ON A THEOREM DUE TO SZ.-NAGY

R. S. PHILLIPS
B. Sz.-Nagy [4] has proved the following theorem:

Theorem A. Let \([T_t; t \geq 0]\) be a strongly continuous semi-group of contraction operators on a Hilbert space \(H\). Then there exists a group of unitary operators \([U_t, -\infty < t < \infty]\) on a larger Hilbert space \(H'\) such that

\[
T_t y = PUty, \quad y \in H, \, t \geq 0;
\]

here \(P\) is the projection operator with range \(H\). Then space \(H\) can be chosen in a minimal fashion so that \([U_tH; -\infty < t < \infty]\) spans \(H\). In this case \([U_t]\) is strongly continuous and the structure \([H, U_t, H]\) is determined to within an isomorphism.\(^1\)

The infinitesimal generator \(L\) of the semi-group \([T_t]\) is defined by

\[
\lim_{\delta \to 0^+} \frac{1}{\delta} [T_\delta y - y] = Ly
\]

for all \(y \in H\) for which this limit exists. The operator \(L\) is linear and closed with dense domain, \(\mathcal{D}(L)\) (see [1]). It is shown in [2] that \(L\) is maximal dissipative in the sense that

\[
(y, Ly) + (Lx, y) \leq 0, \quad y \in \mathcal{D}(L),
\]

and \(L\) being maximal with respect to this property. Since \([U_t]\) is a semi-group as well as a group of operators, the infinitesimal generator \(L\) of \([U_t]\) also shares these properties; however in the case of a group of unitary operators \(iL\) is in addition self-adjoint.

The purpose of this note is to study the relation between \(L\) and \(L\). It turns out that \(L\) is a restriction of \(L\) only when \(L\) is maximal symmetric. In general \(L\) is neither a restriction nor a projection of \(L\); in fact \(\mathcal{D}(L) \cap H\) may contain only the zero element. Nevertheless we shall obtain \(H, L,\) and \([U_t]\) directly from \(L\), our principal tool being the discrete analogue of the above theorem, which is also due to Sz.-Nagy [4], namely

Theorem B. Let \(J\) be a contraction operator on a Hilbert space \(H\). Then there exists a unitary operator \(J\) on a larger Hilbert space \(H'\) such that

\[
J^n y = PJ^n y, \quad y \in H, \, n \geq 0;
\]

here \(P\) is the projection operator with range \(H\). The space \(H\) can be

\(^1\) Two structures \([H, U_t, H]\) and \([H', U'_t, H]\) are isomorphic if there is a unitary map \(V\) of \(H\) onto \(H'\) which is the identity on \(H\) and is such that \(VU_t y = U'_t Vy\) for all \(y \in H\).
chosen in a minimal fashion in the sense that \([J^nH; -\infty < n < \infty]\) spans \(H\). In this case the structure \(\{H, J, H\}\) is determined to within an isomorphism.

For a maximal dissipative operator \(L\) with dense domain, it is shown in [2, §1.1] that \((I - L)\) is one-to-one with range \(R(I - L) = H\) and that
\[
J = (I + L)(I - L)^{-1}
\]
is a contraction operator with \(\mathcal{D}(J) = H\) and such that \((I + J)\) is one-to-one. Applying Theorem B we obtain the unitary operator \(J\) on the enlarged space \(H\) spanned by \([J^nH; -\infty < n < \infty]\) with \(J\) satisfying the property (4).

Lemma 1. The operator \((I + J)\) is one-to-one.

Proof. Let \(S\) be a contraction operator, set \(\mathcal{Z}(S) = [y; Sy + y = \theta]\), and denote the projection operator with range \(\mathcal{Z}(S)\) by \(P_S\). Then the ergodic theorem (see [3, pp. 400-406]) asserts that
\[
\text{st. lim}_{n \to \infty} (n + 1)^{-1} \sum_{n=0}^{\infty} (-S)^k = P_S
\]
and that \(SP_S = P_SP_S = -P_S\). We apply this result first to \(J\) and then to \(J\). Making use of (4) we see that
\[
PP_Jy = P_Sy, \quad y \in H.
\]
As noted above \(P_S = \Theta\), so that \(PP_JP = \Theta\). Actually \(P_JP = \Theta\); for otherwise there would exist a \(y \in H\) with \(P_Jy \neq \theta\) so that
\[
(P_PJP_Jy, y) = (P_Jy, y) = \|P_Jy\|^2 > 0,
\]
which is impossible. Thus \(P_JP = \Theta\) and hence \(\mathcal{Z}(J)\) is orthogonal to \(H\). But this means that
\[
P_JJ^nH = J^nP_JH = \theta,
\]
and we infer that \(J^nH\) is orthogonal to \(\mathcal{Z}(J)\) for all \(n\). The minimal property of \(H\) therefore requires that \(\mathcal{Z}(J) = \Theta\).

Remark. Associated with \(J\) is the resolution of the identity \([E(\sigma); -\pi < \sigma \leq \pi]\) and the integral representation
\[
J^n = \int_{-\pi}^{\pi} \exp(i\sigma)dE(\sigma).
\]
Setting the restriction of \(PE(\sigma)\) to \(H\) equal to \(F(\sigma)\) we see by (4) that
\[
J^n = \int_{-\pi}^{\pi} \exp(i\sigma)dF(\sigma).
\]
The argument used in Lemma 1 applied to \(S = \exp(i\mu)J\) shows that if
J has no eigenvalues of absolute value one, then neither does J and hence that both \(E(\sigma) \) and \(F(\sigma) \) are strongly continuous in \(\sigma \). Conversely, \(F(\sigma) \) is strongly continuous then as is readily verified

\[
(n + 1)^{-1} \sum_{\mu=0}^{n-1} \exp(i\mu J)y = \int_{-\pi}^{\pi} K_n(\sigma + \mu) dF(\sigma)y \to \theta , \quad y \in H ;
\]

here

\[
K_n(\sigma) = (n+1)^{-1} \exp(i\sigma/2) \sin \left(\frac{n+1}{2} \sigma \right) \sin \left(\frac{\sigma}{2} \right)^{-1}.
\]

It then follows from the ergodic theorem that \(\mathbb{1}_{\{-\exp(i\mu J)\}} = \theta \) and hence that \(J \) has no eigenvalues of absolute value one.

Theorem. Set

\[
L = (J - I)(J + I)^{-1}.
\]

Then \(L \) generates a strongly continuous group of unitary operators \([U_t; -\infty < t < \infty] \) such that

\[
T_t y = PU_t y , \quad y \in H , t \geq 0
\]

and \([U_t H; -\infty < t < \infty] \) spans \(H \).

Proof. It follows from the above lemma that \((I + J) \) is one-to-one and hence that \(L \) is well-defined. Moreover \(\sigma(L) = \Re(I + J) \) is necessarily dense in \(H \) since otherwise \((I + J^*) \) would nullify some non-zero vector and since \(J^{-1} = J^* \) the same would be true of \((I + J) \). Further it is clear that \(iL \) is the Cayley transform of \(iJ \) and hence \(L \) generates a strongly continuous group of unitary operators which we shall denote by \([U_t] \). In order to verify (7) we proceed to represent the resolvent \(R(\lambda, L) = (\lambda I - L)^{-1} \) in terms of \(J \) for \(\lambda > 0 \). We see from (5) that

\[
y = 2^{-1}(Ju + u) \quad \text{and} \quad Ly = 2^{-1}(Ju - u) , \quad u \in H .
\]

Suppose next that \(\lambda y - Ly = f \). Replacing \(y \) by \(u \) as in (8) we obtain

\[
2^{-1} \lambda (Ju + u) - 2^{-1} (Ju - u) = f
\]

so that

\[
u = 2(1 + \lambda)^{-1} \sum_{n=1}^{\infty} [(1 - \lambda)(1 + \lambda)^{-1}]^n J^n f , \quad \lambda > 0 .
\]

Again making use of (8) we get

\[
y = 2^{-1}(Ju + u) = \sum_{n=0}^{\infty} a_n(\lambda) J^n f
\]

where
\[a_0(\lambda) = (1 + \lambda)^{-1} \text{ and } a_n(\lambda) = 2(1 - \lambda)^{n-1}(1 + \lambda)^{-n-1} \text{ for } n > 0. \]

Thus \(R(\lambda, L) \) can be represented by an absolutely convergent series in powers of \(J \) for \(\lambda > 0 \). Taking powers of \(R(\lambda, L) \) we see that

\[[R(\lambda, L)]^k = \sum_{n=0}^{\infty} a_n^{(k)}(\lambda)J^n, \]

where again the series is absolutely convergent. Similarly

\[R(\lambda, L)^k = \sum_{n=0}^{\infty} a_n^{(k)}(\lambda)J^n, \]

and it follows from (4) that

\[(9) \quad [R(\lambda, L)]^k y = P[R(\lambda, L)]^k y, \quad y \in H, k \geq 0, \lambda > 0. \]

According to Yosida's proof of the Hille-Yosida theorem (see [1]),

\[(10) \quad T_k = \lim_{\lambda \to -\infty} \exp(\lambda B_\lambda) \text{ and } U_k = \lim_{\lambda \to \infty} \exp(\lambda B_\lambda), \quad t \geq 0, \]

where

\[B_\lambda = \lambda^2 R(\lambda, L) - \lambda I \text{ and } B_\lambda = \lambda^2 R(\lambda, L) - \lambda I. \]

Thus for \(y \in H \) the relation (9) implies

\[\exp(t B_\lambda)y = P \exp(t B_\lambda)y, \quad y \in H, \lambda > 0, \]

and this together with (10) gives (7).

It remains to prove that \(H \) is the same as

\[H_0 = \text{closed linear extension of } [U_t H; -\infty < t < \infty]. \]

Let \(P_0 \) be the projection of \(H \) onto \(H_0 \). Then clearly \(U_t H_0 \subseteq H_0 \) for all real \(t \), and since \(U_t^* = U_{-t} \) the same is true of the orthogonal complement to \(H_0 \). As a consequence \(P_0 U_t = U_t P_0 \) for all real \(t \). Hence for \(y \in \mathcal{D}(L) \)

\[P_0 Ly = \lim_{\delta \to +0} (P_0 U_\delta y - \delta y) = \lim_{\delta \to +0} (U_\delta P_0 y - P_0 y) = LP_0 y. \]

Thus \(P_0 \) commutes with \(L \) and hence with \(J \). But since \(H \) is obviously contained in \(H_0 \) we have

\[J^n H = J^n P_0 H = P_0 J^n H \subseteq H_0. \]

The minimal property of \(H \) asserted in Theorem B therefore implies that \(H = H_0 \). This concludes the proof of the theorem.

It should be noted that since \(iL \) is self-adjoint, the largest restriction to \(H \) of \(iL \) will be symmetric. On the other hand if \(iL \) is symmetric then it is easily verified that \(J \) is an isometry and hence that \(J \) is an extension of \(J \); in this case then \(L \) will be an extension of \(L \). However in general if \(u \in H \) and \(y = Ju + u \), then \(z = Py = Ju + u \in \mathcal{D}(L) \)
and $LPy = PLy$; each $z \in \mathcal{D}(L)$ can be so represented. A simple example shows that $\mathcal{D}(L) \cap H$ may contain only the zero element.\(^3\)

REFERENCES

THE UNIVERSITY OF CALIFORNIA,
LOS ANGELES

\(^2\) Suppose H is one-dimensional and $T_t = \exp(-\ell t)$. The Sz.-Nagy construction for H in Theorem B then results in $H = l_2$, the space of complex-valued sequences $y = \{\eta_n\}; -\infty < n < \infty$ with

$$
(y, \xi) = \sum_{n=\infty}^{\infty} \overline{\eta_n} \xi_n ,
$$

$J(\eta_n) = \{\eta_{n-1}\}$, and $P(\eta_n) = \{\eta'_n\} (\eta'_0 = \eta'_1 = 0 \text{ for } n \neq 0)$. Then relation (8) as applied to J and L asserts that for each $\{\eta_n\} \in \mathcal{D}(L)$ there is a $\{\mu_n\} \in H$ such that

$$
2\eta_n = \mu_{n-1} + \mu_n , \quad 2[L(\eta_n)]_n = \mu_{n-1} - \mu_n .
$$

If we also require that $\{\eta_n\} \in H$, then $\mu_{n-1} + \mu_n = 0$ for all $n \neq 0$ and this together with the condition $\sum |\mu_n|^2 < \infty$ implies that $\mu_n = 0$ for all n. It follows that $\mathcal{D}(L) \cap H = \emptyset$.

Julius Rubin Blum and Murray Rosenblatt, *On the structure of infinitely divisible distributions* 1
Robert George Buschman, *Asymptotic expressions for* \(\sum n^a f(n) \log^r n \) .. 9
Eckford Cohen, *A class of residue systems (mod r) and related arithmetical functions. I. A generalization of Möbius inversion* 13
Paul F. Conrad, *Non-abelian ordered groups* 25
Richard Henry Crowell, *On the van Kampen theorem* 43
Irving Leonard Glicksberg, *Convolution semigroups of measures* 51
Seymour Goldberg, *Linear operators and their conjugates* 69
Olof Hanner, *Mean play of sums of positional games* 81
Erhard Heinz, *On one-to-one harmonic mappings* 101
John Rolfe Isbell, *On finite-dimensional uniform spaces* 107
Erwin Kreyszig and John Todd, *On the radius of univalence of the function* \(\exp z^2 \int_0^z \exp(-t^2) dt \) ... 123
Roger Conant Lyndon, *An interpolation theorem in the predicate calculus* .. 129
Roger Conant Lyndon, *Properties preserved under homomorphism* 143
Roger Conant Lyndon, *Properties preserved in subdirect products* 155
Robert Osserman, *A lemma on analytic curves* 165
R. S. Phillips, *On a theorem due to Sz.-Nagy* 169
Richard Scott Pierce, *A generalization of atomic Boolean algebras* 175
J. B. Roberts, *Analytic continuation of meromorphic functions in valued fields* ... 183
Walter Rudin, *Idempotent measures on Abelian groups* 195
M. Schiffer, *Fredholm eigen values of multiply-connected domains* 211
V. N. Singh, *A note on the computation of Alder’s polynomials* 271
Maurice Sion, *On integration of 1-forms* 277
Elbert A. Walker, *Subdirect sums and infinite Abelian groups* 287
John W. Woll, *Homogeneous stochastic processes* 293