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CONVOLUTION SEMIGROUPS OF MEASURES

IRVING GLICKSBERG

Let S be a compact topological semigroup, C(S) the Banach space of
all continuous complex valued functions on S, and £ the normalized non-
negative regular Borel measures on S. Under convolution and the ω*

topology of C(S)*, S and the unit ball S of C(S)* each form a compact
semigroup. The main purpose of this paper is the determination of all

subgroups of S and S when S is abelian.
In the case in which S is a group, J. G. Wendel [10] has determined

the idempotents in S: they are just the Haar measures of subgroups of
S. This fails to hold for the general compact semigroup S, but does
remain valid for compact abelian semigroups, due primarily to the fact
that the least ideal in a compact abelian semigroup is a group. Indeed
it is just this feature of the abelian case which allows one to complete
the one point in WendeFs argument where essential use is made of a
group structure, rather than a semigroup structure, for S, and further

allows one to determine the subgroups of S.

The structure of the subgroups of S (when S is abelian or a group)
is quite simple : each subgroup Γ of S consists of the G — translates
of Haar measure on g, where G is a subgroup of S, and g a normal
subgroup of G. Thus Γ is just the set of point masses on Gjg imbedded
in S in the natural fashion, and we arrive essentially at the fact that

the only subgroups of S are the obvious ones. But a consequence of
this knowledge is an extension of the Weyl equidistribution theorem :
for μ in S, N~ι Σ»-iJ"n —^ H a a r measure of the least ideal of the sub-
semigroup of S generated by the carrier of μ (in the group situation
this is convergence to Haar measure of the subgroup generated by the
carrier).

Finally, in the abelian case, the determination of the subgroups of
S is obtained as a consequence by virtue of a theorem of Eberlein [3]
we can apply our results to obtain the subgroups of the convolution
semigroup formed by the unit ball of C0(2f )* where gf is a locally com-
pact abelian group.

It is a pleasure to record the author's indebtedness to K. de Leeuw
for his stimulating comments and suggestions, which were directly
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52 IRVING GLICKSBERG

responsible for many of the results our indebtedness to WendeFs paper
will be self-evident.

1. Preliminaries* We begin with a resume of the facts and nota-
tion we shall use in connection with semigroups, ideals, measures and
convolution for standard results on measure theory and topological
groups the reader is referred to [5, 6, 9]. Let S be henceforth a compact
semigroup, i.e. a compact (Hausdorff) space with a jointly continuous
(binary) operation (multiplication) under which it forms a semigroup.
By a subsemigroup of 5 we shall implicitly mean a closed subsemigroup
a not necessarily closed one will be called an algebraic subsemigroup.
By a subgroup G of S we shall mean a (closed) subsemigroup which
algebraically forms a group under our operation since G is compact, in-
version (as is easily seen) is automatically continuous and G is a compact
topological group.

(1.1) Suppose now that S is abelian. An ideal / of S is a nonvoid
subset closed under multiplication from outside (SI c /), and a con-
sequence of compactness is the fact that S contains a least ideal / =
ΠxesxS for xyS c xS Π yS implies {xS: x e S} has the finite intersec-
tion property while xS is trivially closed so that I Φ φ. And clearly
/ is a (closed) ideal contained in any other ideal. Moreover

(1.11) if E is dense in S, then I = Π x e s ^
For given an open set V containing / we have an x in S with xS c V
(otherwise the filter generated by {xS: x in S} has each of its elements
meeting the compact complement V of V, whence / Π V' Φ φ). Thus
by compactness and the continuity of multiplication we have a y in E
near x for which yS a V, I a ΓiyβEVS c V, and (1.11) follows. Further
/ is a subgroup of S as well [8]: for x e S =Φ xl is an ideal contained
in /, so xl — I. Thus if x e / we have an e in / for which xe — x,
whence yxe = yx since Ix — xl — 7, e is clearly an identity for /. On
the other hand yl = I implies that there is a z in I with yz = e, and /
is a group.

For a non-abelian S we have the usual variety of ideals and the
above facts are of course invalid however it will be convenient to note
that if S is a group any sort of ideal must coincide with the full group
S, and all of our remarks retain their full force.

(1.2) With S abelian or not the fact that S is compact allows us to
identify C(S)* with the space of (integrals with respect to) complex
regular Borel measures of S. We shall use the same letter to denote

the functional and the measure, writing μ{f) = \f{x)μ{dx). The norm
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\\μ\\ of μ in C(S)* is of course its total variation, and the unit ball of

C(S)*, S—{μ\ \\μ\\ ^ 1} is compact in the ω% topology, as is its sub-

space S — {μ : μ ^ 0, \\μ \\ — 1}.

For / e C(S) let fx(y) = f(xy), f*(y) = f(yx), so that fx and f* are

in C(S). The compactness of S and the continuity of multiplication

combine to yield the maps x -± fx, x-+ fx of S into C(S) continuous, and

thus for μ in C($)*, \f(xy)μ(dx) is continuous in y. Consequently we

can form the iterated integral \\f(xy)μ(dx)v(dy) which, as a function of

/, lies in C(S)*. The corresponding measure μv, the convolution of μ

and v, thus satisfies

(1.21)

for / in C(S). Moreover using the monotoneity arguments of [6]1 we
have (1.21) holding for bounded Baire functions f. Since the associative
law is easily verified, and μ, v ^ 0 implies μv >̂ 0 while \\μ || = μ(l) =

\/̂ (cίx) for μ ^ 0, S clearly forms a semigroup under convolution, abelian

if S is (by Fubini's theorem) similarly *§ forms a semigroup since

clearly | | ^ | | ^ \\μ\\ \\v\\. If we now add the ω* topology we obtain

compact semigroups: for since y-> fv is continuous for an / in C{S),

F — {fy :y e S} is a, compact subset of C(S), and thus point wise con-

vergence of an equicontinuous bounded net of functions on F implies

uniform convergence by Ascoli's theorem. But S and S are equicon-

tinuous sets of functions on F and ω* convergence amounts to pointwise

convergence, so μδ -» μ, vδ -» v imply \f(xy)μδ(dx) -* \/(^)^(d^) uniformly

in ?/ and therefore

\\ f(xy)μ(dx)v(dy), or

Finally we note the existence, for each non-negative regular Borel
measure //, of a unique closed set A = carrier μ d S with the property
that μA = \\μ\\ and μ U > 0 for each open C7 with A Γ\ U Φ φ [10]

1 For μ, v ^ O one argues as follows: the set of non-negative Baire / for which

Γ(y) = JΛ*0) Λ i M(^)

defines a Baire function / r and for which

[[f(py) Λ 1 μ(dxHdy) = ^ « ) Λ 1 ^(da?)

is clearly a monotone class containing the non-negative elements of CR(S), and thus includes

all non-negative Baire /. For general μ, v the decomposition μ = μ{ ~ μ2 + i(μz ~ μ±), and

the obvious distributivity of convolution suffice. Also monotoneity shows / Baire on S im-

plies / : (x, y)^>f{xy) is a Baire function on S x S, and thus Fubini's theorem may be

applied to /.
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it is simply the complement of the union of all open sets of μ measure
zero.

2 Idempotents and subgroups. The fundamental tool in our an-
alysis is the following extension of WendePs Lemma 4.

LEMMA 2.1 For μ and v in S,

carrier μv — (carrier μ) (carrier v) .

Proof. Let A and B be the respective carriers of μ and v. Since
each is compact so is A B, which in particular is then a Borel set.
Thus by the regularity of μv, for ε > 0 we have an open U containing
A B for which μv{U) ^ μv(A B) + ε. Since S is normal Urysohn's
lemma applies to yield an F in C(S) with ψA.B ^ F ^ φu (where μE is
the characteristic function of E), i.e., 0 ^ F ^ 1 and F — 0 on IT, = 1
on A ΰ . But it is clear that ψA{x)φB{y) ^ î («2/) for all a?, ?/ in S, and thus

= μ(A) v(5)

= [F(x)μv(dx) ^ μv(U) ^ /̂ v(A B) + ε ^ 1 + ε

Since ε > 0 is arbitrary, μv{A J5) = 1. Moreover if Z7 is now anopen
set with (A B) Π Ϊ7 Φ φ then we can find open sets F and W for which
F Π A Φ φ, W Π B Φ φ, and F" W~ c Z7 choosing an î 7 in C(S) with
Ψv-'w' ^ F ^ Ψυ again yields μ(V~) v(TF~) ^ ^(17), and this combines
with μ(V~) ^μ(V)> 0, v{W~) ̂  v(T )̂ > 0 to show MZΌ > 0. Hence
A S is indeed the carrier of /*v.

If /̂  is now an idempotent in S,

(carrier μf — carrier μ2 — carrier μ .

In the group situation this guarantees the carrier is a group [4, 7], but
in the case of an abelian semigroup S we must go further.

THEOREM 2.2 Let S be abelian or a group, and μz = μ e S. Then
carrier μ is a subgroup of S and μ is its Haar measure2.

Proof (Following Wendel). For completeness we shall include both
cases in our proof, although in the group situation we have WendeFs
Theorem 1. Let H = carriers, so H* = H. For / in CR(S) (the space

2 For non-abelian S this and our subsequent results fail in general. For take S =

[0, 1] under 9, where # o y = y. Then ^ v = v, for μ, vs S and each element of S is an
idempotent.
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of real valued elements of C(S)) let f\x) — \f(yx)μ(dy)f x e S, so that

/ ' 6 CR(S). Since H is compact / ' assumes its supremum over H at
some xQ in Hy and

/'(3b) = \fx<v)μ(dy) = μ(f*o) = μ\f*ή

since / ' ^ f'(x0) on (carrier μ) - χQ — HxQ c JEP = iϊ. Consequently /'(a?0)

= l/ '^o)/"^) and, since / ' is continuous and H = carriers, / ' assumes

its supremum over H on all of HxQ in particular then on the least ideal

I of the subsemigroup H of S.
(In case S is a group our proof is complete: for H is a group,

/ = H, and / ' constant on / = i?=> μ is right invariant).
Now suppose H\IΦφ. Then we can find an xλ in H and non-

negative / in C(S) vanishing on I for which / r i does not vanish on all
of H otherwise for each / ^ 0 in C(S) with /(/) = 0 we have fx(H)
= f(Hx) - 0 for all x in H, and thus f(H) = /(iϊ2) = 0. Hence for this

/ and x1 we have μ(fzή > 0 while, for y in /, f'{y) = \/(^2/)/"(^) =
\ 0//(c?α;) = 0 since Hy c / and / vanishes on /. But since / ' assumes
its supremum over H on I, 0 >̂ fr{xλ) — μ(fxή > 0, the desired contradic-
tion, and H — 2, a subgroup (of i ϊ and thus) of S. Moreover since / '
is constant on I = H, μ is invariant and our proof complete.

For a subset £ of S we shall refer to (Uμe^carrier μ)~ as the carrier
of E, which is obviously consistent with our former use of the term.
It should be noted that if E is a subsemigroup of S then carrier E is a
subsemigroup of S. For by Lemma 2.1 (Jμe farrier μ is closed under
multiplication, and therefore its closure is also. Moreover carrier E' =
carrier E; for if carrier μ ς£ carrier/? then there is a n / i n C(S) vanish-
ing on carrier E with μ(f) Φ 0. But then v(f) = 0 for y in E and
therefore for v in 2?~ as well, and μ $ E~.

THEOREM 2.3 Let S be either abelian or a group, and let Γ be a

subgroup of S. Then the carrier G of Γ is a subgroup of S while the
carrier g of the identity η of Γ is a normal subgroup of G. If Tη de-
notes the map of {GjgY -^ S defined by

= \ \ f{xy)ri{dx)v(dyg) , f e C(S),

then Tv takes {GjgY onto the ω* closed convex hull ^(Γ) of Γ, the point
masses (Glg)p of Gig onto Γ, and in each case is a (topological) isomorphism
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between these semigroups.

COROLLARY 2.31. Γ is the set of G—translates of Haar measure on

g. For η is Haar measure on g by Theorem 2.2 and thus for v = mass 1

at gy e G\g we have ?V(/) = I f(xy)y(dx), which of course corresponds

to the Haar measure of g translated to the coset gy.

Proof of Theorem 2.3. Consider first the case in which S is abelian.
Let SQ — (Jiuercarrier μ, an algebraic subsemigroup of S with £0~ =
carrier Γ — G. Since μ — ημ for μ in Γ, carrier μ — carrier η carrier μ
= gcarrier μ by Lemma 2.1, and thus gSQ = So and therefore gG = G.

But for x in So we have x e carrier μ, μ e Γ, so x carrier μ"1 c
carrier μ/^1 = g and #G Π g Φ Φ. Further, since xyG c xG Π ?/(r for
x,y e So a G we conclude from the compactness of g that g meets
Πxe^^Gj the least ideal J of the compact semigroup G (cf. (1.11)). Con-
sequently g c / for i e g f] I implies g — ig a I since ^ is a group and
/ an ideal. Since gG — G we obtain G c I c G, and since / is algebraical-
ly a group, G is a subgroup of S.

Now evidently Γ,, maps {GjgY into S. Let / be in C(S) and vanish
on G. Then clearly Tvv(f) — 0, v e {GjgY, so that G contains the carrier

of any measure in the range of Tv. The subset M of 5 of elements
with carriers contained in G may be considered as a subset of either
C(S)* or C(G)* in each case we obtain the same ω* topology since by
Urysohn's lemma C(G) is exactly the set of restrictions to G of the
elements of C(S), and μ(f) = μ(f\ G) (where μ on the left is in C(S)*,
and on the right in C(G)*). For the same reason we may evidently
form the convolution of two elements of M in either place, i.e. M may
be considered as a subsemigroup of either S or G. Thus it will clearly

suffice to consider Tv as a map of (Gjgy into G.

But now we recognize Tv as (a restriction of) the adjoint of the map

/ - * / ' of C(G) -+ C(G!g) defined by setting f\yg) = [ f{xy)η{dx). Thus
Tη is (ω* -^ ω*) continuous, and since / - * / ' is onto [6, 9], Tv is one-to-
one, hence a homeomorphism on (GjgY. Further Tv is an isomorphism
since for / e C(G)

= I f(xyzw)η(dx)vidyg)η(dz)vidwg) ,
JGIg Jg JβlQ Jg

= \ I \
jGlg JGlg Jg

— \ \ \ \
JG/Q JGlg Jg J
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since rf — vn and thus multiplicativity follows from Fubini's theorem and
commutativity.

Now let p be the canonical homomorphism of G -» G/g and, for μ in
Γ define μ e (G/gy by μ(F) = μ(F o />), ί7 e C(G/(/). Then for/ e C(G),

= f(%y)v(dx)μ(dy) = 1 I f{xy)r]{dx)μ{dyg)

so Γa

Thus the (compact) preimage of F is a subgroup of (Gjgy whose identity
is the mass 1 at the identity # of G\g (for clearly this measure maps
onto η and T, is one-to-one). Since Gjg is a group, Lemma 2.1 implies
each element of the preimage is a point mass indeed the preimage
consists of just those obtained from a closed subgroup of Gjg since as is
well known the map from points to point masses (in the α>* topology) is
a homeomorphism [2] and trivially a group isomorphism. Hence we may
identify the preimage as (Golg)p, the point masses on Gjg where Go is
a subgroup of G containing g (Go is closed since GQ[g and g compact
imply Go is compact). But obviously the carrier of each element of
Ty,(Golg)p is contained in Go so that carrier Γ — G c Go, and Go = G,
T,(Glgy = Γ.

To complete the proof in the abelian case we need only note the
well known fact [2], that (Gjgy is the ω* closed convex hull of (G/^)p,
so that Tv\_(Glgy~\ = ^{Γ) follows from linearity and continuity.

Now suppose S is a (non-abelian) compact group with identity e.
Since we clearly have G = carrier Γ = G2, G is a subgroup of S [4, 7].
Moreover g is a normal subgroup of G. For α? e carrier μ, μ e Γ, im-
plies # carrier/*"1 c ^ by Lemma 2.1 so that if 2/ e carrierμ"1,

xy ~ z e g, x'1 = yz~ι e (carrier/*"1) g = carrier/*"1 .

Thus

x~λgx c carrier μ~ι g carrier μ — g ,

and α " 1 ^ c gr for a dense set of x in G if y e g then x'λyx e g for all
x in G, by continuity, and g is normal in G.

Now if we omit the first two paragraphs of the proof for the abelian
case, each step will apply here with one exception : the proof that Tv

is multiplicative. But (applying Fubini's theorem) this follows from the
fact that

i.f(xyzw)r]{dz) = 1 f(xzyw)η(dz)
J9 Jg

or equivalently

[ f%{yz)η{dz) = \ f%(zy)η(dz)
JQ Jg

and thus ultimately from yg = gy.
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2.4 REMARK. If Γ is an algebraic subgroup of S then Γ~ is a sub-

group of S so that Γ consists of the G—translates of a Haar measure,

where G is an algebraic subgroup of S. For if the net {μδ} c Γ con-

verges to μ 6 Γ~, then any cluster point v of {μ^1} must satisfy μv — rj

as a cluster point of {μ$μ&1} and clearly μ = μη.

3 Least ideals and carriers. Our next result gives the relationship

when S is abelian, between the least ideal of a subsemigroup of S and

the least ideal of its carrier : the carrier of the least ideal is the least

ideal of the carrier.

THEOREM 3.1. Let S be abelian and let Σ be a subsemigroup of S with
least ideal j? let Sλ — carrier Σ with least ideal I. Then I = carrier ^ .

Proof. We know that j ^ is a subgroup of Σ and thus of S. Hence
by Theorem 2.3 its carrier is a subgroup G of S. Let So = (Jμes carrier μ,
a dense algebraic subsemigroup of Sλ. Let x e So so that x e carrier μ
for some μ in Σ. For v in ^ , μv e ^y so # carrier v c carrier μv c G
by Lemma 2.1, and thus #SΌ Π G φ φ and 0?^ Π G Φ φ. Since / =
Dxes χS1 by (1.11) we conclude as in the proof of 2.3 that G Π / Φ Φ
and therefore G c /.

But the fact that x carrier v c G for # e So, v e ^ clearly implies
xG c G for a? e So. Consequently for y m G,xy e G for all x in Sl9

by continuity, and thus SλG c G, or G is an ideal in SL. Hence G con-
tains the least ideal / and I = G = carrier ^ " .

THEOREM 3.2. Let μ e S, with S abelian. Then N~ι Σ£=i/^
measure on the least ideal of the subsemigroup of S generated by carrier //.
// S is a (not necessarily abelian) group, N'1 Σ^i/^ -» Haar measure
of the subgroup of S generated by carrier μ.

Proof. Let Σμ. be the subsemigroup of S generated by μ, vN =
V̂""1 Yun^ί^i and let v be any cluster point of {vN} which of course must

lie in ^(Σμ). Since || μvN — vN \\ -± 0 we have μv — v and thus λv = v for
each /ί e ^(Σμ). Since C^(Σ^) is abelian this clearly implies ^ is the
unique cluster point of {vN} so that vN -> v by compactness. Moreover
v̂ = v, λ 6 ^(Σμ), says {ι̂ } is the least ideal of the subsemigroup ^(Σμ)

of S, and an idempotent, so that v is Haar measure of its carrier by
2.2.

Now if S is abelian the carrier of v is the least ideal I of carrier
c^{Σμ) by 3.1. Evidently the carrier of the algebraic convex hull of
Σμ, coincides with the carrier of Σμj and since carrier E~ = carrier E, we
have carrier ^(Σμ) = carrier Σμ. and our proof is complete in this case.

If S is a group with identity e, let G be the subgroup of S generated
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by carrier/Λ Since a subsemigroup of a compact group is a group,
carrier {μn : n ^ 1} is a subgroup of S and clearly must coincide with
G. Thus if f{G) = 0, / e C(S) we have / vanishing on carrier μn, hence
f^if) — 0> all w, and v{f) = 0 consequently carrier v a G. On the other
hand /̂ V = ^ so that by 2.1 carrier/^ carrierv = carrieru and thus

U carrier μn — \J (carrier μne) c (J (carrier μw carrier v) = carrier v

so G c carrier y and our proof is complete.

3.3 REMARK. More generally we can follow Alaoglu and Birkhoff [1]
to obtain a stronger assertion. Let E be a commuting subset of if, and
let Σ be the abelian subsemigroup of S generated by E. We can regard
C^{Σ) as partially ordered by μ < v <=) v e μΣ, and then C^{Σ) forms a
directed set {μv ^ μ, v). If we regard C^{Σ) as indexed by itself then
C^{Σ) is a net and the net converges to Haar measure on the least ideal
of carrier Σ. For given μ e r^(Σ) and ε > 0 there is a v0 in ^(Σ) for
which || μv — v || < ε, v ^ v0: simply choose v0 = iV"1 Σ»-i)"n f o r ^ l a r ^ e

enough to yield || μv0 — v01| < ε then v ^ vQ =^> v — vQλ, \\ μv — v || =
II /W — ̂  II ̂  ll^o — ̂ o II IUII < ε. Consequently we obtain a unique
cluster point v of our net to which the net must converge, with μv ~ v,
μ 6 r^{Σ) and the remainder of our proof applies.

3A. Our next result gives more explicit information about the least

ideal of a subsemigroup of S when S is abelian.

THEOREM 3.5. Let S be abelian, and Σ be the subsemigroup of S

generated by a subset E of S, with carrier Sλ. Let ^ and I be the
respective least ideals of Σ and Sλ with identities η and e respectively.
Then ^ is the set of I-translates of Haar measure η of the subgroup h
of I generated by {(e carrier μ)(e carrier μ)'1: μ e E}.

Proof. We already know from Theorem 3.1 and Corollary 2.31 that

,j^ is the set of /—translates of Haar measure η of some subgroup g

of / we have only to show g — h. But each subgroup gQ of I is deter-

mined by its orthogonal subgroup g^ — {a e I: a(g0) = 1} in the

character group I of /, so we need only show g-*- = h^. Moreover the

elements of g-^ are just those a in / for which ^{a) — \a(x)-η(dx) = 1

(for all others Ύ]{OC) — 0), hence g^ = {a e I: \μ(a) 1 = 1, μ e ^}.
Now for μ in Σ, e carrier μ c carrier TJ carrier μ = carrier ημ c I and

since ημ e ^ , carr ier^ is a coset yg c /. Thus

(e carrier μ)(e carrier μ)~ι c ygiyg)"1 = g ,

and a e g^ implies a e h^. To see that h^ c g^f note that each a
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in / has a continuous multiplicative extension α* to Sj: simply set

a*(x) = a(xe), x e SL. Further α* has a continuous extension a' to all

of S by Urysohn's lemma, and, for μ in Σ, μ{ccf) — μ{ρc*) thus if μ8 -» μ

in J , μδ(tf*) --> μ(a*). But since α* is multiplicative if we define the

(Fourier) transform μ e C(ϊ) of μ in 21 by setting ft(a) = ^(Λ*) =

lα*(^)^(c?^), we have (/^)Λ = /> C (ordinary product in C(I)), with μ(a)

= μ(a) for μ in ,X (since carrier μ is then c 2).

Let a e h-1-. Then

α((e carrier μ)(e carrier A')"1) = α(β carrier μ) α(β carrier μ) — 1

for μ in E which implies α is constant on the sets e carrier/Λ μ in
Thus

= \a*{x)μ(dx) = l

is a unimodular complex number. But then (μv)A — μ C implies that
1 μ(a) I = 1 for μ in the algebraic subsemigroup of S generated by E
since μδ -> // in Σ implies μB(a) = Λδ(^*) -> M< *̂) = />(α) the same must
be true for all μ in Σ. In particular for μ in , j ^ , \μ(a) \ = l^(α) | = 1
whence a e g-^ and (/-1- = Λ, u .

4* The semigroup S. When S is abelian the subgroups of S, the

convolution semigroup formed by the unit ball of C(S)*, can be deter-

mined from those of S.

Let Γ be a non-trivial (i.e. Φ {0}) subgroup of S, with identity rjm

Clearly 0 0 Γ and consequently H//|| = l for μ in Γ for | | / ^ | | < 1
implies ^w -> 0 and thus 0 e Γ. Now by the Radon—Nikodym theorem
we can associate with each complex measure μ a non-negative measure
I μ I and a unimodular Baire function p^ for which μ(dx) = pμ{x) \ μ \ (dx)
(we shall express this by writing μ — pμ | ^ | ) and H |//| II = 11̂ 11. For
write μ = μv — μ.z + i(μ3 — μ4) with μ3 ^ 0, and let v = ^ + ^ 2 + μ3 + //4.
Each ^ is absolutely continuous with respect to v so there are functions
fj in ί/L(v) (which we can take to be Baire functions since each v integrable
function is equivalent to a Baire function) for which μ5 = f5 v. Set

f = A-A + HΛ-A) , \M\(dx) = \f{x)\v(dx)

and Pμ{x) =f(χ)j\f(χ)\ unless f(x) = 0 when we set jθμ(^) = 1. Clearly
pμ, and \μ\ have the required properties.

Thus for μ and v in Γ we have

(4,1) 1 = III μv 11| = [ l I μv I (eto) = f -J*—.μ»(dx) = (f

= (t ̂ (--ί^lΛl(^)iv|(%) <: Γf
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Consequently we have a | v \ null set E for which y 0 E implies there
is a I A* I null set Ey for which x f Ey implies pμ(x)p*(y) ~ pμ*(xy). Hence
for / in C(S)

IMCO = \Λχ)—rrMdχ) = \\f{χy)~~~-μ{dχ)v{dy)

\μ\(dx)\v[(dy)

so that μ~*\μ\ is an (algebraic) homomorphism of Γ onto an algebraic

subgroup ΓQ of S, whose identity is obviously \y\. Let G = carrier ΓQ

= carrier Γo", so that Γ~ consists of all G-translates of Haar measure
I-η I of a subgroup g of G. We shall see later that μ~*\μ\ is also con-
tinuous, so that ΓQ is compact and coincides with Γ~.

Now each Baire function f on S has its restriction to g a Baire
function of g (for the set of real valued f'& for which this holds is a
monotone class containing CB(S)). Thus pv | # is a Baire function on #.
Applying (4.1) to the special case μ = v = 7 we conclude that there is
an I a? I null set E oί g for which y $ E implies there is an | η \ null set
Ey of s' for which x $ Ey implies pv(x)pr,(y) = pv(%y). For simplicity let
us now write pv — p, and, restricting our attention entirely to g, write
dx for I ?? I (dx), the element of Haar measure on g, and speak of \η\
null sets as null.

For / e L^g) (which we take as a Baire function of g) let M(f) =

I yfa)j°(#)d#- Since y - Ey is null by translation invariance, and x $ yEy

implies yιx 0 Ey and thus p{y~ιx)p(y) = p{y~~ιxy) = £(#) for i/φE1, we can

write (with / * & the usual convolution in

= \\f{y)h{y-ιx)p{x)dydx

J - M(f)

so that M is a multiplicative functional on Lx{g). Thus we have a

character β oί g for which ^ = βmod 1̂ 1 on the carrier g of l^|, and

clearly then rj(dx) = ^(a?)|^|(cte). Moreover since £ = G/g-*- we have an

a in G for which α |gr = β, so that 7(dα?) = a(x) \η |(d!a?)"as elements of

S, or y = a \y\. (Note that essential use is made here of the abelian

nature of S).

Now a'1 can be extended continuously to all of S since each element
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of Γ vanishes on subsets of Gr the map μ -» a~ι μ is clearly a one-to-
one continuous map on Γ, and therefore a homeomorphism. Further
it is clearly multiplicative, so μ ~> or 1 μ is an isomorphism of Γ with

a subgroup /\ of S. The identity of Γλ is | ^ 1 , and thus for v in A ,

= 1

whence

Consequently v(l) is a unimodular complex number β(v), and since
1^(1) = ^(1)^(1), β is multiplicative evidently β is continuous and thus

a character of Λ Moreover \(llβ(v))v(dx) = 1 implies (llβ(v))v ^ 0, so

the map r : y -» /?(v)"V is a continuous homomorphism of 7^ into a subgroup

of £?. Further the composition of τ with μ -» a r 1 /*, taking

μ -* a~τ μ -» ^(αΓ1 μyλarx μ =. λ

clearly must map μ-+\μ\ since μ = β(a~1μ)a λ with Λ ̂  0 and ̂ (α:*1 μ)a
unimodular on G. Thus our original map μ -» | μ \ was continuous and
τ: v ~> β{pYΎv maps ^ onto Γo, which now appears as the full set of
G-translates of Haar measure | η \ on g.

For v in Γo let r"V — (9V v where Θv is a closed subset of the circle
group T, and in particular Θ — Θ]Ύ]] is a subgroup of T. Since Γτ =
Uvero^v ^ it remains to find the Θv. But v e ΓQy t e T and ίv e /\,
imply β(tv) = ί since v ^ 0 and β{tv)-ιtv ^ 0 thus β(0v v) = Θv. More-
over since v -> 0V v maps ΓΌ (topologically and) isomorphically onto
/ y 0 17 1 and β (taking θ\η\ onto Θ) maps the quotient group ΓJθ \η \
of cosets into T\θ in a homomorphic fashion, and continuously (as is
easily seen), the composition v -> β(Θv v) = Θv e Γ/0 is continuous. We
now distinguish two cases: Θ = T so that, as we could have seen earlier,
Γi — TΓQ (clearly this occurs iff Γ is circular in the sense that TΓ c Γ),
or Θ is the group of %th roots of unity, n ^ 1. In the latter case we
may apply the natural isomorphism σ(: ξ -> ξn) of Γ/0 onto T to map 6>v

into T. Writing | ΎJ \x(eΓQ) for the translate to xg of | rj \ we thus have
φ(x) — σ(Θ^]J defining a character of G lying in g-^: for the map
# -^ IV \χ of G into Γo is a continuous homomorphism as the composition
of G->Glg, the map from Gig into (Glg)p (a G) (continuous by [2])
followed by 2% (cf. 2.3). Consequently Θlv{χ consists of just the nth
roots of φ(x) and we may express our general element of Γ1 as φ(x)λln\ ΎJ \x1

where x e G and <p(x)ιln denotes any root. In summary then, we have

THEOREM 4.2. Let S be άbelian and Γ any non-trivial subgroup of
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S. If Γ is circular in the sense that TΓ c Γ then there are subgroups

g and G of S, with g c G, and a fixed a in G for which Γ =

{ta μx : t e T, x e G) where μ is Haar measure on g, μx its translate

to xg. If Γ is not circular then in addition to g, G and a we have an

integer n>,l and a φ in g^ c G for which Γ — {<p(x)llna μx : x e G)

where φ(xfln runs over all nt\ι roots of φ(x). Conversely any such set of

measures forms a subgroup of S.
There remains only the last point which is fairly obvious in the

circular case. In the non-circular case any subset Γ of the type described
is algebraically a group, and one need only verify its closure. But if
φ(xB)

ιlna μx& -» v then by virtue of the compactness of G we can find a
confinal subnet for which xh, -* x, an element of G, whence a μx -»
a μx; since φ(x&,) -* φ{x) some ^th root <p(xyln of φ(x) is a cluster point
of <p(x8')

lln and ψ(xflna μx is thus a cluster point of our convergent net,
hence = v and v e Γ.

REMARK 4.3. The first portion of our proof identifies the idem-

potents in S when S is a compact non-abelian group. For the argument
shows μ1 — μ Φ 0 =φ I μ |2 = | μ |, so that 1 μ \ is Haar measure of a sub-
group g, while pμ again appears as a multiplicative character of g.

4A. It may be worthwhile to note the analogue for S of Theorem

3.2: for S abelian and μQ e S, N'1 Σί-iA'o "~* 0 unless there is an a in
C(S) which is unimodular and multiplicative on S,̂ o, (the subsemigroup
of S generated by carrier \μo\) satisfying μQ = a \μQ\, in which case
N'1 Σ^=1Λ? -± <* (Haar measure on the least ideal of S^Q{). For if Σ is
the subsemigroup of S generated by μ0 then as before iV"1 Σ^=i^o ~> ̂ ,
the unique element of the least ideal of the semigroup ^(Σ). Clearly
v = 0 if 0 e ^{Σ) if 0 φ ^{Σ) then

(4.41) μ e &>(Σ)=ϊ\\μ\\ = l ,

and

(4.42) the least ideal ^ of Σ is a non-circular subgroup of S as in
4.2 with n = l.

For otherwise, in each case, we may conclude that 0 e ^(Σ). Con-

sequently ^ — {β τjx : x e G} where β e G, G is a subgroup of S and

η is Haar measure of a further subgroup.
But just as in the proof of 4.2, μ-+\μ\ is an algebraic homomor-

phism of ^f{Σ) into S. Moreover the image of ^ — {rjx: x e G} is
closed and is easily seen to be the least ideal of the closure Σx of the
image of Σ. Thus by Theorem 3.1, G is the least ideal of SL = carrier Σ19
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and as in theorem 3.5 we can extend β to a continuous unimodular

multiplicative function βx on S1 by setting βτ(x) = β(xe), x e Sl9 where

e is the identity of the least ideal G of St. Since βΐ1 is multiplicative

on Sλ and all μ in Σ vanish on all Borel subsets of S'lf μ -> βΐ1 μ is

a homomorphism on Σ which in particular maps ^ into S. As a con-

sequence it must map all of Σ into S: for if v — β^λ μ is the image of

μ e Σ then, since (/? rj)μ e ^ we have ^ e S whence 1 = ψ(l) —

rj{l)v{l) = v(l), so [Ml = 1, v ^ 0. Evidently then /?Γ1 ^ = | ^ | . In

particular μ0 — βλ \ μQ \ and we may take a as any continuous extension

to all of S of βτ. Finally if such an a is available then

* I A 1" = (« I ft l)n so iv-1 Σ»-i/tf = <* (̂ v-1 Σ»-i I ft ln)
and the final assertion follows from theorem 3.2.

5. Application to C0(gf )*. Let gf be a locally compact abelian
group and CQ(&) the Banach space of continuous functions vanishing
at oo, so that C0(g?0* consists of the finite regular Borel measures on
&. Uniform continuity of each element of CΌ(Ŝ ) allows one to define
convolution just as in § 1, and C0(5f )* is easily seen to form an abelian
semigroup. However, the natural choice of the ω* topology of C0(S^)*
will not yield the unit ball a topological semigroup3 rather it is the
topology of pointwise convergence of Fourier—Stieltjes transforms (in

which μ8 -+ μ <=φ μ^(a) -> μ(a) for each a e φ*) which does, and it is
this topology we shall adopt.

The possibility of applying our previous results to the (topological)
semigroup we thus obtain from the unit ball of Co(2^)* arises from two
facts, both due to Eberlein [3]. Let g?* be the almost periodic com-
pactification* of gf. Then as Eberlein has noted there is an isometric
imbedding of C0(Sf )* into C(Sf *)* : for μ e Cl&Y let μ'(f) = \f(x)μ(dx)
for / almost periodic on g^. Since the almost periodic functions on g^
are isometrically isomorphic to C(gf *) we obtain μ' e C ( ^ * ) * . The
clearly linear map μ -> μ! then preserves norms by the following argu-
ment : select a compact K c ^ for which | μ \ (Kf) < e and an element

/ of the unit ball of Co(%?) for which | f/(a?H^) ^ II ̂ 11 - e> s o t h a t

1 f{%)Kdx) ^\\μ\\ — 2ε. Since ^ has sufficiently many characters the

f i * d h h h i i ίmap of into g7* is one-to-one and thus a homeomorphism on
Consequently5 we can find an Fm the unit ball of C(&*) which extends

3 For example take μn = mass 1 at the integer n £ R; then μw -> 0, and μ-n -> 0 in
the ω* topology of CQ(R)* as TZ -> + oo while μnμ-n = μo

ί It will be convenient to view g 7 asa dense algebraic subgroup of gf *, and the
almost periodic functions on g^as the restrictions, to 9/, of elements of C( ^ * ) , cf. [6, 9].

5 We can simply extend the real and imaginary parts of f\ K separately by Urysohn's
lemma to obtain an extension F', and set F(x) = F'(x) (1 Λ I Fr{x) \~ι) (= 0 of course if
F'(x) = 0).
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f\K, a continuous function on the compact subset K of gf*. Then we
have

and || μ' \\ ^ || μ || — 3ε. Evidently || μ' \\H\\μ \\, so μ -> μ' is an isometry.
Moreover it is clear that since both g^ and gf * have the same algebraic

group of characters, the underlying group of φ, we may write μ — μr

since both of these Fourier—Stieltjes transforms coincide as functions

on the set gf, and thus (since for measures μ, v on either group {μ»Y
= μ t>) (μv)r = μ'p'. Consequently the map μ -» // is an algebraic
isomorphism of the semigroup formed by the ball of Co(5^)* into that
formed by the ball of C(S^*)*, gf *. Further, our choice of topology
is just that which makes the map topological as well.

The second and crucial fact for our application which we obtain
from Eberlein is the following corollary of the main result6 of [3]:
Consider C0(S^)* as imbeded in C(gf *)*. Then its elements are just those
measures μ on &* with μ continuous on &. Thus we can easily identify
the range of μ -» μf.

Suppose then we are given a non-trivial closed subgroup Γ of the

unit ball of C0(S^)*, and let ΓQ be its isomorphic image in g^*. Then
ΓQ is a subgroup of g^* and thus by Theorem 4.2 each of its elements
is of the form ta ηx, where t e T, a is a character of a subgroup Go

of g^*, η is Haar measure of a further subgroup g0 of Go and ^ the
translate of η to the coset xgQ c Go indeed since each character of Go

extends to one of gf*, we shall take a e g7*", i.e. as a character of
^ . But the identity a ^ of Γo~ was already present in Γo and thus

has a continuous Fourier—Stieltjes transform on φ, whence η is con-
tinuous on φ. Since η = <pg±, the characteristic function of the sub-
group gt of ^ * A ( = g^ in the discrete topology) orthogonal to g0, we
obtain the fact that gf~ is an open and closed subgroup of φ y and
y\gf is discrete. But Φjgt i s the character group of that subgroup
g of g^ orthogonal to ô"1" consequently ^ is a compact subgroup of 5^.
If μ denotes its Haar measure then μ = ^ * = ^ * = ^ BO η ^ μf by the
one-to-one-ness of the Fourier-Stieltjes transformation.

Now consider a general element to ηx of /V The fact that its

6 Specifically Eberlein's result may be stated as follows: for μ 6 C( gf *), μ 6 Iίoo( gf)

(in the usual sense) implies there is a v in Co( gf )* for which C coincides with ^ in ί/«(

Since here our μ is continuous, as v must be, we obtain μ = v as functions and thus μ =
by the (one-to-one)-ness of the Fourier-Stieltjes transformation.
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transform is continuous implies {ηxY is continuous while

(v*Y(β) = β(χ)m = β^)ψ^(β)

thus as a function of β, β(x) is continuous on the open subset g^ of
5f, hence on all of φ. By duality we then have a ?/ in & for which
j9(a?) = β(y), all /9, and we may identify x as an element of gf Π (r0-
Conversely each a? in ^ Π Go gives rise to elements of Γό which already
lie in ΓQ (for such measures lie in the image of C o ( ^ ) * in which ΓQ is
relatively closed by hypothesis) thus Γo consists of just those elements
ta ηx of ΓQ arising from x's in 2? Π Go = G, algebraically a subgroup
of gf. But clearly G is closed in gf, and is thus a subgroup of <&,
since the map ^ -> S^7* is continuous.

Finally it is clear that if Γ (and thus Γo) is circular so is Γo~ con-
versely if ΓQ is circular then Ta η c Γo~ and thus Ta - η a Γo, whence
Γo and Γ are circular. We have proved

THEOREM 5.1 Let & be a locally compact abelian group and let
C0(S^)* be topologized by pointwise convergence of Fourier—Stieltjes
transforms. Then any closed convolution subgroup Γ of the unit ball of
Co(5^)* is determined as in Theorem 4.2 where g is a compact subgroup
of %?, G is a closed subgroup, and a and φ may be taken as elements

of Φ.

5.2. It should be noted that the convolution semigroup formed by
the ball of C0(S^)*, although not compact, shares some properties of
compact semigroups: the closure of an algebraic subgroup is again a
group, indeed a topological group in the relative topology (thus the last
applies to an algebraic subgroup). For if Γ is an algebraic subgroup
its image Γo in C(5f *)* is an algebraic group, so that Γo" is a compact
topological group. But of course Γ~ is just the preimage of the inter-
section of Γό with the image of C o ( ^ ) * .

Finally suppose Γ is a non-trivial algebraic subgroup of the ball of
Co(S^)* which in addition is ω* closed (compact). Then Γ is a closed
subgroup as described in Theorem 5.1 with G a compact subgroup of
& (and conversely). For, changing our notation, let G denote the sub-
group of <& produced via Theorem 5.1 for Γ~. Then the set H of x
in G corresponding to elements ta μx in Γ forms a dense algebraic
subgroup of G, as is easily seen. If G is not compact then we have a
net {x8} c H which tends to CXD, SO that the corresponding net of
measures {t5a μ } tends to 0 in the cυ* topology (g being compact).
But this implies O e f , which is clearly nonsense.

Consequently G is compact and, since the elements of Γ all vanish
off G, the ω* topology on Γ reduces to the topology of pointwise
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convergence of Fourier—Stieltjes transforms (by virtue of the Stone—
Weierstrass theorem and the existence of sufficiently many characters
of 2?'). Therefore the image of Γ in Cifg**)* is compact and closed,
whence Γ — Γ~.
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