SPACES WHOSE FINEST UNIFORMITY IS METRIC

JOHN RAINWATER
Those metrizable spaces for which the finest uniform structure is induced by a metric have attracted a certain amount of attention, and M. Atsuji [1] has collected and extended a list of characterizations of them, regarded as uniform spaces. J. Nagata [6] and B. Levshenko [4] have given topological characterizations of these spaces. This note extends Atsuji's list and gives an analogous list of topological characterizations.

I am indebted to the referee for assistance with the references and improvements in the proofs.

Recall that a metric space (or a subset of a metric space) is said to be uniformly discrete if for some $\varepsilon > 0$, the distance between two different points is always at least ε.

Theorem 1. For a metric uniform space S, either of the following properties implies that the metric uniformity is the finest compatible with the topology; thus they are equivalent to the properties (1)-(8) of [1, Theorem 1].

9. All bounded continuous real-valued functions are uniformly continuous.

10. Every closed discrete subspace of S is uniformly discrete.

Theorem 2. For a metrizable topological space S, the following properties are mutually equivalent:

a. The finest uniformity on S is a metric uniformity.

b. The set of all non-isolated points of S is compact.

c. Every subset of S has a compact boundary.

d. Every closed set has a compact boundary.

e. Every closed continuous image of S is metrizable.

f. Every Hausdorff quotient space of S is metrizable.

g. Every Hausdorff quotient space satisfies the first axiom of countability.

h. Every closed set in S has a countable basis of neighborhoods.

The equivalence of (a) and (b) in Theorem 2 is due to Nagata [6]. Levshenko has given three conditions equivalent to (b) [4]. One is that S is a regular space having a countable family of locally finite coverings such that every locally finite covering has a refinement in this family; the other two are obtained by replacing "locally finite" in both

Received November 10, 1958.

567
places by "point-finite", and then by "star-finite". The mutual equivalence of (d), (e), and (h) is also essentially known; it follows at once from results obtained independently by A. H. Stone [7] and by K. Morita and S. Hanai [5].

Proof of Theorem 1. First, (9) implies (10). Suppose on the contrary that T is a closed discrete subspace of S which is not uniformly discrete. Then for each n we can find two points x_n, y_n in T, at distance less than $1/n$ from each other; moreover, we can assure that x_n and y_n are distinct from the $2n - 2$ preceding points x_1, \ldots, y_{n-1}. Then the bounded real-valued function f on T which is 0 on all x_n and 1 on all other points of T is continuous, but not uniformly continuous. By Tietze's theorem, f has a bounded continuous extension over S; this contradicts (9).

Next, (10) implies (4) of Atsuji's Theorem 1 [1], which says that any two disjoint closed sets have disjoint ε neighborhoods for some $\varepsilon > 0$. Suppose on the contrary that A and B are disjoint closed sets and $\{x_n\}$ a sequence of points in S, each x_n common to the $1/n$ neighborhoods of A and B. No subsequence of $\{x_n\}$ has a limit point, for such a point would have to be in $A \cap B$; thus $\{x_n\}$ forms a closed discrete subspace of S. By (10), it is uniformly discrete; and since no subsequence has a limit point, it is infinite. Then there is a sequence $\{y_m\}$ of distinct points x_n at distance at least ε from each other, such that for each y_m, there are points p_m in A and q_m in B both within $1/m$ of y_m. Again the p_m and q_m have no limit point; but they form a closed discrete subspace which is not uniformly discrete, a contradiction.

Finally, Atsuji shows [1] that (4) implies (8): "All continuous mappings of S into an arbitrary uniform space S' are uniformly continuous". Taking S' to be the topological space S with its finest uniformity, we conclude that the given uniformity is the finest. Obviously this implies (9), and the proof is complete.

Proof of Theorem 2. To begin with, (a) is equivalent to (a'): The diagonal in $S \times S$ has a countable basis of neighborhoods. For since S is metric, the finest uniformity consists of all neighborhoods of the diagonal; and a uniformity is metric if and only if it has a countable basis [3, Chapter 6]. Now if (b) the set N of all non-isolated points is compact, then the corresponding subset of the diagonal (being a compact subset of a metric space) has a countable basis of neighborhoods V_i. If we define U_i as V_i together with all the isolated points (x, x) not in V_i, we have a countable basis $\{U_i\}$ about the diagonal. Thus (b) implies (a'). Conversely, since N is closed, if it is not compact it contains an infinite closed set of points x_n whose distances from each other are bounded below by $\varepsilon > 0$. Given any countable collection $\{U_n\}$ of
neighborhoods of the diagonal, we can find a neighborhood of the diagonal V which does not contain as large a neighborhood of \((x_n, x_n)\) as \(U_n\) does (since \(x_n\) is not isolated); thus no \(U_n\) is contained in \(V\), and \(\{U_n\}\) is not a basis.

Thus (a) and (b) are equivalent. Now obviously (b) \(\Rightarrow\) (c) \(\Rightarrow\) (d). For (d) \(\Rightarrow\) (e), Stone has shown [7] that a particular closed continuous image of a metric space is metric if and only if all inverse images of points have compact boundaries. For (e) \(\Rightarrow\) (h), if \(S\) had a closed subset \(H\) having no countable basis of neighborhoods, the quotient space obtained by collapsing \(H\) to a point would be the image under a closed mapping but not a metric space. Now we can deduce (b) from (h) in the same manner as from (a'), using the supposed points \(x_n\) in \(S\) instead of \((x_n, x_n)\) in \(S \times S\).

Trivially (f) \(\Rightarrow\) (g) \(\Rightarrow\) (h). It remains to prove (b) \(\Rightarrow\) (f). Let \(Q\) be a Hausdorff space which is a quotient of \(S\), with quotient mapping \(f\): \(S \rightarrow Q\). Then the image of \(N\) is a compact metric subspace \(P\) of \(Q\). Every point of \(Q - P\) is isolated, since its inverse image consists of isolated points and thus is open. We shall verify that \(Q\) is a regular space with a \(\sigma\)-discrete base, and thus a metric space [3]. For regularity at a point \(p\) of \(P\), consider any closed set, \(H\), not containing \(p\). Since \(H \cap P\) is a compact set in a Hausdorff space, \(p\) has a closed neighborhood \(F\) disjoint from \(H \cap P\). Then \(F - H\) is a still a neighborhood of \(p\), since \(H\) is closed; and \(F - H\) is closed, since \(H - P\) is open. Now for a base, let \(\{U_i\}\) be a countable basis of neighborhood of \(N\) in \(S\). Each \(f(U_i)\) is a neighborhood of \(P\), because \(f^{-1}(f(U_i))\) is a neighborhood of \(f^{-1}(P)\); and for every neighborhood \(V\) of \(P\), \(f^{-1}(V)\) contains some \(U_i\), so that \(V\) contains \(f(U_i)\). Let \(\{B_n\}\) be a countable base for the space \(P\). Each \(B_n\) is \(P \cap C_n\) for some open set \(C_n\) in \(Q\); let \(D_{ni} = C_n \cap f(U_i)\). To check that \(\{D_{ni}\}\) constitutes a basis for each point \(p\) of \(P\), we must check that any closed set \(H\) not containing \(p\) is disjoint from some \(D_{ni}\) containing \(p\). There is a \(B_n\) containing \(p\) such that \(B_n\) does not meet \(P \cap H\); then \(C_n \cap H\) and \(P\) are disjoint, so there exists some \(f(U_i)\) disjoint from \(C_n \cap H\). But then \(p \in D_{ni}\) and \(D_{ni}\) does not meet \(H\). Finally we adjoin the discrete collections \(E_i\) of all single points in \(Q - f(U_i)\); and the proof is complete.

Remark. The concluding portion of the proof established the equivalence of (b'): \(S\) is a Hausdorff space in which the set of all non-isolated points is compact metric and has a countable basis of neighborhoods. This suggests the question whether the metrizability assumptions can be weakened or removed from any of the other conditions. It is easy to check that any compact perfectly normal space satisfies (g) and (h); and the standard example [2, p. 31, Problem 19] also has the
property that every closed subset has a compact metric boundary. Note, however, Levshenko’s conditions [4].

References

4. B. T. Levshenko, On the concept of compactness and point-finite coverings, Mat Sbornik 42 (84) (1957), 479-484.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Lee William Anderson, *On the breadth and co-dimension of a topological lattice* ... 327
Frank W. Anderson and Robert L. Blair, *Characterizations of certain lattices of functions* .. 335
Donald Charles Benson, *Extensions of a theorem of Loewner on integral operators* ... 365
Errett Albert Bishop, *A duality theorem for an arbitrary operator* 379
Robert McCallum Blumenthal and Ronald Kay Getoor, *The asymptotic distribution of the eigenvalues for a class of Markov operators* 399
Delmar L. Boyer and Elbert A. Walker, *Almost locally pure Abelian groups* ... 409
Paul Civin and Bertram Yood, *Involutions on Banach algebras* 415
Lincoln Kearney Durst, *Exceptional real Lehmer sequences* 437
Eldon Dyer and Allen Lowell Shields, *Connectivity of topological lattices* ... 443
Ronald Kay Getoor, *Markov operators and their associated semi-groups* ... 449
Bernard Greenspan, *A bound for the orders of the components of a system of algebraic difference equations* ... 473
Branko Grünbaum, *On some covering and intersection properties in Minkowski spaces* ... 487
Bruno Harris, *Derivations of Jordan algebras* .. 495
Henry Berge Helson, *Conjugate series in several variables* 513
Isidore Isaac Hirschman, Jr., *A maximal problem in harmonic analysis. II* 525
Alfred Horn and Robert Steinberg, *Eigenvalues of the unitary part of a matrix* ... 541
Edith Hirsch Luchins, *On strictly semi-simple Banach algebras* 551
William D. Munro, *Some iterative methods for determining zeros of functions of a complex variable* ... 555
John Rainwater, *Spaces whose finest uniformity is metric* 567
William T. Reid, *Variational aspects of generalized convex functions* 571
A. Sade, *Isomorphisme d’hypergroupoï des isotopes* 583
Isadore Manual Singer, *The geometric interpretation of a special connection* ... 585
Charles Andrew Swanson, *Asymptotic perturbation series for characteristic value problems* ... 591
Jack Phillip Tull, *Dirichlet multiplication in lattice point problems. II* 609
Richard Steven Varga, *p-cyclic matrices: A generalization of the Young-Frankel successive overrelaxation scheme* ... 617