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1. Introduction. The present paper is an extension and continua-
tion of our earlier paper ‘“ Additive Functionals of a Markov Process”’
[5] which will be referred to in the sequel as AF. Roughly speaking
we consider a temporally homogeneous Markov process, x(t), in a locally
compact, separable, metric space and certain other processes derived
from it. We always assume x(¢) has right continuous paths and we
consider processes obtained by stopping «(f) at the boundary of an
open set, G, and subjecting x(t) to a local ‘“ death rate’, V(x), in G.
Our main study is the relationships between the infinitesimal generators
of certain semi-groups naturally associated with these processes.

Actually we use a function space approach to stochastic processes
and so our results are of an analytic nature (i. e. relations between the
transition probabilities and infinitesimal generators) rather than of a mea-
sure theoretic nature (i. e. statements above sample functions, ete.). The
use of a function space approach simplifies many measure theoretic dif-
ficulties associated with conditional probabilities and expectations, but
introduces the difficulty that if G is open then G(t) = {x(-): z(r) e G;
0 <7 <t} is not in general measurable with respect to the c-algebra
B(X) defined in §2. It is known [7] that under certain restrictions (im-
plied by our assumptions in § 2) G(¢) is measurable with respect to the
appropriate completion of B(X). However, we do not choose to complete
B(¥X) as this introduces the other difficulties mentioned above; instead we
consider the set {x(-): x(t) € G; 0 < 7 < t} (G denotes the closure of G)
which is obviously in B(X) and impose a regularity condition on G that
insures us that these two sets are roughly the same. (Theorem 2.1 and
the ensuing development.)

In § 2 we develop the preliminary machinery that is needed throughout
the remainder of the paper. We show in §2 that all the results of
AF are valid without the assumption (P,) of AF. In §3 we investi-
gate the behavior at the boundary of G of the semi-groups introduced
in §2. In§4 we consider the special case in which the infinitesimal
generator of the semi-group associated with «(¢) is a local operator. The
results of this section also extend and complement those of AF. In the
remaining three sections of the paper we study the spectral properties
of the semi-groups introduced in the earlier part of the paper.
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for the many enlightening discussions I had with him during the course
of this work.

2. Preliminaries. Let X be a locally compact separable metric space
with metric o and B(X) the Borel sets of X; that is, the smallest s-al-
gebra of subsets of X containing the compact subsets of X. Let X be
the set of all functions from [0 <t < «] to X which are right con-
tinuous; that is, x(t) — x(¢,) as ¢ | t, for all ¢, = 0. Let B(X) be the o-
algebra of subsets of ¥ generated by sets of the form

(2.1) A= {z()lot) e Ay 0=1, <t < --- <ty A, € B(X),
_7'_—_0,1,"‘%}-

Let p(t, x, A) be a transition probability function defined for ¢t>0,x € X,
and A € B(X), such that given an arbitrary probability measure, y, on
B(X) there exists a countably additive probability measure, P,, on B(%)
for which

(2.2) P = g S
49
p(tz - tu Ly, dwz)' * 'p(tn - tn—lxn—u dmn)

. g ‘U(dmo)p(tla Loy dwl)
An

41

where A is of the form (2.1). If p assigns mass one to a single point,
x, we write P, for P,.
We make the following assumption throughout the present paper.

(P) There exists a Radon measure, m, on X whose support is X and a
non-negative function f(¢, «, y) defined for ¢ > 0,2 ¢ X,y € X which is
jointly measurable (measurablity conditions in ¢ refer to the ordinary
Borel sets of [0 <t < «]) in (¢, x, ¥) such that
(2.3) ot @, A) :g £t @, y)dm(y) for all A e B(X).
4
To be explicit we assume
(2.4) | 7tt, 2 pyamiy) = 1
for all £t > 0, € X and
(2.5) 4 5,0,9) = | £, 2, 2) £(s, 2, y)m()
for all £,s >0 and z,y € X. Finally we assume

(2.6) S £, %, y)dm(z) < Me

where M and « are constants independent of % and t.
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We remark that condition (P) is equivalent to conditions (P,) and
(P,) of AF and hence the results of §2 of of AF are applicable. We
intend to use the same notation as in AF but for the convenience of
the reader we repeat the basic definitions. If A € B(X) we define 4, =
{@(+): x(t) € A} e B(X). For A e B(X),A e B(X),t>0, and v ¢ X we
define P(%;t, z, A) = P, (A N A,). Clearly P(-;t,x, A) is a finite measure
on B(X) for fixed ¢, x, A and P(; ¢, x,-) is a finite measure on B(X) for
fixed 9, ¢, z. It was shown in AF (Theorem 2.1) that P[%; -, -, A] is a
measurable function of (¢, x) for fixed 2, A. If ¢[x(-)] is a complex va-
lued measurable functional on ¥ we write r[¢; t, x, A] for the integral
of ¢ over X with respect to the measure P[-;t,x, A] provided the in-
tegral exists. If ¢ = 0 then » is a measure on B(X) for fixed ¢, and
is measurable in (¢, x) for fixed A. (AF Theorem 2.3) Finally if ¢ is a
measurable functional on ¥ we denote its integral over X with respect to
the measure P, by E{¢|z(0) = «}.

If A is any set let I[A; -](or I,) denote its characteristic function.

LeMMA 2.1. If A € B(X) then I[A,; 2(+)] is jointly measurable in
(t, 2(-)) where A, was defined above.

Proof. We first consider the case in which A is open, thus if G is
an arbitrary open set we define F(¢, x(-)) = I[G,; #(-)]. Since F' only
takes on two values, namely 0 and 1, to show F is jointly measurable
in (¢, 2(+)) it is sufficient to show that

A= {tx() | FE a(-) =1} e B x B(X)

where B is the o-algebra of the ordinary Borel sets on [0, ). Let
{ty1 = {j/2"} where n =1,2,--- and §=0,1,2, .-+ and define

AP = {a(-): F((7 + 1)/2", »(+)) = 1}
and
I = {t: 52" <t < (5 + D/2"} .

Clearly 2 e B(X) and I{” e B, and using the right continuity of the
paths z(-) and the fact that G is open it follows that

Il

U n U I x AP)

k=1 nzk j=0

(2.7) A

and hence F is jointly measurable.

Moreover since I[A,; x(+)] =1 — I[(A’),; ®(-)] where A’ denotes the
complement of A, and I[(A N B),; #(-)]= I[A,; 2(+)]1I[B,; (-)] it follows
that I(A4,; x(+)] is jointly measurable if A is open or closed and the class
of sets for which the lemma holds is closed under finite intersections and
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unions. This class of sets is clearly monotone and thus the lemma fol-
lows.

We now introduce some notation that we will use throughout the
paper. Let G be an open set in X and let G be its closure then for
0 <t<s we define

(2.8)  G(t,s) = {ax(+): 2(ct) e G; for all 7 such thatt <7 < s}

and let G(t) = G(0,t). Since G is closed and each x(-)is right continu-
ous it follows that G(¢, s) € B(X). We further note that the sets G(t)
are increaging as ¢ decreases and hence we define G(t +)= U G(s) Let

B(t, s) be the og-algebra of subsets of X generated by sets of the form
{a(-): w(ty) € A3t < t, < s} and B(t) = B(0, t). Since the c-algebras B(t)
are decreasing as t decreased we define B(t+)= ﬂ B. Clearly G(t,s)e

B(t, s) for each pair 0 <t < s and G(t +) € Bt +)

LEMMA 2.2. Let G be an open set then the function I[G(t, s); z(-)]
18 jointly measurable in (t,s, x(-)).

Proof. We introduce the set G(t,s—) = {a(-): 2(cr) e G; for all ¢
such that ¢t <7 < s} and clearly G(t,s—) ¢ B(X). Moreover I[G(t, s);
x(-)] = I[G(t, s—); x(-)] I[(G)s; #(-)] and thus using Lemma 2.1 it suffices
to prove I[G(t,s—); z(-)] jointly measurable in (¢, s, z(-)). Let {t{®} be
as in the proof of Lemma 2.1 then for each n we defind F,(¢,s, z(-) =
I[G@ESD, 0 —); 2(-)] if ¢ <t < t7,,, 680 <s < t®, and k > j; while if
k = j (the only other possibility since ¢ < s) we define F(t, s, x(-))=0.
Clearly each F), is jointly measurable in (¢, s, #(-)) and using the fact
that each x(-) is right continuous it is easy to see that F,. (¢, s,z (-))—
I[G(t, s—); x(-)] as n— oo. This establishes Lemma 2.2.

Let G be an open subset of X and V a non-negative measurable
function on X. We define the functional.

(2.9) lt, a(-)] = exp| ~ | Vis(e)ds 116 @ #(-)]

for each ¢t > 0 and x(-) € £. From Lemma 2.2 and Theorem 3.1 of (AF)
it follows that ¢ is jointly measurable in its variables and moreover it
is clear that ¢[t, -] is measurable with respect to B(t) for fixed . We
define

(2.10) K(V,G;t, o, A) = r[o[t, 2(-)]; t, , A]

that is the integral of ¢[t, -] with respect to the measure PJ[-;¢,x, A].
This integral certainly exists since the integrand is measurable, non-
negative, and bounded by one. Theorem 2.5 of (AF) implies that
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K(V,G; -, -, A) is jointly measurable in (¢, x) and as before K(V, G; t, «,)
is a measure on B(X).

LEMMA 2.3.

[K(V, 61,0, )RV, G 5,4, 4) = KV, Gs t + 5,0, 4).

Proof. Let S, be the mapping from X into X defined by S,x(-) =
z(t -+ -) and let S,¢[x(-)] = ¢[S,2(-)] for any functional ¢, then Lemma
2.3 is an immediate consequence of Theorem 2.4 of (AF) provided we
show that ¢[t, 2(-)] S.d[s, (-)] = ¢[t + s, 2(-)]. But

Satls, a(-)1 = S{exp| — | Viate)de [1G(); =1}
- epr:” V[x(f)]df]I[G(s); S,(+)] -

Moreover I[G(s); S,z(-)] = 1 if and only if S(-) € G(s), or equivalently

() e S7'G(s) = G(¢t,t +8). Thus S,@[s, 2(-)] = exp[—ng[x(r)]dr]
13

I[G(t, t + s); 2(-)] and the desired result is now obvious.

Of particular importance is the case V = 0 and we write K(t, z, A)
for K(0,G; ¢, x, A). Clearly

(2'11) 0 _S_ K( Vy G; tr xr A) é KG(ty x, A) é p(ty x’ A) .

We next show that G is the relevant set in considering K.

LEMMA 2.4. (i) K(V,G;t,xz, A) =0 if ¢ G.
(ii) K(V,G;t, z, A) =K(V,G;t,z, AnG).

Proof. (i) In light of (2.11) it is sufficient to show this for K.
For any arbitrary set U e B(X) let A° be the set of values of x(0) "as
#(-) ranges over U, then P,[UA] = 0 if z ¢ A°. Moreover K(t, z, A) =
r[I[G(t); -]; t, ¢, Al = P[G(t); t, ®, A] = PJG() N A1 =0 if x ¢ G since
x ¢ G implies x ¢ (G() N 4,).

(ii) Again it is sufficient to consider the case K,. As above
Kyt,x, A) = PJG{t) N A,] but G@) N A, =G({t) N (ANG), and thus

Ki(t, %, A) = PJG(®) N (A N G)] = Kit, =, A n G).

Lemma 2.4 states that the support of the measure K(V,G;t,x, -) is
contained in G and that the support of the function K(V,G;t,., A) is
contained in G, thus we can write Lemma 2.3 as

212) | K(V,Git,0,dy)K(V,G; 5,4, 4) = K(V,G;t + 5,3, 4)
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In the sequel we will consider K as only being defined for z ¢ G and
AcCQG.

We next introduce the transformations that are the main object of
this paper:

(2.13) (U,p)(x) = X PY)pt, ©, dy) = Srp(y)f(t, , y)dm(y)
2.149) TIV, Glp(e) = |_oK(V,G;¢,2,dy) .

We will write T, instead of T,[V, G] if there is no chance of confusion.
In view of assumption (P), (2.12), and Theorem 8.3 of AF it follows that
tU;t >0} and {T,;t >0} are semi-groups of bounded operators on

L(X, m) and LG, m) respectively. Moreover
(2.15) WT AP =1 U AP < Me™ t>0.

We wish to prove that these semi-groups are strongly continuous
for t =20 (with T, = U, =1I). In order to do this we introduce two
conditions which we will assume throughout the remainder of this paper.
The first of these is merely a regularity condition on G; if 8G denotes
the boundary of G, we assume

(Ry) m(BG) =0 .

The second condition is an assumption on the size of V on G, explicitly
we assume

(R) tim ([ fc, o, 9) Vigam(iz =0

for almost all  in G. We remark that (R,) is certainly satisfied if for

some ¢ > 0 we have SES [z, 2, y) V(y)dm(y)dt < o for almost all z in
0JG

G. We now state and prove the main theorem of this section (7,=U,=1).

THEOREM 2.1. The semi-group {U,; t = 0} is strongly continuous for

t =0 and if (R,) and (R,) hold then the semi-group {T[V,Gl;t = 0} s
strongly continuous for t = 0.

Proof. We prove the theorem for {T,[V, G]; t = 0} as the result for
{U,; t = 0} is a special case (take V = 0 and G = X, clearly (R,) and (R,)
are satisfied with this choice of V and G). We write T, for T,[V, G]. As
is well known (see [11], p. 242) it is sufficient to prove that T,p — ¢
weakly as ¢ — 0 for all ¢ e L,(G). Suppose @ is continuous with compact
support then using Theorem 2.3 of AF we see that
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(2.16) (T)(o) = [PV, G t, 2, dy)
= B{o(@(®) exp (— | VIz@dc) 116@); +112(0) = o} .

Clearly o(x(t)) — @(x(0)) as ¢t | 0 and I[G(t); x(")] > I[G(0*); z(-)]ast | 0
for all x(-).

We next investigate the behavior of the exponential in (2.16). In
(2.16) there is no loss of generality in considering V' =0 on the com-

plement of G. With this simplification, since the integrand is non-nega-
tive and jointly measurable in 7 and x(-), we obtain

E{SZV[x(T)]dT | 2(0) = x} - g:E{ VIe@)] | #(0) = «ldt

= ']t 2 v v@aneys.

Using (R,) and (R,) it now follows that there exists an m-null set S c G
such that St VIz(t)ldr - 0 as a function of #(-) in P, measure provided
xe @G — S0 as t— 0. TFinally the monotoneity of the integral implies
that g: V]xz(z)ldr — 0 as ¢ —> 0 for almost all #(-) relative to P, measure

if x € G — S (the exceptional set will, of course, depend on ). Thus for
2eG — S the exponential in (2.16) approaches one as ¢t | 0 for almost all
x(+) with respect to P, measure. Henceif £ € G — S we obtain using
the bounded convergence theorem

(2.17) (T.9) () = E{p(@O)I[G(0+); x(-)] | 2(0) = }

as t | 0. For such z the right continuity of x(-) implies that the right
hand side of (2.17) reduces to @(x). Since m(S) = m(6G) = 0 we obtain
that (T,9)(x) — () almost everywhere on G as ¢ | 0.

But |(T,9) (x)| < sup|@(x)| and thus if + is continuous with com-
pact support it follows that (y», T,p) — (», ») as t | 0. Now using the
fact that || 7, || is uniformly bounded near ¢ = 0 we easily deduce that
T.p — @ weakly as ¢ | 0 for all @ € L,(G). This completes the proof of
Theorem 2.1.

As mentioned above we will always assume (R,) and (R,) in the se-
quel. Condition (R,) implies that L,(G)=L,(G) and since K(V, G, t, z, 0G) <
p(t, ¢, 6G) = 0, we can (and will) write integrals over G instead of G.

Exactly as in §4 of AF we can derive the Darling-Siegert equations
(in AF these were derived only in the case G = X but the method car-
ries over without any trouble) which are for bounded V
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(2.18) K(V,G;t,x, A) = Ki(t, x, A)
_ S‘dsggv(y)K( V,Git — s, y, AR, x, dy)

2.19)  K(V,G;t, e, A) = Kit, ©, A)
_ S‘dsg V@)Kt — 5,9, DKV, G: s, z, dy) .

If Q, and 2, denote the infinitesimal generators of {T,[0,G]; ¢ = 0} and
{T[V, G];t = 0} respectively it then follows exactly as in AF that

(2.20) =0, —V

provided V is essentially bounded on G. Moreover if V is not bounded
one can show (Theorem 5.2 of AF) that D(2,) N DV) ¢ & (2}) and for
P e D2y N DV) we have Qyp = (2, — V)p, where D(0) is the domain
of 2 for any operator 2 and D(V) is the domain of V considered as a
multiplication operator on L,G). In the case G = X we will write £
and Q' instead of 2, and 2.

The proof of Theorem 5.2 in AF depends only on the strong conti-
nuity for ¢ = 0 of the semi-groups involved. (The use of condition (F;)
in that proof is easily avoided; see the proof of Theorem 4.1 of the pre-
sent paper.) However, in order to insure the strong continuity of
{TJ[V,G];t = 0} one needs to assume some condition such as (R,).
This isn’t done explicitly in the hypothesis of Theorem 5.2 in AF and
thus the result is only valid if V satisfies some condition such as (R,).

In the remainder of this paper integrals involving K in which the
region of integration is not specified are understood to be over G.

3. Behavior near the boundary. In this section we investigate the
behavior of the semi-groups {T,;¢ = 0} near the boundary of G. Our
approach is a straightforward generalization of the methods of [9] p.
308-309 and hence we just sketch the development omitting proofs.
However, in many examples it is necessary to use the results of this
section in order to identify the operators we have constructed with cer-
tain classical operators.

We would like to prove that T,[V, Glp(x) — 0 as x — 9G at least for
a fairly wide class of @’s. However, even in classical potential theory
such statements holds only modulo certain exceptional sets on 0G. Hence
we formulate the concept of a regular point on 8G relative to the process
defined by p(t, ¢, A). We introduce the notation S(x,, €) = {x|p(x, x,) <&}
where o is the metric in X.

DEFINITION. Let G be an open set and let z, € 8G, then x, is
called regular provided that there exist positive numbers ¢ = &(%,), 6 =8(x,)
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and an open set C = C(x,) such that

(i) Cc S, 8) =S,

(ii) C and G are disjoint,

(iii) C NG = {x,}, and

(iv) p(t, 2, C) = ep(t, 2, S) for all sufficiently small ¢.

Using the general form of the zero-one law given in [2] the methods
of [9] p. 308-309 are easily modified to yield the following theorem.

THEOREM 3.1. Let G be an open set and let x, € 6G be regular. Let
Snp(y) f@, x, yydm(y) be a bounded continuous function on X whenever @

18 @ bounded continuous function on X. Under these conditions

lim K(V,G;t, ¢, A) =0,

T 170

and if ¢ is a bounded continuous function on G then

lim S(p(y)K( V,Git, w,dy) =0 .

J}—).’EO

4. Local Operators. In §2 we introduced the infinitesimal genera-
tors £ and 2, of {U,; ¢=0} and {T,[0, G]; t=0} respectively. We intend
to call 2, the generalized restriction of 2 to G. The purpose of this
section is to show that if @ is a local operator (to be defined shortly)
then £, is the ordinary restriction of 2 to G. In order to attack this

problem we first establish an approximation theorem which will also be
of use in §6.

In general L,(G) can be imbedded in LX) by the map
U: L(G)— LX)
where

(g = {7 * ) o
@

Thus L,(G) can be regarded as a closed subspace of L,(X) and in the
sequel we will adopt this point of view. We define functions V, as fol-
lows

0Oz eG

nx¢§

V(@) =

and we let {T{™;t =0} be the semi-group {T,[V., X1;t=0}, and
1T;t = 0} the semi-group {7,[0,G]; t = 0}. Our approximation theorem
can now be stated as follows.
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THEOREM 4.1. For all ¢ € L(G) and each t > 0 we have
4.1) lim T"p = T,p

where the limit is taken in L(X).

Proof. Let

Kt 0, A) = K(V,, X: t, ¢, A) = r [exp<—S:Vn[x(r)]df>; t @, A] .

Using the right continuity of x(-) we see that lim exp <—S:Vn[x(r)]dr>:
I[G(t —); »(+)], where G(t—) = {2(-): «(t) € G;0 <t < t}. Thus by the
monotone convergence theorem we obtain llm K, (t, 2, A)=P[G(t—); t,x; A]
or if Ac G that K,(t, x, A) | Kyt x, A) as m— o. It now follows
easily that if @ e L,(G) and is continuous with compact support then
(T™p)(x) — (T,@)(x) pointwise as n — oo. (See proof of Theorem 5.2 in
AF.) But

H(Te) () | = Sl P) | Koty @, dy) = (T | 9 [)(x)

which is in L,(X) and hence by the Lebesgue bounded convergence theo-
rem || T{™p — T.p || - 0 if @ is continuous with compact support. This
implies (4.1) since || T{ || is uniformly bounded in #.

We now define the concept of a local operator in L,(X). All ope-
rators are assumed linear.

DEFINITION. An operator, 2, in L,(X) will be called a local opera-
tor if whenever ¢ € <7(2) and G is any open set with m(8G) = 0 then
ol, e Z(Q) and [,Qp = Q(I,p) as elements of L,(X)".

The following properties of local operators are immediate. LI If
®=0a.e. on an open set, G, with m(3G) =0 and ¢ ¢ = (2) then
Qp =0 a.e. on G.

L2 If f,g ¢ Z7(2)and f = g a.e. on an open set, G, with m(0G )=0
then Qf = Qg a.e. on G

L3 © is a local operator if and only if for all open sets G with
m(3G) = 0 we have I,2 = QI, where I, is being considered as a multi-
plication operator on L,(X).

1 The condition m(8G)=0 is needed if differential operators in E7 are to be local ope-
rators under our definition.
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If 2 is a local operator and G an open set with m(8G) = 0, then the
restriction, 0, of £ to G is an operator in L,G) which is defined as
follows (we regard L.G) as a subspace of L,(X)):

@) =g 9 e L(G) and ¢ e Z(Q)} and for @ € (D)
(4.2) Oup = LOp e L(G) .

Note that since 2 is local (4.2) can be written Qop = ALp) = Q@
since ¢ € Ly(G) implies I,p = ¢ as elements of L,X).
We now state and prove the main theorem of the present section.

THEOREM 4.2. Let Q and 2, be the infinitesimal generators of {U,;
t =0} and [T,[0,G];t = 0} respectively, then if Q is a local operator we
have Q. = Q,;, that s, the generalized restriction of Q to G equals the or-
dinary restriction of Q to G if 2 is a local operator. OFf course, we are
assuming mO@G) = 0.

Proof. Let T = T,[V,, X] be the semi-groups constructed in
Theorem 4.1 and from Theorem 4.1 we know that T"¢ — T,o=T,[0, G]
@ for all ¢ e L(G). Let I,,J,, and J{” be the resolvents of the semi-
groups {U;t =0}, {T,;t =0 and {T{;t = 0} respectively, it then fol-
lows from Theorem 4.1 that J{p — J,@ for all ¢ e L,(G). Moreover
we know from Theorem 5.1 of AF that the infinitesimal generator of
IT™ ¢t =0} is 2 — V,. Let p € O(2) then since Q islocal I,pe Z(2—V,)
for all n. We recall the fact that for each fixed N the range of the re-
solvent of a strongly continuous (f = 0) semi-group is precisely the domain
of the infinitesimal generator of the semi-group [6]. Let ) be fixed then
for each n there exists +r, € Ly(X) such that

(4.3) Iip = I, .
But then
Yo =N = (2 — V) Lip = Nop — QL9 + V, Lip =L,(\p — 29)

since V,I; = 0. Hence , = = I,(0p — 29) € L,(G) and J Py — J .
But this implies that I.p = Jr or I, € J(2,) and

QALp) = N — P =NLp — Np — [,Qp] = QL .

Thus if p e Z(Q,) it follows by definition that @ ¢ Z(2) and @ e Ly(G),
hence ¢ = I,9 ¢ Z(2;) and QGrp = Q¢ = Q.p, that is Q° Qa.
Conversely suppose ¢ € 7 (2,) then there exists «» € L,(G) such that p=
Jr. Define ¢, =J"re L(X), then ¢, e 2 (2—V,)and [N\—(2—V,)]lp,.=
Y. Multiply this last equation by I, and using the facts that 2 is local
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and I;V, =0 we obtain (A — 2)[,p, = Iy = since r € Ly(G). But
Pp = J§p — S = @ and hence I,p, - [, = @ since @ € L,(G). Comb-
ining these results with the fact that 2 is closed we see that pe Z(Q)
and Q¢ = AP — P =A@ — (A — 25)p = 2¢p. Since ¢ € L,(G) this im-
plies e @’(QG) and Q}(p = Q@ = Q.p. That is Q,C QG. This establishes
Theorem 4.2.

Let @' be the infinitesimal generator of {T,[V, X];t = 0} then we
know that if V is bounded Q' = Q2 — V. In general if V is not bounded
we can only conclude that 2 — V < @’ (Theorem 5.2 of AF). However,
if 2 is a local operator we can obtain more information about £’, at least
if we assume a mild regularity condition on the underlying space X and
the measure m. We introduce the following condition which will be re-
ferred to as (R):

(R) There exists a sequence, {G,}, of open sets with compact clo-
sure such that X = U G, and m(8G,) = 0 for all n.

Let 2 be a local operator in LX) and assume (R) holds, then if
I, ¢ e Z(2) for all n» we can define a function, (29)(x), which is de-
termined almost everywhere but which will not in general be in L,(X).
We define (29p)(x) = (2, ) (x) provided x € G, and since 2 is local it is
clear that (Q29)(xz) is well defined independently of the particular sequ-
ence, {G,}, chosen up to a set of measure zero. The point of the mat-
ter is that although I; ¢ € & (2) for all » it may happen that ¢ 7 € (Q)
because (29)(-) ¢ Ly(X). This is a familiar phenomenon in the case of
the best known local operators, i.e., differential operators in Euclidean
spaces. We will say that the function, V, is locally bounded if it is
essentially bounded on compact sets. The following theorem gives pre-
cise information about Q' in the case that 2 is local, V is locally bounded,
and (R) is satisfied. It should be compared with Theorems 5.1 and 5.2
of AF.

THEOREM 4.3. Let 2 be a local operator, and V be locally bounded on
G, and (R) be satisfied, then for every ¢ € Z(2';) we have

(4.4) (2eP)(x) = (2P)(@) — V(z)P(2)

almost everywhere. However neither (29)(-) nor Vo need be in L(G).

Proof. We prove the theorem in the case G = X, the general re-
sult following by a completely analogous argument and an appeal to
Theorem 4.2.

Let (V)= {p:9 € L(X) and Vo e Ly(X)}. Let ¢ ¢ 2 (2')and
{G:} be the sequence of open sets in (R). We first show that I, » e
@) N Z((V) for all k. If
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Vi(x) = {V(x) if V(zg) <n
n if V(x)>n

then let J{ be the resolvent of the semi-group {7\[V,, X1;t = 0} and
J, the resolvent of {T,[V, X];t = 0}. It was shown in AF (during the
proof of Theorem 5.2, see also the proof of Theorem 4.1 of the present
paper) that T[V,, X]p = T[V, X]p and J™Mp — J,@ for all ¢ e Ly(X).
Moreover the infinitesimal generator of {T,[V,, X];¢t=0} is 2 — V,
while that of {T,[V, X];t = 0} is by definition Q'.

Now since @ e O(2') there exists » € L,(X) such that @ = Jr.
Define @, = J{"Jr and then [A—(Q— V,)lp,=v or Q¢, =A@, + V, @ — .
Multiplying this last equation by IGk and using the fact that 2 is local
we obtain

(4.5) WL, 20) = Mo + Vil — L7 .

But ¢, = J{"yr — Jyr = @ and hence IGk(/)'n — IGk(p. Moreover since G,
is compact and V is locally bounded it follows that Vile 9o — VI ® in
L,. Combining the fact that 2 is closed with the above remarks we see
that I, » € </ (2) and hence I, 9 ¢ Z(Q) N “ (V).
From (4.5) we obtain
Q(I(;k(/)) - XIGIC(/) + VIGI::(/) — I(lvk’\ll‘
= /\Iak(/) + VIquD - IG,C(X — Q)
= VI p + IGA.Q’(/) .
Since X = U G, this last equation can be written
(2'p)(x) = (29)(x) — V(x)p(x)

almost everywhere on X, where (2¢)(x) is the function defined above.
This completes the proof of Theorem 4.3.

5. The Density of K. Since K(V, G; t, ¢, A)=p(t, z, A):SA £t 2, 9)

dm(y) it is evident that K is absolutely continuous with respect to m.
The following theorem shows that the density can be chosen to be
jointly measurable in its variables.

THEOREM 5.1. There exists a function k(V, G;t, x, y) = k(t, ¢, y) de-

fined for t > 0 and (x,y) € G x G such that k is jointly measurable in all
1ts variables and for fixed (¢, x)

(5.1) KV,G;t x, A) = S k(t, x, y)dm(y) for all A, and

(5.2) k(t, x,v) < f(¢t, =, y) for almost all y.
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Proof. In the present proof V and G are fixed and so we will sup-
press them in our notation. Let G = U S, where the S,’s are disjoint
measurable sets of finite measure. Since X is a separable metric space
B(X) is countably generated and m restricted to S, is a finite measure.
Under these conditions one can show using a technique due to Doob [3,
pp. 343-344] that there exists a function, %,(¢, x, y), defined for ¢ >0,
x e G,y € S, such that k, is jointly measurable in (¢, «, y) (for this one
needs the fact that K(-, -, A) is jointly measurable in (¢, ) which was
established in §2) and k,(¢, #, -) is a density for K(¢, x, -) with respect
to m restricted to S, for each pair (¢, ). The details of this construc-
tion will be omitted since one merely has to put in (¢, ) in the appro-
priate spots in Doob’s construction. (See [1] where the details are give.)

If we define

k(t, x, y) = glkn(t, x, YI[S,; ¥l
it is clear that & has the desired properties.

6. The Spectral Decomposition: Compact case. We begin with the
following simple remarks.

THEOREM 6.1. If f(t, %, ¥)=f(@, ¥, x) almost everywhere, m xm then
each of the operators T, [V, G] is self-adjoint and || T [V, Gl < 1.

Proof. The fact that U, and T,[V, X] are self-adjoint is contained
in the corollary to Theorem 2.5 of AF. Using Theorem 4.1 and the fact
that the strong limit of self-adjoint operators is self-adjoint we see that
TV, @] is self-adjoint. The symmetry of f implies that M and « can be
taken to be 1 and 0 respectively in (2.6). Hence (2.15) yields ||T,[V, G]| <1.

Theorem 6.2. Suppose G and f are such that
(K) [} £t 2 wram@dm) < o |

then each of the operators T[V,G] = T, is an integral operator of finite
double norm?. That is

(6.1) (Tep)@) = {k(t, 2, p@)im(y)
where k is jointly measurable in its variables and

2 The theory of operators of finite double norm (also called Hilbert-Schmidt operators)
can be found in [10, sec. 97] and slightly more generally in [12], especially pp. 242-248
and p. 353,
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(6.2) Sgk(t, x, yydm(z)dm(y) < o .

(Integrals involving %k are understood to be over G unless otherwise
specified.)

Proof. This is an immediate consequence of Theorem 5.1.

THEOREM 6.3. Let (K) of Theorem 6.2 hold and f(t, x, y) = £ (¢, ¥, )
a.e., then T[V,G] = T, is a positive definite, self-adjoint operator of
Jinite double norm. Moreover there exists a sequence {\;} of real numbers
such that 0 < A <N, Z -+« with A; — + oo, and a complete orthonormal
system {@,} in L(F) such that

(6.3) T.p, = e o, forall t >0
and
(6.4) Qep; = — NP,

where 2}, 18 the infinitesimal generator of {T,;t = 0.

Proof. From Theorem 6.1 it follows that each T, is self-adjoint and
hence it is easy to see that k(¢, x, v) = k(t, y, x) almost everywhere,
m x m for fixed ¢ (k(¢, x, y) is the function defined in Theorem 6.2). Thus
T, is given by an integral operator whose kernel is of finite double norm
and symmetric.

We next show that each T, is positive definite. Since each T, is
self-adjoint and T, = T,, T,,, we see that (T,p, ») = || T,,.» ||’ = 0. Sup-
pose T,¢ =0, then || T,,¢ ||? = (T,p, ) = 0 or T,,» = 0. Repeating this
argument we see that T, =0 for all » and since the semi-group
{T,: t =0} is strongly continuous it now follows that @ = 0. Thus 7,
is positive definite.

Since T, is a compact, self-adjoint, positive definite operator it pos-
sesses a discrete set of eigen values {x,}* with corresponding eigen func-
tions @, such that 0 < g, < || T\l £ 1and ¢, | 0. Moreover the ¢; may
be taken so that {®,} is a complete orthonormal system in L,(G). De-
fine A, = —logy, then \; = —log || T.ll =0 and \,;1 + . We now
prove that @, is an eigen function of 7, with eigenvalue e~*s* for each
t > 0. Consider

0= (T, — )9, = (Tyo- 1/ (Thpo + 7P,
and let

3 Each distinct p; is, of course, repeated according to its (finite) multiplicity.



464 R. K. GETOOR

yr o= (T1/2 — /‘5}/2)7%‘ ’
then
(Tllz -+ /171/2)‘[’ =0.

Hence
0= H(Txlz -+ ‘”}/2)21/‘ H2 = H Tx/z";” HZ + Hy H yr H2 + 2/1J(T1/2‘1h7 ‘;") .

But z¢; > 0 and 7, is positive definite, thus +» = 0 or T,0, = (> ¢;=
e @, Similarly if ¢ = m/2" we see that T,9p, = e *i'¢,; and using the
strong continuity of the semi-group this then holds for all £ > 0. More-
over {®,} being a complete orthonormal system implies that the numbers
e~ exhaust the eigen values of 7T,. Finally the fact that T, is of finite
double norm implies that

(6.5) i e ™' < oo for each t >0 .
Jj=1
To complete the proof of Theorem 6.3 we must show that each

@, € (924 and that (6.4) holds. Suppose T, = ¢ ¢ and let J,. be the
resolvent of the semi-group {7, ¢ = 0}, then

(= _ ot 1
Jup = 30 e T,pdt :SO e Me~Mapdt = T P .

Thus ¢ = J, (M + ¢)e] which implies that ¢ € ~(Q4). Also

’ ’ 1 _
(1t — Qo)Jup = ¢ = (1t — 2b) Yy P

or 2Lp = — x@. This proves (6.4) and again since {@,} is a complete
orthonormal system £ has a discrete spectrum consisting precisely of
the numbers —X,. This completes the proof of Theorem 6.3.

The @'s are, of course, only determined almost everywhere. We now
pick the ¢,’s such that

(6.6) Ppy(x) = e SK (V,G; 1, 2, dy)p ()
= & |1, 7, W, im)

for all #, and in the sequel ¢,(x) will denote these functions which are
defined everywhere.
THEOREM 6.4 We assume the same hypotheses as in Theorem 6.3 and

that @) s defined by (6.6), then i e~ Mg, ()P, (y) converges absolutely
Sor fixred t > 0, %, y, and .
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(6.7) Kt @, ) = 3 e @)
Jor almost all y for fixed (t, x).
Proof. We first remark that since
SK(V, Git, w, d)K(V, G; 5,2, A) = K(V, G t + 5, z, A)
identically in its variables it easily follows that
(6.8) k(t + s, 2, y) = Sk(t, x, 2)k(s, z, ¥)dm(z)
for all most all y for fixed (¢, s, ) where the exceptional set, of course,

depends on (¢, s, x).
We next show that for all ¢ > 0 and all =

(6.9) ?,@) = e |1t ., 1) im)
where @, is, of course, defined by (6.6). We already know that for each

fixed ¢ > 0 the relation (6.9) holds for almost all x. Thus if ¢ <1 we
have for all «

?,@) = ¢ [l(L, @, 9) (Wdm(y)
- e*fg[gk(t, 2, (L = &, 2, Pm(E) e w)dm()
= evgk(t, z, 2)p;(z)dm(z) ,

where the interchange is justified since the integral exists absolutely in
the first order. If ¢ > 1 we have for all «

Sk(t, z, )P, (W)dm(y)

- S Uk(l, 2, 2)elt — 1, 2, y)dm(z)]%(y)dm(y)

= e*a‘“‘”gk(l, x, 2)@,(2)dm(z)

= e Mip,(x) .

Thus (6.9) holds for all ¢ > 0 and all .

For fixed s > 0 the Schwarz inequality, (6.2), and (6.9) combine to
yield

(6.10) L y(2) | < e Sk(s, z, yydm() || @, I .
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By (6.5) we know that i e Mt < o for all ¢ > 0, and combining this
J=1
with (6.10) and the fact that || ¢, || = 1 we obtain

(6.11) St et | py(@) P < oo
J=1
for all ¢ > 0 and all . The Schwarz inequality and (6.11) imply that
j; e~ ' ()P ,(y)
converges absolutely for all ¢ > 0 and all (x, y). Let us define

h(t, x,y) = i e ' ()P ,(Y)
j=1
Let t >0 and « be fixed and let A c G with m(4) < « . Since

Ll ?,(2) | dm(x) < [m(A)]** it follows from (6.10) that

j_E_]l e | () lSAl ?,() | dm(y) < o .
Thus by the Fubini theorem (we regard the sum as an integral over the

discrete measure space {1,2,3, ---} each point being assigned measure
one) and (6.9)

[ 1t 2, wim@) = S e0,@) L 9)

= S [ktr2, o, 1) W)dn@) Ly 7))

Applying the Fubini theorem again (the integral and sum exist absolutely)
we obtain

|1t @ wime) = (w12, 2, 9) S e (L, 9 ) )imty)
This last sum converges absolutely but it also converges in L,(G) to T,,I,

and, of course, the L, sum and the pointwise sum must agree almost
everywhere. Thus we finally have

] ot @, yam(e) = (ict/2, 2, ) (T T r)dme)
= (kti2, o, 9)({ kt/2, 9, 2dm(e) )am)
= Lk(t, x, 2)dm(z) .

Since A was an arbitrary set of finite measure it now follows that h(t, z, )=
k(t, x, -) almost everywhere for each fixed (¢, x), that is, i(f, x, ) is a
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density for K(¢, z, -) with respect to m. Clearly (¢, x, ) is jointly mea-
surable in its variables and since these were the defining properties of
k we may (and will) set k(t, x, ¥) = h(t, z, ) for all ¢ > 0, x,y in the
sequel.

THEOREM 6.5. Under the assumptions of Theorem 6.4
Sk(t, x, ¥)dm(x)dm(y) :i et
j=1

Proof. This is a well known property of such operators. See [12;
p. 353].

7. The Spectral Decomposition:-General Case, In this section we
will use the theory of generalized eigenfunction expansions to obtain a
spectral decomposition for k(t, x, ¥) without assuming (K) of Theorem 6.2.
We begin by giving a short outline of this theory.*

Let T be a (possibly unbounded) self-adjoint operator in L.(G) and
E(\) its spectral resolution. One version of the spectral theorem asserts
that there exists a sequence of elements, {®,}, in L{(G) such that L,(G)

is the orthogonal direct sum 3, O, where ©, is the closed manifold of
all vectors of the form F(T)(p,: where F' e Ly(¢t,) and pt,(+)=(E( )Py, Pn)-
In fact the correspondence F(T)p, — F(-) establishes an isomorphism, U,
of L,(G) onto the direct sum 3, = iLg(y,l) which diagonalizes T in the
sense that 1

(7.1) (UF(T)P)u(V) = FO)(UP)u(N)

for ¢ € O(F(T)). If ¢ e L&) then (Up), denotes the component of
Up in Ly(p,). Moreover, each 9, reduces T and the support of each p,
is contained in the spectrum of 7. The operator 7 is said to have a
generalized eigenfunction expansion provided that there exist kernels
W..(\, ©) jointly measurable in (A, ) such that for all @ € L (G)

(7.2) (Up)) = |P@ Wion, mydmiey
and
(7.3) @ = S| UMW 20

where the precise meaning (7.2) and (7.3) is as follows. In (7.2) there

¢ We follow Garding’s approach to the problem [4]. A set of seminar notes entitled
““Generalized Eigenfunction Expansions’ giving the details of this subject may be ob-
tained from the author upon request.

5 If ¢ is a complex valued function, ¢* denotes its complex conjugate.
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exists an increasing sequence, 1S}, of sets of finite measure such that

G=US, and S p(x) WEN, x)dm(x) exists as a Lebesgue integral for each

S
k and is an eler’;lent of L,(x¢,) as a function of . Moreover, as k — o
this sequence of elements converges in L.(z,) to the value of the integ-
ral. The intergral in (7.3) is defined similarly in L, G) and the sum is
then taken in L.(G).
A complex valued function, b(x, ), defined on G x G and jointly
measurable in (z, y) will be called a Carleman kernel if it satisfies

(7.4) bx) = Sglb(w, y) Fdm(y) < o a.e.[m] .

That is b(x, -) € L,(G) for almost all z. With the kernel, b(x, y), we as-
sociate the domain, O,, consisting of those elements @ € L,(G) satisfying

(7.5) SI () | bz)dm(z) < oo

A densely defined operator, B, in L,(G) is called a Carleman ope-
rator if there exists a Carleman kernel, b(x, ¥), such that for all @ e O(B)
we have

(7.6) (Bp)(z) = §¢><y)b*(x, y)dmiy) .

The following theorem was proved by Garding [4]. (Actually he proved
slightly more but this is all that we will need.)

THEOREM 7.1. Let T be a densely defined self-adjoint operator in
L(G) and we use the notation introduced above. Let ¢ be a complex valued
Sunction measurable with respect to all the p, and such that || >0 almost
everywhere with respect to all the p,. If ¢(T) is a Carleman operator,
then T has a generalized eigenfunction expansion.

In proving this theorem Garding first showed that there existed
functions B,(\, ) jointly measurable in (A, x) such that B.(:, x) e L&)
and B, = {B,(-, %)} € > for all . If b(x, y) is the Carleman kernel cor-
responding to ¢(T') then [Ub(z, -)[.(\) = B,(\, x) as elements of L,(1,)
for almost all . Finally we have

(1.7) W.(n, @) = ¢\ B (N, 2) .
Garding also showed that if ¢ € O, then
(U9 = |p@ Wi, w)im(e)

exists as an ordinary Lebesgue integral and

A0, P) = §¢(x)Bn(x, n)dm(z) e L)
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and A(p) = {A,(-,®)} e .. Also if F = (F,} ¢ 3 is such that

@.8) 271600 F0) P < e
then
R @) = |7 F0 W0, 00

a.e. where the integrals exist as Lebesgue integrals and sum converges
absolutely. This completes our review of Garding’s theory and we now
return to the problem at hand.

THEOREM 7.2.° Let f(t, x,v9) = f(t y,2) a.e. [m x m] and let
SG S, @, yydm(y) < b(t) < o for almost all x, then there exist finite mea-
sures, f,, with support contained in the nonnegative reals and real kernels
W.(\, x) defined for » > 0 and x e G and jointly measurable in (N, x) such
that
(1.9) Wt 2, 9) = ST WL @) W0, 1) 0)

n=1

exists for all t, x,y. (The integrals ewists as Lebesgue integrals and the
sum converges absolutely.) Moreover there exists a null set, S, such that
Jor all t>0and x € S the function h(t, x, -) is a density for K(V,G; t, x,-)
with respect to m.

Proof. Let T, = T,[V,G] then exactly as in Theorems 6.1 and 6.3
it follows that each T, is a positive definite self-adjoint operator and
| T,1l <1. Let Q4 be the infinitesimal generator of {T,; ¢ = 0}, then
—¢ is a positive definite self-adjoint (but in general unbounded) ope-
rator. Moreover, if ¢(\) = e then ¢(—0Qp) = T,. Since k(t,x,y) =
S, x,y) a.e. it follows that 7, is a Carleman operator and thus —£;
has a generalized eigenfunction expansion. Because each T, and hence
— Q4 is a real operator, the isomorphism, U, between L, (G) and >, can
be chosen to be real, i.e., U commutes with complex conjugation. Thus
the kernels W, (\, x) in the generalized eigenfunction expansion of —&Q;
can be taken to be real. Since U diagonalizes —Q! we have

(7.10) (UTip)a(\) = e *(Up)a(\)
for all ¢ € L(G).

From our general discussion of Garding’s theorem we know that
there exists a null set, S, such that (S independent of n) U[k(1, , -)].(\)=
e *W,(\, x) as elements of L,(¢,) for x ¢ S. But

9 If m(G) < o then the hypothesis of Theorem 7.2 implies (K) of Theorem 6.2. Thus
Theorem 7.2 contributes to our knowledge only in the case m(G) = . If in Theorem 7.2
we assume b(f)< e for all x, it then follows that A(¢, ,-) has the required properties for

all ¢ and ®. In this connection see, Lemma 2.2 of R. K. Getoor, An Analogue of
of Mercer’s Theorem, Duke Math. J. 25 (1958), 615-624.
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[Toke(s, =, )(y) = gk(t, Y, 2)k(s, @, 2)dm(z) = k(t + s, %, y)

for almost all y for fixed (¢, s, x), see (6.8).

Thus (Uk(t + 1, z, ')]n()‘) - U[Ttk(]-: €, ')]n()‘)
= e M UkQ, 2, -)l.(\)
= e W (\, %)

as elements of L,(¢,) for « ¢ S. On the other hand if
t<1and ¢ S we have ¢e*W,(\, x) = [Uk(Q, z, -)].(\)
= [UT,-k(, ; *)1(\)
= e OLUk(, %, +)1.(\) ,
or
(7.11) [Uk(t, z, +)].(\) = e MW, (A, x) .
Thus (7.11) holds for all ¢ > 0 and x ¢ S as elements of L,(,). If we

define W,(\,x) =0 for x € S (which does not effect the generalized
eigenfunction expansion) then

W = {eEW.(\, )} = {[Uk(/2, », -)].(M)} € 5
for ¢ S and W =0 for € S and hence

I = 3 [T W0, 2) P 0) <
for all x. Thus applying the Schwarz inequality twice we see that
Wt 3,9) = 5| e W0 @) W, 1), 0)
0

n=1

exists for all ¢, z, y; the integrals exist as ordinary Lebesgue integrals
and the sum exists absolutely. Moreover

[ h(t, @, y) | < R(, x, ) R(E, ¥, y)'* .

We next show that h(¢, x, ¥) has the desired properties. Let A bea
set of finite measure, then

L2 et wao, o011 w0u ) Ldpmoyam()

An=1J0

< M, x, x)' Lh(t, Y, ¥)*dm(y)

oo

< Ikt 2, 0)| 5" | v,y Fdpn)dm()

An=1,0

= [m(A)h(¢, x, m)Lll e WL (n, v)} [Pdm(y)]”

= m(Dh(t, o, )| [k, v, dmEdn@1
< [HE/2I(E, @, Dm(A) < o ,
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where we have used the fact that U is an isomorphism between Ly (G)
and 3. Thus we have

[ ot 2 wam) = £ e w0, 0] W wam@idz e

where the interchange is easily justified by the preceding calculation and
the Fubini theorem. But I, ¢ O, therefore S W.On, yydm(y)=(UL,),(\)

as elements of L,(u,) and hence for all ¢ > 0 and all x ¢ X we have

n=

@12) | btoo, i) = 5 e W00 9 (UL00) -

The right side of (7.12) can be written in the form ({e"*W,(\, ®)},
{(ULY.(\)})s Where (-, -), is the inner product in 3. According to (7.11)
there exists a null set S independent of ¢t such that e W,(\, x) =
[Uk(t, =, -)1.(\) as elements of L,(y,) for all £ > 0 provided z ¢ S. Com-
bining this with (7.12) and the fact that U is an isomorphism we obtain

18) | bt o, 9)dm@) = (ett, @, ), L) = | k(t, 2, y)am()

for all ¢t > 0 and all x ¢ S. We note that S is also independent of A.
Since (7.13) holds for all sets of finite measure the proof of Theorem 7.2
can now be completed by the standard approximation argument.

As in §6 we may as well (and do) take k(¢, z, y) = h(t. z, y) for all
t>0,ye G, and 2 ¢ S. Our last theorem in this section shows that
W.(\, -) is actually an eigenfunction (but not necessarily in L,) of an ap-
propriate integral equation.

THEOREM 7.3. Let the hypotheses of Theorem 7.2 hold, then for each
t > 0 and n there exists a tt, null set, 4,, and a m null set, S, (both depend-

g on t in general) such that e~»W (\, x) = Slc(t, x, Y) WO\, y)dm(y) for
Né A, and x & S. That 1s, W,(\, -) is an eigenfunction of the integral
equation e~ f(x) = gf(y)k(t, x, y)dm(y) for almost all N for fixed t > 0.

Proof. Let b(¢, x) = Sk(t, x, ¥)’dm(y) < b(¢t) for almost all x, then O,
is the set of ¢ € L,G) such that gb(l, x) | 9(x) | dm(x) < . Let A be

a set of finite measure then I, ¢ O, and T,I, € O, since
gb(l, ) | (T.L) () | dm(z) < b(1)j§ Kk(t, @, y)dm(y)dm(z) < bLym(A) ,
A

where we have used the symmetry of k. Thus for almost all »
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(7.15) (UT,L),(\) = S(T;L)(x)vvn(x, 2)dm(z)
and
(1.16)  (UTL),() = e (UL = e | L) W0y, a)dma)

where the integrals are ordinary integrals.
Since the integral in (7.15) exists absolutely we can change the or-
der of integration obtaining

(WL, = | [t 2, )) W, e)im(ayan w)

for almost all A. Combining this with (7.16) we see that
e Watn 9 = [ tt, 2, ) Watr, )dm(a) [am() = 0
4

for almost all A where, of course, the exceptional set depends on A.
Using the facts that m is o-finite and B(X) is countably generated

it is a standard matter to conclude that for fixed ¢ there exists a y, null

set, 4,, and a m null set, S, (both depending on ¢ in general) such that

e MW, (N, y) = Sk(t, a2, Yy Wan, 2)dm(x) provided v ¢ 4,and y¢S. This

completes the proof of Theorem 7.3.
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