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Introduction. The solution of the boundary value problems of
potential theory can be reduced, according to Poincaré, to an inhomo-
geneous integral equation of the second kind. It was the study of this
particular problem which led, at the beginning of this century, to the
development of the modern integral equation theory at the hands of
Fredholm and Hilbert. From the beginning, attention was drawn to the
eigen value problem for the homogeneous integral equation with the
potential theoretical kernel [10]. The eigen functions of this problem
can be extended as harmonic functions into the domain considered as
well as extended into the complementary domain and give rise to interest-
ing series developments and to a theory relating solutions of the interior
and exterior boundary value problems of a closed curve or surface.

In a preceding paper [17], these Fredholm eigen funections were
applied to problems of conformal mapping of simply-connected plane
domains. Their connection with the dielectric Green’s function of such
domains was discussed and we showed the possibility of obtaining univalent
funetions by means of the dielectric Green’s function. A variational
formula for the Fredholm eigen values was established and an extremum
problem for the latter was solved which permitted one to estimate the
convergence of the Neumann-Liouville series solving the Dirichlet and
Neumann boundary value problems.

In the present paper, the Fredholm eigen value problem is studied
in the case of multiply-connected plane domains. Various new difficulties
arise in this case. The complementary region of a multiply-connected
domain is a domain set and the number of trivial solutions of the problem
with the eigen values |1| = 1 increases. This fact necessitates a brief
restatement of the basic definitions and concepts in § 1. A certain re-
petition and overlap of material with the preceding paper could not be
avoided ; but, on the other hand, the presentation of this section makes
the paper self-contained and should facilitate the understanding of it.

In § 2, the dielectric Green’s functions g.(z, ¢) of a multiply-connected
domain are discussed and their Fourier development in terms of the
Fredholm eigen functions is given. The functions g. are of geometric-
physical significance by themselves; moreover, they represent a one-
parameter (0 < ¢ < o) family of harmonic positive-definite kernels which
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have also the Fredholm functions as eigen functions. Fore =1, g.(z, &)
reduces to the fundamental singularity — log|z — ¢ | and leads to the
classical kernel of potential theory. A power series development of the
dielectric Green’s function in terms of (¢ — 1)/(¢ + 1) is given ; the coef-
ficient kernels are elementary and can be calculated explicitly by integra-
tion of simple functions over the boundary curve system.

The role of the one-parameter family g¢.(z,¢) becomes particularly
interesting when one studies the limit cases ¢ = 0 and ¢ = . This is
done in § 3. It appears that this function family interpolates between
two well-known harmonic functions which determine two important
canonical mappings of the domain considered; namely the radial-slit
mapping and the ecircular-slit mapping.

In §4 it is proved that not only the limit cases ¢ =0 and ¢ = «
of g.(z, &) give rise to univalent functions in the domain but that each
dielectric Green’s function does so. We obtain one-parameter families of
univalent functions which connect the radial-slit mapping function con-
tinuously with the circular-slit mapping function via any prescribed
univalent function in the domain. This result is applied to give a new
proof for the extremum properties which characterize the above two
canonical slit mappings. Another type of one-parameter sets of univalent
functions is constructed which interpolates between the canonical parallel-
slit mappings.

In §5, we use the dielectric Green’s functions in order to define
various norms and scalar produets. These are quadratic and bilinear
functionals defined for harmonic functions in the multiply-connected
domain D as well as for functions harmoniec in the complementary domain
set D. If one pair of argument functions is defined in D, the other
pair in D, and if relations between their boundary values on the separating
curve system are assumed, equations between the various scalar products
are obtained. It is shown that these identities yield estimates and Ritz
procedures for solution of boundary value problems in D if the corre-
sponding boundary value problems for the complementary set D are
already solved. In the special case ¢ =1 the procedure becomes, of
course, particularly easy to apply since the dielectric Green’s function
becomes trivial. It has, indeed, already been used in this form in order
to prove interesting isoperimetric inequalities for polarization and for
virtual mass [18-20]. The extension of the method to the case of general
¢ should increase its flexibility and clarify its significance. The various
qguadratic forms are used, finally, in order to characterize each Fredholm
eigen value | 1| > 1 by the solution of a simple maximum problem without
side conditions. This result lays the groundwork for proving the varia-
tional formula for the Fredholm eigen values in the next section. The
extremum definition is also used in order to prove that all positive
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Fredholm eigen values of a subsystem of curves are never less than the
corresponding positive eigen values of the full curve system.

In §6, we derive the variational formula for the dielectric Green’s
functions under a small deformation of the domain. Through the
maximum definition of the Fredholm eigen values, we can derive from
this result also the variational formula for the Fredholm eigen values
under the same deformation, This formula could also have been obtained
immediately from the general perturbation theory of operators. But it
seems of methodological interest to utilize fully the maximum property
of each eigen value in order to give an elementary proof for this formula.

In order to avoid a discussion of possible degeneration of eigen values
it is convenient to deal with symmetric functions of all eigen values
and their variation, instead of considering individual eigen values. For
this purpose, we define in §7 the Fredholm determinant of a domain ;
this concept is rather natural when one comes from the general theory
of integral equations. The variational formula for the Fredholm deter-
minant is easily expressed in terms of a complex kernal closely connected
with the dielectric Green’s function which possesses, moreover, as limit
case a kernel well-known in the theory of conformal mapping. Indeed,
the variation of the Fredholm determinant for the particular value 1 of
the argument is described by this classical kernel itself.

In § 8, at last, we apply the results of the preceding section in order
to solve an extremum problem for univalent functions in a multiply-
connected domain and involving the Fredholm determinant. This solution
gives a new proof for the possibility to map every domain conformally
onto a domain bounded by circumferences and characterizes this canonical
domain as an extremum domain of a simple variational problem. The
treatment of the variational problem for the Fredholm determinant seems
also of interest from the methodological point of view and for the
general theory of variations of domain functions. In general, one knows
from the theory of normal families that a solution of an extremum
problem for the family of functions, univalent in a given domain and
with specified normalization, does exist; the method of variations has
only the task to characterize the extremum domain. In our present
problem, we had to restrict ourselves to univalent functions which are
analytic in the closed domain in order to be sure of the existence of
the Fredholm determinant. In this case, the theory of normal families
does not guarantee the existence of an extremum function of equal
character. We do not characterize, therefore, the extremum function by
our variations, but rather an extremum sequence within the function
class, considered. We prove from the very extremum property of the
sequence that its limit function does, indeed, belong to the same class
and has, moreover, certain characterizing properties. This procedure is
very general and may have numerous analogous applications,
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1. The Fredholm eigen value problem. Let D be a domain in the
complex z-plane containing the point at infinity ; let its boundary C
consist of N closed curves C, each of which is three times continuously
differentiable. We denote the interior of each C, by D, and the union
of the N domains D, by D.

We define the kernel

(1) ke, ©) = 2 log 1 teC

ne o lz—¢|
where n; denotes the normal of C at ¢ pointing into D. It is well known
that, under our assumptions about C, the kernel k(z, ¢) is continuous in
both its arguments as long as they are restricted to C.
We want to discuss the eigen value problem

(2) 0.6) = | ke, Op.(0ds; zeC
which plays an important role in many boundary value problems of
potential theory with respect to the multiply-connected domain D. The
¢,(2) and the 2, are called the Fredholm eigen functions and the Fredholm
eigen values, respectively, of the curve system C. The study of the
Fredholm eigen value problem is facilitated by the fact that the kernel
k(z, ) is, for fixed ¢ € C, defined and harmonic for all values z #+ ¢ in
the complex plane. The integral in (2) represents, therefore, a harmonic
function in D and a set of different harmonic functions in D. We shall
use the notation

(3) 2 e, Opuerds = {42 for ze D
7T Jo h(z) for zeD.

The set of harmonic functions izv(z) and h,(z) can be interpreted
as the potential due to a double layer of logarithmic charges, spread
along C with the density (1,/=)¢,(¢). Hence, the well known discontinuity
character of such potentials leads to the boundary relations at each point

(4) limh(z) = (1 + 2)p.(z) , limh() = (1 — 1)e.(z)
and

: 0 —_ 05
(4) "a;z:hv(zo) = on h(z) ,

where % denotes the normal of C pointing into D.
The Fredholm eigen value problem may thus be formulated as the
following question of potential theory which is of interest by itself :
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To determine a harmonic function % in D and a set of harmonic functions
h in D which have equal normal derivatives and proportional boundary
values on C!. It is easily seen that the two problems are completely
equivalent and that the possible factors of proportionality in the second
problem are simple functions of the Fredholm eigen values 2,.

Instead of the harmonic functions h, and h,, we may consider their
complex derivatives, i.e., the analytic functions

0

(5) 0(2) = (’i-hv(z), B = — hi(2) .

In view of definition (3) and by our assumption on C it can be asserted
that v, and ¥, are continuous in D + C and D + C, respectively. In
order to translate the relations (4) and (4’) into terms involving v, and
?,, we use the parametric representation z = z(s) of C by means of the
arc length s and introduce

dz

6 =
(6) Z=a

the unit vector at z(s) in direction of the tangent of C. We can then
write (4) and (4’) in the form

a1t e afte <ol

and combine these two equation into the one complex equation

1

(8) W = R+ .ﬁz». @ 2 = 2(s) .

Introducing (8) into the Cauchy identity. We obtain for ¢ e D

1 fv@g4,_ A 1 (0u(2)dz)
(9) vA&) Znicz—cz 1—2,,2m'0 z—C

while the use of the equation conjugate to (8) leads to

0) L (@) 1 1 (G0

= .. , eD.
27r’i0 z—C 1—2V2m:0 z—C ¢

Combining (9) and (10), we arrive thus at the following integral equation
for v, :

1 w(e) = b 250

In the same way we prove the analogous equations
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' > — A, _1_ vv(z)dz)
(9) WO =" s § e
and

' 5.(0) = A § @fr)dz)
(11) 0 =55 § U

g
In all these formulas the integration over the curve system C has to
be performed in the positive sense with respect to D.

The line integrals in (9), (9') and (11), (11’) can be transformed into
area integrals and the integral equations take the forms

(12) A SS @) g {vv(C) for ceD

)z — ) (1 + 4,)0,(¢) for ¢e D
and
(13) _ %;’,‘\ Sg ?)L(i)_._d 7, {(1 - 'IV)/UV(C) for (e D
Az — ) B,() for ¢e D.

In both integrals dr, denotes the area element with respect to the variable
z and the integrals have to be interpreted in the Cauchy principal sense
whenever they become improper.

The transformation

(14) Fe) =1 (zfiz)cy dr,

carries every L*integrable function f(z) defined in the complex plane
E into a new function F'(z) of the same class and with the same norm :

(15) SS | F(z) pde = SS | £(2) Pde .

This functional transformation plays a role in many problems of function
theory [1,3,4] and is called the ‘ Hilbert integral transformation ’’.
The integral equations (12) and (13) show the close connection between
the theories of the Fredholm eigen functions and of the Hilbert transforms
of analytic functions.

We introduce next the Green’s functions of the domain D and of
the set of domains D. While the Green’s function §(z, ¢) of D is defined
as usual, the Green’s function g(z, ¢) of D is given by the equation

(16) 9(z, ) = {gj(z, z) for z,¢e D,
0 for zeD;CeD,l+7.
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Here, gz, ¢) is the usual Green’s function of the domain D;. By complex
differentiation, we derive from ¢(z, ¢) the analytic function

_2 @
7 0%0C

- ,,71 o -
=z — O

The kernels L(z, ¢) and I(z, ) are well known in the case that D is a
domain [3, 16]. We observe that our generalized kernel I(z,¢) still
preserves the following important property : If f(z) is regular analytic
in D, then

(18) »17 Sg)(zfiz)c;dr - S§ Iz, ©) FR)dr .

In fact, if e D, then l(z, ) =1z, ¢) for ze D, and (2, &) = [=(z — &)1
for ze D, 1l #+ j. The identity (18) follows, therefore, directly from the
corresponding property of the kernel [,(z, ¢).

In particular, we may formulate the integral equations (12) and (13)
for v,(2) and #,(2) as follows:

(19) %, SS Iz, OYo@)dr = v,(2) teD
and
(20) _ Sg iz, O5.(B)de = 5.(0) tebD.

S

D

From the symmetry of the kernels I(z, ¢) and l(z,£) we can conclude

@1) SS vads =0 if 4 =2,

S|

(1) S 90, dc =0 if A, =2, .

B Py

Thus, using a familiar argument from theory of integral equation we
may assume that any pair of different eigen functions v,, v, (or 9,.%,)
are orthogonal upon each other:

(21" SS ’Uﬂ—JMdT =0; SS ’I}.ﬂtjudf =0 for v#£p.
b £

D

There remains the question of normalizing the », and the #,. We
have obviously the free choice of a real multiplicator in the definition
of v,; however, this choice will already determine the function %, in a
unique way, for example through equation (12), The relation between
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the norms of v, and 9, is best understood by returning to the harmonic
functions %,(2) and k,(2) and to their boundary relations (4) and (4'). In
fact, we have

(22) Sglv Pde = Sglvh Pde = — 1—:fh Oh, g
11 + 4 ahv _ 2 +1 gg
=1 §h e gs = AT L1, pae

We can conclude first from (22) that
(23) [, 1>1.

Let us consider the limit cases 4, = + 1. For 1, = 1 we have necessarily
¥,(2) = 0 ; the second equation (7) yields

(24) v ()2’ =0 for zeC.

Thus, the eigen function »,(z) is a real differential for each component
domain D,;. But a simply-connected domain D, cannot have such real
differentials ; hence also v,(z) = 0. Thus, as far as the integral equation
for », and ¥, are concerned, 4, =1 cannot occur as an eigen value.
The situation is, however, different when we return to the original
integral equation.(2) and to the harmonic functions %, and h,, Toi =1
must correspond

(25) hyz) = 2¢, in D, , h(z) =0
and
(25") o) =¢, on C,.

In fact, it is immediately verified that for arbitrary choice of the con-
stants ¢, the function ¢(2) = ¢, on C; is a solution of the Fredholm eigen
value problem (2) to the eigen value 1, = 1. There exist thus N linearly
independent solutions of (2) to the eigen value 2 = 1. These solutions
disappear when we replace the original integral equation (2) by the
integral equations for v, and #,, say, by (12) and (13). It is easy to
show that the eigen value 2 = 1 is the only one lost in this transition.

We consider next the case 1, = — 1. We conclude now from (22)
that »,(z) = 0. We find therefore, in view of (8)
(26) o, (z)%'} =0 for zeC,

i.e., 7,(z) is a real differential of D. There are N — 1 linearly independent

differentials of this type in D and we can construct a basis for them
as follows. Let w,(2) be harmonic in D and satisfy on C the boundary
condition
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(27) w(z)=208; for zeC,.

w,z) is called the harmonic measure of C, with respect to z of D.
Clearly, each function

(28) @) = %

is a real differential in D. Since SV, w, =1, we have 3V, ,(z) = 0
But it is easily seen that apart from this relation no other linear condition
between the w; does exist. Thus, we can select any N — 1 of the w,(z)
as a basis for all real differentials in D.

It is clear that each real differential in D satisfies indeed the integral
equations (12) and (13). However, there exists no corresponding single
valued harmonic function ﬁv(z) connected with the original Fredholm
equation (2) which has this real differential as its complex derivative.
Indeed, in view of (26) such function would have to satisfy the boundary
condition

(29) M _o on C
on

which admits only the solution h, = const. and could not lead to a non-
vanishing differential. Thus, while we lost in the transition to (12) and
(13) the N eigen functions to the eigen value 2 = + 1, we have obtained
N — 1 new eigen functions to the eigen value 2 = — 1 which have no
counterpart in the original Fredholm equation.

After discussing the exceptional cases 1, = + 1, we consider now
the eigen functions v,(2) and 7,(z) which belong to eigen values |1,] > 1.
Each such pair is obtained by complex differentiation from a pair of
harmonic functions 5.(z), htv(z) connected with the original Fredholm
problem. Since A,(z) is harmonic in each of the simply-connected domains
D,, it can be completed to a set of single-valued analytic functions in
the set of domains D;,:

(30) Vz) = h(z) + k.(2) .
Similarly, we may complete h, in D and define
(81) Vi(2) = ho(2) + ik, (2) .

From the boundary conditions (4) and (4') and from the Cauchy-Riemann
equations we derive the boundary conditions for the £k, :

7 0 1+41, 0 5
32 @) = k), Lk =1TR DG, .
(32) () (z) aﬂk(z) i 4 anlc(z) zeC
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Equations (32) guarantee that %,(z) is single-valued in D since k.(z)
is single-valued in each D,. We may characterize the single-valued
analytic functions V,(z) and V,(z) as follows: Their real parts have
equal normal derivatives on C while their boundary values are propor-
tional in the ratio (1 + 4,)/(1 — 4,). Their imaginary parts are equal on
C but their normal derivatives are proportional with the same ratio.

Let us write k& = (1 — 2,)k, and k& = (1 + lv)fc‘,; we have on C

1— 245 ok ok
39/ kD) = = = M), 20 = 9T
(329 O=17.5® % on

Thus, k5P and 155” may be conceived as a pair of k-functions belonging
to eigen functions of the Fredholm problem (2) with the eigen value
— 4,. With each eigen value 1, with |4,| > 1 there occurs also its
negative — 1, as an eigen value. Their corresponding A-functions are,
up to a factor, conjugate harmonic functions.

Finally, we introduce the analytic functions

(33) w(2) = 14 — 1Loy2), %(2) = 11/4 + 10,(2) .
By virtue of (21”) and (22), we may assume that these functions form

orthonormalized sets in D and D ; that is

(34) H Wy de = 8., SS @, = 8, .

b D
Since the wu-functions will be frequently used in this paper, we note
here some formulas which follow immediately from the corresponding
results for the v-functions. From (8) we derive the boundary relation

(35) () = L@ — Y @R

%
Va2 -1 vV
Equations (9), (9') and (11), (11’) take on the form

(36) A (w.,dz) _ {'h//li —1u, &) for ¢eD
2n1 J 2 —C — W,(0) for ¢eD.
and
A, (w,dz) _ (u, (&) for ¢eD
(37) g gD =l ~
o9 2= — /2 —1a,¢) for ¢eD.

From their connection with the Fredholm integral equation it can be
shown that the u.,(z) form a complete system of analytic functions in D,
in the sense that every function f(z) which is analytic in D and for

which SS | fPdr < o can be represented in the form

D
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(38) £6) = S a2, 0, = H fade .

D

The series converges uniformly in each closed subdomain of D. In the
same sense, the functions u.(z) form a complete orthonormal system
within the class of all functions which are analytic in D, have a finite
norm in D and possess a finite single-valued integral in this multiply-
connected domain. If we add to the {u,}-set any N — 1 linearly indepen-
dent real differentials of D we obtain a complete system for all analytic
functions in D with finite norm and vanishing at infinity [3, 21].

2. The dielectric Green’s function. The theory of the Green’s fune-
tion of the domain D is connected with the electrostatic problem of a
point charge at a source point £ in the presence of the system of ground-
ed conductors C;. We may consider also the problem to determine the
electrostatic potential induced by the same point charge at ¢ in the
presence of N isotropic dielectric media which are spread over the domains
D, and have the dielectric constant ¢. The corresponding potential g.(z, ¢)
will now be defined in D as well as in D and will be characterized by
the following properties :

(a) g.(z, ¢) is a harmonic function of 2z in D and in D, except for
z =27~ and for z = .

(b)y If ¢e D, the function g¢.(z, ) + log |z — ¢ | is harmonic at ¢.

(") It ¢ e D, the function g:(z, £) + clog |z — ¢ | is harmonic at ¢.

(e) gez, ©) is continuous through C.

(@ 0 9:(2,8) + ¢ ? 9:2,8) =0 for ze C,¢ in D or in D.
on, 07,

() ¢:(2,8) +1loglz|—>0 as z2z— o for ¢ fixed.

If such a function g.(z, ) exists it must be unique and symmetric
in its two arguments, as is shown by the standard argument of potential
theory based on the second Green’s identity. In order to construct the
Green’s function, we set it up in the form
1) e@o=ls 14| s 0kslr—zlds,ceD
and try to determine (7, £) in such a way that the above requirements
are fulfilled. We proceed analogously, if ¢ € D; only the singularity
term on the right side of (1) will now be —clog|z — £ |. By this formal
set up, we have already fulfilled conditions (a) to (¢). Condition (e) is
satisfied if we require

¢e—1 for ¢eD
2 7, O)ds, = | 2
(2) Sﬂp( ) ) for ceD.
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Finally, we can satisfy (d) by choosing the density function / of the
line potential as solution of the integral equation

e—1, EkE, 2) for CeD

e+l
(8) me )+ ST L uer, Okt s, =47
¢+ — =k, 2) for ceD.
€+1 T

Here k(C, 2) is defined by equation (1.1). We observe that

0 for 7eD

(4) Sk(v,z)dsz: z for peC
[

2z for neD.

Hence, if p(z, ¢) is a solution of the integral equation (3) we may integrate
this equation with respect to 2z over C and verify that condition (2) is
fulfilled automatically. It is sufficient, therefore, to concentrate upon
the inhomogeneous integral equation (3).

For physical reasons, we shall assume ¢ > 0. In this case, we always
have

e—1

3 = 1
(3) Y

Since we showed in § 1 that all eigen values of the kernel k(z, ¢) have
absolute values > 1, it follows that integral equation (8) can always be
solved by the usual process of iteration and that the solution can be
represented by a Liouville-Neumann series. The convergence of this
geries will be the better, the nearer ¢ will be to 1. We observe that

1

(5) 9.z, ¢) = log —
(2,0 g
is trivially known.
The function
(6) 72 0) = 92, ¢) — log !
|z — ¢|

is (for ¢ € D or for ¢ € D) a regular harmonic function of z in D, vanishes
if z tends to infinity and possesses a single-valued conjugate harmonic
function in D. This last fact follows from the boundary condition (d) on
the dielectric Green’s function and the fact that each complementary
domain D, is simply-connected. Let S be the class of all functions
h(s) which are harmonic in D, vanish at infinity and have a single-valued
conjugate harmonic function. It is easy to show that the harmonic
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funections ﬁy(s) which belong to eigen values |4, > 1 of the Fredholm

problem in § 1 form a basis in the linear space S.. By virtue of (1.5)
and (1.21'), we have

D

(7) XSVﬂy-VﬁMdr - mmmmr} =0 for v g .

By a trivial renormalization we can then achieve that

(8) H Vi, Vhde = 8, .

e

We wish now to develop 7:(z, £) in terms of the complete orthonormal

set {h,}. In order to determine the Fourier coefficients or 7.(z, €), we
consider the Dirichlet integrals

(9) i0) = || Vo2, -z, -+ (o, 0 Vi)

> D

We integrate first by parts with respect to g.(2, ¢) and use the continuity
of this function across C as well as the relation (1.4’) for the normal
derivatives of h, and &, on C. We find

(10) 3 =0.

Next, we integrate by parts with respect to h,(2) and fov(z) ; we use
(1.4) and the condition (d) on g.(z, £). We obtain the equations

A1) 5(6) = 2neh () — (1 + ) Soa%%ﬁﬁv(z)dsz for ceD
and

A1) 4(0) = 2mhfe) — L E&S 99: Oy (\ds, for ceD.
ep, o on

z

Here, we have introduced the abbreviation

A, +1
12 ,:vv ;
(12) P P

this simple function of 1, will occur frequently in our developments.
From (10), (11) and (11’) we deduce immediately

7 _ _ 2me g4
(13) SSVQE(Z’ O-Vh e, = — | ¥ h() for ceD

D

and
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(13) [} voe, - Vho(erde, = P Toe) for e D
) 1+ ¢p,
D
When we specialize ¢ = 1, we obtain because of (5) the values of

the left-hand integrals with g. replaced by log1/|z — ¢|. Hence, we
obtain finally by subtraction

AT . = 27(1 — ¢)
(14) giwg(z, O-ah@dr = B0 79 ) tor ceD.
and
’ 7 _ 272'(6—1) 3 ~
(14') SSvae(z, OV, = BC G tor ceD.

N}

Having expressed by (14) and (14') the Fourier coefficients of 7.(z, ¢)
with respect to the complete orthonormal system in 2, we obtain thus
the two series development for z e D ;

_ 1 S ﬂy(z)hy(C)
(z,8)=1log ——= +2z(1 — MRS
15) 9.2, ¢) = log z—¢] 1 e)y%f(l o) 4 p) for ¢eD

1 = e (@) 5
16 (2,0 =log — = + 2n(e —1) >, T for ¢eD.
16) oz ) =logy,— VZA + e+ 2p)
Both series converge uniformly in each closed subdomain of D.
We wish next to expand analogously g.(z,¢) for z € D in terms of
the functions h.(z). By (1.4), (1.4') and the normalization (8), we have

17 SSVhV-Vh,Ldr = 05, .
D

Let w,(2) and g(z, ) denote again the j-th harmonic measure and the
Green’s function with pole at infinity of D. We clearly have

_aﬂj _ S _ag(zy oo) —
(18) Soh,ands 0, | 129 a5 =g

Indeed, because of (1.4) these linear conditions are equivalent to those
with %, and these in turn follow from the fact that all &, have single-
valued harmonic conjugates in D and that they all vanish at infinity.

Let > be the linear space of functions h(z) which are regular
hamonic in D and which satisfy the N linear conditions (18). Observe
that > does not contain any function hy(z) which has a constant value
¢, in each D, except for hyz) =0. Indeed, the conditions (18) would
yield for such a function A (2)

(18" ;cﬁpw =0, Zlc,wj(oo) =90

J=
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where

144 1 a
(18" Py, = 275 ‘;‘ds
denotes the period matrix connected Wlth the harmonic measures. But
the first system of linear equations (18') implies clearly [5, 15] ¢, = ¢, =

- = ¢y = ¢ and the last equation yields
(19) ¢S w () =c=0.

=1
Thus, only the trivial function Az) = 0 of this type lies in 3.

From this fact and the considerations of §1, it follows that the
functions {p!*h,(z)} form a complete orthonormal set in >\. The function
re(2, ©) lies in > if ¢ e D ; this follows at once from the conditions (c),
(d) and (e) on the dielectric Green’s function. If ¢ e D, it is seen that
7:(2, &) + (1 — e)g(z, ¢) lies in >, where g(z, £) is the Green’s function of
D defined by (1.16). The Fourier coefficients of 7.(z, ¢) are easily
determined from (9), (10), (13) and (13’). Observe that for ¢ € D,

oh.(2)

J

(20) SSVg(z, 2)-Vh,(2)dr, = — SG 9(z,8)ds, = 0

such that the correction term (1 — ¢€)g(z, £) does not affect the Fourier
coefficients at all. We find without difficulty

@) g0 =lg 1 4 (-1 0)
lz —¢|
h.(2)h ()
n 1 f

+ 22(c — )2‘1' ot o)L Lo or ceD

_ h(2)h(C) ~
I ACS] _ (1l — : .

(22) 9.7, 0) log‘ —Cl+2( e) 1(1+P»)(1+€Py) for ¢eD

These series also converge uniformly in each closed subdomain of D.
Equation (22) could have been derived from (15) and the property of
symmetry of the dielectric Green’s function in dependence of its two
arguments.

The various series developments for g.(z,%) given so far are of
theoretical interest and allow the derivation of numerous identities.
They help little in the actual determination of the dielectric Green’s
funetion of a given domain since we know all Fredholm eigen functions
and eigen values only in very few cases. In order to utilize the preceding
formulas for actual calculations, we have to add the following considera-
tions.

From the definition of the dielectric Green’s functions and from
Green’s identity, one can derive the identity
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(23) ——}Hm(z, 0+ Vae, iz, + | |V0.(2, ©)-Voule, 7)de, = 2202, 7) -
D D
Interchanging ¢ and ¢ in (23) and subtracting the new identitity, we
obtain
/1 1
(24) 2a[9:(C, 7)) — 9.8, 7)1 = (e‘ — sﬁ> “Vgs(z, £)-Vyg.(z, n)dz, .

In particular, passing to the limit ¢ — ¢, we find

5 11 .
(25) S0k = oy ||t oVt e

We introduce the expression

(26) rep=\(vaog, b v Loy,

2 J; |z —¢| |z — 7]
which is a ‘‘ geometric ” functional of D, i.e., can be calculated from
elementary functions by a simple process of integration and not by solving
any boundary value problem of potential theory. Passing in (25) to the
limit e = 1, we find in view of (5)

:[‘(C’W)'

ce=lt

@7) ~—a@gs<c, 7)
1

On the other hand, we can calculate this same ¢-derivative directly from
formulas (15), (16) and (21). Comparing results, we obtain

R N (G e D
(28) reg,p=—2 g‘_; Aty for ¢,7e D
(28") e, ) = 2x %Pv(lv(f_)hv()”) for ceD,peD
(28") I 7) =g, 9) + 2= h((f>h (’7; for ¢,neD.
"L ‘v Jov

The fact that these particular series in the A-functions have relatively
elementary sums is of considerable interest. It leads to series develop-
ments for the dielectric Green’s functions in terms of geometric expres-
sions.

Let us define recursively

29) '™, ¢) = nH(V @00y, 2) « A, log. )dr,,, ro=r.

1
|9 —¢|

Using equations (9), (10) and the Fourier formulas (13), (13’), we derive
the series developments
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(30) o, ) = —2: % BERE) 4o e prep
= (1 + o,y

31 P, 2) = 220 CR@E) 10 b re b
(31) (2, 2) w3 (4 pyt or % ¢

(82) '™ 0 =g +20S MO g sep e,
(L + py

We return now to the formulas (15), (16) and (21) for g.(z,¢). We
use the series development

. e—1 cole— 1V (L—p) 2 & 11—5)’"“
33y 71 —axv (& ) = A (1
(33) 1+ ep ia:)!o(e—kl 1+ )" 1—p, m<x,1+e

which converges absolutely since ¢ >0 and |1,] > 1. We insert this
series into the above formulas for g.(z, Z); interchanging the order of
summation, we obtain in each case the representation :

: e 1 & (e — 1y
(349) oo O =log 1+ () Me 0.

The kernels M(z, &) are defined as follows :

(35) My(z,) = — 4= \: (L= p) () (C) for zeD,CeD
a1 (1 + py)k-;-d
(36) Mz, &)= —ax > L= 0YPg h(©) for zeD,teD

] (1 + pv)l\:+2

B7) Mz, &) =20(2,0) + 4= >, L =P hhe) for zeD,ceD.
=14 py)er?

By use of the geometric terms (30), (31) and (32), we can express My(z, &)

in a uniform way, independently of the location of their arguments.
We find

(38) Mz, &) = 3, (= D F)rerrirreomnge, o).

Formulas (34) and (38) allow a series development for all dielectric
Green’s functions in the entire plane in terms of the known iterated
Dirichlet integrals /'™(z,£). They are closely related to similar develop-
ments for the classical Green’s function of a multiply-connected domain
in terms of geometric expressions [3,21]. The formulas are convenient
for |¢ — 1| small. Observe also that the geometrical terms M,(z, ¢) are
independent of ¢ and may be defined as the coefficients of the Taylor’s
series for g¢.(z,¢) in terms of (¢ — 1)/(¢ + 1).
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3. Limit values of the dielectric Green’s function. From the series
developments for the dielectric Green’s function, given in the preceding
section, we can determine the limit values of g.(z,{) as ¢ converges to
zero or to infinity. For this purpose, we have to introduce additional
functions of the classes 3 and 3 and to develop them into series of
the h-functions.

(a) We suppose ¢ € D and consider the analytic function &(z, ¢) of
z in D which has a simple pole at z = ¢, vanishes at infinity such that
(1) limz¢(z, &) =1
and which maps D in a one-to-one manner upon the complex plane slit
along concentric circular arcs around the origin. These requirements
determine ¢(z,{) in a unique way.

Let now

(2) G(z, ¢) = log | 2(z, O)| .

The function G(z, ¢) + log |z — ¢| is harmonic in D, has a single-valued
harmonic conjugate there and vanishes as |2 | — «. Hence, this function
lies in the class 3.

We can construct G(z, ¢) explicitly in terms of the Green’s function
g(z, &) of D. In fact, it is evident that

(3) G20 =000 —§r =)~ o) +7

— 3 an0,p) — o) @0 — o),
with
(3" ‘ 7= lim(g(z, =) — loglz]) .

The coefficient matrix ay has to be chosen in such a way as to make
the conjugate of G single-valued along each boundary curve C,. Hence.
we obtain for it the linear equations

N-

(4) 0y(§) — () = %__‘4 ayPalell) — wi()]

Jik=1

-

where the p,;, are the elements of the period matrix defined in (2.18").
Hence, we conclude

N-1
(5) ;ajlcpjl = Ot »

i.e., the a-matrix is the inverse of the period matrix of rank N — 1.
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We can develop G(z, ) +loglz—¢| in terms of the complete

orthonormal system {h,} in 3. Since G(z, ) takes on each curve C, a
constant boundary value

(6) Gz, &) =¢(f) for 2zeC,CeD,

we have

(7) SSVG(z, o) - Vin@)de, = S cl(C)g Ohugs — 9 .
1=1 .Ol an

S|

Thus, combining (7) with (2.13") for ¢ = 1, we obtain

(8) SSV[G(Z 2) + log |z — ¢ |] - Vi(2)dr, = — rzjfp Q) -

D

Consequently, we arrive at the following series development for G(Z,C):

1
lz — |

(9) Gz, €) = log — 22 o @)

We may now cast (2.16) into the form

(10) 9.2, 0) — G(z,0) = 27 3 L @)

v=1 -+ EpPy

We recognize, in particular, that
(11) lim g.(2, ¢) = G(z, €) -

Thus, the logarithm of the important canonical map function &(z,¢) is
closely related to the limit of the dielectric Green’s function as ¢— 0.

Let next J(z, ¢) be analytic for z e D except for a simple pole at
2z =Ce D, vanish at infinity such that
(1) lim 2¢(z, ¢) = 1
and map D univalently onto the entire plane slit along rectilinear segments
which are all directed towards the origin. 9!7(2', ¢) is uniquely determined
and might be constructed explicitly in terms of the Neumann’s function
of D.

Let

(12) Nz, ¢) = log | d(z, O)l .

Obviously, the function N(z, ¢£) + log |z — ¢ | lies in the class 2 Since
N, ¢ ) has, by its definition, vanishing normal derivatives on C, we have
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(13) ({936, ¢ - Vhextz, = 20,0

N}

therefore, in view of (2.13') for e =1

(14) SSV[N(z, 0 + log |z — ¢ 1] Vin()dr, = _ i”;%m .

D

Thus, we arrive at the series development

% 1 = 1 ., .
15 N ’ =1 - el 25 T ey Y .
(15) () =log |~ p+ e 3 hE@h()
We can transform (2.16) into
(16) N(z, &) — g:(z, ©) = i h.(2)h.(C)
v=1 1+ ep,

and read off the limit relation

17 lim g.(2, ¢) = N(z, &) .

The dielectric Green’s function g.(z, ) yields thus in D a continuous
interpolation between the logarithms of two canonical map functions.
The result is the more significant since we shall prove in the next section
that each g.(z, £) is analogously related to a univalent function in D.

(b) From the fact that the function G(z,¢) + log|z — ¢ | lies in 3,
i.e., that it has a single-valued conjugate and that it vanishes at infinity,
it follows by virtue of (6) that

(18) év; CZ(C) SG' a%;q(/z—)“ds = SO log i,’gi—lgr %(U%st
and
(18" gl ¢(£) SO a,g(%ﬁlds = Sv log 12 —1_5 @g(g:nm) ds .

We define now for fixed ¢ e D the harmonic function ¢(z, %) of z in
D by putting

(19) c(z,8) = ¢ (&) for ze D,.

By (18), (18') and the definition (2.18) of the class X, the function
—loglz —¢|—c(z ) lies in this linear space. We may develop it,
therefore, into a series of the 4.(z). By use of (2.10) and (2.13"), we
obtain
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1 =c(z,l) — 2= ih,(z)h.,(C) zeD,ceD.
lz — ¢ =t 14 p,

We may combine (20) with (2.22) and find

(20) log

21) 0.2, 0) = o5, ) — 2z S, 1 n@hi0) .
=1 1 4 ep,
This leads to the limit relation
(22) limg.(z, %) = ¢(z,¢) for ze D, ¢ D.
£—0

The limit of g.(¢,{) as ¢— o does not seem to admit a simple
geometric interpretation.

(¢) Consider next the case ¢ e D, say £ e D,. We define now the
regular analytic functions ¢,(z) which map D univalently into a full
circle around the origin which is slit along concentric circular arcs, such
that 2 == « goes into the center and that

an limzg,(z) = 1.
Z—ree

The function ¢,(z) is uniquely determined by the additional requirement
that the special boundary curve C, shall correspond to the outer
circumference.

Since the function

(23) G(z) = log | ¢,(2)|

is harmonic in D except for a simple logarithmic pole at infinity and
since

(24) Gz(z) =g¢,; for ze(C,,

it is evident that Gl(z) may again be expressed explicitly in terms of
the Green’s function §(z, 2) of D [5].
Since we assumed ¢ € D,, the function Gl(z) 4 log | 2 — & | lies in the

class 3. We can develop it into a Fourier series of the system {h,}.
The same calculations as before lead to

(25) Gyz) = log - - 1 + 27 %‘ hng)hv(C)’ zeD,CeD,.
e — ¢ =1 1+ p,
From (2.15) we obtain
=11 + epy

hence
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(27) lim g.(2, ¢) = G(z) for ze D,Ce D,.
€0

We obtain again interesting canonical mappings from the dielectric
Green’s function by passing to the limit ¢ = 0.

(d) The expression Gl(z) + log |z — ¢ | satisfies the linear relations
(2.18) if £ € D,. It has on C the same boundary values as the function
9(z,8) + log |z — €]+ ¢(2) which is harmonic in D, with

(28) ¢y =¢; for zeD,.

Thus, the new combination will belong to the class 3 and can, therefore,
be developed into a Fourier series in the {A,}-system. An easy calcula-
tion leads to

1 —l —c(2) — 2n i @?(z)h"(on, zeD,teD,.

lz —¢ =il + py)
From (29) and (2.21) follows

(29)  9(2,¢) = log

G) 00— O=a@ e L @)

Thus, we find the limit formulas, valid for z e D, ¢ € D, :

(81) lim g5, 0) = @), lim 19,2, 8) = 96z, <) -

4. Dielectric Green’s functions and conformal mapping. In this
section, we shall show that the dielectric Green’s function g¢.(z, ¢) leads

to a univalent analytic function in D and to a set of univalent analytic
funections in D. Let us suppose, for the sake of definiteness, that the

source point ¢ lies in D. Let p.(z,¢) be the analytic completion of
g:(z, ¢) for z in D; that is, p.(z, &) is analytic for ze D and we have

( 1 ) gs(zr C) = m{pa(z’ C)} .

(2, £) is regular analytic except for the two logarithmic poles at ¢ and
at . The function has no periods with respect to the boundary curves
C,. Hence

(2) fez, ©) = exp[— pi(z, O)] 2eD,ceD

is a single-valued analytic function of z € D and regular in this domain
except for the simple pole at infinity. Since the analytic completion of
a harmonic function is only determined up to an additive imaginary

constant, we may choose 7. in such a way that

(2) flio,0)=1, £, =0.
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We may similarly complete g.(z, ) to analytic functions of z in D.
In order to determine the additive constants for the disjoint domains
D, we proceed as follows. By condition (¢) of §2 on g.(2, {) and because
of the Cauchy-Riemann equations, we have, whatever the analytic
completion p.(z, &) of 9.(z,&) in D:

(3) J{p:(z, OF = eJ{Pe(z, O} + k; for zeC;.

Here . and p. shall denote the limits of p, from D and D, respectively ;

we shall use this more specific notation whenever discussing boundary

relations. We dispose now of the additive constants in the domains D,

by requiring k; = 0. This convention fixes p.(z, £) in D in a unique way.
In analogy to (2), we define

(4) £z, 0) = exp[— 1p£(z,c>} for zeD,CeD.
&
We shall prove the

THEOREM. The function fi(z,¢) is univalent in D and the set of
functions fu(z, &) is univalent in D in the sense that

(5) fe(z, ) = fu(2,, &) and z,, 2, € D vmplies z, = z, .

In order to prove this theorem, we start with the

LEMMA. The dielectric Green’s function has mo critical points.
That 1s, the equation pl.(z,&) = 0 1s only satisfied at z = o« and this
point is a pole of the Green’s function. The dash denotes differentiation
of pAz, &) with respect to its analytic argument z.

Proof. We denote again, more precisely, the analytic completion

of gz, &) by P. or by p. according to the location of z in D or D,
respectively. We combine the boundary conditions (¢) and (d) of §2 on
the dielectric Green’s function g.(z, ) into the one complex equation

(6) Pz, O =t T ohe 0 + 1%—%(& 7 .

Since we assume throughout this paper ¢ > 0, equation (6) yields

(7) Re{pi(z, O)Ppiz, 0} >0 for ze C.

This inequality implies, in particular :

(8) § daepe 0= § darg P Q).
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The statement is evident if p. and P! are non-zero on C but it can be
upheld in the usual way even in the case that these two functions have
common zeros on C

Let Z, P and Z, P denote the number of zeros and poles of p. and
pt respectively, in their domains of definition. By the argument principle,
we have

(9)  § dawpeo=7-P, { daeiiz0)=P- 2
J O (4]

if z runs through C in the positive sense with respect to D. Combining
(8) and (9), we obtain

(10) Z4+Z=P+P.

But all poles of p. and P! are known ; clearly P = 0, P=1and Z>1.
Hence, we conclude from (10):

(11) Z=0, Z=1.
This proves our lemma.
In order to prove the theorem, we consider the lines defined by

(12) bz, O =« for ze D, %{--lps(z, C)} =« for ze D.
3

Each such line starts from the logarithmic pole ¢ and runs to «. By
virtue of our convention on the analytic completion of g.(z, &) these
lines are continuous in the entire plane and, except on C, they are even
analytic. Because of our lemma, there is no intersection between different
lines except at ¢ and «. The lines have the physical interpretation as
lines of force for the corresponding electrostatic problem and the lemma
asserts that there are no points of equilibrium in the field. The lines
form for 0 < a < 27 a non-intersecting system which covers the entire
complex plane. Along each line, g.(z, ) decreases monotonically when
we pass from ¢ to . These facts guarantee obviously that the analytic
functions f.(z, ) and f.(z, ) have the above stated univalency properties.
Thus, the theorem is proved.

Let us assume without loss of generality that £ = 0. Using the
limit theorems of §3, we can assert:

(13) Foz0) = 32,007, Fi(z,0) =2, fulz 0)=d(z 0)".

We have thus found a one-parameter family of univalent functions which
connects continuously the circular slit mapping through the identity
mapping with the radial slit mapping.

In order to illustrate the significance of this result, we calculate
from (2.16) that
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(14 log | FUE, &) = 27(c — 1) 3 Py b2y .

) o) D xay p)(1 + ep) ©
Since all p, > 0, this is a monotonically increasing function of ¢ in the
interval [0, o) ; it is negative for 0 < e <1 and positive for 1 <e. In
particular :

(15) LA ol<l |fugol>1.

We define the family 7 of all functions f(z) which are analytic
and univalent in D and normalized by the requirements

(16) f(eo)y=1 F)=0.

Through the mapping w :f (2) we obtain the new domain ,D,,,; applying
the inequalities (15) in this domain and returning to the original domain
D, we obtain the inequality

(17) LA O <O <A 0]
valid for each fe ;.

Inequality (16) asserts an extremum property of the canonical slit
functions £, and f. which is well-known [13, 15]. It is, however, not
obvious that all real values between the extrema are also possible values
for | f'(¢)| in #;. We have now explicity constructed a one-parameter
family in %, which interpolates between the two extremum values.

There are various other possibilities to obtain from the dielectric
Green’s function one-parameter families of univalent functions. Consider,
for example, the analytic functions

(18) A0 = 29,0, BO=1 2 peo
0§ 1 0y

with & = £+ 47. Both functions are single-valued in D and in D ; they
have for z = ¢ simple poles with residue 1 and are else regular in D
and in D. We obtain from the identity (6) by differentiation

(19) Az, 07 =1 TG 0 + 1 SEAie 02)

(19) Biz, 07 = 1 EBie 0 — L A(Bie, )

Let a be an arbitrary point on C; integrating (19) along C from a
to z ¢ C, we find

(200 Az, 0) — Ada, €)= 1 7oA 0 — Ade, 0

1 ; *[Adz, ©) — Aua, O)].
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Hence, we have

o a0 AEO s sec
Az, ) — Aua, ©)

Reasoning as before we can conclude by means of the argument principle
that A.(z, ¢) takes the value A.(a, £) precisely once in D + C and that
Zl;(z, 0), likewise, takes every boundary value precisely once. Thus,
A.(z, ) and /L(z, ¢) are univalent in their respective domains of definition.
The same reasoning applies to B.(z, £) and B.(z, ¢).

It is known, and easily verified, that

(22) Ae, )= log ¢ (2, 0), Bz, )=+ 2 log4(z, ©)
0% 1 09

S

are univalent funetions in D with a simple pole at z =¢ and that they
map D onto the entire complex plane, slit along rectilinear segments
parallel to the imaginary and the real axis, respectively [16]. Similarly,
the analytic functions

(23) A= 2logde0), Bt )= 1 2 logdz 0
o0& 1 0y

are univalent in D with the same singularity and map the domain onto
the entire complex plane, slit along segments parallel to the real and
the imaginary axis, respectively. Hence, by the uniqueness theorems
on the canonical mappings of a domain, we must have

(24) ALz, €)= Bz, ©) + 8(0) ; Bul2,0) = Az, ) + 2(0) .
Finally, clearly

1
z—C

Hence, fL(z, &) and BZ(z, {) interpolate between the two parallel slit
mappings through the simple rational mapping (25).

Using the series development (2.16) for g.(z, %), € 15, we may prove
the well-known extremum properties of the canonical slit mappings in
the same way, as we did above for the circular and the radial slit
mapping.

We do not enter into a more detailed discussion of these families of
univalent functions. We want to remark, however, that the dielectric
Green’s function is not, like the ordinary Green’s function, a conformal
invariant. By auxiliary mappings of D into a domain D,, one may
obtain very different one-parameter families of univalent functions which
interpolate between the canonical slit mappings.

(25) Az, 8) = By(z,¢) =
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5. Dielectric Green’s functions and norms in function spaces. With
each dielectric Green’s function g.(z, £) we can connect a positive-definite
quadratic form which may be interpreted as a norm in the linear
function spaces ¥ and 3, defined in § 2. This norm has remarkable
properties for function pairs ke Y and % e Y which have on C equal
boundary values or equal normal derivatives. Useful inequalities and
identities can be established which facilitate the solution of the bound-
ary value problem in potential theory by utilizing auxiliary solutions in
complementary domains. One can characterize the Fredholm eigen
values A, as solutions of certain extremum problems involving these
quadratic forms. This characterization, in turn, will lead later to
elegant variational formulas for the 1, under infinitesimal deformation of
the curve system C.

Let k and % be two arbitrary functions of the classes Y and 23,
respectively. We have the Fourier developments

(1) h(z) = 53 wh(2), Wz) = v};%ﬁv(z)

in terms of the complete orthonomal sets {o;'*h.(z)} and {ﬂ,(z)} of these
linear spaces. The Fourier coefficients are given by

(2) 2, = YD, by, & = D@, h)

v

where D and D denote the Dirichlet integral in ¥ and 3 :

(3) D(h, H) = SSV}L- VHd:, D, ) = SSV}E- vz .

p D

Let us consider now the particular case that
(4) Mz) = Mz) on C.

By Green’s identity and (1.4'), we have obviously

(5) Db, ) = — S polgs — g WOPgs — — D, )
¢ on c on
which gives
(6) v =— 1, .
2

We proceed analogously for two function Ae Y and ke Y which
satisfy on C the relation
oh _ oh
(7) on _ on

on on
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Now, Green’s identity and (1.4) yield

(8) Db, ) = — S n, O g — ,(A,S i ds = 0. DG, )
¢ n ¢

D

and, consequently
(9) x, =%, .

Thus, both boundary relations (4) and (7) reflect themselves in a very
simmple manner in the relations (6) and (9) between the Fourier coefficients.
We define next the bilinear form

(10) T[g(h, H) = 21‘ S g g: (Z C) Oh’(z) 6H(C)d5 ds

for any two elements of 3 and in precisely the same manner we define
the bilinear from Ee(ﬁ, 131) for any two elements in 3.

By use of the Fourier type formulas (2.13) and (2.13') we may
express the bilinear forms in terms of the Fourier coefficients of the
functions involved. Let us denote the Fourier coefficients of h,fa by
Z,, %, and of H, H by 4., %,; then a straightforward calculation shows
that

11 wlh, Hy =S 5Py thif’x
(11) i H) = 5w, 3G H) [ B

We verify, first, from (11) that the quadratic forms =.(h, k) and #.(, k)
are positive-definite. This fact allows us to interpret them, indeed, as
norms in their corresponding function spaces.

On the other hand, we have because of the normalizations (2.8)
and (2.17)

(12) D(h, H) = pmya, D(h, H) = levyy.

We define further the bilinear forms

(13)  1'«(h, H) = D(h, H) — W;fg(/z,, H), [.(h, ) = D(h, H) — 7(h, H)
and obtain for them the explicit representations :

14 P =S % wu DBy =% Y ..
(14) o= ¥ ew, FGB=% 1 5

V=

—_

These formulas show that /7. and /'., too, are positive-definite and lead
to norms in ¥ and 2. We have the estimates :
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(15) 0 < La(h, Hy < D(h, hy; 0 <%k, h) < D, B) -
By the very definition of 7. and 7., we have

THEOREM 1. If

(16) oh _ oh 0H _ oH

on - on and on on on €

we hoave
(17) z(h, H) = 7.(h, H) .

From (4), (6) and (14), we derive :

THEOREM II. If
(18) h=~hand H=H on C,
we have
(19) I'.(h, H) = el".(h, H) .

Finally, we verify from the explicit representations for the bilinear
forms

TreorREM III. If

(20) b= and O @affq% on C

we have

(21) Dk, H) = — D(h, H)

and

(22) 2, Hy = — el's(h, Hy, 1".(h, H) = — 7.(h, H) .

Theorems I-III show a very symmetric interrelation between the
various bilinear forms for elements with matching boundary data on C.

The significance of the preceding theorems lies in the fact that one
has often to solve a boundary value problem, say in D, which is much
easier to solve in the complementary domain D. In this case, the above
theorems provide valuable information. Let us illustrate the method
by the following applications.

(a) Given a function % e 3, to determine the function % € 3 which
has on C the same boundary values as k. In particular, we ask for
the Dirichlet integral Dk, k).
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This problem arises, for example, in two-dimensional electrostatics
in connection with the question of polarization of a set of conductors
in a homogeneous field [19, 22].

We derive inequalities for the Dirichlet integral in question by
applying Theorems I-III. We start from the fact that =. and I have
definite quadratic forms and that they satisfy, therefore, the Schwarz
inequalities

(28) (b, HY < mulh, by a(H, H): (b, HY < I'.(h, h)- I'(H, H) .

We select a pair of test functions He Y and He Y which have equal
normal derivatives on C and obtain from Theorem III and from (23)

(24) Ik, HY < 7k, b) - 7(H, H) .

Using the definition (13) of 7" and Theorems I,II, we can transform
(24) into

(25) (b, HY < [D(h, B) — 2 1o, 1)l (H, H) -

This inequality contains the sought Dirichlet integral D(ﬁ, ﬁ) and else
only the known function of h e Y and the arbitrary test function
He Y. Thus:

s~y De(hy, HY? 1
(26) D(h, h) > o, H) -+ - r':(h,h).

It is easily seen from our derivation that the inequality (26) is
sharp if H is chosen as that function in ¥ which has on C the same
normal derivative as h ; in fact, in this case, the Schwarz inequality
leading to (24) becomes an equality. Thus, we can express (26) as
follows :

, Sy I'.(h, HY 1,
(26") D(h, h) = maxés(H’ Hy + {1 (h, h) for all He 3.
This representation permits us to determine the desired Dirichlet integral
by a Ritz procedure in .

It is sometimes more convenient to renounce a precise equation in
order to obtain a simple and applicable estimate. We may select, for
this purpose, the test function H(z) as equal to the given function A(z);
in this case, we have by (13) and (26)

' S 7y~ Le(hy h)
@7) Dl By =" b D(h, h) .

This inequality holds for all pairs of functions 4 e 3, % ¢ 3 which have
equal boundary values at the same points of C.
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In order to understand better the important inequality (27), we
express it in terms of the corresponding Fourier coefficients. If we
denote again by =z, the coefficients of k(z), we have by (6) the values
— p%y, = &, for the Fourier coefficients of ﬁ(z). Hence, using the explicit
representations (11), (12) and (14) for the quadratic forms, we may write
(27) as follows :

’ . 2 - . Spv > Epv . 2
(27) ;P,,.’XJ,, ;__‘11_‘_ 2 vzj.‘_luovxu Zl 1+ ep, Ly .

We rearrange (27’) into the from

o bl Spvpu(lov )2 x> 0 .

&) L+ L+ o)

Now the inequality has become evident; but, what is more important,
we recognize that equality in (27”) and, hence in (27), holds if and only
if all , vanish except for those which belong to a fixed eigen value 24,.
Thus, equality in (27) holds for

(28) hz) = h(2) and h(z) = — p.(2) , y=1,2 -

and only for these functions.

It is interesting that the inequality (27) becomes precise infinitely
often, namely for all functions of the sets {4,}, {ﬁv}, which are complete
in ¥ and . On the other hand, this fact leads to a new characteriza-
tion of the Fredholm eigen functions

(b) We deal next with the analogous question: given a function
h e X, to determine the function % e Y which has at corresponding points
of C the same normal derivative as 2. In particular, to determine the
Dirichlet integral of .

This problem occurs in the theory of a steady incompressible and
irrotational fluid flow in the plane around the set of obstacles C. The
sought Dirichlet integral, in this case, is the virtual mass of the curve
system C [19, 22].

We select now a pair of test functions He X, He 3 which have
equal boundary values on C. Starting again with the Schwarz inequality
(23) and Theorem III, we have

(29) ne(h, HY < &I'u(h, k)~ ["«(H, H) .

We apply equation (13), make use of Theorems I and II and find
(30) o, HY < el"s(H, H)[D(h, B) — m:(h, h)] -

Thus finally
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~o n(h, H)*
31) D(h, h) > eT"E(H;ﬁj + me(h, h) .
We obtained thus again a lower bound for the Dirichlet integral in terms
of the given function & and the arbitrary test function H. If H has on
C the same boundary values as £, the inequality (31) becomes an equality.
This fact allows us again to approximate arbitrarily the Dirichlet integral
from below by a Ritz sequence of test functions.
When we choose, on the other hand, H(z) = h(z), we obtain

B i > Tl )
(32) mmmznwmmmm.

This inequality holds for every pair of functionsh e 3, % e Y with equal
normal derivatives on C.

This inequality can be verified by means of the explicit Fourier
representations (11), (12) and (14) as we did in the case of the inequality
(27). We can further show as before that equality in (32) can hold if
and only if

(33) hz) = h2), Wz) = h(2), y=1,2, +e-.

Thus, inequality (32) leads to another characterization of the Fredholm
eigen functions.

We obtain corresponding inequalities when we interchange the role
of D and D; the Dirichlet integral of a function 2 € Y can then be
estimated in terms of a function % € 3 which has on C either the same
boundary values or the same normal derivative as h.

The most convenient form in which the preceding theory can be
applied is obtained by using ¢=1. For, in this case, the dielectric
Green’s function reduces to the elementary function — log |z — ¢ | and
the bilinear forms can be easily evaluated. Indeed, the general method
was first applied to obtain isoperimetric inequalities for polarization and
virtual mass with this particular choice of ¢ [18, 19, 20]. However, the
flexibility of the method is obviously increased by considering arbitrary
positive e-values and the significance of the procedure is clarified in this
way.

We shall now utilize the quadratic forms in order to obtain estimates
for the Fredholm eigen values 4,. Let 4, be the lowest positive Fredholm
eigen value >1. We have shown in §1 that with 4, also — 4, is an
eigen value. We denote 1, = — A,. By definition (2.12) of the p,, we
have obviously

(34) lep<on<a, v=1,2,8,--.

01
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Using now the developments (11), (12) and (14) of the various bilinear
forms, we verify by inspection the following theorems :

THEOREM IV. For every function h € X the inequalities

(35) ,,,,.E — < ﬂg(h h) < 5101__‘
1+¢eo, ~ Dh,h) ~ p+e

hold. The first equality sign holds only for those fumnction h,e X which
belong to the eigen value 2 ; the second equality sign holds only for
Sunctions h, € ¥ which belong to the eigen value 2,.

THEOREM V. Every function h e 3 satisfies the inequalities

(36) LI Fo(h, B) - epy

Equality holds only if h = h, where h, belongs to the eigen values 2,
and 1, respectively.

We have thus characterized the lowest positive and non-trivial
Fredholm eigen value A, by a minimum and a maximum problem in %
and in 3 for the ratio of two positive-definite quadratic forms. This
characterization makes it possible to estimate this eigen value by the
use of test functions in ¥ and in Y. The most convenient case for
applications is, of course, the case ¢ = 1.

It is clearly desirable to find analogous extremum problems which

characterize the higher eigen values 2,. For this purpose, we introduce
the bilinear form

(37) b, H) = Lol Hg: Lh, H) e>0,e>0
— €

in Y and the bilinear form

37) %o, (h, By = Tl H) = mh, H) e>0e>0

E—e
in 3. From (11) and (14), we obtain the Fourier representations

388) [I'.,(h H L PBY s Gy =S P
9 oA D = E—ll(lJrem)(lJreP) (&, 1) g( 1+ ep)(1 + ep,)

The quadratic forms . (&, k) and &e,e(%, ) are evidently positive-definite.
We observe that the function

. x
(39) flx) = (I —7{17690)(714—{—;64907)\
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takes in the interval 0 < x < o« its maximum value at the point

1
(40) Xm_ﬁ.

Hence, (38) yields the following theorems :

THEOREM VI. Ewery function h € 3 satisfies the inequality

r. (h,h)
41 L ) —
(41) D(h, h) < S (o)
where p, s a value in the sequence of the p, which gives the largest

value of f. Equality holds only for such h, which belong to such a
value p,,.

THEOREM VII. For every fumction h € 3, the inequality

(42) mllsh) < pp,)

D(h, h)
holds where p,, is a value in the sequence of the p, which gives the
largest possible value of f(p). Equality holds only for such h, which
belong to such a p,.

Given any specific p,, we can always choose 1 e¢e = p;* and the
corresponding maximum problem will pick out this particular eigen value.
We can apply Theorems VI and VII in order to obtain estimates for
the location of p,-values near any given point z, by the use of test
functions in ¥ and in 3. It is easily seen that Theorems IV and V are
contained in Theorems VI and VII as limit cases.

We specialize in Theorem IV ¢ =1 and obtain the particular result

(35') lg S log 1 OB OO gs g < 1D, b
27 Jo)o lz—¢| on On 1+ p,
for every h e 3 ; equality holds only if » =k, and &, belongs to 4,.
This result permits the following application. Consider the system
of curves C* which consists of the subset C, C, -+, Cy. of C with
N* < N. This system of boundaries determines a connected exterior
D* 5 D and the set D* of the domains D,,j =1, -+, N*. Let 3I* be
the function class in D* which is analogous to the class ¥ in D and let
hy(2) correspond to the largest non-trivial negative eigen value iF of
C*. We determine a function 2(z) € 3 such that

(43) Ok _ Ot on %, O g on ¢ —C*.
on on on
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Since the boundary conditions (43) determine A(z) in each D, only up
to an additive constant, we may adjust these constants in such a way
that h(z) satisfies the N conditions (2.18) and thus belongs indeed to X.
Observe that the Dirichlet integral of % coincides in each D, j < N*
with the corresponding Dirichlet integral of 2}, since h and A} differ
only by a constant in these domains. In each D, with 7 > N*, k(?) is
a constant and has the Dirichlet integral zero. Hence:

(44) D*(h, k) = D(h, h) .
By (35’) we have

% k >k
45) P DHhE ) = lg S log 1 Bh@) OR¥() 4o 4
(45) 1+ pf (hs', 1) orJor Oglz—cl on on ds.ds;

_ 1 1 oh(z) ah(c) P
ZWSOSaloglz——Cl on  on dsds; < 1+p D(h k) -

By virtue of (44), we conclude finally

(46) Pl < P pr<p,
1+pf 1+p

Thus, we proved :

THEOREM VIII. The lowest positive and non-trivial eigen value 2,
of a curve system C is never larger than the corresponding eigen value
¥ of any subsystem C* of C.

Suppose all positive eigen values of C arranged in increasing order,
say 4., such that »/ <" implies 4,, < 4,... Let us do the same with the
positive eigen values 17 of the subsystem C*. By the above reasoning
and by use of the standard methods of eigen value theory [ecf. 11], it
is easily shown that quite generally

(47) Ay < A5

will be fulfilled.
We consider finally the bilinear form

(48) B(h, H) = - SOSUF(C' 7) ?% %ﬁ’ﬁdsgdsn

where I'(¢, 7) is the geometric kernel defined in (2.26). Forhe 3, He ¥
we have, in view of (2.28) the following Fourier representation for B:

49 B, H Pr _qy,
(49) 0 H) = 5 oo

and the same expression is also valid for he 3, He 3,
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From (11), (38) and (49) follows

50)  mhH) —BhH =3 _ay =0 H,

v=1 (1 + Pv)
and
(51) B(h, H) = #,,(h, H) .
The function
39’ =_*
(39') @)= g

takes its maximum 1/4 for positive argument at the point z, =1 and
we derive from (41) and (42) the inequalities

(52) 0 < m(h, k) — B(h, ) < %D(h, n), hes
and
(53) 0 < B, h) < %ﬁ(ﬁ, iy, hes.

These inequalities are interesting since they yield estimates for the
Dirichlet integrals of %2 and % by means of elementary integrations over
C which involve only the normal derivatives on C of these functions
and geometric terms. On the other hand, given only these normal
derivatives, we could calculate the precise Dirichlet integrals only after
solving a Neumann boundary value problem for the domains. We gave
by inequality (32) another lower bound for D(k, k) ; but in this estimate
we have to assume as known the solution of the corresponding boundary
value problem for the complimentary region D of D. The present
inequalities are, therefore, often easier to apply.

The dielectric Green’s functions g.(z, ¢) and g.(z, {) which are needed
in the calculation of #., and I'., are known only for very few domains
if ¢ and e are different from 1. We may, however, use the series
developments (2.34) for these functions and utilize the partial sums in
the development together with a simple estimate for the remainder terms
in order to obtain estimates for p,. The calculations are clearly quite
laborious, but in principle feasible.

6. Variational formulas for the dielectric Green’s functions and
for the Fredholm eigen values. The properties (a)-(e) ennumerated in
§ 2 and defining the dielectric Green’s functions g.(z, ) are all invariant
under a conformal mapping z* = F'(z) which is normalized at infinity
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such that | F'()| = 1. Unfortunately, the only conformal mapping of

this kind which is regular in the entire complex plane has the trivial

form F(z)=az+b,la|=1. We may consider, however, functions F'(z)

which are analytic with isolated singularities. In this way, we are led

naturally to a variational theory for the dielectric Green’s functions.
The simplest possible choice of F'(z) is evidently

(1) F=F@R) =2+ _-%_

z2— 2
which has the right normalization at infinity but has a simple pole at
2z =2, We will choose 2, arbitrarily in D or in D but not on the curve
system C. Let E(z,) denote the entire complex plane from which a
circle of radius VTa| around the center z, has been removed. It is
easily seen that F'(2) is univalent in FE(z,). Given, therefore, a fixed
point 2, in D or in D, we can always choose || so small that C lies in
E(z,) and is mapped in a one-to-one manner into a new curve system
C*. Since F(z) is regular analytic in E(z,) all differentiability properties
of C are transferred to C*. We denote the dielectric Green’s functions

of the new curve system C* by g¥(z,¢). Our aim is to connect these
new functions with the functions g.(z, ¢) of the original system C.
We introduce the function

By the definition of g7 and of the curve system C*, the function d(z, ¢)
is symmetric and harmonic for z, ¢ € E(z,), except along the curve set
C. The function is still continuous across C but its normal derivatives
satisfy the discontinuity relation

(38)  Pde, )+l dee)=0 for zeC,¢e Ez)—C.
on, on,
Observe that d(z, ¢) is still regular harmonic for z = ¢ and that
(4) limd(z,¢)=0.
We consider now the integral

_1 0 Gl

(5) e =, 4600 0k - 06l de ol
Tdo on, on,

We introduce the characteristic function d(z) of D, i.e., we define

=l 1 1o
1 V4 .

By Green’s identity applied to D, we find
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(7) J(&, ) = (e, Do) + T(C, 7)oz
Here
®)  Ten =5 | (4000t —0te 0,0 a0 Jas.,

c(zu)

where ¢(z,) is the circumference of radius 1/[a| around z, and where
n is its interior normal.

On the other hand, we may apply Green’s identity to J(, %) with
respect to the complementary domain D. Taking notice of (4) and of
the known discontinuity behavior of the various terms in the integrand,
we find

(9) J(¢, 9) = — ed(C, PIL — 3(7)] — eT'(C, PI1 — 6(zo)] -
Subtracting (9) from (7), we obtain finally
(10) ed(C, 7)) = — T, ple + 1 — €)o(z0)] .

The difference function (2) of g and g. is thus expressed in terms of
an integral over the small circle ¢(z,) around the singularity point z,.

A straightfoward calculation of the type usual in such variational
problems [15, 21] yields

(A1) gr(e*, 7 = 06 + [ 1+ (L = 1)06) (i, Opitan )
+0(al,

where p.(2, {) is the analytic function defined in § 4 whose real part
is g.(2,£). The error term O(l«[) can be estimated uniformly for ¢
and 7 in E(z,) and for 2z, in any fixed closed domain which does not
contain points of C.

We derived in (11) an interior variational formula for the dielectrie
Green’s function which is very similar to the well-known variational
formula for the ordinary Green’s function of a domain [14, 15]. Observe
that in the special case ¢ = 1 formula (11) reads

1 1 104
=1 R
T e e {(zo—c)(zo—w

In view of the identity

ar)y lo

b odan.

1— (44
(20 — O — 7)

we can verify (11’) directly by means of the logarithmic series.
We shall not enter into the variational theory of the dielectric

17y log|¢* —9*| =10 — 7|+ log

’
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Green’s functions since it is entirely analogous to that given in the case
of simply-connected domains [17]. We wish to utilize (11) in order to
derive analogous variational formulas for the eigen values A,. For this
purpose, we shall make use of the extremum principles (5.41) and (5.42)
and of the method of transplanting the extremum function [6, 11].

Let us suppose that the singular point z, of our variation (1) lies
in D; in this case, the function F(z) is regular and univalent in D. If
h(z) is any analytic function in D, we can define by

(12) h*(2*) = h(z)

a regular analytic function 2* in each component D¥ of the varied
domain set D*. We call the definition (12) the transplantation of the
function h(z) from D into D*.
We define now the ratios
*
13) Ry = Dol B gy = D, 1)

D, k)’

D*(h*, h*)

which occur in the extremum problem (5.41). In view of the conformal
character of the transplantation, we have clearly

(14) D(h, h) = D*(k*, h*)

and

(15) 0h*(2¥) ds* = 0h(2) ds, zeC,z*e C*,
on* on

It is, therefore, easy to calculate the ratio R*(h*) by referring back to
the original region D. By the definitions (5.10), (56.18) and (5.37), we
find

as) reeewy= Lo LT TLgres ) - Lares, ]

c—e 2r
: Qfg(g*l W) ggpdss
n on

Now, we use (11) and (15) in order to return to the curve system C as
the path of integration. We remember that z, € D and obtain

A7) FE*, ) = Tih ) + 200 o 0" = 0L 1o ap)
— e

with

17 0.(2) = 517; Sop;(z, C)%(qf),dsc .
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Since z, € D, we can express ¢.(z) as a surface integral

(18) a.) == L[ 1|[vat, 0 vas].
0z, L m );

The error term O(|« ) can be estimated uniformly for all functions
h(z) with bounded Dirichlet integral and for 2, in a closed subdomain of
D. We have to use the known error term in the variational formula
(11) for the dielectric Green’s function.

As a first result we can conclude that the eigen values of the ratio
R*(h*) depend continuously on « and converge with |a|— 0 to the
corresponding eigen values of R(h). We can, moreover, derive a precise
asymptotic formula for these eigen values.

Let indeed p, be a particular p,-value of the original curve system
C and let the function f(x), defined in (5.39), be chosen in such a way
that it takes its maximum at a point x, which is nearer to p, than to
any other p,. If h,e Y is an eigen function which belongs to p, we
will have

(19) R(ho) = f(po) -
We may assume as before (see (2.17)) that
(19" D(hy, bo) = po .

If h¥ is the transplantation of &, into D*, we can use (14) and (17) in
order to determine its ratio R*(ky). But now we can use formulas (2.9),
(2.10) and (2.18') in order to express the analytic function ¢.(2) by means
of the analytic completion of ﬁo(z) defined in (1.81). We have

2 (2) = —FPo V2, , D.
(20) q:(2,) 1+ ep, o(20) 2 €
We can now combine (14), (17) and (19) in order to express R*(hy¥). We
make also use of (19) and of the definition (5.39) of f(x); thus, we
arrive finally at

(21) R*(h3) = f(p) — 2mpof (e Re{a Viz)} + O(la ) .

The function hi(z*) defined by the transplantation of h,(z) will not, in
general, belong to the class 3* defined with respect to D* by linear
conditions analogous to (2.18). However, we can add to every function
h*(z*) which is analytic in D* a different constant in each component
D7} in order to bring it into the class 3*. This trivial readjustment
does not affect the Dirichlet integral nor the quadratic from 7'}, which
depends only upon the normal derivatives of h*. Thus, in the theory
of the ratio R*(h*) the restriction to the class X* is unessential, since
easily achieved.
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In particular, we may use hy as a competing function for the ex-
tremum problem regarding R*(h*) and use the identity (21) in order to
estimate the extremum values. Let us suppose that the value p, belongs
to k different eigen functions hg(z) of the unperturbed curve system C;
we denote their analytic completions by Via(2). We restrict, at first,
h*(z*) to the linear sub-space spanned by the & transplanted eigen
functions Aj(z*). In this case, the ratio KB*(h*) will have precisely the
k stationary values

(22) 5 = f(po) + 27pof (p)os + Ol ]) , f=1,2,-+,k
where the o5 are the eigen values of the secular equation
(23) det || R{a Vi(2) Vi(2)} +00u |l i je e = 0

Let us arrange the 7, in decreasing order ; likewise, we shall arrange
the values f(pf) in decreasing order. Since the k first values f(p}) are
the largest stationary values of E*(2*) for unrestricted argument function
h*, it follows from standard results on quadratic forms that

(24) f(PE‘) > flpo) + 2rpo f'(po)os + O(l a |, B=1,--2,k.

Because of the continuous dependence of the eigen values p¥ on «
there exists a positive constant ¢ such that for small enough « all eigen
values p; have from p, a distance larger than J, except for k eigen
values pi which can be brought arbitrarily near to p,.

Having now chosen |« | sufficiently small, we can select x,, to the
left of p, and the %k neighboring pj but so near that all other f(p}) are
less than any of the f(pF). Since f'(0) < 0 for p, and all p}, we derive
from (24)

(24) pE < po + 2nps + O(a ), B=1,2 k.

Choosing, on the other hand, x, to the right of p, and the pj but again
so near that f(pf) is still larger than all f(p;), we obtain

(247) PF = po + 2rpoe + Ol ), B=1,2 -+, k.

Thus, we proved :
The variation of an eigen value p, with degree of degeneracy k — 1
is characterized by the formula

(25) PE = po + 2npop + 0(f a %)

where the o5 are the eigen values of the secular equation (23).
In the case that only one eigen function h, € 3 belongs to p,, we
obtain the simpler variational formula

(26) op, = —R{2map, Vifz,)} .
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By the relation (2.12) between p, and the Fredholm eigen value 2,, we
obtain in this case finally

(27) 0, = (1 — )aR{aV(z,)"} .

We can proceed in analogous fashion in the case that z,e D. We

will start then with %, € 3 which belongs to p, and which satisfies by
(5.42) the equation

(28) By = Fello b _ gy

~ ~ ~

D(ho, ho)

We transplant %, by an equation (12) into a comparison function A¥ in
D*, We assume the usual normalization.

(29) D(ﬁo; ]700) =1
and have, therefore, also
(29)) D, Ry =1.
The same chain of calculations as before leads to the asymptotic formula
Srciny — Foohd, b ) :
(30) R*(h§) = 222220 = f(po) + 2nf (p)R{a Vi(z,)} + O(a ) .
D*(hg, hi)

Here, Vi (z) is the analytic completion of h«z) in D. This formula is
very similar to (21); it differs only by the factor — p,. We obtain,
therefore, the following result :

If p, is an eigen value of degeneracy k — 1 it will change according
to the formula

(31) Pt = p, + 2705 + O(| a IP) B=1,2,--,k

under a variation (1) of the curve system C. The o, are the k eigen
values of the secular equation

(32) det || R{aVi(z,) Vi(2)} — o0us |l ¢,3-1,0 = 0

and the V,(z) are the k analytic functions whose real parts are the eigen
funetions %,(z) which belong to p..
In the particular case k = 1, i.e., non-degeneracy, we have

(32" op, = R{2raVi(2,)'}
and hence

(33) 04, = — (2, — 1)'zR{aVi(z,)*} .
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There is a lack of symmetry between the variational formulas (23), (25),
on the one hand, and (31), (32) on the other. This fact is due to the
different normalizations

(34) Sgl V()| de = Dby, ) = p,

and

I

We were led to these normalizations from the theory of the Fredholm
eigen functions ¢,(z) through the representation (1.83). These normaliza-
tions were also used in the series developments of §§2 and 3. However,
the variational formulas become symmetric when we define

Vi) [de = DG, ) =1 .

(36) u,(2) = p7 PV I2) , Afz) = iV (?) .

From the definition of the V,(z) and V,(z), their normalizations (34) and
(85) and from the definitions (1.33), (1.84) it follows at once that the
functions (36) are identical with the functions u.(z) and #%.(z) defined at
the end of §1 and normalized by (1.34).

By means of the functions u,(2) and %.(z) we can express the law
of variations of the eigen values A, as follows:

THEOREM. Let 4, be a Fredholm eigen value of the curve system
C and of degeneracy k — 1; let up(), Ue(z)(B=1,2, --+, k) be the set of
analytic eigen functions to this eigen value. If we subject the system
C to a variation (1), we have

37

= Tog

4—1

where og 18 an eigen value of the secular equation

(38) det || R{au(z)uz)} + ooyl =0 if z,eD
or of
(39) det || R{a@z)i,(z)} + 00yl =0 if zeD.

In particular, we have in the case of non-degeneracy

Ok —adt{aui(z,)} for z,e D

40
(40) P_1

and
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(40') O aR{adid(e)} for z e D.
2—1

The preceding variational formulas can also be derived easily from
the original integral equation (1.2) by means of the general theory of
perturbations [17]. The above derivation is of interest since it allows
a more detailed study of the error terms by means of the dielectric
Green’s function. It is also possible to obtain more precise statements
by using the higher variational terms of these Green’s functions. It is
particularly easy to develop the higher variations for the lowest positive
and non-trivial eigen value 2,. Consider, for example, a variation (1)
of the curve system C with z,e D. Let h(z) e X and A* its transplantation
into D*. By definition (5.10) and the identity (11”), we have

(41) = (h*, b¥) = ny(h, h)

1 _ a oh(z) 8h(&)
o So Salog l 1 (—2)C—7)| n On dsds; .

Thus, =,(h, k) has a very simple transformation law under transplantation.
The Dirichlet integral is invariant under transplantation. Since p, leads
to the extremum values of the ratio (5.35) it is possible to determine
the variations of higher order of 4, with relatively little labor.

We wish, finally, to add a simple algebraic remark to the variational
formulas (37), (38) and (39). If 1, is of degeneracy &k — 1 a variation
(1) will, in general, reduce this degeneracy. It is, however, remarkable
that the secular equations (38) and (39) have only two different eigen
values such that even after the variation a degenerate eigen value can
only split into two different eigen values, at least, up to the order O(j « |%).
Indeed, o is an eigen value, say of (38) if there exist k¥ real numbers
t, such that the linear equations

(42) crta—l—jik‘,ﬂ?ﬁ{auiuj}t,:O, i=1, -k
hold while

(42') jﬁ; =1

We denote

(43) ,21 ut, = M

and reduce (42) to
(44) ot + R{auM} =0, i=1, k.

Multiplying the ¢th equation (44) with %, and summing over all 7-values,
we find :



FREDHOLM EIGEN VALUES OF MULTIPLY-CONNECTED DOMAINS 255
1 k 1 = k
(45) oM + »z-aMZ u: + EaMZ lu; 2= 0.
i=1 i=1

On the other hand, multiplying (44) with ¢, and summing over ¢, we
obtain from (42')
(46) o+ R{aM?} =0.

From (45) and (46) we derive

= = Ly LlaMP &
47 a._ER{aM}—2aiZ=lui+2 e gllui] .
Let us put
(48) aM? = pe .

The real part and imaginary part of (47) are:

(47 peosy = é-iﬂ{aé u?} + Lg} cos 7 - g L, 2
_1 Ll gn oS
0= 53{ai§ui} 5 ST 2w

Eliminating cos 7 form the first equation by means of the second, we find

(49) o= — %—Eﬁ {a igkl ui(zo)z}

. “%“ }/ P lz(;: | u(z,) 12)2 - [S{aé m(zo)z}]2 .

We see, in particular, that the first variation of each eigen value,
whatever its degree of degeneracy, depends only on

k k
(50) Ue) = sy and Q) = 3| ua)l -
Observe that the product of the two possible o-values (49) is

1) e S - Frar(Siuer) <o

such that under a variation (1) at least one component of a split up
multiple eigen value is non-increasing. This is the reason why many
maximum problems for positive eigen values lead to degenerate eigen
values in the extremum case.

7. The L.-kernels and the variation of the Fredholm determinants.
In this section, we shall discuss certain kernels obtained by complex
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differentiation of the dielectric Green’s functions which will appear in
certain variational formulas for important combinations of Fredholm
eigen values. The significance of these kernels is best understood by
considering the kernel obtained in an analogous way from the ordinary
Green’s function, say §(z, ¢) of D.

We defined already in (1.17) a kernel L(z,{) with respect to the
Green’s function g(z, ¢) of the domain set D and observed its remarkable
property (1.18). Analogously, we introduce the kernel

2 8

(1) U%O=—;&QWIFv@i&~R%O-

l~(z, ¢) is a regular analytic function for z and ¢ in D. We shall need
two important facts about 7(z, ¢) for later applications.
(@) For ¢ e C and z e D, we have

(2) 99(2.8) _ o identically in ze D, e C.

This identity remains even valid when z moves onto C but to a point
different from ¢. Let now s be the length parameter on C, &(s) its
parametric representation and ¢’ = d¢/ds the local tangent unit vector.
We differentiate the identity (2) with respect to s and find

0°4(2, O)pr . 0°9(2, 07 _
(3) azaCC+ azaCC 0, zeC,ceC.

We multiply this identity by 2’ and using the symmetry of the first
term in z and ¢ as well as the hermitian symmetry of the second term,
we conclude :

(4) Ifz, 0)2'¢’ = real for ze C, e C.

By use of (1), we may express this result also in the form
7 en = L qf #¢

(5) St 02y = -3, Z o)

This identity is of great interest since the left side expression is a
differential depending on the Green’s function while the right hand term
depends only on the geometry of the curve system C. Moreover, it
can be shown that i(z, ¢) is continuous in both variables in the closed
domain D + C [3,21]. We may pass to the limit z =¢ on both sides
of (5); an easy calculation yields the boundary condition

(6) 3l 227} = 23{Z0 - 2(£)] -

2 2\z
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Let us denote by & = k(s) the curvature of C at z(s); then (6) obtains
the elegant form

7 1 ds
7 X{lUz, 2)2'"} = -
(M) S{le, 2y = -

In particular, we note that (7) and our assumptions on C yield the

THEOREM. The function l(z,z) is a quadratic differential of D, i.e.,
satisfies

(7) Iz, 2)2'* =real on C
if and only if D is a domain bounded by circumferences C,.

(b) Let z* = f(2) be a univalent analytic function in D which maps this
domain into D*. The conformal invariance of the Green’s function is
expressed by the identity

(8) g, ) = 9(2, ¢)
which leads by differentiation to
(9) L@, 0 f"(2) () = Lz, ©)
The {-kernel has, therefore, the transformation law
Tk sk k) £1 ’ 7 1 f’(z)f’(C) 1
10 (=%, =z, ¢) + = | = - :
(10) @ P @OF O =Uw 0 + [W) R c)z}
and, as a simple calculation shows, in particular
(11) U, 26 = U ) + o (£
where
_f"R) _ 3(f"R)Y
(12) (=102 o f,(z))

is the Schwarzian derivative of f(z).

After these remarks on the kernel L(z, ¢), we introduce now a new
kernel by the following formula which is modeled after (1):

2 6295(27 C)
13 Loz ¢) = — 2 00:(. )
(13) @0 e
This kernel is regular analytic and symmetric in both its arguments in
D and in D, except for a double pole for z=¢. We define further

two kernels which are regular analytic for z,¢ e D and for z, ¢ € D,
respectively :
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(14) o= 1 —lrneeo inD
n(z — &) e
and
~ 1 . ~
15 . - = L.
(15) l.(z, ©) e — OF L.z,&) in D.

These kernels have elegant developments in terms of the complex eigen
functions of the Fredholm integral equation. We start with the Fourier
developments (2.16) and (2.21) for g.(z,¢) in terms of the harmonic
eigen functions %,(z) and k,(z). Using definition (1.17) and (2.21), we
obtain by differentiation

VIO
(16) e =(1- 1)ie 0 + 5 - OV
) Py(1+Pv)(1+5Pv)
where the V,(2) are the analytic functions whose real part is 4,(z). As
pointed out in the preceding section, all V!(z) have a different normaliza-
tion and it is more convenient to introduce the functions wu,(z) defined
by (6.36) which have all the norm 1. Then (16) transforms to

1 uRuC)
(17) L o) = (1- 1) i, C”E(prxwep)}

We observe next that with each eigen value 4, > 0 which belongs
to u,(2), there occurs also the eigen value — A, and it belongs to the
eigen function 4u,(z). This assertion can be verified directly from the
complex integral equations (1.36) and (1.37); it is also a consequence of
the fact, noted in § 1, that if 2, belongs to an eigen function 4,(z) then
— 4, will be an eigen value with the conjugate harmonic eigen function
k,(z). Thus, in formula (17), each product wu,(2) %,(¢) occurs, therefore,
twice ; once coupled with p, and the other time with opposite sign and
coupled with 1/p,. We combine these pairs of terms and sum now only
over those v which correspond to the positive eigen values 1,. Using
(2.12), we obtain finally

18 e =(1- é—)[l(z, -3 "(ZIL@]

L& B =1 w@u)
E o
+ vgi 32— K 4,

with the notation
_&e— 1
e+1°
Passing to the limit ¢ = 0 and using the limit relation (3.31), we derive
first from (18)

(19)
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¢ o Un(R)U
(20) Uz, ¢) = S, WADu(Q)
v=1 Ay
and, hence, (18) simplifies to

e A1 w@u(l)
(21) Lo O = B X

Similarly, we transform (15) by differentiation of (2.16) into the
identity
P (2 ) = AL OV4(
22 l(z, ) = (¢ — 1 Py VN
) &= : %(1 + )1 + ep,)

and replacing V(z) by @,(2) by means of (6.36), we find

3 I, — (e — 1) S PEAOU(2)
=) 0= =D AT o+

We combine again terms with p, and with 1/p, and sum only over the
positive eigen values 1,; an easy calculation leads to

.

e 1 e
(24) ls(z; C) =FK v%‘l]f, — E? A, '

The complete symmetry between (21) and (24) is evident.
We consider the limit cases ¢ =0 and ¢ =  of formula (24) which
correspond both to E*=1. From (3.11) and (3.17) follows

e ) = 3 WL - 1 2 9G(z ()
(25) Az Q) = vz;‘l 2, n(z — &) + T 0r0C
_ 1 28NEY
n(z — ¢)* T 020C

We can, therefore, express E(z, ¢) by means of (3.3) in the form
~ ~ N-1
(26) iz, 0) =1, 0) — 1S auw(Rwh()
27 Jik=1

where w,(z) denotes the analytic completion of the harmonic measure
w,?). Formula (26) is the counterpart for D of the relation (20) in D.
The kernel i(z, ¢) is composed of functions with single-valued integral
in D; the kernel Z(z, ¢) differs from it by a kernel which is composed
of a basis of N — 1 functions in D which do not have a single-valued
integral and which are orthogonal in the Dirichlet metric to all functions
in D with single-valued integral.

For the sake of completeness, we give also the Fourier developments
of the kernels
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27) K0 =~ 2000 4 p
T 9z0C

and

(28) Rz, 0= — 2000 1 p,
T 920

Both kernels are analytic and have hermitian symmetry in their argu-
ments. Putting

(29) Kz o) = — 209&0
T 920C

we obtain by differentiation of (2.21) after the above combination of
terms

(30) mma:(r—EXMab—gﬂmﬁzﬂ

+ES A=l

P 22 Ezuy(z)u( &) .

Again, we obtain by passage to the limit ¢ = 0 and in view of (3.81)

(31) K(z, ) = X w (&)
which reduces formula (30) to

(32) K.z, ¢) = ZfWEﬂMW@

Similarly, we find by differentiation of (2.16) the identity

(33) Kz, 0) = EZ—ME%MWM)

Formulas (21), (24), (32) and (33) for the various kernels depend on
¢ only through E and this simple rational function of ¢ has the symmetry

property E(1/s) = — E(¢). This leads to the interesting identities :
(34) P00 _ 0,0 P00 L P0ee, O
0207 020¢ 0207 020C

if z,¢¢ D and to a similar identity in z,& € D. These relations are
known in the limit case ¢ = 0 where they represent differential relations
between the Green’s and the Neumann’s function [2, 5, 21].

We define next the Fredholm determinant of the basic integral
equation (1.2), Observe again that with each positive eigen value 2,
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occurs also the eigen value — 1, in equal multiplicity. We may thus
write

oo E2
(35) o) =11 (1= )
where the product is to be extended over all positive eigen values 1, > 1.

By use of the variational formulas (6.38) and (6.39) and of the
identities (21) and (24) one can establish readily the

THEOREM. If the curve system C is varied according to (6.1) the
Fredholm determinant D(E) changes according to the variational formulas

(36) dlog D(E) = — 2aN{al.(z, 2,)} for z,e D
and
(87) dlog D(E) = — 2aR{al.(2,, 2,)} for z,e D .

E(e) is the rational function (19) of e.

The elegant and symmetric variational formulas (36) and (37) show
the theoretical interest of the Fredholm determinant (35). We observe
that, in particular, for ¢ = o and E =1 we have by (20) and (25);

(38) dlog D(1) = — 2aN{al(z,, )} for zye D
and
(38') dlog D(1) = — 22R{wi(z,, 2,)} for z,e D .

The functional (35) is defined only for curve systems C which are
sufficiently differentiable. This fact creates difficulties in applications of
the above variational formulas to extremum problems for the Fredholm
determinant since it is not sure, a priori, that the extremum system C
will have the required smoothness. In many problems, however, it can
be shown that the very property of being an extremum set guarantees
already that the curve system C is analytic. Thus, we may restrict
ourselves from the beginning to the class of analytic curve systems C
and formulate the extremum problems only within this class. A first
result for a general theory of extremum problems for the Fredholm
determinants is the fact that D(K) is semi-continuous from above in the
class of all analytic curve systems C. In fact, we will prove the

THEOREM. Let D, be a sequence of domains, each being bounded by
an analytic curve system C, and with the Fredholm determinant D,(E).
If the domains D, converge in the Carathéodory sense to a domain D
with analytic boundary C and with the Fredholm determinant D(E),
then we have for all E> 0
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(39) fim D(E) < D(E) .

Proof. We define the kernel

(40) i@, £) = ggi(z, D e, = 5, WO
and define then recursiveljr
(41) jan(z, £) = SSM-%, MO, e, = 5 sz@ ,
We remark that i

(42) S S/l(”)(z e, = 5 1 = gen

v~1l’j

We denote the corresponding expressions referring to the domain D, by
the subseripts n. We assert, at first :

(43) lim S¢» > Se»

To prove this assertion, we select a number 6 > 0 arbitrarily small
and determine a closed subdomain 4 of D such that

(44) SSI@D(Z, Z)Ydr, > S® — 4§ .

X
By the definitions (25), (40), (41) and in view of the continuous dependence
of the Green’s function G(z, ¢) on its domain D, the kernels )Ti,“’(z, £)
converge to 3<2j>(z ¢) uniformly in each closed subdomain of D, in
particular in 4. Given 6, we can choose n(5) such that for n > n(3) the
domains D, contain 4 and that

(45) s = ([Tr 2z, > (10 D,

5, 3

> S A0z, B)dr, — 8 > S@ — 25 .

A

Since ¢ can be chosen arbitrarily small, these inequalities imply (43).
We observe next that by definition (35)
(46) —log D(E) = > L grgen
j=1 3

and a corresponding representation is valid for — log D,(F). Hence,
from (43) follows immediately the asserted inequality (39) and the
theorem is proved.
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The significance of this theorem is the following. Let 2 be a family
of analytic curve systems C and let us ask for the maximum of D(E)
within the family 9, for some fixed value E. We know that by its
definition D(F) <1 and is thus trivially bounded in A. Let U1
denote the least upper bound of D(F) in 9 ; we can select an extremum
sequence of curve sets C, in U such that D,(F) converges to U. If it
is possible to select a subsequence C,, of the C, such that the correspond-
ing domains D,, converge to a domain D, with analytic boundary C, € I,
then C, is a maximum curve system. For, by our theorem (38), we
have D(E) > U and, hence, D(F) = U since no D(E) in 9 can be larger
than U. This argument will be applied in the following section to an
interesting problem of conformal mapping.

8. An extremum problem for Fredholm determinants and an
existence proof for circular mappings. In this section, we shall utilize the
variational formulas for the Fredholm determinants in order to solve a
specific maximum problem. The extremum domains of this problem will
be characterized by the property that their boundary C consists of
circumferences. In this way, we will then prove that every plane domain
can be mapped conformally upon a canonical domain whose boundaries
are circumferences. This canonical mapping will appear as the solution
of a simple extremum problem for the family of all univalent mappings
of the given domain.

We formulate the following extremum problem :

Let D be a domain in the complex z-plane which contains the point
at infinity and which is bounded by N closed analytic curves C. Let
.7 be the family of all functions ¢ = f(z) which are analytic in D + C,
normalized at infinity by f’(w)=1 and are univalent in D. Each
f(z) e # will map D upon a domain 4 with analytic boundary /" and
with the Fredholm determinants 4(#). We ask for the functions
f(z) e &% which lead to the maximum value of 4(1).

The existence of such maximum functions is by no means obvious.
We can assert only that all determinants 4(1) obtained by mappings of
the family & have a least upper bound U < 1. Hence, we may select
a sequence of mappings f,(z) € & such that

(1) }lim 4,)=U.

Since the f,(2) are univalent in D we can use the well-known
normality properties of these functions and assume without loss of
generality that the f,(z) converge to a limit function f(z), uniformly in
each closed subdomain of D. The limit function f (2) provides a univalent
map of D into a domain 4 and is normalized at infinity. The image
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domains 4, converge in the Carathéodory sense to 4. If we could prove
that 4 has an analytic boundary I', we would know that f(z) e # and
the semi-continuity from above of 4(1) would insure 4(1) = U, i.e., that
f(z) is a maximum function.

In order to prove the fact f(z) e & we consider the maximum
sequence f,(z) which converges to f(z). We want to characterize this
sequence by comparing it with near-by sequences obtained by infinitesimal
variations of their image domains 4,. However, if we subject a multiply-
connected domain 4, to an interior variation (6.1), we will, in general,
obtain a domain 4* which is not conformally equivalent to 4, and cannot
be obtained from D by a mapping of the family . . Let, indeed, w,(t)
be the harmonic measure of the boundary component [, of I" with
respect to 4 and let ((p,x)) denote the period matrix (2.18”) of this set
of harmonic measures. The period matrix ((p;;)) is a conformal invariant
and if we preserve the point at infinity under the conformal mappings,
the numbers w,(c) must likewise be unchanged. On the other hand,
it is well-known [5, 15, 21] that under a variation of the ¢-plane of the
type (6.1) and with the singular point ¢, € Z, we have

(2) Pl = Py + R{aw,@)wi)} + O a )
and
(3) (o) = o) + R{ap'(t, o )wi(ty)} + Ol a )

where again w,(t) and p(t, r) denote the analytic completions in ¢ of the
harmonic functions w,(f) and g(t, ) in 4. We see that, in general, the
numbers p,, and w, () will change under interior variations and that
the domain 4* will not be obtained from D by a mapping of the family
F .

Consider now m points ¢, in 4 and the variation

(4) =t > Mo+ 0(al), lal=max(la,l)

=1t — 1,

where the error term is estimated uniformly in 4 4+ I". We may choose
the «, and the correction term O(l « |) such that

(5) Bt wit)} = 0
(6) 13 @p'(t, )wit)} = 0
and

(7) PFe = D, @F(0) = wy(®) .
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It can be shown, indeed, that given such values t, and «,, the variation
(4) can be selected in such a way that 4* is conformally equivalent to
4 and that the points at infinity correspond [21]. Even now, we cannot
assert that D goes into 4* by a mapping of the family . which is
normalized at infinity. However, the Fredholm determinants do not
change under a homothetic mapping of a domain and, hence, the insistence
on the normalization at infinity is unnecessary in our problem. Thus,

the above variations (4) will transform the domains 4, of the extremum
sequence into conformally equivalent domains 4% whose Fredholm
determinants 4%(1) may be compared with the maximum sequence 4,(1).

We observe that the funections w/!(f)-wi(f) and p'(f, ). wi(t) are
quadratic differentials of 4, i.e., functions @.(t) which are regular analytic
in 4+ " and satisfy on I" the boundary condition

(8) Q.(t)t"” = real .
At infinity all these functions satisfy the asymptotic relation
(9) Qu(t) = O(| T |7) .

All functions with the properties (8) and (9) from a linear space with
real coefficients and of the dimension 3N-3. We suppose that we have
chosen from the above N(N -+ 1) quadratic differentials a fixed basis of
3N-3 elements @,(t),k=1,2, ---,3N-3.

After these preparations, we return to our maximum sequence of
domains 4,; we denote by Q(t) the corresponding basis of quadratic
differentials of 4, and by Q.(t) the basis for their limit domain 4.
Clearly, we can choose the basis in each Zln and in 4 such that

(10) lim @”(¢) = Qu(t) ,

uniformly in each closed subdomain of 4. The determinant
(11) det “ SH{(Qk(tl)} H ’ l’ k = 1, 2’ M) 3N_3

does not vanish identically in 4 because of the supposed real independence
of the Q.(t). Hence, we can determine 3N-3 points ¢, € 4 such that

(12) det || R{QM(E)} [l + 0 k,yp=1,2,.-+,3N-3

for large enough % ; we may even assume, without loss of generality,
that (12) holds for all integers .

Let t, be an arbitrary point in 4, and a™ be an arbitrary complex
number. We determine 3N-3 real numbers x(” by the linear equations

3N-3

(13) m{a(n)Q;cn)(to)} = > xfbn)%{Qim(t#)} , k=1,2,..-,3N-3
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which is always posible because of (12). Observe that (™ = O(]l a ™ |)
for small values of a™. Consider then the interior variation of 4,

n) SN=3 a(n)
TS B Olam P

14 t* =t _
(14) +t——t0 1t — 1,

This variation is of the type (4), but by the choice (13) of the x{”, we

w s

are sure that the equations (5) and (6) will be fulfilled. We can,
therefore, adjust the error term O(] a™ |?) in such a way that the varied

domain ¥ is conformally equivalent to 4, and such that the points at
infinity correspond. Hence, J*¥ may be used as a competing domain
sequence to the maximum sequence 4,. We apply now the variational
formula (7.38') in order to characterize the limit domain .

We derive from (7.38') that the variation (14) of 4, yields

(15) log 4%(1) = log 4,(1) — 2xR{a ™ (t, £.))
+or S aPR (At t)) + O(a™ ).
/J,=1

Here, the L,(t, t) denote the J-kernels of Jn. We denote
(16) 0, = log U — log 4,(1) .

By the definition of the maximum sequence, we have 0 < §,— 0. Since
log 4%(1) < log U, we infer from (15) the inequality

-~ 3N -3 ~
21 0, > — R{a™a,(t, t,)} +“§J EPR{A(, L)) + O(la™ ) .

T

(17)

We choose finally
(18) a™ = §,re" r >0
and define the real numbers &, by the system of linear equations

(19) N ERQuE)) = REQu(t)},  k=1,---,3N3.

We divide equations (13) and (17) by 4, and pass to the limit n — oo ;
comparing (13) with (19), we find

(20) lim "% =&,

and since at ¢, ¢, + -, tyy-, holds

(21) lim A,(t,, t.) = At,, t,) ,

we obtain from (17)
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22) Lo et )+ S ER(IE, t))
27'[7' p=1

This inequality holds for arbitrary values » > 0; hence, sending r — o,
we find

(23) 0= = R{Hty L)} + > ERU 1)} -

If we replace in (19) the signum e” by — e, the solution vector
¢, changes into — &,. Since e” is entirely arbitrary, the inequality (23)
must also hold for inverted sign of the right hand term. Thus, we
arrive finally at the equation

(24) RieAty t)} = 5 ER(AE, 1)) -
“=1

valid for arbitrary choice of the signum e and the corresponding
choice (19) of the &, The fact that, for given fixed ¢, ++-, t;y_; in 4

and for arbitrary t,e 4, the linear equations (19) always imply the
equation (24) for arbitrary e, guarantees the existence of 3N-3 real
numbers S,(z =1, --+, 3N-3) such that

(25) it =5 A .

This identity is then the condition which characterizes the limit domain
4 of an extremum sequence 4,.
Since, in view of (7.26), the function (¢, t) coincides with the more

fundamental kernel I(¢, t) except for a quadratic differential, we may
express the result (25) as follows:

THEOREM 1. If 4 is the limit domain of a maximum sequence 4,
its I-kernel satisfies the condition

(26) I(t, t) = Qt)

where Q(t) is a quadratic differential of 4.
From Theorem I, we can deduce

TaeoreM 1I.  All boundary curves I", of 4 are analytic.

Proof. Let us express equation (26) in terms of functionals of the
original domain D which is conformally equivalent to 4. By (7.11) and
because of the covariance character of the quadratic differentials under
conformal mapping, we can express (26) in the form

@7) iz, 2) + —Glg{f, 2} = Q(2)
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where Q(z) is the quadratic differential in ) which corresponds to Q(t)
under the mapping ¢ = f(z) of D into 4 and I(z, z) denotes the [-kernel
of D. We have assumed that D has analytic boundaries C,; hence, we

can assert that Z(z, 2) and Q(z) are analytic in the closed region D+ C.
By (7.12), we may now interpret the equation (27) as a linear differential
equation with analytic coefficient in D + C:

(28) £(2) + 37[Q() — Iz, 2)]m(z) = 0
for the unknown function
(29) pz) = [,

From the general theory of ordinary differential equations we obtain
that p(z) is regular analytic in D + C and can have only finitely many
zeros on C. Hence, f'(z) is analytic on C except for poles which are at
least of order 2. At such singular points on C, f(z) would have poles
too. But f(z) is univalent in D and has already a pole at infinity. It
cannot have additional poles on C; hence, f(z) and f’(2) are regular
analytic on C and the theorem is proved.

In particular, we have now shown that the limit function f(z) of
the maximum sequence f,(z) belongs also to the family & considered
and is, therefore, a maximum function of our problem.

Since we know now that the boundary curves /7, of 4 are analytie,
we can combine (26) with (7.7) and find :

dx

(30) (e, O = J{Qaye) = L 48
67 ds

But Q(¢) is a quadratic differential of Z; thus we arrive at

dk

(31) ds

=0 on each /.

This leads to

TueorReM I11I. FEach boundary curve I', of the maximum domain
4 is a circumference.

Since in each given domain D there exists at least one maximum
sequence f,(2) € . , we have given a new proof for the classical theorem
[5,7,8,9,23]:

THEOREM IV. Every plane domain D can be mapped onto a domain
bounded by circumferences.
Since the domain 4 is the limit of a maximum sequence of domains
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4, and since it is analytically bounded, the semi-continuity of the
Fredholm determinants leads to

THEOREM V. Awmong all conformally equivalent domains, the
ctrcular domains have the largest value of the Fredholm determinant
D(1).
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