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1. Introduction and summary. Let F(z) be a distribution on the
real line. Then we may write

(L. F(x) = pFy(z) + (1 — p)Fy(«)

where F\(x) is a discrete distribution, Fy(x) is a continuous distribution
and 0 < p <1. We shall say that F(x) is discrete if p =1, F(x) is
continuous if p = 0 and F(x) is a mixture if 0 < p < 1.

oo

Let ¢(s) = ¢"*dF(x) be the characteristic function corresponding

to F(x). It would be useful to give a convenient ecriterion on ¢(s) to
determine when the corresponding distribution F(x) is discrete, continuous,
or a mixture. In §2 we give such a criterion for the class of infinitely
divisible (i.d.) distributions, utilizing the Khinchin representation of the
characteristic function of such a distribution. In §3 we apply the theorem
of §2 to characterize a certain class of stochastic processes.

2. The structure theorem. Let ¢(s) be the characteristic function
of an i.d. distribution. The Khinchin representation of such a charac-
teristic function takes the form

— . [ jws 1 tus |1 +w?
@21)  ¢(s) = exp {zrs + S_w[e 1 u] u2 dG(u)}
where 7 is a real number and G(u) is a real valued bounded nondecreasing
function. y and G(u) are uniquely determined by the conditions
G(— ) =0, G(u + 0) = G(v). We shall need the following two lemmas,
the first of which is well known.

LeMMA 1. Let X and Y be independent random variables. Then

(1) the distribution of X + Y is discrete iof and only if the distribu-
tion of each of the variables is discrete,

(ii) the distribution of X + Y is a mixture if and only if one of the
two distributions is a mixture and the other is either discrete or
a mixture.

Let F(zx) be a distribution. We shall define F®(z) as follows :
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0 for x <0

, FO) = F(a) ,
1 foraso’ @ =F@)

FO(x) = {
and for &k > 2, F®(x) denotes the k-fold convolution of F(x) with itself.
LEMMA 2. Lot — o <a<b< o, and let F(») be a nondecreasing,

bounded function defined for o < x < b such that F(a) = 0, F(b) — Fla) =
¢>0. Then

(2.2) ¢(s) = exp {— ¢+ S fsmdF(x)}
8 o characteristic function corresponding to the i.d. distribution
F®
(2.3) H(u) = o 5, F P
k=0 !

If F(z) i3 a pure jump function then H(u) is discrete. If F(x) s
continuous, then H(u) is a mixture with a jump of magnitude ¢ ° at the
origin and continuous otherwise.

Proof. Tor every positive integer n let

mw =57 )(”)/ri

=0 =0 kg Y

and let

o =5 L[ emarw| B
=0 ! =0 ]{; 0
Then H,(u) is a distribution with characteristic function ¢,(s). Since
H,(u) converges to H(u) and ¢(s) converges to the continuous function
¢(s) it follows that H(u) is a distribution with characteristic function
¢(s). The fact that H(u) is i.d. is immediate from the form of ¢(s).
Now if F(z) is a pure jump function then (2.2) becomes

#6) = o 5[ S, |

where F(z) has its jumps at the points x; with magnitudes p;, and such
a characteristic function clearly corresponds to a discrete distribution.
Finally if F(z) is continuous we may write

_ epoq + L= ) $ FO@
A = P+ e B

and since the infinite series converges uniformly it follows that H(u) is
the mixture of a continuous distribution and the distribution with a
single jump at zero.

)
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THEOREM 1. Let ¢(s) be the characteristic function of an i.d. dis-

tribution F(x). Let G(u) be the function occurring in the representation
(2.1). Then

(i) F(x) is discrete if and only if r —Z];? dGu) < o and G(u) is
a pure jump function.
(i) F(x) is a mizture if and only if S —\1727 dG(u) < o and G(u) is
-
not a pure jump function
(iiiy F(x) is continuous if and only if S_ —;7 dG(u) = « .,

Progf. Suppose first that G(u) is a pure jump function with jumps
at the points u,;,j=1,2, --- and with corresponding magnitudes p; > 0,
such that 3,0, < . Then (2.1) (with 7 = 0) takes the form

— dsw, 1 — J“S;uf,i 1+ Zﬁ
(2.4) ¢(s) = exp Jl; [e i—1 1+ ] " pj} .

Now if >,p;/u} < o we may rewrite (2.4) in the form
#(9) = exp Jish — o + S‘” oM |

where

-3l = 1+uapj,
J ZL; J ’I/Lj

and where M(u) is a bounded, nondecreasing, pure jump function with
jumps at the points u, and corresponding magnitudes ((1 + u3)/u3)p;.
Consequently it follows from Lemmas 1 and 2 that F(z) is discrete.

Conversely we suppose that F(z) is a discrete distribution. We shall
show first that G(u) is a pure jump function. To do this write G(u) =
G(u) + Gu) where G,(u) is a pure jump function and G,(«) is continuous.
If G(u) is not a pure jump function there will exist a closed interval
[@, b] not containing zero such that Gua) < G«b). Then we may write
¢(s) in the form ¢(s) = M(s)N(s) where M(s) is a characteristic function
and

o = o[ 12, T )

= exp {— fisS: le AG,(w) — S }J’Ldaz(u) + S ““olH(u)}

where dH(u) = (1 + »’)[u?)dG(w). From Lemma 2 it follows that N(s) is
the characteristic function of a mixture and from Lemma 1 it then
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follows that F(x) is not discrete. Hence G(u) is a pure jump function,
and ¢(s) has the form (2.4).

We shall show that >},p,/u} < . Since 3);0; < o it is sufficient

to restrict attention to those u, for which |u,;] < 1. Since F(x) is dis-
crete it follows that ¢(s) is almost periodic and we have

(2.5) lim L S lo(s)|%ds > 0 .
Now

lp(a)]F = exp {5 [eosus — 11122 |
J

where

3y =201+ wle, .
Let

9(R) = b
YRETu st o

We have
(2.6) P <exp{ X [eosus — 1 7o)

l/RSlujl 1

SL > —R—Lexp {lecosus — 1]g(R)} .

g(R) 1R<Tu i<t u,§

The first of these inequalities is immediate and the second is an ap-
plication of Jensen’s inequality.
From (2.6) we obtain

@7 S:lsv(S)lzds

| =

1 L, 1 [
T e o g |, exp {feosuss — Lg(B)ds

Suppose R >1 and |u,| > 1/R. Then for every ¢ >0 there exists ¢
depending on ¢ only with 0 < 6 < 1 and with the following property:
If R/(¢) is the subset of [0, B] where cosu;s <1 — ¢ and R,c) is the
subset of [0, R] where cosu,s>1— 4, then the measure of R,(c) does not
exceed ¢R. Using this and (2.7) we find

(2.8) L 1eteypas <+ oo
R Je
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Now if 3},p,/u} = o, then clearly limg...g(R) = . This together
with (2.8) contradicts (2.5), thus proving (i).

Now suppose N 1/u*dG(u) < o and G(u) is not a pure jump func-
tion. Then we may write G(u) = G(u) + G, (u) where G,(») is a pure

jump function and G,(u) is continuous. Of course we have

r -;Tth(u)<oo, i=1,2.

Then from (i)

oo y 2
exp (" [om -1 e P2 a6}

is the characteristic function of a discrete distribution. Similarly from
Lemma 2 it follows that

exp { Sl I:e““ —1- I j_suuz } 1 —{u;uz dGz(u)}

is the characteristic function of a mixture. Thus F(zx) is the convolu-
tion of a discrete distribution and a mixture and from Lemma 1 it fol-
lows that F(x) is a mixture.

Conversely suppose F(x) is a mixture. Then

(2.9) #(s) = ppi(s) + (1 — p)p«(s)

where 0 < p < 1, ¢(s) is the characteristic function of a discrete distri-
bution and ¢,(s) is the characteristic function of a continuous distribution.
If we write ¢(s) = ¢?® then e¢*®/" is a characteristic function for every
positive integer n because Fl(x) is infinitely divisible. Clearly ¢#®/* must
be the characteristic function of a mixture, i.e.

(2.10) 'O = P01 1(8) + (1 — Du)@a,n(r)

where 0 < p, < 1, and ¢, ,(s) and ¢,,(s) are of the same type as ¢,(s)
and ¢ s) respectively. From (2.9) and (2.10) we obtain

¢(s)

2.11) o) = [ = pieta(o)

+ 3 OP L — B PEHES)

Now ¢7,(s) is the characteristic function of a discrete distribution
and the sum occurring in (2.11) is the product of (1 — »?) and a charac-
teristic function of a continuous distribution. Thus
p, = P" and [, (8)]" = ¢i(s) and we see that ¢(s) is the characteristic
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function of an i.d. distribution. Writing ¢(s) = ¢"1®, p =e° with
0 <¢< o we have

$(s) Rl

(2.12) enr = 3—%6 » 4+ (1 —e :‘T)gpzn(s) .

If we expand the exponentials in (2.12) we obtain
(2.13) im ¢,,,(5) = guufs) = 1 + L& = $:(8)
- ¢

Since ¢(s) and ¢,(s) are continuous it follows that ¢, (s) is a charac-
teristic function, say ¢,(s) = ¢"*"dH(z), where H(x) is a distribution.
Hence

(2.14) @(s) = e¥® = gh®+¢E -4,

— gt () +oley g (D-11 — e¢1<s>+S:[eisu“‘]“f"”)'
Now ¢%1® is the characteristic function of a discrete distribution. If we
equate formula (2.14) for ¢(s) with formula (2.1) for ¢(s) it follows
from the first part of the theorem and the uniqueness of G(u) that

N 1/uw*dG(u) < . It is also a congsequence of the first part of the
theorem that G(«) is not a pure jump function. Thus (ii) is proved and
(iii) follows from (i) and (ii), proving the theorem.

From (2.14) we are able to deduce additional information in the
mixed case.

COROLLARY. Let ¢(s) be a characteristic function corresponding the
i.d. distribution F(x). If F(x) is & mixture then F(x) is the convolution
of a discrete i.d. distribution and a i.d. distribution which has a jump
at zero of magnitude less than one and is continuous otherwise.

3. A class of discrete processes. Let X,(¢),t>0,7=1,2.--bhe
a sequence of independent stochastic processes such that for each 7, X,(¢)
is a process with independent increments and such that for 0 < ¢, < ¢,
the random variable X,(¢,) — X,(f,) has characteristic function

o } 1+ 4
(s, t) = exp {| ey — 1 T%Tj] ‘;“ [ot) — 81}
where u, is a real number and p,(t) is a nondecreasing function defined
for t > 0 with p;(0) = 0. Then each X,(f) is a generalized Poisson pro-
cess, i.e. X,(t) assumes values of the form y, = ku, — (p,(t))/u, with
probability

e NN

PIX,(t) =} = =,

’
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where 1,(¢) = (1 + w3)[ud)p,(t). Now if >, p,t) < o for every ¢ >0,
then we can define a process X(t) as the sum of the processes X,(t),
and the characteristic function of the process X(f) will have the form

_ s, 7 Suy 14 u) _
(3.1) (s, t)_exp{;[e s—1 1+u§:| = p](t)}.

It is an immediate consequence of Theorem 1 that for any ¢ > 0, X(¢)
will be a discrete random variable if and only if >}, (p;(£))/u} < o .

‘Conversely suppose for ¢ > 0, X(t) is a stochastic process such that
X(0) =0, X(¢) is a discrete random variable for every ¢ >0, and the
process has independent infinitely divisible increments. This will be true,
e.g. if X(¢) is a discrete process with independent increments and such
that X(¢) is continuous in probability. Then from Theorem 1 it follows
that the characteristic function of the random variable X(¢) is essentially
of the form (3.1) with p,(t) nondecreasing and 3;(p,(£))/u; < o for all ¢.
Consequently X(f) has the stochastic structure of a sum of independent
generalized Poisson processes. We have

THEOREM 2. Let X(t) be a discrete stochastic process for t > 0, with
X(0) = 0 and such that X(t) has independent infinitely divisible increments.
Then there exists a sequence of independent generalized Poisson processes
Xi(t),j=1,2 .- such that X(t) has the same stochastic structure as
205 X(#).

In the case when X(¢) assumes only integer values Theorem 2 wasg
already proved by Khinchin [1].
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