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1. Introduction. Ordinary linear differential operators of the type

n n—-1
(1.1) L=p,- L 1p L .4y, (n > 2)
dxn dxn 1

will be under consideration on a half-open real interval (0,5](b > 0),
designated as the basic interval. The coefficients p; = p(x)(j =0,1,:--,n)
are real-valued, continuous functions possessing j continuous derivatives
on (0,b], and p,(x) =0 on (0,b]. The point x = 0 is supposed to be
a singularity for L.

The basic operator over the Hilbert space <%0, b) will be obtained as
a restriction of L to a domain consisting of functions which are suf-
ficiently differentiable and which satisfy certain boundary conditions.
When L coincides with its Lagrangian adjoint, conditions are known [1]
under which an operator like this is self-adjoint over <2%0,5b). Our
attention will not be focused on a self-adjoint operator, however, but
on a basic operator which has at least one isolated point in its spectrum.

The investigation here concerns the spectrum of a perturbed opera-
tor. Let [¢, b] denote a closed subinterval of the basic interval, where
¢ is a small positive number. A perturbed operator A. is a restriction
of L to a domain in & (g, b) consisting of functions which are suitably
differentiable on [¢, b], and which satisfy homogeneous boundary condi-
tions at the endpoints £ = ¢ and © = b. Then a set of perturbed opera-
tors is obtained when ¢ varies. It will be shown that for each charac-
teristic value A of the basic operator, there is a characteristic value
Me) of the perturbed operator A. which converges to 4 as ¢ > 0; and
furthermore that \¢) can be represented by an asymptotic expansion,
valid as ¢ — 0.

An asymptotic expansion for the characteristic function % corres-
ponding to Me) will also be established. In particular, the asymptotic
form u(x) = U(x)[1 + o(1)] will be obtained, in terms of the characteristic
function U of the basic operator corresponding to .1, valid uniformly for
2 contained in a certain closed subset of [¢, b] as ¢ > 0. Evidently such
an asymptotic form cannot hold uniformly near the zeros of U, nor can
it hold near the boundary x = ¢ since u is forced to satisfy a boundary
condition at # = ¢. The procedure used herein permits a representation
for the characteristic functions to be obtained in the ‘‘ boundary layer ”’

Received November 5, 1958,

591



592 C. A. SWANSON
near ¢ = ¢, as well as the uniform result stated above.

The distinctive feature of the problem under consideration is that
the domain of the basic operator has been perturbed to a “slightly dif-
ferent ”’ domain, depending upon the small parameter ¢. In the usual
perturbation theories, the operator L itself is perturbed: the perturbed
operator is defined formally by the relation A. = T, + eT, 4 &T, + +-- .
One then develops the characteristic values and characteristic functions
of A. in convergent or asymptotic power series in ¢ as ¢ - 0 [5]. In the
present case, when the perturbation arises from the domain of the opera-
tor, power series expansions are not valid in general, and instead more
general types of expansions will be obtained.

The present method consists of comparing the solutions of the per-
turbed problem with those of the bagic problem by means of an integral
equation of Volterra’s type. The kernel of the integral equation has
a well-known [2, 4] representation as the quotient of determinants of
order n. A specific representation for solutions of the perturbed prob-
lem can then be obtained.

The analogous problem for second order self-adjoint operators has
been treated previously [9]. The present results will correspond to the
class 1 problems in [9], for which there exist linearly independent solu-
tions of (1.1) which can be ordered according to their asymptotic behaviour
near « = 0. Asymptotic expansions for perturbed characteristic values
and functions are then obtained, and the main theorems are enunciated
in §4.

2. Definitions. The asymptotic terminology to be used in the sequel
will first be described. This follows Van der Corput [10]. Asymptotic
expansions of functions f(¢) for small values of the positive, real varia-
ble ¢ will be under consideration. Let &(¢) be a positive function of ¢
with the property that § = o(1) as ¢ — 0. The function & will be called
a scale.

DEFINITION 1. The formal series > f, 15 said to be an asymptotic
expansion for the function f(¢) with scale 6, as €—0, if the order

relation f— fi — fo — +-+ — fi = O(8%) holds for each 1 =1,2,---.
The notation f~ Y. f; signifies that >} f, is an asymptotic expansion
for f.

Suppose that f and f; are functions not only of ¢, but of an addi-
tional real variable © on an interval I, which may depend on &. Let &
be a function of ¢ and x with the property that 8§ =o0(1) as ¢—0,
uniformly for « e I. Then a uniform asymptotic expansion for f is
defined as follows.



ASYMPTOTIC PERTURBATION SERIES 593

DEFINITION 2. The series >, f; s said to be an asymptotic expansion
for f with scale & as ¢ -0, valid uniformly for xe I, if for some
Sunction a(x, ¢) the order relation f — fi— fo — -+ — f; = O(ad’) holds
uniformly for x € I for each 1 =1,2,---.

The differential operator (1.1) is under consideration on the real
interval (0, ] (b > 0). It will be assumed without essential loss of generali-
ty that

(2.1) p@)=—1, Pu(®)=0 0<2<h.

All points in the interval (0, b] are supposed to be ordinary points of L
and x = 0 is supposed to be a singular point.

Let $ denote the Hilbert space <2%0, b), and let (,) and || || denote
the inner product and norm respectively in . Let =" '(a, b) denote as
usual the class of real valued functions on (@, b) possessing n — 1 con-
tinuous derivatives. Certain transformations on  will now be defined
by suitably restricting the formal operator L.

DEFINITION 3. The basic domain D 1is the set of all w € O satisfying
the following conditions.

@) ue z*0,b) and u™ P is absolutely continuous on every closed
subinterval of (0, b].

(b) Lued

(¢) u satisfies a set of n—m (1 <m < n) linearly independent
homogeneous boundary conditions at x = b, of the form

2.2) Zuly] = j"zemyv-%b) —0 (k=1,2+n—m)

Jor real numbers B, [2].
The basic operator T is then defined to have domain © and

(2.3) Tw=ILu uedD.

It is possible that T is already a self-adjoint transformation on the
space . When »n = 2, this corresponds to the limit point case in Weyl’s
clagsification of singular points [2, 11]. If T is not self-adjoint, one
can try to obtain all possible self-adjoint transformations by adjoining
suitable conditions at # = 0; but we are not going to be interested in
forming self-adjoint transformations, and instead make some direct
assumptions.

A set of n linearly independent functions Vi (x) on (0, b) are said to
be asymptotically ordered as © — 0 when there exists a number x, > 0
so that each V, > 0 whenever 0 < z < %,, and

o Vi®) _
(2.4) lim &) g (i=1,2 -om—1).
7}1{)1 Vj,bl(m)
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This property induces an ordering on the set {V;}, which can be in-
dicated by the chain

Vi< Vo< ees < V.

Let 4 be a real number, and consider a fundamental set of solutions
U, =Ufx, A (t = 1,2, ---, n) of the differential equation Ly = Ay. Let

(2.5) W, = Wz, 4) = (— 1)"+'det(T, ")
h,t=1,2, e ,m;h+t;k=1,2, -+, n —1).

The following assumptions will be made.

ASSUMPTIONS For at least one real number A, there is a funda-
mental set of solutions U, of the differential equation Ly = Ay with the
properties

(1) The set {U,;} is asymptotically ordered as x — 0.

(i) For j=1;k,2=1,2,--c,n—1;and j=k=n,1=1,2,--+,n—1,

U (° _ =
(2.6) mngj(t)Uk(t)dt —o(1) as @ —0.

(iii) For some positive number 2,

(2.7) [U@)Wit)| < | Un(@) Wo(0)]
(0<x£t£xo) (7::172""772"’“1)

(V) Upop € D) Uponll = 1.

vy (W,, U,) exists for each k=1,2, ---,n—1, and (W,, U,_,.) # 0.

(vi) The solution space WM of (2.2) in the manifold {U,} is spanned
by the m functions U,_n, Up_pary =+ vy Upesn

It will be convenient to use the notation

(28) VJ = n—m+ J (.7 = O’ 19 ctty m) .

The assumptions (i), (ii) correspond to those for class 1 problems in
[9]. When #n = 2, assumption (iii) is implied by (i), and (v) is implied
by (iv). Concerning (iv), it may be that not only U,_,, but a subset
N of M with dimM >1 lies in D. However, our attention will be
focused on the function U,_,, in fact the minimal element of the chain
U <U,< -+ < U, which lies in ®. The function U,_, will be called
a basic characteristic function for 7', corresponding to the characteristic
value 4. It can be shown that under the assumptions, the characteristic
values are isolated numbers.

The Wronskian determinant W of the functions U,(x) is a constant
because of Abel’s formula [4], since p,_,(x) =0, and without loss of
generality
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(2.9) W=det(U"v)=—1 (1,5=1,2 ---,m).

The perturbed transformation A. will now be defined as a restric-
tion of L to functions y satisfying a set of m homogeneous boundary
conditions at & = ¢, of the form

(2.10) Fulyl = 3y () = 0
0<e<b (1=12,+--,m),

where the «;; are real-valued functions of ¢, and at least one of the
functions «;,, a;,, - -+ «;, does not vanish for any ¢. It will be necessary
to assume that these functions satisfy some mild conditions, which will
be stated below.

Let |.<2.;] denote the boundary operator defined by
| Zall] = Sla@llye 2@l =12, m).

Let |det| (a;;) denote the sum of the absolute values of the m! terms in
the expansion of the determinant of an order-m matrix (@;;). Consider
the matrix (b;,) with elements given by

(2.11) by = bilc(s) = 2 Vil ('é; k=1,2,+--m),

where the functions V, are given by (2.8). Let (d;,) be the matrix
obtained from (b;,) by replacing the hth column vector (b;,) by the vector
(— by) = (— [ V,]) (the dependence of (d,;) on ~ will not be indicated
in the notation); and let (e;;) be obtained from (b;,) by replacing (b;,) by
any vector whose components are dominated by those of (| <2.;|[U,]),e <.

ASSUMPTIONS. It will be assumed that the functions

(2.12) Videt(dy). Vildet|(ew). U,ZulUj]
Videt(by) = Vndet(by) U, z[U,l

are bounded functions of € whenever 0 < e <g (j=1,2,--+n—1;h =
1,2, .---m), and in particular

(2.13) det(b;) #0 0<e<Leg,.

DEFINITON 4. The perturbed domain D. is the set of all we 9
satisfying the following conditions

(@) ue &Y b) and u™ P is absolutely continuous on [, b].

(b) LueH

(¢) u satisfies the n — m boundary condition (2.2) at x = b.

(d) w satisfies the m boundary conditions (2.10) at x = ¢&.
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(e) u is identically zero on (0, ¢).
The perturbed operator A. is then defined to have domain ®. and

(2.14) Auv=Lu unweD,.

The domain D, is to be considered as a perturbation of the basic
domain ®, and the perturbation is due to the boundary conditions (d) of
Definition 4 being adjoined. In a sense, the operators A. converge to the
basic operator T as ¢—0 [8]. Our problem is to show that the characteristic
values and functions of A. converge to those of 7T, and furthermore to
obtain asymptotic representations which are valid for small values of e.

3. The comparison procedure. The characteristic value problem under
consideration is

3.1) Lu=xu uecdD,.

Let {U,} be the fundamental set of solutions of Ly = Ay which was
postulated in §2. Let V,= U,_, be the basic characteristic function
corresponding to the characteristic value 4, that is

(3.2) LV, =4V, V,e® ||V,il=1.

Let U be any function in the manifold spanned by the n functions U,.
Let w = u(x, \) be defined by the integral equation

(3.3) w(@, \) = Ue, 1) + (4 — \) S'fG(x, t5 Ayult, \)dt

for ¢ < < b, and let
wx,x) =0 for 0 <o <e,

where the function
(3.4) G, t; A) = >, W(t, HUL(x, A)

is obtained by the classical method of variation-of-parameters [4], and
W, is given by (2.5).

LEMMA 1. If Ue & e b), then for each fixed value of )\ and ¢
there exists a solution w of (3.3) in =(s, b). This solution satisfies
the differential equation (3.1), and furthermore satisfies the n — m
boundary conditions (2.2) at x = b if U satisfies these same conditions.

The proof is well-known [2]. In the sequel U will lie in the solu-
tion space of (2.2) in the manifold spanned by {U} (i =1,2, .- n).
Then U will have the form
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(3.5) Ux) = Vi(x) + % Vi(@) + -« + Vs Vipoi(@)

where the numbers v, are independent of x but depend on &. The 7is
are to be determined from the boundary conditions (2.10).

LEMMA 2. If the numbers 7, v *+*y Ym-1, A can be delermined so
that the solution w of the integral equation (3.3), with U given by (3.5),
satisfies the m boundary conditions (2.10), then ) is a characteristic
value for A. and u is the corresponding characteristic function.

For u satisfies all the conditions of Definition 4, so that u e .,
and by Lemma 1, Lu = \u.

Let H be the integral operator defined by
(3.6) Hf @ = | G, t; Drat

and let H' be the jth iterate of H. The solution of (3.3) can then be
expressed in the form

(3.7 w(@) = Ulx) + jz:l(A A\ HU(x)

which is uniformly convergent and termwise differentiable up to order
n (according to Lemma 1). Application of the boundary conditions (2.10)
gives the set of m equations

(3.8) 0= Zu]l = 2LU] + i (A4 — Ny 2 [HU] .

Define for convenience
(3.9) Yp=A—N, 7 =1.

Then by (3.5), equations (3.8) can be written in the form
m—-1
(3.10)  — ZlVil = X7 Al Vel + Ve[ HV,]
m—1 oo M—1 . .
+ Tm ’Z{ Vi B HV ] ;2 z‘;;“o(yk(y’j’“(‘/;)”[ﬂj V] G=1,2 ---m),
These are power series in 7, ¥, +++ 7. Our problem is to invert
them, but first certain preliminary results concerning the size of the
coefficients in (3.10) will be established. These results will be given in

a sequence of lemmas.

LEMMA 3. The following asymptotic forms are valid

(8.11) HU(x) = 2, U (%) + o[U,(2)]
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as x—0, k=1,2,---,n — 1, where

(3.12) 2y = (W, Uy) .

Proof. According to (3.4) and (3.6)

HU(x) — 2, Uy(x) <« Ufx) (7
(3.13) e =S5 S W, () U(t)dt

_ S W)U (t)dt .

Since (W,, U,) exists by assumption (v), the last term on the right side
of (3.13) is o(1) as # — 0. By assumption (ii), each term in the sum-
mation is also o(1) as x — 0.

The following notation will be used:

(8.14) U@ = maxkimum {1 U2)|}

U™ (x) = maximum {| U, (x)|}
k

W(x) = maximum { | W(x)|}
0<a<b (ol +1=1,2, -, )
(3.15) (@) = Sb W) Ut)dt v <% <b

- §z°| W) Uyt + g(z) 0<z<a,,

where x, is a positive number, as postulated in (2.4), (2.7). The function
g(x) is uniformly bounded for x, < x < b.

Levma 4. There s a constant C independent of x and 7 so that

(3.16) | B U )| < ¢ 9@ 1)
(5 — D!
O<a<db, k=12 .-, —1; j=12...

Proof. Suppose that z, < & < b. Then it follows easily from (3.4),
(3.6), and (3.15) that

|HU(x)| < ng(x)Ulz) .

Hence (3.16) is true for 5 = 1. Under the assumption that it is true for
7, it follows that
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U@ < 5 | Wi U e e L0E D ar

%j A . A -1
<0 = U) [ votaen-at

= 2 [g(@)} Ule) .
7!

Therefore (3.16) is valid by mathematical induction.
Suppose now that 0 < ¢ < x,. Then

1HU@) < 5 I OUE U0 dt

+ 3 [ mou@Uwa

t=1

< n maximum S| W) Un(@)Uy(t) | dt + ng(w) U(e) .

It follows from assumption (v), below (2.7), that (3.16) is true for 5 = 1.
Proceeding by induction.

@) < 5 16 Uee IO ) ar

S [ng(t))~
+ 5 [ mouee I 0 ar

< c_(j_L’l)_, RUACUAB O SO

+ 0 ! O UmIsp- ol

&
...

<C —ZF,—[g(x)]JfJ(x) :
This completes the proof of Lemma 4.

LEMMA 5. For the m boundary operators <2.[y] defined by (2.10),
the following asymptotic forms are valid:

ase—>0,1=1,2,«-e,m;k=1,2, -+, n — 1.

Proof. 1t is permissible to differentiate HU,(x) under the integral
sign. Hence
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F[HU] — 272Ul _ _
EZAN

[ Wit

= ﬂ—@—”[—[—]ﬂgbw U, (t)dt
h%"n L@“[Un] o h() lc() .

The first term on the right side is o(1) as in Lemma 3. Each term in
the summation may be decomposed into the factors

AORE U,(e)2.U,]
) Sevv,xt)m(t)dt, SEE A

The first factor is o(1) as ¢ —> 0 by (2.6), and the second factor is bound-
ed by hypothesis (2.12). These considerations establish (3.17).

It will be convenient to introduce, in addition to (2.11), a matrix
(c;) defined by

(3.18) Cir(€) = bu(e) for k=1,2,+++,m —1
Cim(e) = g;i[HVO] (,L = ]-) 27 °t Y m) .

Then (8.17) becomes, for k = n — m,

(3'19) cim(‘s) = 'Qn—-mbim(e) + O[bim(e)]
as ¢— 0, 1=1,2,-¢,m.

An analogue of Lemma 4 will now be stated. The proof is similar
to that of Lemma 4, and will be omitted.

LEMMA 6. There is a constant C independent of « and j so that

T @) < LU L Te-v)

(3.20) | U] < o B8Ol 2101

0<e<e(t=1,2+s,m;k=12,---,m—1;5=1,2,+-+)

where | 7.\ is defined below (2.10) and U is defined by (3.14).
4. Characteristic values and functions. The problem has been re-
duced to investigating the solutions v,(j=1,2,---,m) of the system

(3.10). The quantity 4 — v,,, depending on ¢, is the characteristic value
A under consideration. The system (3.10) can be written in the form

(4.1) —_ biO = ZC”G")’,G + ZCLJIJZ"'JM,Y{IV;Z “e s ‘Y;Zn
k=1
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where the last summation is extended over indices 7, 7,, +++ 7. With the
properties

(4'2) jl é 1! .7.2 é 1! .'.’jm—l é 1;.7.m 2 1 .

The coefficients c;,, are given by (3.21), (2.11), and the -coefficients
C,, Ipdgeeed,, AT of the form 2, ,|H»V ] (j.=1,2,-++;k=0,1,+--,m—1).
The latter will sometimes be abbreviated by C; ...
It follows from Lemma 6 that
(4.3) G,y | < I 110
" (Jm — D!

O<5S€D, ’1::1,2,"',m;j,n:1,2,"'

IA

The determinant of the linear system

(4.4) — by = Sleut,s (i=1,2m)
k=1

associated with (4.1) has, on account of (3.18), (3.19) the following

asymptotic behaviour

(4.5) det (¢;) = Q,-mdet (b:)[1 + o(D)]ase—0 (i, k=1,2,:--,m).

Since 2,_,, #+ 0 by hypothesis (v), and since det(b;,) # 0 by (2.13), the
linear system (4.4) possesses unique solutions v, for 0 < e <¢,. Hence
(4.1) can be written in the form

(*.6) Tomvet 5Dy, e it et (R =1,2, 050, m)
where
det(d,,)
AT __detldu) gy 4 o1)] as e — 0
(4.7) Vi Qn_mdet(bm)[ +o(1)] as ¢—
and
(4.8) Dy, e = 98900 1y 4 o)) as e 0.

0, det(bye)

Here, the matrices (b;,), (d;;) have been defined in (2.11)-(2.12), and
(as) is defined as follows

Oy = by for k=1,2,--+,m,k+h
=C, - for k=n.

The result (4.5) has been used in obtaining the asymptotic forms (4.7),
(4.8).
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It follows from the assumption (2.12), and from (4.3), (4.7), and (4.8)
that there exists a constant C so that

4.9) [va(e)| < Cl V(&) Vo)l
(4.10) D, | < Lo _ldet](ey)
TS T (G — D 12, det(by)]
- [Cy@n] V(o)
- (jm - 1)! th(e)l

0<e<e,h=1,2 -, m;jn=12,+--.
Let new variables s, be introduced by the relations
(4.11) Yn = VYpSh (h=1,2,.e,m).

Then the system (4.6) becomes

(4.12) s, =1+ FE,, ++-, 808000 8)m
where
(4.13) Eh) see :_D’” "',}J{l)}%‘z--- DIJLM—I_.. l)qj:,bm .

LEMMA 7. The system (4.12) possesses unique solutions s,(¢) in the
netghborhood of ¢ =0, which may be represented by the convergent
series

(414) s, =1+ I‘;—:—_‘JZB]LIC ’

where the coefficients B,, are obtained by formal substitution of the m
power series

(4.15) s =2 + > Bud*
k=2
into the system

(4.16) sn:z—[—ZE'h,...’3{13;2...anm

and equating the coefficients of each power of z.

Proof. The Cauchy majorization procedure [3, p. 470] will be used
to show that (4.16) has solutions s, representable by power series ex-
pansions, convergent when z = 1. Accordingly, (4.16) can be dominated
by the system

(417 S, =S=Z—-[1+ RS, + -+- + S)1 +[1 — RS, + --- S
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provided R is chosen suitably. In the power series expansion of the
right side of (4.17), the sum of the exponents for any term is > 2, as
is the case also in (4.16).

It can be seen from (4.9), 4.10), and (4.13) that the system (4.16)
is dominated by (4.17) whenever R-! is of order v,(¢)g(¢), which is o(1)
as ¢— 0 by (2.6), (3.15). Then, according to the Cauchy majorization
procedure, the series (4.15) for the solutions of (4.16) are dominated by
the series for the solutions S, of (4.17). However, the latter are easily
constructed, as follows:

_ RR+mZ) [ _ (1 _ 4Bm+m)Z\"
(4.18) Sn—m[l <1 (R +mZ)y ) :|

and the right member is developable in a power series about Z = 0,
with radius of convergence Z, of order (v,9)~*. Then the m series (4.14),
obtained from (4.15) when z = 1, are convergent series expansions for
the solutions of the system (4.12).

LEMMA 8. The series on the right side of (4.14) constitutes an
asymptotic expansion of s,(€) with scale & = v,(e)g(e), as ¢ 0. In
particular, the following asymptotic forms are valid:

(4.19) sy (e)=1+0(1) as €¢—0 (h=1,2, -+, m).

Proof. The coefficients B, in (4.14) are dominated by the coefficients
in the power series expansion of (4.18). Hence
2| Buel = O(R™) = Ovi(e)g(e)]

which establishes (4.19).

The coefficients B,,, as determined by formal substitution of (4.15)
into (4.16), have the form

(4.20) By = X PE, 5,,3,,....;B1w,Bag, * * * (BumBum, *** Bum,)
where the summation extends over indices

T Gar ooty 03 Qo Qay * o0y Qe Moy Mgy ===y M,
with the properties

jlglyjzglr'°"/i:1y2y"';
q1+qZ+"'+qm—1+m1+m2+"'+mi=k'

The coefficients @ depend on the indices but not on ¢. It is understood
that B,, = 1. It follows from (4.13) that
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J— [ 2 f -
Eh,Jl,Jz,---,z = O(pfi*ha*...#i=t)gi-1 |

Then an inductive argument shows that B,, = O(8*%) (h=1,2,«-+,m; k=
1,2, ..-). Hence by (4.14),

Sp —1— By, — «++ — By, = 0(8"),

so that the series on the right side of (4.14) is an asymptotic expansion
for s, with scale 8(¢) as ¢ — 0.

According to (4.11), (4.14), the solutions of (4.6) are
4.21) 72(6) = va(e) [1 + §2Bhk(e):‘ (h=1,2, -+, m)

and the right member constitutes an asymptotic expansion for 7v,(c) as
e—>0 for each h =1,2, ---,m. Evidently (4.21) are also solutions of

(4.1) and hence of (3.10). In particular the following asymptotic forms
are valid:

(4.22) 7u(&) = vu(e)[1 + 0o(1)] as e >0 .

THEOREM 1. For each characteristic value A of the basic operator
T, there exists a characteristic value Me) of the perturbed operator A.
which converges to A as ¢ — 0, and furthermore \c) has the convergent
asymptotic expansion

(4.23) ME) = A — vu(e) [1 + 5Bl
with scale v,g as ¢ — 0

Proof. The coefficients v, given by (4.21) have been determined so
that the function w, with the representation (3.7), satisfies (3.10), or
(2.10). Then Lemma 2 shows that &) = 4 — v,(¢) is a characteristic
value for A., and that w is the corresponding characteristic function.
The expansion (4.23) follows from (4.21).

In particular, the following asymptotic form is wvalid

Me) =4 — v, (&)1 +0o(1)] as e—>0 .

An asymptotic expansion for the characteristic function w = wu(x, \)
corresponding to A can now be obtained directly from (3.7); for it fol-
lows from (3.7), (3.16), (4.23) that

(@, \) — U, 4) — S [vu(& P H U(z)

J=1

= 7,() U, MO {[7,.(e)9(2)]"}
e<e,e<x<bN=12--..
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Furthermore, v,.(¢)g(x) = 0o(1) as ¢ > 0, uniformly for ¢ <« < b, on ae-
count of (2.6), (3.15), (4.9), and (4.22). Then u has the asymptotic ex-
pansion

(4.24) w(w, \) — U, 4) ~ ji [yl H Ulz)

with scale ¢ = v,.(e)g(x) as ¢ — 0, valid uniformly for ¢ <x <b. The
function « in Definition 2 can be taken to be fym(e)ﬁ(x, A). The fune-
tion U(z, 4), depending on ¢, is defined by (3.7).

In particular, the result

(4.25)  u(z, \) = Vi, 4) + S Vila, 4) + Ol U, 4)]

displays the error term wu(x, \) — Vi (x, 4). When 2z is in a closed sub-
set I of ¢ < 2 < b which is independent of ¢, the error term is of order
v,(e), or Vi(e)/Vi(e), uniformly for z € I. On the other hand, when the
ratio /e remains bounded as ¢ — 0, the error term is of order v,,(¢)U,(),
or Vy(e).

THEOREM 2. The characteristic function w(x,\) corresponding to
the characteristic value \e) of the perturbed operator A. possesses the
uniform asymptotic expansion (4.24), valid as ¢ — 0 over the perturbed
interval ¢ < x < b.

Some special cases will now be stated. Let J[V,] denote a closed
subset of the interval (0, ] with the property that V,(x, 4) does not
vanish whenever ¢ € J[V,]. Then the asymptotic form

(4.26) w®@, N) = Vi@, A1 + o(1)]

is valid as ¢ — 0, uniformly for z e J[V,].

Further, let J[V,, V}, -+, V.1 (k=0,1, --., m — 1) denote a closed
subset of (0, b] on which none of the functions V,, V,, --., V, vanish.
Then the asymptotic series

(4.27) u(@, M) = Vi(x, 4) + () Vi(e, 4) + -+ - + 7(e) Vi, D1 + o(1)]

is valid as ¢ —» 0, uniformly for xe J[V,, V}, ---, V] (k=0,1, -, m —1).
5. Regular singularities. In this section, the point £ =0 is sup-

posed to be a regular singular point for the differential operator (1.1).

Specifically, it is assumed that the functions p,(x) have the asymptotic
behavior

(5.1) DyT) ~ Dy 3on@’ ™"+ Dy g A e
as t—0(7 =0,1,.--,2—2), and that (2.1) holds. Letx, (j=1,2,---,n)



606 C. A. SWANSON

denote the 7 zeros of the polynomial

jz;lpJ.J—nﬂ-(ﬂ- - 1) et (71' - .7 + 1) + Do, -n »

where p,, = — 1, p,-, -, = 0, all supposed to be real and distinct, ordered
as follows:

(5.2) 771>7r2>“'77n-

Evidently

(5.3) J}_;177:,=1+2—1----(n—l).

Then the differential equation Ly = Ay possesses a fundamental set of
solutions U,(z) with the asymptotic behavior

(54) UJ(W) ~ ajxﬂj x—0 (.7 - 1! 2: cty ’}’L) ’

where the constants a, are independent of 4 as well as z.

It follows from (5.2) that the solutions (5.4) are asymptotically or-
dered as x>0, and hence assumption (i) of section (2) is satisfied.
Also, according to (2.5) and (5.4),

Wj(x)~bjxﬂj,,8,:%7r¢—l—2— e — (0 —2),

and from this it is seen that assumption (ii) is valid. From the asympto-
tic behavior of U, and W, as x — 0, it follows that

e < (%)

and hence assumption (iii) is also valid. Then in the case that the ex-
ponents at the singularity are real and distinct, ordered by (5.2), the
assumptions (i), (ii), (iii), are all satisfied independent of the number A.
The distinctness assumption could be removed by introducing solutions
like 2z, ™ log %, corresponding to a double zero = [4]. This has been
done in [9] for the case n = 2, but the discussion will be omitted here.

Concerning the boundary conditions (2.10), suppose that each func-
tion a,,(e) #0(0 <e<¢;1=1,2,+--,m) and that the limits

(5.5) 0., = lim £ %ul8).
all exist. Then sufficient conditions for (2.12), (2.13) to hold are

(5.6) Pin F 0; det(pt) # 0

where
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Hie = O + %Uzﬂfk(ﬂ'k —1)eee(me—J5+2).

Similar conditions can be obtained when some of the functions «;,,(¢)
are identically zero.

Explicit asymptotic forms for v, in (4.7) can now be obtained under the
assumptions (5.5), (5.6), with the aid of (2.10), (5.4). The results turn
out to be

(5.7) Vu(€) = el + o(1)], e > 0(h = 1,2, -+-, m) ,
where

Ao det(gsy)
a’h‘Qn—m det(xuzk)

W, = ' O = Tpem — Tpemsn »

Here, the index ¢ assumes the values 1,2, ..., m; k assumes the values
n—m-+1,n—m-+2 ---,n; and 7 assumes the same values as k ex-
cept » — m + h is replaced by n —m. Then asymptotic forms of the
type (4.23) can be obtained for the characteristic values \(¢) as ¢ — 0.

As an example of (2.10), consider the boundary conditions y@-(¢) =
0(t=1,2,---,m). In this case, the matrix (¢;,) involved in (5.7) is
given by

#m:l
Piw = Tp(T, — 1) oo (1, — 1 + 2) (1=2,38,:--,m),

and it can be seen that (y;) is equivalent to the Van der Monde matrix
(=Y. Since [6] det(w,'?) = II (7, — m,)(@ > k) it follows that

det(ﬂ”) — H Tn-m — T
det(ﬂzk) I Tpemen — 75

where the product is taken over all the values j=n —m +1,n — m + 2,
«++m, except m — m + h. Since T, F Typyn for § =1 — m + h by the
distinctness hypothesis, it follows that the asymptotic forms (5.7) for
v(e)h = 1,2, ---, m) can be determined explicitly, and in particular when
h = m,

M) = 4 — @pe™[1 + o(1)] as e >0 .

For characteristic functions # = wu(x, \), a result more precise than
(4.24) will be obtained when x is on a closed subset of (0,b]. Consider
the decomposition

%:Jm_l_k (k:1,2,---,m;j:0,1,2,---)

of the positive integer 4. Define
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(5.8) Fi(x, €) = 727 H Ug-y(x, A1)
and
(59) g, = j(ﬂn—m - 7Tn) + (ﬂn—m - ﬂn—m+k—]) .

Then, according to (3.16) and (5.8),

|Fy(z, )| < Ln@I@V 0wy
(G — 1)

It follows that whenever % is on a closed subset of (0, b],

w@,N) = 5 Fif@, ) = O4[7a©)]7:-0)}

= 0(e%)
0<e<yg t=1,2,.-+).

Then the series ) Fi(x, ¢) represents a uniform asymptotic expansion for
the characteristic function (x, ) as ¢ - 0,
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