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In this paper® we consider analytic continuation of power series by
matrix methods in arbitrary fields complete with respect to a valuation.
In the complex field continuation can generally be achieved by a formal
expansion of the given power series about a point in its circle of con-
vergence. The new series (with power series coefficients) generally
exists and converges over a circle extending beyond the circle of con-
vergence of the original series.

When the field is non-Archimedean however the new circle of con-
vergence is always contained in the old. Hence in this case we need
have recourse to a summability method. In this paper we consider
a certain class of matrix methods which can be applied to the power
series coefficients appearing in the formal expansion of the original
series about points outside the original circle of convergence. The methods
will be applicable in Archimedean or non-Archimedean fields.

The work here is based upon Chapter 3 of the author’s PhD dis-
sertation written under the direction of Prof. G. K. Kalisch at the
University of Minnesota in 1955.

1. Notations and definitions. Throughout the paper % shall be a field
which is complete with respect to a valuation, denoted by | |. Unless
stated explicitely to the contrary the valuation may be either Archimedean
or non-Archimedean. It is useful to note that, by a theorem of Ostrowski,
if the valuation is Archimedean then & is topologically isomorphic with
the real or complex numbers.

We shall designate the collection of all infinite series with terms in
Ik by S. Further we introduce an operation, the Cauchy product, into
S. If C=31,¢,and C' = 3>,_,c, are in S then the Cauchy product
CC’ is defined by

o {
CC'= 3 ¢l .
i=0 j=o0
This product is clearly in S; so S is closed relative to this multiplication.
The subset of S consisting of all unconditionally convergent series
will be denoted by 7. When k is non-Archimedean T coincides with the
* This paper was originally accepted by the Trans. Amer. Math. Soc., received by
the editors of the Trans. Amer. Math. Soc. January 16, 1957, in revised form April 18,
1958. The author wishes to express his thanks to the referee who through his extensive

comments on the first version has changed the character of the whole paper and has
increased its generality in certain respects.
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set of all convergent series since in this case a series converges if and
only if its nth term goes to 0. When k is Archimedean 7T coincides
with the collection of all absolutely convergent series. A theorem of
Mertens in the Archimedean case (which remains true in the non-
Archimedean case) assures us that 7' is closed relative to the multipli-
cation defined in S. Further by the same theorem if C, C’ converge
respectively to ¢, ¢’ then CC’ converges to cc'.

The set of series in T which converge to non-zero limits will be
denoted by T'*. From the last sentence of the preceding paragraph we
see that T* is closed under multiplication.

The set of infinite matrices (a,),7=0,1,2, ---;5=0,1, 2, .- where
a;; is in k for all ¢, 7 will be denoted by M. We introduce into M two
operations—addition and multiplication. Addition is unrestictedly defined
by the following :

m; = (a“), my = (b’i]) then m, + my = (a“ "‘I‘ bi]) .

Clearly m, + m, is in M.
Multiplication is not unrestrictedly defined. We have the following
definition (m, and m, as above):

mm, = (¢;;) providing ¢;; = >, a,b,, converges for all ¢, 7.
q=0

We shall be interested in mappings from subsets of S into M. A mul-
tiplicative homomorphism from a subset V of S into M is a mapping f of
V into M such that when C,, C, and C,C, are in V then f(C)f(C,) is
defined and f(C)f(C,) = f(C,C)).

2. The matrices 4, and B,.

DEFINITION 1. Let C = >.2,¢; be in S.

(a) By = (by;) where b,; = ¢;-, and ¢, is taken to be 0 when j < 7;

(b) If C converges to ¢ # 0 then A, = By(c)™* where (c) is the
diagonal matrix with all diagonal elements c.

LEMMA 1. The map C — B, is a multiplicative homomorphism of
S wnto M.

Proof. Let C=32,¢;, C'=>5,¢, be in S. Then CC’'=3\7,¢;
where ¢, = >\%_,¢,ci-,. Thus By, = (¢,-;). Since B, and B, each have
only finitely many non-zero terms in each column B,B,. is defined. Fur-
ther B,B, = (d;;) where

o 3 -1
—_ J— ’ —
diy = Z{;Cq—zc?—q = Zicq-ch—q = g)csc(j—i%s =Cj-i +
i< &= -
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Hence B,B, = B, and the lemma is proved.

LEMMA 2. Let C, C' be in S and suppose they converge respectively
to the mon-zero sums ¢, ¢'. Then AyA, exists and AiA, = Ay DTO-
viding CC' converges to cc'. .

Proof. Ay, = By(c)™?, Ay = By(c¢’)™' and therefore
AgAg = By(c)'Bo¢')™! = Bggrlce')™ = Agor -

COROLLARY. The map C— A, ts a multiplicative homomorphism
of T* into M.

We now introduce a norm into T and two topologies into M.

DEFINITION 2. The norm of C, denoted by |C|,, for C = >\ ,¢; in
T is defined by:

max |¢;| for k non-Archimedean;
A for k& Archimedean .
0

By restricting our C to be in 7' we insure that this norm is defined.
The following properties are valid for arbitrary k.

IC+ C,]T < [Clr+ lC’lT;
|ICC" |, <|Cl.1C"y;
laCl, =]a| |Cl, for a in k.

If & is non-Archimedean the first two properties can be strengthened
to read

‘C"‘ C'lr gmax(lC]T, 1IC' 1) 5
[CC'p =|Cl,|C" |y .

Defining addition in T to be componentwise addition we see that T
is a normed ring.

DEFINITION 3. (a) The weak topology in M is the topology induced
on M by making the sequence m, = (a{¥’) of matrices converge to the
matrix (a;;) if and only if for all 4, j we have a{}’ — a,; When this is
true we say that the sequence m, converges weakly to (a,;).

(b) If, for an arbitrary positive real number 7, we denote the set
of all matrices (a;;) with |a;;| < r, for all 4, j, by M, then the set of
M, gives a basis system for the open sets about the additive identity
0 in M. This induces on M the topology of the additive group of M
and is called the uniform topology.
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We note that addition and multiplication (when the latter is defined)
are continuous in both topologies in M. Also if a sequence of matrices
converges in the uniform topology it converges in the weak topology.

We shall denote by M the collection of matrices m = (a,,) for which
max |a,,| exists. For m in M we define |m| = max |a,;|. This induces
the same topology on M which the uniform topology of M induces on M.

LEmMMA 8. The map C — B, is a continuous map of T into M under
etther the uniform or weak topologies of: M.

Proof. Since C is in T, max |¢,| exists and is <|C|,. As B, =
(c;-;) the norm of By, in M, is given by

|B,| = max |¢,;| = max|e,| <[Cly.

Therefore the map of 7 into M is continuous with respect to the

norm topology of M. Since this topology is induced by the uniform
topology of M this map is continuous relative to the uniform topology.
This then implies continuity relative to the weak topology and the lemma
is proved.

LEMMA 4. The map C — A, 1s a continuous map of T* into M un-
der either the unmiform or weak topologies of M.

Proof. A, = By(c)™* where ¢ + 0 is the sum of C. Since multipli-
cation in M is continuous in either topology as is the map C — B, (by
previous lemma) we need only show that the map C — (¢)~! is continuous.
This is the product of three maps C — ¢ — ¢ — (¢)™.

The first is continuous since it is an additive homomorphism and |¢| <
|Clz. The second is a continuous map on k* (the non-zero elements of
k). The third map is a ring isomorphism into M preserving norms. I.e.
|| = max |¢'| = |[(¢7?)]. Hence this map is continuous into M relative
to the norm in M. As in the proof of Lemma 3 this concludes the proof.

We define the convergence of an infinite product [[;-,C,, C, in T,
in the usual way. That is, [[;..C, converges providing lim .. [[%.,C,
exists and is not the additive identity of 7. Making use of the theorem:

e, C,, C, in T, converges if and only if |1 — C,|,—> 0 as n— o
(where 1 is the multiplicative identity in T').

We deduce from Lemma 4 the following immediate consequence.

THEOREM 1. Let 3.7, C, converge and suppose C, is in T* for all
n. Then 115, Ao, converges relative to both weak and uniform topologies
of M and its limit 18 A[ly-; Cy-
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3. T, matrices and C(x)-continuation. Each infinite matrix m can
be thought of as a mapping defined over a subset of S and mapping
this subset into S. In fact, let m = (a;;) and suppose C = 3,2 .¢; is in
S. Then if, for all j, the series 3.5,ca;, exists and equals ¢} we shall
say that the matrix m maps C onto C’'= 3 5,¢,. We shall write
mC = C'.

(If we let C* be the ¢ vector”’ (¢, ¢y, Cy, -+ ) derived in the obvious
way from C then C'* = (mC)* = C*.m where the right side is the
ordinary matrix product of C* and m.)

When C has sum ¢ then C’ has sum ¢ we call m a T, matrix.
Necessary and sufficient conditions in order that an infinite matrix be
a T, matrix will be found in [2] for k¥ Archimedean and in [8ab] for k&
non-Archimedean. (In the reference [2] the T, matrix is called an «
matrix.)

Now suppose C = >\,¢;, C' = S\52,¢; are in T with sums ¢, ¢’ re-
spectively. Then CC’ exists and

CCr = 3 S éle,, = B,C
J=01%=0
where B, is as defined in § 2.

Since in this case CC’ converges to cc’ we see that B, maps con-
vergent series onto convergent series but alters the sum by a factor of
¢. Thus for C in T*, A, = By(c)"* will map convergent series onto con-
vergent series with the same sum. This proves the following.

LEMMA 5. If C is wn T* then A, s a T, matrix.

We wish now to consider series of functions. Let C(x) = 332, c¢i(x)
and U(x) = 3.5, us(x) where  ranges over some subset X of k. Sup-
pose in addition that C(x) is in T* for all 2 in D where D is a subset
of X. Further suppose there is a non-empty subset 4 of D on which
U(x) converges. Then, by Lemma 5, Ay, is a T, matrix for « in D
and therefore transforms U(x), for # in 4, into a new series with the
same sum. However it may be true that A,.,U(x) is defined and con-
verges for some x in D — 4.

The sum function #'(x), considered over the largest portion of D on
which A,.,U(x) exists and converges, will be called the C(x)-continuation
of U(x) (or more accurately the C(x)-continuation of the sum function
u(x) of U(x)). The C(x)-continuation will be called efficient for U(x) if
there exists an « in D — 4 for which A, exists and converges.

In Archimedean fields it is possible for an infinite series to converge
conditionally. If C(x) converges conditionally for some x then A,., is
defined but is not necessarily a T, matrix (since the Cauchy product of
conditionally convergent series may not converge). Considering X now
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to be a topological space we can speak of the closure D of D in X. Let
2 be in D and suppose that when y in D converges to « in certain pre-
scribed ways then C(z), U(x), Ay, U(x) converge respectively to

lim,_, ¢(y), lim, ., w(y), lim,_, w'(y)

when these limits exist. When 2 is in D we know u(x) = w'(x) 80 Ay U()

converges when U(x) does. Thus if ¢(x), w(x), #'(x) are continuous over D
then for « in D, whatever the prescribed ways y in D tends to x, we

have C(z), U(x), Ay, U(x) converging respectively to

lim,_, e(y), lim,, u(y), lim,_,, w'(y).

Let D* be the set of all x in D for which C(x), U(x), Ay U(x) have
the respective limits specified above as y — « in one of the prescribed
ways. Then D c D* ¢ D when ¢(x), u(x), w'(x) are continuous over D.
The function %'(x), considered over D*, will be called a generalized
C(x)-continuation of U(x) (relative to the allowed modes of convergence
of ¥y in D to x in D¥),

4. Power series and the Weierstrass decomposition theorem. In this
section we take the X of §3 to be all of & and suppose C(x) and U(x)
to be power series about « in k. Then we may take, without loss of
generality, the set D to be a circle with center « from which have been
excised all zeros of C(x). Then 4 is the intersection of D with some
circle of center «. When % is non-Archimedean D = D and when k is
Archimedean D is the closed circle about « of the same radius as D.
Thus (by Abel’s theorem in the Archimedean case) if we prescribe y in
D to converge to & in D — D only radially we can take D* = D.

THEOREM 2. For 2, 0,n =0,1,2, --- let C,(x) = 32 a2t and
Clxy) = Divoci(xy) be in T. Then if C,(x,) — C(x,) the following are
true.

(1) for each 1 there is an a; such that lim,_ ., = a;;

(i) @@ = ci(x,) .

That is, C(x,) is the term by term limit of C,(x,) when it is the limit
wn the T norm.

Proof. Since |C,(x,) — C(x,)], = 0 we have |C,(x,) — C, ()], — 0 as
n, m — o independently. But

; Max |Gy — G| [2,]*
|Co(@y) — Cr(@o)|r = l1=20 (A — Apy) | = i |Gs — @i | |27

in the cases where k is non-Archimedean or Archimedean respectively.
In either event |a,; — @,;] |2,]* < |Cu(xy) — C,(2,)|» = 0. Hence by com-
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pleteness of k there is an a, such that a,; — a,. This proves (i). To prove
(ii) we have

lawh — ey(®o)| < la@h — an@l] + [a,h — ci()]
< lawd — anwi] + | Cu(w)) — C(w0) |1

Since both terms on the right tend to zero the proof of (ii) is completed.

We now suppose that & is algebraically closed and is non-Archimedean.
If C(x) = > ,a2" is an entire power series (i.e. C(x) is in T for all z
in k) which is not identically zero then by the analogue of the Weierstrass
decomposition theorem in algebraically closed non-Archimedean fields (see
Schiobe [10] and Schnirelman [11]) we can express C(x) as the formal
limit of

N=o0o

aoxi" 1].0 (1 - x/zq)

where 1, is the multiplicity of the zero x = 0 of the sum c¢(x) of C(x)
and where z, ranges over the set of non-zero zeros of ¢(x), each factor
1 — z/z, occuring a number of times equal to the multiplicity of 2z, as
a zero of c(x).

Schobe [10] has also proved that |[z,| - o as ¢ — «. Therefore,
since the terms of the product are power series and 1+ (1 —x/z,) =
x/z, has |z/2,|, — 0, the product []75° (1 — x/2,), when infinite, converges
for every x in k, relative to the topology of 7. Hence by Theorem 2
above this product converges to C(x). These remarks combined with
Theorem 1 prove the following theorem. The notation is as above.

THEOREM 3. Let C(x) be an entire power series. Then for x a non-
zero of the sum function c(x) of C(x) we have

nsoo
AU(z) = A%A;O HoAl—x/zq
q=

where, if n s infinite, the right side converges to the left in both the
untform and weak topologies of M.

In the case of the complex field the original Weierstrass decompo-
sition theorem gives an analogous result where the Al—m/zq are replaced

by more complicated matrices corresponding to the primary factors of
C(x).

5. Meromorphic functions and C(%)-continuation. If the function
S(x) has a Taylor series expansion >\i,a;(x — «a)t about « in k which
converges to f(x) in its circle of convergence we shall denote this series
by [f(x)].. If D is the circle of convergence and ¥ is an interior point
of D we can expand [f(x)], about y to obtain (formally) [f(x)],. Thus
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We shall denote Z;";o(i t j) @iy — @) by [fi(¥)].. When the char-

racteristic of &k is 0 we know
L. = arin[ 490

(Although much of what we shall say is true for fields of arbitrary
characteristic we confine ourselves to fields of characteristic 0 in order
to simplify the discussion.)

Letting f,(y) be the sum function of [f(¥)], we have

[F@], = AW — ).

It is known that in both the Archimedean and non-Archimedean
case that for all ¢, [f.(y)]. converges for all ¥ in D. However in the
Archimedean case it is often true that there is a circle D,, not contained
wholly within D, and in which, for all 4, [fi(y)], converges and
2o [fiw)] (# — y)' converges in D, to f().

This allows one to step by step recover the function f(x) from
a power series element [f(x)], of the function. When k is non-Archi-
medean it can be shown that no such circle as D, can ever exist. Thus
the usual method of analytic continuation necessarily fails in such fields.
In this section we shall show how C(x)-continuation can be applied in
the case of the continuation of power series elements of meromorphic
functions with known denominators (see below).

Let D be a circle in k (D open if k is Archimedean) with center «.
A function f(x) defined over some subset of & will be side to be mero-
morphic over D if there exist two series [g(x)] , [A(x)]. convergent on D
such that

(i) f(x) is defined for « in D if and only if i(x) + 0;

(il) f(x) = g(x)/h(x) everywhere on D where defined.

The function i(x) will be called a denominator of f(x) over D. If Dis
the greatest such circle we call it the circle of meromorphy of f(x).

LEMMA 6. If f(x) is meromorphic on D with denominator h(x) and
if a is in D then f(x) is the [M(x)],-continuation of [f(x)]..

Proof. Let x be in D, h(x) = 0. Then there is a g(x) such that
[9(x)], converges on D and f(x) = g(x)/h(x). Now f(z)is the sum func-
tion of
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Lo@)]u/h(x) = ([R(@2)]u[ @D (@)]e = Ay [F ()]s

and the lemma is proved.

THEOREM 4. Let f(x) be meromorphic on D with denominator
h(x). Further for a in D let

@ Sade - af
have circle of convergence contained in D. Then
[F@), = S /)@ — o)
when y s wn D, h(y) + 0, and fi(y) ts the [h(y)]i'-continuation of

“é (Z J{ j) @)y — @),

Proof. As seen above the formal expansion of [f(x)], about y is
given by

S ) .
0=UJ'=0( ) )“iﬂ(y a)(x — y)
where
13 (7 . 4 d
7! Jzu ('L -,ib‘ ‘7>ai+J(y —a) = [gqu/)jlw .
But

a'fy) _ d'9w)y) _ Hy)/h+ (y)
dy’ dyt

where #(y) is a polynomial in g(y) and h(y). Thus [{(y)]. converges over

D and df f(y)/dy® is meromorphic on D with denominator (t(y))**. Thus
by Lemma 1, d!f(y)/dy"* is the [(h(y))'*'].-continuation of

[ f @yl = it 5 (* 57 )y — @
j=0
From Theorem 4 and Theorem 1 we have the
COROLLARY. fi(y) is the sum function of Apiyy [d'f(y)/dy'l..

THEOREM 5. If a function f(x) defined over D is the C(x)-continua-

tion of a power series [f(x)]. then f(x) s meromorphic on D when C(x)
is of the form [h(x)],.
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Proof. Let f(x) be the sum function of

A1, LF (@) = ([(@)]a/(@))LS (2)]a

which converges on D. Then [g(x)]s = [h(%)].[f(x)], converges on D.
Letting g(z), h(x) be the sums on D of [g(%)], [h(x)], respectively gives
[f(x)], the expansion about « of g(x)/h(x) which is meromorphic on D.
There are many further questions which can be asked concerning
these methods of continuation. In view of Theorem 5 one would wish
to concentrate on C(x)-continuations where C(x) is not a power series.
Further we can generalize the method so that instead of restricting
ourselves to the use of C(x)-continuations we allow the use of arbitrary
T, matrices. Some work has been done in this direction in [8a].
Vermes, making use of series to sequence methods, has dealt with
similar problems for % the field of complex numbers [13abe]. Some of
his results in [13a] overlap some of the work done here. For further
considerations of these and similar problems see the references to
Chabauty, Krasner, Kiirshak, Rychlik, Schobe and Strassman cited below.
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