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1. Introduction. A characterization is obtained of those sentences
S of the predicate calculus such that S holds for a subdirect product
of general algebraic or relational systems®' whenever it holds for each
component system. We consider formulas in a first order language
equipped with symbols for the operations and relations of the systems
under consideration, and, in particular, with a symbol for the identity
relation. An atomic formula is one obtained by inserting terms in the
argument places of a relation symbol. A positive formula is one that
can be built up from atomic formulas by means of conjunction,  dis-
junction, and of universal and existential quantification (but without
using negation). A special Horn formula is one of the from P o F
where P is a positive formula and F is an atomic formula, or any
formula obtained from such formulas by conjunction and universal quanti-
fication. A sentence is a formula without free variables. As a corol-
lary to our main theorem we obtain the following :

A sentence has the property that it holds for a subdirect product of
systems whenever it holds for each component system if and only if it s
equivalent to a special Horn sentence.

An example of a special Horn sentence is provided by the condition
for an associative ring to be semisimple in the sense of Jacobson [7,
Proposition 1, p. 9], which is expressed by the following sentence :

vz [yeyyau-zzy + u = xryu A\ uxzy = zzyu]l D2 =20.

We admit among subdirect products the subdirect product of an
empty set of systems, which, from the definition, proves to be a trivial
system with a single element and all relations universal. The sole effect
of excluding this trivial case would be to admit in special Horn sentences
clauses ~ P along with the clauses P O F.

A. Horn [6] considered the more general class of all sentences
obtained by universal and existential quantification from conjunctions of
formulas of the type P D F' (or ~ P), where P is a conjunction of atomic
formulas and F an atomic formula. Horn showed that all such sentences
are preserved under (full) direct products, while C. C. Chang and Anne
C. Morel [4] showed that there are sentences preserved under direct
product that are not equivalent to any such Horn sentence. The problem
of characterizing syntactically those sentences preserved under direct

" Received October 22, 1958. Work supported in part under grants from the National
Science Foundation
t This concept is due to Tarski; see [13], [14].
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product, as well as that of determining under what algebraic processes
Horn sentences are preserved, remains open. That the general Horn
sentence is not preserved under subdirect product is shown by a simple
example : the family of all finite subsets of an infinite set constitutes,
in the usual sense, a ring without unity, that is, in which the Horn
sentence Juyy-xy = y fails, although it is a subdirect product of two-
element fields, in which this sentence holds.

The earliest result of the kind under consideration is that of G.
Birkhoff [3] who showed that those classes of algebras that are closed
under formation of direct products, subsystems, and homomorphic images
are precisely those classes definable by universally quantified equations.
In addition to the work of Horn, Chang, and Morel, properties preserved
under direct products have been studied by K. Bing [2], K. Appel [1],
and A. I. Taimanov [12], while subdirect products have been studied by
A. Maleev [111.

We first proved the result stated above by means of the theory of
Natural Inference of G. Gentzen [5]. The proof offered here seems
preferable in that it is simpler, despite the fact that it contains a double
induetion (which could, with some artificiality, be removed), and in that
it presupposes less. We have tried to make the present exposition
readable as it stands to one familiar with the general ideas; but for
various details, in particular, for precise definitions, and for an Interpo-
lation Theorem which plays a central role in the argument, we refer to
our earlier papers [9], [10].

2. Preliminaries. Let L be a first order language, with operation
symbols w of preseribed ranks p(w), and relation symbols » of ranks
p(r), among which is the symbol e for the identity relation, of rank
ple) = 2. A model 2 for L consists of a set of operations Aw on a
certain non-empty domain A4, and of relations %A» on A, indexed by the
operation symbols w and relation symbols » of L, and of corresponding
ranks. A relational system is a model such that e is the identity
relation on the domain A of 2.

Let 2, for all 4 in an index set I, be relational systems for a
language L. The direct product A of the 2A, is defined as follows. The
domain A of A is the Cartesian produect of the domains A, of the ..
For each ¢ in I we denote by =, the projection carrying each a in %A
onto its component m,a in ;. The operations Yw of A are defined by
specifying their components: for each ¢, and a,, - -+, @,y in A,

z[Aw(ay, - -, Uow))] = Waw(m@y, -, 7'L'ia’p(w)) H

the relations 2Ar of 2 are defined by taking Ar(a,, ---, a,¢») to hold, for
Uy, + o+, Qoey in A, if and only if Ar(z.a,, -« -, 7a,-) holds in 2A; for each
¢ in I, It must be noted that this last ecriterion is satisfied by the
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identity relation. A system U’ is a subdirect product of the systems
9, if it is a subsystem of the direct product U such that, for each 7 in
I, the projection 7, maps the domain A4’ of ' onto the domain A4, or A,.

The usual criterion for an algegraic system to be isomorphie to a
subdirect product of systems from a given collection carries over directly
to relational systems, and takes the following form.

CRITERION. A relational system A s isomorphic to a subdirect product
of systems belonging to a given collection K if and only if there exists
a family 6 of homomorphisms 0 of A onto systems U in K such that
Sor all r and a,, «+-, a,,, m A, [(0A)rl(ba,, .-, 0a,.,) for all 0 in O
implies that Ar (a,, +-+, ayn) i A,

Before turning to the main theorem we establish a series of lemmas.

LEMMA 1. Let F be a formula with distinct free variables x,, ««-, &,
and F' the result of replacing in F the x, by new and distinct constants
(operation symbols of rank zero) w,. ILf C is any formula that does not
contain the w;,, and C= F", then C =y, - x,F.

Proof.? Let F' being to a language L that does not contain the w; ;
then F” belongs to the language L’ obtained from L by adjoining the
symbols w,. Let g be an interpretation of L such that #C =1, and 2
an interpretation of L that agrees with ¢ except on the variables
Xy, ++e, £y. We must show that 2F = 1. Extend z# and 2 to interpreta-
tions ¢’ and 2 of L' by defining p'w;, = 2 w; = Az;. Since C belongs to
L, pC=pC=1. Since C=F", and ¢C =1, /F' = 1. Since F" does
not contain the x,, VF'" = ¢'F', and VF' =1, By the construction of
F" and of ¥, AF = VF", whence 1F = 1.

Let % be a model for the language L, and L(A) the language
obtained from L by adjoining new and distinct constants w, for each
element a of the domain A4 of . Let Iy be the extension of A to L(A)
defined by setting Aw, = a for all @ in A. Let # be an ordinal number,
and L, the language obtained from I(4) by adjoining new and distinct
relations symbols », of rank p(r,) = p(r), for all » in L and v < p. If
A, is any model for L,, and v < ¢, let A, ., be the model for L defined
by taking ,..w = Aw for all w, and «A,.r = Ar, for all r.

Let K be an elementary class® of relational systems. We shall say
that a model A, of L, has the property (*) if

(1) the restriction of A, to the language L(A) is an elementary
extension of A ;

Hﬁ”mwepts appearing in this paper without definition, see [9], [10].
3 As in [10], we use ‘‘elementary class’ in the sense of Tarski’s ‘‘arithmetical class
in the wider sense (AC\) .
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(2) the restriction to L of N, is in K, for all v < p;
(3) Wor A, for all v in L and all v < p.

LEMMA 2. For p =0, the model %A, = I of the language L, = L(A)
has the property (*).

FProof. Condition (1) is trivial, and (2) and (3) are vacuous.
Let X be the class of all special Horn sentences that hold for K,
and X* the class of those models that satisfy all sentences in J.

LEmMMA 3. Let U be in X*, and F an atomic sentence, that is, an
atomic formula without free variables, of L(A) that fails in A. Let A,
be a model for L, with property (*). Then there exists a model N,.,
Sor L., with property (*) such that

(') the restriction of U,., to L, is an elementary extension of 2, ;
and

(4) F fails in A,y

Proof. Let I' be the set of all sentences of L that hold in K.
Let 4 be the set of all sentences of the language L,(A4,) that hold in
A,. Let 7 result from /” and F” from F' by replacing each r by the
corresponding 7,. Let I be the set of all sentences

I(’i", 'Y'M) =YXy e xp(r)'qﬂ(xlr ) xp(r)) > T;L(xh ) xp(r)) ’
for all » in L.

Suppose the set 4, I, ", ~ F" is inconsistent. By the Compactness
Theorem, there exists a conjunction of sentences from /7, and hence a
single sentence C from /7, such that 4, I, C’, ~F" is inconsistent. Thus
4,I=C" D F', where C' D F' contains only the relation symbols 7,
while 4 does not contain the »,, and I contains the #, only positively.
By the Interpolation Theorem of [9], there exists a positive sentence P’
containing only the r, such that 4, I=PFP and PP=C' D F'. If P is
the result of replacing each r, in P’ by the corresponding 7, it follows
that 4= P and P=>C D F. Thus C=P D> F. Let P, and F, result
from P and F by replacing all Wy, that occur in them by distinct variables
%, *++ &, Since C is in I", and belongs to the language L that does
not contain the w,, it follows by Lemma 1 that C= H, where H=
V&, -+ 2,- P, D F,. Since H contains only the relation symbols », and
does not contain the w,, it belongs to the language L. Since H is a
special Horn sentence, and a consequent of C in /”, H is in Y. Since
Aisin I*, H holds in A, and hence in A. It follows that P o F holds
in A. On the other hand, from 4=>P we have that P holds in I,
hence in A. From the fact that P and P > F both hold in 2 it follows
that F holds in % which contradicts the hypothesis of the lemma.
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It has been established that the set 4, I, I"", ~F" is consistent, and
therefore holds in some model B. Let € be the restriction of B to the
language L. From the fact that B satisfies 4, it follows by Proposition
3 of [10] that the quotient model U,., = €/Ce is a relational system and
an elementary extension of 2,. This establishes (1’), and, by virtue of
the hypothesis that 2, has the property (*), it follows that 2., satisfies
(1) and also (2) and (3) for all v < . From the fact that B, and therefore
A,.;, satisfies I7, it follows that the restriction to L of 2,.,, , is in K,
which completes the proof of (2). From the fact that %, and therefore
..., satisfies I, it follows that, for all r, 2, < A,., .7, which completes
the proof of (3). Finally, from the fact that 8 satisfies ~ F’ it follows
that F” fails in %,.,, as required by (4).

LEMMA 4. Let p be a limit ordinal, and a family of systems A,
for L,, all v < p, be given, with the property (*) and such that
(1:p) for all p < v < p, the restriction of U, to L, is an elementary
extension of U,.
Let F,, all v < p, be a set of atomic sentences of L(A) such that
4:p) for all v +1 < p, F, fails im Ay
Then there exists a model N, for L, with property (*) and such that
Q:px+1) and (4: ¢+ 1) hold.

Proof. By virtue of (1:p), the 2,, v < ¢ constitute an ascending
chain of systems and their union is a well defined system 2,. Let
p < p, and for all v, p <v < p, let B, be the restriction of 2, to L,
Then %, is the union of the ascending chain of systems B,, p < v < .
Since each B, p <v < g, is by (1: ) an elementary extension of 2,
it follows directly from the definition of elementary extension that B,
is an elementary extension of 2. This suffices to extend (1:p) to
(1:2+1). That A, has property (*) follows from this directly. It
remains only to note that, since ¢ is a limit ordinal, (4: . 4 1) is in fact
equivalent to (4 : p).

LEMMA 5. Let U be in X*. Then there exists an ordinal ¢ and a
model A, for L,, with property (*) and such that

4*) if any atomic sentence F' of I(A) fails in A, then it fails
wn some A, ,, v < p.

Proof. Let the F,, all v < g, for some g, be the set of all atomic
sentences of L(A) that fail in . Let %, = A as in Lemma 2. For
some v,y < ¢, suppose that systems 2, have been constructed for all
p < v with property (*) and satisfying (1:v), (4:»). If » is not a

+ See Theorem 1.9 of [15].
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limit ordinal, Lemma 8 with F = F, and v — 1 for g assures us of 9,
with the required properties. If v is a limit ordinal, Lemma 4 yields
the same result. Thus transfinite induction yields a chain of 2, all
v = ¢#. The condition (4 : z) now gives (4%).

LEmMMA 6. Let U be in 3*. Then there exists an oridinal o and
a system A, for L, with the property (*) and such that

(4**%)  if any atomic sentence F' of the language L(4,) fails in A,
then it fails im A, for some v < o.

Proof. Iteration of Lemma 5 yields a sequence of ordinals
My=0= <p =< --- such that %, is A; each A, has the property
(*); for each =, the restriction of A, to L, is an elementary exten.
tion of %Ifm; and, finally, that if an atomic sentence F of the language
L(4,) fails in A, , then it fails in some A, v, v<pr.;. It follows
directly that, for o == lim p,, the union %, of the ascending chain of

nw
?(w n < w, has the required properties.

3. The Main Theorem.

THEOREM. Let U be a relational system of the language L, and K
an elementary class of systems of L. Then the following are equivalent.

(1) A satisfies all special Horn semtences that hold in K ;

(2) U has an elementary extension that ts a subdirect product of
systems in K.

Proof. To show that (2) implies (1), it clearly suffices to show that
if Sis a sentence of the form S = yz,--- 2, - P D F' where P is positive
and I is atomic, and 2 is a subdirect product of systems 2, in which
S holds, then S holds in 2. Suppose then that S holds in all the 2,
and yet S fails in 2. Then there exists an interpretation # of L in
such that #P =1 and p#F #+ 1. Since each projection =, is a homomorphism
of 2 onto A,, we have that, for all » in L and terms ¢, ---, .,
Ar(pt,, - -+, ptyy) implies Wr(z,pty, -+ -, mpt,oy). For each U, define an
interpretation g, in 2, by setting g2 = 7,px. Then pG =1 implies
p,G =1 for all + if G is an atomic formula, whence pP =1 implies
2, P=1 for all 7. Since S holds in each ¥U,, that #,P =1 implies g, F' =1,
all 2. But F is an atomic formula, and g, F =1 implies that pF =1,
a contradiction.

To show that (1) implies (2), assume that 2 is in X*, where Y is
the set of all special Horn sentences true for K. By Lemma 6, for some
ordinal o there exists a system 9, of L, with properties (*) and (4%).
Let 2 be the restriction of 2, to the language L ; by virtue of (1), 2
is an elementary extension of %A. For each v < o, let B, be the restric-
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tion of 2, , to the language L ; by virtue of (2), each B, is in K**, and
consequently the quotient model €, = B./B ¢ is a relational system in K,
For each v < o, 2’ and B, have the same domain 4, whence the canonical
map 4, of U onto A/B,e maps A onto the domain C, of €,. By virtue
of (3), for each v < ¢ and each r in L, Wr = A»r < A, ,r = A,r, whence
0, defines a homomorphism of %’ onto €,. To complete the proof that
the family of 6,,v < o, satisfies the Criterion for 2’ to be a subdirect
product of the €,, v < &, suppose that, for some » in L and a,, «++, a,¢»
in A, [€,7r](0.a,, -+, O,0,¢,)) holds for all v < o. If WA'r(ay, - -+, a,,) failed
in 2, then the atomic sentence F' = 7(w,, «--, wap(r)) would fail in 2.
By virtue of (4*), F would fail in %, ,, for some v < o, hence in B,.
Since B,w,, = Aw,, = Aw,, = a;, [B.ri(a, <+ -, a,») would fail in B,
whence [€,r](0,a,, «+-, 6,a,») would fail in €,. This contradicts our
hypothesis, and extablishes the desired conclusion, that A'r(a,, «--, )
holds in .

4. A complementary example., It will be shown that there exists
an elementary class such that the set of all subdirect products of systems
from this class is not an elementary class. In consequence, the reference
to elementary extensions in the preceding theorem can not be deleted.

If K is any class of systems, let P(K) be the class of all systems
isomorphic to some subdirect product of systems from K, and let Py(K)
be the class of all systems isomorphic to some subdirect product of a
non-empty family of systems from K. As was noted earlier, P(K) will
differ from P,(K) at most in containing all trivial systems, with domain
a single element and all relations universal, which will not belong to
P(K) unless K itself contains some trivial system. We suppose now
that the language L contains only a finite number of relation symbols,
whence there is a single sentence T characterizing the class of ali trivial
systems. Then

(1) P(K) is an elementary class if and only if Py(K) is an
elementary class.
If K contains a trivial system, then P(K) = Py(K) and there is nothing
to prove. Otherwise P(K) = P(K)— T. If P(K) is elementary, say
P(K) = I'*, then evidently Py(K) = {I", ~ T}* and Py(K) is elementary.
On the other hand, if P(K) = I'*, then P(K) = {C\V T: all C in I'}*,

If K is any class of systems, let H'(K) be the class of all those
systems of which some homomorphic image lies in K. The following
assertion can be obtained by dualizing the proof of the Main Theorem
of [10], or may be deduced as a corollary to that theorem.

(2) if K is an elementary class, then H'(K)* is the set of all
consequences of all negative sentences that hold in K.
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It is clear from the definitions that P(K) < H'(K). To obtain a partial
converse, define an occurrence of a relation symbol in a sentence S to
be universal if no variable that occurs in the atomic formula containing
the given occurrence is existentially quantified in S. Then

(8) of K=TI", where no sentence of I" contains a positive universal
occurrence of any relation symbol, then H'(K)* = Py(K)*.

To establish (3), we first show that the argument used to establish
the Interpolation Theorem in [9] in fact enables us to impose the following
additonal conditions in the coneclusion :

(4a) a relation symbol has a positive universal occurrence im S°
only if it has a positive universal occurrence in S ;

(4b) a relation symbol has a positive mon-umiversal occurrence in
S only if it has a positive non-universal occurrence in T.
We refer to the proof of the Interpolation Theorem. To prove (4a),
suppose that a relation symbol » has no positive universal occurrence
in S =S Then each atomic formula of S' that contains » positively
also contains some variable that is existentially quantified in S*, whence
the corresponding atomic formula in the Skolem matrix for S*' contains
one of the Skolem functions si. It follows that each atomic formula in
the Skolem matrix M* of U* that contains 7 positively also contains one
of the functions s!, and the same is then true of M° whence it follows
that the corresponding atomic formula in S° contains an existentially
quantified variable. Since positive occurrences of » in S° can arise only
in this fashion, it follows that all such occurrences are non-universal.

To prove (4b), note first that an atomic formula containing a positive
occurrence of » in S° will correspond to an atomic formula A in M° and
hence in M', and that, if the occurrence is non-universal, then A will
contain one of the functions si. Suppose now that every positive
occurrence of 7 in T is universal; then in S? equivalent to ~ T, we
may suppose that every variable that occurs in an atomic formula con-
taining a negative occurrence of r is existentially quantified. Passing
to the Skolem matrix of S? and thence to M?, it follows that if B is any
atomic formula of M?* that contains a negative occurrence of r, then
each occurrence of a variable of » is subordinate to some one of the sj;
in the sense of occurring in a term beginning with this symbol. From
the construction of M° from M* and M?* it results that an atomic formula
A of M*', as above, will appear also in M° only in case 74 = 7B, for
B an atomic formula of M? as described. But this is impossible, since
every occurrence of a symbol s}, in 7B is subordinate to some sj; while
A contains an ocurrence of some s}, that is not subordinate to any s
in A, which does not contain the s, and hence this occurrence of s;; is
not subordinate to any sZ; in 7A.
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Turn now to the proof of (3). From the theorem of §3 it is easy
to see that P(K)* consists of all consequences of ‘generalized ’ special
Horn sentences that hold in K, that is, of those sentences that hold in
K and are obtained by universal quantification and conjunction from
formulas of the types P D F and ~ P, for P positive and F' atomic.
From the hypothesis of (8), if I'= T, where T is a generalized special
Horn sentence, then /"= S and S= T, where S, a conjunction of
sentences from /7, contains no positive universal occurrence of any
relation symbol. Since 7T contains no positive non-universal occurrences
of any relation symbol, application of the Interpolation Theorem with
the conditions (4a) and (4b) provides the existence of S° such that S= S°
and S°= T, where S° contains no positive occurrences of any relation
symbol, either universal or non-universal : in short, where S° is negative.
Since I'=8° and S°= T, it follows by (2) that T e¢ H'(K)*. This
establishes that Py(K)* & H'(K)*, while the opposite inclusion follows
from the fact that Py(K) < H'(K).

In §5 of [10] an elementary class K of systems, without operations
and with a single binary relation (other than identity), was constructed,
with the property that H(K) is not elementary. Replacing, in each
system in K, the relation in question by its complementary relation,
yields an elementary class K’ of systems such that H’(K') is not elemen-
tary. More explicitly, K’ is characterized by the single sentence

S’ gayyzat: ~r@,y) AN ~r@,2) D ~7r@, t) N ~rkt)

It follows as in [10, § 5], or may be derived from the result there, thas
H'(K)* = {8}, 8}, «--1**, where the S} result from the S, by prefixing
a negation sign to each occurrence of the symbol ». If U is the natural
numbers with the relation x < ¥, it contains descending chains of arbitrary
length, hence satisfies the S; and belongs to H'(K")**., If %' had a
homomorphic image B in K’, from S’ it would follow that
~ Br(by, by), +++, ~Br(by, b,,), -++ for some b, b, --- in B, and any set
of inverse images a,, a,, - -- would constitute an infinite descending chain
in W, which is clearly a contradiction. Thus 2U' is not in H'(K’), and
H'(K') + H'(K)**, that is, H'(K’) is not elementary.

Finally, the set I" = {S’} satisfies the hypothesis of (38); indeed,
each atomic formula of S’ contains one of the existentially quantified
variables x,y or t. Thus, by (8), Py(K'Y* = H'(K')*. It now follows
that P(K’) is not elementary. For, by (1), this would imply that P(K’)
were elementary, hence P(K')** = P(K'). But PY(K')* = H'(K')* implies
H'(K')** = P(K')**, and P(K’) S H'(K’), which, together with P(K')** =
P(K"), would imply H'(K')** < H'(K') and hence that H'(K') were
elementary, a contradiction.
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