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1. Introduction. We present here a systematic study of involutions
(conjugate linear anti-automorphisms of period two) on a complex Banach
algebra B. Particular attention is given to two types of involutions
which make frequent appearance in the literature on Banach algebras-
symmetric involutions (xx* has non-negative spectrum for all z) and
proper involutions (xz* = 0 implies # = 0) where x — 2™ is the involution.

In these introductory remarks we confine ourselves to B semi-simple.
We show first that there exist such B, commutative and not commuta-
tive, possessing no involutions. If B is not commutative and possesses
a continuous (symmetric) involution then B has non-denumerably many
distinct (symmetric) involutions. This is false for B commutative. Any
continuous symmetric involution is proper. The converse is not true
but is shown to hold for B an annihilator algebra in the sense of [1].
Any two continuous symmetric involutions which permute must be the
same. This is false for proper involutions. The conclusion is valid for
proper involutions for B simple with a non-zero socle.

For B* and H*-algebras we can say more, for example, any B*-
algebra or H*-algebra which is not commutative possesses symmetric in-
volutions of arbitrarily large norm.

2. General theory. Throughout this paper we are concerned with
complex Banach algebras. By an involution on a Banach algebra, we
mean a conjugate linear anti-automorphism of period two. By a real
wmvolution we mean a real linear anti-automorphism of period two.

We turn our attention first to the theory of real linear involutions
on a commutative Banach algebra B.

2.1 DEFINITION. Let * be a real involution on the commutative
Banach algebra B. Let 9% be the space of maximal regular ideals of B-
Let, for M e M

(1) o(M) = {f*|f e M} .

From algebra we see that o(M)e W and that ¢ is a one-to-one
mapping of M onto W which is of period two.

2.2. THEOREM. The mapping o s a homeomorphism of MM onto
M. For each M e N either
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f(eM) = f(M) for all fe B, or
fXoM) = f(M) for all fe B.

Proof. Let j be an identity for B modulo M, jx —xe M for all
x€ B, Then j*x — xeco(M) for all xe B, Consequently j(M) =1 and
7*(e(M)) = 1. Next observe that (17 +7e M, and (¢5)* + 7% e o(M).
Thus (ig)*(e(M)) = + 2.

Suppose that f(M)=a + bi, with @ and b real. Then since j(M)=1,
f—aj—bijeM, and f* — aj* — b(ij)* e ao(M). Thus

FH(o(M)) = ag*(o(M)) + b(eg)*(o(M)) = f(M) or f(M),

where the choice is independent of the particular fe B that is em-
ployed. Let

S, = {Me WM|f*(M) = f(o(M)), all fe B},
S, = {M e WM|f*(M) = F(o(M)), all fe B} .
The sets S, and S, are disjoint and their union is Wt.
Let Q, = {M e WM|(tf)"(M) = if*(M), all fe B},
Q, = {Me WM = —if*(M), all fe B} .

The sets @, and Q, are disjoint. If M e S,, then (if)*(M) = if (c(M)) =
if ¥ (M), so S,CQ,. Likewise S,C@Q,, s0 S, =@Q,,n =1,2. Now

@ = (1M e MI[(f)" — if ") = 0} .

Thus @, = S, is closed. Likewise @, = S, is closed. Thus S, and S, are
open and closed.

Since ¢! = ¢, it is sufficient if we show that ¢ is continuous. Let
M,e S,. Consider a basic neighborhood U of ¢(M,),

U: {Me m“fk(M) —fk(o-(MO))l < g, € > O, k - 17 "'7n,flceB}
Let
V=1{MeW|f(M) — fil M) <e&k=1,---,m}NS,.

For Me V, f{(M,) = f.(6(M,)) and fi(o(M)) = F¥(M). Since V is open
and ¢(V)c U, ¢ is continuous on S,. Similarly ¢ is continuous on S,.

It might be noted that ¢(S,) =S,, 7 =1,2. For let Me S,, then
(M) = f*o(M)) for all f. Thus [f*(oo(M)) = f(ecM) for all f, so
o(M)e S, that is a(S,)cS,. But then S,ca(S)) so S, = d8,.

2.3. COROLLARY. Let B be a commutative semi-simple Banach
algebra with a connected space of maximal regular ideals Wi. Then
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every real imvolution is either complex limear or conjugate linear.
Proof. The connectedness of M forces either S, = ¢ or S, = ¢.

2.4 COROLLARY. Let B be a semi-simple commutative Banach
algebra. Then B admits an involution if and only if there is a homeo-
morphism ¢ of period two of the maximal regular ideal space Wt onto
itself such that for each x€ B, there is a ye€ B such that x(o(M)) =

y(M) for each M e IN.

Proof. The only if statement is immediate from Theorem 2.2.
Suppose that the given condition is satisfied. By semi-simplicity the ¥
associated with a given «x is unique. The definition of 2* = y, is easily
seen to yield an involution.

2.5 THEOREM. Let B be a commutative regqular semi-simple Banach
algebra with space of maximal regular ideals M. A real involution
*on B is proper (xx* = 0 tmplies x = 0) if and only if the correspond-
ing homeomorphism o of W is the identity.

Proof. For the notion of a regular Banach algebra see [9, p. 82].
Suppose * is proper and o is not the identity. Take M,e I with
o(M,) # M,. Let U be a neighborhood of M, such that o(M,) ¢ U.
Then M, ¢ o(U). Let V=UNM —0(U). Then VNa(V)is empty.
Since ¢(V7) is an open set containing o(M,), by regularity there exists
x € B such that z(a(M;)) =1 and (M) =0, M € o(V). Forany Me M,
xx*(M) = x(M)x(o(M)) or zx*(M) = x(M)x(a(M)). Clearly xx*(M) = 0.
As B is semi-simple zx* = 0, x #+ 0 and * is not proper. The converse
is trivial.

Thus for such B the only possible proper conjugate linear involution
is conjugation.

The question naturally arises whether an algebra may have no in-
volution or whether it may have a finite number of involutions. In the
examples which follow we show that both possibilities may occur in the
commutative case. We also exhibit a not commutative algebra which
has no involution. However we show in Theorem 2.20 that for a semi-
simple Banach algebra which is not commutative if one involution ex-
ists, there must be an uncountable number of distinct involutions.

Let D denote the compact set in the plane which consists of a two
cell together with certain arcs and simple closed curves as indicated in
Fig. 1.
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Fig. 1.

Say ¢ is a periodic homeomorphism of period two of D onto D. Let 0
be the open two cell, and B the boundary of 0. Then ¢(0) =0, and
g(B) = B. Now any periodic mapping of a simple closed curve has [17,
p. 264] either all fixed points, just two fixed points or has no fixed
points. By considering the order of the point of D ~ B, together with
d(B) = B, one sees that o is pointwise fixed on D ~ B. Thus for the
disc 0U B, o(0UB)=0UB and ag(x) =2 for x € B. It then follows from
a result of Kerekjarto [8], that ¢ is pointwise fixed on 0. Thus D
admits no homeomorphism of period at most two other than the identity
mapping.

2.6 EXAMPLE. With D as above, C(D), is a commutative semi-
simple Banach algebra admitting exactly one involution. This follows
from Theorem 2.2, since a(M) = M is forced for each M e M.

2.7 LEMMA. Let B be a semi-simple Banach algebra whose ele-
ments are complex valued continuous functions. Further suppose that
the fumctions 1 and z are in B and that the maximal ideal space m
is a set in the complex plame. Let E be compact set im the complex
plane intersecting M in a point. Let A denote the algebra consisting
of all continuous extensions of the elements of B to SRUE. Then the
maximal ideal space of A is MU E.

Proof. Let B, be the subalgebra of A consisting of those elements
which are constant on E. Let A, be the subalgebra of A consisting of
the functions vanishing on 9. Since MNE is a point, one clearly has
A =B,®A, Let ¢ bea non-zero multiplicative linear functional on
A, and let {p} =MNE.

In the decomposition A = B,@® A, we have u, = 1, + 0, where u, is
the unit for A and w, is the unit for B,. Thus the restriction of g to
B, is not zero. Also since IMMNE is a point, A, consists of all contin-
uous functions vanishing at p. Hence there is a point t,€ E such that
for any ge A, (4g) = g(t,), whether restricted to A, is zero or not.
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Let weA, so w=f+y¢g, feB, geA, By the remarks above
there is a point z, in M, independent of f, and t,e E such that p(f) =
f@) and  gp(g) = g(t). Hence pw) = p(f) + (o) = F(z) + g(ts) =
w(2,) + w(t,) — w(p). If one applies this formula to w = 2 and makes
use of the multiplicative property of /, one obtains

0=p"+ 2t — 20—t =(p — 2)(P — to) .

Thus 2z, = p, or t, = p. In the first case p(w) = w(t,); in the second
mw) = w(z,). So all the nontrivial multiplicative linear functionals are
given by the points of MU E.

2.8 ExaMPLE. There exists a semi-simple commutative Banach al-
gebra which admits no involution.

Let D be as in Figure 1. Let A be the collection of functions an-
alytic in the interior of the cell 0 and continuous on D. Since D can
be obtained from the closed two cell by adjoining successively three
compact sets having one point contact with the set already available,
Lemma 2.7 applies and the maximal ideal space of A is D. Clearly A
is semi-simple. Since D admits no periodic homeomorphism of period
at most two other than the identity, by Theorem 2.2 any involution

must satisfy f'(M) = f(M). However because of the analyticity in the
open cell, the latter functions are not in the algebra. Thus no involu-
tion can exist.

2.9 LEMMA. Let A be a commutative Banach algebra with identity
e, and no tnvolution. Let B be a Banach algebra with identity e, where
B s not commutative. Suppose further that 0 and e, are the only
idempotents in the center of B. Then the direct sum A @ B of these
two algebras has no imvolution.

Proof. Suppose that A@ B has an involution’. Let ej =u + v,
we A, ve B. Since ¢} is an idempotent, so are w and v. Since e, is in
the center of A@ B so is e;. Then v is in the center of B and thus
v=0 or v=g¢, If v=0 we have for xe A, « =celx'e A so that
A’ = A. This is impossible as A has no involution. Therefore v = e,.
Now e} + e, =¢, + e, as ¢, + ¢, is the identity for A@P B. Then e; =
e, —uecAd, For yeB, y =y'e,e A. Therefore ' defines an anti-isomor-
phism of B into A. Since A is commutative so is B. This is a con-
tradiction.

2.10 ExaAMPLE. Let A be the semi-simple commutative algebra
described in Example 2.8 with no involution. Let B be the Banach
algebra of algebra of all 2 x 2 matrices over the complex field. Then
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A @ B is a semi-simple Banach algebra which is not commutative and
has no involution.

We now turn to the theory of involutions on Banach algebras
without the hypothesis of commutativity, or with a hypothesis that the
algebra be not commutative. It is convenient to consider certain special
classes of involutions.

2.11 DEFINITIONS. Let ™ be an involution on a Banach algebra B
Let z e B, and let sp(xz) denote the spectrum of z. Let p(x) denote the
spectral radius of =,

o(x) = sup {In|[xesp(x)) .

The spectrum and spectral radius of an element x relative to a sub-
algebra B, of B are denote by sp(x|B,) and p(x|B,) respectively. An
element xe B is called self-adjoint if x = «* and H is used for the set
of self adjoint elements in B. An element z is called skew if a* = —x
and K is used for the set of skew elements in B. One has B= HP K.
Call * symmetric if sp(xax*)C[0, o) for all xe B. Call * Hermitian-real,
if sp(x) is real for all xe H. Call™* regular if o(x) =0 and xe H imply
=0, As in Theorem 2.5, we call™ proper if xx™ = 0 implies x = 0.

As shown by Kaplansky [5, p. 402], if * is symmetric then * is
Hermitian-real.

2.12 THEOREM. If * s Hermitian-real and regular them * 1is
proper.

Proof. Suppose zz* =0. Now (x*x)* =0, so that p(z*z) =0 and
x*c =0, Let x=h-+k, he H, ke K. Then

O=axx*=n>—k*—hk +kh =x*c =0 -k + hk — kh .

Therefore hk = kh and h* = k*. Note that sp(h?)C[0, ) and, as sp(k)
is pure-imaginary sp(k*)C(— oo, 0]. Thus sp(h*) = (0). Then 2* = 0. But
then o(h) =0 and ~ = 0. Similarly k£ = 0, and thus « = 0.

2.13. LEMMA. Let B be a Banach algebra with an involution
x—z*. Then any maximal commutative *-subalgebra B, is closed.

Proof. The point of the lemma is that the conclusion holds even
though x — x* may be discontinuous. Let ze B,. Since za = a2, ¢ B,
we have 2™ = 2*x,x e B,. Butif z = limx,, 2,€ B,, we have x,2* = 2%z,
for all n and thus 2zz* = 2*2. If z were not in B,, then B, could not be
a maximal commutative *-subalgebra.
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2.14. LEMMA. Let B be a Banach algebra and B, be the algebra
obtained by adjoining an identity e to B. Let * be an involution on
B which is extended to an involution on B, by defining (e + x)* =
e + x*. If * is symmetric or proper or Hermitian-real or regular
on B then it has the same property on B,.

Proof. Consider u = (\e + 2)(\e + 2)* = |\ |*¢ + h where
h = \e* + \x + xx*e B

Suppose * is proper on B. Then if w =0, A =0, z2* =0 and z = 0.

Suppose that * is symmetric on B. We must show that sp(u)c[0, «).
Clearly & is self-adjoint. Let B, be a maximal commutative *-subalgebra
of B containing ~. By Lemma 2.13, B, is closed. Let 9t be the space
of regular maximal ideals of B,. If ye B, then sp(y|B) = sp(y|B,) (ex-
cept perhaps for the value zero). See [5, p. 402].

If B, is a radical algebra then sp(h) = (0) so that

sp(u) = [N [* 4 sp(h) [0, o) .

Suppose that B, is not a radical algebra. Let M,e M. There exists

ze B, such that z(M,) + 0. Note that z*(M) = z(M), M e M. Consider
w = 2(|\]*e + h)z* = |\|*%2* + zhz*. Clearly we B, and

w = z(\e + x)(\e + x)*2* = (\2 + 22)(\2 + zx)* = |\|=2* 4 zhe™ .

But w() = [2(M)F(INF + (M) As  2(M;) # 0, h(M,)e[—[\[, o).
Since M, is arbitrary in M, sp(h)c[—|\|}, ). Therefore sp(u) =
I+ sp(h)C[9, co).

Suppose that * is Hermitian-real on B. Let \e + = be self-adjoint
in B,,ze B. Then \ is real and x is self-adjoint in B. Since sp(\e+2)=
X + sp(x), * is Hermitian real on B,. Suppose that * is regular on B
and o(xe + x) =0, N real and xe€ H. Then if N+ 0 we see that z’
exists in B, which is impossible. Thus o(x) =0 and « = 0.

2.15 LEMMA. An tnvolution * on the Banach algebra B is regular
if and only if every maximal commutative *-subalgebra is semi-simple.

Proof. Suppose that * is regular. Let B, be a maximal commuta-
tive *-subalgebra. By Lemma 2.13, B, is closed. Let w be in the
radical R of B, w=~h-+k, he H ke K. Since * is an anti-automor-
phism of B, R* = R. Then w* =h — ke R so that he R, ke R. Then
o(h|B,) = 0, so that p(h) =0 and h = 0. Likewise k = 0.

Suppose, conversely, that the condition holds. Let ke H, p(h) = 0.
There exists a maximal commutative *-subalgebra B, containing %. Since
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B, is a semi-simple Banach algebra by Lemma 2.13 and p(h|B,) = o(h),
it follows that h = 0.

2.16 THEOREM. Let B be a semi-simple Banach algebra with a
symmetric involution *. Then the following statements are equivalent.
(1) * 4s continuous (2) * is regular (3) there exists a faithful *-repre-
sentation of B as operators on a Hilbert space.

Proof. In view of Lemma 2.14, there is no loss of generality in
assuming that B has an identity e¢. That (1) implies (3) has been shown
by Gelfand and Neumark [10]. (They assume |le|| =1 and |[z*|| = |{l]
which is not necessary for this conclusion.) That (3) implies (1) follows
from a result of Rickart [13, Lemma 5.8]. It is clear that (8) implies (2).

It is then sufficient to show that (2) implies (3). Assume (2). Let
he H, |h|l <1 and let B, be a maximal commutative *-subalgebra con-
taining ¢ and #. By Lemmas 2.12 and 2.14 B, is a semi-simple Banach
algebra. Hence * is continuous on B, (see [13, Corollary 6.3]). Then
the standard square root argument [10, p. 116] shows that there exists
yeH, yy =e— h. Let f be a positive linear functional on B(f(yy*) = 0
for all ye B). As in [10, p. 117] we see that

(1) f@)| = rfellzll, ve H.

In contrast to the Gelfand-Neumark development we do not have the

right at this stage to assert that f is bounded since we did not assume
* to be continuous.

For any x,y e B the following inequality has been established by

Kaplansky, [7, p. 55], by an algebraic computation (n is any positive
integer).

(2) F*erey) < flry) =" flySere) y "

Then from (1) and (2) we obtain

Fr e ey) < f@r= " LA@Ny* Ty I @ ) |17

Let n— . Then

(3) fyratzy) < fyFy)oa*x) .

From (3) (with ¥ = ¢) and the Bunjakowsky-Schwarz inequality or as in
[10, p. 117] we obtain |f(z)[* < f(e)o(x*x), x € B.

Let I; = {x e B|f(z*x) = 0}. Then , = B/I, is a pre-Hilbert space
if we define, for two cosets & and 7, (§,7) = f(y*x), yen, xe& Let
7 be the natural homomorphism of B onto B/I;,. Asin [10, p. 120] we
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associate with x,e B an operator A, on &) defined by A,(&) = m(x.).
By (3),

A (O = fllrg)*(@er)] = f (@ w)o(xie,) .

Thus || A, (& IF < p(xfz)l|E|* so that A, is bounded. Hence A, may be
extended to T,, a bounded operator on the completion , of ). The
mapping x — T, is a *-representation of B. By the arguments of [10],
there is a faithful *-representation of B as operators on the direct sum
9 of all the D,(f running through the set F' of all positive linear func-
tionals) if the reducing ideal {xe B|f(z*x) =0, and fe F} = (0).

Let xe H, sp(x)c(0, «). Let B, be a maximal commutative *-sub-
algebra of B containing ¢ and x. For ye B, sp{y|B,) = sp(y|B) by [10,
p. 109]. As B, is semi-simple by Lemma 2.15 it follows that there ex-
ists ze HN B,, 2* = z, sp(z)C(0, =) (see [10, p. 159]). Let

P = {xe Blxe H and sp(x)C[0, =)} .

The arguments of [10, p. 160] now show that P is a cone in H. Let
r=e¢—u, ue€ H, ||ull<l. As noted above there exists we H, w*=e—u.
Also sp(x) = sp(w?)C[0, ). Hence eeint (P N H). Everything is now
arranged for the validity of the reasoning of [10, p. 161] to show that
the reducing ideal of B coincides with the radical of B.

2.17 COROLLARY. Amny symmetric continuous involutions on a
semi-simple Banach algebra is proper.

Proof. This is immediate from Theorems 2.16 and 2.12. The con-
verse of Corollary 2.17 is false. Let B be the algebra of all complex-
valued functions analytic in |z] < 1 and continuous in |z| < 1. Define
an involution * on B by f*(2) = f(z). Then * is proper but not sym-
metric.

2.18 LEMMA. Let ' and * be two involutions on a Banach algebra
B. Then "™ is an tnvolution on B which 1s symmetric or proper or

Hermitian-real or regular if and only if * has the corresponding prop-
erty.

Proof. Set # ='*_ It is readily verified that #is an involution.
Note that * =, Therefore it is sufficient to show that # inherits any
of the stated properties from *.

Let © = y*. Then xa* = (yy*). If x2* =0 and * is proper then
yy* =0, y=0and 2 =0. Also sp(xax*) = sp(yy™). Thus if * is sym-
metric so is ¥. Suppose * is Hermitian-real. Let x = x*. Then o’ = 2'*
so that sp(z') is real. Therefore sp(x) is real. If * is regular, z = «*
and o(x) = 0 hold, then p(z') =0, 2’ =0 and « = 0.
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2.19 LEMMA. Let B be a Banach algebra with an identity and an
involution *. If ye H and y~* exists then the mapping ' defined by &' =
Yty is an involution. If y = u®, we H then ' can be expressed as

= ¥4 where * is an tnvolution.

Proof. Since (y~)* = (y*)~! it is easy to check that ' is an involu-
tion on B. Let y = w?, ue H. Define * by the rule z* = u'2*u. Then

o = y gy = u*u? = 2, xe B. Clearly if * is continuous so is .
For B with an identity and an involution *, let

P+ = {we Hlsp(z) (0, o)} .

It is known [11, p. 27)] that if * is continuous then each xe P* can be
written in the form x = u® where ue P+,

2.20 THEOREM. Let B be a Banach algebra which is not commutative
and which has a continuous involution *. Then B has non-denumerably
many distinct tnvolutions. If * is symmetric (Hermitian-real), these
involutions may be chosen to be symmetric (Hermitian-real).

Proof. Let B, be the algebra obtained by adjoining an identity e
to B; extend * to B, by (Ae + 2)* = Ae + x*. Consider any two involu-
tions on B, of the form 2’ = y'x*y, «f = y;%*y,, where y;' exists,
y.€H, k=1,2. Note that B’ =B, B* = B and that ' =* if ’ agrees
with # on B. Therefore the first statement follows if we show that there
are non-denumerably many involutions on B, of the form’. Let @ be
the set of invertible elements of H.

Let Z be the center of B,. We show first that ' = # if and only if
(ZNnHy, =(ZnNH)y, Suppose '=% Then yyi'x = xyy;’, € B or
yyr'e Z. Then yyi'y,=y.yy:', whence yi'y,=y,y;'. Hence yyi'e Z NH.
Now ZNH is a real subalgebra of H. Thus (ZN H)y,Cc(ZnN H)y,.
Hence (ZN H)y, = (ZN H)y,. Assume this relation. Since ec Z N H,
yyite ZN H. Then clearly ' =* Since ZN H is closed and multiplic-
ation by y, is a homeomorphism of B,, (ZN H)y, is a closed real linear
manifold in H.

Suppose that there are at most a denumerable number of involu-
tions on B, of the form ’. Then there are at most denumerable many
distinet closed linear manifolds in H of the form (Z N H)y, ye Q. Denote
this collection by {E,}. Nowas ee ZN H, each ye @ is contained in at
least one E,, namely (ZNH)y. Thus QC UE, Let S be the set of
real multiples of ¢ and form, for each n, R, =S + E,. R, is a closed
linear manifold in H. Let we H. For sufficiently large real \, e4+we @
and therefore H = UR,. Suppose some R, =H, R, =S+ (ZNH)y
where ye Q. Then (ZNH)y =H. Since ec H, y'eZNH and thus
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yeZNH. As ZN H is a subalgebra of H, HC Z and B, is commuta-
tive. Therefore R, + H. By the Baire category theorem we have a
contradiction as H is of the second category.

Suppose * is symmetric (Hermitian-real). Consider only those in-
volutions ’, where z' = y~'2*y with ye P*. By Lemmas 2.18 and 2.19,
each ' is symmetric (Hermitian-real). If there were only a denumerable
many such involutions the first argument above would show that there
are only denumerably many closed linear manifolds of H of the form
(ZNH)y; ye P*. Let {E,} be that collection and form {R,} as in the
earlier argument. We now have P*c UE,. If we H, since * is Her-
mitian-real, e + we P* for sufficiently large real . Thus H = UR,.
The balance of the argument is exactly as given earlier.

The result is Theorem 2.20 in false if B is commutative, see
Example 2.6.

2.21 THEOREM. Let B be a Banach algebra with a continuous in-
volution * which 1s symmetric (Hermitian-real). If B is not commuta-~
tive then there exists a continuous symmetric (Hermitian-real) involu-
tion ' such that '* + ™.

Proof. Adjoin an identity e to B forming B, and extend * to B, in
the usual way. It is enough to show by Lemmas 2.18 and 2.19 that
there exists ye P+, o' = y~*¢*y, xe B, where '* =+ *'. Suppose '* =*
for all such y. A simple computation shows y*e Z, (the center of B,)
for all ye P*. Since every ue P* can be written as u = v? ve P+,
then P*cZ. Let weH, |le — w| <1. Then w™ exists and w =h’
for some ke H. Since sp(h) is real, we P*. Hence Z contains a ball
of H. Consequently, as Z is a linear space, ZN H = H. This shows
that B, is commutative which is a contradiction.

This result is false if B is commutative. See Example 2.6. We
can improve Theorem 2.21 for B semi-simple.

2.22 THEOREM. Let B be a semi-simple Banach algebra with o
continuous symmetric involution *. Let ' be any symmetric involution
on B such that '* =*'. Then '=*. If B 1is not commutative there
exists non-denumerably many symmetric involutions which do not per-
mute with *.

Proof. We show first that ' =* if and only if &' = —x* implies
2 =0. Given any ze B consider y =2z — 2’*. Then y* = —y' so that
=0 and 2’ = 2*.
Suppose that #’=—z*. Then x2’'=—2xx*. By symmetry, sp(xxz™*)=(0).
By Theorem 2.16, xax* = 0. Since * is proper by Corollary 2.17, x = 0.
Therefore ' = *.
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If B is not commutative Theorem 2.20 guarantees the existence of
non-denumerably many symmetric involutions * each different from *. By
the above, # = *# for each such *.

3. Involutions on special algebras. For B*-algebras, H *-algebras
and semi-simple annihilator algebras we obtain more detailed properties
of involutions. We start with the B* and the H* cases.

Any involution ' on a Banach algebra B is a real-linear operator on
B. If ' is so considered we denote its norm as an operator by ||("){].

Consider a B*-algebra B. The defining involution * is symmetric.
(See [11, p. 281].) Also the defining involution in an H*-algebra is
symmetrie, [5, p. 404], (or see Theorem 3.8 below).

3.1. LEMMA. Let B be a B*-algebra and ' be any involution on B.
Then [|(")I| = [|()1]? where * is the defining involution for B.

Proof. Clearly ||("™)]l < {{()]]*. Take any xze B and set x =y,
y = «"*. Then

e IO = Hae™ || = [[(wy™) 1| = pl(yy™)]
= p(yy™) = lly |l = Il P = {12l .

From this we see that |[(")|| = ||()I].

3.1. LEMMA. In a B*-abgebra B, an involution is an isometry if
and only if it permutes with the defining involution *.

Proof. Let the involution ' permute with *. Then '™ =* so that
by Lemma 3.2, ||()|l = 1. Then ||2’'|| = ||z]| for all xze B.

Let ’ be an isometric involution. Suppose first that B has an identity.
Since '* is a linear isometric isomorphism, by [3, Lemma 8]’* permutes
with *.  From this it follows that '* =*. Suppose that B has no
identity. Let B, be the algebra obtained by adjoining an identity e to
B. TFor \e + %, » scalar and x e B define

IIxe + @]l = sup [Ny + 2yl
Hyll =1
yeB
Then [11, p. 207], B, is a B*-algebra with (\e + 2)* = e 4+ ¢*. We
can also extend ' to B, by (e + ) = \e -+ «’. Then’is an involution on
B, - Also, since ' is an isometry on B,

ll(xe + @Y || = sup lIxy + @'yl = sup [y + yall
yll =1 Hyll =1
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=sup |y + a*yll = |[\e + x|
Hyll=1.

Thus ' is an isometry on B, so that, by the above, "* = */,

3.3. THEOREM. Let B be a B*-algebra or an H?*-algebra which is
not commutative. Then B possesses symmetric involutions of arbitrarily
large norm,

Proof. Let B be a B*-algebra. By Theorem 2.22, there exists a
symmetric involution ’ which does not permute with *. Then by Lemma
3.2, ||()Il >1. Set U, ="* and for each k > 1 define U, inductively by
U, = (U, )(*)NU,-,). Each U, is easily seen to be an involution. Also,
by Lemma 3.1, ||Ull = | Ueoi|l? for k> 1, whereas ||U,l| = ||(O]]P > 1.
By Lemma 2.18, U, is a symmetric involution.

Let B be an H*-algebra E(B) be the B*-algebra of all bounded
linear operators on B. The mapping L: x — L, of B into E (B) defined
by L.y) = xy, ye B is a faithful *-representation of B. If’is an in-
volution on B it induces an involution ' on I(B) by the rule (L,) = L,,.
Denote the norm of this involution on L(B) by {||()l}l (and the norm of
' as an involution on B by [|(")|| as above). Since L., =(L,),* || L.l =
I L.ll. By [13, Corollary 5.5], B has the uniqueness or norm property.
Since ||x|l, = ||2’|| defines a complete norm on B([12, p. 1068], ||(")|| =
k< . Let Si(S,) be the ball in B, center at the origin and radius
k(1). Then S;DS,. Algo, using the fact that * is an isometry on B,
we have

| Loy || = sup la'z|| = sup o'zl <k Sup zall
- ksup la*a* 1l = Kl Lol = KLl
Therefore k
(1) WO = 1Ol

In particular’is a continuous involution on L(B). Let A be the closure
of I(B) in E(B). The mapping ' of L(B) onto L(B) may be extended to
an involution also denoted by ’'of A onto A with the same norm and
furthermore A is a B*-algebra.

Now by Theorem 2.22 we can select an involution ’ on B which does
not permute with ** Then by Lemma 3.2 applied to * and ' on A4,
()l > 1. Starting with’ and * we form the sequence {U,} of involu-
tions on B as above. Each U, is symmetric. Since |||(Uy)lll = <o,
(Ul — o by (1).

The argument employed shows that if # is any isometric involution on
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an H*-algebra B then ¥ = *!, For by equation (1), ||(*)|| =1 implies
A = 1 whence we may apply Lemma 3.2 to * and * on A. The con-
verse is false. Let B be the set of all couples (x,y) of complex num-
bers with multiplication and addition coordinatewise. Define an inner
product (a, 8) for B when a = (x;, ¥,), B = (%, %) by («, B) = 4, %, +2y.¥,
and an involution on B by (x, ¥)* = (Z, ¥). This makes B an H*-algebra
in terms of the involution *. Define a new involution ' by (z, y) =
(¥, Z). It is easy to see that ' = * and that ' is not an isometry.

Then next result is an improvement in the B*-case of Theorem 2.22
inasmuch as’ may be a proper involution.

3.4, THEOREM. Let B be a B*-algebra and' any proper involution
on B such that '* =* where * is the defining involution on B. Then

R

Proof. As in the proof of Theorem 2.22, it is suflficient to show
that ' = —x* implies # = 0. Let o' = —x*. Write t =h + k, heH,
keK. Then o’ =h' +k andax* =h — k. Also K’* =h* =h' so k' e H.
Likewise k'e¢ K. We have the decomposition

O=2'4+2*=0+h)+E —k)

so that ' = —h and k' = k.

Congider the closed subalgebra R generated by . R is a commuta-
tive B*-algebra. Since’is an isometry on B (Lemma 3.2) and ' = —h
we see that R’ = R. It follows from Theorem 2.5 that ' ="* on R.
Thus ' = h and h = 0. By considering the closed subalgebra generated
by k and arguing in a like manner we see that & = 0. Therefore x=0.

Theorem 3.4 holds for H*-algebras. We do not prove this here as
the fact is a consequence of Theorem 2.2 and Theorem 3.8.

We turn to some results for algebras with minimal ideals.

We shall have occasion to extend (in our context) the following result
due to Rickart [14, p. 29].

3.5. THEOREM. (Rickart). Let R be a ring and x — x* be a map-
ping of R onto R of period two with (xy)* = y*x* and xx™ =0 imply-
ing € =0. Let I be a minimal right (left) ideal of R. Then there
exists a unique tdempotent e, e = e*, such that I = eR(I = Re).

3.6. THEOREM. Let B be a Banach algebra. Let'and * be two
proper tnvolutions on B such that "™ =*" and let I be a minimal right

ideal. Then there exists a unique tdempotent e, e = e* = e’ such that
I=e¢eB.

Proof. By Theorem 3.5 there exists a unique idempotent e, ¢ = ¢*
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such that I =eB. We have to show ¢ =e. By the Gelfand-Mazur
theorem eBe consists of all scalar multiples of e. We may then write
ee'e = \e, where )\ is a scalar. Since " = *', (ee'e)* = ee’'e = \e whence
N is real. Let a be real and set w = ae 4 ee’. Simple computations
give ww™ = (@* + 2an + \)e and ww’ = (a* + 2a + \)ee’. Note also that
w = 0 implies (a + 1)ee’ = 0, as ¢’ is an idempotent. Thus w = 0 implies
a = —1, as ' is proper. Suppose A < 1. The choice ¢ = —1 + (1—\)2
makes ww’' =0 and thus w =0. Then @ = —1 which is impossible.
Hence » = 1. Suppose X\ > 1. The choice ¢ = —\ + (A — A)Y? makes
ww* =0, w=0. Then (A — 1> =X*— ) or » = 1. This contradiction
shows that A = 1.

Therefore ee’e = e. Then (e — ee')(e — ee’) = 0 so that e = ee’. Ap-
plying ' to this relation we have ¢ = e¢¢’ and ¢ = ¢'.

3.7. THEOREM. Let B be a semi-simple Banach algebra with o
Hermitian-real involution *. Let I be a minimal right (left) ideal.
Then there exists a wunique self-adjoint idempotent e such that I =
¢B(I = Be).

Proof. We show first that for any idempotent j, j7* = 0 implies
j=0. For j — 7%e K so that 5 — 7* has a quasi-inverse ¥,

J=3"+y—G—3w=0.

If j7* = 0, left multiplication by ;7 shows that j = 0.

Let I be a minimal right ideal. Then there exists an idempotent
g such that I=jB. Now jj*=# 0 and jj*j = \j for some scalar \.
Then 77%55% = \j7* and, by taking * of both sides we see that X\ is
real. As above there exists ¥, 7 — 7% +y — (§ — 7¥)y = 0. Multiplica-
tion on the left and right by j yields (1 —\)j + j7*y7 =0. If x =0
then 5*j5* = 0 so that multiplication on the left by j* yields %5 = 0.
This is impossible. Then e = \-!j5* is a self-adjoint idempotent gen-
erator for I. The uniqueness of e follows as in [14, p. 30].

For an algebra B and a subset S let L(S)(R(S)) denote the left
(right) annihilator of S in B. Following Bonsall and Goldie [1]. We
call a Banach algebra B an annihilator algebra if B has no absolute
left or right divisors of zero and if L(I) # (0) (B(I) # (0)) for each pro-
per closed right (left) ideal. By [4, p. 697] every H*-algebra is an an-
nihilator algebra.

3.8. THEOREM. Let B be a semi-simple amnihilator algebra with
an tnvolution *. Then the following are equivalent. (a) * is sym-
metric. (b) * is Hermitian-real and (c) * is proper.
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Proof. If * is symmetric then * is Hermitian-real by [5, p. 402].
Let (b) hold. Suppose that x*x = 0 for some ze B. If x #+ 0 then zB
is a proper right ideal which contains a minimal right ideal I by [1, p.
158]. For some idempotent ¢,e = e*, I = eB by Theorem 3.7. There
exists ye B such that ¢ =xy. Then e = e¢*e = y*x™xy = 0, which is
impossible. Therefore (b) implies (c).

Suppose that * is proper. If * is not symmetric there exists xe B
where —x*x has no quasi-inverse and [ = {—z*xy — y|y e B} is a proper
regular right ideal of B. Now I is contained in some regular maximal
right ideal M. By hypothese L(M) is a non-zero left ideal and therefore,
by [1, p. 158] and Theorem 3.5, contains a self-adjoint idempotent e.
Then e(—x*xy —y) =0 for all y. Also (—ex*x —e)y =0 for all y.
Therefore ¢ = —ex™re = —ex™(ex™)*. The idempotent e¢ can be chosen
as a generator of a minimal right ideal so that we can write exe = ae
where « is a scalar. Let o = a 4 bi where ¢,b are real and set ¢ =
a + (a* -+ 1)"2. Then (ex* — ce)(ex™ — ce)* = (—1—2¢ca + ¢*)e = 0. Hence
ex® = ce, xe = (ex)* = ce and — e = ex™xe = c*e. Thus ¢ = —1 which
is a contradiction. Therefore * is symmetric.

3.9. ExamMPLE. Let B be the semi-simple Banach algebra whose
elements f are functions of two complex variables %, 7 = 1, 2, such that
each f e B is analytic for |2;,] < 1 and continuous for |x,| < 1. Define
S* by f¥(x, %) = f(m and f’ by and f' by f'(%, ) = f(2,, ,). Then
it is easily verified that * and ’ are proper involutions, that '* = * but
’ #___ *'

We call a Banach algebra simple if it is semi-simple and has no
proper closed two sided ideals. By the socle of a semi-simple algebra
A with minimal one sided ideals we mean the algebraic sum of its mini-
mal left (right) ideals. For properties of the socle see [2, Chapter 4].

Let I,,7 = 1,2 be distinct minimal right ideals in a simple Banach
algebra B, I, = ¢,B, with ¢; = ¢} + 0, j =1,2. A slight variation of the
argument used by Kaplansky in the case e,e, = e,e;, = 0 [4, p. 693] shows
that e, Be, is one-dimensional. (See also [11, p. 293].)

3.10. THEOREM. Let ' and * be two permuting proper involutions
on a simple Banach algebra with non-zero socle. Then ' = *.

Proof. As in the proof of Theorem 2.22, we must show that if
2’ = —x* then z = 0. Take such an element x. Let I be any minimal
right ideal. By Theorem 3.6 there exists an idempotent e, I = eB,
€= e’ = e*. Consider exe = \e where ) is a scalar. Then 0=e(z'+2*)e=
2xe. Therefore N = 0 and exe = 0. Let I, be any other minimal right
ideal, I, = ¢,B, ¢! =¢, = ¢, = e¢¥. We shall show that exe, = 0. Note
that™ the socle of B is dense in B,
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Suppose that exe, = 0. Now since B is simple, eBe, is one dimen-
sional. Let w be any non-zero element of eBe,. Write exe,=)\w, A+0.
Then 0 = e,(x’ + 2*)e = Mw’ + w*). Thus w’ + w* = 0. It follows that
ey + y*e =0 for all ye B. In particular y = e, shows ee = 0 = ee,.

Write x =h +k, he H, ke K. As in the proof of Theorem 3.4,
W= —h* k' =k = —k* Since exe, # 0 then either ehe,#0 or eke,+0.
Suppose that eke, == 0.

Set w = eke,. Then u' = eke. We have uu' = ae, uw'u = Be, where
« and B are non-zero scalars. Since uu' is self-adjoint under ’, « and
3 are real. Clearly au = wu'u=pBu. Then a=B. Suppose a=—7*<0.
Then (u + ve)(u + ve) = 0 as ee, = 0. This implies that w = —ve which
is impossible. Set v = a~>u. Then vv' = ¢ and v'v = ¢,. Consider the
matrix units e;; for the algebra M, of all 2 x 2 matrices over the com-
plex field. If we make e correspond with e,, v with e,, v with e, and
e, with e,,, we see that the subalgebra A generated by e, v, v’ and e, is
a copy of M, Also A’ = A* = A. By Theorem 3.8, ' and * are sym-
metric on A so that ' = * on A by Theorem 2.22. But 0 +# «' = —u*.
Therefore eke, = 0.

If ehe, = 0 set u = ehe,, u* = ehe and proceed in the same way
using * as ' was employed above. Therefore exe, = 0.

It follows that ex@ = 0 where @ is the socle of B. Consequently
exB =0 and ex = 0. Since e is an idempotent generator for an arbitrary
minimal right (or left) ideal, Qx =0 and x = 0. This completes the
proof.

4. Real involutions on commutative Banach algebras. In this sec-
tion B will denote a commutative Banach algebra over the complex
field. The space of maximal regular ideals of B is denoted as earlier
by M. With respect to a real involution ’, we denote

{xe Bla’ =} by H, and {xe B|z' = —z} by K.

The item that is not available for real involutions as it is for involutions
is that K = ¢H. Our object in this section is to relate the real involu-
tion structure in B to certain properties of IN.

4.1. LEMMA. A commutative semi-simple Banach algebra is infinite
dimensional if and only M is infinite.

Proof. By [9, p. 59] there is no loss in assuming that B has an
identity. Suppose B is infinite dimensional. By a result of Kaplansky
[6, p. 379] there exists an element of B with infinite spectrum. Thus
M is infinite.

Suppose M is infinite. By arguments of Silov [15, p. 37], there
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exists an element we B with infinite spectrum. Then B is infinite
dimensional for otherwise each element in B satisfies a polynomial equa-
tion and thus has finite spectrum.

4.2, THEOREM. Let B be an infinite dimensional commutative semi-
simple Banach algebra with a real involution '. Then H 1is infinite
dimensional.

Proof. Suppose H is finite dimensional. Now powers of elements
in H are also in H. Thus each x¢ H satisfies a polynomial equation
with real coefficients. Let fe B, f=h+k, he H, ke K. Since
(f — h)’e H, we see that f — h satisfies a real polynomial equation, as
does k. Standard arguments show that f also satisfies a polynomial
equation and hence has finite spectrum. Since f was arbitrary, the re-
sult of Kaplansky [6, p. 876] cited above implies B finite dimensional,
consequently H must be infinite dimensional.

4.3. COROLLARY. If B is a commutative Banach algebra with a
real involution ', and M 1is infinite, then H is infinite dimensional.

Proof. Consider B/R where R is the radical of B. Since R’ = R,’
defines a new real involution on B/R, for if a —be R, the o/ — ¥ eR.
Let H, be the set of self adjoint elements of B/E. By Theorem 4.2
H, is infinite dimensional. If 7 is the natural mapping of B onto B/R,
we have 7H = H,. The inequality in one direction is immediate. On
the other hand suppose a + Re H,, with a =h + k, he H, ke K. Then
a +r =a-+7r, with ,eR,and h -k +r,=h+k+ 7, Thus keR
and hca + R, so h = a -+ R. Thus H is infinite dimensional.

4.4. LEMMA. Let A be a semi-simple algebra over the reals and I
a finite-dimensional two-sided tdeal of A. Then A = I L(I) where
L(I) = R(I) is a two-sided ideal.

Proof. I is semi-simple and finite-dimensional so I has an identity
e. Now I(I) = R(I) by algebra [1, p. 159].
Now clearly I = ¢4 = Ae and ¢*=e. By the Peirce decomposition

A=eAPA —e)A=AeP A1 —¢)
where (1 — e)A = R(I) = L(I) = A(1 — e).
4.5. THEOREM. Let A be a semi-simple algebra over the reals.
Then there exists an automorphism on A with period two and K finite-

dimensional if and only if A possesses a finite-dimensional ideal I on
which there is an automorphism of period two.
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Proof. Suppose an automorphism of A of period two exists with K
finite-dimensional. Denote it by *. Let f,, ---,f. be a basis for K.
Let I be the two sided ideal generated by K. We show that [ is finite-
dimensional.

Let xeA, x=h +k, heH, ke K. Let Ma,f,=ye K. Clearly
hye K. Then if k = > b,f,,

vy =hy + ky =hy + X b,f,>2 afi .

This shows that xy lies in the finite-dimensional subspace of A generated
by f,, -+-, f. and the f,f,,¢,7 =1, ---,n. Likewise yx lies in this sub-
space. Hence I is finite-dimensional. In fact, clearly I equals the linear
space generated by f,, ---, f, and the f,f,. Clearly I* = L

Suppose conversely that A has a finite-dimensional ideal I and there
exists an automorphism x — «' of period 2 on I. By Lemma 4.4 we can
write A = I[P I where I, is an ideal. Define for x = u +v,uel ,vel

x* =y + .

Then x — x* is an automorphism of period two. For this we need only
check (zy)* = x*y*. Note if  =u + v, y = r 4 s in the decomposition
that use ;NI = (0) and likewise 0 = vr = us’ = v'r,

(xy)* = (ur + vs)* = ur + (v8) = ur + v's’, and
@y )y =(u +V)r+8)=ur+2's".

Also Kc I, for if (w +v) = —(u + v)* = —u—2’ then, since we have a
direct sum, w = —u; v = —v'. Thus v =0 and Kc [

4.6. THEOREM. Let B be a commutative semi-simple Banach algebra.
Then the following are equivalent:

(1) There exists a real involution with K finite-dimensional.

(2) There exists a finite-dimenstonal ideal I of B.

(8) M has isolated points.

Proof. By the preceding theorem (1) implies (2). We show that
(2) implies (1). By Theorem 4.5, it is sufficient to show that I has a
real involution. But I is a semi-simple finite-dimensional commutative
Banach algebra with identity. Let 9%, be the space of maximal ideals
of I. But Lemma 4.1, M, is finite. Then I is isomorphic to C(M,) and
thus there is a natural involution on I. Thus (2) implies (1).

We next show that (1) implies (3). For consider fe K. Since
S f% o+« are in K and K is finite dimensional, f satisfies a polynomial
equation with real coefficients. Thus f(M) takes on only a finite number
of values.

Let e, ++«, e, be generators for K. Let M,e M where e(M,) + 0.
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We show M, is an isolated point of M. Let K = {Me M|e (M) =
e. (M), k=1, .--,n}. It is sufficient to show that £ = {M,}. For sup-
pose this has been established. For each k let ¢y, -+, Crnay be the
distinet values of e, (M), c¢., = e,(M,). Let ¢, = max|c,; — ¢z ,l/2 or if
Py =1 set e —|e,,|/2. Let U= (Me MijexM) — ei(M)| < &, k =
1, --.,n} where ¢ = mine,. This neighborhood contains only M,.

Suppose E contains M, += M,. If ge K, g(M,) = g(M,) since e, -+, ¢,
generate K. Let he H. Then he, e K and he(M,) = he(M,). Since
e (M) = e (M) + 0, (M) = h(M,). Thus f(M) = f(M,) for all fe B.
This is impossible.

Lastly we show that (3) implies (2). For consider B, the algebra
with 1 adjoined to B. Since 9 has as isolated point M, so does the
maximal ideal space M, of B,. Then by a result of Silov [16], B, con-
tains the characteristic function ¢ of M,. Since ¢(B) =0, pe B. It is
easy to see that ¢ generates a 1-dimensional ideal of B.

4.7. THEOREM. Let B be a complex commutative semi-simple Banach
algebra with an identity. Let x — x* be u real involution. Then we
can write B =1, @ 1, with I; an tdeal such that I¥ = 1,7 =1,2 and
with * complex linear on I, and conjugate linear on I,

Proof. In the notation of Theorem 2.2, M =S, US,, where S,, =1, 2
are open and closed. By a theorem of Silov [16], there exist e¢,e B,
J =1,2, such that ¢,(S;) =1 while ¢,(S,) = ¢,(S,) = 0.

Let I, =¢;B. Clearly B=1,PI,. Let xel.. For Me S,

¥ (M) = x(o(M)) .

But a(M)e S, by the remarks at the end of the proof of Theorem 2.2,
and thus #*(M) = 0. Then x* = ex™, for x*e I, and [ = I,. Likewise
Iy =1I.

For ze I,

a*(M) =0 =a(M), Me S,,
o*(M) = 2(a(M)), Me S, ,

so clearly « — 2* is complex linear on I,.
For x e I,

2*(M) =2(M)=0, Me S,,
¥ (M) = »(a(M)), M e S, ,
Thus x — «* is conjugate linear on I,.

We call an algebra A decomposable if A =1 P I, with I, + (0) an
ideal, 7 =1,2. Otherwise we call A indecomposable.
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4.8. THEOREM. Let A be a semi-simple algebra over the complexes
with an identity e and suppose that A has a conjugate linear automor-
phism * of period two. A mnecessary and sufficient condition that A s
indecomposable is that (1) every real linear automorphism of period
two on A 1is either complex linear or conjugate linear and (2) every
central idempotent of A is self adjoint under every real linear auto-
morphism on A of period two.

Proof. Say A is decomposable, so A =1 @I, wtih I, an ideal,
j=1,2. Let e=¢ + ¢, with e;el,, 7=1,2. Then ¢, is a central
idempotent so from (2) ¢} =e; for any real automorphism ’ of period
two on A. Let xe I, where ' =, + x, with x,e1l,, k=1,2. Thus
ex =emx, =x;, and x;, =xe; =« since xe I, Whence 2’ =ux;, and
I'=1,, j=1,2 for any .

Let x =2, +x,, x,€I,, 1 =1,2. Define 2’ = 2, + zF. Clearly ’ has
period two and is a real automorphism on A. Also for A complex,
Owe) =z, while (\x,) = (\e,)* = M’ Thus condition (1) is violated
and we have a contradiction.

Suppose now that A is indecomposable. The only central idempo-
tents of A are 0 and e. For if f is a central idempotent A =
SAD (e — f)A is a decomposition of A. Clearly both 0 and e satisfy the
condition in (2). Let ’ denote a real automorphism of period two on A.
From e + (te)) = 0, we have e + ((te)')) = 0. Let u = 27 [(ie) — (te)],
and v = 27[(¢¢)’ + (i¢)]. Thus u and v are central. One easily verifies
that

wt = — e + (te)'(ze) , ot = — e — (ie)'(1e)
2 2
W et (ie)’(ie), ot — £ — (te)(e)
2 2

Thus —u* is a central idempotent so either —u®>=¢ or u*=0. If
—u?* = ¢, then v* = 0. Since A is semi-simple and v is central (vA)* =
(0) and v = 0. Likewise if u*=0, u = 0. Thus (i¢)) = + te. Since ¢
is the unit for A, condition (1) is satisfied.

4.9. COROLLARY. Let B be a semi-simple complex commutative
Banach algebra with identity e, and suppose that B has a conjugate
linear automorphism of period 2. Necessary and sufficient conditions
that N be connected are that (1) any idempotent of B s self adjoint
under each real linear automorphism of period two, and (2) each real

linear automorphism of period two is complex linear or conjugate
linear.
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Proof. Say M is connected. Then by the result of Silov [16], B is
indecomposable. Hence the two conditions above hold.

Suppose 9 is not connected. Then B is decomposable by Silov’s
theorem. This contradicts the conditions of the Theorem 4.8.

Added in Proof. The use of Theorem 3.1 in a paper by R. Arens,
The maximal ideals of certain function algebras, Pacific. J. Math. 8
(1958), 641-648 permits a simpler figure than that of Fig. 1 to be em-
ployed in Example 2.8. The paper of Arens appeared after the present
paper had been accepted for publication.
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