1, 3a}, {3b — 2,3b — 1, 3b}, {3¢ — 2,3c— 1, 3¢}). The union of all
such tricovers, together with the triples (1, 2, 3), (4, 5,6),---,(n—2,n—1, n)
is an n-copt S. The number of members of S is

9. _,(2@:%1,) "2 (2h + 1) = (2h + 1)3h + 1) = ,?@_.(?}6:1) )

If follows that S is admissible.

Subcase ii. h = 2 (mod 3). In this case there exists & such that
2h 4+ 1 =6k + 5. We choose an admissible (22 + 1)-copt S, that con-
tains the triples (1, 2, 3), (1, 2, 4), (1,2, 5), (8,4,5). If (a,b,¢) is any
other member of S, we choose a tricover for ({3a — 2, 3a — 1, 3a},
{38b — 2,30 — 1, 3b}, {3¢ — 2,3¢ — 1, 3¢}). Let S, be the 15-copt exhibited
at the beginning of our proof. We now define S to be the set whose
members are the members of S,, the members of the chosen tricovers,
and the triples (16, 17, 18), ---, (. — 2, » - 1,n). Sis an n-copt, and the
number of members of S is

54 o[ E V=@ AN +4_ ], no15 _an=1)

Since S has (1,2,38),(4,5,6), «++,(n — 2,n — 1,n) as members, S is
admissible.

Case 4. For this case, the construction is exactly the same as in
Case 2.

Case 5. We first observe that numbers of the form 64 -+ 5, 2 a
non-negative integer, form the same set as numbers of the form 3s — 4,
s an odd integer and s > 1. We have listed an admissible 5-copt, and
an admissible 11-copt. Thus, we may assume » = 64 + 5 = 8s — 4,8 > b.
We consider two subcases.

Subcase i. There exists k& such that s =6k 4+ 1 or s=6k-+3. In
this case, we let
A =1{1,---,8—2}
A, ={s—1,.-+,28 — 4}
A; = {25 — 8, -++,35 — 6} .
There is a tricover K of (A, A,, 4;) such that (1,s — 1,2s — 3) € K. For
3 =1,2,3 we define
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R, =A,U {3s— 5,3 — 4} .

and let S; be an admissible R;-copt such that (1,3s —5,8s —4)e S,
(s—1,3—53—4)e S, and (2s— 3,35 —5,3s —4)e S;. We define
S=KUS, US,US,. Itis easy to see that S is an n-copt, and that S
has

(s — 2) + 3s(s — 1) _ 33"’—93—[—8“21112 n 4+ 4

6 2 6

members. Since (1, 3s—5, 3s—4), (s—1, 3s—5, 3s—4), (2s—3, 83s—5, 3s—4),
(1,s — 1,25 — 3) are members of S, S is admissible.

Subcase ii. There exists &k such that s = 6k + 5. We define

A = {1, -, 58— 2}
A, ={s—1,---,25 — 4}
A, = {28 —38,--.,3s — 6}
and let B, = A; U (8s — 5,8s — 4} for 4 =1,2,3. By the inductive hy-

pothesis, there exists an admissible R;-copt S, such that S; contains the
set B;, where

B =1{1,2,3),(1,3s — 5,35 — 4),(2,3s — 5,35 — 4),(3,3s — 5,3s — 4)} ,
B,={(s—1,8s+1),(s—1,35— 5,35 —4),(s,3s — 5,35 — 4),
(s+1,3s — 5,35 — 4)} .
B, = {(2s—3,2s—2,25—1),(2s—3,3s—5,3s—4),(2s— 2, 3s— 5, 3s — 4),
(2s — 1,35 — 5,35 — 4)} .
Let G={1,2,8,s—1,s,8+1,2s—3,2s — 2,25 — 1,35 — 5, 3s — 4}.
G has 11 members, and hence there exists an admissible G-copt M.
We choose a tricover 7, for ({1,2,3}, {s—1,s,8+ 1}, {2s — 3,

2s — 2,2s — 1}) and extend T, to a tricover T' for (4, 4,, 4;).
We now define

S:(Sl—Bl)U(Sz“BZ)U(S3_BS)UMU(T_Tl)-

It is a routine matter to verify that S is an n-copt. The number of
members of S is

3[3_2—_S+_4~4]+19+[(3_2)2_9:l:?3:,9i+£:nz‘ﬁﬂ,
6 2 6

Since SO M and M is admissible, it follows that S is admissible.

3. Properties of minimal n-copts. Let S be a minimal n-copt. If
n=r (mod 6), for r =0, 2, 4, 5, then the covering is not exact and some
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pairs must be contained in more than one member of S. However, it
is possible to state precisely the way in which this sort of ‘‘multiple
covering > takes place. Our results are contained in the next three
theorems.

THEOREM 2. Let n =6k, and let S be an n-copt for which C(S)= ¢(n).
There exists a partition of {1,2,.--,n} into 3k pairs P, P, +-+, P,
each of which i contained in exoctly two members of S. Every other
patr (u,v),1 S u < v =n, is contained in exactly one member of S.

Proof. For 1 =j =<mn, let f(j) be the number of members of S that
contain 7. It is clear that f(j) is at least 7/2, so that f(j) = »/2 + 9(5),
9(j) = 0. We obtain

jzif(j) = 3¢(n) .

Thus

We see that g(j) =0 for j=1,---,n and f(J) = n/2. Since for each
I # 4 there is at least one member of S which contains (7, k), there
must exist j* # j such that (J,7*) is contained in exactly two members
of S, and (j, k) is contained in exactly one member of S for j + k = 5*,
Moreover, j** =j, and hence the pairs (J,5*) are the n/2 pairs
Pany "'yPBIc-

THEOREM 8. Let n =6k + 2 or n =6k + 4, and let S be an n-copt
Jor which C(S) = ¢(n). There exist nj2 + 1 pairs Py, -++, Py which
are contained in exactly two members of S. Every other pair is contained
o exacily orne member of S. There exisis an tnteger m which ts conlained
i exactly three of the pairs Py, «++, Py, Every other integer is con-
tained in exactly one of the pairs P, ««+, Pyt

Proof. Let f(j) be the number of members of S that contain the
integer j. Since f(j) = n/2, we can write

FG) = 32@ +9(G), 9@ =20.

Then
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2 . 72 n . " 2
20) =5+ 2 90) =3 - ¢(n) = ot 2

Thus >7..9(j) = 1. There exists an integer m such that g(m) =1 and
9(4) = 0 for § + m.

Now suppose j # m. There must exist j* such that (4, 7%) is con-
tained in exactly two members of S, and (4, ») is contained in exactly
one member of S for j # h # j*.

Since there are n/2 4+ 1 members of S that contain m, and each pair
(m, j) is contained in at least one and not more than two members of
S, there exist a, b, ¢, such that (m, a), (m, b), (m, ¢) are each contained
in exactly two members of S, and (m,j) is contained in exactly one
member of S if j+#a,7 #b, and 7 + c.

If 7 is a member of T = {1.---,n} — {m,a, b, ¢}, then j** =j.
Hence T is partitioned into pairs P, P, -+, Po-», €ach of which is
contained in exactly two members of S. These pairs, together with
(m, a), (m, b), (m, ¢) form the set P, «-+, Pysi1-

THEOREM 4. If n =6k +5 and S is a minimal n-copt for which
¢o(n) = (n* — n + 4)[6, then one pair ts contained in three members of S
and every other pair is contained in exactly one member of S.

Proof. For 1 <35 <n, we define f(j) to be the number of members
of S that contain j. Clearly f(j) = (n — 1)/2. We define g(j) = f(j) —
(n — 1)/2. Since 3V7., f(j) = 3¢(n) = (w* — n + 4)/2, we obtain

SL06) =2

There exists 7, such that g(5,) > 0. Since there are more than (n — 1)/2
triples of S that contain j,, there exists j, such that the pair (4, 7.) is
contained in at least two triples (51, 7 74), (41, 72, 4). The integer j, must
be in triples with n — 4 integers other than j, J;, j,, and it requires at
least (n — 8)/2 triples to satisfy this condition. Thus f(5,) = (» + 1)/2 and
9(4) > 0. We now see that g(j,) =¢(j,) =1 and g(j) = 0 if 4, # j # 4..

It now follows that if (u, v) is a pair for which g(u) = 0 or g(v) = 0,
then (u, v) is contained in exactly one member of S. Since 3¢(n) =
n(n — 1)/2 + 2, the pair (4, j.) must be contained in three members of S.

Our Theorem 1 is of a constructive nature, and indicates how
minimal n-copts can be constructed out of minimal m-copts for m < n.
There are other methods, however, of constructing minimal n-copts out
of minimal m-copts for m < n. We give a2 lemma and theorem due to
Reiss [2] which are useful in this connection. Our final theorem is
analogous to the Reiss Theorem.



718 M. K. FORT, JR. AND G. A. HEDLUND

REiss LEMMA. Let n be a positive integer. Let
P={u,v1=2u<vZ2n}.

Then there exists a partition of P into sets S, Sy, «++, Sy-1, each contain-
wng n elements, such that for each i,¢=1,2,+--,2n — 1, the coordinates
of the n pairs in S; constitute the integers 1,2, «+-, 2n.

Proof. Let j be an integer such that 1 <j < 2rn — 1. We define
Ty={@b0ll<a<b<j+1and a+b=j+2}
and
RB={a&bdli+1<a<b<2nand a+b=j+2n+1}.

Let S,,., = T,,-;. For j even, 1 <j5<2n— 2, let

S, =T,UR; U {(j_“;,%, Zn)} .
For j odd, 1 <7< 2n — 8, let

S,=T,UR,U {(H_lz_ﬂ%n 2n)} .

It may be verified that the sets S, have the desired properties.

REIsS THEOREM. Let m be odd and let S be an m-copt for which
C(S) = ¢(m). Then there exists a (2m + 1)-copt T such that T D S and
C(T) = ¢(@m + 1).

Proof. Let P= {(u,v)lm <u <v=2m+1}. We use the Reiss
lemma to partition P into sets S, ---,S,, each containing (m + 1)/2
elements, such that for each ¢,¢=1,2, .-+, m, the coordinates of the
(m + 1)/2 pairs in S; constitute the integers m +1,m + 2, ---,2m + 1.
We now define

T=SU{@G 74 kI1=<i=<m and (4,k) € S} .
It is easily verified that T is a (2m + 1)-copt. If m =1 or m = 3 (mod 6),
then

c(S) = ﬁ('@g—_l) i m(m2+ 1) _ 4w (—51— 2m _ (2m +61)(2m) —o@m +1).

If m =5 (mod 6), then

C(S) = m~g¢ +1 f@(%il) _ 4m £ §M+4
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THEOREM 5. Let n be an even integer and let S be an n-copt for
which C(S) = ¢(n). Then there exists a 2n-copt T such that C(T) = ¢(2n)
and S c T.

Proof. According to the Reiss Lemma there exists a partition of
the set

P={u,v)in+1=2u<v<2n}

into » — 1 sets A,, 4,, --+, A,-, such that for each ¢,¢=1,2, ---,2 — 1,
the coordinates of the /2 pairs in A; constitute the integers
{n+1,---,2n}. Let 4, = A4,-,, and let

T=8SU{G3kli=12 -+, n; (G ke, .

It is easy to prove that T satisfies the desired conditions.
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ON THE THEORY OF (m, n)-COMPACT
TOPOLOGICAL SPACES

I. S. GAL

In a recent paper I introduced the following generalization of the
notion of compactness :

A topological space X is (m, m)-compact if from every open covering
{0} (tel) of X whose cordinality card I is at most n one can select a
subcovering {Oi;} (Ged) of X whose cardinality card J is at most m.

A similar definition was introduced earlier by P. Alexandroff and
P. Urysohn [1]. If no inaccessible cardinals exist between m and n the
two definitions are equivalent. The present definition has the advantage
that in applications the question of the existence of inaccessible cardin-
als does not generally come up. The basic results on (m, n)-compact
spaces were published by me in [8] and a detailed study of generalized
compactness in the Alexandroff-Urysohn sense was made by Yu. M.
Smirnov in [14] and [15]. The special case m = o and n = c was first
studied much earlier by C. Kuratowski and W. Sierpinski in [13] and
[10]. These spaces are generally known as Lindelof spaces.

The present paper contains four types of results on (m, n)-compact-
ness which were obtained since the publication of [8]. The problems
and the principal results are stated in the beginnings of the individual
Sections 1, 2, 3, and 4.

The following notations will be used : 4 and A’ denote the closure
and the interior of the set A. The symbols O and C stand for open
and closed sets, respectively. ¢ denotes the empty set. N, is an arbi-
trary neighborhood of the point x and O, denotes any open set con-
taining . Filters are denoted by &, nets by (x,) (d € D) where D
stands for the directed set on which the net is formed. The set of
adherence points of & is denoted by adh & . Similarly the set of
adherence points of a net is denoted by adh(x,). The set of limit points
is denoted by lim & and lim (w,), respectively. A topological space X
is called normal if for any pair of disjoint closed sets 4 and B there
exist disjoint open sets O, and O, such that 4 £ O, and B < O,.

Uniform structures for a set X will be denoted by 2. The symbol
Ulx] stands for ¢ the vicinity U e 7/ evaluated at x e X” so that
Uzl =ly: (#,y) e U]. The composition operator is denoted by o and
80 U o V consists of those ordered pairs (z,z) € X x X for which there
is aye X with (x,y) e U and (y,2) e V.
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1. Characterization of (m, n)-compactness by filters and nets. A
topological space X is compact if and only if every filter .# in X has a
non-void adherence. A similar characterization of compactness can be
given also in terms of nets (x,) (d € D) with values in X. As a matter
of fact it is sufficient to prove only one of these propositions. For one
can associate with every filter &% in X a net (x,) (d € D) with values
in X such that adh & = adh (z,) and lim & = lim(x,) and conversely
given any net with values in X there is a filter %4 in X having the
same adherence and limit as (x,) (d e D). The equivalence of filters and
nets relative to adherence properties is due to R. G. Bartle [3] and the
equivalence relative to both adherence and limit properties is discussed
in [9].

It is natural to ask whether (m, n)-compactness can be character-
ized in term of filters and nets. We shall prove here that such charac-
terization can be given both in terms of filters and nets. Namely for
every pair of cardinals m < n a class of filters called (m, n)-filters can
be selected such that X is (m, n)-compact if and only if each of these
filters has adherence points. Similarly we can define the class of (m, n)-
nets with values in X such that X is (m, n)-compact if and only if
adh (¢,) is not void for every one of these nets (x,)(d € D). This in-
dicates that there is a natural correspondence between the class of
(m, n)-filters and the class of (m, n)-nets and one can expect that these
two classes exhibit the same adherence and limit phenomena. However
it will be seen that this is not the case. Hence if we consider filters
and nets in a topological space X not as whole classes but in their finer
classification then their behavior relative to convergence is not the same.

In the nexi definition we use the concept of *‘m-intersection pro-
perty ”’. A family {C,}(¢ € I) of subsets of a set X is said to have the
m~intersection property if every subfamily of cardinality at most m has
a non-void intersection. If every finite subfamily of {C;}(: € I) has a
non-void intersection we say that the family has the finite intersection
property or I-intersection property.

DEeFINITION 1.1. A filter & is called an (m, n)-filter if it has the

m-intersection property and if it has a base <# of cardinality card
F < n.

If & is a filter which has a base of cardinality at most » then
# is called an n-filter or an (1, n)-filter. If the filter % has the m-
intersection property we say that & is an (m, «o)-filter. A (1, «)-
filter means a filter in the usual sense.

DEFINITION 1.2. A directed set D is called an (m, n)-directed set if
every subset SS D of cardinality card S < m has an upper bound in
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D and if card D < n.

If every subset S&D of cardinality card S <m has an upper
bound in D or in other words if for every S with card S < m there is
a de D such that s < d for every se .S then D will be called an m-
directed set or an (m, oo )-directed set. If card D < n we speak about
a (1, n)-directed set. A (1, «)-directed set means a directed set in the
usual sense.

DEFINITION 1.3. An (m, n)-net (x,)(d € D) with values in a set X
is a function # defined on an (m, n)-directed set D whose funection
values z, belong to the set X.

If the directed set D is linearly ordered we call (x,)(d € D) a line-
arly ordered (m, n)-net.

It is known that filters and nets exhibit the same convergence and
adherence phenomena. The following lemmas show that the same holds
for the more restricted class of (m, oo )-filters and (m, c)-nets:

LEMMA 1.1. Let X be a topological space and let (x )(d € D) be an
(m, n)-net in X. Then there exists an (m, n)-filter % in X having the
property that adh % = adh (x,) and lim & = lim (x,).

Proof. For every de D we define B, =1[xs:d < é]. Since D is
an (m, n)-directed set the family <2 = {B,;(d € D) has the m-intersec-
tion property and card <% < n. Let # be the (m, n)-filter generated
by the filter base <%. One shows that & satisfies the requirements.

LeMMA 1.2. Let F be an (m, «)-filter in « topological space X.
Then there is an (m, «)-net (x,)(d e D) with values in X and having the
property that adh (x,) = adh & and lim (x,) = lim #

Proof. Let us consider the set D of all ordered pairs d = (x, F)
where x € FFe 4 We say that d, < d, if F,2 F,. Under this ordering
D becomes an (m, «)-directed set. In fact if d, = (a,, ;) for 1€ I and
card I < m then d, < d for every d = (x, F') where x € F'= NF,e Z
An (m, o )-net can be defined on D with values in X by choosing x, =«
for every d =(x,F)e D. Let zelim ¥ and let N, be arbitrary.
Then there is an F'e & such that S N,. Hence if ¢ = (¢, @) satis-
fies d < 0, or in other words if @ S F' then ;s = £ e @S FFES N, and so
x i8 a limit point of (x,)(d € D). Conversely let x e lim (x,) and let NV,
be given. Then there is a d = (x, F') such that x; ¢ N, for every o
satisfying d < 6. Using this for every o6 = (¢, F)(§ ¢ F') we see that
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xs = £ e N, for every £ e I' and so F= N,. This shows that x € lim .
and lim (z,) = lim .

Now we suppose that z € adh &7 so that N, N F'#¢ for every neighbor-
hood N, and for every Fe ¢ Given N, and d = (x, F') we choose
§in N, N F and consider 6 = (§, F'). Then d <6 and ;s =&6e N, and
so xeadh(x,). On the other hand if xeadh (x;) then given F'e & and
N, there is a d e D such that d =(x, /) <6 =(50) and a5 N,. In
other words z: =£6e @ NN, EF NN, and so F and N, intersect for
every F'e 7 and for every N, e _/ (x). This proves that x € adh &
and adh (x,) = adh F

Using the same reasoning similar results can be derived for (m, n)-
filters. For instance we can easily prove that if X is an (m, n)-filter
in a space X and if card F' < n for some F'e % then there is an (m, n)-
net (x,)(d € D) with values in X and having the property that adh (z,) =
adh % and lim (z;) = lim .4 If the hypothesis card F' < n is dropped
we can find only an (m, n)-net satisfying adh &% 2 adh (x,) and lim & &
lim (x;). None of these results will be used in the sequel.

We can easily find examples where only the strict inclusion
adh & Dadh (z;) can be realized. For instance let X be a non-coun-
table set and let X be topologized by the discrete topology. If & con-
sists of the single element X then & is an (m, n)-filter for any pair
of cardinals m and n. Moreover adh % = X and so the cardinality of
adh # is greater than that of % On the other hand if (a,)(d € D) is
a (1, w)-net with values in X then the cardinality of adh (z,) is at most
w. Hence adh % Dadh (x,) for every (1, w)-net in X.

This example shows that (m, n)-filters and (m, n)-nets in arbitrary
topological spaces have different adherence properties. Nevertheless the
following theorems show that both (m, n)-filters and (m, n)-nets can be
used to characterize (m, n)-compactness.

THEOREM 1.1. A topological space X is (m, n)-compact if and only if
every (m, n)-filter in X has a non-void adherence.

Proof. In [8] we proved that X is (m, n)-compact if and only if every
family {C,} of closed sets C,< X having the m-intersection property
also has the n-intersection property. We apply this result: Let X be
(m, n)-compact and let <Z with card <2 < n be a filter base for an (m, n)-
filter % in X. Then the family {B} (B € <7 ) has the m-intersection
property and so it has the n-intersection property. Since card &% < n
this implies that N B = adh <7 is not void. Conversely if X is not
(m, m)-compact then there is a family <7 of closed sets with card <7 < n
and having the m-intersection property but with total intersection void.
Thus &7 is a filter base for an (m, n)-filter % and adh & = ®.
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THEOREM 1.2. A topological space X is (m, n)-compact if and only if
every (m, n)-net with values in X has a non-veid adherence.

Proof. If there is an (m, n)-net with values in X whose adherence
is void then by Lemma 1.1 there is an (m, n)-filter without adherence
points and so by Theorem 1.1 the space X is not (m, n)-compact. Next
we prove that if every (m, n)-net with values in X has a non-void ad-
herence then the same is true for every (m, n)-filter in X. By Theorem
1.1 this will prove that X is (m, n)-compact. Let &7 = {B,}(d € D) be
a filter base for an (m, n)-filter % in X and let card D <n. We order
D by using inverse inclusion of <#: d, < d, if B, 2 B,, Under this
ordering D becomes an (m, n)-directed set. We form a net (z,)(d € D) by
choosing x, in B,. By hypothesis (x,)(d € D) has an adherence point .
Given any neighborhood N, and any d € D there is a 6 = d such that
x5 € N,. Hence N,NBs +# ¢ and so by Bs< B, also N, N B, + ¢. Con-

sequently « € B, for every d € D and so z € adh .7

2. Uniformizability and (m, n)-compactness. This section contains
the generalization to infinite cardinals of the following results :

A space X is countably compact if and only if every infinite set
S< X has an accumulation point in X.

If X is a metric space such that every infinite set SS X has an
accumulation point in X then the open sets of X have a countable base
and so X is a Lindelof space.

Countable compactness will be replaced by (m, m’)-compactness where
m is an infinite cardinal and m’ denotes the first cardinal succeeding m.
If m denotes the symbol 1 then 1’ is defined to be . Instead of ae-
cumulation points we must consider m-accumulation points :

DEFINITION 2.1. A point = of a topological space X is called an m-
accumulation point of a set SE X if for every open set O, contwining x
we have card (O, N S) > m.

If m is 0, 1 or o then the relation card (O, N S) > m means that
O, N S is not void, not finite or not countable. If card S < m the set
of its m-accumulation points is void. In particular if S is countable
then it has no w-accumulation points and if S is finite then it has no
l-accumulation points. The notion of an m-accumulation point is related
to Fréchet’s ‘‘ point d’accumulation maximé’’ (see [7]).

The metrizability condition can be rephrased as follows: There is
a uniform structure %/ which is compatible with the topology of X and
has a countable structure base. This hypothesis will be replaced by
another which requires the existence of a structure base of cardinality
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at most m.

DEFINITION 2.2. A uniformizable space X is said to be of uniform
cardinality » if there is a base %; for a uniform structure Z com-
patible with the topology of X whose cardinality card %4 is at most u.

Every pseudo-metric space is of uniform cardinality o. If for every
uniform structure % compatible with the topology of X and for every
base 75 of 7% we have card %; = u where u is a uniform cardinality
of X then we say that X is of uniform cardinality exactly #. The exact
uniform cardinality of a pseudo-metric-space is at most o ; it can also
be 1.

The first result which we mentioned in the beginning is a special
case of

THEOREM 2.1. Let m be an infinite cardinal and let m' denote the
next cardinal. Then a topological space X is (m, m')-compact if and only
of every set SS X of cardinality card S > m has an m-accumulation
point in X.

Proof. First we prove the necessity of the condition. If X con-
tains sets of cardinality greater than m which have no m-accumulation
points in X then we can select a set S of cardinality exactly m' such
that it has no m-accumulation points in X. Let & denote the set of
all those sets 'S S whose cardinality is at most m. For every e X
there is an open set O, such that O,N S e % We define O, for every
Fe 7 as O, = U[O,: O,NS=F]. The family {O,}(F'e &) is an
open cover of X whose cardinality card & is m'. Since every subfamily
of cardinality at most m would cover at most m points of S the family
{Oy}(F € ) cannot contain such subfamilies. Hence X is not (m, m')-
compact.

The deeper part of the theorem is the sufficiency of the condition.
Here we need the axiom of choice both in the form of Zorn’s lemma
and also in the form of the well-ordering theorem. Suppose that X is
not (m, m')-compact. Let {O,}(# € I) be an open cover of cardinality
card I = m' which contains no subcovers of cardinality at most m. Let
the index set I be well ordered. Since X is not (m, m/)-compact there
is a point @, € X such that z, ¢ O,. More generally for every positive
integer » > 1 there are points ,, -+-,x, such that =, ¢ O, U +-- UO,_;
for every j < n. In general we consider segments J of I such that a
segment (or net) of points (x;) can be selected so that ;¢ U[O,: 7 < j]
for every jeJ. Let & denote the family of ordered pairs (J, (x,))
where J denotes a segment of I and (x,) a segment of points associated
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with J. We order .o~ as follows: (J;, (x)) = (J,, (y,) if J,&J, and
xz; =y, for every j ¢ J,. Clearly every linearly ordered subfamily of .o~
has an upper bound in % and so by Zorn’s lemma & has a maximal
element, say (J, (x;)). The maximality of (J,(x,)) implies that J is a
limit ordinal and {O,}(j e J) is a cover of X. We claim that the set
S = {x,}(j € J) has no m-accumulation points in X. For if x e X then
z € O, for some j e .J and so

card (O, NS) Zcard [, : 1 <] < m .

Finally card S = m’ because card S = card J and {O,}(j € J) is a cover
of the not (m, m’)-compact space X.

THEOREM 2.2. If the uniformizable space X is of uniform cardin-
ality w ond if there is an m such that every set SS X of cardinality
card X > m has a non-void derived set then the open sets of X have a
base of cardinality at most max (m, u).

Proof. Let 24 = {U} Dbe a base of a uniform structure % for
X and let card 24 < u. We may suppose that every U e %4 is sym-
metric. We fix a vicinity U e %; and consider systems of points {z;}
(¢ € I) having the property that Ulz] N Ulx,] is void for every 4 =+ j.
Let .o~ be the set of all such systems {x;}(¢ € I). The set .o~ is not
void for such systems exist at least in the case when the index set I
consists of a single element. We order . by inclusion : {x;} < {y,} if
{z;,} S {y;}. Every linearly ordered subset &~ of .97 has an upper
bound in & namely U[{x}: {w;} e <} is in & and it majorizes
every {x;} € &4 Hence Zorn’s lemma can be applied to show the ex-
istence of a maximal system which we denote by {x,}(z € I). If
ye UlU[w]: ¢ €I] then by the maximality Uly] N Ulx,] is non-void
for some 7 ¢ I. Hence by the symmetry of U we have ye (Uo U)x,].
Therefore the family {(Uo U)[w;]}(s € I) is a cover of the uniform space
X.

Let S = {x])(@ € I) so that card S = card I. We show that the
derived set of Sis void and so card I < m : Let V be a symmetric vicinity
in % such that Vo VS U and let & be an arbitrary point in X. If
2 € Viz,;] for some ¢ € I then V[z]=(Vo V)[z;] < Ulx,] and so V[z]NS
is void or contains at most the point x,. If = ¢ V], for every iel
then by the symmetry x,¢ V[x] for every 4el and so V[x]NS is void.
It follows that card I < m.

The family {(Uo U)[z,]}(¢ € I) is a cover of X and so the interiors
of the sets (Uo Uo U)lx;J(¢ € I) form an open cover of X. Its cardin-
ality is at most m. Hence the cardinality of the union of these families
for every choice of U e 7, is of cardinality at most max (m, u). Since
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for every vicinity Ve % there is a Ue %, such that Uoc U UZS V
these sets form a base for the open sets of X.
The results of this section can be combined to obtain the following

THEOREM 2.3. If X is a uniformizable space of uniform cardinality
w which is (m, n)-compact for some cardinals m and n where m < n then
X is (m, o )-compact or (u, «)-compact according as m = u or u > m.

Proof. By Theorem 2.1 every set S of cardinality greater than m
has an m-accumulation point and so its derived set is not void. Theo-
rem 2.2 implies the existence of a base of cardinality at most max (m, u)
for the family of open sets of X. Hence the space X is (max (m, u), «)-
compact.

This proof did not make use of the full force of Theorem 2.1. It
is sufficient to know for instance that every set of cardinality card S>m
has a l-accumulation point whenever the space X is (m, n)-compact for
some % > m. This weaker statement can be proved without using the
axiom of choice or the well ordering theorem. Nevertheless the axiom
of choice is used in the proof of Theorem 2.2.

3. Dense sets, (m, n)-compact spaces and complete structures. It is
knownthat if X is a compact topological space then every net with values
in X has a non-void adherence and conversely if the adherence of every
net with values in X is not void then X is compact. We can raise the
following question : Suppose A is a dense subset of X and that adh (x,)
is not void for every net (x,)(d ¢ D) with values in 4. Does it follow
that X is compact ? We shall prove a theorem a special case of which
states that for regular spaces the answer is affirmative. The result can
be formulated also in terms of filters: Every filter % in A is a filter
base in X. If the adherence af the filter generated by the base & is
not void we say that the filter % has a non-void adherence in X. It
was proved earlier that if X is regular and if every filter in the dense
set 4 has a non-void adherence in X then X is compact. (See [4] p. 109
Ex. 1 a.)

The same type of question can be raised when the net (2,)(d e D)
is subject to additional restrictions: For instance we can assume that
every countable net with values in 4 has a non-void adherence in X
and ask whether this implies that X is countably compact. It will be
proved that the conclusion holds under the assumption of normality and
countable compactness.

As is known a family <& of sets S, & X is called a locally finite
system if every x € X has a neighborhood N, which meets only finitely
many sets of the family <& We shall deal only with locally finite
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systems which consist of open sets.

DeriNITION 3.1. A topological space X is called m-paracompact if
every open cover {O;}(7 e I) satisfying card I < »n admits a refinement
{Q,}(4 € J) which is a locally finite system.

Clearly every topological space is 1-paracompact and we agree that
co-paracompactness means paracompactness in the usual sense. Using
this definition we can state the following

THEOREM 3.1. Let X be a normal n-paracompact space which con-
tains a demse set A such that every (m, m')-net with values in A (or every
(m, m')-filter in A) has a non-void adherence in X. Then X is (m, n)-
compact.

Since every regular paracompact space is normal in the special case
when n = + o normality can be replaced by the formally weaker re-
quirement of regularity. However this is not a real improvement of
the result. If m = 1 then by our agreement m’' = w and so if X is count-
ably compact then every (m, m')-net with values in X has a non-void
adherence. Hence as a corollary we have the following result due to
R. Arens and J. Dugundji [2]:

COROLLARY. If X 1is regular, paracompact and countably compact
then X is compact.

Since every pseudo-metric space is paracompact (see [17]) the corol-
lary is a generalization of the following known result: If the pseudo-
metric space X is countably compact then it is compact. A weaker
form of the corollary was obtained by Miss A. Dickinson who proved
in [5] that every uniformizable space with a unique structure is countab-
ly compact and a paracompact space with a unique structure is compact.

In the proof of the theorem we shall use the following known
lemmas :

Lemma 3.1. If {S;}(eel) is a locally finite system of sets them

A short proof can be found for instance in [16].

LEMMA 3.2. Let {0,}(i € I) be a locally finite open cover of the
normal space X. Then there is an open cover {Q.}(¢ € I) of X such that

Q,S 0, for every i c L
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Proofs of this lemma can be found in [12], [9], [6] or [11],

LeEMMA 3.3. If {w}(i e I) is a set of ordinals such that o, < m’ for
every ¢ € I and if card I < m then lub {w;} < m'.

Proof. Since m’ is the first ordinal of cardinality m’ we have
w; < m’, that is, card o, < m for every ¢+ ¢ I. Hence by card I < m the
cardinality of lub {w;} is m.

Proof of Theorem 3.1. We assume that X is normal and n-para-
compact but it is not (m, n)-compact. We shall construct a linear
(m, m')-net (x,)(d e D) with values in 4 and such that it has no adher-
ence points in X. Then the sets [w;: d < 0[(d € D) form a filter base
for an (m,m’) filter in A which has no adherence points in X.

Let {0,}(¢ € I) be an open cover of cardinality at most »n which
contains no subcover of cardinality at most m. Since X is n-paracom-
pact {O,}(7 € I) admits a refinement {Q,}(j € J) which is a locally finite
system of open sets. The space being normal by Lemma 3.2 we may
assume that Q, < O, for every j € J and for a suitable ¢ = i(j) e I. Since
{Q,}(7 e J) is locally finite Lemma 3.1. can be applied to any subfamily
of this cover.

Let the index set J be well ordered ; for the sake of simplicity we
assume that the elements of J are ordinals. Denote by S, the open set

S, =Q,— UlQ,: 5 <Kkl.

Let D be the set of those indices ke J for which S, is not void. We
prove that ¢ = card D = m/.

For let &~ be the class of those initial segments K< J for which
UlQ;:7 e K1<€ U[Q,:jeD]. Then & isnot void because (1, ---, k) e &7
It can be ordered by inclusion: K, < K, if K, € K,. There is a max-
imal element in ¢~ namely K, = U[K: K e &7] itself is an element of
. We prove that K, =J. TFor let Ke% be a proper subset of J
which contains ¢ and let %/ be the first index not in K. We set K’ =
KU {F'} and obtain by v < ¥’

UIQ,: je K= UlQ,;: j e KJUQ, = U[Q,: j e K]
- U[Q_j:jeD]-

Hence K’ € &7 and K is not maximal. Consequently K, = J and this
implies that

ulQ,: e J1c UIQ,: je D].

However on the one hand {Q,;}(7e.J) is a cover of X and so X =
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U[Q,: e D]. On the other hand {Q,}(j € J) is a refinement of {O,}
(¢ € I) and by hypothesis {0,}(: € I) does not contain a subcover of
cardinality at most m. Hence we have card D = w/.

The well-ordered set D is order isomorphic to an initial segment of
the ordinals which segment contains every ordinal preceding m'. If
we discard from D every element corresponding to m’ and to the
ordinals succeeding m’ we cbtain a subset of D of cardinality at least
m’. We denote this subset again by D. By Lemma 3.3 the new D is
an (m, m')-directed set.

The open sets S, are not void for every d e D and A is dense in
X. Hence we can choose a point a, € A in each of the sets Sid e D).
The linear net (a,)(d € D) is an (m, m')-net with values in A and it has
no adherence points in X: In fact {Q,}( € J) being locally finite for
every point x € X we can find an open set O, such that O,NQ, is not
void only for finitely many indices d € D. If d is larger than any of
these finitely many indices then O,NQ; = ¢ for every 6 =d and so
as ¢ O, for every 6 = d. This, however, shows that « is not an adher-
ence point of the net (a,)(d € D). This completes the proof of Theorem
3.1.

Now we turn to uniformizable spaces :

THEOREM 3.2. Let X be a uniformizable space of unsform cardin-
ality w. Suppose that X contains a dense subset A such that every (m, n)-
filter in A has a non-void adherence in X. Then X is (m, o )-compact.

It is sufficient to prove that X is (m, n)-compact. The (m, o)-com-
pactness follows from Theorem 2.8. The proof of the (m,u)-compact-
ness can be modified such that we obtain the following known result
(see [7] p. 150, Proposition 7):

Let A be a dense subset of a uniform space X with uniform struc-
ture 7Z. If every Cauchy filter in A is convergent to some point of X
then the structure 7/ is complete.

Proof. Let 5 Dbe a filter (or an (m, u)-filter) in X. Consider the
family & = {(U[F1NA} (Ue 7 and F e % ). Since A is dense in X
every set U[F']N A is non-void and

(UIF 1N A4) N (UIFNA) 2 UIF,.NF,]NA.

Hence <z is a filter base in X. (Moreover if & is an (m, u)-filter and
7/ is of uniform cardinality » then <# is a base for an (m, u)-filter in
A.) If & is a Cauchy filter then <% is a base for a Cauchy filter
because if F'x FF< V where V is symmetric then V[F] x V[F]E
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VoVoV: In fact if ¢ V[F] and y € V[F] then (x, a) € V and
(b, y) e V for some a, be F. Thus by (¢,b)e F'x FS V we have
(z,y) = (x,a)o(a,b) o (b,y) € Vo Vo V. By hypothesis <~ as a Cauchy
filter base in X (as a base for an (m, u)-filter in X) is convergent to
some point x € X. We show that x € adh % which is equivalent of
saying that x € lim &% Given any an open neighborhood O, of « there
is a U e % such that U[x] & O,. We determine the symmetric Ve Z
such that Vo V< U. Since x € adh < and V[F]NA is an element of
G we have V[z]N V[F'] +# ¢ for every Fe # Hence thereisan acd
and an f € F' such that (x, @) € V and (a,f) e V. Therefore (z,f)e Vo VEU
and fe Ulzg]NF. This shows that Ulx] and F intersect for every
Ue 7/ and for every Fe.# Thus zeadh “

4, Additional results and notes. In my first paper on (m, n)-compact-
ness I introduced the notion of a hereditary or completely (m, n)-com-
pact topological space : X is completely (m, n)-compact if every subspace
Y of X is (m, n)-compact. It can be easily proved that if every open
set Y is an (m, n)-compact subspace then X is completely (m, n)-com-
pact. In the same paper I gave a number of equivalent characteriza-
tions of complete (m, »)-compactness. At that time time I did not
notice that one of these criteria (Theorem 4, condition (ii) in [8]) in-
volves n only in a formal way.! I should have added as a corollary the
following.

THEOREM 4.1. If X 4s completely (m, n)-compact for some cardinals
m < n then X is completely (m, o )-compact.

Progf. Suppose that X is not completely (m, oo)-compact. Then
there is a family of open sets O, (¢ € I) in X such that UOij is a pro-
per subset of UO, whenever cardJ < m. Let the index set I be well
ordered. Let O; be the first non-void O, and let O;, be the first O,
such that O;, & O,. In general we consider initial segments J of the
ordinals 1,2, ---,4, --- and sets Oij(j e J) such that for every jeJ the

set Oij is the first O, set which is not a subset of U[Oik: k<jl. By
hypothesis {0,}(7 € I) does not admit a subfamily {Oij}(j e J) satisfying
Uuo, = UO‘; with card J < m. Hence using Zorn’s lemma we can find
initial segments J and corresponding sets Oij such that card J = w'
where ' is the first cardinal greater than m. We restrict ourselves to
ordinals preceding m’ so that J =1[j: 7 <m'] and 0¢j <z U[Oik: k<]
for every j e J. The family {O,ij}(j e J) is of cardinality cardJ = m/
and if card K < m’ where K J then by Lemma 3.3

1 This wés first noticed by Mr. R. D. Joseph.
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U[Oik‘ ke K]C U[Oij: jed].

This shows that X is not completely (m, m')-compact and so the theorem
is proved.

Let & = {B} be a bage for the open sets of a space X and let
YS X. Then <%, = {BNY}(Be <%} is a base for the subspace Y.
Hence if <7 is a base for the topology of the space X then every sub-
space of X is (card <7, «)-compact. Applying this remark to the situa-
tion described in Theorem 2.3 we obtain

THEOREM 4.2. Let X be o uniformizable space of uniform cardin-
ality u. 1If X is (m, n)-compact for some m < n then X s completely
(m, oo )-compact or completely (u, o )-compact according as m = u or m = u.

If n = co this result can be obtained directly by using the defini-
tion of (m, «)-compactness and of hereditary (m, co)-compactness.

The product of a (1, «)-compact space with an (m, n)-compact space
is (m, n)-compact. This was proved a few years ago by Yu. M. Smirnov
[14]. Not knowing the existence of this paper, I proved in [8] (Theo-
rem 8) the result in the special case when n =co, but a slight modifica-
tion in my reasoning gives a new proof of Smirnov’s theorem: Start
again by replacing the open cover {0,}(¢ € I) where cardl < n by a
family of sets OY x 0. However instead of forming the intersection
Ojr N -++ N Ojm form the intersection of those sets O, -.-, O{” of the

given family which have the property that
0! x 01 O, «--, 0! x O S O,
g Y= iy ’ Zn ¥y = b

Since card I < »n there are at most n distinet ones among the finite in-
tersections Q, = 05;;“0 e ngn). The rest of the reasoning then is the
same as in [8].

We end by stating two unsolved problems: Professor Erdos men-
tioned to me that he was thinking without success of the following
problem : Let m be an infinite cardinal. We say that X is [m]-com-
pact if from every open covering of X one can select a subcovering
having fewer than m elements. Is there an infinite cardinal m such
that the product of any two [m]-compact spaces is again [m]-compact ?

It is known that given any filter & in a set X there exists an
ultrafilter _# such that & < _#. Let % be an (m, «)-filter. The
corresponding ultrafilter _~ need not be an (m, «)-filter and in general
there is no (m, oo )-ultrafilter _# satisfying the requirement & < 7
We can ask the following question: Is there any infinite cardinal m
such that for every (m, «)-filter & the ultrafilter _# can be chosen
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such that _~ is an (m, o )-filter and & < _#?

I do not know to what extent n-paracompactness is necessary in the
hypothesis of Theorem 8.1. The only example that I know of shows
that there exists a non-compact space X which contains a dense set A
such that every filter in A has a non-void adherence in X: We choose
X to be the interval [—1, 1] and call O open if it can be obtained from
an open set in the usual sense by omitting points of the form = + 1,
+4,---. Wecan choose A=X—{+1,+ %, ---}. The space X is
neither regular nor compact. It can be proved that X is not countably
paracompact.
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A NOTE ON POLYNOMIAL AND SEPARABLE GAMES

DAVID GALE AND OLIVER GROSS

1. Introduction. A two-person zero-sum game /' is called poly-
nomial-like or separable if its payoff function is of the form

Mz, 9) = 3 (@),

where = and y are elements of any strategy sets X and Y. Important
special cases of separable games are those in which X and Y are
bounded (usually compact) subsets of Euclidean spaces and M is a poly-
nomial in the coordinates of « and y. These latter are called polynomial
games.

It is a basic and fairly elementary fact concerning separable games
[1], that, if optimal strategies exist, then these can always be chosen
to be finite mixed strategies. We consider here the inverse question :
Given a pair of finite mixed strategies, does there exist a separable
(respectively, polynomial) game whose unique optimal strategies are the
given pair ? In case either X or Y is finite the answer is known to
be in the negative. We here show, however, that.

THEOREM 1. If X and Y are metric spaces containing infinitely many
points and ¢ and v are any fintte mized strategies on X and Y respec-
tively, then there is a payoff M, bounded continuous and separable on
X x Y, such that the associated game has p and v as unique optimal
strategies.

COROLLARY. If X 4s a metric space containing infinitely many points
and ¢ is any finitte mixed strategy on X, then there is a skew-symmetric
payoff M, bounded continuous and separable on X x X such that the as-
socitated symmetric game has p as the unique optimal strategy.

For the case of polynomial games we show :

THEOREM 2. If X and Y are bounded subsets of Euclidean spaces
whose closures contain infinitely many cluster. points, then for any finite
maxed strategies p and v there exists a polynomial payoff function M such
that the associated game has p and v as its unique optimal strategies.

(An analogous corollary holds here, also.)
Concerning Theorem 2, we remark that Glicksberg and Gross, [2],

Received AEil 30, 1958.
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have shown that any pair of mixed strategies can be the unique solution
of a continuous game on the unit square. For finite mixtures, however,
their construction is complicated, involving consideration of four special
cases, and the payoff function is not a polynomial, nor even separable.
The rather simple construction involved in our proof of Theorem 2 shows
that their result still holds under the much stronger requirement that
the payoff be a polynomial.

Finally, we credit Dresher, Karlin and Shapley, [1], for their rather
exhaustive study of the structure of solutions of separable and poly-
nomial games. However, their results do not include the theorems proved
in this note. Indeed, one of the above authors has pointed out that
the construction of the next section provides a counter-example to one
of the conclusions of a structure theorem in [1], and fortunately (for

mathematics) an error in the proof of that part of the theorem' was
subsequently uncovered.

2. Polynomial games with prescribed unique solutions. This section
contains the proof of Theorem 2. Let X and Y be sets satisfying the
hypothesis of the theorem (We pause to note that boundedness of X
and Y is required to insure integrability, since polynomials may other-
wise be unbounded.). Let # be the mixed strategy which assigns the
weight #; to the point @; of X, ¢ =1, ---, m, where >, ¢, = 1. Similarly,
let v assign the weight », to the point %, in Y, =1, ---, n where
Siyy = 1.

The set of points {w, ---, x,}, the spectrum of g, will be denoted
by o(g). Similarly, o(v) will denote the spectrum of ».

We now define the following set of polynomials :

J@w)= 1l le—al,

! Eo(u)

PP .
Hl@y= 11 —Lx—}*,l—.,, i=1, .0, m,
weo—(a) | — &

where |x — «'| is the usual Euclidean distance from z to «'.

It is clear that the above functions are polynomials ; however, aside
from continuity, the only properties of them which we shall use are
the following :

So(@) > 0 for all xe X and fi(x) =0
if and only if x e o(p).

Six) >0 for all x e X and fi(x) =0
if and only if x e o(p) — {&}, ¢ =1, - -+, m).

1 Theore;n 6, fourth inequality pp. 175-176 of [1].
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fz(xz) = 177’ - 17 e, M.

In a precisely analogous manner we define the polynomials g, and
g, 7=1,--+,n, on the set Y,

Next, let a,, ay, -, @, be n + 1 distinct cluster points of X (the
closure of X) which do not meet () (these exist by hypothesis), and
define polynomials ¢ and ¢, 7=0, -+, 7 on X via

¢@) = [Tz —a.l,

¢j(x):]_—llx—a/glz, j:O’-..’n.
0£%2n
The only properties of these functions we shall use are that they

are all non-negative, that ¢ vanishes only on the «,, and that ¢, van-
ishes only on «, with % = 7.

Finally, let f,, +-+, B be m + 1 distinct cluster points of Y which
do not meet #(v), and define polynomials ¢ and ¢, on Y analogous to
the functions ¢ and ¢, above.

We now define the desired payoff M by

M@, 1) = F@H@) @) + 3 0,0) = »)b,)

(1) — 0 @YD) + 3 (Fi@) = 1)9.))
— (@@ + (@@ .

We show first that ¢ and v are optimal strategies. If we compute
M(z, v) (in the usual extension), we obtain

(2) M(w, v) = —(f@)p(@))* < 0.

To see this, it is sufficient to observe that, according to the properties

noted above, ngdvz v; and g, and ¢ vanish on o(v). Similarly, we

obtain

M, y) = (9.(n)¢(v))* = 0.

Thus ¢ and » are optimal and 0 is the value of the game,

It follows also from (2) above that if p is any optimal strategy
for player I, then the spectrum of 4 is contained in the zeros of fyp.
Thus any optimal ¢ has weight only on the pure strategies x, and «,
and similarly any optimal v for player II restricts its weight to
{y,} U {A:}-

We now show that v is the only optimal strategy for player II.
For suppose ' is optimal. Then, in the expression for M(zx, v), the
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second and fourth terms in (1) drop out in view of the remark of the
preceding paragraph and the payoff becomes

Mz, ) = A @) e@ad + ¢ @) ~ ) f@@ )]

For 2« close to «, the expression in brackets above approaches
gﬂo(au)gggdu’, and since ¢ («a,) is positive we must have Sgodv’ = 0. Other-
wise the a-player by choosing 2 sufficiently close to «, could achieve a
positive payoff, contradicting the optimality of »/. Next, since Sggdu'”—-‘(), v

must concentrate all of its mass on the zeros of g, that is, on the
points y,. Finally, if v, ## v, for some index %k then the z-player could
again achieve a positive payoff by choosing x sufficiently close to .
It follows that v/ = v as asserted.

Thus, Theorem 2 is established.

3. Metric space games—construction of payoff. This section is dedi-
cated to the construction of the payoff required for the establishment
of Theorem 1 and its corollary, which will be proved in the final section.
The construction and method of proof are quite similar to those used
in proving Theorem 2; however, to preserve continuity of presentation,
we shall paraphrase identical details.

Therefore, let X and Y be the respective spaces according to hy-
pothesis, # and v the respective finite probability measures on them. g
and v will be described with the same notations used previously. Final-
ly, let p and p’ denote the associated metrics of X and Y respectively.
Then, without further ado, we initiate our construction.

The basis of our construction hinges on the fact that any infinite
metric space contains a sequence of disjoint neighborhoods. To see this
for X, say, there is no loss in generality in assuming that X has a
cluster point, for otherwise we are guaranteed a sequence by the dis-
crete topology induced by p and the infiniteness of X. Therefore, let
x* denote a cluster point of X. First, choose «a;, # ¥, and, for ¢ > 1
choose «; so that 0 < p(a*, ;) < p(@*, a;-,)/2. Then, as our sequence of
neighborhoods, {Na,}, we set

Nw,;:{xlp(xrai)</ri}; ?::1121“'y
where 7, = p(z*, «;)/3. It is easy to verify, using the triangle inequality,

that these neighborhoods are disjoint.

Therefore, let {N%} denote a sequence of disjoint neighborhoods

contained in X (spheres of radius r; centered at «;). Define functions
¢5 § =0, -+, n, as follows:
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(Ti:——p (@, o) L_if x e N, for some ¢ (at most one) and
7 % ¢

bi(@) = i =4 (mod (n + 1))
.0 otherwise.

One verifies that ¢, is a bounded continuous function on X into the
non-negative reals, and which, moreover, satisfies

) s J%ifz'zj(mod(wrn)
A&) =1

\0 otherwise.

Next, let the function ¢ be given by
(7 ) (l)(x) - iE[1 P(xy wi)r x € X9

(where, as previously, {«;} = o(#)). There is no question about conti-
nuity here. We note merely that

®) 4 {20 atperwie,
Finally, we define functions f;, 7 =0, «--, m, as follows:
(9) fi(x) = d(a) ,
and, for je {1, ---, m}, set
10) fil) =TI B2

Here, again, continuity is immediate, and we note merely that
(11) fj(xi) = 51:]" ,I;!j - 1’ s, M,

where ¢ is Kronecker’s delta. Moreover, to insure boundedness of these
functions, if such is not the case, we need only replace p by the func-
tion p/(1 4+ p) in the formulas (7) and (10) without affecting subsequent
arguments.

The remainder of our construction involves defining certain bounded
continuous functions on Y into the non-negative reals. To accomplish
this we merely repeat the foregoing construction with the replacements:

6 )

l‘X!’ — [ Y”, “m” — n

‘Kp ) — 6£p/ 77’ (‘n,7 — Hm 77,
Hx7’ — “y?’, “¢7, — “¢7},
6‘a77 — l‘ﬂ”, “f’, — “g’7’
‘K,’.” — “7./ ,7, “/"” — “V”.
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In terms of these functions, then, and using the convention g, =
v, = 0, we define our bounded continuous polynomial-like payoff M as
follows :

M@, ) = —9(@) 3, (/@) — £)4:(0)
+ 9(@) 3, 00) = »)9,@)
= 9(@) 59,0 + 90) 3 9,0F
(#,y) € X x Y. This completes our construction.

4. Verification of solution and proof of wuniqueness. To verify
that (p, v) is a solution, we calculate first the expectation M(y, ¥) :

M(z, y) = () Ji ¢,(u) = 0, all ye Y.

To see this, we note that the remaining sums vanish by virtue of (8),
(9), and (11), i.e. ¢ vanishes on o(r) and Sfjd;u:,uj, J=0.+++, m.
Similarly,

(12) Mz, v) = —d() % b () <0, all z e X.

Thus, (g, v) is a solution and 0 is the value of the game.
To show uniqueness for the first player, let ' denote an optimal
strategy for him. From the non-negativity of the functions ¢, ¢, in

(12), we see that S¢¢§dp'=0 for all je {0, ---,n} and hence that
Schl)jd// = 0; for otherwise, by (12), a counter strategy is provided by

v. Thus, if ¢ is optimal, we have
a3 M) = ) 3 = W) + 90 S 4w

where we have written p) = Sf Wy, 3 =20, ---,m. Next, suppose y, =
S fdy # 0 (and hence, positive). Choose as possible counters a subse-

aguence of the f's, {,8%} such that n, = 0 (mod (m + 1)). Then, by virtue
of the minimizer’s counterpart of (6), (13) becomes

(14) M, o) = =9t =+ 9 (Fa)
— ¢(‘9"1) — i ;] — cee
= n;‘( o+ " ), 7 =1, 2,



A NOTE ON POLYNOMIAL AND SEPARABLE GAMES 741

Since ¢ vanishes only on a finite set and is positive elsewhere, we see
that the expression above can be made negative for ¢ sufficiently large.
Hence p, = 0, and if follows from (8) and (9) that o() < o(p), i.e. any
optimal ¢ must restrict its spectrum to the set {z, .--,x,}. Thus,
finally, to establish uniqueness, we need only show that the correspond-
ing weights are equal. Let p; denote the weight on a; placed by p/.
Substituting in our payoff M we obtain (noting g = 0),

(15) M, y) = —¢d(y) 121 (5 — 19,y + $(y) §0¢j(y)2.
Now suppose p, + p, for some ke {1, ---, m}. Then, since
Sith=Sm =1,
j=1 j=1

we would have some j =3, e {1, ---,m} such that g}, > p,. But, by
choosing the subsequence {B.,} with n; =7, (mod (m + 1)), by the iden-
tical argument used before, we would find a counter rendering the
expectation (15) negative. Hence p; = ¢, and thus ¢ = p. Uniqueness
for the minimizer can be established in a similar manner, as is clear.
So Theorem 1 is proved.

Finally, to establish the corollary, we need only make the appropri-
ate identifications in our payoff to ensure that Mz, y) = — M(y, x).

The authors would like to thank Dr. Irving Glicksberg for his
valuable comments on this paper. As a matter of fact, Dr. Glicksberg
suggested an alternate proof for Theorem 1 which extends it to com-
pletely regular spaces X, Y. The gist of his proof involves obtaining
the extended theorem by making it a corollary of Theorem 2 via a
mapping : X— R*, Y —> R™,
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ON THE NUMBER OF BI-COLORED GRAPHS

FRANK HARARY

1. Introduction. This is an extension of papers [2,3,4] whose
notation and terminology will be used. The main result is a formula-
tion of the generating function or counting polynomial of bicolored graphs,
obtained by the enumeration methods of Pélya [6]. A modification of
the method yields the number of balanced signed graphs, solving a pro-
blem proposed in [5]. In the process of enumerating bicolored graphs,
we congider two binary operations on permutation groups called *‘ car-
tesian product’’ and ‘‘ exponentiation’’ which are abstractly but not
permutationally equivalent to the direct product and Pélya’s ‘“ Gruppen-
kranz’’ [6], respectively.

A graph consists of a finite set of points together with a prescribed
subset of the collection of all /lines, i.e., unordered pairs of distinct
points. Two points are adjacent if there is a line joining them. A graph
is k-chromatict if each of the points can be assigned one of k given
colors so that any two adjacent points have different colors. A graph
is k-colored if it is k-chromatic and its points are colored so that all %
colors are used. More precisely, a k-colored graph is a pair (G, [f) where
G is a graph and f is a function from the set of points of G onto the
set of numbers 1, 2, ---, k such that if ¢ and b are adjacent points, then
fla) # f(b). Two graphs are isomorphic if there exists a one-to-one
adjacency preserving transformation between their sets of points. Two
k-colored graphs are chromatically isomorphic if there is a color preserv-
ing isomorphism between them. Thus (G, f;) is chromatically isomor-
phic with (G,, f,) if there is an isomorphism #: G, — G, and a permuta-
tion w: {1, -+, k} - {1, ---, k} such that w(fia)) = f(0(a)) for every
point @ in G,. Let g% be the number of chromatically nonisomorphic
k-colored graphs with p points and ¢ lines, and let the corresponding
generating function be

p(p=1)/2

)/
(1) gP(@) = X gFat.
q=0

We first derive the number of bicolored graphs, &k = 2, and then
discuss the formula for # = 3. The problem remains open for k > 2.

Received November 4, 1957, and in revised forms March 28, 1958, and June 16, 1958.
This work was supported by a grant from the National Science Foundation. The author
is deeply grateful to the referee for making several insightful comments of clarification.

1 This definition is different from that of Dirac [1]. According to Dirac, a graph has
chromatic number Ik if it is k-chromatic but not (k-—1)-chromatic as defined here.
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In precisely the form in which we require it, Pé6lya’s enumeration
theorem is reviewed briefly in §2 of [2]. Therefore, we shall not repeat
here the definitions leading up to it, but shall only restate the theorem
itself.

POLYA’S THEOREM. The configuration counting series F(x) is obtained
by substituting the figure counting sertes ¢(x) into the cycle index Z(I") of
the configuration group I'. Symbolically,

(2) F(x) = AT, ¢(x)) .

This theorem reduces the problem of finding the configuration count-
ing series to the determination of the figure counting series and the
cycle index of the configuration group.

2. Bicolored graphs; the cartesian product of permutation groups.,
Let K, be the complete graph of » points, in which any two points are
adjacent. Let K,, be the bicolored graph whose m -+ n points are
Oy Gyy ***y Ay b1, by, -+, b, and whose mn lines are all those of the form
;0.

Clearly if a graph is k-colored then its point set is partitioned into
k disjoint non-empty subsets such that no two points in the same subset
are adjacent. Hence a bicolored graph with p points is a * line-sub-
graph’’ (as in [3]) or a spanning subgraph®> of a graph K,, for which
m + n =p. Let g,,, be the number of chromatically nonisomorphic
spanning subgraphs of K,, having ¢ lines, and let

(3) In@) = 2, Gna®
Then
(4 ) gp(z)(w) = ]S%ngmn(x) ’

where the sum is taken over all m and n such that m 4+ n = p. There-
fore in order to obtain a formula for the counting polynomial (4), it is
sufficient to find that for (3). In this section, we find g¢,.(xr) for the
case m # n using the ‘‘ cartesian product’’ of two permutation groups.
In the next section we see that this combinatorial technique is not valid
for m = n and formulate g,,(r) in terms of the ‘‘exponentiation’ of
the appropriate two permutation groups.

By Theorem 1 of [3], the counting polynomial g¢,.(«) for the

2 A spanning subgraph of a graph G is one whose set of points coincides with that
of G,
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number of spanning subgraphs of K,, is obtained by substituting
1 4+ 2 into the cycle index of the line-group’ of K,,,:

We note that this equation can also be obtained from the main re-
sult, equation (5), of [4]. For the subgraphs of K,, correspond to the
different supergraphs of the union K, U K, of two complete graphs on
disjoint point sets. The derivation of Z(I"(K,.)) for the case m # n is
parallel to and algebraically simpler than that of Z(/"(K,)), which ap-
pears in §3 of [2]. Throughout the rest of this section we assume
m #+ n.

The line group of K,,, may be described as an appropriately for-
mulated product of the symmetric groups S,, and S,. This product can
be generally defined for any two permutation groups in the following
way. Let A and B be any two permutation groups with object sets
X and Y, degrees d and ¢ and orders m and n respectively. The car-
tesian product A x B of these two permutation groups has degree de
and order mn. Its object set iz the cartesian product of X and Y and
each of its permutations («, ) is the cartesian product of permutations
o« and B from A and B defined by («, f)(z, y) = (az, fy). As an abst-
ract group, the cartesian product is isomorphic to the direct product
AB, but they are not permutationally equivalent. For the degree of
the direct product is d + ¢ since the group AB has X U Y as its object
set.

There is a precise method for finding the cycle index of a cartesian
product in terms of the cycle indices of the two permutation groups.
We first illustrate the method by finding Z(/",(K,)). The line group of
K,; is the cartesian product of S, and S, which is a permutation group
of degree 6 and order 12, written 7"(K,) =S, x S,. Let a, a, be the
indeterminates occurring in Z(S,) and b, b, b, be those in Z(S,) so that

(S,) = ; (@ + a) and Z(S,) = 615 (b7 + 8bb, + 2b,) .

Then we write!
Z(I'(K.) = Z(S, x S;) = Z(8,) x Z(Ss)
= ilé—(a’f w B + 3¢ x bb, + 2@ x b, + @, x bl + 3a, x bb, + 2a, x by)

3 The line group I'i(G) of a graph G is the collection of all permutations on the set
of lines of G consistent with the automorphism group I'(G) of G; see [3].

4 By the following formulas we mean that the cartesian product of two permutation
groups can be extenZed to the cartesian product of their cycle indices in the indicated
manner,
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and give each of these six terms in Table 1, in which ¢; to ¢, denote
the indeterminates in Z(I"(Ky)).

Table 1
Term of Z(S, x Sg) [ A xb alxbiby @’xby axb axbb  axb
Term of Z(I'(Ky)) ’ c? cie; c? c3 el Cs

We illustrate Table 1 for the term @, x bb,. Let the 2-cycle (p,p,) stand
for a, and the 1-cycle and 2-cycle (¢;)(¢.¢;) for bb,. The admissible lines
of K,, are only those of the form p,q,, The pair p,q; is transformed
into p,q;, and then back again to give the cycle of length 2 in the corre-
sponding permutation of 7I'(K,;) of the form (p.¢; p.g;). Similarly the
transpositions (p,q., p.gs) and (p,g; p.g.) are factors of this element of I',(K,;).
Altogether there are three transpositions, so the corresponding term of
Z(I'(Ky)) is c.
In general, we have

(6) a,ilalgz e a/:n"" X bflszz cee b%n = ]:L (a,ioé X béB)
a,

and

(7) RN

i —_
ale X blp = c5bp

where d(«, A) and m(«, 8) are the greatest common divisor and least
common multiple.
The cycle index of S, is

1 p!
8 A8) = -SSP
(8) (S,) pl @ 1hg ! eee plog,!

Fheen fito
where the sum is taken over all partitions () = (41, 5z, -+, 7») Of 2 Such
that
i+ 2,+ - +p0ip=0p.
The last four equations together with
(9) Z(I'(Knn)) = Z(Sy) % Z(S,)

provide a formula for g¢,.(x) when m # n.
We use Table 1 to illustrate equation (9) by finding g.(x). Here

AT (Ky) = 7112 (¢ + 8% + 26 + 4 + 2¢,) ,

so that
gu@) =142+ 32"+ 30 + 3t + 2"+ 2° .
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The bicolored graphs with two points of one color and three points of

the other color which correspond to the coefficients in the preceding
counting polynomial are shown in Figure 1.

DTSSR 2K
< =
= =

Fig. 1.

ARV

3. Bicolored graphs; exponentiation of permutation groups. We
now turn to the enumeration of bicolored graphs for the case m = n.
As in the preceding section, we again have equation (5) holding for this
special case:

Inn(®) = Z(I'(Krn), 1 + @) .

However, it is not true that I"'(K..) = S. x S, since S, x S, is a proper
subgroup of I"y(Ku.). The remaining (n!)* permutations in I"y(K..) are
obtained on interchanging the two colors in accordance with the defini-
tion of chromatic isomorphism.

L 2 X
~

Fig. 2.

For example, all the (chromatically nonisomorphic) bicolored graphs for
m=mn=2 are shown in Figure 2, so that g,(x) =1 + = + 22* + 2* + a".
However, the formulas in the preceding section give

Z(S, x S, 14+ a)=14+x + 32+ o* + a*,

since the permutations in S, x S, distinguish between the two bicolored
graphs in Figure 3, in which the color assigned to each point is in-
dicated by one of the integers 1 or 2.

With the appropriate definition of group exponentiation, we will
express ['(K.,) as S, raised to the power S,. We first review the
definition of the ‘‘ composition ’’ of two permutation groups (the ‘‘ Grup-
penkranz’’ of Pélya [6]). Let A and B be any two permutation groups
as in the preceding section. Then using the notation of Pélya [6] the
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composition A[B] of A with B has object set X x Y (as for the car-
tesian product). However, it is more convenient to regard the object
set here as a d by e matrix M = (x,;). Then the elements of A [B] are
the permutations of the entries of M constructed as follows. First
permute the rows of M in accordance with an element of A. Then
permute the column indices in each row separately using one element

1 i? 172
| e 2 1 2
Fig. 3.

of B for each row, repetitions permitted. Hence the degree of A [B]
is de and the order is mn?.

The exponentiation BA of A with B is that permutation group whose
object set is Y*, the collection of all functions from X into Y, and whose
elements are constructed as follows. It is assumed that the objects
Zz, %, -+, % in X are indexed. First permute the objects in X in ac-
cordance with an element a of A. Then for each object @ in X,
permute the e objects of Y into which it can be mapped, using a per-
mutation B; from B. More precisely each selection of @ € A and
By, Py +++, Ba € B (not necessarily distinct) determines a permutation of
Y* which takes the function f into the function f* defined by:

[*@,) = p.f(ax;) for all 2, e X; 1 =1,2,.-,d.

It can easily be shown that distinet selections of a, f, ---, 5, lead to
distinct permutations of Y* and that these permutations form a group.

The degree of BA is ¢* and the order is mmn®. It follows at once
from their constructions that the group BA and A[B] are isomorphic as
abstract groups. But they are not equivalent as permutation groups
since they have different degrees.

With this definition of exponentiation, it follows at once that the
line group of K,, is given by

(10) oK) = S5 .

Before calculating the cycle index of S$: we illustrate for » = 2 and 3.
Since S§: = S,[S,] = D,, the dihedral group of degree 4 and order 8, its
cycle index in terms of the indeterminates ¢, ¢, c,, ¢, is given by

Z(D,) = %—(c% + 3¢ + 26, + 2,) .

The correct polynomial g,(x) which verifies Figure 2 follows at once from
this eyecle index.
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For n = 3, let the object set of I'(K;) be denoted:
X = {11, 12, 1%, 21', 22, 23', 31, 32/, 33'} .

Then I"(Ky) = S5 contains the (3!)* permutations in S; x S; and also the
(3!)* permutations obtained from these on multiplying each of them by
the following reflection p which interchanges primed and unprimed digits
in the objects in X:

p = (1) (22) (33') (12 21') (23’ 32) (31’ 13') .
Symbolically, we write
Fl(Kss) - S?‘ - (S.s X Sd) U P(Ss X SJ) .
Then

g (61 + 6cic; -+ 8¢; + 9ecs + 12¢406)

and a straightforward calculation gives (using not quite proper notation
since cycle index is defined for groups rather than cosets):

AplS: x $) =\, 6616+ 18eci + 120)
Combining these, we have
Z(S52) = 5. é 1y (¢! + 12¢ic} + 8ci + 9eics + 18¢,ci + 24cycy) ,

from which one readily calculates using (10) and (5),
gs(@) = 1 + a + 20* + 42° + Bt + 52° + 4a® + 227 + 2® + 2° .

We now proceed to obtain a closed formula for Z(S$:), thereby com-
pleting the explicit solution of the enumeration of bicolored graphs. The
process of finding this cycle index is also analogous to the calculation of
of Z(I'(K,)) which appears in 83 of [2]. Clearly, the automorphism
group of K,,is S,JS,]. For the complement K, consists of two disjoint
copies of K,. By a result in Pblya [6], the eycle index of the composi-
tion of two permutation groups is the composition of their cycle indices.
For example,

— i 1., 2 1. s ]
Z(S,[S;]) = 5 [(—6 (@} + 3a.a, + 2a,))* + o (a3 + Bao, + 2a6>

But we require here the cycle index of the line group of K,,. There
is a one-to-one correspondence between the terms of the cycle indices
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Z(S5:) and Z(S,[S,]) with the same integral coefficients. Analogous to the
terms in the above illustration of Z(S[S;]), let us write

(11) Z(S[S.]) = %[(Z(Sn))Z + Z(8.(2))] .

Thus Z(S,(2)) is obtained from Z(S,) on replacing each indeterminate f,

by fe.
The term of Z(S$:) corresponding to the first term of the right hand

member of equation (11) is Z(S, x S,). For bicolored graphs with m # n,
this is the result of the preceding section. The term of Z(S$:) corre-
sponding to the term Z(S,(2)) of (11) is derived as follows. Let the
general term of Z(S,(2)) be given by

(12) Jhflreee fin,

This term (12) occurs in the cycle index of the point group of K,,.
We require the corresponding term in the cycle index of the line group
obtained by calculating the induced permutation on pairs of points from
two disjoint sets. Let the letters ¢; be the indeterminates in the cycle
index Z(S$:). There are two contributions to Z(S$:) arising from (12):
those from each of the n factors fzfléc separately, and those from pairs of

factors f7r Sls, r # s.
The contribution to the cycle index due to each factor in (12) is

. 5 (5 ;
S — cflcz(“ ), _}"'411 — 04]2(_&), fis— (6366)13063(13), .

It is convenient to express the contribution of S separately for k even
and %k odd:

. J
J (czkk/z)chzkk(zk)» k even
jk —> ¢ . J
fzk l (Clcczk(k_l)/z)hc czlcb(Zk); k odd .
Similarly, the contribution from pairs is given by

J, J J,Jea(r,8)
fz:fzg—*CTS ’ r<s,

2m(r,s)

where m(r, s) and d(r, s) are the least common multiple and greatest
common divisior respectively.
Collecting these observations, we find

ZSS) = -;[Z(sn x 8,) + 21, where
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2= hs BT e (e, ) LR

n. H]C kjk k even
k

This formula for Z(S$:) together with equations (10) and (5) give the
number of bicolored graphs for m = n. For n = 3, this expression for
Z' specializes to that for Z(p(S; x S:)) in the above example.

The only other known cycle index of the exponentiation of two
permutation groups also involves complex combinatorial calculations and
is worked out in Slepian [8]. Consider the counting polynomial b,(x) =
Sbum®™, where b,, is the number of symmetry types of boolean func-
tions of n variables having m nonzero terms when written in disjunctive
normal form. Poélya [7] showed that

bu() = Z(Qu, 1+ ),

where Q, is the automorphism group of the n-cube. It is easily seen
that Q, = S$» and in fact Pélya [7, footnote 7] comments that Q, and
S.[S.] are isomorphic as abstract groups. Slepian [8] completed the
enumeration problem for b,(x) by providing a calculus for an explicit
formulation of Z(S$»), although using different terminology and notation.

It would be interesting to solve the general problem of obtaining
an expression for Z(BA) in terms of Z(A) and Z(B). This would be
analogous to equations (6) and (7) which give Z(A x B) in terms of
Z(A) and Z(B).

To summarize, the counting polynomial g,,.(x) for bicolored graphs
is given by

Z(S,, x S,, 1 4+ x) when m #= n
(14) Innl) = {Z(Sﬁz, 1+ @) when m =n .

4. k-colored graphs. We illustrate the general problem for %k = 3.
Here we have, analogous to equations (3), (4) and (5), and with similar
notation:

mnb

(3/) gmm(x) = qg;)gmnt,qxq ’
@) @ =S ganl),
(5,) gmnc(w) = Z(Fl(Kmm)y 1 + CE) .

Thus K,.,. is the complete tricolored graph with m + n + ¢ points
D1y Doy ** s Puny T1s Toy = =y Qy T2y Ty ==, 1, and all mn + nt + tm lines of the
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form p.q,, /7%, and ryp,. Similarly g,.,., is the number of spanning sub-
graphs of K,,,, having ¢ lines, etc. We distinguish between three cases:
(a) m,n,t distinct, (b) m =n=#t, and (¢) m =n=¢. These are illustrated
in Figures 4 (a), (b), and (c).

(@) €] )
Fig. 4.

Only in case (a) have we obtained an algorithm for Z(/'y(K,..)) in
closed form. The result analogous to (9), derived in same manner, is
as follows. Let @, to a,, b, to b, and ¢, to ¢, be the indeterminates in
Z(S.), Z(S,), and Z(S,) respectively. Let the indeterminates in (/"(Kyun:))
be d, d, ---. Let A, B, and C denote arbitrary terms of Z(S,.), Z(S,),
and Z(S,) respectively. Then in this notation the left-hand member of
equation (6) is A x B and the term of Z(I"(K,..)) obtained from A, B,
and C is,

(15) (A x B)(B x C)(C x A),

where each of the three factors in the expression (15) is a product of
the indeterminates d; using equations (6) and (7). For example,

1

A" (K.y)) = 12

(di' + 3did: + 2did; + didi + 3did, + 2d.dd,)

is the cycle index of the line group of the tricolored graph K, shown
in Figure 4 (a).
Referring to Figure 4(b), one can find

ALKR) = § (& + 205 + Adidy + @)

The group /' (K..) appears to be irreducible by any of the operations
of direct product, cartesian product, composition, or exponentiation.
However, it is abstractly isomorphic to D, and can be obtained from
two copies of D, defined on disjoint object sets {1,2,3,4} and {5,6,7,8}
by the following operation.

Let the set X be the union of the disjoint sets X, and X,. Let A;
and A, be permutation groups defined on X, and X, respectively, such
that % is an abstract isomorphism of A, onto A,. Then the permutation
group A; @, A, can be defined as follows: The function f from X onto
X belongs to A;@P, A, if and only if there exist a;e A, and «,c A,
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with a, = ha, such that f(z) = ay(x) if e X, and f(z) = a () if ze X..
Clearly A = A, @, A, is abstractly isomorphic to A,.

Now let D,; be the dihedral group of degree 4 generated by the
permutations (1234) and (12)(34), let D,, be generated by (5678) and
(57)(6)(8), and let & be the isomorphism between them which preserves
respective generators. Then

[‘1(Klzz) = D.m @n Dm .

Finally, it is easy to see that I',(K.,.) is abstractly isomorphic to
S:[S.] and that

1

319 [(ct + 3ciey + 4c)) + 3-2(2cic; + 2¢1) + 2-2%(c5 + ¢)]

Z(Fl(Km)) =
— ;418 (e + 3clct + 4 + 8¢t + 8¢ + 12¢3¢% + 12¢5) .

It is clear that the line group of K,,, is abstractly isomorphic to the
automorphism group of K,,,. Its complement K, consists of three
disjoint copies of K,, so that the group of K,,, is SiS,]. But an
explicit expression for Z(/",(K,...)) does not appear to be obvious. (For
the particular case n = 3, it can be shown that /" (K,;) is permutationally
equivalent to S§s.) It does not appear that the operations considered
here will suffice to enumerate even the tricolored graphs.

5. Connected k-colored graphs. Let
9@, y) = 3 g5 (@)y"

be the generating function for all (connected or not) k-colored graphs,
and let ¢(z, y) be that for the connected ones only. Then to find the
number of connected k-colored graphs, we substitute into equation (33)
of [2] to get

(16) L+ g, 1) = exp (3, ola”, o)
or equivalently,

(16) S Lo,y =5 O ).

S

From either of these last two equations, the number of connected
k-colored graphs of p points can be computed recursively in terms of the
total number of k-colored graphs.
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6. Balanced signed graphs. Signed graphs are obtained by assign-
ing either a positive or a negative sign to each line of a graphs. It was
indicated in [5] how one could enumerate all signed graphs by a varia-
tion in one of the formulas of [2]. The sign of a cycle is the produet
of the signs of its lines, and a signed graph is balanced if all its cycles
are positive. The problem of enumerating balanced signed graphs was
proposed in [5]. The result is derivable by an appropriate modification
of the generating funection for bicolored graphs.

It was shown in [5] that a signed graph is balanced if and only if
its set of points can be partitioned into two disjoint subsets such that
each positive line and no negative line joins two points in the same sub-
set. In view of this characterization, called the ‘structure theorem for
balance ”’, on deleting all the positive lines of a balanced signed graph
one obtains a bicolored graph. Let G, and G, be arbitrary graphs with
m and n points respectively, m < n, and let p = m + n. Let I'(G,) and
I'(G,) be the groups of G, and G, respectively. Let b/(G,, G,) be the
number of nonisomorphic balanced signed graphs with g negative lines,
whose positive lines generate the (disjoint) graphs G, and G, in accord-
ance with the structure theorem for balance. Let

WG, Gy, @) = ;"gobq(Gl, G,)a

be the desired configuration counting series. Then the figure counting
series is 1 + x. For the figures are the mn pairs of points (¢, d) where
ce G, and de G,. The content of a figure (¢, d) is 0 if ¢ and d are not
joined by a negative line and is 1 if they are.

Analogously to the situation for bicolored graphs there are two pos-
sibilities. If G, and G, are not isomorphice, then the configuration group
is I'(Gy) x I'(G@,). But if they are isomorphic, the configuration group is
I'(G,)%:. Hence an application of Pélya’s Theorem yields

(17) WG, G, o) = {Z(F(Gl) x I'(G,), 1 + =) when G, % G,
Z(I'(G)%:1, + x) when G, = G,

It is clear for the special case where G, and G, are the totally discon-
nected graphs of m and = points that &G, G,, ) = (), ['(G;) = S,,
and I'(G,) = S,. Thus the formula (17) is a generalization of that for
bicolored graphs.
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CENTRALIZERS IN JORDAN ALGEBRAS

BRrRuUNO HARRIS

Introduction. The aim of this paper is to prove for Jordan algebras
some theorems on centralizers of subalgebras analogous to known results
in the theory of associative algebras (contained in [6, Chapter 3] and
[7, Chapter 6], for instance).

The definition of the centralizer of a subalgebra in a Jordan algebra
is based on the concept of ‘‘operator commutativity’’ introduced by
Jordan, von Neumann and Wigner in [17]: two elements z,y of the
Jordan algebra J operator commute if the operators E,: ¢ — axz and
R,: a— ay, acting on J, commute, that is (ax)y = (ay)z for all elements o
of J. In §1 we study this concept, extend the results of [8] to algebras
over fields of characteristic not two, and show that for many types of
Jordan algebras obtained from associative algebras by introducing the
Jordan product aob = ab + ba (ab the associative product), the centralizer
of a subalgebra is just the set of elements commuting in the associative
multiplication with the elements of the subalgebra. Thus some of our
later results can be regarded as generalizations of the associative algebra
results if we convert the associative algebras into Jordan algebras by
means of the Jordan product.

In §2 we generalize some of the theory of a single linear trans-
formation in a finite dimensional vector space (see [6, Chapter 3] and
[13]) to the subalgebra generated by a single element in a simple finite
dimensional Jordan algebra. We show that such a subalgebra is equal
to the centralizer of its centralizer, and we also generalize to any central
simple Jordan algebra a formula of Frobenius giving the dimensionality
of the centralizer of a single linear transformation in terms of the
degrees of its invariant factors. A special case of this formula—namely,
the formula for the central simple Jordan algebra of all symmetric
matrices—was proved earlier, and by a different method, by H. Osborn
(to appear in these Transactions).

In §3 we study the centralizer theory of a simple subalgebra in a
central simple Jordan algebra. We show that the analogues of the
centralizer and double centralizer theorems for simple finite dimensional
subalgebras of the associative algebra of all linear transformations on
a vector space ([15]) also hold for simple finite dimensional Jordan sub-

This paper was originally accepted by the Transactions of the American Mathematical
Society, Received July 10, 1957, by Trans. Amer. Math. Soc. Most of the material of this
paper is contained in the author’s doctoral dissertation, Yale University, 1956. Some of
the results were presented to the Society in October, 1955 and April, 1957. The author is
a National Science Foundation Postdoctoral Fellow, 1956-57.

757



758 BRUNO HARRIS

algebras of the Jordan algebra of all self-adjoint linear transformations
on a vector space with inner product. Incidentally we show that some
of the results of [15] can be generalized from the class of rings of all
continuous linear transformations on a vector space to the larger class
of primitive rings with minimal ideals. In the same way the Galois
theory of automorphisms of [16] can be generalized to primitive rings
with minimal ideals.

In conclusion we would like to express our gratitude to Professor
Nathan Jacobson who suggested these problems and gave much stimulat-
ing advice.

Preliminary Notions, A Jordan algebra is a linear algebra, whose
multiplication we shall denote by oy, satisfying the following identities

(1) Zoy=you
(2) (@om)oy)ox = (wom)o(you).

We shall always assume that the base field has characteristic different
from 2.

A special Jordan algebra is a subspace of an associative algebra
(with associative multiplication xy) closed under the composition zoy =
a2y +yx. The special Jordan algebra whose underlying vector space
coincides with that of the associative algebra 2 and whose multi-
plication is zoy = ay -+ yx (xy the multiplication in A) will be denoted
by %,. If A is an associative algebra with an involution, the subset of
elements left fixed by the involution is also a special Jordan algebra,
which will be denoted by H(). The same notation will be used for the
set of elements left fixed by an involution in a possibly non-associative
algebra U : this set may or may not be a Jordan algebra.

We shall have to consider sometimes matrix algebras with coefficients
in a (possibly non-associative) algebra with identity element. A set of
matrix units in an algebra of all n x n matrices (n = 2) will mean a set
of elements e, 7,7 =1, -+, n which associate with every pair of elements
of the algebra (i.e. lie in the nucleus) and satisfy

(3) €46 = 040, (0, the Kronecker delta)

ey -+ -+ +e,, =1, the identity element.
If we consider Jordan algebras (with identity) of all hermitian matrices
with coefficients in an involutorial algebra we are led to consider elements
(which we shall also call matrix units) ¢, u,; with 7 <j, 4,5=1,...,n,
n = 3, such that

(4) €06, =20, , €uoly =1y, Uyou;=2e; + ¢,
;0 Uy, = Uy, if 4, 7, k are distinet, >le;,; =1
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and all other products are zero. As shown in [9], Th. 9.1, any set of
elements ¢, u;; satisfying (4) leads to a representation of the Jordan
algebra as the subalgebra of n x n hermitian matrices of an algebra 2,
where 2 is the algebra of all n x » matrices with coefficients in an in-

volutorial algebra, and, if f;,; 4,7 =1, ..., n are the matrix units in 2,
then
(5) Sfi=¢eu, ul‘,j:fij_l—fﬁ (<) .

If the base field is algebraically closed and & is the exceptional
simple Jordan algebra of all 3 x 3 hermitian matrices with coefficients
in the Cayley algebra, then given elements ¢,;,, ¢ =1,2,3, in J, satisfy-
ing ¢, 0¢;; =20,,6,; we can find elements %, %, (in many different ways)
satisfying uy, 0wy, = 2(ey + €4), Uis o Uy = 2(g;; + e55) such that the e, u,,, u;
and u,, = U0 uy; satisfy the conditions (4) and hence are the ¢ matrix
units’’ of another representation of ¥ as 3 x 3 hermitian matrices with
Cayley number coefficients.

Finally we shall summarize briefly the classification of the finite
dimensional central simple Jordan algebras. For further references
about classification, structure, or representation theory of Jordan alge-
bras, one should consult [9].

First, assume the base field algebraically closed. Then the algebra
has an identity element; if the identity element can be written as a
sum of », but not more, mutually orthogonal idempotents, then the
algebra is said to have degree n. (¢ is an idempotent if eoce =e¢).

If » =1, then the algebra is one-dimensional, [10]. If » =2, the
algebra is a vector space direct sum of the subspace generated by 1
and of a vector space V of dimension at least 2 with non-degenerate
symmetric scalar product. The multiplication is

(al +2)o (Pl +y) =[af + (@, Y]l + ay + px

«, 3 scalars, x,y in V and (z,y) their scalar product. Such an algebra
is said to be of type D.

If » =38, there are 4 types: A,B,C,E. Types A, B, C are special,
while type E is the exceptional algebra described above. To each of
the types A, B, C (and also to D) corresponds an associative algebra U
such that if the corresponding Jordan algebra is contained in an algebra
A, A associative, then the associative subalgebra of 2 generated by &
(enveloping algebra of J) is a homomorphic image of 1.

Type A: J=A,, A the associative algebra of all n x n matrices
over the base field, n =3. U=APA

Type B:  is the algebra of all » x n symmetric matrices, n = 3.
N =2 (A as for type A).

Type C: & is the algebra of all 2n x 2n symplectic-symmetric
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matrices, isomorphic to the set of all self-adjoint linear transformations
on a vector space V with non-degenerate skew-symmetric scalar produect.
1 is the algebra of all linear transformations on V.

Type D: 1 is the Clifford algebra determined by the space V and
the inner product.

If the base field is not algebraically closed, then the algebras which
become of type A on extension of the base field are of two subtypes:

A I=HQA, A a simple algebra with involution such that the
involution is not the identity automorphism on the center of . U = .

A,: =AU, A a central simple associative algebra.
N=APW, A anti-isomorphic to 2A.

The algebras that become types B or C are of the form I = H(),
A simple involutorial with the involution acting as the identity auto-
morphism on the center. U = 9.

Algebras of type D over an arbitrary base field are as described
above for an algebraically closed base field. 11 = C, the Clifford algebra.

Algebras of type E need not be algebras of all 3 x 3 hermitian
matrices if the base field is not algebraically closed, according to recent
unpublished work of A. A. Albert.

Section 1. Operator Commutativity. We will consider Jordan alge-
bras over fields of characteristic different from 2; this assumption on
characteristic will be made throughout this paper.

The concept of Operator-Commutativity, introduced by Jordan, von
Neumann and Wigner in [17], is the natural analogue of the concept
of commutativity of two elements in an associative algebra, as some
of the following propositions will show. Some of these results were
proved for characteristic zero in [8].

Let & be a Jordan algebra, z and y elements of . Let x oy denote
their product and write 2* for Hxox). We denote by R, the linear
transformation ¢ — a0z acting in .

DEFINITION. Two elements z,y of & operator-commute (we will
write also: o-commute) if R,R, = R,R..

The set of elements of & o-commuting with o will be denoted by
Cx(x). If ® is a subalgebra of ¥, the set of elements of ¥ o-commuting
with all elements of & will be denoted by €x(R).

If 9 is an associative algebra and B an associative subalgebra, we
will write Cu(®B) for the subalgebra of elements of A commuting with
the elements of B. Eu(A) is the center of W-—its elements will be
called “‘central”’.

The following example, due to McCoy [14], and Jacobson [8], shows
that the set Cg(x) of elements of ¥ o-commuting with an element z of
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J is not necessarily a subalgebra of J: & will be a special Jordan
algebra (product woy = ay -+ yxr) consisting of 6 x 6 matrices whose
coefficients are rational numbers, namely the Jordan algebra over the
field of rational numbers generated by the following matrices a, b, 1
(using ¢, to denote the matrix with 1 in the %, position and zeros
elsewhere, k,1=1,...,6): a=¢,+e;+ 28, b=e,+ &; + ¢ and
l=¢,+ +-- +e,. Let ¢c=ab—ba, then ¢ =¢, +¢; +e; and ¢ =
e, # 0. Also ac = ca, be = ¢b, so that ¢ commutes with every polynomial
in @ and b. Consider now Cg(a): we claim €g(a) contains b but not .
The equation (¢ o x) o b = a o (x o b) becomes, on replacing y o z by yz + 2y,
[[@, b], ] = 0 where [y, z] denotes yz — zy. But [a, b] = ¢ and ¢ clearly
commutes with every element of the Jordan algebra generated by a and
b, 80 b o-commutes with a. We compute [a, b*] and show this element
does not commute with every « in J:

[a, 6] = [a, b]b + b[a, b] = be + ¢b = 2bc = 2[a, b]b
[[a, b*], a] = 2[be, a] = 2[b, a]c + 2ble, a] = —2[a, blc = —2¢* as [a, ¢] = 0

but ¢ + 0, and 2¢* = 0, thus »* is not in €x(a). We note also that b
does not o-commute with o* and that [a, b]* = 0.

In the preceding example, b did not o-commute with all elements of
the subalgebra generated by @ and 1. One may ask whether Cgx(&) is
a subalgebra if & is a subalgebra. This is so in many cases, as the
following propositions will show, and we conjecture that it is true in
general. Some of the following results were proved in [8] for charac-
teristic zero.

We say a finite dimensional Jordan algebra & over a field F is
separable if it is semi-simple and the algebra J @ £ obtained by
extending the base field to E is also semi-simple for any extension field
E of F. We note at this time a few simple facts about the effect of
field extension on centralizers: if x and y are elements of &, they o-
commute in & if and only if they o-commute in ¥ QR E; also, since the
equation R,E, = R,R, expressing that two elements ¢ and b o-commute
is linear in each, it follows that if & is a subalgebra of &, then
Cxen(R Q E) = €3(R) ® E, and this allows us to extend the base field
in many of our arguments.

ProposiTiON 1.1. Let & be any Jordan algebra (possibly infinite
dimensional), & a separable subalgebra. Then €x(R) is a subalgebra of
(&

3.

Proof. First we show that if ¢ is an idempotent in ¥, then €g(e)
is a subalgebra. Let J =, + I + 1 be the Peirce decomposition of
3 relative to e, ie. Jy={weJ|eox =iz}, ¢ =0, 1/2, 1. (We will also
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write J,(7) for J;.) I, and I, are subalgebras, and J,3J, = 0, FoFie E Jijar
JiS1 E Jyj.- From these relations it follows that €g(e) = & + &1 let
x be in €g(e), and let z =a, + a,, + 2, @ in . Then ¢o(eox) =
xo(eoe)=woe but woe= (1/2)x,, + &, and eo (woe) = (1/4)zy, + x,
80 ¢, = 0 and z is in J, + J;. Conversely, let « be in ¥y, 2 =2, + 21, + 2
in . xo(eoz) =axo[(1/2z,, + 2] = 1/2(x  2,,,), whereas eo (xoz) =
eo(xoz, + xozy,) =1/2woz,,) since xoz, is in J,, wozy is in Jy,;
thus 2 o-commutes with ¢, and similarly if «is in &, it o-commutes with
¢. On extending the base field F'of & to its algebraic closure, & remains
semi-simple, and we will conclude the proof by showing that a semi-
simple Jordan algebra over an algebraically closed base field has a basis
consisting of idempotents—for if e, ..., ¢, are this basis, then €x(®) is
the intersection of all the €g(¢;) and the latter are subalgebras. From
the structure theory, it is known that & is a direct sum of simple
algebras, and each simple algebra is either of degree one, i.e. of the
form F - ¢, ¢ an idempotent, or else is a vector space sum of algebras
of degree two. An algebra of degree two has a basis of elements
@i, 0, X, ..., T, Where the ¢, are idempotents with ¢, - ¢, = ¢ being the
identity element of the algebra, and @, o 2, = ¢. Then 1/2(¢ + ;) is also
an idempotent, and e, ¢, 1/2(¢ + @), ..., 1/2(¢ + z,) is a basis consisting
of idempotents, which we had to show.

The next proposition shows that for a large class of special Jordan
algebras, including all that we will be concerned with in later sections,
the set of elements o-commuting with the elements of a subalgebra is
the same as the set of elements commuting with them in the associative
multiplication. In particular, if ¥ = U, is such an algebra, where ¥ is
associative, and & = B,, where B is an associative subalgebra of A, then
C3(®) = [CAB)L,.

ProrosiTiON 1.2. Let ¥ be a special Jordan algebra with envelop-
ing associative algebra 2, and assume % has no central nilpotent elements
(e.g. A any semi-simple algebra). Let & be a Jordan subalgebra of S,
y an element of ¥. Then y is in €x(KR) if and only if ay = yx for all
ze 8 Thus €3(R) consists of all elements of ¥ commuting in the
associative multiplication with the elements of &, and €gx(R) is a sub-

algebra of .

Proof. We make extensive use of the assumption that 2 #+ 0. Also,
we note that the equation 2z(R,R, — R,R,) = 0 is equivalent to [[xy]7]
=0, where [ab] =ab —ba. Let now ze R, ye €x(R). Since K is a
subalgebra, x oz = 22* € &, and 2* € & so that [[xy]z] = 0 and [[#*y]z] = 0
for all ze §. Sinece U is the enveloping algebra of ¥, [wy] and [x%y]
are in the center of . But [2*y] = [zyle + xlay] = 22]xy] since [xy] is
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in the center of A. [a’y] € the center of 2 implies that
0 = [yle*yl]l = 2ly, (zlzy])] = 2lyx][xy] + 0 = —2[xy]" .

Thus [zy]? = 0, 8o by hypothesis on 2, [zy] = 0. Conversely, if [zy] = 0,
then [[zy]z] = 0 so that z o-commutes with y. The statements on €gx(R)
now follow.

Let 2 be a possibly non-associative algebra with multiplication
denote by zy. We again introduce the new multiplication zoy =
xy +yx. Let B be a subspace of U closed under xoy, then we
denote by R, the operation z — 2 oy = xR, acting in B, where x, y are
elements of B. As before we say z and y o-commute if B R, = R F,.
We can make a remark in case 2 is a matrix algebra with canonical
involution and B is the set of self-adjoint elements (see [9]), i.e. A is a
matrix algebra D, over an algebra D with identity 1 and involution
d—d in D, and 2 has involution a = 3, ,d;,e,; — S 77'ds e, Where
the e,, are matrix units, 7, =1, 7., ..., 1, are self-adjoint elements of the
nucleus of D having inverses, and n = 2; B is the set of self-adjoint
matrices, denoted by H(D,). Such algebras have been studied in [9],
and include all simple Jordan algebras of degree greater than two over
algebraically closed fields.

LEMMA. Let U = D, be a matriz algebra with canonical involution,
B = H(D,), x, y elements of B. If x and y o-commute, then [xy]l =d - I,
where d is a skew element of D, and I is the unit matrix.

Proof. Since x and y are self-adjoint, [xy] is skew. B contains the

elements e¢,, and d[i,j] = de,, + r7'dr.e,, for i+ 4. Since x and y o-
commute, we have (¢;; o ) o y = (&, o ¥) o &, which is equivalent to [e,;[xy]]
=0, 4=1,..., n since ¢, is in the nucleus of A. The matrix [xy] thus
has zeros off the main diagonal. The elements 1[ij] = ¢;, -+ r7'1:¢;, are
in the nucleus since the 7, and ¢;, are, so that

e + 17 1en), [2yll =0, 43
or

eisleyl + ritrienley] = [eyles, + loylri'ries -
Denote by [xy];; the 4,5 entry of [ay] for 4,7 =1,...,n. Then
Loyl + 1i'nleyluesn = [aylue; + [wylyr7'rie; for 4 #7j .
Since the coefficients of ¢;, in the above equation must be equal,
[xy],, = [yl = d for all 4,7 .

Thus [xy] = dI, d = —d, which completes the proof.
From this lemma we can derive conditions for the centralizer of a
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subalgebra of H(D,) to consist of the matrices commuting with the
matrices of the subalgebra. We denote by Z the set of elements of D
commuting with every element of D, and by N (nucleus) the set of
elements of D associating with every pair of elements of D.

ProrositTiON 1.3. Let B = H(D,), n = 2.

(a) Let n not be divisible by the characteristic of F. If a and y
are two matrices of B such that the coefficients of x commute with
those of y and if x and y o-commute, then they commute. In particular
if = has coefficients in Z and y o-commutes with 2z, then ay = yz.

(b) Let & be a subalgebra of H(D,) such that every element of &
has coefficients in N, the nucleus of D. If Z contains no skew-elements
whose squares are zero then y is in €g(®) if and only if ay = yx for
all  in &, so €s(R) is a subalgebra. In particular, if D is associative
with no central skew elements of square zero, the conclusion holds for
any subalgebra & of H(D,). If % is an exceptional simple Jordan
algebra, then D is a Cayley algebra and Z = N = F .1, F the base
field, so that the conclusion holds for subalgebras & whose elements have
coefficients in F.

Proof. (a) By the lemma, if y o-commutes with x, then [ay] = dI,
d € D, I = identity matrix. Let us now take the trace of the elements
on each side of this equation. If the coefficients of « commute with
those of y, then tr(xy) = tr(yx) so tr({wy]) = 0 = tr(dl) = nd. Since
nd = 0 implies d = 0, 2y = yx.

(b) Let every z in & have coefficients in N. Then (xy)z = z(y2)
for all y,ze D,. Let now ye Cu(f). Then (xoz)oy=(yoz)ox for
all z in 9B, which is equivalent to: [[xylz] = 0 for all zin B. [xy] = dI,
80 dz;; = #;,d for each coefficient z;; of 2. Since n = 2, for any a € D,
there is a 2 in B with 2, = a. Thus d ig in Z. Since 2* is in & also,
[#>y] = fI where f is a skew element of Z. The calculation of Proposi-
tion 1.2 is still valid since = and «* associate with any two elements of
B, and we conclude that d* =0 and so d = 0, or @y = yx. The remain-
ing statements of the proposition are now obvious.

ProrosiTION 1.4. Let 9N be an exceptional central simple Jordan
algebra, and & a separable subalgebra of I containing the identity.
Then Cam(R) is separable, and, if the base field is algebraically closed,
WM can be represented as an H(C,;) such that Cm(R) consists of the
matrices in M commuting with those in R.

Proof. We first assume the base field F' algebraically closed, and
& semi-simple. I is then of degree 3, ie. if 1 =¢ + +-- + ¢, ¢
primitive mutually orthogonal idempotents in M, then r = 3, and M is
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a vector space sum >, M, ¢ <4, 4,7 =1, 2, 3 where

M, ={ze Mle,ox =(1/2)x = ¢, 0oz} for ¢ +# 4, and
m“:{xeMlGiO-’U:w}:Fei-

These facts limit & to a few possibilities:

1. & not simple: then R =& P ..- P &K, &, simple and » = 2 or
3, since the identity element 1 of Misalsoin &, and 1 =u, + +++ + u,,
u, the identities of &,.

(a) r=3. Then wu, u, u; are primitive (in M) orthogonal idem-
potents and each R; is of degree 1 so that we may take ¢, =u,. We
now represent M as H(C,) with e, = (1/2)¢;;. We have &, = Fe, and
Cm(®) = N, Cm(e;). But Cm(e;) = My, + My, + My, + My, where 7, k
# ¢ since with respect to ¢;, I, =MW,; and WM, = 3, ... M,;,. Hence
Ca(R) = My + Wy, + My, = K. It is clear that the matrices of Ca(R)
commute with those of & Conversely, any matrix commuting with e,
¢, ¢; is a linear combination of ¢, ¢, ¢;, and thus in Cm(R).

(b) »r=2. Then & = & P K, and K, has identity u,. Since 1 =
u, + u,, one of the u, must be primitive in MM, say u,, and the other
one not: u, = ¢, u, = ¢, + e, ¢, primitive orthogonal idempotents. Again
write M = H(C;), (1/2)¢;; = ¢;. Here there are two cases

(i) R, is of degree one: &, = Fu,. Since & = Fu,,

Co(R) = Can(uy) N Com(ney)
= (WM + My, + Doy + Vi) N (Do + Wy, + Vs + W)
- iRu + thz + mzs + mss J

But O, + M, + M,; is a simple Jordan algebra 9, of degree two, so
that Co(R) = D, P WYY, is semi-simple. The matrices of Cm(K]) are
evidently just those matrices commuting with ¢, and ¢, + ¢; and therefore
with the matrices of f.

(i) R, is of degree two: u, = ¢, + ¢; where both ¢, and e; are in
&,. Then R, is a simple Jordan algebra of degree two, and so containg
an element ¢ with aoa = 4(e, + ¢;), @ € W5,  Since ¢, ¢, ¢; all belong to
&, C(R) S Fe, + Fe, + Fe,. Also, since Cm(e) = My + Dy, + Pys -+ My,
2 &, we see that Fe, o-commutes with &, i.e. F¢, € C(®). Let now

ag, + fe; belong to Ca(R): then this element o-commutes with a, so

[e. o (@e, + fles)] o @ = e, 0 & = (1/2)aa = (¢, 0 a) o (ae, + fley)
= (1/2)a o (ae, + Pes) = 1/4)(x + B .
Thus a = B, i.e. Cm(]) S Fe, + F(e, + ¢;). On the other hand, (e, + )
€ Cm(R) since K = My, + M}, so C(R) = Fe, + Fle, + ), and evident-
ly these matrices commute with the matrices in & Conversely, let
x = Sy, Xy € WMy,;, commute with the matrices of & Since ¢, ¢, ¢;
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are in &, = ae; + Pe, + re,.  Letting ¢, 4 # j denote the matrix units,
the element @ of & can be written as a = de,; + de,, d an element of
C, and @ o a = 4(dde, + dde,) = 4(e, + e,), thus dd = dd = 1.

ax = (dey + des)(ae, + fe, + 1e)) = (1/2)(dre; + dfes); «, B, 7e F.
wa = (ae, + Pe, + res)(dey + Jee}z) = (1/2)(Bde,; + ;desz) .

Since we are supposing ax = xa, we have fd = dy, but dy = rydasy e F,,
g0 f =7, i.e. x = ag, + fle, + ¢;) and z is in C(K).

2. & is simple; then & has degree one, two, or three

(a) R has degree one: £ = F-1. Then Cm(R) = M, and the
matrices of M commuting with those of & are just the elements of Cm(&K).

(b) & has degree two: we show this is impossible. For let 1 =
u, - u,, %, primitive idempotents in & Then, as in case 1lb, we may
agsume u, is primitive in MM and wu, not, so that w, = e, u, = ¢, + .
Since & is simple of degree two, it contains an element x such that
xow =20 =u, +u, and w0 = (1/2)x = u,ox. Let & = 3,<,@;, @, in
M;;. Since e ox = (1/2x, = = >, + «;, therefore xowx = wyoa, +
X3 0 Tyy + 22, 0 1. But

Ty 0 Xy, = A€y + &), Tz Tz = Ay + €3), 4, € F, @0 x5 € WMy

soxox = (4 + A)e + e, + Ae; + 2wy 0 Ty = U, + U, = ¢, + ¢, + ;. Since
M is a direct sum of the M,,, 2v,ox,;, =0, 1, +4, =1, 1, =1, 1, =1,
a contradiction.

(¢) & has degree three: Then & contains idempotents e, e, ¢; and
the subspaces &, = & N W,, are all non-zero. K contains the subalgebra
Ry + & + & + K; of the type considered in 1b (ii), and the centralizer
of this subalgebra, as well as the set of matrices commuting with its
elements, is Fe, 4 Fl(e, + ¢;). Arguing the same way but replacing the
index 1 by 2 and then 3, we see that Cy(R) = Fle, + ¢, + &) = F -1,
and that any matrix commuting with the elements of & is in F'. 1.
Conversely, the matrices in F'-1 obviously commute with those in & We
have shown that in each case Cm(R) is semi-simple.

If now F' is not necessarily algebraically closed, the centralizer of
& in M remains semi-simple on extending F to its algebraic closure, so
that Cm(K) is separable. Also, in the algebraically closed case, we have
shown that for every & there is a matrix representation of 9t such
that the elements of Cyr(R) are represented by the matrices commuting
with the matrices representing the elements of ®. This concludes the
proof.

2. Subalgebras Generated by a Single Element. In this section we
study the centralizer and double centralizer in a central simple Jordan
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algebra of the subalgebra generated by one element, and generalize to
Jordan algebras some of the known results on simple associative algebras
contained in, say, [6], Chapter 3.

If = is an element of J, we denote by (x) the subalgebra generated
by « and 1. The following facts are known about €g((»)) if I = A, and
A is the associative algebra of all n x » matrices over a field F':

1. Let # have invariant factors o, --., d, of respective degrees
d=d, = --- =d,. Let (F[1]), be the algebra of all » x » matrices with
coefficients polynomials in an indeterminate 4, (4) the matrix diag
(6.2), ---, 0.(2)) and B the subalgebra of matrices («) in (F[2]), such that
(@)'(9) = (6)(p) for some () in (F[A]),, which condition we will also write
as (0) Y a)y(d) = (p) e (F[1]),, () denoting the transpose of (). Let R
be the ideal in B of matrices of the form (£)(6). Then Cu((x)) is
isomorphic to B/R, so that by the results of section 1, Cg((x)) is
isomorphic to B;/N,. From 1. easily follows the following theorem of
Frobenius :

2. Let x be as above with invariant factor degrees d, = --- = d,.
Then €y((x)) is of dimension S ;zi(2k + 1)d,,..

3. Finally, Cu(Cu((x)) = (x).

We will give appropriate generalizations of these results for Jordan
algebras. The method will be to examine one by one the various types
of simple algebras. In this way we will obtain some information on
each of the various types of simple Jordan algebras, but it would also
be interesting to have a general method which works for all the algebras
at once.

Since all the special algebras & that occur will have semi-simple
enveloping associative algebras, we will be able to apply Proposition 1.2
to obtain that €g((x)) is just the set of elements of ¥ commuting with
x. Proposition 1.3b will be used in a similar way for the exceptional
algebras.

In most proofs the key case will be that of a nilpotent element z,
and the reduction to that case will be made by using a special case of
the decomposition of an associative algebra over a perfect field into a
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