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MEAN PLAY OF SUMS OF POSITIONAL GAMES

OLOF HANNER

1. Introduction* In 1953 Milnor studied certain positional 2-person
games and defined what he called sums of such games [1], He investi-
gated the optimal strategies for these games and gave some information
about them in terms of properties of the individual games.

In this paper we shall consider some other strategies for these sum
games. They are in general not optimal. However, the difference
between what a player gets when playing one of them instead of playing
an optimal strategy can be estimated. For the sum of n copies of the
same game this difference is bounded for all n. Hence, in mean this
difference is small for large n.

2. Description of the games. Essentially following Milnor [1] we
describe the games as follows.

Each game contains a finite set of positions P. There are two players,
Aλ and A2. For each p e P and each player Ai9 i — 1, 2, there is a set
of possible moves M^p) c P. For each p either both M^p) and M2(p)
contain at least one move or they are both vacuous. In the latter
case p is called an end position. For any chain po,Pι, ,pt with
pj+ι 6 M^pj) U M2(pj), we shall have p5 Φ pk for j Φ k. The maximal
number I of steps in all such chains starting with p0 — p will be denoted
by l(p). Then

(2.1) pλ 6 Mlp) U M2(p) implies l{pλ) < l(p).

Note that a pass, p e M(p), is never possible. The positions with l(p) = 0
are just the end positions.

For each end position the payoff functions kλ(p) = —k2(p) are defined.
They shall satisfy a condition given below. The players start with some
position and move alternatively until an end position is reached. Then
each player collects his payoff.

For each player At and position p, let vt(p) be the value of the
game for At when it is his turn to move at position p. It is given by

vί(p) = kt(p) for l(p) = 0,

(2.2) vt(p) = max {-v^^p,) \ pλ e Mt(p)} for l(p) > 0.

Because of (2.1) these formulas define v^p) by induction on l(p).
The numbers kt(p) are defined when p is an end position. We require

that they shall be given in such a way that
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82 OLOF HANNER

(2.3) vx(p) + v2(p) ^ 0 for every p e P.

Since the value at p for Ah is v^p) if he has the move and —v^^p) if
the other player has the move, the amount vx{p) + v2(p) is the gain for
a player of having the move. Inequality (2.3) therefore says that it is
at least as good to move as to pass (if this would be allowed).

3. Sums of games• We now define the sum of two games G and
G'. A position in the sum game G + Gr is a pair (p, pf) e P x P'. A
move in G + Gf is a move in one of the games G and G' and a pass in
the other. JΊius the moves in position p + p' = (p, p') are

We notice that

(3.1) l(p + p') - l(p) + l(p') .

In particular the condition is still satisfied that in a chain of successive
positions all positions are different. The position p + pf is an end posi-
tion if and only if p and p' both are end positions. For the end positions
we define kt(p + pf) by

(3.2) UP + p') = Up) + Up').

It is not obvious that the sum of two games satisfying condition
(2.3) also satisfies this condition. That this is the fact was proved by
Milnor [1]. It will also be proved in §8 below as a consequence of
Theorem 1.

It is clear that game addition is an associative and commutative
operation and that the formulas corresponding to (3.1) and (3.2) hold for
the sum of any finite number of games. A move in the sum of several
games is a move in one of them and a pass in all the others.

4* The main problem* The problem for us will be to give good
strategies for sums of games in terms of properties of the individual
games. Then we must decide what kind of strategies we shall consider
to be good.

One way to attack this problem is as follows. Consider n copies of
a game G and take their sum nG. Let them all be started in the same
position p. Then the value of the sum game is Vi{np)f where we have
written np instead of p + + p. Now, what happens to the mean
value Vi(np)ln when n tends to infinity? In fact this number tends to
a limit m^p) which will be called the mean value of the game G at p.
In later sections we shall prove that m^p) satisfies

(4.1) mL(p) + m,(p) = 0 ,
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(4.2) mt(p) ^ Vt{p) .

If we change i to 3 — i in (4.2) and apply (4.1) we get

(4.3) -v,-lv) ^

Thus m^p) lies between Vι(p) and —v3-i(p) which represent the values
for At when the game is started at p by him or by A3-t respectively.

Of a good strategy we now require that it guarantees at least
We see from (4.3) that though such a strategy may not guarantee
At will nevertheless get more by playing it than by passing (if this
would be allowed).

That the limit of vi{np)jn exists can be proved directly by an in-
equality given by Milnor [1, p. 294]:

p') ^

We get

Vi((m + n)p) <^ vamp) + vt{np),

and the existence of the limit of Vi(np)ln follows (cf. [2], Erster Abschnitt,
Aufgabe 98).

Another way of attacking our problem also leading to the number
nhi(p) will be used below. When a player shall move in a sum of games
he chooses one game, say G, and there makes a move. Thereby he loses
the possibility to make the move in one of the other games. If the value
of this possibility is put equal to t it is natural to compare the situation
with the case when the player has to move in G and pay the amount t
to the other player when moving. This will lead to the games Gt and
Gf given in the next section. In this approach the value m^p) is defined
by induction on l{p), thus by a finite procedure and not by a limit process.

Conventions for the figures. When giving examples of games by
figures we use the following conventions. The positions are given by
points and the moves indicated by segments joining them. A move by
Ax is a segment going down and to the left, a move by A2 a segment going1

down and to the right. At an end position we put the value kλ{p) and
at any other position we put the two numbers (m, σ), where m = m^p)
and σ = σ(p) defined in the next section. Unless anything else is said,
the game shall be played with the highest point as starting position.

EXAMPLE 1. Let G be the game in Figure 1, and consider the sum
of n copies of G. First let us start at p.z in all games. Then of course
in about half of the games Aγ will get 7 and in the rest of them 3.
Hence the mean value mχ(p2) is (7 + 3)/2 = 5. Analogously we get
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P,(2,3)

= — 1. If all games are started from pu it can be proved that
an optimal play by both players is to choose the moves from pu p2, and

p3 in this order of preference. Thus
when both play optimally one move
will first be made in all games.
After these n moves the players start
attacking the positions p.z in the
games where A1 made the move from
pλ. At last the remaining games
with positions p3 are played. About
1/4 of the games will end in each
of the four end positions. Hence the
2)/4 = 2. The order of preference

Figure 1

mean value m^p^) is (7 + 3 + 0
between p19 p.z, p3 is to be compared with the numbers σ{p^, σ(p2), σ(p3)
which are defined in the next section. As given in the figure, σ(p1) = Sf

σ(p.z) = 2, σ(p3) = 1. The number σ(p) is in a sense the value of the
move from position p.

EXAMPLE 2. We change one of the payoff numbers in Figure 1 and
get the game in Figure 2. Let us again consider the play of the sum of
n copies of the game. If all the
games are started from pl9 the opti-
mal play is now to choose the moves
from pl9 p2f p3 in the order of prefer-
ence : p29 ply p3, in accordance with
the fact that σ{p.z) = 5, σ(px) = 4, and
σ(p3) = 1. Thus if Aι moves from pi

to p.z in a game, A2 will immediately
move in the same game. Thus all
games with only one possible excep-
tion will end in the position with payoff kx{p) = 3. Thus m^Pi) — 3. Only
if A2 has the first move one game will end in another end position, the
one with k^p) = 0.

5Φ The games Gt and Gf Let G be a game satisfying as usual the

condition (2.3). Let t be a real number ^ 0. When l(p) = 0 put for

i = 1, 2,

vt(p t) = ki(p) ,

Figure 2

σ(p) = 0 .

For each p with l(p) > 0, we define four functions in t: uλ(p ί), u.λ(p t),
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v^p t), v2(p-,t) and three numbers raα(p), mλ{p), and σ(p). They shall
satisfy (5.1)—(5.7).

(5.1) Each function ut(p t) and vL(p t) is a continuous function for £ 1Ξ> 0
with a derivative for all but a finite number of ί-values. In each interval
between these exception values the function is linear with derivative 0
or — 1 . For t greater than the exception values the function ut(p t) has
derivative —1 and v^p t) has derivative 0,

(5.2) Vi(p 0) - vt(p) ,

(5.3) Ut(p ί) = m a x {-v^^p, t)\p1e Mt(p)} - t ,

(5.4) nip 0) = vt(p) ,

(5.5) σ(p) = min {ί I ί ^ 0, u,(p ί) + u2(p t) = 0} ,

(5.6) mt(p) = %t(p σ(p)) ,

(5.7) vlp ί) = u,{p ί) for 0 ^ ί rg σ(p),

= mt(p) for ί > σ(p).

We shallv see below that these conditions are related to two games
Gt and Gf. Let us first show, however, that they define our functions
and numbers by induction on l(p).

For l(p) = 0 the function vt(p t) is constant and equal to v^p), hence
it satisfies (5.1) and (5.2). Let l(p) > 0 and suppose that for each px

with l{p{) < l(p) and in particular for each p1 e Mt{p) we have Vι(px t)
defined satisfying (5.1) and (5.2). Then ut(p ί) can be defined by (5.3).
By (5.1) for each v^^ ί) we get immediately (5.1) for ut(p ί) and by
(5.2) for each v^ip, t) and by (2.2) we get (5.4). By (5.4) and (2.3)
we have uλ{p 0) + u.z(p 0) ^ 0 and by (5.1) for u^p t) we have
Ui(p ) t) + Uzip \t)-> —oo when t -> oo. Hence, since n%{p t) is continu-
ous, the set in (5.5) is not vacuous and σ(p) is defined and ^ 0. Then
(5.6) and (5.7) will define mt(p) and vt(p;t). That vJip\t) satisfies (5.1)
and (5.2) follows from the corresponding facts for ut(p ί). Hence the
induction will work.

EXAMPLE 3. We give in the diagram in Figure 4 the functions
uτ(p t), vx{p t), —uz(p ί), —v2(p t) for the game in Figure 3 and also
the values mx(p) and σ{p) for the same game.

Properties (5.1)—(5.7) give some further formulas. Since (5.1)—(5.7)
are only known to be true for l(p) > 0, we have to verify separately the
case l(p) = 0 each time we get a formula which has a meaning even in
this case. Note that ut(p t) is not defined when l(p) = 0,
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p(2,4)

(6,3)

uι(p t): ACF, - u2(p t): BCD,
vi(p t): AGE, - v2(p t): BCE.

Figure 4

Since by (5.1) ut(p ί) is a decreasing function, (5.6) and (5.7) give

(5.8) vlp ί) = max {u^p ί), mt(p)} .

Hence, in particular

(5.9) vt(p ί) ^ mt(p) .

By (5.5) and (5.6)

(5.10) mip) + mlp) = 0 .

Both (5.9) and (5.10) are true also when l(p) = 0 as is easily verified.
For any p they imply

(5.11) vλ(p ί) + v2(p t) ^ 0 .

By (5.2) and (5.9) we obtain

(5.12) vHp) ^ mt(p) .

Since vt(p; t) has derivative 0 or — 1 , we have for tτ < ί2

0 ^ v,(p ί3) - ^ ( P ί2) ^ ίa - ί: .
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Apply this for ί, = 0 and ί, = σ(p). Then by (5.2), (5.6), and (5.7)

(5.13) vt(p) £ mt(p) + σ(p) .

Both (5.12) and (5.13) are also true when l(p) = 0. For any p they give
a lower and an upper bound for v%(p).

We are now ready to define the two games Gt and Gf mentioned
above. Both are defined for each t ;> 0. They are played with the posi-
tions in G. The players play alternatively. But each time a player
makes a move into a new position in G he has to pay ί to the other
player. Thus for large ί it will be expensive to make a move. Therefore
we introduce a new possibility. When At has the move in Gt he is allowed
to stop the game instead of moving. In Gt the same possibility is open
except in the starting position, where the player who begins really must
move (and pay ί). When A stops at p he collects m^p). Then As-*
gets m A-iip) by (5.10). The value of Gt at p is v^p ί) and the value of
GT started at p is ut(p ί). This is seen by induction from (5.3) and (5.8).

For large ί it is a disadvantage to have to start in Gf. The starting
player will make a move and pay t and the other player will then im-
mediately stop the game. Thus if ί is great enough the starting player
will always lose. Thus GT does not satisfy (2.3). The game Gt, how-
ever, satisfies (2.3) as is seen from (5.11). In fact we have introduced
the number m%(p) and the possibility to stop just in order to save this
property. The number m4(p) is defined by (5.5) and (5.6) as the value
of Gf with starting position p, when ί has become so large that it is no
more an advantage to have the first move in GT. The lowest ί-value of
this kind is σ(p).

6. The ί^optimal moves* We will call a move in G a ί-optimal move
if it is optimal in Gt. Thus pL e M^p) is ί-optimal if

(6.1) vi(p;t)= -v,^(Pl;t)-t .

There is a ί-optimal move at p for At if v^p ί) = Uι(p ί). Thus
we get from (5.7) the following important fact: If σ(p) > t and if
p is not an end position there always exist ί-optimal moves for both
players.

If σ(p) ^ ί we have vt(p t) — m^p), and an optimal play of Gt is to
stop the game at p and collect m^p).

Now study a sequence pQ, pl9 pΛ, ,pt of positions that develop
when the players play alternatively and make ί-optimal moves. If
σ{pz) > t, there are ί-optimal moves at pτ. Therefore the sequence can
be continued and we can go on in this way until we reach a position p
with σ(p) ^ ί. We suppose this already done, so that σ(pι) g ί.

We want to get some formulas for m^^), 0 <£ Jc <* I. Since all moves
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in the sequence are ί-optimal we know that a player cannot get more
when playing Gt by stopping at a position pk9 k < I, than by moving into
pk+1. Thus if Aι makes the first move and if we put vt(pd t) — v, we get

(6.2)

(6.3) V + t

if 0 ^ 2k < I,

if 1 g 2k + 1 < I,

where the term +t in (6.3) is the amount A% shall have when the game
is stopped after an odd number of moves as a compensation for the fact
that he has made one more move than A^u each player paying t when
moving in Gt. Since σ(pί) ^ t, an optimal play at pι in Gt is to stop
the game. Hence

(6.4)

(6.5)

™>i(Pι) = V

™>i(Pι) = V + t

if I is even ,

if I is odd.

Formulas (6.2)—(6.5) could also have been deduced from (6.1). Since
all moves are ^-optimal we get vt(p0 t) = — v3-i(Pi t) — t — Vi(p.z t) =
-Vτ-iiPs ί) - t = and (6.2)—(6.5) follow if we apply (5.9) and (5.10)
and the fact t h a t since σ(pt) ^ ί, we have by (5.7), m / ^ ) — ^X^ ί) for
3 = 1, 2.

EXAMPLE 4.

Poll. I)

P,13,31

The game in Figure 5 shows that strong inequality may
hold in (6.2) and (6.3). All the moves
which lead from pQ to pδ are 1-optimal and
v = v(p0 1) = 1.

Let now only one player make t-
optimal moves when playing Gt. He will
get at least as much as when also the
other player makes ί-optimal moves. Thus
we can get some formulas corresponding
to (6.2)—(6.5). We put them together
into two lemmas.

LEMMA 1. Let pQ, ply , pt be a se-

quence of positions in G such that p 2 f c + 1 e
Mi(p2k), where p2k+ι is a t-optimal move at
p2k, and such that p2JC+2 6 M3-i(p2k+i). Then
if Vi(pQ ;t) = v, we have

(6.6)

(6.7)

^) ^ v + t ,

^ v

if σ(pL) < t and I is even.



MEAN PLAY OF SUMS OF POSITIONAL GAMES 89

LEMMA 2. Let pQ, ply , pι be a sequence of positions in G such that

p,k+ι e MiiPw) and p zk+2

 e M3^ι(p2k+1)f where p2k+2 is a t-optimal move at

pιk+ι. Then if Vi(pQ t) = v we have

(6.8) m^J ^ v ,

(6.9) mJLVi) ̂  v + t if σ(Pι) =

7. The mean strategies for sum games. We now go to our main
subject, sums of games.

THEOREM 1. Let us start the games Gιy , Gn in positions ql9 , qn.
Put

mi = mfa) + +

σ — max {σ(qr) \1 ^ r ^ n} .

Then the value Vi{qx + + qn) for A% when he starts at qι + + qnin
Gλ + + Gn satisfies

mi ^ v^q, + + qn) ^ mi + σ .

Proof. We proceed by induction on l(qλ + + qn). When
Z(g2 + + qn) — 0, all gr are end positions and our theorem follows
directly from m4(gr) = ki(qr) and σ(gr) = 0. By (2.1) we know that if one
or several moves are made from q{ + + qn

 w e come to a position, say
Pi + - + Vn, with

l(Pi + •- +Pn)< l(Qι + + g») .

Hence when proving our theorem we may assume that it is true for all
positions obtainable from qλ + + qn by one or several moves.

By symmetry we may specialize in the proof so that i = 1, i.e. Aλ

makes the first move. We then want a strategy for him that secures
the amount mι and a strategy for A2 such that Ay cannot get more than
my + σ . These strategies can be formulated together.

(a) Always make a σ-optimal move in one of the games Glf , Gn.

(β) Except for the first move, play in the game, in which the other
player has just played.

In general it will not be possible to follow this strategy through the
whole play of the game, since there are not σ-optimal moves in all
positions. The strategy shall therefore be used during a period in the
beginning of the play. In the position at the end of this period the
induction hypothesis will be used. The length of the period depends upon
the moves made. We give two possibilities to end the period.
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(rL) The other player plays in a game Gr and there leaves a position
pr with σ(pr) ^ σ.

(r2) Positions p r, 1 ^ r ^ %, are reached for which σ(pr) ^ σ .
We have to show that a player can follow (a) and (/?) until (?Ί) or

(r2) occurs. We first see that Aγ always can make his first move. In
fact, by the definition of σ there is a qr with σ(qr) = σ. Thus there is
a σ-optimal move in Gr. For all later moves the player following the
strategy shall play in the position pr which the other player has just
left. Then if (ji) does not occur, σ(pr) > σ and there is a σ-optimal
move at pr. Hence the game can be continued until (γτ) occurs or until
the player following the strategy ends the whole sum game by playing
into an end position. Then σ(pr) = 0 for all games Gr and (γ2) is satisfied.
Hence it is possible to follow (a) and (β) until (γt) or (γ2) occurs.

In order to be able to use the induction hypothesis we have to
compare mι with

m&Pi) + + rai(Pn) ,

where pr is the position in Gr at the end of the period. Therefore we
first compare mx(gv) with m^p,) for each r. Hence we are interested in
those moves in the period that are made in Gr. Note that when at least
one player follows the strategy, (β) implies that these moves are played
alternatively by the players. Thus for each Gr we are able to apply
Lemmas 1 and 2 of the preceding section with t — σ. Since σ ^ σ(qΊ),
the number v = vt(qr σ) in these lemmas is =mt(qr).

Let first Aλ follow the strategy. Denote by pr the position in Gr at
the end of the period. Then if the move into pr is made by A2, we
know, since Aτ follows (β), that this move is the last move in the period,
and whether the period ends with {γτ) or (γ2) we get σ(pr) ^ σ in this
game Gr. Using the fact (5.10) for qr and pr, 1 ^ r ^ n, we apply
Lemma 1 with i = 1 and Lemma 2 with i = 2. Then (6.6), (6.7), (6.8),
and (6.9) imply respectively the following four formulas, depending upon
who makes the first move and the last move in Gr.

(7.1)

(7.2)

(7.3)

(7.4)

We add the trivial fact

Tfiχ{qr) + σ

: m^q,)

: »»,(?,)

Λ first

Λ first

A2 first

A2 first

and last

move, Az

move, Ax

and last

move,

last move,

last move,

move.

(7.5) mi(Pr) — m^Qr) if n o move is made in Gr.

Formulas (7.1)—(7.5) can be taken together in one formula
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(7.6) ™>ι{Vr) ^ Wife) + kr<Γ ~ kr* ,

where llr is the number of moves made by At in Gr during the period.
Let us take the sum of the inequalities (7.6) for all r. Then

(7.7) m^Pi) + + m^Pn) ^ m ^ lλσ - ltσ ,

where li is the number of moves made by At during the period.
Jί the number of moves m the period is even we have lt = lf, At

who makes the first move in the period shall also make the first move
after the period (if there is any move to be made). Aτ can play so after
the period that he secures vΎ(px + + pn). By the induction hypothesis
this is > m^Pi) + + mL(pw) which by (7.7) is ^ mx. Hence we have
shown that Aλ has been able to play from qλ + + qn so as to secure
mu and the left-hand inequality of our theorem is proved in this case.

We also have to consider the case that the period contains an odd
number of moves. Then since A{ makes the first move he also makes
the last move and the period is not ended by (7 )̂, hence by (γ2). Thus
<r(Pr) ^ σ f ° r e a c h Gr' We have now lτ — l2 + 1. Aτ can play so after
the period that he secures —v2(pL + ••• + Bypn). the induction hypo-
thesis, by σ(pr) ^ σ, and by (7.7) we get

! + + pn) ^ —mJiPi) - . . . " m2{pn) - max {<r(pr)}

^ —mlpi) - . . . - m2(pn) - σ

^ m1 .

Hence the left-hand inequality of the theorem is proved even in this case.
In order to prove the right-hand inequality of the theorem we let

A2 follow the strategy. Then by (β) A1 makes the first move in each
Gr (if there is any move in Gr during the period). Lemma 2 with i = 1
gives now depending upon who makes the last move in Gr

(7.8) wh(pr) ^ mi(Qr) A3 last move,

(7.9) niiiVr) ^ w&ife) + σ Aλ last move.

Proceeding as above we get a formula like (7.7), namely

(7.10) m1(pι) + + rnfan) ^ mλ + lτσ - l2σ .

If the period contains an odd number of moves, lx — l2 + 1. A2 makes
then the first move after the period (if there is any move to be made).
He can therefore play so that A1 gets at most ~v^px + ••• + pn). By
the induction hypothesis and by (7.10)
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-v2(Pi + + Vn) ̂  -mlv,) - . . . - m2(pn)

so that the right-hand inequality is proved in this case.
Finally if the period contains an even number of moves, lx — l2, and

the period ends by (7-3), so that σ(pr) ^ σ . Then Aλ gets at most
fli(Pi + •*• + Vn) and by the induction hypothesis and by (7.10)

ViiVi + + Vn) ̂  ^i(Pi) + + mlvn) + max {σ(pr)}

^ rrh(vι) + + mx{pn) + σ

^ mx + σ ,

and the right-hand inequality is proved even in this case.
This completes the proof of Theorem 1.
In the proof just completed the strategy given by (a) and (β) is used

only in a period in the beginning of the play. When this period is ended
we have used the induction hypothesis in the proof of the theorem.
This means, however, that we shall start counting a new period and then
again apply (a) and (β). Continuing in this way we get the following
consequence of the proof of Theorem 1.

THEOREM 2. Make the same assumptions as in Theorem 1. Suppose
one player, Ak, follows a strategy satisfying (a)—(d) below. Then At, the
player making the first move, will get at least m { when k — i and at most
mi + σ when k = 3—i.

(a) Divide the moves made by the two players into periods.
(b) For each period let τ be the maximum of σ(pr) for the positions

pr at the beginning of the period. With this τ defined for a period, always
make τ-optimal moves in the period.

(c) Except for the first move in a period play in the game in which
the other player has just played.

(d) Start counting a new period when one of the following two situa-
tions occurs,

(d:) the other player plays in Gr into a position pr with σ(pr) ^ τ,
(d2) positions pr with σ(pr) ^ τ are reached in all Gr, 1 g r <̂  n.
We call the strategies that satisfies (a)—(d) of this theorem mean

strategies.

8. Properties of m4(p) and σ{v). By Theorem 1 we easily prove the
fact that the sum of games satisfying (2.3) also satisfies (2.3) (proved by
Milnor [1, p. 294]). In fact by Theorem 1

+ + qn) ^ mt .
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Since mx{qr) + nh(Qr) = 0 f ° r e a c h r> w e have mι + m% = 0. Hence

i>ife + + Qn) + ^ f e + + qn) ^ 0 ,

which is (2.3) for Gι + + Gn.
Thus Gι + + Gn is a game of the kind described in §2. We can

therefore apply § 5 and define e.g. z^feH \-qn',t), m1(q1

J\ \-qn)>
and σ(q1 + + qn).

THEOREM 3. Let us start the games Gu- , Gn in positions qlt , qn.
Then

(8.1) πiiiq, + •••+(?») = m4fe) + + ra<(<7n) ,

(8.2) σ(gt + . + qn) ^ max {σ(gr) 11 ^ r g rc} .

The right-hand side of these formulas is just m2 and σ respectively
defined in Theorem 1.

Proof. We need the following lemma.

LEMMA 3.

wβfe + " + qn <r) = m4 wfeen (̂g2 + + gw) > 0.

Before proving the lemma let us see that Theorem 3 follows from it.
If l(q,+ +qn) = 0, (8.1) and (8.2) are certainly true. If l(qλ+ + g n ) > 0
we get from Lemma 3, since mι + m2 = 0,

Wife + ' β + ^ σ) + Maί̂ i + * ' * + Qn cr) = 0 .

Then (8.2) follows from (5.5). We also see from (5.5) and the fact that
Wife + * * + Qn t), i = 1, 2, are decreasing functions in ί, that they are
constant in the interval (σfe + + qn), σ). Then (8.1) follows from
(5.6) and Lemma 3.

Proof of Lemma 3. The proof will be somewhat similar to that of
Theorem 1. Without losing generality we put i = 1. We make the in-
duction hypothesis that Theorem 3 is true for all pL + + pn obtainable
from qt + + qn by one or several moves. We will prove

(8.3) ufa + - + qn <r) > m, ,

(8.4) uι(qι + + qn σ) ^ mL .

Of course they together will give Lemma 3. The number wxfe+ +g w σ)
is the value for Aλ in the game (Gx + + Gw)ί. To prove (8.3) and
(8.4) we define strategies for Aτ and A2 in this game: Follow (a) and (/5)
of the proof of Theorem 1. Unless the other player stops the game in
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some position, continue until (j2) occurs and then stop the game. When
the game is stopped at pλ + + pn, A{ collects mι(pL + + pn). If
then A1 has made lλ and At l2 moves {lλ = lt or lλ — l.λ + 1), Ax has paid
lλσ to Aλ and got l2σ from him. Hence the result will be that Aι gets

Since by the induction we may apply Theorem 3, this is equal to

+ mn(pn) - lxσ + l2σ .

Thus in order to prove (8.3) and (8.4) we only need to verify that (7.7)
and (7.10) are true when Aι and A2 respectively use the strategy de-
scribed above.

Let Ax follow the strategy, and let pr be the position in Gr when
the game is stopped. Then if the move into pr is made by A,, we know
since A1 follows (β), that this is the last move made before the game is
stopped by Ax. Hence (γλ) is true, and we have σ{pr) ^ σ for this game
Gy. The proof of the formulas (7.1)—(7.4) now follows as in the proof
of Theorem 1, and (7.7) will again be a consequence of these formulas.
Hence we have given a strategy for Aλ in (Gj + + Gn)^ which secures
mi. Thus (8.3) is proved.

Similarly if A2 follows the strategy, we verify (7.8) and (7.9) thereby
proving (7.10). Thus we have given a strategy for A2 in (GL-\ \-Gn)t
such that Aλ gets ^ mλ. This proves (8.4). Thus Lemma 3 is proved
and also Theorem 3.

Theorem 3 can be looked upon as a sharper form of Theorem 1. In
fact we get Theorem 1 from Theorem 3 simply by applying (5.12) and
(5.13) for p = qτ+ ••• + Qn.

Let now the games Gl9 , Gn be n copies of one and the same
game G and let ply , pn correspond to ίϋ in G. We write np for
Pi + + Pn By Theorem 1

nniiip) ^ vt(np) ^ nm%{p) + σ{p) .

Divide by n and let n~> c». Then, because of (5.10), we get the follow-
ing result.

THEOREM 4. The two expressions

vt(np) and - (-v^inp))
n n

which represent the mean value for Ai in the sum of n equal games when
he or the other player has the first move, both tend to the same limit
πii{p) when n —> CXD .

This theorem justifies the name mean value for the number mt(p).
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The name mean strategies for the strategies described in Theorem 2 is
chosen, since it secures the mean value for the player who makes the
first move.

We know by Theorem 3 that

(8.5) m4(p! + + pn) = rriiip,) + + ra4(pn)

and get from (5.10) and (5.12)

(8.6) -v,^(p) :g miv)

Let us show that the two properties (8.5) and (8.6) determine
uniquely. Let m{p) be given for all p satisfying (8.5) and (8.6). We get

—v^^np) ^ nm(p) g vt(np) .

Divide by n and let n~~> co. Then, by Theorem 4 we get m(p) = m«(p),
showing the uniqueness of

9, Both players use mean strategies.

THEOREM 5. Let in a sum Gx + + Gn both players follow a mean
strategy, such as described by (a)—(d) in Theorem 2. Then

(1) the players will count the same periods,
(2) in each period both players will make all their moves in only one

of the games Gr,
(3) the number τ defined by (b) of Theorem 2 is a decreasing function

of the period,
(4) if to niiiQi) + + mt(qn), where qr is the starting position of

the game Gr, 1 ^ r fg n, we add τ for each move Ax makes and —τ for
each move A3_i makes, where τ is defined by (b) for the period containing
the move, then the result will be A^s payoff.

Proof. Here (1) will follow by induction if we show that the first
period ends at the same moment for both players. When both players
play in their first periods (c) implies that they both move in the same
game, say in Gs. Then for r Φ sf pr = qr for all positions p1 + + pn

that are reached in the period and therefore since σ(qr) ^ σ by the de-
finition of σ (see Theorem 1), we get σ(pr) ^ σ, r Φ 8. Thus when (dx)
occurs for one player (d2) also occurs and since (d2) is symmetric with
respect to the two players the first period will be the same for both
players. This proves (1).

When we know that the players count the same periods, (2) is a
simple consequence of (c). (3) follows from the fact that each period
ends with (da).

To prove (4) it will be sufficient to show that if in Gr9 qr is the
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position at the beginning of a period and pr is the position at the end of
the same period then whether A% or A3-t starts the period,

(9.1) m^p,) + + mt(pn) = m^q,) + + mc(gn) + kτ - k-tτ ,

where lt is the number of moves by A% in the period. Since pr — qr for
r φ s, where Gs is the game in which all moves are made during the
period, (9.1) reduces to

(9.2) niiiPs) = m>i(Qs) + kτ ~ h-%τ -

If Ai makes the first move in the period, (9.2) follows from (6.4) and
(6.5). In fact these two formulas are proved for the case when both
players make ^-optimal moves until a position pz is reached with σ(pι) fg t.
But putting ί = r w e get in our case by (d2) that for the final position
ps of the period, σ(ps) <̂  r.

If A^-i makes the first move in the period, (9.2) is just proved with
3 — i substituted for i. However, the formula thus obtained reduces to
(9.2) by the use of mt{p) + m3-i{p) = 0.

Thus Theorem 5 is proved.
Since r is decreasing we see by (4) of Theorem 5 that At's payoff

is the sum of mέ = m^) + + m4(gw) and a sequence of terms with
alternating signs and decreasing modules. If At starts playing, the first
term is positive and equal to σ — max {σ(qr)} and the sum of the terms
in the sequence is therefore ^ 0 and ^ σ , and At will get at least mi

and at most mέ + σ. This last result is of course contained in Theorem
2. Theorem 2 says even more, since it says that a mean strategy always
guarantees a certain amount even if used against a player which plays
any strategy, e.g. an optimal strategy.

10. Some examples. Conditions (a)—(d) of Theorem 2 do not in
general determine a unique strategy. There are still some choices which
the player may use to get as good result as possible. Thus there may
be different r-optimal moves in the same game and, when the first move
of a period shall be made, there may be several games in which there
are τ-optimal moves. In this connection it may be worth while to notice
that there may be a r-optimal move even in a position p with σ(p) < r.
The number τ is determined as the maximum of σ(pr), 1 g r ^ n when
the period starts, but it is not necessary to start the period in one of
the games for which σ(pr) reaches this maximum. There may be r-optimal
moves even in other games.

EXAMPLE 5. Let us study the game given in Figure 3. The move
Pi e M2(p) is ^-optimal for Aλ even when 4 < t ^ 5. In fact for these
ί-values u2(p t) — v2(p t) = mjj>) so that there must be a ί-optimal
move for A .
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If a position has to be played in optimal way it is unimportant if
this position is the starting position of the game or if it is a position
which has developed during the play. This is not the case when mean
strategies are used.

EXAMPLE 6. Compare the game in Figure 6 started by Az and the
game in Figure 7 started by Aλ, When Az has moved into p1 in Figure
6 the situation for Aλ will be the same as when he starts in pι in Figure

p,iθ,6)

7. However, playing a mean strategy he will handle the two cases in
different way. In Figure 6 A1 plays in a period with τ = 1. He will
therefore make a 1-optimal move, the one into p3. In Figure 7 he just
starts a period with τ = 6 and moves into p2.

This difference may be explained thus. The move recommended by
a mean strategy shall be a good move when played in the sum of n
copies of the game. We see readily that in n copies of the game in
Figure 6 the move into p3 is the correct answer to Aa's move into p1#

- n nIf A1 always moves into p2 he gets only about 5— + 1— = 3n though
Δ Δ

m^p) = 4. In n copies of the game in Figure 7 the move into p2 is
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correct. If Ax always moves into p3 he gets about ( — 6)— + 7— + 3— =
n 2 4 4

— — though m^pj = 0.
LA

In a sense (4) of Theorem 5 means that the value of making a move
is equal to the number τ for the period containing the move, where -
is max {σ(pr)} at the beginning of the period. One may try to change
the rules for a mean strategy by requiring each move to be played at
the position p where σ(p) is highest. The following example shows,
however, that such a play does not guarantee the mean value.

EXAMPLE 7. Consider the sum game given in Figure 8. Suppose
that A1 starts and plays in the left game and that A2 answers in the
right game. Then σ(p) = 7 in the left game and σ(p) = 6 in the right

(4,2) (5,1)

(7,7λ (0,6)

Figure 8

game. But if Aλ plays in the left game, where σ(p) is highest he will
get only 14 + ( — 6) = 8 which is less than the mean value 4 + 5 = 9. In
fact AiS second move is made in a period with τ = 2. Hence if he
follows (a)—(d) he shall play a 2-optimal move in the game where the
other player has just played, i.e. he shall play in the right game.
Then he will get at least 6 + 4 = 10 which is more than the mean
value 9.

Let us in a final example show that an optimal move in a sum game
need not be ί-optimal for any t in the summand G in which it is made.
Hence this move can never be recommended by a mean strategy.

EXAMPLE 8. The optimal move for At in the sum game in Figure 9
is the move into p1 in the left game, the mean strategy move is the
move in the right game. The move into px is never ί-optimal in the
left game for any t.
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10.G)
(0,7)

Figure 9
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