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A MINIMAL BOUNDARY FOR FUNCTION ALGEBRAS
ERRETT BISHOP

1. Introduction. An algebra 2 of continuous functions on a com-
pact Hausdorff space C will be understood to be a set of complex-valued
functions on C which is closed under the operations of addition, multi-
plication, and multiplication by complex numbers. The algebra A is
called separating if to any two distinet points of C there exists a func-
tion in A which takes distinet values at the given points. The norm
Il of a continuous function f on a compact space is defined to be the
maximum absolute value of the function. The algebra U is thus a
normed algebra. 2 is called a Banach algebra if it is complete with
respect to its norm, i.e., if the limit of every uniformly convergent
sequence of elements of U is in A.

An important theorem of Silov (see [5], p. 80) asserts that if A is
a separating algebra of continuous functions on a compact Hausdorft
space C then there is a smallest closed subset S of C having the prop-
erty that every function of 2 attains its maximum absolute value at
some point of S. This set is called the Silov boundary of 2. A simple
example is obtained by taking C to be a compact subset of the complex
plane and 2 to be the set of all continuous functions on C which are
analytic at interior points; in this case the Silov boundary of 2 coincides
with the topological boundary of C.

Given a separating normed algebra 2 of continuous functions on a
compact space C, it seems natural to ask, in view of Silov’s theorem,
whether there exists a smallest subset M (not necessarily closed) of C
having the property that every function in 2 attains its maximum ab-
solute value at some point of M. The answer in general is no. How-
ever, it will be shown (Theorem 1 below) that such a set M, called the
minimal boundary of 2, always exists if in addition it is assumed that
2 is a Banach algebra and that there is a countable basis for the open
sets of C, i.e., that C is metrizable. An example will be given to show
that the metrizability of C is necessary.

If the minimal boundary M exists, it is clear that the closure of M
is the Silov boundary. An example will be given to show that M need
not be closed, so that M in general is smaller than the Silov boundary.
This raises the question of the topological structure of M, which is an-
swered (Theorem 2) by showing that M is a G, i.e., a countable inter-
section of open sets.

Received December 1, 1958, in revised form February 23, 1959. The author holds a
Sloan Foundation Fellowship.
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630 ERRETT BISHOP

The next portion of the paper concerns the representation of bounded
linear functionals on 2 by measures. It is an easy consequence of the
classical Hahn-Banach theorem and the Riesz representation theorem
that any bounded linear functional @ on 2 of norm 1 can be represented

by a (complex-valued, Borel) measure ¢ of norm 1 on the Silov bounda-
ry S of 2, in the sense that ¢(f) = S fdp for all £ in 2. It is natural
S

to conjecture that ¢ can actually be taken to be a measure on the min-
imal boundary M of A. The author will devote a subsequent paper to
a proof of this result and a consideration of related questions. Karl de
Leeuw also has a proof of this result, based on work of Choquet [3]. In
the present paper we prove a special case, which is needed to prove the
general result and which will be sufficient for the applications considered
here. This special case, Theorem 3 below, states that for any point x
in C — M there exists a non-negative valued measure ¢ of norm 1 on

C — {x} such that f(x) = S fdy for all f in 9.

The final section is concerned with problems of approximation in
one complex variable. Necessary and sufficient conditions are obtained
on a compact set C without interior of the complex plane that every
continuous function on C be uniformly approximable by rational funec-
tions whose poles lie in the complement of C. Mergelyan [6] has ob-
tained sufficient conditions, of a different type, that the approximation
be possible.

A summary of the results of this paper was given in [1].

2. The minimal boundary.

DEFINITION 1. Let f be a continuous function on a compact space
C. Then S(f), the maximal set of f, consists of all points x in C such

that |f (@) = lI£Il.

DEFINITION 2. Let U be a separating algebra of continuous func-
tion on a compact space C. A subset N of C 1is said to bound A f
NN S(f) is non-vord for all f in A. If the class of subsets of C which
bound A contains a smallest set M, the set M will be called the minimal
boundary of 2A.

THEOREM 1. Let U be a separating Banach algebra of continuous
Sfunctions on a compact metrizable Hausdorff space C. Then A has a
mimimal boundary M and M equals the subset M, of C consisting of all
x in C such that there exists f in A with S(f) = {«}

Proof. Let N be an arbitrary subset of C which bounds 2. For
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each x in M,, there exists f in 2 with S(f) = {z}. Thus {z} NN =
S(f)NN is non-void. Hence ze N. Therefore M,CN.

To show that M, is indeed the minimal boundary of 2, it remains
to prove that M, bounds 2. It must therefore be shown that M,NS(f)
is non-void for each f in 2A. Let f be given. Let I' be the class of
all subsets v of C such that there exists f, in %A with S(f,) =v. By
Zorn’s lemma, there is a subeclass /7, of /" which contains S(f), which
has the finite intersection property, and which has the property that no
larger subclass of I" has the finite intersection property. Since C is
compact and since each v in /7, is closed, the set D = (7 is non-void
and closed. Since there is a countable basis for the open sets of C,
and since the family {C — v: ve ')} of open sets covers C — D, there
exists a sequence {7,} from 7", such that {C — v,} covers C — D, i.e.,
such that D = Nv,. Fix a point z, of D. Define

Fo = L @)1, -

Clearly S(f,) = 7, and ||f,|l = ful®,) = 1. Thus the series >, 27"f,
converges uniformly on C to a function ¢ in A with ||g|| = g(x,) = 1.
If zeC — v, then |g(x)| = 327" f.(x)] <1 since |f,(x)| =1 for all n
and |fi(x)| < 1. Therefore S(g)cv,. Thus S(g)cNv, =D. Assume
that S(g) contains more than one point. Since U separates points, there
exists h, in A which is not constant on S(g). We may assume that the
maximum of |k,] on S(g) is 1 and that h, takes thc value 1 at some
point of S(g). If we set h = h, + ki, it follows that the maximum of
|h] on S(g) is 2 and that this maximum is attained only where %, takes
the value 1. Thus |k is not constant on S(g). Therefore the set

E = {x: xeS(g) and |h(x)| = |k(y)| for all y in S(g)}

is a proper closed subset of S(g).
Let =, be any point in E. Define the functions

9, = [9(x,)]™'g
and
by = [M(@)] ' .

Thus |lg,|l = gi(x,) =1 and S(g,) = S(g). Also hyx) =1, |h(x)| =1 if
xeS(g), and |h(x)| < 1 if xeS(g) — E. Let K = ||hy|l. For each posi-
tive integer n, let

Ve=1{o: 1+ 2K —1) < |hy2)| =1 + 27K — 1)} .

Clearly UV, = {x: |hy(x)| >1}. Thus V,NS(9) = V.NS(g,) is void for
each n. Therefore |g,(x)| < 1 for each « in V,. Since V, is compact,
it follows that there exists a positive integer p, such that |g.(x)|*» < 1/2
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for all z in V,. Since ||g,|]l £ 1, the series
ho + A(K — 1)n§:"f 2-"gn
converges uniformly on C to a function & in A. We have
() =1 + 4(K — 1)§2-n =1+ 4K—1).

If xe S(g9) — E, then |k(x)| <1 and |g,(x)| = 1, so that |k(x)| <1+ 4(K—1).
If xe C — UV,, then |h(z)| < 1and |gx)| =1, so |k(x)| <1 + 4K —1).
If zeV,, then |h(x)| <1+ 277K — 1), |g(®)|» <1 for all n, and
lg/(x) 175 £1/2, so that |k(x)| £1 4+ 4(K — 1). Therefore k(x,) =1+ 4(K—1) =
lIEll. Thus «, € S(k) and S(k) is disjoint from S(9)— E. Since x, € S(9)c D=
N7, and since S(k)e ", it follows from the maximality of /7, with
respect to the finite intersection property that S(k)e I",. Therefore
S(@9)cN,y<S(k). Since S(g) — E is non-void, this contradicts the fact
that S(g) — E is disjoint from S(k). Therefore the assumption that
S(g) contains more than one point is false. Thus S(g) consists of a
single point x,. It follows that x,e M,. Since S(9)cD = N,vCS(f),
it follows that x,e S(f)NM,. Thus S(f)N M, is non-void, as was to be
proved.

We now give an example to show that Theorem 1 fails if C is not
metrizable. Let I denote the unit interval [0, 1] with the usual topology.
Let I be an uncountable set. Let C consist of all families * = {%,}4ex
with z,€ I for each «. Thus C is the Cartesian product of an uncountable
number of intervals, and is therefore compact. Let A consist of all
continuous functions f on C which have the property that there exists
a countable subset 4 of I" such that f(x) = f(y) whenever & and y are
points in C such that x, =y, for all a in 4. It is easy to see that A
is a separating Banach algebra of continuous functions on C. By the
Stone-Weierstrass theorem it follows that 2 consists of all continuous
functions on C. Let N, = {x: x, = 0 except for a countable set of a}
and N, = {z: x, =1 except for a countable set of a}. It is easy to
see that N, and N, bound 2. Since N,NN, is void, it follows that A
does not have a minimal boundary.

For an example of a function algebra whose minimal boundary is
distinct from its Silov boundary, let C be the subset {z: |z2| = 1} of the
complex plane and let A consist of all continuous functions f on C which
have the property that there exists a continuous function f on {z:|z| =1}
such that f () = f(2) for z in C, such that f is analytic on {z: 2| < 1},
and such that f(l) = f(O). It is easy to see that 2 is a separating
Banach algebra of continuous functions on C. It is also not difficult to
show that the Silov boundary of % is C, whereas the minimal boundary
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of A is the set {z:|z| =1,z 1} = C — {1}.

THEOREM 2. Let U be a separating Banach algebra of continuous
functions on a compact metrizable Hausdor(f space C. For each positive
integer n, let U, consist of all points x in C such that there exists f
m A with ||| <1, |f(x)| > 38/4, and |f(y)| < 1/4 for all y in D,(x),
where D,(x) = {y: p(x,y) = n~'} and p is a metric on C. Then U, is
open and MU, = M, where M 1is the minimal boundary of 2.

Proof. If f is any function in 2, it is clear that the set o,(f) =
{x:xeC,|f(x)| > 3/4, |f(y)| < 1/4 whenever ye D,(x)} is open for each
n. Since U, is the union of the sets belonging to the class

{on():f e, lifll =1},

it follows that U, is open.

If xe M, by Theorem 1 there exists f in A with S(f) = {«x}. It is
clearly no restriction to assume that ||f|| =1. Hence |f(x)| = 1. Since
|f(y)] <1 when ¥ is in the compact set D,(x), it follows that there ex-
ists a positive integer p, such that |f(y)|”» < 1/4 when ye D,(x). Thus
x € ,(f). Therefore xe U,. Since this is true for each n, it follows
that e N U,. Therefore Mc N U,.

Now consider a fixed z in (U,. We must prove that xe M. To
this end, we construct by induction a sequence {g,} of functions in 2
having the following properties:

(i) Hgn+1 - gn“ é 2—n+1

(i) llg.ll =31 — 2

(i) ga.(x) =31 —2™)

(V) 1Guni(y) — gu(y)] < 27771 if ye Dy(x) .

We first construct g,. Since xe U,, there exists a function f in U such
that ||f]] £1 and zea(f). Let

g = —‘;[f(x)]‘lf :

Since |f(x)| > 3/4, we have ||g,|| <3/2-4/3 =2< 31 — 27%), so that g,
satisfies (ii). Clearly ¢,(x) = 3(1 — 27"), so that g, satisfies (iili). Hence
g, satisfies all of the relevant conditions. Assume now that g, «--, g,
have been chosen to satisfy all of the relevant conditions. Since g,(x) =
3(1—2-%), there exists an integer j >k such that |g,(y)|<3(1—2-*)4-2-*-2
for o(x,y) < j71, i.e., for y in C — D). Since ze U,, there exists a
function f in A such that [[f{|=<1 and xeo,f). Define h =
3. 27k f(x)]"*f. Thus h(x) =3 .27*', Since ||f]| =<1 and |f(z)| > 3/4,
we see that ||2]| < 27+, Since also |f(y)| < 1/4 for y in D,(x), we see
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that |k(y)| < 27%-' for y in Dy(x). Let g,., =g, + h. It follows im-
mediately that

@) Ngen — gell =275+,
that
(1v) 19en(y) — 9:(¥)| < 2771 if ye Dy(w) ,
and that

(lll) glc+1(x) = gx(x) + h(.’l?) =31 — 27%) 43 . 27
—3(1 — 2-%-1) |

If ye Dy(«x), then

19| = 10| + 1)
< “glc“ + 27t <L 3(1 — 2—k-1) 4 2-k=1
=8 -2 <31 —-27"7).

If ye C — Dy(x), then

19| = 19| + [h(y)| = 31 — 27F) + 27 + || ]|
< (1 — 27F) 2782 27+l = (1 — 27-?)

It follows that
(11) |lglc+1” = 3(1 — 2_"_2) .

Thus g,., has the relevant properties. We have thus constructed the
sequence {g,}. By condition (i), the sequence {g,} converges uniformly
on C to a function ¢ in A. By (i), |lg|l <£3. By (ii), g(x) =3. If
y € D,(x), then

90| = 191l + 2 10000) - 60)] < 8L — 277 + 327 < 3.
Thus S(g) = {#}. Therefore xe M, as was to be proved.

COROLLARY. If U 1is a separating Banach algebra of continuous
Sfunctions on a compact metrizable Hausdorff space C, then the minimal
boundary M of 2 is a countable intersection of open sets.

3. Representation by measures.
We now prove the fundamental result of this paper.
THEOREM 3. Let U be a separating Banach algebra of continuous

functions on a compact metrizable Hausdorff space C. Let U contain
the function 1, Let x be a point of C — M, where M 1is the minimal



A MINIMAL BOUNDARY FOR FUNCTION ALGEBRAS 635

boundary of . Then there exists a non-negative Borel measure v of
norm 1 on C — {a} such that f(x) = Sfdv for all f in 2.

Proof. We assume that a metric 0 on C is given. For each posi-
tive integer n, let

D, ={y:yeC, px,y)=n'}.

Let b and ¢ be real numbers such that 0 < b < 1/4 < 3/4 < c¢< 1. For
each positive integer n and each positive integer m, let h,, be a con-
tinuous function on C such that h,,(y) = b'™ for ye D,, h..(y) = c'™
for ye C — D,,, and 0™ < h,,(y) < ¢'™ for all y. Such a function exists
because the closures of the sets D, and C — D,, are disjoint. There
are two cases to consider. Either there exists (Case 1) for each positive
integer n a positive integer m and a function f in 2A such that
[f(x)] > (B/4)"™ and |f(y)| = hpa(y) for all ¥ in C, or (Case 2) there ex-
ists a positive integer % such that for all positive integers m and for
all f in o either |[f(x)] < (3/4)"™ or |f(y)| > huw(y) for some y in C.
We shall show that Case 1 is impossible and that Case 2 implies the
theorem to be proved.

Assume now that Case 1 obtains. Let the positive integer 7 be
given, and choose f in 2 and a positive integer m such that |f(x)|>(3/4)'™
and |f(y)| = huu(y) for all y.

Write g = f™. Since |f(¥)| = hun(y) = ¢'™ for all y, we have
lg(y)| < ¢ for all y. Thus ||g|l = ¢ < 1. Since |f(x)| > (3/4)'™ we have
lg(@)| > 3/4. Since |f(Y)| = huu(y) = b'™ for y in D,, we have |g(y)| =
b < 1/4 for y in D,. It follows that x e U,, where U, is the set defined
in Theorem 2. Since this is true for each n, we have xe N U, = M,
by Theorem 2. This contradicts the hypothesis of Theorem 3. There-
fore Case 1 is impossible.

We are therefore justified in assuming that Case 2 obtains. Thus
there exists a positive integer m, henceforth fixed, such that for all
positive integers m and all fin A either |[f(x)] =< (3/4)"™ or | f(y)|>Rm(y)
for some y in C. Consider now a positive integer m. For each f in 2
either |f(z)| =< (3/4)"™ or ||fh~'|| > 1, where h =h,,. Thus |f(z)] <
(3/4)"™ whenever fe 2 and ||f27'|| = 1. Let B be the Banach space of
all continuous functions on C, under the uniform norm, and let B, be
the subspace {fh~": f e A} of B. Define the linear functional ¢ on B,
by defining @(fh™') = f(x) for each f in . Since |f(x)| = (3/4)™ if
feWand ||[frR']| <1, it follows that |||l < (8/4)V". By the Hahn-
Banach theorem, there exists an extension ¢, of @ which is a linear
functional on B with ||¢,|| < (3/4)V™. By the Riesz representation theo-
rem, there exists a measure v, on C such that ||v,|| < (3/4)"™ and

P f) = S fdvy,, for all continuous functions f on C. Thus



636 ERRETT BISHOP

F@) = p(fh) = py(Fh-) = th*dum

for all fin A. If we define the measure p, by
1alS) = | hdv,
N

for all Borel subsets S of C, it follows that f(x) = S fdu, for all f in

A. In particular, 1 = Sd‘um. Thus ||¢,. |l = 1. Let the measure 9, the

restriction of v, to the set D,,, be defined by v%,(S) = v,(S N D,,) for
each Borel set S. Let v, the restriction of v, to C — D,,, be defined
similarly. Thus

A1+l = livall = (3)

Similarly, let y, be the restriction of 2, to D,,, and let p4, be the re-
striction of p, to C — D,,. Thus

el + el = llpall =2 1.
Since [A(y)]™* = ¢ Y™ for all y in C — D,, and since ¢, (S) = S h~'dy,,
S—D2n
for all Borel sets S, we see that p, = ¢7Y™l, so that ¢'™||uLll = llvnll.

Since |A(y)|™* < b~ for all y, and therefore for all ¥y in D,,, Wwe see
similarly that dY=|| g2 || < ||v%.]l. Thus
3 \Um
1/m 0 1/m 1 < 0 1 < (=
A A P P Cy

Combined with the inequality
DUl ]+ bl il 2 B
this gives

[oe — bl = () — o

Thus

leals((3)" - pom Jere — b

Since ||t |l = [l Il + | 2]l < 07" [[V5ll + 7" I
= b7Mlvall = 07V,

there exists a subsequence {,, } of {s,} which converges in the weak
star topology for measures on C to a measure ¢ on C with ||p¢|| < 1.
Also,
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[ran = tim | rapm,, = f@)

for each f in A,
Since C — D,, is open and since

H‘M:HH é [<%>1lm . bl/m][cl/m . bl/m]—l

for each m, we have

“‘”1” g lim [<%>1lm . bum.:][cllm . bl/m,]-—l ,

where ! is the restriction of ¢ to C — D,,. Now

(13 o o

=tim [ (2 )(2Y — @byt Jianope” — auvpr1

h—0

= ]:ln% — lnb:][lnc — Inb] = ln<—i-b“1>[ln(cb“’)]“1 <1.

Thus, if /¢ denotes the restriction of g to the set {x}, we have ||| <
gl < 1. Thus there exists a constant a with |a| <1 such that

S fdp = af(x) for all continuous functions fon C. Let ¢£ be the restric-
tion of st to C — {x}, so that g2 + /£ =g and |[/2]| + |2l =llp¢ll < 1.
Thus

gfd/l = de‘% + gfol/z3 = af(x) + gfdlzz3

for all £ in 9. Therefore (1 — a)f(x) :S fdr, for all f in 9. Since
2l £ 1=l =1—lal, and since 1€, we have 1 —|a| < |1 —a| =

‘ Sldﬂs
Thus

< |lIll £1 —|al. Thus @ is positive. Define v = (1 — a)'tt..

F@ = (= o ap, = [ ray

for all £ in A. Also, |[Y|I= A —a) /el £1. Since 1€ we have
1= Sd'y. Therefore v is a non-negative valued measure. This completes

the proof of the theorem.

COROLLARY. Let 9 be a separating Banach algebra containing the
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unit function of continuous functions on the compact metrizable Haus-
dorfl space C. Let N, consist of all functions on C which are real
parts of functions in A, and let RN be the uniform closure of R,. Let
M, consist of all points © im C such that there exists f im RN with
£ (@) > |f )] for all y + x im C. Then M, equals the minimal boun-
dary M of 2.

Proof. 1If xe M, there exists g in C such that [g(x)| > |g(y)| for
all y #+= « in C. It is no loss of generality to assume that g(x) = 1. If
we let f be the real part of g, then fe R,cCR and [f(x)]| = |g(x)| >
lgw)| = |f(y)| for all y = x. Hence xe M,.

If x is not in M, then there exists a real-valued measure v on

M — {x} of norm 1 such that g(x) = Sgdv for all g in A, by Theorem
3. Since v is real-valued, it follows that f(x) = S fdy for all f in R,

Thus f(x) = S fdv for all £ in R. If x where in M, there would exist
fin R with 1= f@) > |f@)| for all y =z Thus 1= f(1) = S fdy <

Hfd'yl < 1, since |f(y)| < 1 for y # « and since ||v|| =1. This contra-

diction shows that x is not M,. Hence M = M, as was to be proved.
DeLeeuw has found a proof of Theorem 3 which is somewhat simpler
than the one given here.

4, Applications. We now apply the results of the previous sections
to certain problems of approximation in one complex variable.

DEFINITION 3. Let C be a compact subset of the complex plane.
Then /\O(C) will comsist of all continuous functions on C which are
analytic at interior points of C, and A (C) will consist of all continu-
ous functions on C which can be uniformly approximated arbitrarily
closely by rational functions whose poles lie in the complement of C.

It is clear that A (C)c A (C), and that A (C) and A (C) are sepa-
rating Banach algebras of continuous functions on C. Mergelyan [2] has
shown that A (C) = A(C) in case the complement of C consists of only
a finite number of components. No necessary and sufficient condition is
known that A (C) = A (C). In case C has no interior, we shall obtain
in Theorem 5 below a necessary and sufficient condition that every con-
tinuous function on C be uniformly approximable by rational functions
with poles in —C.

THEOREM 4. Let C be a compact subset of the complex plane with
no interior and let M be the minimal boundary of AI(C). Then either
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A](C) = AU(C ) or C — M has positive 2-dimensional Lebesgue measure.

Proof. Assume that A (C)# A (C). We must show that C— M
has positive 2-dimensional Lebesgue measure. Now A (C) is the Banach
space of all continuous complex-valued functions on C, and A (C) is a
proper subspace, since A (C) # A(C). By the Hahn-Banach theorem,
there exists a continuous linear functional ¢ # 0 on A (C) which vanishes
on A (C). By the Riesz representation theorem, there exists a finite
complex-valued Borel measure ¢ on C which represents ¢. Thus g+ 0

and Sfd/z =0 for all f in A(C). In particular, S(z— O~du) =0

whenever z is not in C, since the function (z — ¢)~! is a rational func-
tion of ¢ whose pole, #z, is not in C. Since the function z~' of z is in-
tegrable with respcet to Lebesgue measure dady over any finite region
of the plane, and since ¢ is a finite measure on the compact set C, the
integral

he) = (2 — £)7dpue)

will exist for almost all values of 2z, and the function A(z) so defined,
called the convolution of the measure /¢ and the function z-' and writ-
ten h =z""xu, will be integrable with respect to Lebesgue measure over
any finite region of the plane. Since we have seen above that h(z) = 0
if 2z is not in C, it follows that % is integrable.

Assume that the integrable function % vanishes almost everywhere,

so that the integral h(z) = S(z — &)7'dup(¢) exists and vanishes for almost

all z. To obtain a contradiction from this assumption, we use the equa-

tion 0—2*_% =7rd ([7] p. 49) from the theory of distributions. This means

that for any function g on the complex plane which vanishes in a neigh-
borhood of oo and which has continuous partial derivatives of all
orders we have

_H(z _ g)—1%<§;- + i%)g(@dxdy = 7mg(¢)

1
2
both sides of the above equation with respect to ¢t we obtain

for all values of ¢. If we write g,(2) = (5%— + i%)g(z) and integrate

mlo@ape) = -|{{| @ - 0 0@dsay}ane)
= -Sggl(z){g(z - C)“dﬂ(t)}dwdy =0,
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since h(z) vanishes almost everywhere. The use of Fubini’s theorem is
justified since z — ¢, and therefore (z — ¢)~!, is measurable with respect
to the product of the measures g,(z)dxdy and dp(¢) and since

[{[T1a@1z — ¢ 1~ asay}iape))

is finite. Now every continuous function g, on C can be uniformly ap-
proximated by such functions g, so thatggo(;’)dy(;‘) = 0. By the unique-

ness part of the Riesz representation theorem, it follows that p = 0.
This contradiction shows that there exists a set I" of C of positive
Lebesgue measure such that the integral h(z) exists and does not vanish
for all z in I". We may clearly assume that at no point of /" does p
have point mass.

Let z, be any point in I, so that A(z,) = ¢ exists and is not zero.
Let f be any function in A (C) such that f(z) =0. Let {f,} be a
sequence of rational functions with poles in the complement of C con-
verging uniformly to f on C. Since f,(z,) — f(z,) = 0 as n— o, we see
that {g,} converges uniformly to f on C, where g, = f, — fu(2,). Thus
g, 18 a rational function with poles in —C which vanishes at z,, so that
there exists a rational function ¢! with poles in —C such that ¢,(z) =
9.(2)(z — z,) for all z. Hence

[0 - 2ape) = [ou@dne = o
for each n, since g,e A (C). Passing to the limit, we see that
[7@E - 2 due = 0.

Since this is true for all f in A (C) with f(z) = 0, it follows that for
an arbitrary f in A (C) we have

Sf(z)(z — 2) () = S[f(z) — Pz — 2)dpe(z)
+ Sf(zo)(z — ) dpz) = 0 + FE)—hz) = —cf (2) -

If we let §, denote the measure of mass +1 at the point z, it follows
that
v = (2 — 2,)7 't + €8,

is a measure on C which annihilates A (C). Now if z, were in M, there
would exist f in A (C) with f(z) =1 and [f(2)| <1 for all z# 2, in C.

Since v({z2,}) = ¢ # 0, it is clear that S f"dy # 0 if n is sufficiently large,
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This is a contradiction, since f*e A (C). This shows that z, is not in
M. Since z, was any point in /" we have ['cC — M. Since [' has
positive measure, C — M has positive measure, as was to be proved.

To restate the theorem, if for every point z on C, with the possible
exception of a set of measure 0, there exists a continuous function f on
C with [f(z)| > |f()] for all ¢+ 2z in C which can be uniformly ap-
proximated by rational functions with poles in —C, then every continuous
function on C can be uniformly approximated by rational functions whose
poles lie in —C.

THEOREM 5. Let C be a compact subset of the complex plane withowt
wmterior. Let A (C) be the algebra of all continuous complex-valued
Sunctions on C and let A (C) be those functions in A (C) which can be
uniformly approximated by rational functions with poles in —C, and
let M be the minimal boundary of A (C). Let 4,(C) consist of all con-
tinuous real-valued functions on C, and let 4,(C) consist of all continu-
ous real-valued functions on C which are uniformly approximable by
real parts of functions in A(C). Let M, consist of all points z in C
such that there exists f in 4,(C) with |f(z)] > |f(&)| for all & + z in C.
Then M = M, and the following statements are equivalent:

(1) ALC)= ALC)

(ii) C — M has measure 0
(i) M=~C

(iv) 4(C) = 4(C) .

Proof. The fact that M = M, is a special casc of the corollary to
Theorem 3. It is clear that (i) = (iii) = (ii). Butl (ii) = (i) by Theorem
4. Thus (i), (ii), and (iii) are equivalent. It is also clear that (i) = (iv).
But (iv) implies that M, = C. Thus (iv) = (iii). This proves Theorem 5.

Theorem 5 thus gives results concerning approximation on a nowhere
dense subset of the complex plane by rational functions or by real parts
of rational functions, and shows that the two problems are related.
The results for approximation by the real parts of rational functions
are similar in outward appearance to results of Brelot [2] and Deny [4],
who consider approximation by functions harmonic in a neighborhood of
C, but there does not seem to be an essential connection, due to the
fact that a function harmonic in the neighborhood of C need not be the
real part of an analytic function, since the conjugate harmonic function
might be multiple-valued.
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THE TOPOLOGY OF ALMOST UNIFORM CONVERGENCE

JOHN W. BRACE

The theorem of Arzela [3, 4, 6] (see Theorem 2.2) which gives
a necessary condition and a sufficient condition for a net of continuous
functions to converge to a continuous function plays an important part
in functional analysis. In the case of linear topological spaces it has
been observed that the quasi-uniform convergence [3] (see Definition 2.1)
which Arzela presented in his theorem is related to the weak and weak™
topologies [6, 9, 20]. With this fact in mind it was surmised that
quasi-uniform convergence would present a useful method for topologiz-
ing function spaces. This paper presents such a topology and displays
some of its properties and applications. The resulting topology will be
called the topology of almost uniform convergence.

In § 1 the topology is defined by means of a base for the neigh-
borhood system of the zero function (origin). It should be noted that
there is a similarity between the development of uniform convergence
topologies [17] and the topology of almost uniform convergence. Section
2 shows that convergence of a net of functions for the topology implies
quasi-uniform convergence. A net of functions having the property that
every subnet converges quasi-uniformly will converge for the topology.
In §3 the concept of almost uniform convergence is extended to the
case where convergence occurs on each member of a family of subsets
of the domain space. Section 4 examines the properties of various func-
tion spaces in regard to the topology of almost uniform convergence.
In particular, Theorem 4.3 shows that convergence in this topology for
a net of bounded continuous functions over a regular Hausdorff space
S is equivalent to pointwise convergence of their extensions on the
Stone-Céch compactification of S.

Section 5 uses the topology of almost uniform convergence to obtain
the weak topology for certain locally convex linear topological spaces.
It is necessary in §5 to modify the topology of almost uniform conver-
gence to form a finer (stronger) topology which is called the topology of
convex almost uniform convergence. With this new topology, Theorem
5.6 shows that the weak topology for a function space, which was
originally a locally convex linear topological space for a uniform con-
vergence topology, is the topology of convex almost uniform conver-
gence. Theorem 5.9 parallels a theorem in Banach’s book (page 134)
[5] in giving a necessary and sufficient condition for the weak conver-

Received November 3, 1958. This research was supported by the United States Air
Force through the Air Force Office of Scientific Research of the Air Research and Develop-

ment Command under Contract No. AF 18 (603)-78.
Presented to the Society, October 27, 1956.

643



644 JOHN W. BRACE

gence of a net (instead of a sequence) from the Banach space of all
continuous on the closed unit interval.

In the same manner Theorem 5.10 gives a necessary and sufficient
condition for the convergence in the weak topology of a net in L.
A similar theorem for sequences can be found in [12; page 89].

1. The almost uniform convergence topology. In establishing the
existence of the almost uniform convergence topology for a collection of
functions, the first step is to determine a class of sets that can be used
to generate the neighborhood system of the zero element of the function
space [7, 15, 19].

1.1 DEFINITION. Let (S, F') be a linear space of functions on
an abstract set S into a locally convex linear topological space F. Then
a subset U of Z°(S, F') has the property () in & (S, F') if it satisfies
the condition: for some neighborhood V of 0 in F' it is true that for
each finite subset {f;, «+-, fix} of £ (S, F) ~ U there is an # in S such
that fi(x) ¢ V(i=1,---, k).

1.2 LEMMA. For each subset U of < (S, F') with property («), there
is a convex circled subset W of U with property («). Furthermore
each U 1is radial at the origin of (S, F') if and only if f[S] ts bound-
ed for each f im <'(S, F).

Proof. Let V, be a convex circled neighborhood of 0 in F whose
relationship to U is as stated in property (o). Accepting the Hausdorff
minimal principle, there exists a subset of U, call it W, which is minimal
with respect to the property («) for the previously mentioned neigh-
borhood V, of 0 in F.

Observe that a function f is in W if and only if there exists a finite
subset {fj, +++, fa} of €(S, F') ~ W such that for every x in S either
f(x) is in V, or f,(x) is in V, for at least one f,,j =1, ---, k. For two
functions f and g in W let the two finite sets {f,, +++, fn} and {g,, = *+, gn}
bear this relationship to f and g respectively. The union {fi, =**, fm
g1, ***, 9, bears the same relationship to ¢f + (1 — t)g for all ¢ such
that 0 <¢ <1. Thus it is concluded that W is a convex set.

The circularity of W is obtained in a similar manner.

Assume that for each f in <(S, F') there is a scalar ¢ such that
SIST1c ¢V,. This implies that f is in ¢W c ¢U. In other words, U is
radial at 0 in < (S, F).

Assuming each U to be radial and the existence of an f in < (S, F')
such that f[S] is not bounded, there is a sequence {x,} S and a convex

circled neighborhood V of the origin in F with the property that % flxy)
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ismot in V for m =1,2, ---. Let UU:Z'(S,F)~{f, —;—f,%f, }

This is a contradiction because U, has property («) and is not radial.

1.3 THEOREM. Let (S, F') be a linear space of functions on
an abstract set S imto a locally convex linear topological space F.
Then all the sets of the form U, N --- N U, where U, has property
(a) in (S, F'), form a local base for a locally convex topology. This
topology 1is called the topology of almost-uniform convergence on S.
Furthermore, it is a linear topology if and only tf f[S] ts bounded
for each f in (S, F') and it is a Hausdorff topology if F s Hausdorff.

Proof. The existence of the almost-uniform convergence topology
(linear and non-linear) is obtained from Lemma 2.3 [7, 15, 19].

If F' is Hausdorff and f is a non-zero element of «°(S, F) then
there is a point «# in S and a neighborhood V of 0 such that f(x) is not
in V. Thus Z(S, F) ~ {f} has property («) and the almost uniform
convergence topology is Hausdorff.

2. The convergence of nets. The study of almost uniform conver-
gence topologies is partially motivated by quasi-uniform convergence and
almost uniform convergence for nets of functions [17]. Now that the
topology has been obtained it is time to consider its relationship to the
almost uniform convergence of a net of functions.

2.1 DEFINITION. [3, 6, 21]. A net {f,, ac D} in (S, F') converges
to f, quasi-uniformly on S if lim f,(x) = fy(x) for each # in S and for
every neighborhood V of the zero element of F and «, in D there is
a finite subset {a,, a,, ---, @,} of D, o, > ;2 =1,2, -+, n, such that
for every xin A4, f, (%) — fi(x) is in V for at least one a;, 1 = 1,2, - -+, n.

The importance of quasi-uniform convergence stems from the fol-
lowing theorem.

2.2 THEOREM (Arzeld) [3, 4, 6]. If a net of continuous functions
on a topological space X converges to a continuous limit, then the con-
vergence is quasi-uniform on every compact subset of X. Conversely,
if the net converges quasi-uniformly on a subset of X, the limit 1s
continuous on this subset.

Since a net converges in a topological space if and only if every
subnet converges, the following modification of quasi-uniform convergence
is the natural thing to expect.

2.3 DEFINITION [19]. A net {f,,aeD} in Z(S, F) converges al-
most uniformly to f, on S if and only if every subnet converges quasi-
uniformly to f, on A.
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2.4 THEOREM. Let & (S, F') be a function space with the topology
of almost uniform convergence on S. A met {f,,ae D} in Z(S, F)
converges almost uniformly to f, on S if and only if the net comverges
to f, in the topology.

Proof. Considering f, to be the zero function, it is assumed that
the net converges almost uniformly to f, without being eventually in
a set U with property («). This gives a subnet which would not con-
verge quasi-uniformly and thus a contradiction.

In order to obtain the converse, assume first that the net which
converges for the topology does not converge pointwise at the point z
in S. It follows that there is a subnet {fs, B € D'} and a convex circled
neighborhood V of 0 in F' such that fu(x) is not in V for each B in D'.
This leads to a contradiction because the set (S, F') ~ {fs, 8 € D'} has
property (a) and the net is not eventually in it.

A similar contradiction is obtained when it is assumed that there is
a subnet which converges pointwise and in the topology, but does not
converge quasi-uniformly.

3. The topology of almost uniform convergence on a collection of
subsets of S. In the above discussion the convergence has occurred over
the entire set S. Without difficulty, the convergence can be restricted
to a family of subsets of S.

3.1 DEFINITION. A subset U of & (S, F') has the property (a) over
a subset A of S if it has property (o) in < (4, F'), where < (A4, F) is
the linear space which is obtained by restricting the functions in < (S, F')
to having A as their domain of definition.

The analogue of Theorem 1.3 is now stated.

3.2 THEOREM. Let < (S, F') be a linear space of function on a set
S into a locally convex linear topological space F and let o7 be a collec-
tion of subsets of S. Then all the sets in Z(S, F) of the form
U n---n U, where each U, has property (a) over some A in .7,
form a local base for a locally comvex topology. This topology of al-
most  uniform convergence on members of 7. Furthermore, it is
a linear topology if and only if f[A] is bounded for each A in 5 and
each f in (S, F) and it is a Hausdorfl topology if F 1is Hausdorff
and for each f in (S, F) there is a point x in at least one member
of & such that f(zx) + O.

The expected analogues of the theorems in § 1 are also valid. In
analogy with topologies of uniform convergence it is noted that & can
be enlarged to contain all the finite unions of its members without af-
fecting the topology.
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4. Function spaces. It is interesting to note that the subset <% of
< (S, F') consisting of all functions which are bounded on each member
of .o is a closed subspace of (S, F') for the topology of almost uniform
convergence on members & If S is a topological space it is also clear
that the functions which are continuous on each member of .o form
a closed subspace.

4.1 THEOREM. Let C(S, F) be a linear space of continuous func-
tions on a topological space S to a locally convex linear topological
space F. Then the topology of almost uniform convergence on members
of . and the topology of almost uniform convergence on the members
of a collection composed of the closures of finite unions of members of
7 are the same topology on C(S, F).

Proof. Assuming that the subset U of C(S, F') has property («)
over the closure of A, where A is in .o, there is a closed convex
circled neighborhood V of 0 in F such that for each finite subset
fy =+, fu} of C(S, F) ~ U there exists an «, in the closure of A and
a neighborhood W of x, with the property that f,(W) is disjoint from
Vfor j=1,---, k. Since there is an z in W which is also in A4, the
proof is completed by concluding that U has property («) over A.

The following theorems give some indication of the relationship be-
tween almost uniform convergence and pointwise convergence.

4.2 THEOREM. If A is a compact subset of a topological space S
then the topology of almost uniform convergence on A is equivalent to
the topology of pointwise convergence on A for a function space C(S, F')
of conttnuous functions defined on S with range in the locally convex
linear topological space F.

Proof. It has already been shown that almost uniform convergence
implies pointwise convergence. The converse is immediately obtained
by nothing that Arzela’s Theorem 2.2 establishes the quasi-uniform con-
vergence of every subnet of a pointwise convergent net in C(S, F).

Theorems 4.1 and 4.2 combine to obtain the following result.

4.3 THEOREM. Let S be a completely regular Hausdorfl space. The
topology of almost uniform convergence on S is equivalent to the topolo-
9y of pointwise convergence on the Stone-Cech compactification [17] of
S for the function space of bounded comtinuous functions on S with
range in the complex or real numbers.

A noticeable difference between the uniform convergence topologies
and almost uniform convergence topologies occurs on questions of com-
pleteness. For example, the almost uniform convergence topology on
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the linear space of all bounded real valued funetions defined on the
closed unit interval [0, 1] is not complete. If it were a complete topolo-
gy the subspace of continuous function would be required to be complete
in the topology of pointwise convergence (see Theorems 2.2 and 4.3).

5. Adjoint spaces and the weak topology. [2, 8, 11, 18, 19]. Several
people have observed that almost uniform convergence is in some man-
ner related to the adjoint space of a locally convex linear topological

space. The first adjoint space is the collection of all continuous scalar
valued linear functions defined on the linear topological space which is

under consideration. If the adjoint space is topologized it is possible to
speak of the adjoint space of the adjoint space.

The adjoint space E* of a locally convex linear topological space E
defines a natural topology on £ which is called the weak topology. If F
is considered as a collection of linear functions defined on E*, the weak
topology on FE is the topology of pointwise convergence on KE*.

By interchanging the roles of F and E* in the above discussion it
is seen that E gives rise to a natural topology on E* which is called
the weak™® topology on E*,

The next theorem gives a small degree of insight into the structure
of the adjoint space.

5.1 THEOREM. Consider a linear space Z (S, K) consisting of func-
tions with domain S and range in the scalar field K. If <°(S, K) is
gwen a linear topology of uniform convergence on members of a collec-
tion &7 of subsets of S and ©°* is the adjoint space of (S, F), then
there exists a natural mapping ¢ from the subset \J,esrA of S into &*
such that for each x € Usesrd, p(x)f = f(x) for every fe <(S, K) and
for each f* in T* there is an A in o7 and positive scalar ¢ with
the property that cf* is im the weak™ closed circled convex hull of ¢[A].

Proof. For each z € U.exA, (x) is clearly an element of <*.
Considering an arbitrary f;* in %, let G = {fe £ (S, K): | f*()l < 1}.
The continuity of f;* gives a positive number ¢ and an A in .o such
that G contains the neighborhood H = {fe < (S, K): | f(x)] < ¢ for all
x € A}. It can be shown that the set {f* e &*:1/*(f)| < e for each
S in H} which contains ¢f,* is the weak* closed circled convex hull of

P[A][8].

5.2 COROLLARY. Let E be a locally convex linear topological space
with an adjoint space E*. If E* is given the topology of uniform
convergence on the bounded subsets of E then the adjoint space E** of
E* is the union of the weak* closures of the images in E** of the
bounded subsets of E under the natural mapping of E into E**,
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In the specific case of a Banach space the results presented in the
corollary were proved by M. M. Day [10] and H. H. Goldstine [13].

The weak topology on the Banach space of all continuous functions
defined on the closed unit interval is finer (stronger) than the topology
of pointwise convergence on the closed unit interval. Since the topolo-
gy of pointwise convergence is the topology of almost uniform conver-
gence on the closed unit interval it is clear that almost uniform conver-
gence must be modified if it is to give the weak topology. The following
definition is presented with this purpose in mind.

5.3 DEFINITION. Let <'(S, F') be a linear space of functions on an
abstract set S into a locally convex linear topological space F. Then
a subset U of (S, F) has property S over a subset A of S if it
satisfies the following condition: for some neighborhood V of 0 in F it
is true that for each finite subset {fi, -+, fi} of (S, F') ~ U there is
a finite subset {z, x,, ---, x,} of A and a finite set of positive numbers
{ay, @y -+, a,}, St a; =1, such that 3 7., a,f(z;) is not in V for j =
1,2, ---, k.

5.4 THEOREM. Consider the function space < (S, F'). Then all sets
of the form U, N --- N U,, where each U; has property (B) over some
A in .7, form a local base for a locally convex topology. This is called
the topology of convex almost uniform convergence on members of o .
Furthermore, it is a linear topology if and only if f [A] is bounded for
each A i 7 and each f in (S, F) and it is a Hausdorf topology if
F is Hausdor(f and for each f in < (S, F) there is a point x in at least
one member of &7 such that f(x) # 0.

The omitted proof of the above theorem is essentially the same as
Theorem 2.4.

5.5 THEOREM. Let S be a linear topological space and let <°(S, F')
be a collection of continuous linear functions defined on S with range in
a locally convex linear topological space F. If o7 is a family of sub-
sets of S such that <7(S, F') is a linear topological space for the topolo-
gy of convex almost uniform convergence on members of . and if <
is the collection of closed convex hulls of finite unions of members of
7, then the topology of almost uniform convergence on the members
of 7' 1is the same topology.

Proof. In collaboration with Theorem 4.1 it is sufficient to show
that a subset U of .&~(S, F') has property (3) over a subset A of S if
and only if it has property («) on the convex hulls of A. Because of
the linearity of the members of U the result becomes apparent upon
inspecting Definitions 5.3 and 1.2,
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The theorem which follows shows that it is possible to work with
the weak topology on a function space without knowing anything about
the first adjoint space. In many cases this avoids the necessity of
obtaining a representation of the adjoint space.

5.6 THEOREM. Consider a linear space < (S, K) consisting of func-
tions with domain an abstract set S and range in the scalar field K.
If < (S, K) is giwen a linear topology of umiform convergence on the
members of a collection o7 of subsets of S, then the weak topology on
(S, K) s the topology of convex almost uniform convergence on mem-
bers of 7.

Proof. Considering Z°(S, K) as a collection of scalar valued func-
tions defined on «*, the weak topology on « (S, K) is the topology
of pointwise convergence on the union of the weak™ closed circled con-
vex hulls of the collection {p[A]: A € .97} (see Theorem 5.1). The weak*
closed circled convex hull of each ¢[A] is weak* compact because it is
the polar of a neighborhood of 0 in «(S, K)[8]. Since each member of
Z(S, K) is a weak* continuous function on % *[8], the weak topology
is the topology of convex almost uniform convergence on the collection
{¢[A]: A e o7) (see Theorems 5.5 and 4.2), which in turn is the topolo-
gy of convex almost uniform convergence on members of ..

5.7 COROLLARY. If E is a locally convex linear topological space
and the first adjoint space E™* 1is given the strong topology, then the
weak topology on E* is the topology of almost uniform convergence on
the bounded subsets of K.

Further results of this type can be obtained for a funection space or
an operator space whose range is contained in a locally convex linear
topological space.

The above relationship of the weak topology to an almost uniform
convergence topology again displays the restrictive nature of a complete-
ness requirement on an almost uniform convergence topology [16].

In the case where S is a linear space, a topology of almost uniform
convergence on the members of .97 is not always equivalent to the
topology af almost uniform convergence on the convex hulls of the mem-
bers of .. To clarify this point consider the weak topology on a locally
convex linear topological space E. It is the topology of almost uniform
convergence on the weak* compact subsets of the first adjoint space E*
(see Theorem 4.2) If the weak topology on E was also the topology of
almost uniform convergence on the convex hulls of the weak* compact
subsets of E* the topology of uniform convergence on the same subsets
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would be a linear topology for K with the same adjoint space. This
leads to contradiction in cases where the new topology would be proper-
ly finer than the Mackey topology on K [18, 19].

In the case of a normed linear space the following theorem due to
G. Sirvint [21] is of interest. The original form of the theorem concerns
sequences and not nets.

5.8 THEOREM. Let F be a normed linear space. A net {f,, « e D}
i the function space < (S, F') converges almost umiformly to f, on
a subset A of S if and only of lim, limg || fu(xs) — fo(xs) || = 0 for every
net {xg, 8 D'} in A.

In Banach’s book [5] on page 134 there is a necessary and sufficient
condition for a sequence from the Banach space of all continuous func-
tions on the closed unit interval to converge weakly. This theorem does
not hold in the case of nets. It is now possible to state a similar
theorem for nets by making use of Theorems 5.6 and 5.8. Let = be
the collection of all sets consisting of a finite number of ordered pairs
{(a, t), (@y, t,), «++, (@n t,)} of numbers from the closed unit interval
[0,1] with the property that >\7.,a, = 1. For each &, = {(ay, t,),
@y ty), ==+, (ay, t,)}, and each real valued function f on the closed unit

interval define r(f) to be 3.7, a,f(t;). With this notation the theorem
can be stated.

5.9 THEOREM. A wet {f.,a e D} from the Banach space CJ[0, 1]
converges weakly to f, if and only if lim, lim g [\re(fo) — Va(fo)l = 0 for
every net g, B€ . Z} in E.

A similar theorem is available for the Banach space L'. Let _7 be
the collection of all measurable sets from the measure space upon which

the function of L' are defined. The norm || f|| = supl,,eMH fdy! is

topologically equivalent to the usual norm for L!. If L' is viewed as
a collection of functions defined on _# with its topology determined by
the new norm, it satisfies the hypothesis of Theorem 5.6.

Let @ be the collection of all sets consisting of a finite number of
ordered pairs {(a,, M), (a,, M,), -+, (a,, M,)} where M, (: =1,2,---,n)
is a measurable set from the measure space and (a, a,, ---,a,) is a set
of possitive numbers with the property >'7..a, = 1. Foreach pe®, p =
((@M), - -+, (@y, M,)}, and for each fe L' define ¢(f) to be z;;laig fdy.

i
This notation makes it possible to state the following theorem.

5.10 THEOREM. A net {f,, a€ D} from the Banach space L' converges
weakly to an element of L' of and only if lim,lim, | pa(f.) — ¢a(fo] = 0
for every met {pq, B € F} in @,
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A related theorem for sequences can be found in reference [12;
page 89].
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CHAINABLE CONTINUA AND INDECOMPOSABILITY

C. E. BURGESS

This paper includes a study of continua' which are both linearly
chainable and circularly chainable. Since there exist indecomposable
continua and 2 indecomposable continua which are linearly chainable, it
follows from Theorem 7 that there exist indecomposable continua and
decomposable continua which have both of these types of chainability.

A linear chain C is a finite collection of open sets L, L, ---, L,
such that

(1) each element of C contains an open set that does not inter-
sect any other element of C,

(2) oL, L;) >0 if |t — 7] >1, and

(8) L,-L,+ 0 if |1 — 7| < 1. If this is modified so that L,- L, + 0,
then C is called a cireular chain. Each of the sets L,, L, ---, L, is
called a link of C, and C is sometimes denoted by (L,, L,, ---, L,) or
C(L, L,, -+, L,). If ¢ is a positive number and C is a linear chain such
that each link of C has a diameter less than &, then C is called a linear
e-chain. A circular e-chain is defined similarly.

If C is either a linear chain or a circular chain and H,, H,, ---, H,
are connected sets covered by C, then these sets are said to have the
order H,, H,, ---, H, in C provided (1) no link of C intersects two of
these 7 sets and (2) for each (7 < m), there is a linear sub-chain in C
which covers H, + H,., and which does not intersect any other of the
sets H,, H,, -+, H,.

A continuum M is said to be linearly chainable’ if for every posi-
tive number ¢, there is a linear e-chain covering M. A continuum M is
said to be circularly chainable if for every positive number ¢, there is a
circular e-chain covering M.

A tree T is a finite coherent’® collection of open sets such that

(1) each element of T contains an open set that does not intersect
any other element of T,

(2) each two nonintersecting elements of 7 are a positive distance
apart, and

(8) no subcollection of T consisting of more than two elements is
a circular chain. If ¢ is a positive number and 7 is a tree such that

Presented to the American Mathematical Society, August 29, 1957; received by the
editors December 5, 1958. This work was supported by the National Science Foundation
under G-2574 and G-5880. Most of these results were obtained while the author was
a visiting lecturer at the University of Wisconsin.

L Throughout this paper, a connected compact metric space is called a continuum.

2 In some places in the literature, such continua have been said to be chainable.

3 A collection G of sets is said to be coherent if for any two subcollections ¢y and
of G such that G, + (G, = G, some element of G intersects some element of G..

653



654 C. E. BURGESS

each element of 7" has a diameter less than ¢, then T is called an e-tree.
A continuum M is said to be tree-like if for every positive number e,
there is an e-tree covering M.

A continuum M is said to be the essential sum of the elements of
a collection G if the sum of the elements of G is M and no element of
G is a subset of the sum of the other elements of G. If n is a positive
integer and the continuum M is the essential sum of # continua and is
not the essential sum of » + 1 continua, then M is said to be n-in-
decomposable.*

A continuum M is said to be umnicoherent if the intersection of each
two continua having M as their sum is a continuum. A continuum
M is said to be bicoherent if for any two proper subcontinua M, and M,
having M as their sum, the set M,- M, is the sum of two continua that
do not intersect.

A continuum M is said to be a triod if M is the essential sum of
three continua such that their intersection is a continuum which is the
intersection of each two of them.

THEOREM 1. If the continuum M 1is either linearly chainable or
circularly chainable, then M does mot contain a triod.®

Proof. Since it is easy to see that every proper subcontinuum of
M 1is linearly chainable, it will be sufficient to show that M is not
a triod.

Suppose that M is a triod. Let M,, M, and M, be three continua
having M as their essential sum such that their intersection is a con-
tinuum H which is the intersection of each two of them. For each
1 (1 <3), let p;, be a point of M, that is not in either of the other two
of the continua M,, M, and M, Let ¢ be a positive number which is
less than each of the numbers o(p,, M, + M,), o(p., M, + M,), and
o(ps, My + M,). Let C be either a linear e-chain or a circular e¢-chain
which covers M. Since no link of C intersects two of the sets p,, 0, s,
and H, consider the case in which these four sets are in C in the order
named. This would involve the contradiction that M, intersects either
the link of C that contains p, or the link of C that contains p,. A simi-
lar contradiction results from supposing any other order of the sets
Dy, Dy Ps, and H in C.

THEOREM 2. If the unicoherent continuum M is mot a triod and
M,, M, M, are three continua having M as their essential sum, then

¢ For any such continuum M, there is a unique collection consisting of % indecomposa-
ble continua having M as their essential sum [4].

5 Bing [2] has used the fact that no linearly chainable continuum contains a triod, but
for completeness a proof is given here for both types of chainability.
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some two of these continua do not intersect and the other one intersects
each of these two in a continuum.

Proof. Suppose that each two of the continua M,, M,, and M, in-
tersect. It follows from the unicoherence of M that each of the sets
M, - (M, + M,) and M,-(M, + M,) is a continuum and their sum is a con-
tinuum. Let N=M,- (M, + M)+ M,- (M, + M)y=M,- M, + M, - M,
+ M,- M,. Hence M is the essential sum of the three continua M, + N,
M, + N, and M, + N such that N is the intersection of each two of
them and the intersection of all three of them. Since this is contrary
to the hypothesis that M is not a triod, it follows that some two of the
continua M,, M,, and M, do not intersect. Consider the case in which
M, and M, do not intersect. Then M, intersects both M, and M,, and
since M,-M,= M,- (M, + M,) and M,- M, = M,- (M, + M,), it follows
from the unicoherence of M that each of the sets M,- M, and M,- M,
is a continuum.

THEOREM 3. If the unicoherent continuum M is circularly chaina-
ble, then M 1is either imdecomposable or 2-indecomposable.

Proof. Suppose that M is the essential sum of three continua M,
M,, and M,. By Theorem 1, M is not a triod. Hence by Theorem 2,
one of these three continua, say M,, intersects each of the other two
such that M,- M, and M,- M, are continua and M, does not intersect
M,. For each 7 (2 < 3), let p, be a point of M, which is not in either
of the other two of the continua M,, M, and M, Let ¢ be a positive
number which is less than each of the numbers o(p,, M, M,), 0(p,, M, -+ M,),
o(ps, M, + M,), and o(M,, M;,). Let C be a circular e-chain which covers
M. A contradiction can be obtained as follows for each of the three
types of order in C for the five sets p,, p,, p;, M, M,, and M, - M,.

Case 1. If these five sets have the order p;, p,, ., M, M,, M,- M,
in C, then M, would intersect a link of C that contains one of the points
p; and p,, contrary to the choice of .

Case 2. If these five sets have the order p,, M,- M, p,, ;, M, M,
in C, then M, would intersect a link of C that contains one of the
points p, and p,, contrary to the choice of e.

Case 3. If these five sets have the order p,, M,- M,, p,, p,, M,- M,
in C, then each link of one of the linear chains of C from p, to p, would
lie in M, + M,. This would involve the contradiction that some link of
C intersects both M, and M,.

THEOREM 4. If the circularly chainable continuum M is separated
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by one of its subcontinua, them M 1is linearly chainable.

Proof. Let K be a subcontinuum of M which separates M. Then
M is the sum of two continua M, and M, such that K is their intersec-
tion. Let p, and p, be points of M, — K and M, — K, respectively, let ¢
be a positive number less than each of the numbers p(p,, M) and
o(p,, My), and let C be a circular e-chain covering M. Then each link
of one of the linear chains in C from p, to p, is a subset of M — K.
Let L,, L,, +--, L, be the links of C such that L, contains p, and there
is a positive integer r such that L, contains p, and no link of the linear
chain (L,, L,, «--, L,) intersects K. There exist integers ¢+ and j such
that L; is the first link of (L,, L,, -+ -, L,) which intersects M, and L, is
the last link of (L, L, - - -, L,) which intersects M,. Then (M,-L;, M,-L,.,,
eees M, L., Ly, +++, L,,M,- L, M,-L,, ---, M,-L,) is a linear e-chain
covering M.

THEOREM 5. FEwery circularly chainable continuum M 1is either
unicoherent or bicoherent. Furthermore, M 1is unicoherent provided
some subcontinuum of M separates M, and M 1is bicoherent provided mo
subcontinuum of M separates M.

Proof. Suppose that M is the sum of two continua H and K such
that H- K is the sum of three mutually separated sets Y,, Y,, and Y..
There exist three open sets D,, D,, and D, containing Y,, Y,, and Y,
respectively, such that the closures of D,, D,, and D, are disjoint. For
each 7 (¢ < 3), there exists a subcontinuum K, of K irreducible from Y,
to M — D,. The continuum H + K, + K, + K, is a triod, and this is
contrary to Theorem 1. Hence it follows that if M, and M, are two
continua having M as their sum, then the set M,- M, is either a con-
tinuum or the sum of two continua.

It follows from Theorem 4 that M is linearly chainable, and hence
unicoherent [3], provided some subcontinuum of M separates M. From
this and the argument in the previous paragraph, it follows that M is
bicoherent provided no subcontinuum of M separates M.

THEOREM 6. If the circularly chainable continuum M 1is irreduci-
ble about some finite set consisting of m points, then there is a positive
wnteger k not greater than n such that M is k-indecomposable.

Proof. By Theorem 5, M is either unicoherent or bicoherent. If
M is unicoherent, it follows from Theorem 3 that M is either indecom-
posable or 2-indecomposable. If M is bicoherent, it follows from Corol-
lary 6.1 of [5] that there is a positive integer &k not greater than » such
that M is k-indecomposable.
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THEOREM 7. If the continuum M is linearly chainable, then in
order that M should be circularly chainable, it 1s mecessary and suf-
fictent that M be either indecomposable of 2-indecomposable.

Proof of mecessity. Since every lineary chainable continuum is uni-
coherent [3], it follows from Theorem 3 that M is either indecomposable
or 2-indecomposable.

Proof of sufficiency. The case where M is indecomposable and the
case where M is 2-indecomposable will be considered separately.

Case 1. Suppose M is indecomposable, and let C(L,, L,, ---, L,) be
a linear e-chain covering M. There exist two disjoint continua K, and
K, of M such that each of them intersects each of the sets L, — ¢l(L,)
and L, — cl(L,-,). If follows that there exist a positive number &',
a linear ¢’-chain C’ covering M, and two subchains C, and C, of C’ such
that

(1) each link of C’ is a subset of some link of C,

(2) C, and C, have no common link, and

(8) each of the chains C, and C, has one end link in L, — ¢l(L,)
and the other end link in L, — cl(L,.,). Let W, denote the set of all
points of M that are covered by C, and let W, denote M — W,. Then
(Lu W1 * Lzr W1 ° Ls; ] W1 * Ln—l! Lm Wz ° Ln-u Wz : Ln—zv Tty Wz : Lz) is a
circular e-chain covering M.

Case 2. If M is 2-indecomposable, there exist two indecomposable
continua M, and M, such that M is their essential sum and M, - M, is
a continuum. Let ¢ be a positive number. There exists a linear e-chain
C covering M such that M, intersects L, — c¢l(L,) and M, intersects
L, — ¢l(L,-,). Since each composant of M;(v+ = 1, 2) is everywhere dense
in M,, it follows that for each 7 (¢ = 1, 2) there exist two disjoint sub-
continua K, and H, of M, such that

(1) each of them intersects each link of C that intersects M,,

(2) H, contains M, - M,,

(3) each of the continua H, and K, intersects L, — c¢l(L,), and

(4) each of the continua H, and H, intersects L, — cl(L,-,). Hence
there exist a positive number ¢’, a linear ¢'-chain C’ covering M, and
three subchains C,, C,, and C, of C’ such that

(1) each link of C’ is a subset of a link of C,

(2) no two of the chains C,, C,, and C, have a common link,

(3) one end link of C, is in L, — cl(L,),

(4) one end link of C, is in L, — c¢l(L,-,),

() some link of C contains a link of C, and a link of C,, and
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(6) C, has one end link in L, — ¢l(L,) and the other end link in
L, — cl(L,-,). Let W denote the set of all points of M that are cover-
ed by C,, and let Y denote M — W. Then (L,, W- L, W-Lg, +--, W-L,_,,

L,Y-L,, Y-L,., ---,Y-L,) is a circular e-chain covering M.

THEOREM 8. If n is a posttive integer and for each proper sub-
continuum H of the continuum M there is a positive integer r mot
greater than n such that H s r-indecomposable, then there is a positive
integer k not greater than m such that M is k-indecomposable.

Proof. Suppose that M is the essential sum of % + 1 continua
M, M, -+, M,,,. Some n of these continua have a connected sum, so
consider the case in which M, + M,--- + M,,, is connected. There is
an open set D which intersects M, such that the closure of D does not
intersect M, + M, + --- + M,,,. There is a subcontinuum M! of M,
irreducible from the closure of D to M, + M, + --- + M,,,. This in-
volves the contradiction that M! + M, + M, + --- + M,,, is a proper
subcontinuum of M and is the essential sum of » ++ 1 continua.

THEOREM 9. If every proper subcontinuum of the continuum M is
ctreularly chainable, then every subcontinuum of M 1is either indecom-
posable or 2-indecomposable.

Proof. Since each proper subcontinuum of M is a proper subcon-
tinuum of another proper subcontinuum of M, it follows that every
proper subcontinuum of M is linearly chainable. Hence by Theorem 7,
every proper subcontinuum of M is either indecomposable or 2-indecom-
posable. Consequently, it follows from Theorem 8 that M itself is either
indecomposable or 2-indecomposable.

EXAMPLES. A pseudo-arc [1; 6] is an example of an indecomposable
continuum which satisfies the hypothesis of Theorem 9, and a continuum
which is the sum of two pseudo-arcs with a point as their intersection
is an example of a 2-indecomposable continuum which satisfies this
hypothesis.

THEOREM 10. If the tree-like continuum M is circularly chainable,
then M 1is linearly chainable.

Pooof. Let ¢ be a positive number, and let C(L,, L,, ---, L,) be
a circular ¢/3-chain covering M. Then M is covered by a tree T such
that

(1) each element of 7 is a subset of a link of C,

(2) some element K, of T intersects only one element of C, and
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(8) no element of T intersects three elements of C. A function f
will be defined as follows over 7. For each element K of 7, there is
only one linear chain (K, K,, -+, K, = K) from K, to K in T. Let
f(K;) =0, and suppose that for some integer ¢ (0 <14 < m), f(K;) has
been defined. Then define f(K;.,) as follows:

1) let f(K;.) = f(K;) + 1 provided K, lies in some element L, of C
and K;,, intersects L;,, ... Dut K, does not intersect this set,

(2) Let f(K;.,) = f(K;) — 1 provided K., lies in some element L,
of C and K, intersects L. mon — L; but K;,, does not intersect this set,
and

3) let f(K,.)) = f(K,) provided neither (1) nor (2) is satisfied. The
range of f is an increasing finite sequence of consecutive integers n,, n,,
eee,m,. Foreach ¢t (1 <t <), let M, denote the sum of all elements
X of T such that f(X) =mn,. Then (M, M, ---, M,) is a linear e-chain
covering M.
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MULTIPLICATION FORMULAS FOR PRODUCTS OF
BERNOULLI AND EULER POLYNOMIALS

L. CARLITZ

1. Put

w2y
(L.1) =SB A =S e

The following multiplication formulas are familiar [5, pp. 18, 24]:

(1.2) B, (ko) = k= 5y B(w + 1),
r=0 r

(1.3) E, (k) = k" '“20 (— l)TE'm(x + iﬁ) (k odd) .

Let B,(z), E,(z) denote, respectively, the Bernoulli and Euler func-
tions defined by

B,(x) = B,(x)(0 < @ < 1), B,(x + 1) = B,(x),
E@=E,@)0<xz<1),E(x+1)=—E,), (m>1).
Then B,(x) and E,(x) also satisfy the multiplication formulas (1.2), (1.3).
In this note we obtain some generalizations of (1.2) and (1.3) sug-
gested by a recent result of Mordell [4]. In extending some results of

Mikolas [3], Mordell proves the following theorem. Let fi(x), «+-, fu(x)
denote functions of x of period 1 that satisfy the relations

(14) S A(r+ 1) = Ciopea) (i=1,-00m),

where C/® is independent of . Let a,, ---, a, be positive integers that
are relatively prime in pairs. Then if the integrals exist and
A=a,0;-- ay,

an [ e

= A A(GE)HGE) - )

n

= CC% .. sza")S:fl(w)fz(x) e fn(x)dx .
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2. We first prove

THEOREM 1. Let n>1;my -+, m, >1;a,a, -+, a, positive in-
tegers that are relative prime in pairs; A = a,, Ay +++,a,. Then

ey S §m1<w1+a—’fk>§mz(azz+ = )eoe B (o + a:k)

Ot ot ) Bl )

where
(2.2) C=ar™ay ™y .

In the first place for » = 1 it follows from (1.2) for arbitrary a > 1
that

which agrees with (2.1).
For the general case, let S denote the left member of (2.1). Put

A= a0, a, 1<s<n)

and replace » by skA,-, + r. Then

ey n_l— B ———7‘ . e o B 7’
S= 5 Ba(n+ alk) By, _(tu+ an-1k>
= A,_s r
S B, (@, + Lom® T
sé% ”<m - ay & anlg)
kd, -1 r ”
= . m 1 ) * Bm < n-1 >
2 1(” + a1k> e\ T
sz=6 ”<x * @y + ank>
k4 -1
— ql-™y B r . r
=ai 53 By (o+ - )ees Bu, (@0t aw]g)

Continuing in this way we get
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kA -1
S — gl-m 1-m = F r n r
= Qp_ -1y, Z mi| L1 F—_—) an—z Lpoy +
7=0 a Ap-ok

. Emn_1<an—1xﬂ—1 + %)E"ln <anxn + —Z—>

s 7 \5 r
= a}"'ml e a}‘-m,,, Bml<a1x1 + ]—>32<a2x3 -+ T>
: C ¢

For & =1, (2,1) reduces to

(2.3) S8 (0t T)B v+ L) o B 1)

1 2 (02%
=C- P_ml(a'lxl)Emz(a:’.xz) te Emn(anxn) ’

where C is defined by (2.2); (2.3) may be considered a direct general-
ization of (1.2).

We remark that a formula like (2.1) holds for any set of functions
satisfying (1.4).

We note also that the formula (2.2) can be proved by means of the
Chinese remainder theorem. This remarks applies also to formulas (3.4)
and (4.8) below.

3. In the next place we have

THEOREM 2. Let n be odd and >1;m, -+, m, >1;a,a, -+, a,
positive odd integers that are relatively prime in pairs; A = a,a, «++* a,;
Ik odd >1. Then

(3.1) z(_ 1)@,”1(% i _._":_> E<x 4T )

ak anlc-
= O 8 (~ VB, (a+ 1) - By (am )

where
(3.2) C' = a;™a;™: «+« a;™ .

The proof is similar to that of Theorem 1, but makes use of (1.3)
in place of (1.2); also the formula

(8.3) E.(x +7) = (— 1VE,(2) (m =>1)

is needed.
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For n =1 and a odd, we have

VRt ) =S v B(a+ S )

=S (= l)TEm<ax + %) ,

r=0

which agrees with (38.1). For the general case let S’ denote the left

member of (3.1). Then

k4, ,-1a,-1 .
SI — Z Z (__ 1)r+sEm1<x1 + An 1 + )
r=0 a alk

$=0 1

By (e a,,ilc)

Ay
- E, <xn 4 2mm1 sd,- )
" a, ak
If we put
8A,_, = qa, +t 0<t<a,),

then s =¢q +t (mod 2), so that

Te) = B (s )

7L

Emn<xn+ LS "

n

Since » is odd we therefore get

S = AZ(— 1)rE'm(xl + gric > E’”(” * aT’G >

S CUR (o L)

n

e 1)'*Eml<x1+mk~) --Emn_l<xn_l+-dﬁ—k )

r=0 1

™ B (anxn + —2—) .

Continuing in this way we ultimately reach (3.1).
For k=1, (3.1) becomes

(8.4) (- 1)’Eml<w1 + - ) Em(” + aL )

r=0 al n

= C'Eml(alxl) cec Emn(anxn) ’
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subject to the conditions of the theorem.

4. Theorem 2 can be extended further by introducing the ‘¢ Euler-
ian ”’ polynomial [2] ¢, (x, 0) defined by

(4.1) L0 o= S5 (e, 0) Wi——, (0#1).

1— ‘()g" m=0
In particular ¢,(x, — 1) = E, (z).

We shall assume that the parameter p is an fth root of unity. It
follows easily from (4.1) that

_ (=1 .
(4.2) Pamillw, p) = L — 3 p B<% + _f_) .

We accordingly define the function ¢,.(z, p) by means of
o . m—-1 J-1 —_
(4.3) fneillr, 0) = L= DEZ 5 B (54 7).
m r=0 f
It follows from (4.3) that
(4.4) bu(@ + 1, 0) = 07z, 0)
so that if p is a primitive fth root of unity, ¢.(x, 0) has period f.

Also by means of (4.1) we readily obtain the multiplication theorem [1]
valid for k=1 (mod f)

(4.5) Sotn(w+ L, 0) = kg, o)
and consequently

o= r e
(4‘6) ]2:010 ¢m<x + ‘k—r P) - k (bm(er P) *

We may now state

THEOREM 3. Let f>1,n=1(mod f); my, -+, m, > 1,0, a,, +++, a,
positive integers that are relatively prime im pairs and such that
a; =1 (mod f) for i=1,---,m; also let k=1 (mod f). Then if
A=a,a,--a, we have

kA- J—

(4.7) S 0% (o + L 0) -+ P (0 + . p)

=0
! 1 n
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= C }:Z,:pfaml(alxl + —Z—, p) cee Emn(anmn + %, P) ,

where C' is defined by (3.2).
The proof is very much like that of Theorem 2 and will be omitted.
We remark that for £k =1, (4.7) becomes

A-1

(4.8) by

7=0

r

 0) e G+ o)

n

ff$@<x1+

1

= Claml(a’lxl! [0) te amn(a’nxm 10) .
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A CLASS OF RESIDUE SYSTEMS (mod ) AND RELATED
ARITHMETICAL FUNCTIONS, II. HIGHER
DIMENSIONAL ANALOGUES

ECKFORD COHEN

1. Introduction. In an earlier paper [3] with a similar name (to
be referred to as I) we introduced the idea of a direct factor set (P-set)
and the residue system (modn) associated with such a set. We first
review briefly these concepts. Two non-vacuous subsets P, @ of the
positive integers Z are said to form a conjugate pair of direct factor
sets provided the following two conditions are satisfied:

(i) an integer n > 0 is in P (or Q) if and only if, for each factori-
zation, n=nn,, (n, n,) =1, n, and n, are also in P (or Q),

(ii) every positive integer n possesses a unique factorization of the
form, n=ab such thatae P, be Q. A set of integers a(modn) such that
(@, n)e P is said to form a P-reduced residue system (mod n), or P-system
(mod %), and the number of elements in such a system is denoted by
¢p(n). The fundamental result of I was a generalization of the Mobius
inversion formula to conjugate pairs of direct factor sets. This result
is reformulated in § 2 of the present paper.

In this paper we extend the notion of a P-system (modn) from the
set of integers X to f-dimensional vectors over X (briefly, X,-vectors),
t = 1. The one dimensional case (f = 1) is the case already investigated
in I. Two X,-vectors, A = {a,}, B= {b}, are said to be congruent
(mod ¢, n), written A = B(mod ¢, n), provided a, = b(modn), 1 =1, ---, ¢,
Moreover, we place (a;) = (a,, - -+, @,), using the convention, (0, ---, 0) =0,
and define vector sums and scalar multiples in the usual way. A P-
reduced residue system (mod ¢, n), or P-system (mod ¢, n), is defined to
be a maximal set of mutually incongruent X,-vectors (mod¢,n), {a,},
satisfying ((a;), ») € P. The number of elements in such a system depends
only on ¢t and n, and is denoted J, »(n) and called the (¢, P)-totient of =.
In case P is the unit set 1, J, »(n) reduces to the ordinary Jordan totient,
J..(n) = J,(n). A P-system with P= 7 is called a complete residue
system (mod ¢, n); clearly J, ,(n) = n’.

REMARK 1.1. An X,-vector whose components are in Z will be called
a Z,-vector, and a P-system (mod ¢, n) consisting of elements of Z, alone
will be called a positive P-system (mod ¢, n).

We summarize now the salient points of the paper. In §2 an
enumerative principle for X,-vectors (Theorem 2.1) is formulated, general-
izing a result proved in [3, § 3] in the case £t = 1. This result is used,
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in conjunction with the inversion principle of I, to obtain an evaluation
of J,»(n). A function ¢, »(n), formally generalizing J,(n), is also intro-
duced, along with a generalized divisor function o, »(n). Certain closely
related functions, ¢} ,(n) and ¢} ,(n) are also defined in § 2.

In §3 we introduce the zeta function ¢,(s) associated with a direct
factor set P. In case P = Z, {y(s) is the ordinary ¢-function, &(s). Em-
ploying the generalized inversion function pz(n) of I we also define
“‘reciprocal”’ ¢-functions ¢,(s) and obtain in (8.8) a generalization (P = 1,
Q = Z) of the familiar fact,

(1.1) 540 = ) s>1,

where p(n) denotes the Mobius function. Broad generalizations of other
basic identities involving ¢-functions are also deduced.

In §4 we obtain mean value estimates for the functions ¢, »(n) and
0, 7(n), valid for arbitrary direct factor sets P, extending basic properties
of ¢(n) and o(n) = g, ,(m). For example, (4.5) reduces in case o =1,
P =1, to the celebrated result [1, Theorem 330] of Mertens for the EKuler
¢-function,

3t
1.2) n%qs(n) == + O(z log z) .

Using results of §4, we obtain in §5 (Theorem 5.1) for ¢ = 2, the
asymptotic density of Z,-vectors {a,}, such that (a;,) € P. Numerous special
cases are considered (Corollary 5.2). We mention that Corollary 5.3, in
case t = 2, yields a result of Kronecker asserting that the density of
the integral pairs with a fixed greatest common divisor r is 6/7%.

In §6 we generalize the so-called ‘‘second Mobius inversion formula
to conjugate sets P, @ (Theorem 6.1). Application of this extended
inversion relation yields in (6.3) a generalization of broad scope of Meissel’s
well known identity,

(1.3) > p) 2| =1.

1sn=zx n
We also evaluate in § 6 a generalization to P-sets of Legendre’s totient
function ¢(x,n), defined to be the number of integers a such that
1Z2a=s2 (a,n) =1,

REMARK 1.2. It is noted that many of the results of this paper
are valid, not merely for direct factor sets, but for quite arbitrary sets
of integers P. For example, this is true in the case of Corollary 5.1.
Moreover, a number of the remaining results can be reformulated in such
a manner as to be valid for arbitrary sets P. We shall restrict our
attention, however, to direct factor sets, reserving the treatment of more
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general sets for a later paper, to be based on other methods. The
advantage of a separate treatment of direct factor sets arises from the
applicability of the generalized inversion theorem.

2. Generalized totient and divisor functions. Let P and @ denote
an arbitrary conjugate pair of direct factor sets, and define, as in I,

(2.1) ooy =41 (el
0 (gP),
2.2) ORI ROON

The functions p,(n) and p,.(n) are termed, respectively the characteristic
function and tnversion function of the set P. The inversion formula
of I can be restated in the form,

2.3) ) = 5 p(d)g(8) 2 9m) = 3% 1u(d)f9) -
This principle is a direct consequence of the relation,

@4 3l d)od) = o)

where p(n) = po(n) (that is, o(n) =1 or 0 according as n =1 or n > 1).
Note that pt,(n) reduces to p(n) when P = 1.

In order to evaluate J,r(n), we shall need the following results
generalizing Theorem 4 of I to ¢ dimensional vectors.

THEOREM 2.1. If d ranges over the divisors of n conlained in Q,
and for each d, x ranges over the elements of a P-system (mod ¢, d),
d8 = n, then the set dx constitutes a complete residue system (mod t, n).

We omit the proof, which is analogous to the proof in case ¢ = 1.
On the basis of this result it follows immediately that

(2.5) 3 04T, 1(0) = '
Application of (2.3) to (2.5) yields
THEOREM 2.2.
(2.6) Joplw) = 3 d1(0) .
Define now for « an arbitrary real number, the generalized totient,
@7 b.p0) = 3 d*112(3)

so that ¢, = J, »(n) in case a =t is a positive integer. We also define
analogously a generalized divisor function by placing
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(2.8) Ty, p(N) :dg,nd“pP(B) :dﬁz:‘,nd“ .

Corresponding to the functions ¢, (1), g, »(n) we define related functions,
(2.9) da p(n) = % d*pp(d)
(2.10) ok p(n) = d% d*op(d) = d% de .

der

The following simple relations are noted.

(2.11a) bF o p(n) = Pa,p(1) ,
nw

(2.11b) ot () =

O, p(M) )

Corresponding to the case P =1, we place ¢,.(n) = ¢pa(n), ¢X, = di(n),

and corresponding to the case P = Z, we write 6, ,(n) = 0,(n) = a5 ,(n).
The following result is a generalization of [3, Theorem 8, @ = 1] and

can be proved similarly.

THEOREM 2.3.
(2.12) Po.p(n) = 3, duld)s(3) .

We also note, by inversion of (2.7), the following generalization of
(2.5).

(2.13) % 0 d)be,r(8) = m*

3. The zeta-functions of a P-set.

REMARK 3.1. In the definitions and general results of this section,
s is assumed to be limited to values for which all occuring series converge
absolutely.

First we define for real s,

(3.1) £a(s) = 3 L2 = i L.
n=1 N n

The function ¢,(s) will be called the zeta-function of the direct factor
set P. Note that &,(s) = &(s), ¢i(s) = 1. We define the reciprocal zeta-
function of P by

(3.2) Eo(s) = 3, £ "(")

n=1

the function ¢,(s) will be designated the conjugate zeta-function of P.
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By (1.1) it follows that £(s) = £,(s) = 1/¢(s). We mention that Diricelet
series of the form (3.1), (3.2) were discussed by Wintner [10, Chapter
II] in case P is a semigroup generated by a set of primes.

First we prove two relations analogous to (2.4).

LEmMMmaA 3.1.

(3.3) 3 0n(d)pe(®) = 1.

Proof. This is an immediate consequence of property (ii) of the
conjugate pair P, Q.

LEMMA 3.2.

(3.4) S ()t (3) = prtn)

as

Proof. By the definition of /¢,(n), we have, with the left member
of (3.4) denoted by S(n),

S(n) - (lsz=n DD’Z=ll!l(D)El;=8{1(E) - l)l)';ﬂ’:n;l(D)‘{l(E)
D'EP

E'€Q D'EP,L'EQ

= > Dy(E) > 1.
DE|n D'E'=n/DE
D'EP,L'EQ

By property (ii), it follows then that
Sn) = S (DB = 5, (D), S (1(E)

DE|n DIE

and (3.4) results by the fundamental property of ru(n), ((2.4) with P =1,
Q=27).

The following relations are basic.

THEOREM 3.1.

(3.5) £o(8)¢(s) = £(s)
(3.6) £o(8)Eo(8) = £7X(s)
(3.7) £(8)Ce(s) = 1.

Proof. By the nature of the Dirichlet product, (3.5), (3.6), and (3.7)
follow, respectively, from (3.3), (3.4), and (2.4).
By Theorem 3.1 one obtains the following generalization of (1.1):

COROLLARY 3.1,

3.8 Py =L 1
38 =30 " 7o



672 ECKFORD COHEN

The equality of the first two expressions in (3.8) is equivalent to the
fact [3, (4.6)],

(3.9) S 112(d) =p2(m) -

The following identities can be verified by Dirichlet multiplication,
in connection with (3.8), (2.13), and (2.11a).

THEOREM 3.2.

O Pap() _ (8 — @) _ £(s — A)Ex(s)
3.10
(3.10) Z por 0] @
(3.11) Zcfa P 88 L(s)s — @)

"' Cols — @) &(s — )

THEOREM 3.3.

(3.12) 3 %) = o5 — @gy(6)
(3.13) 5% = y(s)tas — @)

Note that in case P = Z, both (3.12) and (3.13) reduce to [7, Theorem 291].
It is also noted, on the basis of (8.12) and (3.8), that

COROLLARY 3.3.

(3.14) (S)E wp(n) . o)

n=1 ’ﬂ,s

Multiplying (8.14) by £.(s) and comparing coefficients, one obtains the
arithmetical relation.

COROLLARY 3.4.
(8.15) 0o, p(N) =d52=now(d)#p(8) .

This analogue of (2.12) can also be proved arithmetically on the basis of
(3.9) and the definition of g, »(n).

In the remainder of this section, we list for later reference, explicit
evaluations of £,(s) for various sets P. Let k and » denote fixed positive
integers and p a fixed prime. We define direct factor sets P = A,, B,,
C,, D,, E, as follows: A, (the set of kth powers), B, (the set of k-free
integers), C, (the non-negative powers of p), D, (the divisors of »), E,
(the complete divisors of 7). A divisor d of r is said to be complete if
d, r/d) = 1.

We have the following representations.
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(3.16) ;‘A (s) = ¢(ks) (ks > 1),
_ tls) ,
(3.17) £06) = s (s > 1),
(3.18) o (s) = P (s > 0),
p P — 1
(3.19) £ () = 20— 5 (),
3
(3.20) 0 (9) = A = o7 (r)

where o)(r) denotes the sum of the sth powers of the complete divisors
of ». For a proof of (3.17) we refer to [7, Theorem 303]; (3.18) results
on summing a geometric series.

We mention the following special cases of (3.10) and (3.12), which
result on the basis of (3.16) and (3.17), respectively.

(3.12) E (f’w A;C(n) — 5(8 - a)é‘(/cs) (,s >a, s > 1),
n=1  pt ¢(s)
& () _ £(s — @)E(s) .
(3.22) 7};1 e ) (s >a, s>1).

4, Mean values of totient and divisor functions. In this section
we prove, along classical lines, some simple estimates for the functions
introduced in §2. We require no morce than the following clementary
facts:

0Q1) it a>1,
(4.1) 5 L = 10(log v) it =1,
nze R
O(z+-7) it <
o+ 1 @ i >
(4.2) S e = x M_+{O(ac) if «=0,
nw a+1 o) if —1<a<0;
(4.3) 1 o(i_) , a>1.
n>?;’n xw—l

LEMMA 4.1. For P an arbitrary direct factor set, tp.(n) ts bounded ;
wm fact, for each n >0, ps(n) =1, —1, or 0.

Proof. In view of the factorability [3, Theorem 1] of g (n), it suf-
fices to prove the lemma in case » = p", p prime, & > 0. We have then
by (2.2),

pp(0") = p(p") — 0p(®") ,
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so that
1 (p" e P, p" ¢ P)
(4.4) tr(p") = -1 (pn ¢ P, p"' € P)
0 (otherwise).

The lemma is proved.
As a consequence of Lemma 4.1, one obtains

COROLLARY 4.1. The series (3.2) is absolutely convergent for s > 1.
In the following, x will be assumed > 1.
THEOREM 4.1. For all a >0

1

(+5) et = (357 )y T O,
(4.6) 3 0up(m) = (E Jeela + 1) + OCeate)
where
x® (@ >1)
e.(x) = {x log x (a =1)
@ (a <1).

Proof. We prove (4.5). By (2.7)

4.7) Oupl@) = Siuslt) = 3 3 81( )

Nz |
(ad=n)

= >, 0%pp(d) = 3 pp(d) 35 6%
as=z asz d=z/a

Hence by (4.2) and Lemma 4.1,
0. 1ta) = 5 @[S 1 o((5))

_ ma-}-l ﬂP(d) " l
_a—i—ldg'zd““_i_o(x d>

By (4.1) and Corollary 4.1, one may write then

@8 0w = b+ 1) - S LD} 1 e

But by Lemma 4.1 and (4.3), it follows that

(4.9) 3 £(@) ( 5 L) =

i>z dau-l iSz dw-i-l

)
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for all « > 0. By (4.8), (4.9), and (3.8) the proof of (4.5) is complete.

The proof of (4.6) is similar and the details will be omitted; likewise
for the following result.

THEOREM 4.2. For all a >0

x . x *
(4‘10) %d)—a,l’(%) - m‘ + O(ew (‘/'U)) ]
(4.11) S aX, p(n) = xtp(a + 1) + Olef(x)) ,

n=w

were e;(x) = x %, x) and e, (x) is defined as in Theorem 4.1.

5. Asymptotic density of vector sets. We shall refer to the greatest
common divisor (@;) of the components of a Z,-vector {a;,} as the index
factor of the vector. Let S be a set of positive integers and let N(z, S)
denote the number of Z,-vectors with components a, <z (¢t =1, +--,1)
and with index factor in S. Then place

§,(S) = lim L\C(i;_@) ,
il 1y
(if this limit exists) and call §,(S) the asymptotic density of the set of

Z,-vectors with index factor in S. We now prove the principal result
of this section.

THEOREM b5.1. If ¢ is an integer =2, then

(5.1) Ny, P) = % ¢ {0(% log ) if t =2,
gO(t) O(xb'l) ?/f t> 2.

Proof. For positive integral », x > 1, place
?,,p(x) :né Jr.p(1) :ng; ¢y, p() Dop(w) =1.

Let j be a fixed integer, 1 < j < ¢, and let 4y, ---, 7, be a set of distinct
integers satisfying 1 <i< ... <14, <t Consider all Z,-vectors such
that the components in the positions ., ---, %, have the same value n,
the components in the remaining positions are <=, and the index factor
is in P. Denote by S, the set of all such vectors, including repetitions,
obtained by letting n range over the set, 1 <= < x, and by choosing
the set, 7,, -+, %,, in every possible way. Then if N(S,) denotes the
number of elements in S,, it follows that

62 N(S) = (5 )0rs.ta)
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Consider now a fixed Z,-vector, B, € S,, 1 < k < ¢, with exactly k&

of its components equal to » and the remaining components <n. Then

B, appears (?) times in S;, it being understood that < ;c ) =0if 7> k.

In view of the fact,
! k
_ j+1 . =
B E0(F) =1,
it follows that 3, is contained exactly once in the set
(=18, .
Consequently
4
Na, P) = 3, (—=1"N(S) ;
hence by (5.2),
Ny, P) = 3 (_1)-f+1(;>¢,_J,P(x) :

The theorem follows by (4.5) on taking limits.
As a corollary of Theorem 5.1 one obtains by (3.8),

COROLLARY 5.1 (cf. [2, p. 8]). If t =2, then &,(P) exists and ts
given by

1 gr(t)
(6.3) o(P) = = .
‘ SONNS0)
As in §3 let » and k denote positive integers and p a positive prime.
On the basis of the evaluations (8.16)—(3.20), we obtain the following
special cases of Corollary 5.1.

COROLLARY 5.2. The asymptotic density of the Z,-vectors,, t = 2,
(i) with index factor a kth power is

5.4 5.(4,) = L)
(5.4) (4 0
(i) with k-free index factor is
1
5.5 85 Bk = —
(5.5) (By) D)

(iili) with index factor a mon-negative power of v s

(5.6) 5.C,) = (;%—l)g(l—t) ;
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(iv) with index factor a divisor of * 1s

5.7 5(D,) = Td1) .
(5.7) (D) = 75

(v) with index factor a complete divisor of r is
5.8 S,(E.) = ai(r) _ oL (r) .
G5 (5 r'g(t) ¢(t)

The results contained in (5.4) and (5.5) are due originally to Gegen-
bauer [5]. In case k = 1, (5.5) becomes §,(B,) = 1/¢(¢), t = 2 [9, p. 156].
Further specialization of (5.5) to the case k = 1, ¢ = 2 yields the classical
result [7, Theorem 332] asserting that the probability that a pair of
integers be relatively prime is 6/7*. By (5.4), with k =2, ¢t = 2, it fol-
lows that the density of the integral pairs whose greatest common divisor
is a perfect square is 7%/15. The case p = 2, t = 2 in (5.6) shows that
the density of the integral pairs with greatest common divisor a power
of 2 is 8/7%. By (56.7) with » =8, ¢ = 2, it follows that the density of
the pairs of integers whose greatest common divisor is a factor of 8 is
255/3272,

COROLLARY 5.3. If t =2 and r» ts a positive integer, then the
asymptotic density of the Z,-vectors with index factor r 1is

1
(5.9) (1) = Wzﬁ .

Sketch of proof. The corollary is true in case r = 1, as noted above
on the basis of (5.5), or alternatively by (5.7) with » = 1. The proof
can be completed for arbitrary » by induction on the number of distinct
prime factors of » and application of (5.8). The details are omitted.

The preceding corollary is due to Kronecker in case t = 2 [8, p. 311].
It was proved in the general case by Cesaro [1, p. 293]; a further
generalization was given by G. Daniloff [4, p. 587].

6. Generalization of the second Mobius inversion formula. In case
P=1, Q = Z, the following inversion relation reduces to a familiar

analogue [7, Theorem 268] of the Mobius inversion formula.

THEOREM 6.1. Let x denote a positive real variable; then

(6.1) 1@) = 2 0m9(L) 2 9(0) = 2 )1 ( L)

Proof. Let g(x) be defined as on the right of (6.1). Then
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x\ _ x/n
Some(L) = 5 pum), 3, ) (2L2)

= 5.7(2) 5 mdpdm = 1@,

on the basis of (2.4). The converse is proved similarly.
We define [x], to be the number of positive integers <x belonging
to P. It is evident, by property (ii) of the conjugate pair P, @, that

(6.2) 1 =[el = S[ 2] = 5[ £ ]oouw .

nsxr %1
nEQ

Applying the above inversion theorem to (6.), one obtains

THEOREM 6.2,
(6.3) [l = S et 2 ].

We deduce two special cases of (6.3). Let A,, B, be the P-sets de-
fined in § 3 and place (as in I), \(n) = ta(m), t(n) = /JBk(n). Putting

[«]. = [«]s, and nothing that 7zl = [«],,, one obtains

COROLLARY 6.1.

(6.4 (ol = 5 ] 5 | = S 5|
(6.5) /a1 = S0 2]

These formulas are classical [6], [9, p. 85]. Note that (6.4) and
(6.5) reduce to (1.3) in the cases k =1 and k = 0, respectively.

It can be shown easily, on the basis of (6.4), that 8,(B,) = 1/¢(k),
k> 1 (cf. [7, Theorem 333] in case k=2). In words, this states that the
asymptotic density of the k-free integers (k = 2) is 1/¢(k); in conjunction
with (5.5) it therefore follows that

COROLLARY 6.2. If kt = 2, then the asymptotic density of the Z,-
vectors with k-free index factor is 1/¢(kt).

Finally, we consider the function ¢,(x, n) defined to be the number
of positive integers a < « such that (a,n)e P. In case P=1, ¢p(x,n)
becomes Legendre’s function ¢(x,n). To deal with ¢r(x, n) we have the
following extension of [3, Theorem 4] which can be proved in much the
same way.

LEMMA 6.1. Let d range over the divisors of n, de @, and for
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each such d, let y range over the positive integers a = x/d such that
(@, n/d)e P. Then the set dy consists of the positive integers = x
An immediate consequence of this lemma is

THEOREM 6.3.

(6.6) Se( L 2oud) = o]

THEOREM 6.4.
- X
(6.7) dulem) = % md)[ﬂ .

Theorem 6.4 can be deduced from (6.6) by a direct application of
the following easily proved extension of (2.3).

THEOREM 6.5. If f(x, n) and g(x, n) are functions of the real vari-
able x and the positive integral variable n, then

_ roomny\_ . S T n
68 gl m) = Lofdf( L, L) 2w m) = (L 1)
The proof is omitted.
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BOOLEAN ALGEBRAS OF PROJECTIONS OF
FINITE MULTIPLICITY

S. R. FOGUEL

Introduction. The multiplicity theory in Banach spaces has been
developed recently by Dieudonne [2] and Bade [1]. In [6] we studied
the algebra of bounded operators, in a given Hilbert space, that commute
with all projections of a given Boolean algebra of self adjoint projec-
tions. By using Bade’s paper [1], we propose to generalize these results
to Banach spaces. The notation of [1] will be used. Let X be a com-
plex Banach space. Let the Boolean algebra of projections be given as
follows:

On the compact Hausdorff space 2, let a measure FE(-) be defined
for every Borel set, such that:

1. For every Borel set a, F(a) is a projection on X.

2. For every xe X, the vector valued set function FA'(-)x is countable
additive.

3. If a and B are Borel sets then

E(E(B) = E(@np) .

4. There exists a constant M such that |E(a) £ M| for every Borel set a.
5. The Boolean algebra of projections FE(-) is complete. (See [1] for
definition of completeness.)

In [1] the space 2 was defined to be the Stone space of the Boolean
algebra. In the above form it is easier to find examples. Bade’s results
remain true for this slightly generalized version.

Throughout the paper we assume that the Boolean algebra has uni-
form multiplicity n, n < . (Definition 3.2 of [1]). Thus the following
is proved in [1]:

There exist n vectors x,,%, ---,%, and = bounded functionals
xF, xF, -+, x¥ such that:

1. X = \n/ sp(FE(a)x;, a a Borel set)

i=1
2. Let x}E(-)x, = pt(-). The measures (i =1, .-+, n are equivalent.
3. For every Borel set e, tt;(¢) = 0 and f4(e) = 0 and only if E(e) = 0.
4. 1If © #+ j then xfE(e)x;, = 0.
5. For every xe X there exists n functions fi(w), ---, f.(w) defined on

2 such that:
a. fi(w)e (2, ).
b. For every Borel set e,
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xrE(e)x = S filoy(dw) .

c. Lete, = {mnf,.,(wn <myi=1,00e, )
then

2 = lim }nj Sf,.,(w)E(da))aci .

Mmoo {=1

d. The transformation T from X to 37, L(xt;) given by

filw)
Tx =

o)

is continuous. The functions f,(w), - --, f.(®) are uniquely defined
by x, up to sets of measure zero.
These results are proved in 5.1 and 5.2 of [1]. Instead of writing

fl(w) .fl(m) |
T = ( > let us use the notation x ~< )
Sfa(®) Sfa(®)

Let A be the algebra of bounded operators on X, which commute
with all the projections E(a). The purpose of this paper is to study 2.

Representation of the Algebra
Let Ae?, and let
a, (w)
Ax, ~ ) =1, -, m.
@ ()
Denote this correspondence by A ~ (a; ,(w)). The functions «a, ;(w) satisfy
by 5.b.
2.1 srE(e) Az, = uF AE(e)w, = Sﬂai,,-(w);ji(dw)
and /
a; (w)e L(p,) .

Equation 2.1 defines the functions a, () uuiquely (a.e.).
fi(w)
Now let xe X and x ~< . ) If e is a Borel set on which the

Ful®)

functions f,(w), a; (w) are bounded then:
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B = 3| f@Edo),

and
AE (@ = B(e)Az = 3. | f(@)Bdo)(Ar)
= 5| fl@BEo)E @A) .
But
E(e)Ax, = z Sga,,‘i(co)E(dw)x) .
Hence

Bz = 3, | f@B@o)| o, 0E@e,) .
From condition 3 of the introduction it follows that

B@Ar=_3 | a,(@)f (@B o),

_ ; S(; o, (o) fi(w)>E(dw)xJ .

Therefore

etB@)As = | (S a,@)f()do) .

This equation means

Ji(®)
Ax~(ai,;(w))< : )

Ful@)

REMARK. Equation 5.b. of the introduction was proved here, for
only some Borel sets. But we know that

g:,(w)
Ax ~ . )

gn(.w)

for some functions g,(w), -+, g.(w). The above argument shows that

Si(w) 9(®)
(%;(@)( . ):( . )a.e.

F@)  gaw)
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THEOREM 2.1. For every operator A e there corresponds a matrix
of measurable functions a, (@), 1 <1, 5 < n, such that:
1. a;,(w)e L(w,).

2. If
(@
-
fuo)
then

e

Av ~ (@, ()
fu®)

3. If a matriz of functions, (b, (w)), satisfies condition 2 then
a;, (®) = b, (w) a.e.
The matrix of the sum or product of two operators is the sum or
product of the matrices. If A™' exists and s bounded then

AT~ (ag, (@)

The functions a, (@) are determined by equation 2.1.

Proof. The existence of a representing matrix was proved above.
The other parts of the theorem follow from the uniqueness assertion
given in condition 3.

COROLLARY. ILet Ae. If Be and AB = I(BA = I) then BA =
I(AB = 1).
Proof. If AB = I then
(a; ()b, (w)) = (5, a.e.
Hence
(b;, (@)@, (w)) = (3, ) a.e.
Thus by Theorem 2.1 BA = I.

THEOREM 2.2. Let A,, Ae . If the sequence {A,} converges
strongly to A them sequence of functions {a{"(w)} converges in
measure to a; (), for each 1 =1,j5 <n. (It does not matter with re-
spect to what measure, because the measures are finite and equivalent).
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Conversely, the sequence {A,} converges strongly to A if:
1. The sequence {a{™} converges in measure to a, ,(w).
2. The sequence {|A, |} is bounded.

3. Ulollam@)| <K 1<ij<n m=12 -} =0.
K=1

Proof. 1f for each xe X
lim A,x = Ax

m—rco

then for every Borel set e

| @) — o oo
= |a¥E(e)(Ax;, — Ax)| = M|A,x; — Ax,| >0

m — oo
where M does not depend on e. Thus the sequence {a{"(w)} converges
in measure to a, ().

On the other hand, if conditions 1, 2 and 3 are satisfied and e is a
Borel set, on which the functions a{™(w) are uniformly bounded, then

AnE (), = 33| ap(@Eda)s,
and by the Lebesque Theorem, [5] 1V.10.10
lim A, E(e)z, = 3 S a, (w)Edw)z, .
m—oo J=1Je

Now, by econdition 3, the set of linear combinations of F(e)x,,
1<7<n and ¢ as defined above, is dense. Thus the sequence {A,x}
has a limit for « in a dense subset of X, and by condition 2 it has a
limit for every xe€ X. Let A be the strong limit of {4,} then

n

AR (e)z, = ZS a, (0 E{dw)z, .

i=1

Thus the matrix of A is (a,,(®)). (See Remark before Theorem 2.1).
In order to develop further the theory, let us borrow the following
results from [6].

LEMMA 2.1. Let (a;,(®w)) be a matriz of measurable finite func-
tions. There exists a decomposition of the form

2.2 (@ (@) = 3 2@)e) + N()

where z,(w), «-+, 2, (®) are measurable functions and & (w), ---, e(w),
N(w) are matrices of measurable functions satisfying:
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() = &), if i # J then c(@)e@) =0, Sie(0) = (5,)
Also
e(w)N(w) = N(w)e,(w), (N(w)"=0.

Moreover, there exist n Borel sets 3, «--, 3, whose union is 2 such
that on B; the numbers z,(w), ---,z,(®) are different while z,,(w) =
- =2z(w) = 0.
The proof is given in Lemma 3.1, 3.2 and Theorem 3.1 of [6].

THEOREM 2.3. Let Ae . There exists a sequence of Borel sets,
{a,,} such that:

1. The sequence {«,} increases to Q.

2. The operator AE(a,) ts spectral. (For definition of spectral
operators see [3]).

Thus A 1s a strong limit of a sequence of spectral operators.

Proof. Let A~ (a; (w) = i z(w)e(w) + N(w), where the right
side of the equation is defined in Lemma 2.1. Let a be a Borel set
such that

a. On the set a the functions z,(w) are bounded.

b. If y.w) is the characteristic function of «, then y.(w)s.(®) and

L(@w)N(w) are representing matrices of the operators E, , and
N, respectively in 2.
Then, by Theorem 2.1,

2.3 AE(a) = >: (in(w)E(dw))Ei,w 4+ N,

where F,, are disjoint projections and N, is a nilpotent of order » com-
muting with them.

Thus, for such «, the operator AE(«) is spectral, and the resolution
of the identity (see [3]) of A restricted to E(a)X is

DEGE()E .-

In order to prove the theorem, we have to find a sequence of Borel
sets, satisfying conditions a, b and 1. Also with no loss of generality,
we may study the operator A on E(B3,)X (Lemma 2.1). Thus we may
assume that at each point w, the matrix (a, .(®)) has exactly ¢ eigenvalues.

Define

= {ollz @] = m and |20) — 2@ = 1, 1=k <j=i].
m

On the set «, the matrix ¢(w) can be calculated as follows:
Let Q(z) be the polynomial
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QRY="0b,+bz 4+ <+ + byen-12
such that:

.,

Qi (@) =1, Q@Hw) =0, 2=j5=
R (2)(w)) =0, 1559, 1<

?

3
A

n

then
Q(a;, (w)) = e(w) [see [4] p. 188].

These equations have a unique solution b, = b,(w), which are measur-
able and bounded (on «,,) functions of w. Thus

Lo, (@)(0)
= L (OB®) + b (@)@, (@) + =+ + i@y (@) D]

and this matrix represents the operator F, ,, in 2, where
B, = E’(am)Bbo(a))E(dw)
+ A E@o) + -+ 400 bgy (@F ) ]
Similarly the matrices Xa, (@),(@) represent the operators K, in ¥, and

by equation 2.2 the matrix Xmm(w)N (w) represents a nilpotent of order
n, N, in A where

AE(a,) = Jiz Emsw 2 @) E(dw) + N, .

COROLLARY. Let Ae A be a generalized milpotent (see [3] for de-
Jfinition) then

A" =0.

Proof. By equation 2.3 and Theorem 8 of [3]

AE(a,) = N,, .
Hence for every xe X
E(a,)A" =0
therefore
Are =0.

LEMMA 2.2. Let Ae. If A~ (a,,(w)) and z(w), k=1,2,--+,n
are the functions defined in equation 2.2 then
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lzh(w)l = lAla.e.

Proof. Let us assume, to the contrary, that for some 7 and ¢ >0
the set

v = {wl|z;(w)]| = |A] + ¢}

is not of measure zero. Let {«a,} Dbe the sequence defined in Theorem
2.3, for some mKE(yNna,)+# 0. Now, on vNea, |z =|A]+e>0
hence ¢, (w) + 0. Thus E(ﬂ/ﬂam)E,m + 0, where E,w is defined in
Theorem 2.3. If the operator B is the restrlctlon of A to E'('yﬂam)E, a X
then

B= S 2@ E(do) + M
yna,,
where M is a nilpotent. Thus, if |p¢] £ 14| then || = |z/(w)| — ¢,

wevNa,, and (t ¢ g(B). Also, if |/t| > |A| then |st| > |B|and 1t ¢ o(B).
This shows that ¢(B) is empty which is impossible.

THEOREM 2.4. Let (a; (@) ~ AeA. If the number ) € og(A) then
for some ¢ >0

dist (A, a(a, ;(w))) = ca.e.
Proof. Let ne p(A). The matrix of (Al — A)~' has the form

S sl N() ;F...v,,(_—M)_”L‘)_

Nz (- z(@) O = (@)

Thus by Lemma 2.2

: Cmaxo L= By
dist (\, 0(a; (@) TN @) == A ae.

THEOREM 2.5. Let (a;,(w) ~ AeU and let f(z) be regular in a
neighborhood of o(A). Then the matriz f((a, () exists a.e. and it is
the matrixz corresponding to f(A).

Proof. Let e be a Borel subset of 2 then
srE () f(A)e, = x;"E(e)él—,g FOVRO, Ay dn
LI 0

where C is a finite collection of Jordan curves surrounding o¢(4). Now
B(\; A) ~ (7, (0, N)) = (N0, ; — a,4(@))7" thus
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S E(e)f (A), — 571;;& FON@EE @R\, A)z)dr
_ 2_7%50 f(x)Bcrm(w; x)/xm(dw)]dx

by equation 2.1. The functions 7, ,(®, ) can be computed by Cramer’s
rule. By Theorem 2.4 and the compactness of C there exists a positive
constant & such that if e C then

dist (\, g(a; ;(@))) = S a.e.

Now, if ¢ is a Borel set on which the functions «, ,(w) are bounded,
then the functions 7, (@, \) are measurable and bounded on ¢ x C. For
such Borel sets ¢, we may use Fubini’s theorem to conclude that

e E(e)f(A), = S E%E(S O, x)dx);zk(dw) .
[ 4
From this equation it follows that the components of the matrix of f(A4)
are given by
) | 1@, N ace.
2w e

Now by the argument of Lemma 2.1 in [6] the matrix f((a, ,(®)))

exists a.e. and its components are, thus, given by (x).

THEOREM 2.6. Let A e be a compact operator. If A~ (a;;(w)) and
(@0@) = 3y a@)e (@) + N©)

is the decomposition given in Lemma 2.1, then there exists a sequence
{w,}, of points in w, such that:

1. E({o})#0

2. z(w) =0 a.e. for v # v, v=1,2, .-

3. limz,(w,) = 0.

Proof. Let 8, and «,, be the sets defined in Lemma 2.1 and Theo-
rem 2.8. It is enough to prove the theorem for points in [3;, thus we
assume that the matrix (@, (®)) has exactly ¢ eigenvalues. Define

€m,p = amﬂ{wﬂzk(w)l = %, k=1, "',i} .

The operator A restricted to E'(e,. ,)X is compact and, by Theorem 2.3.
has a bounded inverse. Thus the space E(e, ,)X has a finite dimension.
Therefore there exists a finite set of points, @?, «--, @}?, such that
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B({wp}) # 0
and
Efe, , — 10", <+, 077} = 0.

By letting m, p >  we get a sequence @, satisfying conditions 1
and 2. In order to prove 3, let us assume that for some ¢ > 0 there
are infinitely many points, w, such that

izkv(a}v)l = €.

The operator A is compact, hence ¢(A4) has only zero as a limit point.
By theorem 2.4 z,(w,) € 6(A). Thus for some constant b +# 0

zkv(wv) =b

for infinitely many points, ®,. Let

G(b, A) = %S()R(X; A)dr

T

where C is a circle around b which does not contain any other point of
g(4). The operator G(b; A) is a compact projection. The matrix of
G(b; A) is, according to Theorem 2.5,

G(b; (a; 4(w))) .
Thus
Gb; AE({w,}) # 0

whenever z, (®,) =, because the matrix of the product is not zero at
®,. This contradicts the fact that G(b; A) is a projection into a finite
dimensional space, and thus condition 3 is proved.

ExaMPLES. The following two examples are designed to show that
some of the theorems, proved in [6] for Hilbert spaces, are false for
Banach spaces. Notice that the examples are simble because there exist
projections on

spi{E(a)x,, o a Borel set] .

1. Let ¢ be the Lebesque measure on (0,1). Let f be a monotone
increasing function such that

SO)=1, f(Q)=cw, fel(1).
Define

me) = | ropat) .
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The Banach space X will be L,(¢) P L,(zt,). Each xze X has the form

o= (7))
ol = igldg + \lgalrare

Let

B = (L0l

It follows that the Boolean algebra is complete and has uniform multi-

plicity 2. Let
2= () ==

A3 = fi (34 = o

a,,(w), a, ()
If A~ then A ~<a2,1(w), a2,2(a))> and

D P e 0 I

for every g,€ Ly(t¢)). Thus

[Jass@)lap = 14 sdp.

Hence |a, (w)| < |A|f(®) a.e., or
@, () = b, () f(w) and |b, (0)| = |A] .

Similarly

b= 4049 - 3000 = o
Hence
la, (w) f(w)| = [A] a.e.

or

(@) = %)— and |b,, ()| < |4] .

Every operator in 2 is given, thus, by a matrix of the form:

(bl,l(w), by (@) f (w))

bz,l(w) b
@) 2,(®)
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where the functions b, (w) are measurable and bounded. Also, every
such matrix defines a bounded operator.

This example shows that Theorem 2.2 of [6] can not be generalized
to Banach spaces:

The two topologies on U given by the norms |A| and

max ess sup |a,; ()|
4,7 w

are not equivalent.

2. Let X=C,®!l,. Every xec X has the form

r = (xlr Yiy Loy Yoo =27y Xy Yy = ° ')
where
lim @, = 0, lo| = max |, + vl -
N—r00 d=1
Define

En(xlr Yy 205 Ly Yy "') - (01 "'yO’ Ly ynsO "') .

The Boolean algebra, generated by FE,, has uniform multiplicity 2.
Let the projection F' be defined by

F(xlv Yy 22 Xy Yy "')
1
:§(x1+y1;x1+y1) "';xn+ynyxn+y7n "')-

The projection F' is not bounded but |FE,] = 1. Let the operator B be
defined by

By Yy s By Yy =+ :<_9”L.,~?JL,... , Tn Yn >

(@1, ¥ Y ) 27 g o “on

and let A = BF. The operator A is bounded and compact, for if |x| =
[(%y Y1y = ¢, Ty Yo = =+)| = 1 then

b ’ ’ ’ H

Ax_}_(:vﬁryl T+ Y . Zat Y xn+yn0_,_0_,_>]

2 2 2 on on

- l<0, .ol 0, Zns1 + Ynsa , Tpa1 T Ynss . .>
2 2n+1 2n+1

<1 F( sup | @, er sup Iynl)

2n+1L

=1 & 1
+ 3t Sl s 5@ H24 D)0,
i=1

iz - 2n+1
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Thus A is the uniform limit of compact operators. Now, o(B)=
{-—1— n=1,2 -.- } If 0 = A€ 0(A) then for some x € X, »x = Ax. Hence

v’
x = Fx and Nx = NFx = BFx = Bx. Therefore

0(A):{0,%,n:1,2,---}.

Let us compute G<%L, A)x for xe X.

G(%; A)x — iG(l; A)Ekx .
Now on E.X, ¢(A) = {0, ‘21?}’ hence

G(%’;; A>Ekx =0 for k#n

and
G(l; A>E,,x — FEux .
21L
Therefore
G<-l—; A)x = FE,x
2n
and

2G<—;— A)s = F(E, + - + B .

The last equation shows that A is not spectral, and the preceding equa-
tion shows that Theorem 4.4 of [6] is false for Banach spaces:

There exists a compact operator A in 2 that is not spectral though
the projections G(&; A) are uniformly bounded.
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AVERAGES OF FOURIER COEFFICIENTS

RicHARD R. GOLDBERG

We shall say the sequence a,(n=1,2, ---) is a p-sequence (1 = p < =)
if there is a function f e L?(0, 7) such that

an:Sﬂf(t)cosntdt n=12 .-
0

(i.e. the a, are Fourier cosine coefficients of an L* function).
A famous theorem of Hardy [1] states that if a, is a p-sequence

1p<x)and b, = %(OL1 + a, + --- + a,), then b, is also a p-sequence.

In this paper we shall prove the following generalization of Hardy’s
theorem:

THEOREM 1. Let r(x) be of bounded variation on 0 <z <1, and
let 1 <p < oo. Then, if a, 18 a p-sequence and

bo = -39 ),

b, 1s also a p-sequence.

Hardy’s theorem is the special case Jr(z) =1 for 0 < 2 < 1.

If the conclusion of Theorem 1 holds for each of two functions +
it clearly holds for their difference. Hence it is sufficient to prove
Theorem 1 in the case where +r(x) is non-decreasing for 0 < <1.
Further, since any non-decreasing function may be written as the dif-
ference of two non-negative non-decreasing functions (the second of
which is constant) to prove Theorem 1 it is sufficient to prove

THEOREM 1A. Let +r(x) be non-negative and mon-decreasing on
0Z2x=<1and let 1 < p < . Then, if a, 18 a p-sequence and

b, 1s also a p-sequence.
The proof of Theorem 1A will follow a sequence of lemmas.

LEMMA 1. Let B,(x) = rcos ytd(y — [y]). Then there is an M >0
0

Received February 24, 1959. This research was supported in part by the United
States Air Force under Contract No. AF 49 (638)-383 monitored by the AF Office of Scientific
Research of the Air Research and Development Command.
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such that
|B(x)| = M I=st=mi=sr< .

The symbol [y] denotes the greatest integer not exceeding y.

Proof. Let m» be any non-negative integer. Then for ¢ > 0

Sncosytdyzm
0
and
nCOS td :ncos t:w_l.
So yLaly] = 2, cosm 2 sin t/2 2
Hence
B _ sinnt sin(n+1/2)¢ 1
) t 2 sin ¢/2 Ty
1 1 t cos nt 1
:s1nnt<—-—m t — -
; © 2) 5 T3
and so
(1) |B,(n)| = l——1—co’ci +1 n=20,1,2, .-
It 2 2

The right side of (1) is bounded for 0 < ¢ < =. Thus for some M =1
(2) |B(n)| = M — 1 n=0,1,2- 0<t=7.
Now take any x = 0 and let n = [x]. Then
B,(@) = B(n) + | cos ytd(y — [v)
so that from (2) we have for any x = 0
B =M1+ 1y ~W) SM—1+a-nsMO<t=xm

and the proof is complete since Byx): =z —[z] =1 =< M.

(Henceforth we assume ++(x) =0 and +(z) non-decreasing for
0=z<1)

LEMMA 2. There is an M > 0 such that

'S:‘K%)C()sxtd(”_[“]) =M 0=t=mn=12--.

Proof. With B,(z) as in Lemma 1 we have
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S:«[r(%>cos ot d(z — [x]) = S:«p(%)da(x)
= VB — | Baay(L).
Thus with M as in Lemma 1
|9 (£ Jeos at e — )| = ) + wr [ (2 = 2y,
and the lemma is prove (with 2M+(1) instead of M).

LEMMA 3. Let fe L'(0,7) and let

d, = %S:f(t)dtg:mp<%>cos vtd(x —[z]) n=1,2 ---
Then

3) d, = o(%) " — oo

and hence d, is a p-sequence for every p = 1.

Proof. By Lemma 2 there is an M > 0 such that |d,| < —%Soﬂlf(t) |dt

from which (3) follows. From (3) it follows that >, |d,|* < o, for
every ¢ >1. By the Hausdorff-Young theorem and the fact that
LP < L* if 1 < p' < p, this implies that d, is a p-sequence for every
p=1. (See [2].)

From now on we shall write f~a, as an abbreviation for

a, = S"f(t)cos ntdt,n=1,2,--- .
LEMMA 4. Let 1=<p< oo, fe L"0,7) and a(x) = s F(t)eos wt di
so that
f~a,=amn).
Let
= (L, = ="
0@ = [ Ly(L)r e en = 2L Jat@yda .

Then ge L*0, ) and

g~=cC,.

Proof. Since |g(x)| g«p(l)gﬂlf—gt)wl—dt it follows from the proof in
[1] that ge L. Also '
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k4
x

S:g(x)cos nx dr = S:cos nx dxs %w(%)f(t)dt
= S:%f(t)dtS:\K%)cos nx de = S:f(t)dt S:«p(x)cos nxt dt

- %L F(t)dt S:«jr<%>cos wt dt = lgoql(_x_)&” f(t)cosztdt = ¢, .

n n

The changes in order of integration are valid since
(1@ 1y @eos natlde = v 17O < oo .

(Note fe L'(0,7) since fe L?(0,7).) Thus ¢ ~c¢, which is what
we wished to show.
We can now establish our principal result.

Proof of Theorem 1A. Let fe L"(0,x) be such that f ~a, and let
a(x), g(x), ¢, be as in Lemma 4. Then

b, = %m"glqp(ﬁ)a - ig;( i )a(x)d[x]

n/ " m n
so that
¢, — b, = —%S:qﬁ(%)a(x)d(x @) = %qu(_j@ Az — [x])S: F(t)cos wt dt
= lSﬂf(t)dt Sn«}r(l>cos xt d(x — [x]) .
n Jo o' \m

The last iterated integral clearly converges absolutely, justifying the
change in order of integration. By Lemma 3 ¢, — b, is a p-sequence.
Also ¢, is a p-sequence since, by Lemma 4, ge L?(0,7) and g ~ c,.
Hence b, = ¢, — (¢, — b,) is a p-sequence and the theorem is proved.

REMARK. Note that except for the result of Lemma 1 the only
properties of the cosine function used were its boundedness and the fact

that O<%) is a p-sequence for all p = 1.

LEmMA 5. Let C(x) = stin ytd(y — [y]). Then there is an M > 0
0
such that

IC(2)| = M 0<t=m0=2<oo.

Proof, Let m be any non-negative integer. Then for ¢ > 0
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Snsin ytdy = 1 cosmt
0 t t
and
anin yt dly] = En:. sin ot — 08 t/2 — cos (n + 1/2)t )
0 =1 2 sin t/2
Hence

Cimy = L cosmt _ cos 42 — cos(n 1 1/t

¢ 2 sin ¢/2
= (1 — cos nt)(l _ 1ot i) _ sinmt
t 2 2 2

The remainder of the proof follows as in Lemma 1.
In view of Lemma 5 and the remark preceding it the exact analogue
of Theorem 1 for sine coefficients must hold. This we now state:

THEOREM 2. Fix p=1. If, for some fe L?,
anzgﬂf(t)sinntdt n=1,2,+--,
0

and if bnz%ﬁ«}(%)am where r(x) is of bounded wvariation on

0 < x <1 then there exists ge L* such that

b, = S"g(t)sin ntdt =12 .-
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RANGES AND INVERSES OF PERTURBED
LINEAR OPERATORS

SEYMOUR GOLDBERG

1. Introduction. Let X and Y denote normed linear spaces and
let T = 0 be a linear operator with domain (7)< X and range R(T)D Y.
In this paper, D(T) is not required to be dense in X and 7 need not
be continuous. Furthermore, X and Y shall be assumed complete only
when necessary. Under these general conditions, we investigate some
invariant properties of the range and inverse of T when T is perturbed
by a bounded linear operator A. For example, it is shown that if the
range of T is not dense in Y and 7T has a bounded inverse, then T+ A
has the same properties provided that D(A)DD(T) and the norm of A
is sufficiently small. In addition, a theorem of Yood ([5], Th. 2.1) is
generalized with some of the proofs simplified.

DEFINITION. Let X, = D(T)cX. When X, is considered as a normed
linear space, the conjugate transformation 7’ is defined as follows: Its
domain D(T"’) consists of the set of all ¥’ in the conjugate space Y’ for
which y'T is continuous on D(T'); for such a %' we define Ty’ = =’ where
x' is the unique bounded linear extension of ¥'T to X,; that is, «’ is in
the conjugate space X of X,.

The above notations shall be retained throughout the discussion.

2. Ranges and inverses of T + A.

LEmMMA 1. If T has a bounded inverse, then so does T + A when-
ever ||A|l < |IT-lI7%

Proof. (T + A)ell > (1T 117" = 1A DL,

THEOREM 1. If R(T)=Y and T has a bounded inverse, then

R(T + A)=Y and T + A has a bounded tnverse whenever ||A|] < ||T ||
and D(T)c D(A).

Proof. By [4] Th. 1.4, (T')"* = (T"') exists and is continuous on
X.. Hence from the lemma we conclude that (7" 4 A) = T’ + A’ has
a bounded inverse since || A'|| = Al < |T |-t = |(T"H*||"". The theo-
rem now follows from [4] Th. 1.2.

If for X = Y, the resolvent of a linear operator 7 is defined as the
set of scalars A such that (7' — \I)~' exists and is continuous on a

Received February 19, 1959,
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domain dense in X, then the following corollary is an immediate result
of the theorem.

COROLLARY. The resolvent of a linear operator is open.

DEFINITION. For each z#+ 0 in Y, let
m(T) = sup {k/llz — Tx|| = k| Txl|l, e D(T)} .
We define m(T) = sup m,(T).

05£z€ Y

REMARK. m(T) £ 1; This follows from the fact that for Tx -+ 0
and for each ze Y, ||z — Tax||/ || Tax| <1+ ||zl|/ | Tax]]—1 as |a|—oo.

LEMMA 2. Let Y be complete. Then R(T)=Y if and only if
m(T) = 0.

Proof. 1If R(T)=7Y, it is easy to see that m(T) =0. Suppose
there exists an element y,€ Y which is not in R(T). The 1-dimension-
al linear manifold [y,] spanned by y, and the linear manifold [y,] + R(T)

are closed in Y; moreover, [y, JNE(T)=(0). Hence by [2] Th. 2.1,
there exists a & > 0 such that ||y, — y|| = klly]l for all ye R(T); that
is, m(T) > 0.

THEOREM 2. If R(T)+# Y and T has a bounded inverse, then
R(T+ A+ Y and T + A has a bounded inverse whenever
HAI < m(TYNT I, and D(T)C D(A).

Proof. Clearly there is no loss of generality if the theorem is proved
for the completion Y of Y. Thus it may be assumed that Y is com-
plete. We now simplify and apply an argument given by Yood
[5, p. 489]. From Lemma 1, 7'+ A has a bounded inverse. By Lemma

2, there exists, for each ¢ > 0, an element y,e ¥ but not in R(T') such
that

(1) Uy — Txll = (m(T) — ¢)|| Tz | for all ze I(T) .

Suppose that the theorem is not true. Then y,e R(T + A) =Y and
thus we may choose an element xe D(T) so that

(T + A)e — yoll < min (ed, [[%l) ,

where d is the distance between y, and R(7"). In particular,



RANGES AND INVERSES OF PERTURBED LINEAR OPERATORS 703

(2) (T + Az — 4|l < ed < elly, — Tx|| and 2 # 0 .
From (1) and (2),

HAllllzll =z 1Az]l = 1Tz — yoll — llyo — (T + Azl > A — 9lly, — Txll
= (1 — o)m(T) — ol Txll = NTI7'A — )(m(T) — e)lfxlf .

Since ¢ > 0 was arbitrary, ||A|l = [|T-'||-'(m(T)) which is impossible.

LEMMA 3. Suppose X and Y are complete. If T is a closed linear
operator, then R(T) = Y and T~ does not exist if and only if R(T')y+ X!
and T’ has a bounded inverse.

Proof. This follows from the ‘‘state diagram’’ for closed opera-
tors [1].

THEOREM 3. Suppose X and Y are complete. If T 1is closed,
R(T)=Y and T-' does not exist, then R(T + A)=Y and (T + A)!
does not exist whenever D(T)C D(A) and A < m(T")/(T") .

Proof. By Lemma 3, R(T') + X! and T’ has a bounded inverse.
Futhermore, D(A') = Y'DD(T') and T’ = 0 since D(T') is total ([4]
Th. 1.1). From Theorem 2, it is clear that R(T’' + A') += X} and 1" + A’
has a bounded inverse. Since 7’ + A’ = (T + A) and T + A is closed,
the theorem follows from Lemma 3.

3. A generalization of a theorem. In ([5] Th. 2.1), Yood proves a
theorem about the range of a bounded linear transformation 7T and its
conjugate T', where T maps Banach Space X into Banach space Y.
We now generalize the theorem by requiring instead that T be a closed
linear operator on D(T'). The results are stated in a different but more
precise form than in [5].

DEFINITION. If T has a bounded inverse, let K(T') = ||T-'||, other-
wise let K(T) =0. We now define a number a(T) as follows:

&(T) = min ((m(T), ?(?)) it m(T) >0

= it m(T)=0.

a(T") shall be defined in a similar manner.

THEOREM 4. Suppose X and Y are complete. Let T be a closed
linear tramsformation and let A represent a bounded linear transform-
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ation such that D(A)DD(T). Then the following statements concerning
T are equivalent.
(1) FEither T has bounded tnverse or R(T) =Y.
(2) R(T'+ A)YCR(T) if HAll < a(T").
(3) R(T'" -+ AYCR(T" i+f [|A]l < a(T").
(4) R(T") is mot a proper dense subset of X; and ||All < a(T")
implies that R(T™ + A)cR(T").
(6) R(T') is mot a proper dense of X: and ||All < a(T') implies
that R(T' + AHYCR(T").
6) R(T+ A R(T) if |All < a(T).
(1) R(T + AYCR(T) if ||Al] < a(T).
(8) R(T) is not a proper dense subset of Y and ||All < «(T) im-
plies that R(T + A)CR(T).
(9) R(T) is not a proper dense subset of Y and ||All < «(T) im-
plies that R(T 4+ A)C R(T).

Proof. (1) implies (2): (T need not be closed): If T has a bounded
inverse, then by [1] R(T") = X' DR(T' + A’) for all A. If T has no
bounded inverse, then R(T) =Y so that R(T') = X, and 7' has a
bounded inverse by [1]. Since T’ is closed, it follows that R(T") is
closed; i.e. m(T’) > 0. If (2) is false, there exists an xje R(T' + 4)
but at a positive distance d from R(7’). By the argument as in Theo-

A m(T"
rem 2, |41l = |41l = 2

(2) implies (3). Obvious

(3) implies (1): (ef. [5]): If R(T)=+ Y and T has no bounded in-
verse, then we show that (3) fails to hold. By [1], R(T’) + X, and T’
has no bounded inverse. Therefore, we may choose an element z,¢ X/,
lztll =1 and «) € R(T'). For each ¢ >0, there exists an element
yy€ D(T') such that |lyill =1, {[T'yll < e and an element y, such that
Nyl =1, vy, =8 is real and 1 =8 =1/2. Let A be defined by
Az = e(xge — (eB8)"'T'yix) y, for x € D(T). Hence

= a(T") > ||All which is impossible.

A'yy = eyiy (s — (B) ' T'yo) = eBxy — Ty,

so that

(T" + Ay, = eBx, ¢ R(T"). Moreover, ||All < e<1 + _> < 3.

Since ¢ > 0 was arbitrary, it follows that (3) does not hold.

(4) and () implies (1): Follows from the above argument.

(1) implies (4) and (5): (T need not be closed): This follows from
the fact that
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(1) implies that R(7") is closed and also that (1) implies (2).

(1) implies (6): If R(T)=Y, then (6) is satisfied. Suppose
R(T) # Y but that 7 has a bounded inverse. Hence R(7T) is closed so
that m(T) > 0. If (6) is false, there exists an element ycY = R(T + A)
but y, ¢ R(T). The remaining argument is now as in Theorem 2.

(6) implies (7): Obvious

(7) implies (1): If R(T) =+ Y and T has no bounded inverse, then
for ¢ > 0, there exists an element x,e€ D(T), ||2,|| = 1 such that || Tx,|| <e.
An element xzje X| is chosen so that |lx}|]|=1 and xjx, =1. Suppose
that y ¢ R(T) and ||y|| =1. We define A by the relation

Ax = exia(y — e 'Tx,), x e D(T) .

Then (T + A)x, = ey ¢ R(T). Moreover, ||A|| < 2c. Since ¢ > 0 is
arbitrary, (7) cannot hold. Thus the assertion is proved.

(8) and (9) are equivalent to (1): This is shown in the same way
that (4) and (5) were shown equivalent to (1).

If there is no restriction put on the inverse but only on the range
of T, we may still infer something about the range of T + A. In fact,
A need not be continuous. The following theorem illustrates this.

THEOREM 5. Suppose X and Y are complete. If T s a closed
linear operator with a closed range, then there exists a o > 0 such that
T + A s also a closed limear operator with a closed range whenever A
is a linear operator (not mecessarily continuous) with D(A)DD(T) and
Azl = o(llzll + | Tzll) for every xe D(T).

Proof. We introduce another norm |||, on D(T) by defining
ell, = llell + || Tx||. D, shall denote D(T) with this new norm. Since
X and Y are complete and 7T is closed, it is easy to see that D, is a
complete normed linear space. Moreover, 7T, as a transformation of D,
into Y is bounded and has an inverse. Thus by the closed graph theo-
rem, T-!' is bounded; i.e. there exists an m > 0 such that ||[Tz|l =
m(llz |l + || Tx|l) for xe D,. Choose p > 0 sothat1 > p and m — p > 0.
Thus || (T + A)x|| = (m — p)(||z|| + || Tx||), whence T+ A has a bounded
inverse from R(T + A) onto D,. Clearly T + A is continuous on D,.
Since defining a new norm in D(T) does not alter the situation in Y, it
follows that R(T + A) is closed. In [3], Nagy proves that '+ A is a
closed operator from D(T) into Y, which completes the proof of the
theorem.
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ON FUNCTIONS REPRESENTABLE AS A DIFFERENCE
OF CONVEX FUNCTIONS

PHILIP HARTMAN

1. Introduction. A function f(x) defined on a convex x-set D will
be called a d.c. function on D if there exists a pair of convex functions
F\(x), Fiy(x) on D such that f(x) is the difference

(1) f(@) = Fy(x) — Fyx) .

In this note, ‘‘convex’’ function means ‘‘ continuous and convex’’ func-
tion. D.c. functions have been considered, for example, by Alexandroff
[1]. E. G. Straus mentioned them in a lecture in Professor Beckenbach’s
seminar (and used the abbreviation ‘d.c.”’).

When « is a real variable, so that D is a (bounded or unbounded)
interval, then f(x) is a d.c. function if and only if f has left and right
derivatives (where these are meaningful) and these derivatives are of
bounded variation on every closed bounded interval interior to D. Straus
remarked that this fact implies that if f.(x), fu(x) are d.c. functions of
a real variable, then so are the product f.(x)f,(x), the quotient f,(x)/fy(x)
when f,(x) + 0, and the composite f.(f.(x)) under suitable conditions on
f.- He raised the question whether or not this remark can be extended
to cases where « is a variable on a more general space. The object of
this note is to give an affirmative answer to this question if z is a point
in a finite dimensional (Euclidean) space.

2. Local d.c. functions. Let f(x) be defined on a convex x-set D.
The function f(x) will be said to be d.c. at a point z, of D if there
exists a convex neighborhood U of z, such that f(x) is d.c. on U N D.
When f(x) is d.c. at every point # of D, it will be said to be locally
d.c. on D.

(I) Let D be a convex set in an m-dimensional Euclidean x-space
and let D be either open or closed. Let f(x) be locally d.c. on D. Then
f(x) s d.c. on D.

While the proof of (I) cannot be generalized to the case where the
m-dimensional z-space is replaced by a more general linear space, it will
be clear that (II), below remains valid if the Euclidean z-space (but not
the y-space) is replaced by a more general space.

Received February 10, 1959. This research was supported by the United States Air
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(II) Let x = (a', +++,2™) and y = (%', ---,y"). Let D and E be con-
vex sets in the x- and y-spaces, respectively; let D be either open or
closed and let E be open. Let g(y) be a d.c. function on E and let
Yy =yl(x) where j=1,.++,m, be d.c. functions on D such that y=y(x)e E
for xeD. Then f(x) = g(y(x)) is locally d.c. on D.

This theorem is false (even for n = m = 1) if the assumption that
E is open is omitted. In order to see this, let x and y be scalars,
gy)=1—y" (£1) on E: 0=y<1and let y=y) =|r— 4| on
D:0<x<1. Since f(x) = g(y(x)) =1 — |x — % |"* does not have finite
left and right derivates at the interior point x = £, the function f(x) is
not d.c. at the point z = .

It will be clear from the proof that (II) remains correct if the as-
sumption that E is open is replaced by the following assumption on F
and g(y): if x, is any point of D and ¥y, = y(x,), let there exists a con-
vex y-neighborhood V of y, such that g(y) satisfies a uniform Lipschitz
condition on V' N E. (This condition is always satisfied if y, is an interior
point of E; cf., e.g., Lemma 3 below).

COROLLARY. Let D be either an open or a closed convex set im the
(x', «++, x™)-space. Let f\(x), fi(x) be d.c. functions on D. Then the pro-
duct fi(x)fy(x) and, if fi(x) = 0, the quotient fix)/f(x) are d.c. functions
on D.

The assertion concerning the product follows from (I) and (II) by
choosing y to be a binary vector ¥ = (%', ¥%), 9(¥) = y¥*, E the (¥', ¥*)-
plane and y' = fi(z), ¥* = fy(w). Thus f(x) = g(y(x)) = fi(x)f:(x). Note that
9) =3y + ¥ — H((W') + (¥»)) is a d.c. function on E.

In the assertion concerning the quotient, it can be supposed that
fox) =1 and that fi(x) > 0. Let y be a scalar, g(y) =1/y on E:y >0
and y = fi(x) on D. Thus g(y) is convex on E and f(x) = g(y(x)) = 1/f.(z).

3. Preliminary lemmas. It will be convenient to state some simple
lemmas before proceeding to the proofs of (I) and (II). The proofs of
these lemmas will be indicated for the sake of completeness.

In what follows, « = («', ---, ™) is an m-dimensional Euclidean vec-
tor and |x| is its length. D is a convex set in the x-space.

LEMMA 1. Let D be either an open or a closed convex set having
terior points. Let x = x, be a point of D and U a convex neighborhood
of x,, Let F(x) be a convex function on D N U. Then there exists
a neighborhood U, of x, and a function F\(x) defined and convexr on D
such that F(x) = Fi(x) on D N U,.

In order to see this, let U, be a small sphere |x — x,| < » such that
F(x) is bounded on the closure of D N U, Let G(x) = K|z — x| +
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F(xz;) — 1, where K is a positive constant, chosen so large that G(x) >
F(x) + 1 > F(x) on the portion of the boundary of U, interior to D.
Clearly G(x) < F(x) holds for x = x,, hence, for x on D N U, if U, is
a suitably chosen neighborhood of x,, If xe D, define F\(x) to be
max (F'(x), G(x)) or G(x) according as x is or is not in U, N D. Since
max (F(x), G(x)) is convex on U, N D and max (F(z), G(z)) = G(x) for x
in a vicinity (relative to D) of the boundary of U, in D, it follows that
Fy(x) is convex on D. Finally, F\(z)= max (F(x),G(zx)) = F(x) for
xe U, N D.

LEMMA 2. Let D be a closed, bounded convex set having x =0 as
an interior point. There exists a function h(x) defined and convex for
all x such that h(x) <1 or h(x) > 1 according as xe D or x ¢ D.

In fact, h(x) can also be chosen so as to satisfy h(x) > 0 for x £ 0
and h(cx) = ch(x) for ¢ > 0. This function is then the supporting func-
tion of the polar convex set of D; Minkowski, cf. [2], §4. The function
h(x) is given by 0 or |x|o~'(x/|x|) according as x = 0 or x =+ 0, where,
if w is a unit vector, p(u) is the distance from x = 0 to the point where
the ray « = tu,t > 0 meets the boundary of D.

LEMMA 3. Let D be a closed, bounded convex set having interior
points and D, a closed convex set interior to D. Let F(x) be a convex
Sunction on D. Then F(x) satisfies @ uniform Lipschitz condition on D,.

In fact, if d > 0 is the distance between the boundaries of D and
D, and if |F(x)] <M on D, then |F(x)— F(x,)| < 2M|x, — x,]/d for
2, 2, € D,. This inequality follows from the fact that F(x) is convex on
the intersection of D and the line through x, and ..

4. Proof of (I). The proof will be given for the case of an open
convex set D. It will be clear from the proof and from Lemma 1 how
the proof should be modified for the case of a closed D.

To every point x, of D, there is a neighborhood U = U(x,), say U:
|z — x| < 7(x,), contained in D such that f(x) is d.c. on U; that is,
there exists a convex function F(x) = F(x, x,) such that f(x) + F(x, x,)
is a convex function of x on U(x,). In view of Lemma 1, it can be
supposed (by decreasing 7(x,), if necessary) that F'(x, x,) is defined and
convex on D (although, of course, f + F is convex only on U).

Let D, be a compact, convex subset of D). Then D, can be covered
by a finite number of the neighborhoods U(x), ---, U(x,). Put F(x) =
Fx,2z)+ -+ + F(x, %), so that F(x) is defined and convex on ). Since
fx) + F(zx, x,;) is convex on U(x)), so is f(x) + F(x) = f(x) + F(x, x;) +
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>y H(x, x;). Hence f 4+ F is convex on D,.

Thus there exists a sequence of open, bounded convex sets D,, D,, +«-
with the properties that the closure of D, is contained in D,,;, D = |JD,,
and to each D, there corresponds a function F(x) defined and convex
on D such that f(x) + F,(x) is convex on D,.

Introduce a sequence of closed convex sets C', C% --. such that
C'cD cC*cD,c+--. In particular, D= C".

It will be shown that there is a function G,(x) with the properties
that

(i) G,(zx) is defined and convex on D,

(i) f(x) + Gy(x) is convex on D,, and

(iii) G(x) = F\(x) on C*.

If this is granted for the moment, the proof of (1) can be completed
as follows: If Gy, ---, G,_, have been constructed, let G, be a function
defined and convex on D such that f + G, is convex on D,,, and G, =
Gy-, on C*, Then F(x) = lim G,(x) exists uniformly on compact subsets
of D; in fact, F(x) = G,(x) on C* for all j = k. Hence, F(x) is defined
and convex on D. Since f(x) + F(x) is convex on C* k =1,2, ..., it is
convex on D; that is, f is a d.c. function on D.

Thus, in order to complete the proof of (I), it remains to construct
a G(x) with the properties (i) — (iii). Let & > 0 be a constant so large
that Fy(x) — k < Fi(x) for xe C'. Without loss of generality, it can be
supposed that « = 0 is an interior point of C'. Let A(x) be the function
given by Lemma 2 when D there is replaced by C'. Put H(x) =0 or
H(x) = K[h(x) — 1] according as € C' or x ¢ C', where K > 0 is a con-
stant. Thus H(x) is defined and convex for all x and H(x) =0 on C".
In particular,

(2) Fyx) — k + H(z) < Fy(x) for xe C*.
Choose K so large that
(3) Fyfx) — k + H(x) > F(x) on D,

the boundary of D,. This is possible since i(x) — 1 > 0 for x ¢ C".
Define G,(x) as follows:

(4) G\ (x) = max (F(x), Fi(x) — k + H(x)) for xe D,
G(x) = Fy(x) — k + H(x) for xe D — D,

where D — D, is the set of points in D, not in D,.
Clearly, (2) and the first part of (4) imply property (iii),

(5) G(x) = Fy(x) if zeC",

and (3) implies that
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(6) G(x) = Fy(x) — k + H(x) for x on and near Dy,

the boundary of D,.

By the first part of (4), Gi(x) is convex on D,. By the last part of
(4) and by (6), G,(x) is convex in a vicinity of every point of D — D,.
Hence, G,(z) has property (i), that is G,(x) is convex on D.

Since f(x) + Fi(x) is convex on D, and f(x)+ Fy(x), hence f(x)+
Fy(x) — k + H(x) is convex on D, D> D, it follows that, on D,, the
function

f@) + Gy(x) =max (f+ F, f+ F, — k + H)

is convex. It also follows from the last part of (4) and from (6) that
f + G, is convex in a vicinity of every point of D, — D,. Hence G, has
property (ii), that is, f + G, is convex on D,. This completes the proof
of (I).

5. Proof of (II). Without loss of generality, it can be supposed that
g(y) is convex on K.

Since y’(x) is a d.c. function on D, there exists a convex function
F(x) on D such that

(7) + y/(x) + F(x) are convex on D .

The function F(x) = F(x, j, +) can be assumed to be independent of j,
where 7 =1,.--,n, and of +; for otherwise it can be replaced by
ZJF(x!js +) + ZJF(x’jr _) .

Let # =2, be a point of D and ¥y, = y(x,). Lel V be a convex
neighborhood of ¥, such that g satisfies a uniform Lipschitz condition

(8) lg(yx)'_g(yz)léMlyl_y‘zl

on V; cf. Lemma 3. Let U be a neighborhood of x, such that y(x)e V
for xe U N D. It will be shown that

(9) f(x) + 3nMF(x) is convex on D N U,

so that f is d.c. at z = «,.

It is clear that there is no loss of generality in assuming that g(y)
has continuous partial derivatives satisfying

10) |og(y)/oy’| < M for j=1,---,m and ye V.

For otherwise, g can be approximated by such functions.

In what follows, only # in DN U and ye V oceur. Let xz = x(s),
where s is a real variable on some interval, be an arc-length parametri-
zation of a line segment in D N U. The assertion (9) follows if it is
shown that e(s) 4+ 3nMF(x(s)), where e(s) = f(x(s)) is a convex function
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of s. Il is clear thal e(s) has left and right derivatives (whenever these
are meaningful). Let ¢’(s) denote a left or a right derivate of e(s) and
F'(x(s)), y”'(x(s)) the corresponding derivates of F(x(s)), y(x(s)). Let
4s > 0, then e(s) + 3nMF'(x(s)) is convex if and only if de’ + 3nMAF' = 0,
where e’ = e'(s + 4s) — €'(s) and JF' = F'(x(s + 4s)) — F'(x(s)).

By the definition of e,

(11) e = >(0g/oy)y” .
Hence,
(12) de'(s) = X 4(0g/oy’ )yl + X.(dg[oy’).4y

where y{' =y’ (x(s)) and (9g/0y’), is the value of 6g/oy’ at y = y(x(s + 4s)).

The usual proofs of the mean value theorem of differential calculus
(via Rolle’s theorem) imply the existence of a 0 =0,,0< 0,<1, such
that

(13) dilds = yi

where ¥}’ is a number between the left and right derivates of ¥’(x(s))
at the s-point s + 0,4s. By (13), the equation (12) can be written as

(14) de' = X (dog[oy’)(dy’|4s) + X (40g[oy’ )yl — yi)
+ >(ag/oy’)dy”) .
By (7),
|4y’ | < 4F" and |y —y)| = Fy — F) = 4F",

where Fj is the right derivate of F'(x(s)) at the s-point s + 6,4s (< s+ s).
Since g(y) is convex, the first term on the right of (14) in non-negative.
Hence (10) and (11) give

15) de' = 0 — 2nMAF" — MndF" ,
so that e(s) + 3nMF(x(s)) is convex. This proves (1I).

6. ““‘Minimal’’ convex functions. Let f(x) be d.c. on the unit
sphere |x| < 1, so that there exist functions F(x) on x| < 1 such that

(16) F(x) and f(x) + F(x) are convex on || <1.
The function F(x) can be chosen so as to satisfy the normalization
aam F(0)=0 and F(z)=0.

If x is a real variable, there exists a ‘‘least’ F(x), say F,(x),
satisfying (16), (17) in the sense that (16), (17) hold for F = F, and
(16), (17) imply
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(18) F.(x) < F(x) on |z] < 1.

In fact, F,(x) can be obtained as follows: A (left or right) derivative
f'(x) of f(x) is of bounded variation on every interval |2]| < a <1 and
so f'(x) can be written as f'(x) = P(x) — N(x), where P(x), N(x) are
the positive, negative variation of f’ on the interval between 0 and =z,
say, with the normalization N(0) = 0. In particular, P and N are non-
decreasing on |x| < 1. In this case, F,(x) is given by

F () = S:N(x)dx .

On the other hand, if x is a vector, there need not exist a least
F = F,(x). In order to see this, let £ be a binary vector and write
(z,y) instead of x. Let f(x,y) =2ay. If ¢ >0, F(z,y) = (cx® + y*le)
satisfies (16), (17). If a least F' = F, exists, then 0 < F(x, y) < 3(ex® +
y’le). In particular, 0 < F,(x,0) < ex?, and, therefore, F,(z,0)=0.
Similarly, F,(0,%y) = 0. But since F,, is convex, it follows that F,, = 0.
This contradicts the case F'= F,, of (16) and so, a least F = F,, does
no exist.

Although a ‘‘least’” F' need not exist, it follows from Zorn’s lemma
that ‘“ minimal ”’ F’s do exist.
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ON CONDITIONAL EXPECTATION AND QUASI-RINGS

M. V. JoHNS, JR. AND RONALD PYKE

1. Introduction. Let (2, o7, P) denote a complete probability space
in which Q is an arbitrary point set (w € 2), o is a c¢-algebra of sub-
sets of 2 (A e &) and P is a probability measure on .o with respect
to which P is complete. Let X, Y, Z, with or without subscripts, de-
note real-valued . -measurable random variables (r.v.) Let #° denote
the space of P-integrable r.v.’s. Define a linear operator & on & by

EoX:SXdP.
Q

FE is the expectation operator and E o X is called the expectation of X.
The P-integrability ecriterion is equivalent to specifying Ko | X| < .
Let &, with or without subscripts, denote a complete ¢-algebra con-
tained in %7, and let <#, denote the g-algebra of Borel sets of k-dimen-
sional Euclidean space. Forr.v.’s. 1=1,X,, - - -, k, define <#(X,, - -, X, ) T &
as the minimal complete g-algebra containing all inverse images with
respect to the veetor (X, ---,X,) of sets in <#,. For A e &7, let
I, € & denote the indicator function of the set A; that is, I,(w)=1 or
0 according as w € A or w ¢ A. For X e¢ &, define the completely-
additive set function Qy: % —> R, by Q«(4) = Eo XI, .

By the Radon-Nikodym Theorem there exists for Xe & and .~ <.,
an & -measurable solution Y e & to the system of equations

(1) Eo(X—-Y)I,=0 (A e o)
or equivalently
Qx(A)=FEo-YI, (Ae 7).

This solution is unique a.s. (relative to the restriction of P to & ).
The equivalence class of all such solutions (or any representative thereof)
is denoted by E{X|< } and called the conditional expectation of X given
% . For X, Y e & the notation E{X| Y} = E{X| Z(Y)} will also be
used. This definition of conditional expectation, which is the standard
one, makes it necessary when proving theorems about conditional expec-
tations to show at some stage of the proof that a functional equation of
the form (1) is valid for all subsets of a specified g-algebra. That this
can be a tedious task is demonstrated by the existing proofs of some of
the applications in §4 of the theorems which are proved below.
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It is the purpose of this note to define conditional expectations in
an apparently less restrictive way, by narrowing the class of subsets A
for which (1) must hold. It is shown that this definition is, neverthe-
less, equivalent to that given in the above paragraph. In §3, some
general theorems on conditional expectations are proved using this second
definition. The proofs of these theorems are seen to be simpler and
shorter than would be possible with conventional techniques. Besides
serving to demonstrate the convenience of this second definition, these
theorems are important in themselves and several applications of them
are given.

The main tool to be used is the concept of a quasi-ring to be intro-
duced and studied in the following section.

2. Conditional expectation given a quasi-ring. Von Neumann [5]
defines a half-ring as a family of subsets closed under finite intersections
and satisfying a certain finite chain condition. This same concept is
termed a semi-ring by Halmos [3]. The related concept of quasi-ring,
which is now defined, entails a weaker chain condition. This chain con-
dition, (ii) of Definition 1 below, seems to be much more adaptable than
that of von Neumann to problems in conditional expectation, as is de-
monstrated in § 3.

DEFINITION 1. A collection, .~”, of subsets of 2 is said to be a
quasi-ring if and only if

(i) A, Be < implies AN B e .o ;

(ii) A,Be .« and A < B implies that there exists {C,}7., C .o~
satisfying C, N C, =¢ for 1=k and B-A=C, U C,U --- UC,;

(iii) there exists {A,;}7, C .~ such that Q0 = G A

In von Neumann’s definition of a half-ring, conii_iltion (ii) is strength-
ened by requiring further that AUC,U.--UC,e.o” forall j=1,2,.--, n.

Examples of quasi-rings are: any countable class of disjoint sets
which include the null set ¢ ; in particular, the collection of atoms in an
atomie, or discrete, probability space; any algebra or c-algebra; the
class of all left-open, right-closed rectangles in R, with Lebesgue measure
less than or equal to 1. This last example is a quasi-ring which is not
a half-ring. Bell makes use of the half-ring analogous to this quasi-ring
in his recent paper [1]. A closure property of quasi-rings that will be
used in the following sections is given by

LemMmA 1. If <7 and &7, are quasi-rings on a common space £
then

3

(2) =N ={ANB; Ae S Be )
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is also a quasi-ring. (In common terminology .« is the family of con-
stituents of .« and .¢7,.)

Proof. Clearly .<~ satisfies (i) of Definition 1. Moreover, let 4;e
~v,and B,e &, 1=1,2). If A, N B c A, N B,, then

the two terms of the union being disjoint. By hypothesis there exist
sequences {C,}r,e .5, {Dy}im, e .9 satisfying

A, — AN A1:Lnjcj» B, — B, ﬂBl:L"jDI\
and hence by (3), S has the representation
S = U(C N [B, mBJ)uU(D N A,)

all terms being disjoint. That &~ satisfies condition (iii) is seen by con-
sidering the collection of all pairwise intersections between elements of
the respective sequences for &7, and .¢”, which satisfy (iii). Q.e.d.

An extension theorem for measures defined on a quasi-ring will now
be given. The proof of the theorem is analogous to those of the more
classical extension theorems and so will be omitted (e. g., cf. [5]).

For an arbitrary class <7 of subsets of 2 let (") denote the mini-
mal o-algebra containing <.

THEOREM 1. Let u be a o-finite completely additive set function
defined on a quasi-ring .. There exists a unique completely additive
set funmction p* defined on o(.<”) such that for all A e &7, (*(A)=(A).

In the event that there exists a finite family satisfying (iii) of De-
finition 1, the minimal algebra containing ¢~ is the collection of all
finite unions of members of <. After extending /¢ to this minimal
algebra, Theorem 1 reduces in this case to a well known extension
theorem (cf. Doob [2], p. 605).

DEFINITION 2. Let X e ¢ and & < . where .7 is a quasi-ring.
The class (or any representative thereof) of all v(<”)-measurable Ye &
satisfying the system of equations

(4) Eo(X—Y),=0 (A e .v)

will be denoted by E{X|.o”}, and called the conditional expectation of
X given &7°.
As a corollary to Theorem 1, one immediately obtains

THEOREM 2. For X e ¢ and & C
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E(X|. o) = E{X|a(o) a. s.

3. Some general theorems on conditional expectation. The follow-
ing definition will be used :

DEFINITION 3. Quasi-rings &7, and .<7, are said to be conditionally
independent given a quasi-ring .o (Lo be abbreviated ase.i. |.~ ) if and
only if for all A e ¢, B € &7,

( 5 ) E{IAIB l (/} = E{IA l (/}E{[,, l (?/A'} a. s.

X and Y are said to be c.i. |.«” if and only if <»(X) and .22(Y) arc
c.i. |.«” (ef. Loeve [4], p. 351).

The obvious notational changes are made in defining conditional in-
dependence given a r.v. If <& and .o, are c.i.| {¢, 2], they are of
course, independent in the usual stochastic sense. The above definition
of conditional independence is closely related to that for g-algebras given
in Loéve [4], as is shown by the next lemma. For well known proper-
ties of conditional expectations used in the following proofs, the reader
is referred to [4].

LEMMA 2. For o(<7) and o(.<7,) to be c.i.|o(.&7) it is mecessary
and sufficient that <7, and &, be c.i.|.9".

Proof. The necessity of the condition is immediate. The proof of
sufficiency is by transfinite induction. Let &7, denote the class of all
countable unions of elements of .~°,. For all ordinals a less than or
equal to the first uncountable ordinal, «, say, define recursively ., as

the set of countable unions of differences of elements of 7,= |J <.

It is well known that ¢(.97)=.7,,. By hypothesis the equality (53)<wholds
for all 4 ¢ &, and B ¢ .<“,. Since .7} is closed under finite intersec-
tions, any countable union of elements in ., and hence by definition
any element of ., may be represented as a disjoint union of elements
in %4. Therefore, since conditional expectations have (a.s.) the linear
and limit properties of integrals, it follows that (5) holds for all Ae .~
Clearly <, is also closed under finite intersections. For induction pur-
poses, assume that for any ordinal a < «, .77, satisfies (5) and is closed
under finite intersections. It is clear that (5) holds for differences of
elements in .9,. Forif C,De v, C—D=C—(Cn D), and since
by assumption C N D e 7, (5) follows by writing I,.,= I, — I;qp.
Moreover, countable unions of elements of &, may be shown to satisfy
(5) in the same way as was used above for .&5. Therefore (5) is satis-
fied for all elements of ..., and hence of 97,,,. From the identity
(A—=B)N(C—-D)=(An C)— (B U D), it follows that <7,,, and hence
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T 2«1 18 closed under finite intersection. It therefore follows by trans-
finite induction that (5) holds for all A € o(%%) and B € .%,. The lem-
ma follows by a repetition of the above argument for &,

It is remarked that if there exists a conditional probability distribu-
tion relative to ¢(.¢”) in the sense of Doob [2], the conditional expectations
of (5) may be considered as integrals with respect to the distribution.
In this case one might be tempted to view Lemma 2 as a simple exten-
sion of measures, and hence as a corollary to Theorem 1. Closer examina-
tion shows this to be a false supposition.

LEmMMA 3. For X,Y e <, let X and Y be c.i.| . Then if
XY e &

EXY| 5 =E{X| 7YE{Y| 5} a.s.

Proof. This result follows from (5) upon approximating X and Y
by simple functions in the usual way. The assumption that XY e & is
certainly not a necessary one but has been postulated in keeping with
Definition 2.

The main theorem of this paper is

THEOREM 3. Let X € & and ¥, C .7 (1 =1, 2) be given. If 7 (X)
and F, are c.i.| 7, then

(6) E{X|.7 N .73

|

E{X|.77 a. s.

Proof. Define o= &, F\ Z, % is a quasi-ring by Lemma 1.
From Theorem 2, (4), and the fact that F{X | &} is d(.~”)-measurable,
it follows that to prove (6) it suffices to show that

EoXIy=FEo E{X| %} a. s.

forall Se <. Let S=ANBfor Ae #,Be . %, Then
Eo Xl ny = Eo E{XI;| %}IA a. s.
=Ko E{X| F}E{I,| 7“1, a. 8.

since X and I, are c.i.}.%#,. Therefore

FoXI,, = Eo E{I,E{X| 7} | .}, 2. 8.
= Ko E{X| 7} Lins a. s.
by (1). Q.e.d.

COROLLARY 3.1, Let X e & and let X and Z be c¢.1.|Y. Then
(7) E{X\Y,Z} =E{X|Y} a, s.
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It is of interest to state this result under the stronger but more common
assumption of independence, viz.,

COROLLARY 3.2. For X e &, let the random vector (X, Y) be in-
dependent of Z. Then (7) holds.

Proof. This is a consequence of the fact that (X, Y') being indepen-
dent of Z implies that X and Z are c.i.| Y. To see this, consider

E{lin,| Y} = E{E{l,n;| Y, X} | Y} = E{[LE{I,|Y, X} | Y} a.s.
=E{I,|YE{l,) = E{I,| YIE{I,| Y} a. s.

where A € 7(X), B e #(Z).
1t should be noted that Corollaries 3.1 and 3.2 remain valid if the
random variables Y and Z are replaced by random functions since the
proofs depend only on the properties of the corresponding ¢-algebras.
Before stating a generalization of Theorem 3, we prove the follow-
ing lemma :

*

3
LEMMA 4. If F,and 7, arec.i.| .7, then &7 N . F,and .7, N

L/ 3
are c. 1. | .7 ..
Proof. Let A, ¢ #,1=1,2,3) and B, € &»,. Then
E{LtlnAZIBlnAB | */:71} = IAIII}IE{IAJIAs l T} a. s.
— ["HE{I’L}, l k%}IBLE{IA;] l \L/?:}' a.s
=K {IAlLﬂA:,’ ‘ </'1}'E{I/flnA41, ‘ /_1} a. s.

by hypothesis and lemma follows.

THEOREM 4. Let Y e & and %, C .o (1 =1,2,3) be given, If
ZYYC o(F, U F) and if F, and F, are ¢.i.| F#,, then

(8) E{Y|.% 0 .53} = B{Y| 57} a.s.

Proof. By Lemma 4 it follows that &, ﬂ F, and .4, are c¢.1.|.7,.
.
Therefore, (8) becomes a consequence of Theorem 3 since ./, N ../, and
., being c.i. | %, implies that < (Y) and .&, are c.i.|.o .
Of particular importance is the following special case of the above
theorem :

COROLLARY 4.1. Let g: R,— R, be a #,measurable function, and
r.v.’s X, Y, Z be such that g(X,Y) e ¢, and either X and Z are
c. 1. | Y or the vector (X, Y) is independent of Z. Then
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E{g(X! Y) Il Y’ Z} = {Q(X, Y) ‘ Yj a. 8.

As before, this result remains valid if the random variables X, Y and
Z are replaced by random functions.

It should be remarked that many of the foregoing results may be
obtained by elementary means for cases where the random variables in-
volved possess joint probability density functions with respect to some
dominating measure. In many applications, however, the cxistence of
such density functions ecannot be postulated.

4. Applications. As a first application of the results of §3, the

following theorem shows the equivalence of certain characterizations of
conditional indepedence :

THEOREM 5. For r.v.’s X, Y, Z, the following statements are cqui-
valent

(a) Zand X are ¢.i.|Y

(b) Z-Y and X-Y are c.i.|Y

() PZ<z|Y, X} =P{Z<z|Y} a.s. for all z € R,.

Proof. (Note first the standard definition P{A |~} = E{I,| .~}
which has been presupposed in (¢).) Lemma 4 shows that (a)— (b).
Since #(Z) < (Y, Z—Y) and 2(Y,X) = #(Y, X — Y) it follows
from Theorem 4 that (b) — (¢). (c) implies that E{[,|Y, X} = E{I,| Y}
for all A of the form {2, < Z < z,} with 2,2, € R,. The collection of
all such inverse images forms a quasi-ring, .27, say, such that ¢(<”) =
& (Z). It follows then that for 4 € &, B ¢ #(X),

E{LI|Y) = E{LE{|Y, X)|Y) = E(I,| Y}E{I,| Y} a.s.

and (a) follows by Lemma 2. Q.e.d.

The equivalence of (a) and (c) has been proved in a different form
by Doob ([2], pp. 83-85) for the more general case in which Z and X
are allowed to be finite-dimensional random vectors. It should be point-
ed out that the restriction to one-dimensional r.v.’s was solely for pre-
sentation purposes throughout this paper, and that all of the above
results carry through when the conditioning r.v.’s are replaced by ar-
bitrary families of r.v.’s. This is true simply because all results involv-
ing r.v. s have been stated in terms of their induced o-algebras.
Roughly speaking, in this more general context, the implication (c)—(a)
of Theorem 5 states that for a Markov process the past and future are
c. 1. given the present.

A second application is in proving the statement that a stochastic
process {X,: ¢t € T} with independent increments is a Markov process.
Indeed this statement is a simple corollary of Theorem 4. For ¢, < {,<
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«es < t,, consider

P{Xan = Wlth, Xt2, cee, X, } = P{(wln — th_l) + an_ <ual|X

n—1 1 n—1
(X,, +--, th_Z)} a. s.
— (
=PiX, =sz|X, } a. s.

The last equality is a consequence of the remark following Corollary 4.1,
since X, — X,  and (X,,---, X, ) are independent. A proof of this
fact, using only the standard theorems of conditional expectation, is
lengthy and rather unattractive (cf., Doob [2], p. 85).
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ARCS IN PARTIALLY ORDERED SPACES
R. J. KocH

We present here a theorem on the existence of arcs in partially or-
dered spaces, and several applications to topological semigroups. The
hypotheses are motivated by the structure of the partially ordered set
of principal ideals of a compact connected topological semigroup with
unit. Noteworthy among the applications are (1)! a compact, connected
topological semigroup with unit contains an are. (2) A compact, connected
topological semigroup with zero, each of whose elements is idempotent,
is arc-wise connected. Throughout the paper, arc is used in the
sense of ‘‘continuum irreducibly connected between two points’’. We
do not assume metricity of the spaces, but all spaces are assumed to
be Hausdorff. Simple non-metric examples of the theorems are furnish-
ed by the ¢ long line ”’, i.e. the ordinals up to and including £, filled
in with intervals, the operation being a-b = min(a, b). The author is
indebted to R. D. Anderson, R. P. Hunter, and W. Strother for useful
suggestions.

We recall the following definitions: [10] (X, <) is a partially ordered
space if X is a space, and < is a reflexive, antisymmetric, transitive
binary relation on X. A chain in X is an ordered subset of (X, <).
We denote by Graph (<) the set of pairs (x,y) with © <y. We denote
by A\B the complement of B in A; closure is denoted by*, F(A) denote
the boundary of A, and [ denotes the empty set.

The following result of the author [3] is presented here in dectail
because of its relation with Theorem 2.

THEOREM 1. Let (X, <) be a compact partially ordered space and
let W be an open set in X. If
(1) For each x e X, {y|ly <z} is closed, and
(2) For any xe W, each open set about x contains an element vy
with y < x,
then if C is any component of W,C* n F(W) + [.

Proof. We show first that if V is open and V < W, then F(V) +
[1. Let M be a maximal chain in V*, Then M is compact [10], hence
M has a minimal element m € V*. If m e V, then by hypothesis (2)
above, the chain M can be extended, contrary to the maximality. Now
Received September 4, 1958. This research was supported by the United States Air

Force through the Air Force Office of Scientific Research, Air Research and Development
Command, under Contract AF 18 (603)-89.

* 1This settles a question raised by D. Montogomery. The author learned of the
question through A. D. Wallace.
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let C be a component of W and suppose C* N F(W) =1 . Then by
standard arguments [5; p. 110] there is an open and closed set N with
Cc Nc W. Hence N is an open subset of W with F(N) = ||, a con-
tradiction.

In the next theorem we use the following topology for the space
S(X) of non empty closed subsets of a compact space X, which is an
extension of the Hausdorff metric topology [1]. For open sets U and V
of X,let N(U, V)= {A|AeS(X),AcU, ANV +|1}. Take {N(U,V)|U, V
open} for a subbasis for the open sets of S(X). It is known that if X
is compact Hausdorff, so is S(X).

THEOREM 2. Let (X, <) be a compact partially ordered space, and
let W be an open set in X. If
(1) Graph (L) s closed and
(2) For any x e W, each open set about x conlains an element y
with y < x,
then any element x of W belongs to a (compact) connected chain C with
CnNFW)+ [l and x = supC.

Proof. Let W be as above, and fix a € W. Since W* N {yly <a}
is a compact partially ordered space and contains the relatively open set
W N {yly < a} satisfying the above hypotheses, we may assume that
X = {y|ly < a} and that W is an open set in X with a e Wc W* = X.
Let &~ denote the collection of all closed chains in X with a e C and
Cn F(W)=+ 1. By Theorem 1, F(W)+ [; hence if ze F(W), the
elements @ and z constitute an element of <, so that & =+ (1.

(i) = s closed in S(X). We show that S(X)\z” is open. Let A
be closed in X, with A ¢ «. If A is not a chain, then there are ele-
ments « and ¥y of A with « £y and y £ 2. By hypothesis (1) there
exist open sets U and V about x and y with the property that «’ € U,
y' e Vimply 2’ £ 9 and ¢y £ «’. Then N(X, U) N N(X, V) is an open
set about A, and misses ©. If Aisa chain but a ¢ A, then (X\a, X\a)
is an open set about A which misses , and the case F(W) N A= {J
goes in a similar way.

Define L(x)= {y|y <x} and M(x)= {y|x < y}. Also define (v, y) =
{z]lx <2< y}). Let & be an open cover of X, and define a subset M; of
S(X) by: Ce M; iff C is a closed chain in X, and for any « and ¥ in
C with * <y and (z,y) N C = [, there exists Ve d such that V*
meets both L(x) N C and M(y) N C.

(i) Ms;n e+ |, for any open cover 6. Let & be an open cover
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and a € C. Let_/ be a maximal tower in 7, and let 7= J_Z/ Note
that T is a chain containing @, hence by hypothesis (1), 7* is again
a chain. Also it is easily seen that inf 7= inf 7*. We will show that
T*e My, Let z,ye T* with x <y and (x,y) N T* = []. Suppose
2 = inf T'; then if inf T ¢ T it follows that T'c M(y), hence x e T C M(y),
a contradiction. Hence x = inf T'e T, so there exists T, ¢ 7 such that
xe T,. Since T, e M;, there is V e § with V* meeting both L(x) N T},
and M(y) N T.. Hence V* meets both L(x) N T* and M(y) N T*, and
it follows that 7' € M;. Therefore we may suppose inf7 < x <y, S0
there exists t, with inf7T <t, <x<wy,t,e T,e /. Since T,e M; it
again follows that 7™ e¢ M;. This establishes that 7* € M, and it re-
mains to show T*e & If T*c W, then T* e <, so by the max-
imality of T, T* = T. Hence infT e T c W, so there exists V e § with
infT e V. There is an element ye VN W with y < 2. By an easy
argument, T Uye M;, so TUye ~,TUy=T1T, and ye T, a con-
tradiction. We conclude that 7' N F(W) + [], and T* e Ms N <.

(iii) Ms N & s closed for each finite open cover & of X. Let &
be a finite open cover of X. We show that S(X)\M, N = is open.
Let A be a closed set, A ¢ M; N . Then either A ¢ & or Ae &
but A ¢ Ms. If A ¢ = then by part (i) there is an open set about A
which misses &7 Suppose Ae & and A € M;. Then for some z,yec A
we have (x,y) N A =[], and for each Ve 8, V* misses either L(x) N A
or M(y) N A. By an easy argument which makes use of hypothesis (1)
and compactness, there are open sets U, and W, about L(x) N A and
M(y) N A resp. with the property that ' e U, and y'e W, imply y' £ z'.
Let U,=N{X\V*Ves, V¥NLx)ynA=_}, W,=N{X\V*|Ves,
V*N M(y) N A= [1}. Then, since 8§ is finite, U, is open and contains
L(x) N A, W, is open and contains M(y) N A, and for each Ve g, V*
misses either U, or V,, Let U'=UnU, W =W,n W, Now
NWU U W', U’ U W) is open, contains A, and as we next show, misses
MsN «. Suppose Ce  NNU'U W', U U W), Let &' =sup(CNT"),y =
inf(CN W); then (¢/,y)NC= (1. Also L(x')NCc U’ and M(y')NnCc W,
and since for each V e §, V* misses either U’ or W', we conclude that
C ¢ M;. This completes (iii).

For any finite open cover 8, put Ps = Ms; N %, and let <& = {Ps}.
Note that if P,, Ps € 9; then there is a finite open cover ¥ which refines
both « and B, and hence P, P, N P,. Therefore [.%°+ []. Let
Ce N &, and we show next that C is order dense. Let x,y e C with
® < ¥y. Then L(x) N M(y) N C = [, so by normality there are open sets
U and V about L(z) N C and M(y) N C resp., with U* N V* = [].

Let « be the finite open cover consisting of {X\U*, X\V*}. Since
Ce P, and it is false that the closure of each member of a meets both
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L(x) and M(y), we conclude that (x,y) N C # [], and C is order-dense.
Hence C is a compact order dense chain from a to F(W), and is there-
fore an arc. The proof is complete.

COROLLARY 1. Let (X, <) be a compact partially ordered space
with unique minimal element 0. If

1) Graph (L) is closed in X x X and

(2) L(z) is connected for each x € X, then X is arcwise connected.

Proof. Let W = X\0; then from the connectedness of each L(x),
we see that W satisfies the hypotheses of Theorem 2. Hence each ele-
ment of X can be joined to 0 by a compact connected chain.

We note that Corollary 1 cor}tains a result of Wallace [8].
Let S be a compact topological semigroup, and for a € S, let J(a) =

a U Sa U aS U SaS, and let J= {(@ )|J() = J@)}. Endow .SJ_ with
the quotient topology, and let ¢: S —>§ be the natural mapping.

From the compactness of S it follows that g is compact Hausdorff.
We denote by E the set of idempotents of S.

COROLLARY 2. Let S be a compact connected topological semigroup,
with S = ES U SE: then g 18 arcwise connected.

Proof. We define a partial order in TSf by: p(a) < @) ift J(a)Z J(b).
From the compactness of S it follows that Graph (<) is closed in S x S.
Further, if K denotes the minimal ideal of S, then @(K) is the uniquc
minimal element of % Note that L(p(x)) = J(x); since S = ES U SE, it

follows that J(x) is connected. Hence Corollary 1 applies, and the proof
is complete.

REMARK. By a similar argument it can be seen that if L is a con-
tinuous monotone reflexive struct [4.7] on a continuum X, all of whose

minimal elements are related, then —‘% is arcwise connected.
COROLLARY. 3. Let S be a compact connected topological semigroup
with unit u, and let V be an open set about w; then V contains an arc.

Proof. 1If Sisa group, the result is known [2], hence we may sup-
pose that u ¢ K, where K is the minimal ideal of S [9]. Let E denote



ARCS IN PARTIALLY ORDERED SPACES 127

the set of idempotents of S, and partially order E by: e < f iff ee fSf.
It follows from the compactness of S that Graph (<) is closed in E x E.
If there exists an open set W about u such that W N E satisfies (2) of
Theorem 2 (taking X = E), then W N V N E also satisfies (2), so there
is an arc in V. If for each open set W about u, W N E fails to satisfy
(2), then there exists ee E N V N (S\K) such that eSe N £ N V = {e}.
Since e ¢ K, eSe is non-degenerate. Hence eSe is a compact connected
semigroup with unit e in which there is an open set containing e but
no other idempotent. By a theorem of Mostert and Shields [6] there is
a local one-parameter semigroup in eSe N V and the proof is complete.

A compact connected semigroup with unit may fail to contain an
arc which contains the unit. This is illustrated in Example 2 below,
and is due to R. P. Hunter (unpublished).

ExAMPLE 1. Let R, denote the non-negative reals under addition,
and let C by the unit disc in the complex plane: C = {z:|z]| <1} Let
W = {(2,t); # = exp(2ris),t = e*, se R,}, and set S=(C x {0}) U W.
Then S is a compact connected semigroup with zero and unit, but does
not contain a standard thread joining the two. We may describe S by
saying it is a two-cell with an arc winding on its boundary.

EXAMPLE 2. Let D, be the graph of a* + y* < %—; z=1— %—; 1=
1,2,8,--+-. The D, then converge to a point u. From the center of
D,.;, we start an arc A, which winds upon the boundary of D, as in
Example 1. Let S, = A, U D,; S, is then a compact connected semigroup
with zero 0, and unit u,. Repeat this construction for each positive in-
teger ¢, and let S = UU,S,. We define multiplication in S as follows: if
x,y € S and both # and y belong to the same S,, let xy be the product
given in S;. If x € S, and y € S, with 7 < j, define 2y = yx = x. Itis
easy to see that S™* becomes a compact connected semigroup with zero
0, and unit w. Moreover, no arc in S* contains .

COROLLARY 4. Let S be a locally compact connected topological

semigroup with zero (0), each of whose elements is idempotent; then S
18 arcwise connected.

Proof. Note that e < f iff e e fSf defines a partial order on S,
and that Graph (<) is closed in S x S. The conclusion is now im-
mediate from Corollary 1.

We conjecture that compactness can be replaced by local compact-
ness in Corollary 4, and further, that a locally compact connected
semilattice is arcwise connected.
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A SPACE OF MULTIPLIERS OF TYPE L(—eo, o)
GREGERS L. KRABBE

1. Introduction. Let V(G) denote the set of all functions having

finite variation on G. Set G = (—c0, ) =G, and let V.(G) be the
Banach space of all functions in V(G) which vanish at infinity. If

f € V.(G), then there exists a bounded linear operator (¢,f) on L”(G‘)
such that

(i,)  (Fourier transform of (t,f)x) = (Fourier transform of z) - f

for all # in L”(G‘). This will be shown in 7.2. In the terminology of
Hille [3, p. 566], functions f having property (i,) are called ‘‘factor
functions for Fourier transforms of type (L,, L,)”.

Suppose 1 < p < . When fe L{G)N V(G)C V.(G), then (t,f) is a
singular integral operator: for all = in L‘”(G) it is found that (¢,f)x has
the form

[t = |~ 0= M ag ned),
211 J-= g — )\
where the integral is taken in the Cauchy principal value sense.
In 6.2 will be defined a set A(L”(G)) which contains all factor

functions for Fourier transforms of type (L,, L,); the set A(LP(G)) is a
slight extension of what Mihlin [6] calls ‘“‘multipliers of Fourier inte-
grals’’. We will find a2 number N, such that

(1) if fe Vu(G) then fe ALYG) and [|(L,N)II = N, - lIfll, ,
where ||f]l, denotes the total variation on G of the function f. Let F,

be the mapping {x — x + F'}, where x + F' is the convolution of the func-
tions x and F

[o+ F], = S: 2(6) - F (6 — \)do O e Q).

Let (Yf) denote the Fourier transform of the function f:

(ii) if fel(@NV(G), then the transformation (Y f), is a
densely defined bounded operator, and (t,f) s its continuous linear
extension to the whole space L*(G).

Let us for a moment call G = {0, +1, +2, ---} and G = [0,1]. In

Received December 8, 1958, and in revised form February 11, 1959. This research
was supported by the United States Air Force through the Air Force Office of Scientific
Research of the Air Research and Development Command under contract No. AF 49(638)-505,
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a sense, the following relations are duals of (i) and (ii), respectively:

(') if Fe V(G) then (YF)e ALY®) and |[t(YF)| =k, | Fll,
(i)  if Fe V(G)then F, =t (YF) is a bounded operator on L"(G).

When G = [0, 1] these properties are easily verified (see 8.1). We will
not' prove (i’)-(ii’) for other choices of G.

When G = [0, 1], then (ii) is seen to be a theorem due to Steckin
[10]; by means of appropriate definitions, it could be shown that (i) also
holds for this particular choice of G.

2. Applications. If f belongs to the class S of members of
LGN V(G) such that (Yf)e LY(G), then (Yf), = (t,f) is a bounded
operator defined on all of L”(G); it is interesting to compare this result
with the conclusion F, = t,(Y F') of (ii’). All the classical convolution
operators (Poisson, Picard, Weierstrass, Stieltjes, Dirichlet, Fejér,..etc.
[7]) are of the form (¢,f), where fe S. See §8.

3. DPreliminaries. We assume 1 < p < o throughout, and write
G = (—o, ©). Denote by L° the set of step functions with compact
support. Let V be the set of all functions a defined on G and such
that ||a||, # o, where ||a|], denotes the total variation on G.

3.1 DEFINITIONS. Let V. be the set of all functions ¢ in V such
that lim a(d) = 0 whenever |6| — . We will write L* instead of L*(G).
If ¢=0,1 and f e L, then the Fourier transforms [Yf] are the func-
tions g, defined by

(1) [YF1 =000 = | __exp@ain(—1)0)-f(0)do (heG).

To lighten the notation, we will write Y for [, Yf] and ¥f for [ Yf].
3.2 LEMMA. If ae L'NV, then ac V., and

(2) rwe‘m‘“da(t) — 27i6-[ Yal, 0eq).

Proof. Since ae V, the limits a(+ o) = lima(d) (when 6 — + )
exist. Since ||a]|, < « we have

0+1
(3) limS la] =0.
8o+t JO
The eventuality a(+ o) # 0 implies a contradiction of (3). Therefore

1 It would be of interest to determine the validity of (i)-(ii) and (i’)-(ii’) in the general
case where 7 is a connected locally compact abelian group with dual group G. 1t is mainly
in order to suggest such an investigation that (i’)-(ii’) are mentioned here.
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a(+ o) = 0, which permits the integration of (1) by parts to obtain (2).

3.3 DEFINITIONS. Let 8, = (—o, —8]U[S, =) and let (Tsa)x be the
function defined by

(4 ) [(Tsa)f)c]}\ = Ss*dﬁ%lgw e—!ﬂi@l/da(t)

-0

for all X in G. We denote by V, the set of all members a of V such
that, for all  in L° the limit

[(Te)z], = lim [(Tia)z].

exists almost-everywhere on G. Let Ta be the operator {x— (Ta)x}
defined on L°.

3.4 LeEMMA. If k(8) = 16/\6|, then he V, and Th is the restriction
to L' of the Hilbert transformation. Moreover ||[(Tsh)xll, < ¢, - llzll,,
where ¢, s the norm of Th.

Proof. This follows from the statement in [8, p. 241] that
W(T:h)zll, < ||(Th)xll,. Theorem G in [1, p. 251] yields a less precise
result.

8.5, LEMMA. IfaeL'NVthenae V,and x *[Ya] = (Ta)x whenever
xe L

Proof. Suppose § > 0. By definition
(@ * [ Yal), = Sldﬁ-m(x — 0)-[Ya], = E°(\) + G0\
where
G = Ss*d()-x(x — 0)-[Yal, neG),
while E°(\) is the same integral over the interval (—§,38). It is clear
that lim F%(\) = 0 when § > 0+. On the other hand, G° = (Tsa)x fol-

lows immediately from (2) and (4). This concludes the proof.

3.6 LEMMA. Suppose aeV, and xe L. If there exists a number
k, such that ||(Tsa)xl], < k, for all 6 >0, then ||(Ta)xll, < k,.

Proof. Set ¢ = p/(p — 1). Observe first that

(5) llgll, = sup{’gg-fp

tpelf and (e}, 1} .
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Next, we infer from a theorem of F. Riesz ([8], p. 227 footnote 10)
that the uniform boundedness of ||(7sa)x||, implies that, for all ¢ in L¢
with [|p]l, = 1:

(6) S[(Ta)x]-w = lim S[Tsa)x]-f/) :

By (5) we have H[(Tsa)x]-(p < k,; this enables us to use (6) to deduce

|7y

< k,. The conclusion is reached by another application of (5).

3.7 LEMMA. If ae L'NV and xe L, then
H(Ta)xll, = 27, llallllz]], .

Proof. Suppose § > 0. Apply Fubini’s theorem to (4):

[(Tsa)x], = Scjwda(t)e—zuugﬁ dg%@_emu(x—m )

Set x'(8) = x(B) exp (2ritB). Keeping both (4) and 3.4 in mind, we can
therefore write

(7) [(Tsa)x], = (2i)‘lglda(t)[e‘““’[_(Tsh)x‘],\} .

This implies

(8) 1Tyl = 2-lall, sup [|(Te |,

The derivation of (8) from (7) is obtained by a standard procedure (e.g.

as in [3, Lemma 21.2.1]); it rests upon (5) and requires a single appli-
cation of the Fubini theorem. On the other hand, 3.4 implies that

(T2t ll, = ey llatll, = cpellll, -

In view of (8) therefore: [[(Tsa)xll, =< 27'¢,llallllz]|l,. Use now 3.6 to
reach the conclusion.

4. The Banach space V.. Let V, denote the set of all functions
in V which have compact support. The norm {a — ||a]l,} makes the set
{ae V: a(—) = 0} into a Banach space V,. Note that V,cV.cV,.
Henceforth V. will be given the topology of V,. We will write ||al]l. =
sup{la(0)]: 0 € G}; it is easily checked that

(9) llall. = llall, (when ae V).

Let y, denote the characteristic function of the interval (—=, %), and
set a, =y, - a.
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4.1 LEMMA. If ae V., then limlla — a,l|, = 0.

900

Proof. Suppose fe V. Using the notation 3, of 3.3, we have
(iif) WAl = o(f5 [=8, 8]) + v(f; 85) ,

where v(f; I) denotes the total variation over I. Set 6 == and h, =
a — a,; therefore v(h,; [ —3, 8]) = |a(—38)| + {a(d){ and v(h,; 3.) = v(a; 8,.).
From (iii) therefore ||A,ll, = la(—38)| + la(d)] + v(a; 5,), and the conclu-
sion follows by letting & — oo,

4.2 REMARK. The set V, is dense in V. (since 4.1 and the fact
that a, e V).

4.3 THEOREM. The set V. is a Banach space.

Proof. Since V. is a metric subspace of the Banach space V,, it
will suffice to show that V. is complete. To that effect, consider a
Cauchy sequence {g,} in V.; since {g,} is also in V,, it will converge
to some function f in V,; therefore f(—<) = 0 and we need only estab-
lish that f(w) = 0. From (9) we see that

1F(0) — 9O = IIf — gl (0eG).

In view of g,(c0) = 0, the conclusion is obtained by letting 6 — o and

k— oo,

5. The bilinear operator B,. From 3.2 results that V,.c L'NV c V.;
it follows from 4.2 that L'NV is dense in V.. Consider the bilinear
operator B = {(x, a) = (Ta)x} which maps L’ x (L'NV) into L?. From
3.7 we see that B is a continuous bilinear mapping of L° x (L'N V) into
L?. Since L’ and L'NV are dense in L” and V., respectively, it fol-
lows that B has a (unique) continuous extension B, to L? x V.. Aec-
cordingly, if ae V.., then

(10) B (z, a)ll, = 27%,[lallllzll, (if xe L)
If ae L'NV, then (from 3.5) '

(11) B,(x,a) =2 +* Ya (if xe L) .
5.1 NoTATION. We henceforth identify functions equal almost-every-
where on G. If the sequence {f,} converges in the mean of order p

(i.e., in the topology of L?), then its limit will be denoted (L*)lim f,.

5.2 LEMMA. Let %, be the function defined by
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1a(0) = (sin 27n0)/70 0e@).
If fe L, then f= (L")lim fx* 7y, as n— co.

Proof. Observe that Dunford’s proof [2, p. 51, Lemma 3] for the
case p = 2 holds without alteration whenever 1 < p < oo,

6. The main result., Suppose ¢ =0,1. When f is a locally inte-
grable function, we set

(12) (Y,)f 1= (L) im [ Y (2, - )]
As in 3.1, we lighten the notation by writing Y,f=1[(Y,)f] and
V,f =16Y,)f]

6.1 REMARK., If fe L' then [(\Y,)f]=[Yfl. The following de-
finition is an extension of the one used by Mihlin (‘‘Multipliers of Fourier
integrals’’?),

6.2 DEFINITION. A locally integrable function a is called a “‘mul-
tiplier of type L*’ if both the following conditions hold:

{the transform Y (a-[¥«x]) exists and belongs to L* whenever ze L°
oo #= sup{l| Yy(a-[F2])l],: xe L’ and [jx||, < 1} .

Let A(L”) denote the set of all multipliers of type L?. When ae A(L"),
then (¢,a) is defined as the continuous extension to all of L* of the
transformation {x — Y, (a-{¥x])} defined on L'.

6.3 THEOREM. If ae V., then aec A(L") and (t,0)x = B,(x,a) for
all x in L*.

Proof. Note first that a, = (y,-a)e L'NV. Suppose xe€ L’. From
(11) we see that

[B(x, a,)], = Sdé’-x((i)gdt-e"—””“"’“a,l(t) (when e () .
By Fubini’s theorem
[B,(z, a,)] = gdt-aﬂ(t)e"-”’“‘[([fx I, (for all X in G).

Or, equivalently

Bp(mv an) = Y(X.n-a-[Wx]) .

2 See [6]; in that article, Mihlin gives a condition which ensures that a differentiable
function he in a(L?),
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From (10) and 4.1 we can now infer that
B (z,a) = (L") lim Y (x,- {a-[¥]}) .

From the definition (12) now results that B,(z,a) = Y, (a-[¥x]) for all
x# in L°. This completes the proof, in view of (10) and 6.2.

7. Hille’s definition. Set ¢ = p/(p — 1). The following definition
is found in [3, p. 566]: a function a is said to be a factor function for
Fourier transforms of type (L,, L,) if and only if

a-[Tx]le {(¥Trize L}

wherever © ¢ L?. This definition seems to require the restriction p < 2,
since [7,x] need not exist otherwise.

7.1 THEOREM. Suppose 1< p<2. If a 1is a factor function for
Fourier transforms of type (L,, L,), then ac A(L").

Proof. If a is such a factor function, there exists a bounded linear
mapping (tha) of L*(G) into itself (see [3, Theorem 21.2.1]); this operator
is defined by

a[¥x] = ¥ ((ta)x) for all x in L* .
In view of [11, 5.17], this implies
(13) Y, (a:-[¥x]) = (t,a)x for all x in L*.

The conclusion follows from 6.1 and 6.2.

7.2 THEOREM. Suppose 1 < p <2 and ae V.. Then a is a factor
function for Fourier transforms of type (L,, L,); moreover,

(14) ¥ (By(x,a)) = a-[¥ ] (when x e L) .
Proof. Since B,(x,a)e L* when xe L” (see §4), it will suffice to

prove (14). Consider first the case (x,a)e L° x V,. From (12) we see
that

(15) V(B,(z,a)) = (L)limg, ,
where ¢, = ¥[y.-B,(x,a)]. From (11):
9.\ = S de.e‘-’ﬂwgda-x(a)[YaJM (when re@).

A repeated application of the Fubini theorem yields
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7,00 = Sdt-a(t)[w 21, S 30 grin-on (when e G) .

In the notation of 5.2 we accordingly have
9. = {a-[Fx]} = %

Since a - [¥x] is in L%, it ean be inferred from 5.2 and (15) that
¥ (By(x, a)) = (L) lim ({a-[Tx]} = 7,) = a-[Fx] .

Keeping ¥x = ¥ x in mind (see 6.1), it is clear that (14) is now proved
in the case (x,a)e L° x V,. Consider the bilinear operator R = {(x, a) —
a-¥x} defined on L? x V.; since |[|[7zll, < |lzll,, it follows that
R, a)ll, = llzllllell., and from (9) results that R is a bounded bilinear
mapping of L* x V. into L° In view of (10), this remark also shows
that the bilinear operator J = {(z, a) —» ¥ (B,(x, a))} is a bounded bilin-
ear mapping of L x V. into L-.

Having shown that R(x, a) = J(x,a) whenever (z,a)e L’ x V,, the
desired conclusion R = J can now be inferred from the denseness of L*
and V, in L? and V.., respectively (see 4.2).

8. Concluding remarks. From 6.3, 3.2 and 3.5 follows that, if
feL'nNV and ze L?, then (¢,f)x = By(x,f) = Tf; hence, if F is the
Fourier-Stieltjes transform of f, we have (from 3.3) the relation

F(0 =) gy

re@G
T (Ae @)

[(t,)) = | a(0)

which was announced in the introduction. Property (ii) of the introduec-
tion follows from (11) and 6.3. If Ae L' we denote by A,, the bounded
operator {x — =« A} defined on L”. Let S be thesetof all ¢« in L'V
such that Yae L', and observe that (Ya),, = ({,¢) when aeS. Again
if ae S, then A = Yae L' and a = ¥ A; from [4] it is seen that the
spectrum of (f,a) is the closure of the range of a.

8.1 REMARK. Set G =1[0,1] and G = {0, +1, +2, ---}. We will
now sketch a proof of the properties (i')-(ii’) described in §1. Denote
by || All, the total variation of A on G, and suppose ||All, # . Observe
that, since AeLl(G), we may borrow from {5, p. 10] the following con-
clusion: a = YAe A(L”(G)) and ¢,(YA) = A, is a bounded linear operator
on Lp(é).

This is all of (i’)-(ii") except for the inequality. The main result of
[5] can be stated as follows®:

8 The definition of V,(a) is given in [5, p. 8].



A SPACE OF MULTIPLIERS OF TYPE Lr(— oo, o) 737

(16) @)l = 2k, Vi(a) .

Note also that [[YA],]| < |2nn|*||All, when neG (this is obtained by
integrating by parts, as in 8.2); consequently V, (a) = V,(YA) < m,||All,.
In view of (16), the proof of the inequality in (i) is completed.
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CHAINS OF INFINITE ORDER AND THEIR
APPLICATION TO LEARNING THEORY

JOHN LAMPERTI AND PATRICK SUPPES

1. Introduction. The purpose of this paper is to study the asym-
ptotic behavior of a large class of stochastic processes which have been
used as models of learning experiments. We will do this by applying
a theory of so-called ‘‘chains of infinite order’’ or ‘‘chaines & liaisons
complétes.”” Namely, we shall employ certain limit theorems for sto-
chastic processes whose transition probabilities depend on the entire past
history of the process, but only slightly on the remote past. Such theo-
rems were given by Doeblin and Fortet [3] in a form close to that we
employ; however, in order to accomodate certain cases of learning models
we found it necessary to relax somewhat their hypotheses. A self-con-
tained discussion of these and some additional results is the content of §2.

We should emphasize that this section is included to serve as prep-
aration for the theorems of §4, and it is original with us only in some
details and extensions. In addition to [3], papers by Harris [7] and
Karlin [8] contain very closely related results and arguments, but not
quite in the form we require.

The processes which we shall study with these tools are called ‘‘linear
earning models.” From a psychological standpoint these models are
very simple. A subject is presented a series of t¢rials, and on each
trial he makes a response, which consists of a choice from a finite set
of possible actions. This response is followed by a reinforcement (again
one of a finite number). The assumption of the model is that the sub-
ject’s response probabilities on the next trial are linear functions of the
probabilities on the present trial, where the form of the functions de-
pends upon which reinforcement has occurred. Many results about such
models may be found in Bush and Mosteller [2], Estes [4], and Estes and
Suppes [6]. We will also study here models constructed along similar
lines for experiments involving two or more subjects and a type of in-
teraction between them [6, Section 9] and Atkinson and Suppes [1].
Precise definitions of these processes are given below in §3.

The references mentioned above do not, except in very special cases,
give a thorough treatment of asymptotic properties. We shall prove
that under general conditions linear learning models exhibit ‘‘ergodic’’
behavior; that is, that after much time has passed these processes be-
come approximately stationary and the influence of the initial distributions
mNovember 20, 1958. This research was supported by the Group Psychology

and Statistics Branches of the Office of Naval Research under contracts with Stanford
University.
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goes to zero. This is not the case for all models which have been
used in experimental work, but it seems as if ergodic behavior can be
proved by our method in almost all the cases in which one might expect
it. Our theorems to this effect, their proofs and some corollaries are
given in §4.

The major work so far on limiting behavior of learning models is
Karlin [8], who obtains detailed limit theorems for certain classes of
models. However, the results and even the techniques of Karlin’s paper
do not apply to many cases of interest. His starting point is a repre-
sentation of the linear model as a Markov process whose states are the
response probabilities. Two typical situations when such a representa-
tion is impractical arise (i) when the probabilities with which the rein-
forcement is selected depend on two or more previous responses, and (ii)
in the many-person situations mentioned above. Both these situations
can (and will) be studied using infinite order chains, and ergodic behavior
established under mild restrictions. On the other hand, Karlin’s work
treats interesting non-ergodic cases outside the scope of our approach. For
example, consider a T-maze experiment in which the subject (a rat, say)
is reinforced (rewarded) on each trial regardless of whether he goes left
or right. In the appropriate linear model, the probability of a left turn
eventually is either nearly 0 or nearly 1, and which it is depends upon
the rat’s initial response probabilities. The model of this experiment
has been thoroughly studied in [8, Section 2], and these results have
been generalized by Kennedy [9].

In conclusion we comment that both more detailed results and other
applications seem possible using the ideas of ‘‘infinite order chains.”

We hope to contribute further to this development in the future.

2. Chains of infinite order. In this section we present a theory
of non-Markov stochastic processes where the transition probabilities are
influenced only slightly by the remote past. The original convergence
theorems for this type of process are due to Doeblin and Fortet [3];
they are given here in a generalized form (Theorems 2.1 and 2.2). The
weaker hypotheses make the proof of Lemma 2.1 more complicated than
it is in [3], but the other proofs are not much affected. T. E. Harris
has also studied these chains; we shall not use his results but remark
that his paper [7] gives additional references and background on the
subject. Finally we point out that the restriction to a finite number of
states is not essential, and the theorems can be extended to the de-
numerable case without much change of methods.

Let I consist of the integers from 1 to N (to represent the states
of the chain); we shall use the notation x for a finite sequence %, %,, - - -
of integers from I. The subscript ““m’’ on x, merely adds the specifica-
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tion that the sequence has m terms; the ‘‘sum’ x, + x' will be the
combined sequence %, -+, %,,_1, %, 7, - - -. The starting point for the theory
will be a set of functions p,(x) defined for all ¢e I and all sequences x
(including the sequence ¢ of length zero) and having the properties

(2.1) pi(x) = 0, Eil pi(x) = 1.

The function p,(x) will be interpreted as the conditional probability that
a path function of the random process will go next to state ¢, having
just occupied state 1, previously ¢,, ete. With this interpretation in
mind we define inductively the ‘‘higher transition probabilities’’:

(2.2) pir(x) = p pAX)PI V(G + @),

where of course p{V(x) = p,(x), the given function. It is easy to see that
these higher probabilities also satisfy condition (2.1). The functions
p{™(x) are the analogues of the terms of the matrix P" for a Markov
chain with transition matrix P; the theorems we shall give generalize
the convergence properties of the matrices P".

We shall first impose a positivity condition on the transition proba-
bilities; specifically we assume that for some state j, some positive
integer n,, and some & > 0,

(2.3) p;?)(x) > 8 for every z .

We also need to make precise the ‘‘slight’” dependence of these proba-
bilities on the remote past; indeed, this is the crux of the whole theory.
Define

(2.4) &, = sup [z + @) — pi(x + 2”)|

where the sup is taken over all states 4, all sequences 2z’ and x”, and

all sequences & which contain the state j, at least m times. We shall
use the postulate

(2.5) f; 6, < o .

(In [3], &, is defined in the same way except that the sup is taken over
all © of length at least m. Since this results in larger ¢!s, and since
it is also assumed there that 3¢, < o, our hypotheses are strictly
weaker.) Throughout this section, (2.3) and (2.5) will be assumed.

LEMMA 2.1.
(2.6) lim [sup | p{(x + &") — p{”(x + 2”)[] =0,

where the sup is the same as in (2.4) (i.e., x contains j, at least m
times); the convergence is umiform in mn.
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Proof. We define quantites ¢ by using p{®’ instead of p, in (2.4);
then of course ¢ = ¢,, and the conclusion of the lemma is equivalent
to ¢ — 0 uniformly in &k as m — . Now

i@ + ') — p{(x + «") |
= IZJ P05 + @ + 2)py(x + o) — PV + @ + 2")p(x + 2")} ]
= Zj Py + )| pF(F + x + @) — pF(F 4w + x|
+ Zj D@ + «") — py(e + ") Ip* V(7 + o +a) .
Suppose that x contains j, m times. Then the second term of the above
estimate is less than Ne¢,. The absolute value in the first term is less

than &¥-Y, but if 7 = 7, this can be improved to & ;. Taking account
of (2.3) and assuming that n, = 1, we obtain the estimate

(2.7 e’ = Ney + 0eiin? + (1 — 8)en™ .

(In case m, > 1, the same idea can be carried out; the details are more
cumbersome and will not be given.)

Now (2.7) can be iterated to obtain an estimate of & in terms of
en. After some computation the result is

&9 < NepS (1 — 8) + NewadS: (i + 1)(1 — o)
i i-o

k—-1-1

4o £ Ny st S (z * l>(1 — B) A e N,

=0

If the series are extended to infinity, the inequality remains true; call-
ing these (infinite) series A, A,, --+, A;-, we have

&P < NS e, A, .
i=0
But it can be shown without much difficulty that
Az+1 - Az - (1 - 8)Al+1 ’

or A,,, = A,/8. Since A, = 87" we obtain 4, = 6-“*?, and hence
(2.8) e < 5 5Te
i=0

Recalling hypothesis (2.5), the uniform convergence of &’ follows from
(2.8).

LEMMA 2.2.
(2.9) lim | p{(2") — p{®(x")| = 0

and the convergence is uniform in x' and x'.
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Proof. For clarity we shall use probabilistic arguments, although a
purely analytic rephrasing is not hard. Consider two stochastic processes
operating independently with transition probabilities p,(x), one with the
sequence «’ for its past history up to time 0 and the other with x".
In view of Lemma 2.1, for any ¢ > 0 there is an m such that if the
two processes have occupied the same states for a period which includes
7o, at least m times and ends sometime before time #, then their proba-
bilities of being in state ¢ at time n differ by at most ¢/2. But it fol-
lows from condition (2.3) that with probability one, there will sometime
be a period of length m during which both processes remain in state j,.
We can take n large enough so that this simultaneous ‘‘run’’ of state
Jo will occur before time n with probability not less than 1 — ¢/2. For
this and all greater values of n, therefore, the two processes have proba-
bilities of occupying state ¢ at time n which differ by at most ¢, and
this proves (2.9). It is also easy to see from (2.3) and Lemma 2.1 that
n can be chosen uniformly in 2’ and x”.

With this much preparation we shall now prove the first theorem:

THEOREM 2.1. The quantities

(2.10) lim p{"(z) = 7,

n—oo

exist, are independent of x, and satisfy >, 7w, = 1, the convergence is
1
uniform in .

Proof. Applying (2.2) repeatedly, we have

pgn*-m)(x)
= 2 P, (@)D, (Umo - 2) e iyl A e A e+ 2D (@ + 2)

m

where 2, = ), %;, *+ -, i,—;. Therefore

[pi**™(x) — pi”(@)]
S0, (%) oo e DG+ e ey + RPN (@0 + @) — ()]
and by Lemma 2.2, for any ¢ there is an # such that each term within
absolute value signs on the right is less than e¢. Since the weights
D; () +« Dyt + <+ + 1, + x) sum to one, we have

m=1
[ p" ™ () — pi™(x)] < e,

and so p{”(x) has a (uniform in 2) limit 7. Since there are a finite
number of states,

2wy = 3 lim p{(x) = lim X p”(x) =1,
i Nn—o00

i m—ooo



744 JOHN LAMPERTI AND PATRICK SUPPES

and this completes the proof.
Next we shall define joint probabilities. If x, is 2, 7, =+ -+, tp-y, let

(2.11) pe (¢") = pi(a")
= pim_l(x’)pim_2(i + 90') et pzo(i1 + e+ im—l + x) .

m—1

This is, of course, the probabilitity of executing the sequence of states
2, starting with past history x’. We can define also the higher joint
probabilities:

(2.12) P = S p@)pe G + o)

Analogues of Lemmas 2.1 and 2.2 can be proved for these quantities by
the same arguments used already; in this way it is not difficult to prove

THEOREM 2.2. The quantities

(2.13) lim p(@') = 7.,

m

exist, are independent of ', and satisfy >, T, =1 the convergence
iy ‘Lm—l !

s uniform in x'.

REMARK. These two theorems imply the existence of a stationary
stochastic process with the p,(x) for transition probabilities. The idea
is that the quantities T, can be used to define a probability measure
on the ‘‘cylinder sets’” in the space of infinite sequences of members
of I, and this measure can then be extended. This stationary process
need not concern us further here.

Finally we will prove convergence theorems for certain ‘‘moments’’
which are useful in studying experimental data. The idea is that if we
have a stochastic process with the functions p,(x) for transition proba-
bilities, the probability p,(x,) that the state at time m is 7 given the
past history x, is itself a random variable, and so it makes sense to
study E(p!(x,)). More formally, define

(2.14) wim,w) = S, pi, + Db, (@)
Yottt -1

where p, (x) is defined by (2.11). Thus «i(m, x) is the same as p{"'(x).
Theorem 2.1 states that lim aj(m, ) = 7, exists. We shall now prove

THEOREM 2.3. The quantities

(2.15) lim ay(m, ) = a?

m-—roo

exist for every positive integer y; convergence is uniform in x and the
limit is independent of .
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Proof. We use a simple estimate to show that «}(m, x) is a Cauchy
sequence:

lai(m + k + h, ) — aj(m + k, x)|
=| > PV @rgen + x)pxmﬂﬁh(x) — 2P (@ei + x)pxm“ﬂ(m)l

Tm+k+ I Ttk
é Z |pl/?(x7n+l\3+/b + x) - pr(xm + w)lpi"m+lu+n(x)
Ptk
+ D@ + ®) — D@, + @)D, |, (%)
Pm otk
+1 X pi@, + 00, ., (@) — 3 pi@, + 0)p, |, (@)].
Ttk e+ Tm ok

If m is chosen large enough, the first two terms will be arbitrarily
small; this involves nothing more than the conditions (resulting from
(2.3) and (2.5)) that ¢,, — 0, and that a long sequence % contains 7, many
times with high probability. The last term may be rewritten by carry-
ing out the summation over all the indices except those in x,; this yields

|2 P, + 2)(0s" @) — pf(@) | = 30 |plr(2) — p()]

which is small for all # (and for all x) if %k is large enough, by Theorem
2.2. Thusif n=m + k, |ay(n + h, ) — a}(n, x)| is small for all %, and
this proves that the limit (2.15) must exist; the limit is uniform in 2z
since aj(m, x) is uniformly Cauchy. Another estimate along much the
same line can be made to show that for any ¢ > 0,

lai(m + k, %) — ai(m + k, o) | < ¢

provided m and k are large. Since the limit of «a}(m + k, x) exists as
m + k — o, we can conclude that the limit is the same for all x.

It is also desirable to consider some additional ‘‘cross’’ moments
involving p,(x,) for several states at once; accordingly we define

1y

(2.16)  @SEliEm, @) = 3 p@n + DD + @) o D + 0P, (@) -

The following theorem is then a generalization of Theorem 2.3, which
treats the case k = 1:

THEOREM 2.4. The quantities

. vesV VY, eee
(2.17) lim oV (m, @) = a)l ok
-

exist uniformly in x for all non-negative integers y,---v, and all
Jie+Ju€ I, and the limits are independent of x.

The argument used in proving Theorem 2.8 works in this case also
with only trivial changes, and need not be repeated. Finally we remark
that moments involving several values of 7 can be considered, and it
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can be shown that their limits exist also. This provides a generaliza-
tion of Theorem 2.2.

3. Definition of linear learning models. The models we consider
apply to an experimental situation which consists of a sequence of trials.
On each trial the subject of the experiment makes a response, which is
followed by a reinforcing event. Thus an experiment may be represented
by a sequence (A,, £, A,, K,, --- A,, E,, ---) of random variables, where
the choice of letters follows conventions established in the literature:
the value of the random variable A, is a number j representing the
actual response on trial n, and the value of E, is a number k represent-
ing the reinforcing event on trial m. The relevant data on each trial
may then be represented by an ordered pair (J, k) of integers with
1<j<7r and 0<k <t that is, we envisage in general » responses
and ¢t + 1 reinforcing events. Any sequence of these pairs of integers
is a sequence of values of the random variables and thus represents a
possible experimental outcome. The general aim of the theory is to
predict the probability distribution of the response random variable when
a particular distribution, or class of distributions, is imposed on the re-
inforcement random variable.

In dealing with the general linear model with » responses and
t 4+ 1 reinforcing events we are following the formulation in Chapter 1
of Bush and Mosteller [2], although our notation is somewhat different,
being closer to Estes [4] and Estes and Suppes [6].

The theory is formulated for the probability of a response on trial
n + 1 given the entire preceding sequence of responses and reinforce-
ments. For this preceding sequence we use the notation z,. Thus

Ly = (km jnv kn—lr jn-—u ] ku .71) .

(It is convenient to write these sequences in this order, but note that
the numbering here is from past to present, not the reverse as in §2.)
Our single axiom is the following linearity assumption:

Axiom L. If E, =k and P(x,) > 0 then

(3.1) P(A,., = jla,) = (L = 0)P(A, = Jla,-) + 0y
where 0 < 0, N, <1 and > h, = 1.
We obtain the linear model jstudied intensitively in [6] by setting:
0,=20 for k +0
6,=0 for k=0
(3.2) Ay =1
N =0 for 7 =k
t=r.
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A linear model satisfying (3.2) we shall term an FEstes Model, and for
such models (3.1) may be replaced by the simpler condition:

3.3) P(Apei=7lx,) =11 — 0)P(A, = Jlx,-) if E,=k, k+0,k+J
\P(An = jlxn—l) lf En - 0 .

Axiom [ satisfies the combining classes condition of Bush and
Mosteller. Upon replacing @ by 1 — « in (3.1) essentially their general
formulation of the linear model is obtained, although they do not ex-
plicitly indicate dependence on the sequence .

We also define here certain moments which are of experimental
interest and whose asymptotic properties we investigate subsequently.
The moments «, of the response probabilities at trial » are:

(3.4) aj, = 3 P(A, = jleu ) P(Xn-) -

Tn -1
And if the appropriate limits exist, we define

(3.5) oy =limay, .

The moments (3.4) are formed in an unsymmetrical way; however,
they enter in a natural way in the expression of quantities which are
easily observed experimentally—for instance, the joint probability
P(A,.,=J, A, = j). (For other examples, see [6].)

We are also interested in studying extensions of the linear model
to multiperson situations. We may suppose that we have s subjects in
a situation such that the probability of a particular reinforcing event for
any one subject will depend in general on preceding responses and re-
inforcements of the other s — 1 subjects as well as on his own prior
responses and reinforcements. The data on each trial may then be re-
presented by an ordered 2s-tuple (7, ki, +--, Js, k;) of integers with
1<5,7r, 0k, <t, fori=1, ---, s, and any sequence of such tuples
represents a possible experimental outcome. Let A¥ and E be the
response and reinforcement random variables for the ith subject on trial
n. We may then generalize Axiom L to:

Axiom M. For 1<1i<s, of E =k and P(x,) > 0 then
(3.6) P(AR. = Jlw,) = (1 — 6)P(AD = jla,-) + 09\,
where 0 < 0P, A\ <1 and AR = 1.

J

Experimental tests of Axiom M for two-person situations are reported
in Estes [5] and in Atkinson and Suppes [1]. Let x{, be just the
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sequence of first n — 1 responses and reinforcements of subject 7. It is
a consequence’ of Axiom M that

P(AP = jlagl) = P(AY = jla.-) ,

and it is in terms of 2{?, that we define moments a’, exactly ana-
logous to (3.4). We shall also be interested in the joint moments

(3‘7) 731»"' Jgm = 2 PJ(A;LI) — jl! Tty AgLS) = jslxn—l)P(xn—l) )

Pp—1
and their asymptotes 77 ... i, if they exist. To work with these
latter moments in terms of Axiom M we need the additional reasonable
assumption that when all the » — 1 preceding responses and reinforce-
ments are given, the s responses on trial # are statistically independent:

Axiom I. If P(x,.,) > 0 then

P(A;'l) = j]r *ty Agzs} = jsl$n—1) = l}lP(A;Li) - ji]xn—l) .

The experimental restriction implied by Axiom I has been satisfied in
the multiperson studies employing the linear model.

4. Asymptotic theorems for learning models. After dealing with
some matters of notation, we state general thecorems on the existence
of asymptotic moments. The hypotheses of the theorems give some
broad conditions which guarantee ergodic behavior. We begin with the
one-person models satisfying Axiom L.

In this section it will be convenient to use some of the notation of
§2. Thus we may write P(4, = 7|z, + 2') in place of P(A, = j|z,-))
to indicate we are interested in the last m terms of x,_,. The ‘‘sum”’
%, + 2’ is just the combined sequence z,.,. We reserve the subscript
m for counting back m trials from a given trial n.

To clarify the general theorem it is desirable to define in an exact
way the notion of the conditional probability of a reinforcing event de-
pending on only a finite number m of past trial outcomes and inde-
pendent of the trial number.

DEFINITION. A linear model has a reinforcement schedule with past
dependence of length m if, and only if, for all %k, n and n’ with n,n’ > m
and all z,, 2’ and 2"

(4.1) PE, = klx,, + 2') = P(E,, = klz, + ") .

(It is understood that z,, includes the response A,, which precedes F,,
on trial m.) It is to be noticed that the use of » on one side and »' on
the other side of (4.1) yields independence of trial number. The term

L Proof of this fact is analogous to that of Theorem 4.8 of [6].
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reinforcement schedule has been used because of its frequent occurrence
with approximately this meaning in the experimental literature. For the
conditional probabilities of (4.1) we shall use the notation

4.2) Ty, = PE,=k|x, +x).
We may now state the first general theorem.

THEOREM 4.1. Let <~ be a linear model such that

(i) &~ has a reinforcement schedule with past dependence of
length m*,

(ii) there is an integer k* such that

(@) 0 +0

(b) there is a &% and an m, such that for all sequences x and all
integers n

P(E,.,, = k*|z,) =8 >0.

Then the asymptotic moments o of & all exist and are independent
of the initial distribution of responses.

Proof. The central task is to characterize &~ as a chain of infinite
order and show that satisfaction of the hypotheses of the theorem im-
plies satisfaction of conditions (2.3) and (2.5). With this accomplished
the asymptotic theorems of §2 may be applied to .27 It is most con-
venient to take as states of the chain the ordered pairs (7, k), where j
is the response on trial », say, and k is the reinforcement on the pre-
ceding trial. Consider now the reinforcement k* of the hypothesis of
the theorem. Let j* be a response such that \,,. # 0. (There is at
least one such j* since > \,, = 1; in the Estes model j* = k*.) With
the pair (5%, k*) as the Jstate Jo of the infinite order chain, we shall
establish (2.3) and (2.5).

To verify (2.3), we use (ii)b of the hypothesis and the following
equalities and inequalities, which hold for all x and n:

P(An+m0+1 = j*! E’n+mo - k*lxn)
= 2 P(An+m0+1 = j*lEn+mo = k¥, Tmy-1 + 2,)

xmo—l

° P(En+mulxmo—1 + xn)P(xmo—llxn) .
Applying Axiom, L, the right-hand side becomes:
= 3 [Q = 0)P(Apimy = T5 | ®uyor + ) + Oped ]

. -
my 1

* P(En+m0 = k*lxmo—l + xn) ° P(xmo—llxn)
2 916")\’_1*7\7* Z P(En+m0 = k*lxmo—l + xn)P(xmo*llwn)

Tmg~1
g gk*xj*k*P(En'qu - k*lxn)
> 00 pued® by ()b .



750 JOHN LAMPERTI AND PATRICK SUPPES

To establish (2.5), consider the following equalities and inequalities:

(43) IP(Anr+1 = jr Enl = klx + {17') - P(AnIHl = j; E,, = kl% + x”)l
= T[Ic,:cm*lP(AnIH = JlEnr = ky x + x') - P(Ann-u = lenu =k, x -+ (L‘”)l ,

where z,. means the last m™ terms of x, and where the sequence z
contains at least m occurrences of k*, with m > m*. The equality
follows from (i) of the hypothesis, for by virtue of (i)

T o = P(E, = klo +a') = P(E,, = kle + 2") .

Applying Axiom L once to the right-hand side of (4.3) we get, ignoring

T .
k,:cm*

lP(AnI+1 = JIEnI =k, x+ x’) - P(Anrl+1 = lenu =k, x + 90”)1
— (1= 0)|P(Ay = jla + &) — P(Aw, = jlx + @) .

We do not know that 6, #+ 0, but as we apply Axiom L repeatedly, we
obtain the factor (1 — 6,.) at least m times, so that

(4-4) lP(An"l'l =75, E, = kla + %) — P(Aws = J, E,)) = klae + x”)l
= (1 - gk*)miP(An/—n = Jlx’) - P(An/r—n!x")i ’

where & is the length of 2°. The difference term on the right of this
inequality is not more than 1, so that from (4.4) we obtain the estimate
for m > m*

Em § (1 - glc*)m ’

whence

Zoem < oo,
which is (2.5).
On the basis of (2.3) and (2.5) we know from Theorem 2.4 that the
asymptotic cross-moments of &~ exist and are independent of the initial
distribution of responses. But

P(An = jlxn-l) = %« P(An = .7., En—l = klxn-l) ’

and so the moments a’, can be expressed as sums of the cross-moments
for the infinite order chain & which insures the existence of the limit-
ting moments (3.5) and that they do not depend upon initial conditions.
There are several remarks to be made about the theorem just
2 If all 6; # 0, the original condition given in [3] would be satisfied; our weaker con-

dition (2.5) allows inclusion of cases where some of the ¢ are 0 (i.e. where there can be
trials without a reinforcement),
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proved. First, we observe that a simple sufficient (but not necessary) con-
dition for (ii)b is

(4.5) min T, # 0 .

T

The interpretation of (4.5) is that the reinforcing event k* has positive
probability on every trial no matter what sequence «,,. of responses and
reinforcements preceded. A number of interesting experimental cases
of the linear model can be described in terms of (4.5), (i) and (ii)a of
Theorem 4.1.

I. Contingent case with lag v. In the Estes model let P(E, =
klA,.-, = 7, ) = w,,(v), for all  such that P(A,_, = J, ) > 0. To satisfy
(4.5), we need only that for some k, 7;,(v) = 0 for all j. Experimental
data for » = 0,1, 2 are given in Estes [5].

II. Double contingent case. Let
P(En = klAn = j’ An—1 = j’y 90) = Tk 530 »

for all  such that P(4, =3, 4,-,=7J,2) >0.

Then (i) of Theorem (4.1) is immediately satisfied, and for (ii)a and
(4.5) we need a k such that ¢, = 0 and for all j and 5, 7, # O.

An interesting fact about (I) and (II) is that although they are
simple to test experimentally and their asymptotic response moments
exist on the basis of Theorem 4.1, there is no known constructive method
for computing the actual asymptotes. (The Estes [5] test of (I) excludes
non-reinforced trials which cause the computational difficulties.) It may
also be noted that the convergence theorems in Karlin [8] do not in
general apply to (II), and apply to (I) only if v = 0.

On the basis of the proof of Theorem 4.1 we may, by virtue of
Theorem 2.2, conclude that the asymptotic joint probabilities of successive
responses also exist:

COROLLARY 1. If the hypothesis of Theorem 4.1 is satisfied, then
for every m the limit as n— « of

P(An+m = jm9 An+m——1 = jm—lv tt An = jo)

exists.

We may regard the quantities P(4, = jlx,_,), for 1 <7 <7 as a
random probability vector with an arbitrary joint distribution F), on trial
1, and distribution ¥, on trial n. The following corollary is a consequence
of the existence of the moments «’ independent of the initial response
probabilities.
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COROLLARY 2. If the hypothesis of Theorem 4.1 is satisfied, then
there is a unique asymptotic distribution F.., independent of F, to which
the distributions F, converge.

For the multiperson situation characterized by Axioms I and M, we
have a theorem analogous to Theorem 4.1. For use in the hypothesis
of this theorem we define the notion of reinforcement schedule with
past dependence of length m, exactly as we did in (4.1), namely, we
have such a schedule if for all &, 1 <7 <s, all » and »’ with n, ' > m
and all z,, ' and «”

Ty, = PELD =k, oo, BY = k@2, + o)

m

= P(Egzl) = k(l)) ) E;LS) = k® lxm + x',) .

THEOREM 4.2. Let .7 be an s-person linear model such that
(i) 7 has a reinforcement schedule with past dependence of
length m*,
(ii) there are integers k™", for 1 <1 < s, such that
(@) 0% #0,
(b) there is a &* and an m, such that for all sequences x and
all integers n

P(E;]zﬂlg = k(l)*7 cty Eglsznbo = k(SJ*lxn) g 8* > 0 .

Then the asymptotic moments Vi, @,y OF A all exist and are
independent of the initial distribution of responses.

Proof. The states of the chain are now defined as 2s-tuples
(B®, eee, 7O D oot E®), where 7 is the response made by the ith
subject and k® 1is the reinforcement for that subject on the preceding
trial. Using the reinforcements k" of the hypothesis, let j®* be such
that MGy i # 0. We take (57, -« -, 5O, BOT, -ve, k") as the state j,
for which we establish (2.3) and (2.5). To simplify notation, it is con-
venient to define:

Poi(d, klw) = P(AG), = j©, «oo, AR, = §O, B = k®, <+« B = k@),
Puei(JPVk, @) = P(AQ, = JOIEY = k©, -+« B = k®, 2),

Thomr = ﬂk(l)""'k(S)*’Im*

Moreover, we omit the superscript notation from 6 and \.

To verify (2.8) we proceed exactly as in the proof of Theorem 4.1,
applying now Axioms I and M instead of L, and we obtain that

Prsmgri(J, %) ZJ}I O, o\ 0:0"
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For (2.5), we first observe that by virtue of (i) of the hypothesis
and Axiom I

lpn’+1(j1 klx + x’) - pn"+1(j’ klx + x”)l
= Tl 1L Pur (GO, @ + @) — 11 prrin(GOLE, @ 4 27) |
=1 i=1

We notice next that the right-hand side is

g Ttlc,'m,*{ pn’+1 (j(l)l k! X + xl) lfi pn’+1(.7.(t) lkr X + x’)
— 1 Py i(JONk, @ + 27)|
i=2
+ }I Durrsi(JO Ky, € +") | Do (FONE, €+ @) = Dy (GP Ny @+ 27) |

Continuing this same development, we obtain:
=< Z{ | D41 (FP N, @ + &) — Dpr (GO, © 4 27) ]

And by the line of reasoning used in the proof of Theorem 4.1, if the
sequence x contains state (7O, --., k®") at least m times the last
quantity is

<3 (L -0, )"
i=1

Provided m > m™* this inequality yields an estimate of ¢, from which
we conclude that (2.5) holds. The existence of the asymptotic moments
then follows from the theory of §2 as in the case of Theorem 4.1. Q.E.D.

A pair of corollaries follow from the theorem just proved which are
exactly like the two given after Theorem 4.1.

Finally, we want to remark that Axiom L involves linear functions
which are distance diminishing, i.e., have slope less than one. The
asymptotic results of this section apply to many learning models in
which these linear functions are replaced by non-linear functions having
this property.
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ON RADICALS AND CONTINUITY OF HOMO-
MORPHISMS INTO BANACH ALGEBRAS

EpitH H. LUCHINS

1. Introduction. All Banach algebras considered are over the real
field and all homomorphisms considered are algebraic (real-linear). An
algebra is called semi-simple, strongly semi-simple, or strictly semi-
simple, if its Jacobson radical [5], Segal radical [10], or strict radical
[8], respectively, is the zero ideal; that is, if its regular maximal right
ideals, its regular maximal two-sided ideals, or those of its two-sided
ideals which are regular maximal right ideals, intersect in the zero ideal.
Rickart [9, Corollary 6.3] proved that a semi-simple commutative Banach
algebra has the property that every homomorphism of a Banach algebra
into it is continuous. Call an algebra with this property an absolute
algebra. Yood [12, Theorem 3.5] proved that every homomorphism of a
Banach algebra onto a dense subset of a strongly semi-simple Banach
algebra is continuous. Thus a strongly semi-simple Banach algebra is
‘“almost’” absolute. The question arose: Is a (noncommutative) semi-
simple or strongly semi-simple Banach algebra necessarily absolute ?
A negative answer is furnished in the present note. It is shown that
in order for a Banach algebra to be absolute it is sufficient that it be
strictly semi-simple and necessary that it have zero as its only nilpotent
element. The latter condition is shown to be sufficient for some special
Banach algebras to be absolute.

2. Necessary condition for a Banach algebra to be absolute.

THEOREM 1. Amn absolute Banach algebra has no mnonzero nilpotent
elements.

Proof. Suppose the Banach algebra B contains a nonzero nilpotent
element. Then there exists a nonzero ve B such that +* = 0. Let A be
an infinite dimensional Banach algebra such that A* = (0). Since A is
an infinite dimensional complete vector space, there exists a discontinuous
linear functional on A; denote it by f(x). Let m(x) = f(x)v. Since f(x)
is linear and v* = 0, 7 is seen to be a homomorphism of A into B.

Let ||y|l be a Banach norm for B. Then [|z(x)|] = |f(®)| |lv]|| since
f(x) is a scalar. Since f(x) is discontinuous |f(x)| is not bounded and

Received February 5, 1959. This report was prepared while the author held the New
York State Fellowship, 1957-8, of the American Association of University Women. It is
based in part on the author’s doctoral dissertation written at the University of Oregon un-

der the sponsorship of Professor Bertram Yood. Thanks are offered to the referee for
helpful suggestions.
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hence 7 is not bounded. Thus = is discontinuous so that B is not
absolute.

It is known that if a Banach algebra B is semi-simple and has
a unique norm then a homomorphism of a Banach algebra onto B is
necessarily continuous [9, Theorem 6.2]; that the resulting proposition is
false if the word into is substituted for onto follows from our Theorem 1.
Indeed, this theorem shows that for a Banach algebra to be absolute it
is not sufficient that it have the properties of being simple, semi-simple,
strongly semi-simple and having an identity and a unique norm. Thus,
these properties are possessed by the algebra of all 2 by 2 matrices
over the reals, under a Banach norm, and yet, since this algebra has
nonzero nilpotent elements, Theorem 1 shows that it is not absolute.

3. Sufficient condition for a Banach algebra to be absolute. In [8]
there was introduced the concept of a strictly semi-simple algebra. It
was shown [8, Theorems 2 and 3] that a Banach algebra B is strictly
semi-simple if and only if it is isomorphic to a subalgebra of C(X, Q),
the algebra of quaternion-valued functions continuous, and vanishing at
o, on a locally compact Hausdorff space X.

THEOREM 2. A strictly semi-simple Banach algebra B is absolute.

Proof. Let A be a Banach algebra with a homomorphism 7' into
Bc(C(X, Q). Let T,(a) = T(a)(x). The kernel of T, is closed since @ is
simple, and therefore T, is continuous, whence T, is of bound 1. That
T is continuous can now be shown by the 6-line argument of Loomis
[7, p. 77]. One could also use [12, Theorem 3.5].

COROLLARY 1 (Rickart). A semi-simple commutative Banach algebra
18 absolute.

4. Concerning some special Banach algebras. For each subset S of
a Banach algebra B, let S,(S,) denote the set of all left (right) annihila-
tors of S. B is called an annihilator algebra [3] if B, =0 = B, and if
I, + 0 (I,+ 0) for each proper closed right (left) ideal I, where 0 de-
notes the zero ideal.

Lemma 1 is due to Forsythe and McCoy [4, p. 524].

LEMMA 1. In a ring without monzero milpotent elements every
idempotent 1s in the center.

THEOREM 8. That a Banach algebra B have zero as its only nilpotent
element is both a mecessary and a sufficient condition for B to be either
strictly semi-simple or absolute, provided any of the following conditions
18 satisfied:
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(a) B 1is finite-dimensional.
(b) B satisfies the descending chain condition on right ideals.
(¢) B is a semi-simple annihilator algebra.

Proof. 1f B is strictly semi-simple, then BcC(X, Q) by [8] and
hence has only zero as a nilpotent element. If B is absolute, then zero
is its only nilpotent element by Theorem 1. Conversely, suppose B has
no nonzero nilpotent elements.

Suppose condition (a) or (b) holds. Then B has a nilpotent radical
and therefore is semi-simple; also B is then a direct sum of division
algebras and therefore has the property that every left (or right) ideal
is two-sided [2, p. 463]. Thus B is strictly semi-simple and therefore
absolute by Theorem 2.

Suppose condition (¢) holds. Let M be any regular maximal right
ideal in B. Bonsall and Goldie [3, pp. 155-6] show that for any semi-
simple annihilator algebra B, M, = Be where ¢ is a nonzero idempotent,
B is a minimal (closed) left ideal, eB a minimal (closed) right ideal,
(eB), a maximal left ideal, and (Be), = M.

If B has no nonzero nilpotent elements, then e is in the center by
Lemma 1 so that Be = ¢B is a two-sided ideal. But the left and right
annihilators of a closed two-sided ideal are identical [3, p. 159] so that
(eB); = (Be), = M.

Since (eB), is a left ideal, M, which was any regular maximal right
ideal in B, has been shown to be a left ideal. Thus B is strictly semi-
simple since it is semi-simple by hypothesis, and therefore absolute by
Theorem 2.

COROLLARY 2. An H™ algebra B is commutative if and only if
any of the following properties is satisfied:

(a) B has no nonzero nilpotent elements.

(b) B 1s strictly semi-stmple.

(¢) B 1is absolute.

Proof. An H* algebra is the closure of the direct sum of matrix
algebras M, [1, pp. 379-380]. If condition (a) holds, then each M, must
have zero as its only nilpotent element and therefore must be one-
dimensional. Hence each M, is generated by an idempotent e, which,
by Lemma 1, is in the center. For u,veXM,, u = Zre, v = %8¢,
7y, S, scalars, uv= vu so that S M, is commutative and therefore so is
its closure, B. Thus condition (a) implies that B is commutative.

Suppose B is commutative. Since an H* algebra is semi-simple, if
commutative it is strictly semi-simple and cC(X, @) by [8], so that zero
is its only nilpotent element. Hence condition (a) prevails.
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The remainder of the corollary follows immediately from Theorem 3
since an H* algebra is a semi-simple annihilator algebra [6, p. 697].
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MULTIPLICATION FORMULAE FOR THE E-FUNCTIONS
REGARDED AS FUNCTIONS OF THEIR PARAMETERS

T. M. MACROBERT
1. Introduction. The formulae to be proved are

> l E(p; ma,: q; mp;: ze'™)
b= 1

— (272_)—%(m—1) (1)—q—1)mm(2wr—-2ps)—%(p~q—1)

(1)

al’a1+‘_1—7""a1+ m—ly"'yap_‘_ m— 1 .

1E m m m
bt _1__’_2_, e, m_l’pl,...,pq+ m—l_;
m m m

( 2 )6} ,

mre?

where m is a positive integer, p > ¢ + 1, and |amp z| < 1/2(p — ¢ — D)z.
If p <q+ 1, both sides vanish identically.
For all values of p and ¢

Ep; ma,: q; mp,: ze*)

~Lom-1 p=q-1 m(ca,, ~2 —,l —-q+1
— (271.) g(m=1)( )m G, =2pg) -5 (P-q+1)

w2 et n—l—m—_lﬂ cee, 0yt "‘*’m___l”;
(2) m=l/ ppp-a-1\n m m m
Xn§=:0< 2 ) n+1 n42 n -+ m n
I 1+_~’.-.,
m m m

n+m—1, P L
O + T e— <%’,.f_‘q_1> e* 5

the asterisk indicating that the parameter m/m is omitted.
The proof of (1) is based on the formula ([1], p. 374)

vy L LTOIN (@, —8)
(3) E(p,ar.q,ps.Z)—zms TG0 Z2dg

where the integral is taken up the 7 -axis, with loops, if necessary, to
ensure that the pole at the origin lies to the left and the poles at
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W, ty, +++, , to the right of the contour. Zero and negative integral
values of the a’s and p's are excluded, and the a’s must not differ by
integral values. The contour must be modified if »p < ¢ +1; and if
p=q+1,]z| <1; but we are here concerned only with the case
p>q+1. Then z must satisfy the condition |amp z| < 1/2(p — ¢ + D)x.
From (3) it follows that, if » > q + 1, lamp z| < 1/2(p — q¢ — V)7,

(4)  STBEmaiqeeze) =+ | 02D g,
7

) A= T, — 1)

b, =1

For, on substituting on the left fromn (3), a factor (¢ — ¢~¥™) ap-
pears in the integral, and

I'¢)sinng =x/I'(L —¢) .

The Lhrece following formulac (f1], pp. 164, 406, 407) arc also
required.
If m is a positive inleger,

. (o NEEm me=g . 1 . m— 1Y,
(5)  I'(me) =o' m"Hr@r(z ) z+_—»_ﬁ>,

Smc"\),'“'“lE(p; W, q; O 2IAN)AN
(6) '
m

1. -1
= @) T m R + m; . q; 0,0 2/m)

where R(k) > 0, ®psyy = (B + v)/m, v =0,1,2,«cc,m —1;

—1,— Segé“"E(p; W, q; Py ErR)dE
(7 21

_ (271)57'“%%@%'”1*7( L, ;s em”
— P q + m; PsRm)

where the contour of integration starts from — co on the & -axis, passes
round the origin in the positive direction, and ends at — oo on the
£ -axis, amp ¢ Dbeing — =z initially, and 0, = (0 + V)M, v =
0,1,2, ««o,m — 1.

2. Proofs of the formulae. On applying (4) on the left of (1) and
replacing ¢ by m¢ the left hand side becomes

mdg

_m_g ml'(ma, — mg)
v ) I —mnl(mo, — mg)

Here apply (5) and get
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L ]
1S 1l J/"(a,. — §)1'<ar i % - g) ['(ar + -m,n;—l - C)}
ra—or( L —g)ee (ML) n{ro,— o0 r(p+ ML)

< (2

mp—q—1 5

and from (4), this is equal to the right hand side of (1).
Formula (2) can be obtained by showing that

E(: .eiiﬂz) — el/z

7n>_‘1 (l/z)nFJ n—l—l e ke, Ty
im0 @ m f
:(zﬂ)‘ l’m un21< >n J:n-l-l’.“*_'_’n-{—m:eﬁ,,(mz)m].’
mz { m m J

and then generalizing by employing (6) and (7).

Note 1. Ragab’s formula [2]

> —1— S me"”E( , 0 1 , e, (U m—1.. e”zm“"’/t)dt
i-i 0 m m

(8)

1,1 —ma—1 @—
— (2ﬁ)2+2mm/ ma Zp“ lza exp(_ pllmzl/m ,

where m is a positive integer greater than 1, p is positive, |amp z| <
1/2(m — 1)z, can be derived by substituting on the left from (4), chang-
ing the order of integration, evaluating the inner integral, applying (5),
replacing & by « — ¢/m, and applying (3).

Note 2. It has been pointed out by a referee that there seems to
be some connection between the formulae of this paper and certain
formulae of Meijer’s for the G-function which are reproduced on pages
209, 210 of the first volume of Higher Transcendental Functions
[McGraw Hill Book Co., 1953].
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CLASSES OF MINIMAL AND REPRESENTATIVE
DOMAINS AND THEIR KERNEL FUNCTIONS

MICHAEL MASCHLER

1. Introduction. In connection with the problem of obtaining classes
of conformally equivalent domains in the space of one or several complex
variables, S. Bergman [3] introduced two kinds of canonical domains
named minimal domains and representative domains. Since the mapp-
ing functions onto these domains were expressed in a closed form by
using the Bergman kernel function and its derivatives, it was possible to
deduce interesting properties of the kernel function which, in turn, pro-
vided more information about the canonical domains. (See S. Bergman
[1]1[3], M. Schiffer [9], M. Maschler [7]).

The object of this paper is to discuss ‘‘ minimal domains > and ‘‘ rep-
resentative domains’’ with respect to certain subclasses of analytic
functions, and to deduce solutions to some extremal problems. In addi-
tion, differential equations are obtained for the kernel function, which
are valid for various classes of domains. The methods we use apply to
the theory of functions of several complex variables as well, but first,
the case of one complex variable should be clarified.

Let D be a plane domain having a boundary of positive capacity.
We consider the class of analytic functions w = f(2) which have single-
valued, regular derivatives in D, and which possess developments of
the form

(11) w = (z — t) -+ amﬂ(z — t)m+1 + am+2(z _ t)m+2 +oee

in the neighborhood of a point ¢ in D. There exists one function in this
clags which maps D onto a domain having the smallest area!. This lat-
ter domain will be called an m-minimal domain with the origin as center,
For m = 1 we obtain the ordinary minimal domains.

As w = f(2) may be multivalued and non-univalent, one has to extend
the theory of the kernel function to domains on a Riemann surface,
which may have ‘‘identified points’’, (That is, points which correspond
to a single point of a univalent domain, under a conformal mapping).
The ideas of this extension are not new and are treated here for the

Received January 7, 1959. This research was sponsored in part by the Office of Scienti-
fic Research of the Air Research and Development Command, United States Air Force,
through its European Office, under Contract No. AF 61 (052)-04. Some of the results of
this paper were presented in: (1) ‘‘ Domain functions and conformal mappings with appli-

cations to extremal problems”, a thesis for the Ph. D. degree at the Hebrew University,
Jerusalem. (2) The Bull. of the Research council of Israel. Vol 7F (1957) p. 42. (Abstract).

1 The area is defined by ”DI f!(2)2 dw, where dw is the area element.
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764 MICHAEL MASCHLER

sake of completeness. We then treat Bergman’s problem of minimizing
the integral

(1.2) [ 1r@rdo

where the functions f(2) are single-valued, analytic, regular in the do-
main D and satisfy, at a non-branch point ¢ in D, the condition

(1.3) @) = X,, X, are constants, v=20,1,2, ---, m .

(See S. Bergman [2].) We prove that these minimizing functions are
transformed, under a conformal mapping which is locally univalent at ¢,
onto similar minimizing functions for the image domain, multiplied by
the derivative of the mapping function. (The constants (1.3) are trans-
formed linearly).

The mapping function onto an m-minimal domain can be expressed
in a closed form in terms of the kernel function and its derivatives [Sec-
tion 3]. This leads to a local condition for the kernel function, satisfied
if and only if the kernel function belongs to an m-minimal domain.

Simply-connected m-minimal domains are always images of a 1-mini-
mal simply-connected domain (i. e., a circle), under a mapping function
which is a polynomial of degree at most m, and vice versa [Section 4].
This is no longer true, in general, for the case of multiply-connected m-
minimal domains [Section 7]; however, each choice for the values of the
first m derivatives of the mapping functions at the center of a 1-mini-
mal domain, determines a mapping onto an m-minimal domain with the
same center [Section 4].

The shape of the doubly-connected 1-minimal domains is studied in
Section 5. It is shown that the 1-minimal doubly-connected domain always
has identified points, provided that no boundary component is reduced to
a single point. Therefore, these minimal domains are different from those
studied by P. Kufareff [6], which he obtained by restricting attention
only to single-valued mapping functions.

Let My(z, t) be a minimizing function of (1.2), for functions satisfy-
ing in (1.3) the values

1.4) X=1,X=X,=-=--X,,=0, m=1.
Let M%(z,t) be a similar function for the case
1.5) X=0,X=1,X,=X,=.---=X,=0, m=1.

The function [M%(z, t)/My(z, t)] satisfies (1.1) and remains invariant
under a conformal mapping which satisfies (1.1) [Section 6]. This func-
tion is said to map D onto an m-representative domain with the origin
as center. In general, it is different from the m-minimal domain with
the same center, but if both domains coincide and have the same center,
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say at the origin, then the minimizing functions for the m-minimal and
m-representative domain 4 satisfy the differential equation

4 (M} 0 _
(1.6) d§< WC 0)) M,(, 0)

for ¢ € 4 [Section 6]. The interest in this relation is that it remains
invariant under each transformation w = f(¢) which satisfies f’(0) =1,
f0)=0,v=238,---,m. Thus, this relation holds for a general class
of conformally equivalent domains.

2. The Bergman kernel function for generalized domains. Various
extremal problems in conformal mappings yield, as solutions, a mapping
function which may be meromorphic, and/or many-valued. In order to
treat such problems, it is desirable to extend the concept of a domain and
its Bergman kernel function. Making use of known ideas (see e.g., S.
Bergman [4], p. 33, and R. Nevanlinna [8]), we proceed as follows:?

Let D be a univalent domain in the z-plane, where boundary has
a positive capacity. Let w=w(z) be a function of z, defined for z € D.
We demand that w'(z) exists, that it is a single-valued, meromorphic
function for z € D, and does not vanish identically.

Among the set of points: {w(2) |z € D}, we identify all the images
of the same point z. w(z,) and w(z,) are said to be different points if
2, #+ 2,. The obtained set is called : a generalized domain.

EXAMPLES.

a. If D, is the unit circle |z]| < 1, and w(z) = 2*, then the gen-
eralized domain ., consists of two coverings of the unit circle with a
branch point w = 0.

b. If D, is the ring 1 < |z| <e, and w(z) = log z, then the gen-
eralized domain 4, is the strip 0 < Rew < 1, where points w, and w,,
which satisfy

(2.1) Rew, = Re w, , Jmw, = Jm w, (mod 27) ,
are identified.

DEFINITION. Let 4 be a generalized domain, obtained from a (clas-
sical) domain D, according to the above procedure. We say that a function

F(w) belongs to the class .~*(4) if there exists a function f(2), belong-
ing to the class® .~7*(D) such that

2 The proofs are simple and we omit them.
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(2.2) Fw) = few) - %%, zeD.
dw

It is clear that F(w) may have a pole at a branch point of 4.
Integration over the domain 4 is defined by the relation

2.3) SSJ G(w) do = SSDG(w(z)) A w'@) P do,

whenever the right-hand side exists. Here dw, denotes the arca clement
in the z-plane.

Let D be a univalent, positively bounded domain, without identified
points, which generates, as described above, two generalized domains 4
and 4%, then the mappings of D onto 4 and 4* determine a one-to-one
mapping :

2.4) w* = wH(w), we 4,

from 4 onto 4*. This mapping will be called a conformal mapping. All
these definitions do not depend on the particular choice of D.

From now on, unless otherwise stated, we shall use the term ‘‘do-
main’’ to mean a generalized domain. All such domains have the prop-
erty that they can be mapped conformally onto univalent domains with a
boundary of positive capacity and without identified points.

Let D be a (generalized) domain. Introducing a scalar multiplication

2.5) (0= f-ado,
makes _&~*(D) a Hilbert space which possesses a Bergman kernel function

(2.6) Koz t) = > L)1)
where ¢,(z),v =1, 2, .-+ is a complete orthonormal system.

The kernel function depends only on the domain D and not on the
particular choice of the complete orthonormal system. As a function of
z, for each fixed ¢ which is not a branch point, the kernel function be-
longs to the class .<#*(D). It may or may not be singular if ¢ is a branch
point. K,(¢, f) > 0 and takes the value infinity if ¢ is a branch point.

If a domain D can be mapped conformally onto a domain 4, by a
mapping function w(z), z € D, then the kernel functions of D and 4
satisfy the relation :

@.7) Kz, 1) = K, (w), wQ) - ') - @), 2t e D.
3 A function f(z) is said to belong to the class £2(D) if it is single-values and regular
in the domain D and satisfies :
() 7@ 1rdedy <o,z =2ty
The integration is in the Lebesgue sense.
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(This relation is to be understood in the sense that the ratio between
the two sides approaches 1 if 2, or ¢, or both variables, approach a sin-
gularity point of the kernel function.) We shall end this section by
stating an important theorem of S. Bergman for the generalized domains.
(See [4], p. 26):

THEOREM 1. Let D be a (generalized) domain, and t a fixed point
in D, which is not a branch point. Consider the functions f(z),z € D,
which belong to the class (D) and satisfy :

(2'8) f(v)(t):Xv,V:0,1,2,'-',m;

where X, are fixed complex numbers and f(t) is the derivative of the
order v of f(z) at the point t; then there exists among them one and
only ome function Mo *1....%u(z,t) which wminimizes the integral

SSDI f@®@) Pdw. This function can be represented in a closed form by

using the kernel function and its derivatives :

0 Kz t) K1) Kqlz 1)
X, Kg K <o Koy

X1 Klﬁ Kl_l e K1E

Xm Kmﬁ Kmi ce Kmﬁ

(2_9) M‘[\;O,Xl,u-,xm(z’ t) = — oy

................

Kma Kmi e Kmﬁ

The value of the minimum is:

0
X, Kz Ki - K,
(2.10) Mo Tult) = —| X, Ki K oor K |

oooooooooooooooo

Xm ng Kml e I{mﬁ

where J, denotes the demominator which appears in (2.9).
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Here
s t = aj & ) — LR M
(2.11) KD =[5 EeD] G=01m;
o oi+d ) — . ..
(2.12) K; = [E%EJ Koo 0 @i=01m).

(1 = 0, means that one should not differentiate with respect to z. Simi-
larly, if 7 =0.)

Proof. This theorem was proved by S. Bergman for univalent,
domains without identified points.* ([4], pp. 26-27.) One can use the
same proof, (which is based on the method of Lagrange multipliers), pro-
vided that one shows first that the minimum problem has a solution. This
is done as follows : If D is a generalized domain, then it can be obtained
from a univalent, domain, without identified points D*, by a conformal
mapping z = 2(z*), 2* € D*. If t* is the inverse image of ¢, then

dz .
(2.13) _c_lz_* e #0, o,

because ¢ is not a branch point, and D* is univalent. Therefore, the in-
verse function z* = 2*(2) is regular at ¢ and (dz*/dz) |,., = ¢ # 0.

To each function f(z) of the class .&*(D), corresponds one function
F*(z%) of the class .o”*(D*) such that

(2.14) F@ =i - 2
hence,
(2.15) Sgnl FIdw = SU £ Edo,. .

Thus, there is a one-to-one mapping between the family of functions con-
sidered in the theorem and the family of functions f*(z*) of the class
% D*) which satisfy :

(216) f*(”(t*) = Yv ’ V= 0’ 17 2; e, M,

where Y, are complex numbers éatisfying the system of equations :
(2.17) [ﬁ/—[f*(ZF(Z))EjIJ = Xv ’ V= 0’ 1; 27 e, M.
dzl dz z=t

(See (2.8) and (2.14).) This system has one and only one solution be-
cause ¢ + 0. Bergman’s theorem ensures the existence of a unique func-

4 There always exist functions satisfying (2.8), if the boundary has a positive capacity.
(See also K, I, Virtanen [11].)
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tion which minimizes the right integral of (2.15) under the conditions
(2.16) ; hence it follows from (2.14), (2.15) and (2.16) that this function
multiplied by dz*/dz is the solution of the original problem, and that it
is unique.

REMARK 1. Incidentally, we have proved that ¢f D and D* are two
(generalized) domains, and D* is mapped conformally onto D by the
Junction z = z(z*), z* € D, then, if 2% = z%(z) is the inverse mapping,

*
@18) Ml 1) = M (@), 20) - G
4
(2.19) )J}\;g,“';‘..._“’nL(t) e )\’ig'yl ..... Ym(z*(t)) ,

where Y, v =10,1,2, --.,m, satisfy (2.16), (2.17) ; provided that t and
t* = 2*(t) are not branch points of D and D*, respectively.

REMARK 2. It is possible to solve a similar extremal problem when
t is a branch point, but the solution depends on the type of the branch
point at . This solution will not be considered in this paper.

REMARK 3. If t is mot a branch point, then the denominator of
the right-hand side of (2.9) is finite and positive.

Proof. Denote this denominator by J,. It follows from (2.6) that
0 < J, = K; < o, provided t is not a branch point. Substituting X, =
X =--=X,,=0,X,=1 in (2.10), we obtain :

(220) /\4'2')0’""0’](15) — Jm—| , m

1.
o

1\%

But, by definition, and because of Theorem 1, 0 < A} *!(t) < oo, hence,
by induction, 0 < J,, < .

3. Minimal domains with respect to almost identity mappings.
In this section we shall be concerned with ‘¢ almost identity ’’ mapping-
functions, i.e., functions of the class ¢, (D) defined as follows :

DEFINITION. Let D be a domain containing a point ¢ which is not
a branch point. A function f(2) is said to belong to the class &, (D),
if it satisfies the following conditions :

3.1) f(2) € £*D) (see definition in Section 2),
(3.2  f@O=0,f'(t) =1 f") =fP() = -+ =f™() =0; m = 1.
This class has the following property :
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LEMMA. If ¢ = f(z) belongs to the class & ,, (D) and maps D onto
a domain 4, and if w = @(&) belongs to the class & ., .(4), then w =
W(z) = p(£(?)) belongs to the class & ,, (D).

The proof is obvious.

The functions of the class &, (D) map D onto various domains,
among which we look for that domain which has the least area’, and we
try to determine the mapping function of D onto this domain. It follows
from the Lemma that the domain having the least area is an ‘‘ m-mini-
mal domain >’ with center at the origin, in the following sense :

DEFINITION. A domain 4 is called an m-minimal domain having a
center at a point 7, if 7 € 4 and is not a branch point of 4, and if any
conformal mapping w* = w*(w), w € 4, which satisfles w*(w) € & ,,..(4),
maps 4 onto a domain whose area is not smaller than the area of 4.

REMARK. It is clear that a translation w* = w + a, w € 4, maps
an m-mintmal domain with center at the point T onto an m-minimal
domain with center at the point T + a.

Denote by M = M ,(?, t), the function Mo *v " n-1(2,t) (sec (2.9)),
for the special case :

(33) X():l’ X1:X2:"':)(m—1:0y
From Theorem 1 we obtain immediately :

THEOREM 2. Let D be a (generalized) domain and t a point in it,
which s not a branch point, then there exists a unique function f(2)
satisfying the condition

(3-4) f() e EndD),

which maps D onto an m-mintmal domain 4 with center at the origin.
This mapping-function is given by

(3.5) F@) =0, f'2) = Mz, 1)
(see (3.3)).

COROLLARY 1. If D itself is an m-minimal domain with center at
the point t, then f(2) = z — t is the mapping-function required in Theo-
rem 2. Therefore, in this case, My(z,t) = 1. Hence, by (2.9) and (3.3),
if D is an m-minimal domain with center at the point t, then

5 The area of a domain 4 is defined as “A dw (see (2.3)). Thus, different coverings
are counted separately and, when identified p‘oints exist, only the fundamental domain is
counted.
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(3.6) P, _.(2, t) = constant # 0 .

Here P, _.(z,t) denotes the domain function which is formed by crossing
out the first and last coloumns and the second and last rows in the
determinant which appears in the numerator of (2.9). K = K, (see
(2.11), (2.12))".

COROLLARY 2. The converse is also true. Indeed, if (3.6) is satis-
Jfied?®, then it follows from Theorem 2 that a mapping junction of D
onto an m-minimal domain 4 with center at the origin 1s obtained by
a translation f(z) = z — t; therefore, D itself is an m-minimal domain
with center at the point t.

The area S, of the m-minimal domain 4 can be calculated from (2.10).
Indeed, by (2.10),

(3'7) S;I = Qm—l/Jm—l .

Here Q,,_, is the determinant which is formed by crossing out the first,
gsecond and last rows and the first, second and last columns in the
numerator of (2.10). J,., was defined in Remark 3 of Section 2. (In
the case m = 1, we define Q, = 1).

THEOREM 3. A domain D containing a potnt t, which is not a
branch point, is an m-minimal domain with center at the point t, if
and only if the right-hand side of (3.7) is equal to the area S, of D.

Proof. By Theorem 2, D can be mapped onto an m-minimal domain
4 having an area given by (8.7). If S,=S,, D itself is an m-minimal
domain. If D is an m-minimal domain then S, = S,.

REMARK. Observe that the right-hand side of (3.7) depends only on
the kernel function and its derivatives at the single point ¢.

1-minimal domains were introduced by S. Bergman and their defini-
tion was later extended to domains in the space of n-complex variables.
Some properties of 1-minimal domains were studied by S. Bergman [3]
[4], by M. Schiffer [9] and by the present author [7]. We shall see that
many properties of 1-minimal domains can be extended to properties of
m-minimal domains, and that these new properties yield information
about the behaviour of the kernel function as well as distortion theorems
for certain classes of domains.

4. Simply-connected m-minimal domains. It is known that a simply-
connected 1-minimal domain can only be a circle, the center of which is
6 The constant on the right-hand side of (3.6) cannot be zero, because Mp(t,t) = 1 and

the denominator of the right-hand side of (2.9) is finite and positive (see Remark 3 of Sec-
tion 2).
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the center in the sense of the definition of a minimal domain. We shall
show, in this section, that the class of all simply-connected m-minimal
domains can be obtained from a circle by mapping-functions which are
polynomials of degree (at most) m. First, we consider the mapping of
any domain D (not necessarily simply-connected) onto an m-minimal do-
main.

THEOREM 4. Let D be an m-mimimal domain (m = 1), having a
center at the origin. Let D* be a domain, containing the origin and
being locally univalent there, which can be mapped conformally onto D
by a tramsformation z = 2(z*), 2" € D*, which satisfies 2(0) = 0; then

0 K;%(Z*, 0) K(}i(z*, 0) cee Kﬂkn—f—T (Z*, 0)

dz ‘ . )
dz*| .y Ky K. R B

?
4.1) diz N . - . =
2 K K- ... K T

dz* 2*=0 10 1 1 Constant :# 0,

dmz N . .
., Kors K, .3 cer K5,

z* € D*. Here K*(z*,&*) = Kun(z*, £*); dz/dz* |, #+ 0; t* = 0. (See
(2.11)(2.12).) Conwversely : if (4.1) s satisfied, and dz/dz* + 0, then
z = 2(z*) maps D* onto an m-minimal domain.

Proof. 1If D is an m-minimal domain with center at the origin, then
M,(z, 0)=constant. (See Section 3, Corollary 1.)" Choosing f*(z*)=dz/dz*
and substituting it in (2.16), one observes that (2.17) is satisfied (since
X=1,X=X,=-.- =X,_,=0). Therefore, by (2.18),

*
(4.2) Mz, 0) = M¥oTseFns(2*(2), 0) « F2-
o dz

where

V+1
2
Y” = d Ky+1
dz =0

Thus the relation (4.1) has been established. The converse statement is
obtained by reversing the order of these arguments, and by using Corol-
lary 2 of Section 3.

If D is a simply-connected m-minimal domain, we can assume that
D* is the unit circle. Since the kernel function of the unit circle is

7 For the definition of Mp(z, 0), see (3.3).
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= 1 1
4.3 Kp(z¥, ¢ = & —n™ |
(4.3) (&%, &F) 7 0 — 20y
(see [4] p. 9), it follows that
(4'4) K:;(Z"y 0) = %(-7 =+ 1) ' Z*J ’ 3 - 0’ 1’ 2;' %y
(4.5) K = | UFT i =0,1,2,--

(G+Digl yi=y
Let z = 2(z*) = az™ + (a2*?)/2! 4 (¢2**)/3! + - in the neighbourhood of
the origin, a, # 0; then, substitution of (4.4) and (4.5) in (4.1) yields,
after some trivial calculations,
46 a o+ Zgry Do O el 92
(4-6) B TR TR +(m~1)! dz*
Therefore, the constant C is equal to 1 and all the derivatives of z(z*)
of an order greater than m vanish at the origin. Thus we have proved :

THEOREM 5. Any polynomial of degree m having a mon-zero deri-
vative at the origin maps the circle about the origin onto an m-minimal
domain whose center is the image of the center of the circle. And con-
versely, any simply-connected m-minimal domain can be obtained from
a circle by a mapping whose function is a polynomial of degree (at
most) m, the derivative of which is not zero at the origin.

Theorem 5 suggests that perhaps all m-minimal multiply-connected
domains are images of 1-minimal domains under polynomial mappings.
This however, is not true in general, as we shall see later (see Section
7). Nevertheless, each p-connected 1-minimal domain generates a class
of p-connected m-minimal domains conformally equivalent to it ; this class
has m + 1 complex degrees of freedom. Indeed, since any domain can
be mapped onto a 1-minimal domain such that a non-branch fixed point
corresponds to its center, we can assume that the domain D* of Theorem
4 is a 1-minimal domain having a center at the origin. A necessary and
sufficient condition for D* to be such a domain is : K,.(z*, 0)=constant+0
(see (3.7); see also [7]); therefore, K5 = Kf; =0, 1=1,2,3, ---, and
(4.1) reduces to:

= K@, 0) ++ Kiz(e*,0)
z*=0
dz
ol Ki e Kfew _¢.dz
4.7 o= dz
dm
dzfm L K Kiaw
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Here, K*(z, E*) = K,.(z%, 5*), dz[/dz*|,.., #+ 0 and C = constant + 0 must
be equal to minus the minor of the element —(dz)/dz*|,..,. Thus, the
conformal mapping 2z = 2(z*) maps the 1-minimal domain D* with center
at the origin onto an m-minimal domain, m = 1 such that the centers
correspond, if and only if z = 2(z*) satisfies (4.7).

Let us choose arbitrary constants —c¢,, ¢, ¢y, <<+, ¢, ¢, # 0, for the
elements of the first column of the determinant in (4.7); then dz/dz*,
thus defined, will indeed satisfy (d*z)/dz**|,.., = c,®.

Since, moreover, a translation carries an m-minimal domain onto an
m-minimal domain, we have arrived at

THEOREM 6. Let D be a l-minimal domain having a center at the
origin ; them, to each choice of m + 1 constants, ¢, ¢y, Cy Cyy Cp, ¢, # 0,
there exists ome and only one function.

(4.8)

1 ‘ 1 , g
2 = CO + CJZ* +§czz*z + ces I mchz*m ‘I‘ dmﬂz*nwl “i“ dm+2z*m+- + ..

which maps D* onto an m-mintmal domain with center at the point c,.

The mapping function is given by (4.7) where (d*z)/dz**|,.., are replaced
by c;.

COROLLARY. In general, d;,,j =m + 1, m + 2, -+-, depend on the
choice of ¢, ¢y -+, Cy, but they do not depend on the choice of ¢, and c,.
Indeed, in order to obtain d,, one has to differentiate j times the left-

hand side of (4.7) and to put z* = 0. The resulting expression does
not contain either ¢, or c,.

5. Doubly-connected 1-minimal domains. There is an unpublished
result of M. Schiffer stating that univalent finitely-connected domains
which do not possess identified points cannot be 1-minimal domains un-
less they are circles punctured at isolated points (the center of the circles
is not punctured).

P. Kuffareff [6] studied the normalized conformal mapping of a ring
onto a domain having a minimal area, restricting the mapping-function
to be single-valued, and he found out that the minimal domain thus ob-
tained lies on a double-sheeted Riemann surface. It seems natural to
ask whether the use of a wider class of mapping-functions, i. e. integrals
of functions of the class ¢, yields different minimal domains. We
shall show that this is indeed the case: a 1-minimal domain which is
conformally equivalent to the ring always possesses identified points;
hence, the mapping-function from the ring onto it is multi-valued ; in

8 This is shown by differentiating (4.7) & times and putting 2* = 0.
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gsome cases the minimal domain is even a univalent domain (with identi-
fied points).

Let T be the ring 0 < » < |z| < 1 in the z-plane. It is known (see
[4], p. 10) that its kernel function is

(5.1) Kz, ) = —=f vilog b)) + 1]
mzt w

1

Here p(v) is the Weierstrass clliptic function having the periods
2w, = — 2log r, 2w; = 271, 1), = £(w,), where ¢(v) is the corresponding
Weierstrass zeta-function. Let ¢ be a fixed real point in the ring 7,
then the mapping

(5.2) u = logz + logt — 2log r
will map the ring onto a domain S which is an infinite strip
(6.3) logt —logr < New < logt — 2logr,

in which the points u + 2kmi, k =0, 1,2, --. are identified. Let ABCD
be the fundamental rectangle of S: A = logt¢ — log», B = logt — 2log 7,
A,B arereal; C= B + 2rmi, D = A -+ 2ri. It follows from (2.7) that the
kernel function of S satisfies :

(5.4) K(u, 7) = i[p(u) + i] . t=2logt— 2log .
T w

1

Our aim is to map T onto a 1-minimal domain in such a way that the
point ¢ will correspond to its center. (From symmetry considerations it
follows that the generality of the mapping is not affected by the fact
that ¢ is required to be real). In order to achieve this, we first map 7T
onto S and then map S onto a 1-minimal domain (¢ corresponds to its
center). This last mapping is produced by the function

(5.5) w= — ﬂ:SuKS(v, Do+ 50— e =g - Lo
T 1 1

(see Theorem 2, (2.9); m = 1).
(All other 1-minimal domains whose centers correspond to ¢ are obtained
from this one by the mapping W = ¢, + ¢,(w — ¢(t) + ())w)T, ¢, + 0;
see Corollary in Section 4).

Let 4 be the minimal domain obtained from S by the mapping (5.5).
It follows from the quasi-periodicity of the zeta function that

(5.6) wlu + 2kmi) — w) = + k-T | k=0,1,2 -
log »

hence, the points w + kriflog r are identified in 4.
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It remains to find the fundamental domain of 4 which is the image
of the rectangle ABCD under the mapping (5.5). For this purpose we
first determine the image under the same mapping of the rectangle FFGH,
where E=0,F=w,=—logr G= —w,= —logr + 7t H= w,=mi to-
gether with its reflections FE'H'G (E' = 2w,, H' = 2w, + ©t), HGF"E"
(F" = w, + 2mi, B = 2ni)and GH'E"'F" (K" = 2w, + 27t). (See Figure
1.)

1 ¢ "
2&)3:2771}3] D D F ¢ i E”,_sz
H |ws M G |-w, M' o
o |, 2t | 2¢ o ’
A Y 4 ] (A«4'+-JL4 Wy +ty 2&;’7:—2 logr
E A Q& Q* F B B* E'

Figure 1. u — plane t; = logt — log 7

4
EHI |EH
|
i
E' B B F

+

1
|
|
I
|
I
1
i
1

n ¢l el F" ¥l o)

——— e wmm——— Y

B!

Im w:Tc/logr

E' B
Figure 2. w—plane

The image can be deduced from [5] p. 190 : there are two and only
two points, M on HG and its symmetric point M’ on GH’, where
—w'(u) = p(u) + 7 Jw, = 0. These points correspond to the two branch
points of the first order in the image which are on the line Jm w =
(7)/21log r. The image of the four rectangles lies on a two-sheeted Rie-
mann surface as shown in Figure 2. (We denote points in the w-plane
which correspond to points in the wu-plane by the same letter. Lines on
one sheet are traced by a dotted line.)

In order to obtain more information about the image of the rectangle
ABCD, we shall prove :
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LEMMA. The distance MH in the u-plane is smaller than the dis-
tance MG,

Proof. p(u) + mJw, is real and a monotone function and it takes
all the values from — o to +oo as u traces the line EFHGFE. (The
function p(u) has these properties and (see [10] p. 184)

no= | 16+ 3 1sint w22 |
2w, n=1 w,

is real because each term is real; so alsois w,). This function vanishes
at the point M on HG ; therefore, it is negative at the point H. It re-
mains to show that

p, + @) + 22 > 0.
w,
Indeed,
(.7 pu) + = T 5 l/sin2< ﬂf‘—”——zn(u'“)
, 40 2 T 20,

(see [10] p. 184); it is real for u = w; + 3w,, hence it is sufficient to
consider the real part of each term of the series. It is easy to verify
that, for u = w, + iw,, the real part of each term of the right-hand
side of (5.7) is positive; hence M lies between w, and w, + 1w,.

From this lemma it follows that three possibilities ean occur (taking
various values for t):

(i) The rectangle ABCD in the u-plane contains M but does mot con-

tain M'.

(i) This rectangle, which we mow denote by A*B*C*D*, contains nei-
ther M nor M’.

(iii) This rectangle, which we now denote by A**B**C**D** contains
M’ but does mot contain M.

In the first and third case, the minimal domain 4 will contain one
branch point and will thus lie on a two-sheeted Riemann surface (and it
will, of course, possess identified points). In the second case, only one
sheet is required for the minimal domain (which, however, still possesses
identified points).

The figure shows only the fundamental domain (for the cases (i) and
(ii)). The images of the lines AD, BC, A*D*, B*C* are not exact. The
center of the minimal domain lies on the real axis of the w-plane and
it is the image of the point u = 2logt — 2log 7 (see 5.4).

6. m-representative domains. Attempts to generalize the Riemann
mapping theorem to the case of domains in the n complex dimensional
space lead to various other classes of canonical domains. A well known
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class is the class of the ‘‘ representative domains, introduced by S. Berg-
man (see e. g.[1] [3]).

In this section we shall limit ourselves to the case of a plane domain
and generalize the concept of the representative domains so that the
mapping functions onto these new canonical domains will satisfy the re-
lations (3.2).

DEFINITION. Let Mj(z,t) be equal to Mo ™. Fu(z, t) (see (2.9)),
for

(6‘1) X():Ole’:l)XZ:X‘l:"°:Xm:0
Let M,(z, t) be defined again by (3.3). Here ¢ ¢ D and is not a branch
point. The function

(6.2) fe) =M@ 0 oy~

satisfies the relation
(6.3) SO =0, /&) =1, fX\@)=0; 2=v=m,

and maps D onto a domain 4. The domain 4 will be called an m-rep-
resentative domain with center at the origin. An m-representative
domain with a different center is obtained by a translation.

These m-representative domains are indeed canonical domains in the
sense of the following.

THEOREM 7. If a domain D in the z-plane is mapped onto a do-
main D* in the ¢-plane by a function & = £(z) which satisfies
(6.4) () =0, ¢@)=1,¢0t)=0;2=v=m,

and t is a non-branch point in D, then

Miet) _ M), 0)
6.5 _ M _
(6.5) Moo ) Mm@, 0)

Thus D and D* generate the same m-representative domain.

Proof. Replacing m by m — 1 and 2z by ¢ in (2.16) and (2.17), we
see that

(66) onl’X1=X2:"':AXm-1:O
(6.7) Y, =.,Y,=Y,=---=Y,.,=0
satisfy the equations (2.16) and (2.17); therefore
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6.8 M — ag
(6.8) e ) = Mp(t@), 0) - 45

(See Remark 1 in Section 2.) Similarly,

6.9) Mz, t) = MA(e(z), 0095
dz

The relation (6.5) now follows from (6.8) and (6.9).

In general, m-minimal domains are different from m-representative
domains. (See Section 7.) It is, therefore, interesting to look for prop-
erties of domaing which are simultanuously m-minimal and m-representa-
tive, with the same center.

THEOREM 8. If D is an m-minimal domain and also an m-repre-
sentative domain, with the same center t then

(6.10) M¥(z,t)=2—t; zeD.

Proof. On the one hand D is an m-minimal domain, therefore the
mapping

(6.11) w=f(k)=z2z—1t1

maps it onto an m-minimal domain 4 with the origin as center; hence
it is implied from (3.5) that

(6.12) Mz, t) =1, zeD.

On the other hand, 4 is also an m-representative domain with a center
at the origin, hence (6.2) and (6.12) imply

(6.13) w = M7j(w, 0);

therefore, by (6.9) we obtain the relation (6.10).
By reversing the arguments of the proof we obtain immediately the
converse theorem :

THEOREM 9. If a domain D is an m-minimal domain with t as
center, and 1its kernel function with its derivatives satisfy the relation
(6.10), then D 1is also an m-representative domain with the same center.

Proof. 1t follows from (6.12) (6.2), and (6.10) that w = 2z — ¢ maps
D onto an m-representative domain with the origin as center, therefore,
D itself is an m-representative domain with ¢ as center.

Using the transformation formulas for M,(z, ¢) and M}(z, t), under
conformal mappings, one can now obtain a differential equation for the
kernel functions of the class of all domains which are obtained from the



780 MICHAEL MASCHLER

domain D of the previous theorem by a mapping satisfying (6.4).

THEOREM 10. For each domain D™ which is conformally equivalent
to the domain D of Theorem 8, and for which the mapping function
& = &(z) satisfies (6.4), there exists a differential equation for K,(&, 7).
This equation can be put in the form

d(MuE0)
(6.14) dg(Mm(:, 0)> Mg, 0) .

Proof. Formulas (6.5), (6.10), (6.12) imply
(6.15) z—t= M}, 0)/ M, 0) .
(6.8) and (6.12) imply

dz
6. _ = K .
(6.16) ac Mg, 0)

Equation (6.14) is obtained now by differentiating (6.15) with respect to
€.

REMARK. For the case m = 1, one has

(6.17) Mg, 0) = — K3iK3i(6,0) — K KSI(Z,'O)
’ K5 K5 — KK ’

(6.18) My, 0) = K75 (8, 0)/KT3;

where K* = K. Inserting this in (6.14), one obtains, after some calcu-
lations the relation

1 KI)*(C! O) QI”{D—a*(;“’_Q)'
(6.19) —_— = const.
LK@ OF | 0K, 0) 0Kt 0)
ot acot

This relation and its generalization to the case of domaing in the n com-
plex dimensional space was proved in [7].

7. A counter example. It is interesting to note that Theorem 5
no longer holds, in general, if we replace the circle by a 1-minimal multi-
ply-connected domain D. A counter-example is an obvious deduction from
the following theorem,
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THEOREM 11. If a l-minimal domain D, with the origin as center,
18 mapped onto a 2-mintmal domain with the origin as center, and the
mapping function is o polynomial

(7.1) w = agz + $a2’, a,a,# 0,

then D 1s also a l-representative domain with the origin as center.

Proof. D is a 1-minimal domain with the origin as center ; therefore,
K(z, 0) = K,(#, 0) = constant, for z e D. (See Corollary 1, Section 3.)
This implies that K; = K; = 0. Hence, it follows from Theorem 4 that

(7.2) —a, KK — a,Ki(2, 0) Ky = ¢-(a, + az) .
Thus, the value of the constant ¢ is — KiK,; and
(7.3) Kii(z, 0) = Kz .

The last relation is equivalent to the relation (6.10), for m = 1,¢ = 0,
hence, by Theorem 9, D is also a 1-representative domain with the origin
as center.

COROLLARY. The relation (6.19) s a consequence of (7.3) for any
domain which s conformally equivalent to the domain D of Theorem 11.
As there are domains for which (6.19) does not hold, e.g., a ring, for
which (6.19) can be proved incorrect by a direct calculation (see [4] p.
10), one arrives at the conclusion that not all minimal domains are
also representative domains with the same center, and that Theorem 5
does mot hold if one replaces the circle by a general 1-minimal domain.
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ON THE IMBEDDABILITY OF THE REAL PROJECTIVE
SPACES IN EUCLIDEAN SPACE!

W. S. MASSEY

1. Introduction. Let P, denote n-dimensional real projective space.
This paper is concerned with the following question: What is the lowest
dimensional Euclidean space in which P, can be imbedded topologically
or differentiably? Among previous results along this line, we may
mention the following;

(a) If n is even, then P, is a non-orientable manifold, and hence
cannot be imbedded topologically in (n + 1)-dimensional Euclidean space,
R?’L+1.

(b) For any integer n» > 1, P, cannot be imbedded topologically in
R"+', because its mod 2 cohomology algebra, H*(P,, Z,), does not satisfy
a certain condition given by R. Thom (see [6], Theorem V, 15).

(¢) If 2¥'< n < 2*¥ then P, cannot be imbedded topologically in
Euclidean space of dimension 2 — 1. This result follows from knowledge
of the Stiefel-Whitney classes of P, (see Thom, loe. cit., Theorem III.
16 and E. Stiefel, [5]; also [4]).

In the present paper, we prove the following result: If m = 2%, k >0,
then P,,_, cannot be imbedded differentiably in R'™. For example P,
cannot be imbedded differentiably in R®, nor can P, be imbedded in R*.
Of course if m > m, P, cannot, a fortiori, be imbedded differentiably
in R, Thus for many values of n our theorem is an improvement over
previous results on this subject.!

The proof of this theorem depends on certain general results on
the cohomology mod 2 of sphere bundles. These general results are
formulated in § 2, and in § 3 the proof of the theorem is given. Finally
in §4 some open problems are discussed.

The author acknowledges with gratitude that he has benefited from
several stimulating conversations with F. P. Peterson on this topiec.

2. Steenrod squares in a sphere bundle with vanishing charac-
teristic. Let p: £ — B be a locally trivial fibre space (in the sense of

Received December 29, 1958. During the preparation of this paper, the author was
partially supported by a grant from the National Science Foundation. An abstract an-
nouncing the main result of this paper was submitted to the American Mathematical Society
in December, 1958; see the Notices of the American Mathematical Society, 6 (1959), 61.

1 This result partially solves a problem proposed by S. S. Chern (see Ann. Math., GO
(1954), p. 222). It follows that P, cannot be imbedded in IZ#+2 for » >3 except possibly
in case »=2% — 1, k> 2. The case = =2k — 1 is still open. The importance of this prob-
lem, and some of its implications, were emphasized by H. Hopf in his address at the
International Congress of Mathematicians held in Cambridge, Massachusetts in 1950. This
address is published in volume I of the Proceedings of the Congress (see pp. 193-202).
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[6]) with fibre a sphere of dimension &k — 1. We will use the following
notation (due to Thom) for the Gysin sequence with the integers mod 2,
Z,, as coefficients:

*

cer s HeHB) > HY(B) -2 H(E) —2 Ho-#+(B) —> -

Recall that the homomorphism ¢ is multiplication by the mod 2 charac-
teristic class: p(x) = x-w, for any v € H"“(B). In case w, = 0, then
¢ =0, and the Gysin sequence splits up into pieces of length three as
follows:

p* ¢ -
0 — HYB)— HY(E)—— H"**(B) —

Moreover, if we choose an element a € H*"'(£) such that \(a) = 1€ H(B),
then any element x € H%FE) may be expressed uniquely in the form

(1) = p*(u) + a-p*(v)

where u € HY(B) and v € H'"**(B) (the proof is the same as that given
in § 8 of [3] except that here we are using Z, for coefficients). It is
clear from this formula that the Steenrod squares and cup products in
H*(E) are completely determined provided we know the Steenrod squares
and products in H*(B), and provided we can express Sgi(a) for 1 <7 <
k — 1 in the form (1), i.e., provided the cohomology classes «, e H''*(B)
and B, € HY(B) in the expression

(2) Sq'(a) = p*(a;) + a - p*(B;)
are known for 1 <1 <k — 1. Of course the classes ¢ and «, are not
uniquely determined. If a’ is any other clement of H*(F) such that
Jr(a'y = 1, then by exactness of the Gysin sequence there exists an uni-
que element b € H*"'(B) such that

a' = a + p*(b) .
Corresponding to formula (2) there is an analogous formula
(2) Sq'(a’) = p*(a)) + a' - p*(B) .

An easy computation shows that

a; = a; + bp; -+ Sq'(b) ,

3
(8) 8= 8.

Thus B; is unique; it is an invariant of the given fibre space. However,
only the coset of «; modulo the subgroup {30 + S¢'b:b e H*-'(B)} is
unique. This coset is also an invariant of the given fibre space.
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LEMMA. (3, = w,, the ith Stiefel-Whitney class mod 2 of the fibre
space.

This lemma is due essentially to Liao, [2]. See also an analogous
proof in Massey, [3], § 9.

Thus B, is identified with a standard invariant of sphere spaces.
On the other hand, the coset of «, does not seem to be related to any
standard invariants. It may be thought of as a sort of ¢ secondary
characteristic class’’, defined for all sphere spaces for which the mod 2
characteristic class w, vanishes.

In view of this lemma we may write the above equations in the
following form:

(4) Sq'(a) = p*(a) + a - p*(w)

(5) o = a, + bw, + Sqg(b), be H*-YB).

3. Application to the problem of imbedding manifolds in Eucli-
dean space. Our method of applying the results of the preceding section
to prove that certain manifolds cannot be imbedded differentiably in
r-dimensional Euclidean space is essentially the same as that used in
our earlier paper [3]. To save the reader the trouble of referring to
this earlier paper, we give a brief summary of the essential points of
this method.

Let M™ be a compact connected differentiable manifold which is
imbedded differentiably in an (n + k)-sphere, S"**. We assume that
S**% has been given a Riemannian metric. Choose a positive number ¢
so small that given any point a € S*** of distance < ¢ from M=, there
exists a unique geodesic segment through a of length < ¢ normal to
M=, Let N denote the set of all points a ¢ S*** whose distance from M”
is < &. N is an open tubular neighborhood of M" in S"**, Let K denote
the boundary of N, and p: E— M" the projection defined by assigning
to each point @ € E the point p(a) € M" where the unique geodesic
segment through a of length ¢ normal to " meets M. Then (K, p, M")
is a realization of the normal (k — 1)-sphere bundle of M" for the given
imbedding, and E is a hypersurface in S***. Let V denote the com-
plement of N is S™**, and let j: E — V denote the inclusion map.

For convenience we introduce the following notation: A? denotes
the image of the homomorphism 7*: H(V, G) - HY K, G), where G is the
coefficient ring, and A* = 3, 4% Then A* and p*[H*(M", G)] are both
sub-rings of H*(E, G), and they are obviously closed under any cohomolo-
gy operations such as Steenrod squares and reduced pth powers. Even
more, A* and p*[H*(M", G)] are ‘‘ permissible sub-algebras > of H*(K, G)
in the terminology of Thom, [6], p. 177. The sub-ring A* must satisfy
the following conditions:
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(6) A° = H°(KE, G)
(7) HYKE, G) = A+ p*H'(M", G) (0 < g <n+1, direct sum)
(8) A= 10 forg=zn+k—1.

The proof that conditions (6), (7), and (8) hold is based on Theorem
V.14 of Thom [6]; see also § 14 of [3]. The existence of the sub-algebra
A* satisfying these conditions is a rather stringent requirement on
H*(E, G).

Our program for trying to prove that a certain manifold M™ cannot
be imbedded differentiably in S™** (or equivalently, in Euclidean (n + k)-
space, R"*) may be briefly outlined as follows. Assume that such an
imbedding is possible, and let p: E— M" denote the normal (k — 1)-
sphere bundle of this imbedding. By a well-known theorem of Seifert
and Whitney, the characteristic class of the normal bundle vanishes,
hence the Gysin sequence splits up into pieces of length three as de-
scribed in the preceding section. Then if one can determine the strue-
ture of the cohomology ring of E and perhaps determine some other
cohomology operations in £, it may be possible to prove that H*(F, G)
does not admit any sub-ring A* satisfying the conditions stated in the
preceding paragraph. But this is a contradiction.

Using this method with G = Z,, we will now prove our main result:

THEOREM. If m = 2% k > 0, then P,,_,(R) cannot be imbedded dif-
ferentiably in R'™.

Proof. Let a be the generator or H'(F,,-,, Z,). As is well known,
the cohomology algebra H*(P,,_., Z,) is the truncated polynomial algebra
generated by = and subject to the sole relation ™ = 0. According to
a result of E. Stiefel [5], the total Stiefel-Whitney class w = Y,  w,
of the tangent bundle of P,,_; is given by the formula

w = (1 + x)" .

(This may be proved directly by the method of Wu [7].) Using the
Whitney duality theorem, one sees that the total Stiefel-Whitney -class
w = >,;zew; of the normal bundle is given by

w=(1+ x)"
since
ww =042y 1L+ =01F+z)y"=1+4 ™ =1

(Recall that m = 2%). It follows that w, =0 and w, = 2™ Now as-
sume that the differentiable imbedding of P,,_, in S*™ is possible and
let p: E— P,,_, denote the normal bundle, whose fibre is an m-sphere.
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The characteristic class w,,,, = 0, hence we can apply the method of
§1. Choose a € H™(E, Z,) such that r(a) = 1. Then equations (4) of
§ 2 applied to this case give

Sq'(a) = p*ay
@’ = S¢"(a) = p*, + a- p*(@") .

If «/ e HY(E, Z,), y(a’) = 1, and &’ # a, then of necessity a’' = a + p*(b)
with b = x™. Therefore equation (5) of §2 gives

o = a, + Sg'(x™) = «
au,n — am + xm .qpm + Squm — a,m .

Hence «, and «,, are invariants, independent of the choice of a. Since
H™(E, Z,) admits the direct sum decomposition

Hm(E! Zz) = A" + p*[H"L(P.’Sm—Ir Zz)]

by (7), it follows that we may choose the cohomology class a so that it
belongs to A™. From now on we assume such a choice has been made.
Note also that it follows directly from the Gysin sequence that for ¢ > 0.

rank A? = rank H*"""(P,,,_., Z,)

where A" and H*™(P,,-,) are considered as vector spaces over the field
Z,. Thus rank A* =0 or 1 for all values of ¢; it follows that A7 has
at most one non-zero element.

First, we consider the invariant «,. Two cases are possible: a, = 0,
or a; = p*(am*Y). If a, = p*(x™*'), then the sub-ring A* is not closed
under the operation Sq!, which is already a contradiction. For the re-
mainder of the proof we will assume that a, = 0, i.e. S¢*a = 0, and show
that this also leads to a contradiction.

Next we consider the invariant «,,. Here again two cases are pos-
sible, a,, = 0 or «a,, = #*". TFirst let us consider the case where «, =
0, i.e.., a* = a-p*(x™). Since a*# 0, it must be the unique non-zero
element of A*. Let y denote the unique non-zero element of A !
It is clear that either

Y = p*(x‘zm—l) + a- p*(xm—l) ory =a- p*(xm,—l) .

Now a*y € A", therefore a*-y = 0 by equation (8). An easy calcula-
tion shows that a*a-p*ax™ ) =a-p*(™ ') £ 0. It follows that y =
p*(@™-) 4+ a - p*(x™-'). Next, a computation shows that

Sql(y) — Sql[p*x2m—1 + a . p*xm—l] — p?.k(me) _I_ a - p*(xm) .

Thus S¢'(y) and o® are distinet non-zero elements of A which is
obviously impossible. Thus we see that the assumption «,, = 0 leads to
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a contradiction.

Next, consider the case where «,, = ™, i.e. a* = p*(&*™) -+ a - p*(x™).
The pattern of the proof in this case is the same as in the preceding
paragraph. Let ¥ be the unique non-zero element of A*~* as before,
then either y = p*(x™*) + a - p*(x™?) or ¥ = a - p*(z™!), and we must
have a*y = 0 exactly as before. Once again an easy calculation shows
that a*(p*x*™* + a - p*2™*) # 0, hence we must have y = a-p*x™L
Again, one finds that Sq¢'y = a-p*x™ + a*, which is a contradiction.
Thus we have shown that the assumption that P,,_, can be imbedded
differentiably in S leads to a contradiction.

4, Some open problems. H. Hopf has proved in [1] that P, can
be imbedded differentiably in K™~ or R, according as » is odd or even,
i.e., according as P, is orientable or not. This result, together with our
main theorem and the previous results mentioned in the introduction,
enables one to settle definitely the question of imbedding P, in the
lowest possible dimensional Euclidean space for n < 5: for n < 5, Hopf’s
result is the best possible. The first undecided case is P, It follows
from Hopf’s result that it can be imbedded in R®, and from our result
that it cannot be imbedded in R® Can it be imbedded in R°?

The invariants «; introduced in § 2 raise many interesting questions.
Are these invariants of the normal bundle the same for any imbedding
of a manifold in Euclidean space? Or, is it possible to give an example
of different imbeddings of a manifold in Kuclidean space which give rise
to different sets of invariants a, for the corresponding normal bundles ??
In any case, it seems reasonable to hope that a further investigation of
their properties may furnish new tools for proving non-imbeddability
theorems for manifolds.

One may also carry out an analogous investigation using the integers
mad p, Z,, for any odd prime p as coeflicients, and using Steenrod pth
powers instead of Steenrod squares.
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SEMI-GROUPS OF CLASS (Co) IN L, DETERMINED
BY PARABOLIC DIFFERENTIAL EQUATIONS

THOMAS W. MULLIKIN

1. Introduction. This paper treats mixed Cauchy problems for the
parabolic partial differential equation in one space variable;

1.1) u = p(X)ihyy + q(x)u, + r(x)u .

Our results are for non-singular equations, that is, the variable x
is restricted to a finite interval [a, b], and the function p is real-valued
with p(x) > 0 on [a, b]. The functions ¢ and » may be complex-valued.
We require that p, ¢ and » be in L.[a,b] and that p, »' and q be
absolutely continuous with o', p” and ¢’ in L. [a, b].

We impose usual boundary conditions zw(u) = 0 by

(1.2) M ufa) + Nyu(®d) + Mygu'(a) + Nypuw'(h) = 0,1 =1,2.

The constants M,;, N;; are real or complex and the matrix (M,,; N;))
has rank two.

With Equation (1.1) is associated the ordinary differential operator

(1.3) A = p@)D* + q@D + r@]I, D = El%’ .

With the above restrictions on the coefficients, A is defined in L,[a, b},
1 < p< o, as a closed operator with dense domain, D(4), given by

(1.4) D(A) = {we L,ju and w' are absolutely continuous

and u, w', uw” € L,} .
The boundary conditions define restrictions A, of A to subdomains,

(1.5) D(A,) = {u e L,lu and u' are absolutely continuous,
w[u] = 0, and w, w',u" € L,} .

Our problem is to determine those A, which generate semi-groups
of class (Cy) in L,a, b] (see Hille and Phillips [1], p. 320). Our main
result is

Received September 24, 1958, and in revised form January 9, 1959. This paper presents
some of the results of a Doctoral Dissertation at Harvard University. This research was
supported in part by the Office of Naval Research under contract N 50 ri-07634 at Harvard
University and by The RAND Corporation of Santa Monica, California.

1 We denote by Lyla, b], 1 < p < o the complex Lebesgue space defined by Lebesgue
measure on [a, b]. Any Lebesgue space defined by a different measure p will be denoted
by ([a, b], u).
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THEOREM 4. If 7 is regular?, the operator A, is the imfinitesimal
generator of a semi-group of class (C,) in L[a,b],1 < p < .

The theory of adjoint semi-groups (Hille and Phillips [10], p. 426)
can be used to extend the results of Theorem 4 to the Banach space
L.[a, b]. However, these results apply only in proper closed subspaces
of L., and for brevity we do not include them.

In § 6 we investigate the necessity of regularity of = for the genera-
tion of a semi-group of class (C,) by the special operators £,= D’ in
L,[0,1]. We have the partial result

THEOREM 5. Let m and 7+ be adjoint boundary conditions relative
to the operator D*. If both 2, and 0,+ generate semi-groups of class
(Cy) tm any L,J0,1],1 < p < oo, then & and ©* are regular.

We also show that for certain non-regular = the operator 2, = D?
can be defined either in L,([0, 1], dx?) or in L0, 1], d(1 — x)*) as the
generator of a semi-group of class (C,). These operators can be shown
to be equivalent to singular operators in L]0, 1].

We give, what seems to be, the first application of the Feller-
Phillips-Miyadera Theorem (Hille and Phillips [10], p. 360); other appli-
cations have been of its corollary, the Hille-Yosida Theorem. Probably
Theorem 2, where this theorem is applied, can also be proved by an
appropriate use of spectral resolutions of the operators £, = D’ in L,
and L, however, we use spectral resolutions in only one instance. In
any case, the eigenfunctions of the A, can be used to give analytic repre-
sentations of the semi-groups. In essence, we simply establish in L,
a certain type of behavior near ¢ = 0 of solutions to the heat equation
with a variety of boundary conditions.

Extensive application of semi-group theory to parabolic differential
equations have been made by W. Feller ([4], [6], [7], [8]) and E. Hille
[9]. Their papers contain our results for those real differential equation
and real boundary conditions which determine positivity preserving semi-
groups in L, and in L,.

We plan in a later paper to present a study which we have made
of the hyperbolic equation

(1.6) Uy, + a(@)u, = pX) ., + q(@)u, + r@)u .

2. Equivalent semi-group. We makec considerable use of the fol-
lowing notions. If {7} is a semi-group of class (C,) on a Banach space
U and if H is a linear homeomorphism of U onto another Banach space
V, then it is easily shown that {S,} defined by

(2.1) S, = HT,H*

2 See G. D. Birkhoff [1], p. 383; J. D. Tamarkin |12]; or Coddington and Levinson |2],
pp. 299-305.



SEMI-GROUPS OF CLASS (Cy) IN L, DETERMINED 793

is a semi-group of class (C,) on V. We say that {7,} and {S,} are
homeomorphically equivalent.

If w is a constant and « a real positive constant, and if {7} is
a semi-group of class (C,), then {S,} defined by

2.2) S, = e T,

is a semi-group of class (C,).!
We make the following

DerFINITION 1. Let {7} and {S,} be semi-groups of class (C,) defined
respectively on Banach spaces U and V. Then {T,} and {S,} are said
to be equivalent provided there exist constants w and «, a real and o <0,
such that {7} and e“'S,, are homeomorphically equivalent.

For our applications we need the following theorem, which is easily
verified.?

THEOREM 1. Let {T.,} and {S,} be equivalent semi-groups of class
(C,) defined respectively in Banach spaces U and V, i.e.

(2.3) S, = H(e'To,)H ™ .

The infinitesimal generators A and B are related by
(2.4) B = (wl + aHAH""), D(B)= HD(A).
The resolvents of A and B are related by

(2.5) R(\; B)= HR(» — w; «A)H" .

We make now

DEFINITION 2. Let A and B be closed operators defined respectively
in Banach spaces U and V with dense domains. Then A and B are said
to be equivalent provided there exists a linear homeomorphism H of U
onto V such that (i) D(B) = HD(A) and (ii) B = (wl + aHAH"") for
some constants @ and «, « real and «a > 0.

3. Boundary conditions. The linear forms in (1.2) define a two
dimensional sub-space of a four dimensional complex vector space. It is
convenient for our discussion to specify such subspaces by Grassman
coordinates, which are defined by

1.2 See Hille and Phillips [10], Theorem 12.2.2 and Theorem 13.6.1.
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Mll 11 12 2
A =
3.1) M, N. N,l N,o
‘Mll _ \ . ‘ 11 2
M M, M

These coordinates satisfy the quadratic relationship
(3.2) FC — BD = AF,

and they are unique to within a constant of proportionality. Also, any
constants, not all zero, which satisfy (3.2) define by (3.1) a set of con-
ditions 7 of rank 2 (Hodge and Pedoe [11], p. 312).

We now define, for brevity in the sequel, four types of boundary
conditions by the following sets:

v, ={r|E= B+ D = 0}

T, ={m|E+#+0,0or E=0and B+ D=+0, or A+ 0 and
(3.3) B=C=D=KE=F=0},

7, = {7|F = C =0 and one and only one of 4, B, D, I/ + 0}

T,={n|A=FE=0,B=D=1and FC=1}.

Sets 7, and 7, have only the absorbing boundary conditions in com-
mon, i.e. u(a) = u(®)=0. Sets 7, and 7, are disjoint subsets of 7,
The set 7, contains only separated endpoint boundary conditions. Rep-
resentatives of these types in the form of (1.2) are easily determined
by imposing the defining conditions in (3.1).

It is a simple matter to check that all boundary conditions in the
set 7, are regular in the sense of G. D. Birkhoff. With one exception,
ula) = u(b) = 0, all = in the set r, are non-regular.

4. Q,=D"in L]0, 1] and L,0, 1]. For the special operator @, = I’
on [0, 1] we need

LEMmMa 1. 2, in LJ0,1],1 <p < o, is a closed operator with
dense domain. Fuxcept for those non-regular m given by

4.1) au(0) + (1) =
aw'(0) —w'(1) =0, a*=1,

the resolvent R(\; Q2.) exists for all N, R(\) > w, > 0 for some w,, and
R(\; Q,) is expressed in all L, 1 <p < o, by a Green’s function as

(4.2) ROV Q)[l(.) = S:G(., t, Mu(t)dt .
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The proof of Lemma 1 is easy and is omitted.? We, however, shall
refer to the explicit expression for G(x, ¢, \) which is
Gz, t,\) =
— Fy/Nshv/'\ (@ — t) + shy/ N i[Ash1/ X (1 — @)
+Dy/'Nehy N (A —a)| +chy NUBV N shy/ N (1 — @)
— Exchy/ N (1 - 2)],
for t < x, and
— Cv/Nshy/ '\ (t —x) 4+ (above with x and ¢ interchanged),
for t >« .

N

(4.3)

The function 4(\) is given in terms of (3.1) by
(4.4) 4(\) = (F + C)\» + AV 'Nshy/ N + (B+ D)nchy/ N — ENPshy/ '\

where the principle value of 1/ is chosen for R(\) > 0.
In §5 it will be shown that our main result, Theorem 4, follows
easily from the rather difficult

THEOREM 2. If m is regular, then Q,= D generates a semi-group
of class (C,) in L,[0,1] and in L,[0, 1].

We prove Theorem 2 by a series of lemmas. Our method of proof
amounts to proving this theorem for the subsets 7, and 7, of the set 7, of
regular . These results are then used to define a factorization of R(\; 2,)
for any regular 7 by which we reduce estimates on ||[[R(\; 21", n =
1,2, ..., which are needed for an application of the Feller-Phillips-
Miyadera Theorem, to estimates on certain functions of the complex
parameter \.

The necessity for estimating [[[R(\; 2,)]"*|] for » > 1 results when
2, generates a semi-group {7,} for which ||T;|| is not bounded by e“
for any w. Whether or not ||T;|| < e** for a semi-group of class (C,) in
a Banach space. In one instance, part (b) of Lemma 3, we are able to
guess an equivalent norm for L]0, 1] so that the Hille-Yosida Theorem
can be applied, whereas in the L, norm this does not seem to be the
case.

We have the easy

LEMMA 2. For m in the set T, Q, generates a semi-group of class
(Cy) both im L0, 1] and in L0, 1].

3 See Coddington and Levinson {2], pp. 300-305.
¢ See Feller [5] where it is shown that if {7%} is a semi-group of class (Cy) in a Banach

space, then an equivalent norm can always be defined by the semi-group so that in this
norm || 7% |] < ewt,
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Proof. (a) For L,0, 1] all such 2, are self-adjoint with negative
spectrum and a set of eigenfunctions which are a basis for L,[0, 1]. It
follows easily that such {2, generate semi-groups of contracting opera-
tors in L,J0,1]. (b) In L,[0,1] we have by Fubini’s Theorem, since
G(x, t, \) is continuous,

RO 2gull < | {166, 6 ) llu(o) dtds
0Jo
< |lu]|, max S1|G(x, t,\)|dx .
0<t<1 Jo

From (4.3) for these special © one gets easily

(4.6) RO 29 <

>

By the Hille-Yosida Theorem, £, generates a semi-group of contracting
operators. This completes the proof.
The proof is not so easy for

LEMMA 3. For m in the set t,, 2. generates in L,[0,1] and in
L,J0, 1] a semi-group of class (Cy).

Proof. Any 7w in the set 7, is given by
au(0) + u(1) =0
4.7 a+0.
aw'(0) + u'(1) =0

We note that if the complex constant a in (4.7) is such that |a| =1,
then the conditions w are self-adjoint relative to the operator D?.

(a) We set 0 = log|a| and define a linear homeomorphism H of
L0, 1] onto L,[0, 1] by

4.8) Hlul(x) = e~ "u(z) .
The operator O, equivalent to Q, is
(4.9) 0, = D*+ 20D + o*I .
Now £, is a perturbation by the unbounded operator
(4.10) B = 20D + o°I
of the operator Q;, where 7 is given by
(4.11) au(0) + u(1) =0
a’0) +uw (1) =0, a=-2 =¢°,
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The domain D(B) of B is the same as D(2,) = D(23).

Now Q; is self-adjoint in L,J0,1] with eigenvalues )\, = — (@ +
@Cn+1Dr), n=0,+1, ---, and eigenfunctions ¢,(x) = exp [1(0+ 2n+1)7)x],
which are a basis for L,0, 1]. Then Q; generates a contraction semi-
group given by

(4.12) Tul= S, a,e,@), a,= (1, $,) .

We want to establish that B is in the perturbing class P(2;) of
25 (Hille and Phillips [10], p. 394). Since D(B) = D(23;) we must es-
tablish that
(i) BR(\; 23) is bounded for some \,
(4.18) (i) BT, on D(2;) is bounded for all £ > 0, and therefore

extensible to BT, on L,[0, 1], and
(i) | 1 BTolde < o .
Now (i) of (4.13) follows immediately from (4.2). For (ii) of (4.13)
we compute for u e D(23),

(4.14) %ﬂBﬂwmggmﬂDﬂwxDﬂw»+omenm
= 40°T,(w)DT,(uw)|; — 40°(T (), DT ,(u))
+ | Ty(w) 5 .
Using the facts that «(7T,(w)) = 0, || T.(w)ll, < llull,, and N, <0, we get

@15 LUBT@N < otllullt + do*ullt{ max_— e}

Therefore, since \e~** has on [0, o) the maximum 1/2et,

) 2 1/2
(4.16) BT, < 20(a* + 2) " ljull.

This proves (ii) in (4.13) as well as (iii)

Since B e 3(2;), the operator Q. generates a semi-group of class
(C,) (Hille and Phillips [10], p. 400). Since 0, is equivalent to 2., this
proves our lemma for IL,(0, 1).

(b) In L0, 1] we do not use a perturbation argument as in L0, 1]
because of the difficulty in proving (ii) of (4.13) without using ortho-
gonality relations.

Again let ¢ = log|a| and introduce in L,[0, 1] an equivalent norm by

(4.17) 1£ 1l = | 1 7@) ewida
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The identity mapping of L]0, 1] under these two norms is a linear
homeomorphism and £, is equivalent to itself.
We get by Fubini’s Theorem

(4.18) RO QJull, < gllu(t)lgllG(x, t, M) ledadt .
The Grassman coordinates for 4.7) are A= E=0,B=D =aq, C =1,
and F' = a? and from (4.3) for real A\, » > ¢%(¢ = log |a]),

Jlalzs}n/f(x —t)+ lalshy/ YA+t —2), t<z

| shy N —a) +lalshy XA +2—1), t>a
(4.19) [G(x, t, X)‘é X(—1~]a|2+2la[chVT)

We recognize the right-hand side of (4.19) as the Green’s function,
G.(x, t, \), for d*/dx* and the real boundary conditions 7z, given by

(4.20) — laju(0) + u(1) =0
= lalw'(0) +w(1) =0

for which A=FE=0,B=D=|a|,C=—1, and F= —|al~

Now the function e™"* is an eigenfunction of the operator Q. for
the eigenvalue ¢° where n} is the adjoint of x;,, which is represented
by (4.20) if |e| is replaced by |a|-'. Since these are real boundary
conditions, G,(x, t, ), for real \, defines the Green’s function for Qor if
integration is done with respect to the variable x. Therefore for (4.18)
we have with ) real

@.21) 1RO 2ull, < | AOI gy

This proves that Q, generates a semi-group of class (C,) in L, normed
by ||u]l,, and therefore in L, with the usual norm. This completes the
proof of our lemma.

The extension to all = in the set 7, is based on

LEMMA 4. Let w be in the set 7,, Then

(4.22) RO 2,) = 3 AVR0G 24

where w, and 7, are in the set t, and 7w, -+, 7w, are in the set t,. The
Sfunctions f,(\) are given by
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1(7\') ) — cee
(42.3) fily) = o, =220 100 1=1,2, , 6,

where the «, are constants and A(\) for © and 4,(\) for w, are defined
by (4.4).

Proof. We use the Grassmann coordinates to define the. x, as fol-
lows. By adding and subtracting constants we write 7= as 3.}, a7,
where

(4.24) m: (A,B,CDE,F),
m; (0,1,C—X,1,0, F — X),
X X
.0 (0,1, , 1,0, 2
= X7 |m>

7 (1,0,0,0,0,0),

7, (0,1,0,0,0,0),

m: (0,0,0,1,0,0),

7. (0,0,0,0,1,0),

a=1a=|X,,=A4,0,=B—-1—|X|,6,=D—-1—1]X]| and

a, = E. Now X has to be chosen so that the coordinates of =, satisfy
(3.2). X is given by
(4.25) X=C—pe’, §=arg(C—F) and

IC—Fl+VC—Fr+2
2

10::

Using the linearity of the numerator of the Green’s function (4.3) in
the constants A, B, C, D, E, and F, we get the expression (4.23).
We shall apply to the functions f,(\) of Lemma 6 the following:

THEOREM 3. Let f(\) be analytic in a half plane R(\) > «a. Let
F(\) satisfy either of the following conditions:

(@) fO) s real for real n and (— 1) f®(\) >0 (or < 0) for all real
MA>a, k=0,1,---,1.e., f ts completely monotonic in (a, + ).

(i) (a) r | f(o + it)lde < M < + o, 0 > a, M independent of o.
(b) ‘llim flo +1i7) = 0 uniformly in every closed subinterval of

A< o< + o,
Then there exist real numbers K > 0 and w such that

(4.26) 51 e )O”)l(x W <K, for n=0,1, -,

and N real, N > .
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Proof. Suppose that (i) holds and that f(\) > 0 for real )\ (other-
wise replace f by — f). Then |f,®(\)| = (— D*ff(\) and with » =
a+1

(4.27) }D; lﬁ(;:# N — o)t = S“ff}g_xv)(m — W= fo), x>,

h=0

since f is analytic in the region J(\) > «. Then (4.26) follows with
K=|f(e +1)] and @ = « + 1.

Suppose that condition (ii) holds. Then f is the Laplace transform
(Widder [13], p. 265) of a function ¢(¢) for which ¢(t) =0,¢t <0 and
|p(t)| < Me°~t, 6 > «. We have (Widder [13], p. 57)

(4.28) £ = r (— t)re~N(t)dt RO > e .

So with w =« + 2 and real \, A > o,

kL

(4.39) N l%m (— ) < re—“”'ldn(t)]dt <M.
T=0 e ! 0

Therefore (4.26) follows with K = M and o = « + 2.
We finally come to

Proof of Theorem 2. We shall establish the existence of real con-
stants M and @ > 0 such that in both L, and L, for real )

__M
N — w)"

By the Feller-Phillips-Miyadera Theorem this will prove our theorem.
In the representation (4.22) for R(\; 2,), each 2, generates a semi-
group of class (C,) in L, and in L,, either by Lemma 2 or by Lemma 3.
Then for each R()\; 22, 1=1,2,---,6 (4.30) holds in L,,p=1,2, and
M and @ > 0 can be chosen independently of 7 and p.
Iterates of a resolvent can be computed by

(4.30) IR 201+ < S A>on=1,2 .

. wen . (= D" 0" )
(4.31) [R(N; Q)] = T o B 2

(Hille and Phillips [10], p. 184). Making use of (4.22), (4.31) and (4.30)
for each R(\; !27,1), we get

432) RO 001 < — M S LA gy
N— )" isii=o k!

real »,» >w, and n =0,1, --- .
We suppose now that 7 is such that either E +# 0 or B+ D + 0.
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The only other regular 7 is in the set 7,, and has been dealt with in
Lemma 2. With this assumption, each of the functions f;(A) of Lemma
4 can be written as

4-33 .;/\/ '_Ji, — =L Inb/\ y -_— 1, 2, "',6
(4.33) Si(h) + VY + N + F,(\) 1=

for uniquely determined constants and a unique analytic function F,(\).

For R(\) > 0 we have chosen a branch of A\, so that the first
three functions in (4.33) are analytic and satisfy condition (i) of Theorem
3. The functions Fj(\) are analytic and can be shown to satisfy condi-
tions (ii) of Theorem 3. Then (4.32) and (4.33) together with Theorem

3 give our desired result (4.30). This proves our theorem.

5. A,in LJa,b],1 < p < oo. With the tedious work done in §4,
we now come to our main result

THEOREM 4. If 7w is regular, the operator A, is the infinitesimal
generator of a semi-group of class (C) in L,a,bl,1 < p < .

Proof. The assumptions on the coefficients of A in (1.3) arc such
that standard changes of independent and dependent variables® can be
made to show that A, in L,[e, b] is equivalent in the sense of Defini-
tion 2 to A, in L,[0, 1], where

(5.1) A, = Qy +rI.

The condilions 7 are as in (1.2) and can readily be shown to be regular
if and only if conditions = are regular.

The function 7, in (5.1) is in L.[0, 1], and therefore =.I is a bounded
operator in any L,. So A, is obtained by perturbing 27 by a bounded
operator. Perturbation theory shows that A} generates a semi-group of
class (Cy) if and only if Q3 does (see Hille and Phillips [10], Theorem
13.2.1).

This reduces our proof to that of showing that for regular 7= the
operators 2, = I generate semi-groups of class (C,) in any L,[0,1],1 <
p < . This extension of Theorem 2 we shall now give.

Let ©* denote the boundary conditions adjoint to 7 relative to the
operator D* (Coddington and Levinson [2], pp. 288-293). It is readily
checked that the Gragsmann coordinates (4’, B', C', D', E’, F") of ©* are
obtained from those of 7 by interchanging F' and C and taking complex
conjugates. From (3.3) it follows that =* is in the set ¢, if and only if
T is.

5 See Courant and Hilbert |3], p. 250.
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Let 7, and therefore n*, be regular boundary conditions. Then by
Lemma 1 the resolvent R(\; 2,) exists for R(\) greater than some w,,
and it is expressed by (4.2).

We denote the norm of a bounded linear operator 7' in L, by N, {T}.
Then by Theorem 2 and the Feller-Phillips-Miyadera Theorem (Hille and
Phillips [10], p. 360), we have

(5.2) NALEO; 291" < M,(0 — 0)7", RO > o

p=1,2and n=1,2, ...

Now R(\; 2.) is defined by (4.2) on the space of continuous func-
tions, which is dense in L,[0,1],1 < p < o. If we let M = max (M,, M,)
and apply the Riesz Convexity Theorem (Zygmund [14], p. 198), we
obtain (5.2) for 1 < p < 2. By the Feller-Phillips-Miyadera Theorem,

this is sufficient for @, to generate a semi-group of class (C,) in L,, 1 <
p <2

Also by Theorem 2 and the above argument, 2.+ generates a semi-
group of class (C,) inany L,[0,1],1 < p < 2. It is readily shown that
Q.+ in L, and 2, +in L,,1/p + 1/g =1,1 < p < 2, are adjoints of each
other. The theory of adjoint semi-groups (Hille and Phillips [10], Chap-
ter 1V) shows that 2, in L, generates a semi-group of class (C,), since
Q.+ does in L,. This completes the proof of our theorem.

6. Non-regular 7. One result relating to the necessity of regulari-
ty of @ for A, to generate a semi-group of class (C,) in L,[a, b] is given in

LEMMA 5. If A, generates a semi-group of class (C,) tn Lyja, b],
then w ts regular.

Proof. As we saw in the proof of Theorem 4, it is sufficient to
prove this result for 2, = D? in L,0, 1].

Let @ be a set of non-regular boundary conditions. It is simply
a matter of computation to show that for the function u(x) =1,0 <

x g%, and u(x):O,% <x <1 we get in (4.2)

(6.1) RO LJull, > O

for all real \ sufficiently large and C > 0. Thus, by the Feller-Phillips-
Miyadera Theorem, 2, does not generate a semi-group of class (C,) in
L,J0,1].°* This proves our result.

We now have’

6 Indeed, this proves that Q. does not generate a semi-group of the more general class
(A) in L0, 1] since it is not true that AR(A; Q)u — % as A— + o (Hille and Phillips [10],
p. 322).

7 By a more careful analysis, the complete result can probably be proven that re-
gularity of = is necessary for A, to generate a semi-group of class (Cp) in Ly[a, b].
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THEOREM 5. Let © and ©* be adjoint boundary conditions relative
to the operator D*. If both 2, and Q.+ generate semi-groups of class
(Cy) tn any L,[0,1],1 < p < oo, then © and ©* are regular.

Proof. Suppose that £, and Q.+ generate semi-groups of class (C,)
in some L,0,1]. Then 2, generates a semi-group of class (C,) in
L,J0,1],1/p + 1/g = 1. An application of the Riesz Convexity Theorem,
as in Theorem 4, shows that 2. generates a semi-group of class (C,) in
LJ0,1]. By Lemma 5, = is regular, and therefore also ©*. This com-
pletes the proof.

For certain of the non-regular =, other Lebesgue spaces can be
chosen in which operators . are defined and generate semigroups of
class (C;). The construction of these spaces is suggested by the method
of proof used in part (b) of Lemma 3.

Suppose that conditions = are given by

(6.2) #(0) = au'(1)
la] >1.
(1) =0

Then, if G(x, 7, \) is the Green’s function of 2., it can be shown that
Gy, t,\) = |G(7, x, )| is the Green’s function for 2., where conditions
w, are given by

(6.3) u(0) =0
u(1) = |a|u'(0) .

Also Q. has the real, non-negative eigenfunction ¢(x) = o-'shox where
o is the largest real root of sho = |a|o. In a manner similar to that in
part (b) of Lemma 3, one can show that Q. can be defined in the
Lebesgue space L,([0, 1], (x)dx) as the generator of a semi-group of
class (C,). This space is also norm equivalent to the space L,([0, 1], dz?).
The linear homeomorphism of L,([0, 1], dx?) onto L,([0, 1], d(1 — x)°)
defined by u(x) = u(l — x), shows that Q3 generates a semi-group of
class (C,) in L,([0, 1], d(1 — x)*) where the conditions © are given by

(6.4) u(0) = 0
u(l) = — au’(0) .

In each of these spaces, L]0, 1] can be shown to be a dense sub-
space. The operators 2. and 93 can be shown to be equivalent to
singular operators in L,J0, 1].

We do not know whether similar results hold for other non-
regular «.
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RECURRENT MARKOV CHAINS

S. OREY

In this paper Markov chains {X;}, 4=1,2, ---, which stationary
transition probabilities are considered which take values in some measura-
ble space (S, <#7) and satisfy

(*) The Borel field <7 is separable and there exists a sigma finite
measure m on (S, <) such that Plentering E at some time [X, =z] =1
for all x € S and all Fe < with m(E) > 0, where P is the underlying
probability measure.

Such chains were introduced by Harris in [6], [7]. Let P"(x, E) be
the n-step transition probability, P'(x, £) = P(x, E). In [7] it is proved
that there exists a unique (up to constant factor) sigma finite measure
@ which is stationary in the sense that Q(F) = SqP(x, E)Q(dx).

Section 1 establishes some preliminary results. The relationship
between (*) and Doeblin’s condition is investigated. The results of
Harris [6], [7] are summarized and extended. Note that many nota-
tional conventions used throughout the paper are introduced in § 1.

In §2 it is shown that after the deletion of an inessential @-null set
the process splits up into a finite number, d, of disjoint cyclically mov-
ing classes.

Section 38 studies the asymptotic behavior of P"(x,-) in case the
stationary measure @ happens to be a probability measure. The approach
is the ‘“direct’’ approach of Markov and Doeblin and Doob [4]. It is
shown that if d = 1, the total variation of (P"(x,-)—@Q) approaches 0 as n
approaches oo; for d > 1 the convergence statement must be modified
in an obvious way. For the relationship of these results to those of [3]
see the beginning of § 3.

Section 4 considers the asymptotic behavior of

U = 5P| S7(X) =],

where f is a measurable function from S into the positive integers. If
f(@)Q(dx) < o, U(n) is for large n approximately a periodic function.
Tile period depends both on the {X;} process and on f; this period may
be greater than 1 even though the d associated with the {X;} process
is 1 and f(x) = 1 for a set of 2 of positive Q-measure.
Section 5 is concerned with the behavior of normed sums,

Received September 11, 1958. This paper was prepared with the partial support of
the Office of Ordnance Research, U. S. Army under Contract DA-04-200-ORD-171,
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1
B,

S,

where f is a real-valued measurable function on S. Neither the method
of Doeblin (exploited and developed in [2]) nor that of Bernstein (used
in [1]) is directly applicable to processes merely satisfying (*) and
Q(S) = 1. Nevertheless, ideas from both those methods combined with
the results of the previous sections make it possible to give conditions
under which such normed sums obey the central limit theorem and even
obey the Erdos-Kac-Donsker invariance principle. Results from [1] are
made use of. As indicated at the relevant places, ideas of [2] and [8]
are also used. The work of this section naturally leads to some prob-
lems related to recurrence times, and these are discussed in § 6.

1. DPreliminary results. Let m be a measure satisfying (*). If vis
any measure on (S, <z ) p*(x,-), PX(x,-) are to denote, respectively, the
absolutely continuous and singular component of P™ with respect to v.
Superseripts will be omitted when n = 1. It will be assumed that p? is
measurable in (x,y) in the product space S x S; this assumption is
justified by Doob [4], p. 616. It will also be assumed that for all posi-
tive integers s and ¢

P (o, ) = | i, wpita, D)

holds for all # and y; that such a choice of densities is always possible
was shown in Doob [4], p. 146.

When the subscript v is omitted it will be assumed in this section
that v is m; in all the other sections the omission of v will mean v = Q.

If A is a Borel set, m(A) > 0, ‘“the process on A’ will have the
same significance as in [7], i.e., if X, X, --- are the successive mem-
bers of the sequence X, X,, --- with values in A4, {X,}, 1=0,1,--- is
the process on A. This is a Markov process with transition probability

1.1) P,(x,E) = P(x, &) + S AP(ac, dy)P(y, E)

8-

+L_AL_A P(x, dy)P(y, dz)P(z, E) + - - -

for every Borel subset E of A and xz € A.

The process on A will also satisfy (*). Notions defined for the
original process can thus be relativized to A; notationally this is indicated
by a subseript A4, e.g., pi(x, y) is defined like p"(x, y) but using P,(x, E)
in place of P(x, E).

If 0 < m(A) < o, v belongs to the open interval (0,1), and j is
a positive integer, K(A4, v, 7) is to be the set of all xe A such that
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J 1
m{ye A: g‘ipi(x, Y) > 7} > vm(4) .

By the convention explained above K (4, v,j) is meaningful whenever
C is a Borel set including A (the definition now involves p} in place of p').
Harris observed that if m(A4) < oo,

A=UK(A,r k)

easily follows from (*), for every r€ (0,1). Lemma 1.1 is a modification
of a lemma in [7].

LEMMA 1.1. Let A, B be Borel sets such that m(B) > 0, m(4) < <,
B < K(A, v, k) for some ve(0,1) and some positive integer k. Then
K(B, r, k) = B provided (1 —r) = (1 — v)m(A)/m(B), where re (0, 1).

Proof. For every xze B,

m{yeB: gclpi(x, y) < ]lc} < (1 — v)m(A)

_ _ .y m(4) _
_{a ) wdmm<a rym(B)

if the proviso of the lemma holds.

LEMMA 1.2, Let A=K(A,r k), re(0,1), k a positive integer, A
a Borel set of finite m-measure. Then there exists a probability measure
@ on A and numbers a, e (0,1) such that P*+'(x, £) <1 — v whenever
Ec A Fe #,pE)<aand xveA.

Proof. Let % be any number such that 0 < » < rm(A)k=3. Let «
be some point in A. Define

_,f .k i 1 _j st 1
C_{zeA.i;p(x,z)>—k—}, Ci——l i, lc“‘}’

Then
cc Lij . and m(C) > rm(A) .

Let E be a Borel subset of A, and suppose P**'(x, E) >1— .
Then

7>1= P, B) = P, S — B) 24 5 | pey) P, S — Bymidy)

1
Je i
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=), PrS — By = - S @ - Py, Bym)
=L@ = 33| Py, Bymay) |
=L rm(a) — 1] % Py, By |.
Let
PE) = —M}(T)SZ Pi(y, Eym(dy) and « = %;TM

The inequality above yields ¢(F) > «, proving the lemma.

COROLLARY 1.2.A. Let A, C be Borel sets, m(C) < o, AZ C and
A= KiA, r, k), where re(0,1) and k is a positive integer. Then there
exists a probability measure ¢ on A and numbers «, pe (0,1) such that
Pt (x, ) <1 — 0 whenever xe€ A, and E is a Borel subset of A with
P(H) = a.

Proof. Since the process on C also satisfies (*) the lemma applies
to it, yielding the corollary.

COROLLARY 1.2B. If A, C, r, k are as in Corollary 1.2A the process
on A satisfies Doeblin’s condition.'

Proof. A = K, (A, r, k) since K (A, r, k) = KA, r, k). So the con-
clusion of Corollary 1.2A applies with P, for P,; but this gives Doeblin’s
condition for the process on A.

Let <7 Dbe the collection of Ae <7 such that the process on A
satisfies Doeblin’s condition.

It will be seen that <7 is an important collection. In [6] Harris
announced a result which, slightly extended, asserts that when (*) holds
one has for all z,ye S

Z

2P ) o)

Spw 90

3
]

1.2) and N-—— oo

for all Borel sets E, F with £ S F, Fe 2. In this connection see also
Theorem 1. In [7] the question of more general validity of (1.2) was
raised. If merely E, Fe & ,0 < m(F) < o is assumed, (*) does not

1 It is actually Doob’s generalization of Doeblin’s condition that is referred to. See [4],
p. 192, Hypothesis (D).
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imply (1.2) for all z,yeS. It is easy to give examples of chain satisfy-
ing (*) and with denumerable state space where (1.2) is violated even
in the special case where x =y or where K = F. On the other hand,
when S is denumerable one shows easily that, regardless of whether or
not the process satisfies (*), one has for x + ¥,

S P'(x, E)
P[X, = y for some positive 1|X, = 2] < liminf »=2

Nom &
SFw )

S Pz, B) .
< lim sup ==° = —
Now iP"(% E) PIX; = x for some positive 1| X, = y] -

n=0

It follows that (1.2) will hold for every pair of ¥ and y belonging
to the same recurrence class. In particular in case (*) holds and S is
denumerable (1.2) will hold for all x and y outside a fixed @-null set.
It would be interesting if this could be shown to hold even when S is
not denumerable,

Harris showed in [7] that if A = K, (A, r, k) the process on A has
a stationary probability measure; this also follows from Corollary 1.2B.
Whenever the process on some Borel set B has a stationary probability
measure it will be denoted by @,.

LEMMA 1.3. If A,Be <z, BS A, Ae &7 then Be <.

Proof. Assume the hypotheses of the lemm. Then there is a posi-
tive function ¢(n) such that
S e(n) < oo

n=1

and Pz, E) < QE) + ¢(n) for every Borel subset £ of A. Let N be
an integer such that

San<t.

Then there exists an integer M such that for all x€ B and Borel sub-
sets E of B,

Py(x, E) = 3\ P[Xyy € B, Xy = Xl Xon = 4]
< i P[X,ve E, X,y = Xyl + % < 2 [Qu(E) + ()] + % :

So when Q,(E) < 1/(4(M — N)), Pyx, E) < 3/4 proving the lemma.
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LEMMA 14, Let0<r<1, Ae & and m(A)<o. Then AS (A, r, k)
for some k.

Proof. 1f the lemma is false there is for every &k an x,€ A such

that if

E—j GA'ii({I: )<1]

Ic“ly 'z=1p m?/:—k‘{;

m(E,) > (1 — rym(A). Let E| satisfy E; S E, m(E— E{) =0, and
Pi(x,, E) =0, =1,+--, k. So

b , 1 , 1

> Pl(xy, EY) = —m(E}) = —m(4),

j=1 k k
and the last term approaches zero as k approaches «. Therefore, Q. (E,)
approaches zero. Since @, and m are finite on A and m is absolutely
continuous with respect to @,, m(E,) must tend to zero, which results
in a contradiction.

The restriction m(4) > 0 or m(A4) < o appeared frequently above.
Note that there always exists finite measures ¢ having the same null
sets as @ and therefore satisfying (*). If such a ¢ is chosen for m in
the preceding lemma the hypothesis m(A) < o may be dropped and the
conclusion may be weakened to A < K(S,r, k) for some k. Letting
S, = K(S, r, k), where r is fixed, 0 < » < 1, the preceding sentence can
be restated thus: Ae & implies A = S, for some positive integer k.
Clearly S, = S,.,,k=1,2,-.-. By the remark preceding Lemma 1.1
S = U, S,. Lemma 1.1 asserts that

K(Sy, v, k) = S, if (1 — ') = (1 — 7)q(S)/q(Sy)-

For k sufficiently big such a choice of # will be possible, since S,
approaches S. So then by Corollary 1.2B such S, belong to <. Now by
Lemma 1.3 all S, and all their Borel subsets belong to <. This
proves the following theorem.

THEOREM 1. If (*) holds S can be represented as a union of Borel
sets S;,t=1,2, -+ such that S, & S,., and a Borel set A belongs to
Z if and only if A S S, for some k.

Harris showed that if A4 is a Borel set such that the process on A
has a stationary probability measure Q,, Q, can be extended to a sta-
tionary sigma finite measure on S, Q,. Q.(E) is the expected number
of visits to F up to and including the first return to A if the process
starts with the initial distribution @,. Analytically

(L3) QUE) = | Qdn)P.(x, B)

where P,(x, E) is defined by (1.1) (regardless of whether E & A or not).
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The process {X,} is determined by the function P(z, E') and the
initial distribution. It will sometimes be convenient to indicate the
initial distribution as a subscript on the expectation operator F, or on P.

Let Ae <7, and suppose {X,] possesses a stationary probability
measure Q,. Let V be the least positive integer such that X,e A. It
is not hard to verify that if f is any measurable function from S into
the positive integers one has

(1.4 B, | 2700} = | r@.do)
where both sides are infinite if either one is.?

2. Cyclic decomposition. In this section it is shown that the argu-
ments applied by Doob in [4] to processes satisfying Doeblin’s condition
can be extended to the case where only (*) is assumed. In particular there
exists a Borel set C with positive @ measure such that g. 1 b 4, y) >0

for some positive integer a. This leads at once to the deswed decom-
position. The only place where it is necessary to deviate from the treat-
ment of [4] is in the proof of Lemma 2.1 below (Lemma 5.3, p. 200
of [4]).

LEMMA 2.1. If (*) holds there exist A, Be <7 and a positive integer
n such that Q(A) > 0, Q(B) > 0 and g.l.b. p"(x, y) > 0.
x€A

YEB

Proof. Let De <7 satisfy
Q{yeD Zp(x Y) >_f >r>0,

for all xeD. By section 1 such », D, k exist. Then there exists
a D,e B and a positive integer n, such that D, & D, Q(D,) > 0, and

- 1y
Q{y-p @ y) >y >+

for all xe D,. Also there must exist D,e B, and a positive integer n,
such that D, £ D, Q(D,) > 0 and for all xe D,

Q{y:p"l(w,y) > and Q5zeD " (y,z)>__}. _Z_} %

k?
Let

2 This is part of the assertion of Lemma 6. The discrete analogue of this formula is
formula (A) of the appendix to [2]. Cf. also footnote 7.
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r
k

’

= {(”’ y):we Dy, p(w, y) > *,L and Q{ZGDZ Py, 2) > ;i } -
®

and
H, = {(y, z2)e D x D: there exists an x such that (zx, y)eﬁ1

and p"(y,z) > ; } .

Let Q be the product measure @ x @ in the product space D x D. Given
any Q—null set N of D x D it is clear that it is always possible to choose
two points (x,, ¥,), (x,,%,) in (D x D) — N such that (x,,v,) e H, (x,,9,) € H,
and y, = x,. From here on the proof follows that of [4], middle of bp.
201. Since the v of Doob corresponds sometimes to n, and sometimes to
1, in an obvious way, the conclusion here will be that p™1**(x, y) is bound-
ed away from zero for x€ A, ye B. The lemma follows if n =mn, + 5.

THEOREM 2.1. If (*) holds there is a Ce =7, Q(C) > 0 and a posi-
tive integer o such that g.l.b. p*(x, y) > 0.
z,9€0

Proof. This follows easily from the preceding lemma. For details
see [4], Lemma 5.4.
Let C satisfy
g.L.b. p(x,y) > 0.

£YEC
It is known (cf. [4], p. 202) that if d is the greatest common divisor of
I(C) = {arg.Lb. p(z, y) > 0}

then all sufficiently large multiples of d belong to I(C). With no more
essential variations from the development as given in [4] one obtains:

THEOREM 2.2. Suppose (*) holds. Then there exists a unique in-
teger d such that whenever Ce <%, Q(C) >0 and I(C) mon-vord then d
is the greatest common devisor of I(C). There exists a partition of S
into Borel sets C,, C, +++,C,,, F, such that Q(F) =0 and for xe€ C;
Pz, C;.)) = 1, where the subscripts are integers modulo d.

3. Convergence of P"(x, E') when Q is finite. In this section it is
assumed that (*) holds and that Q is a probability measure. The basic
method' used here goes back to Markov and Doeblin; in detail, however,
this presentation leans on Chapter V of Doob [4].

In [3] Doob investigated Markov chains possessing stationary prob-
ability measures. To see that under the assumptions of this section
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Theorem 5 of [3] is applicable one needs only to check that P”(x S)—0
as n— o for all xeS. For (cf. [3], p. 409) if for m =1,2,.--, A, is
a Q-null set such that Py*(x, S — A,,) = 0,

P[XneAn{XU - x] = P[XleAlr X2€A2y Tty
X, e A lX, =«x].

So if P[X,cA,|X,=x]>¢>0 for all n,
P[ever entering S — GAL-]XO = @] <1l-—e,
i=1

contradicting (*). Theorem 3 below, however, shows somewhat more
than would follow from an application of Theorem 5 of [3] since it
proves, say when d = 1, that the variation of (P"(x,-) — Q) approaches
0 when % approaches oo while [3] gives only (P"(x, E) — Q(F)) ap-
proaches 0 as n approaches o for every Ee 7.

If ¢ is a totally additive set function on S, ||¢]| is to be the total
variation of @ on S. Tp (T"¢) will denote the measure

[ P@ o) ([ P )eao) .

LEMMA 3.1. Suppose there exists a Borel set C of positive Q-measure,
an ¢ >0 and for every x,yeS a positive integer w(x,y) such that
po(x, 2) > ¢, p°(y,2) > ¢ for all ze C. Then for any two probability
measures ¢, @, on S there is an n such that ||T"p, — T"p,|| <

(1 — eQ(C)2) %, — Pull.

Proof. Note that || T"¢, — T"9,]|| is nonincreasing in n. Let p, be
the measure such that p,(E) =1 (0) if xe £ (xeS — F), Fe 2Z. Con-
sider first the case @, = p,, and write ¢ for ¢,. There exists a unique
real number o and measure v such that ¢ =v + ap, and v({z}) =0.
Let p =1 — a)p,. Let A, = {y:w(x,y) =1}. So the A, are disjoint
and Uy A4, =S. Let

o = Q01 — @)
4

and choose N so large that

1J<7§=§:j+1142> < a’ ’

Define the measures v, o, by v, (E) = v(E N A,) and p;, = ||v;l|p,. Then

- %

<elo-gol<e
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Now

N N N N
|To(2w) = (S| = S - Tredi s SUTv - Tl
From the definition of vy, and p; it follows by an obvious argument that
the densities of T'v,, T'p, with respect to @ are equal at least to €||v, ||
everywhere on C, from which it follows immediately that there is enough
cancellation to insure {| Ty, — T'0,l| = 2{ly;11(1 — eQ(C)). So

vy — Tl 2 || S T - 3 70|+ 20 = 21 (1 - 24D,

i=1 i=1

proving the lemma for this special case.

Now let ¢, and @, be arbitrary probability measures. Let g,(z,) be
the positive (negative) variation of ¢, — @,. So ¢, — @, =, — pt,. Let
«;, v; be the unique real number and measure such that /1, = v, — a,p,,
vi{z} =0,7=1,2. Let p=|mllp,. Forall big enough » and 7 =1, 2
one has by the above:

. ol < ¢ _ £Q(C)
17" = Tl = Nl — oll(1 = £Q(0)) = 2llpali(1 — Z4EL).

So
W@, — @)l = I T — )| < I T — T
T — Tl < 211l + llmll)(l - -—WZ—C))

:211%—@2;1(1_%&))

LEMMA 3.2. Assume (*), and Q a probability measure and the hypo-
theses of Lemma 3.1. Then ||T"p — Q|| approaches 0 as n approaches
o for every probability measure ¢.

Proof. Assume the hypotheses of the lemma, and let ¢ be a prob-
ability measure. For every n one can find an m such that

1779 — TnQIl < (1 — LAY,

by repeated applications of the previous lemma. Since ||T%p — T*Ql| is
nonincreasing in k and T*Q = @ for all & the lemma follows.

LEMMA 3.3. Assume (*) and that d =1 in the decomposition of
Theorem 3.2. Then there is an ¢ > 0, a Borel set C of positive Q-measure,
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and for every x,y € S a positive integer w such that p*“(x, 2) > ¢, p“(yz) >¢
forall ze C.

Proof. Assume the hypotheses of the lemma. Let C be a set satis-
fying Theorem 2.1, so that g.L.b. p(x,y) >0, Q(C) > 0. Suppose first
that e
(3.1) there exists a positive integer NNV, a 6 > 0, and for every =z, ye S
an integer v such that

Y+N ) Y+N )
>, Pi(z,C) >3, > P(y,C)>6.
i=Y+1 i=Y+1
Let M be a positive integer such that
g.Lb. p*(x,y) >0
x,yeC

for all » > M. By (3.1) there exist positive integers 3(x), B(y) such that
B(x) < N and P #®(x, C) > 8/N and B(y) < N and P"F®(y, C) > §/N.
Then for ze {x, y}, ue C one has

P, W) 2 | e (o, PO, dv)
[

v
Z[e

g.lb. p" F®m, u) = 2 min g.lb. p'(v, ) .
v, UEC N u=znsnvin Zzg

Thus to prove the lemma it suffices to prove (3.1).
Let & be a positive number less than 1. Let

A, = {z: ipi(z, C) > 3'} .
Clearly A, < A,., and by (*) Q(4,)—1 as n— . Let Q(4y) > 3/4.
Under the present hypotheses the ergodic theorem shows that for every
2 and ¥y there is an n, such that for » > n, P[number of visits to A,
in n steps > 3n/4|X, =2] > 3/4 for ze {x,y}. Let m be an integer
greater than #, divisible by four. Let a,,(b;,) = P[entering A, for the
kth time at ith step|X, =z],z2=2( =9). For k=1,2, ..., 3n/4,

3 & 3
W3 %0,
ah>42 lc>4

n
= =1

i=1

Let

3/4n 3/4n

= 2y, by = Dby .
k=1 i=1

Then
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n 9 n 9
> 2, b, >
%az>16ni§=]1 >16n

Now a;(b;) < Plentering A, at step 7|X, =2] <1, 2=2( =y). This
together with

i(aﬂrbi) >—%n

proves that for some v < # both a, > 1/8, b, > 1/8 holds. So P(x, Ay) >
1/8, P'(y, Ay) > 1/8. Then

yiv Pz, C) >S _EN]PV(Z, dv)Pi(v, C) > é—&' for ze {z, y} .

i=v+1
This proves (3.1) with § = &'/8.

THEOREM 3. Assume (*) and that a stationary probability measure
Q exists.

If d = 1in Theorem 2.2 || P*(x,-)— Q|| approaches 0 as n approaches oo.
More generally, if d=1, and Q(A)=QANC,), k=0,1,---d — 1,
for all Ae <z, and d, C, as in theorem 2.2, and if for anmy initial
distribution ¢ one defines a(p) = limP [X,,€ Cl,1=0, --+,d—1, one has

where the subscripts are integers modulo d, kb =0,1,---,d — 1.

' approaches 0 as n approaches o

Tnd+k(p —d g}(al((p)Qkﬂ,)

Proof. The first assertion follows from Lemmas 3.2 and 3.3. The
reduction of the second assertion to the first one is trivial.

Obviously P"(x,-) cannot converge if @ is not finite. It may be
conjectured that in this case P"(x, £) — 0 whenever Q(E) < oo; such
a result would be very useful. So far no proof of this conjecture has
been found, not even under the additional hypothesis Ee &

4. A renewal theorem. Let {X;} satisfy (*) and assume {X;} has
a stationary probability measuae Q. Let f be a measurable function
from S to the positive integers. Let

Um) = P S 7X) =n],

where ¢ is the initial probability distribution.
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Let S = {(%, k): xe S, k a positive integer}. Let <7 be the smallest
Borel field such that for every Ee <7 and every positive integer

k{(z, k):xeE}ecr. Let {Xi} be a Markov process with values in
(S, {/5’) having the following transition probabilities:

P((z, 1), {(x, i+ 1)) =1for i =1,2, .-+, f(x) — 1 and ze S,
P((z, f(x)), E'} = P(x, E) if E' = {(2,1):2¢ E}, Ee & ,

P((x, 1), {(x, D}) =1 for i > f(x) .

For Fe <z let E°= {(z,f()):ze E}. Let ¢ be the probability

measure on (S, <7) defined by @F(E°) = p(E), #(S — S°) = 0.
Note that one has

(4.1) Uyn) = P;[X,eS"] .

Assume now that
|, f@ae) < .

Since P(x, E) = Po((x, f(x)), E°) for all xeS and Ee .7, {Xw} has
a stationary probability measure Q. {Xi} satisfies (*), so Qe can be

extended to a stationary measure Q for {)Zi}. From (1.1), (1.3), (1.4) it
follows that

A = | fa) .

which was assumed finite. So

Q)= —2
|, foa)

is a stationary probability measure for {Xi}. Apply Theorem 2.2 to {X',-},
obtaining an integer d and classes C,, -, C,, F. Let

aL((Z)) = 133}1 PL;;[XM'Z € CL] .

Then

U(nd + 7) approaches d d};_‘lab-(r/?)@_(S“ N C.y)
i=0

by (4.1) and Theorem 3. Let C! = {xe S; (x, f(x)) 2 C,} and let &,(p) =
a(p) for © =0,1,.--,d — 1. Then clearly
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a=1

@2 ap) =lim P(U [ Xoecry ) = jmod ) )

where the subseript on the C’ is an integer modulo d.
These arguments establish the following theorem.

THEOREM 4. Let {X,} satisfy (*) and assume there is a stationary
probability measure Q for X,. Assume | f(x)Q(dx) < . Then S can

be partitioned into Borel sets C!, -+, C4,F' such that P(x, F’)y =0 for
all xe S — F',Q(F') =0, and for any initial distribution @ of the {X,}
process one has

d S a()Q(C;.)
lim U,(nd + j) = —=°

, J=0,1,+--,d—1,
|, FQ)

where &,(p) is defined by (4.2) and the subscripts are integers modulo d.
If the {X,} are independent (and then automatically identically
distributed), S = C} and the theorem yields

Uund) > 4 = L
|, f@e@n)  FUEN

in this case U,(nd 4+ j) =0 for j =1, ---,d — 1. This is a result of [5].
It seems plausible that U,(n) approaches 0 as n approaches « in case

[, r@ae) = - .

This would follow from a proof of the conjecture made at the end of
the previous section.

5. The invariance principle. Let f be a real-valued measurable
function on the state space of the Markov chain {X;}. Under certain
conditions the sequence of sums

37X

is known to behave like a sequence of partial sums of independent ran-
dom variables, e.g., the central limit theorem holds for suitable norming
constants. Two devices are available for proving results of this kind.
The first method, which is due to S. Bernstein, uses the fact that in
certain cases the dependence of X,., on X, ---, X, diminishes quickly
as k increases; this method is applicable if {X,} satisfies Doeblin’s con-
dition. The second method is applicable to certain cases in which the
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state space is denumerable; the idea in this case, due to Doeblin, is that
if V, is defined to be the ith nonnegative integer » such that X, = =,
where x is a fixed state, the sums f(XViH) + oeen +f(XVm),i =1,2, .-,
are independent and identically distributed. If {X,} is merely assumed
to satisfy (*) and have a stationary probability measure @ neither method
applies. However, it will be shown below that a combination of the
two methods may be used in this case.

Assume now that {X,} satisfies (*). Let Ae .7 have positive Q-
measure. Let V, (or V,(4)) be the ith nonnegative integer v such that
X,ed e, Xy, = Xyg-p,t=1,2,-+-. Let Y, (or Y;(A)) be the vector
0. D, CHNEE -,XVM), 1=1,2,.... For m=1,2,.-+ an m-tuple (x,,--+,%.)
with components in S will be called a path. On the set of all paths
impose the smallest Borel field containing for m = 1, 2, - - -, all m-dimen-
sional cylinder sets with one dimensional base set in 7. Then {Y,} is
a Markov process; indeed one obviously has

P[Ynﬂce Wl Yny ct Yy Yl] = P[Yn+k:€ Wl Yn] = P[Y/er WlXV,L]

for every Borel set W. {Y,(A4)} will be called the A-path process. The
property of path processes that will be exploited is the following: f
Ae 2, {Y,(A)} satisfies Doeblin’s condition; the proof is obvious.

If f is a real-valued function defined on S, f* is defined on paths
by the relation f*((x,, -, z,) = f(x,) + -+ + f(x,),m=1,2,.--. Uis
to be the function identically equal to 1 on S. For n=1, 2, ---, define
L, (or L,(A)) to be the random variable such that L, is the biggest w
such that V, < n.

The reference in the hypotheses of the following two theorems to
some A may seem unsatisfactory. This point will be discussed at the
end of this section and the results of the next section are also relevant.

Before proceeding to the theorems it will be useful to state a lemma.
This lemma will serve in the present context in place of Lemma 7.2,
p. 224 of [4]; since the lemma follows easily from Theorem 3 and the
argument is similar to the corresponding one in [4] no proof needs to
be given. If {X;} satisfies (*) the process is acyclic (cyclic) if d = 1(d>1)
in Theorem 3.

LEMMA 5. Assume {X,} satisfies (¥) and has a stationary probability
measure Q. Let w(k),k=1,2,+--, be a sequence of positive integers
diverging to infinity. Let M be a positive number and for k =1,2, -+,
let F, be a real-valued random variable measurable on X,y Xucys1 ***»
such that |Fy| is bounded by M. Let T be the shift operator, i.e.,
X(w) = X(Tw), and let TF(w) = F(Tw),k=1,2, -,

If etther {X,} is acyclic or for k=1,2, -+, and every x€S
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lim E{F, — TF.,|X, =2} =0.

k—co

then
Li_{g (EAF} — E{F}) =0

for every initial probability distribution ¢.

Since the process {Y,} is determined by the distribution of X, it
is natural to indicate the distribution of X, by a subscript on the P or
E when these operate on sets or random variables measurable on the
{Y,} process.

THEOREM 5.1. Let {X,} satisfy (*) and have a stationary probability
measure Q. Let Ae &, Q(A)>0,Y, =Y (A),1=1,2,.--. Let § >0,
f a real-valued measurable function on S. Let E,,{(f*(Y))*"} < o,
m = B, (f*Y)}. Let f=f—mQAU and 0 = E, {(FV)}. Let

Sn = zi (Xi)r Bn - O'\/%'Q(A) .
Then the distribution of S,/B, approaches the normal with mean 0,
variance 1.

Proof. Let V,= V(A), L, = L,(A), Z, = f¥Y;),1,2, ---. Let [a]
denote the largest integer in « for a > 0. The argument follows [2]
and [8]. In particular the following decomposition is used:

1

S, _ 1 &
5.1 L= 3 A(X) +
G- B, Bng‘-lf( U

1
B,

[nQ(4)]
> 2
n i=1

LX)+

L,-1
1 7 + 1

.+.
B,, i=ndC)1+1 B,

m@Q(A)n — V, + V).

The distribution of the third term on the right tends to the desired
normal by the central limit theorem for Markov chains satisfying Doeblin’s
condition (see [4], p. 228 or [1]).® So it suffices to show that each of
the other terms approaches zero in probability. The corresponding facts
were shown in [2] and [8], but some new arguments are needed in the
present case; on the other hand, much of the following argument is
due to [2] and [8].

The first term on the right causes no difficulty. That the second
term approaches zero in probability follows from (5.2), which will be
proved.

3 These references consider only the acyclic case, but an easy modification works in
the general case.



RECURRENT MARKOV CHAINS 821

(5.2) lim P[(n — V,)>wl=0 uniformly in n.

Suppose first that {X;} is acyclic. By Theorem 3 there exists a func-
tion S6(w) tending to zero as w approaches infinity and such that one
has for h =0,1, --.:

63  SP-V,=k=3%5] S PIV.=jIX = alP[X, e de]

k=0 J4 j=k+1

=3{ S PIV.=jIX, = 41Q@a) + 3500 = k)

=0 J=k+1

5

ll

Q| S PV = 41X, = a1Qde) + 3500 — B)

Now

1 o °° — —
= e® =3 [ 3 PV = 1%, = a1Qudx) .

Let ¢ > 0; there then exist k. such that the first term of the last mem-
ber of (5.3) exceeds 1 — ¢/2 for & = h.. Choose 7. so that

"’e
S 8(n — k) < %

for n = n.. Then

h

@

Pln—-V, =k]>1—c¢

k

il

for » > mn.. Clearly one can find k. such that

hé
S Pln—V, =k]>1—c¢
k=0

for all n. So for h = k! P[n — V., >hl<e for all n, as had to be
shown. If {X,} is cyclic a simple variation of the above argument can
be used to prove (5.2) provided A is included in one of the cyclic classes.
Clearly (5.2) for arbitrary A with positive A-measure follows.
Obviously (5.2) also shows that the last term in (5.1) approaches
zero in probability.
Note that
n . VLn— Vl n — VLn + Vl
L,—1 L,—1 + L,—1
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L,-1

>, UXY,) n — VLn + V) v,

i=1

L,—1 + L,—1 L,—-1

In the last member the middle term approaches zero in probability by
(5.2), and the last term obviously tends to zero in probability. So the
law of large numbers, valid for processes satisfying Doeblin’s condition
(see [1] or [4])," applied to the first term leads to

(5.4)

n 1 . 4 eqe
approaches -—— in probability as n— o .
L. —1 pp: Q(4) p y

Write [a] for the largest integer in a for a >0 and define
y(n) = [Q(A)n(1 + ¢)] and \n) = [QAM(L — )] .

Let ¢ > 0. (5.4) shows that there must be an n, such that Ply(n) <
L,—1=xn)]>1—c¢ for n >mn, Thus to show the fourth term on
the right in (5.1) approaches zero it needs only to be shown that

max

' V(MSsSAM) |

(5.5)

ZZii approaches zero in probability.

i=v

To prove (5.5) assume temporarily that {Y,} is stationary, which
will make {Z;} stationary. Then (5.5) is equivalent to

S Z,

i=1

(5.6) 1 nax

approaches zero in probability.
B, o<s<amy-von

The expression in (5.6) equals

W/X(n)—v(n){ max 1

Bn 0< s<A(n) = v(n) ]//\,(’}’L) — V(n)

S 7,

t=1

L.

The distribution in the expression in braces approaches a limiting dis-
tribution by the Erdos-Kae-Donsker invariance principle, which is ap-
plicable here by [1],® and the corresponding fact for independent identically
distributed random variables with normal distributions of mean 0. Since
the quantity preceding the braces approaches zero (5.6), and hence (5.5),
holds in this case. That (5.5) holds for any initial distribution follows
from Lemma 5. So the theorem is proved.

In [1] Billingsley showed that the invariance principle of Erdos, Kac,
and Donsker is applicable to certain sequences of dependent random
variables. The following theorem extends these results to processes
satisfying (*). The terminology is that of [1].

3 These references consider only the acyclic case, but an easy modification works in
the general case.
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THEOREM 5.2.* Under the conditions of Theorem 5.1 the invariance
principle holds for the sequence {S,} with morming factors {B,}.

Proof. As in the proof of Theorem 4.1 of [1] it suffices to verify
two conditions, (i) and (ii).

The verification of (i) in the present case is reduced to verifying
the corresponding condition in the case where Doeblin’s condition is
satisfied in the same manner that the central limit theorem, Theorem
5.1, was reduced to the central limit theorem for processes satisfying
Doeblin’s condition. When Doeblin’s condition is satisfied the argument
of [1] applies.?

Verification of (ii) is carried out as in [1], except that Lemma 5 is
used in place of Lemma 7.2, p. 224 of [4].°® The fact that
(Si)

limE‘l ol exists and is finite

n=e n

is also needed; this is easily reduced to Lemma 7.3, p. 224 of [4] by
using the decomposition (5.1) and the fact, proved above, that in the
right member of (5.1) all terms other than the third one approach zero
in probability.

As remarked above the hypotheses of Theorems 5.1, 5.2, have the
unsatisfactory feature that they refer to some Ae <z In [2] there
are analogous hypotheses referring to some state of the denumerable
state space; there, however, the hypotheses are proved invariant in the
sense that if they hold for some state they hold for each state. In the
present situation there exists no similar invariance. Indeed, it is very
simple to give examples of a Markov process satisfying (*) and Doeblin’s
condition and of a function f such that the conditions of Theorem 5.1
are true for some Ae.<# but not for A =S.° Such examples show
also that even when dealing with processes satisfying Doeblin’s condition
the theorems above may be applicable when the result of [1] is not.

Though the existence of moments of random variables of the form
F*(Y(A)) or g(Y,(A)) does depend on the choice of A certain facts can
be established. This is the subject of the following section.

6. Relations between path processes. In this section {X;} will satisfy
(*), @ will be the stationary measure, 4, De <2, D < A, 0 < Q(D) < w,
and ¢ will be a positive, real-valued, measurable function on state space.®

3 These references consider only the acyclic case, but an easy modification works in
the general case.

4 It is clear that in the special case where S is denumerable and 4 has only one point
as member the conditions ¢ > 0 may be dropped, i.e., § may be zero.

5 Example 3 of [2] illustrates this.

6 The condition that g be positive can be relaxed. See however footnote 7.
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Let
G, = g(Yi(4))
and for ¢ =2,3, ---,
G, = g(Y,(4)) if XVJeA — D for 7 =2,3,.--,1 =0 otherwise.

If Z= (2, --,%,),¥ = (Y, *++, Yu) are two paths T + 'y is to stand
for the path (a,, «--, @, Y1, ***, Yu)-

The conventions concerning measures appearing as subseripts made
§ 5 will be used here. For example, E, {G;} is the expected value of
G, when X, has the measure @, associated with it. In case a prob-
ability measure concentrates all its weight on some point it will be
convenient to use this point as a subscript; e.g., E.(G,) is meaningful
when x e A.

LEMMA 6.7
Eo 56} = | BGIQ) (=B, (6)0A) it QA) < ) .
If A= S and g = f* (1.4) results.

Proof.

Ee,,{iGz} S B, BGIX) = 5 BiG)Q. )

S

| Py W EACI P ) = | Gl

EAGIQd) + | (| BAG)P.w,dy)

25

P, dy) | Puy, ) -

the last equality following from (1.1), (1.3) with A for S, therefore P,
for P, and D for A. By [7] Q. and @, differ only by a constant factor,
if QUA) < . Then Q@ (4) =1 and Q, = Q,-Q,(4). The equation in
parenthesis follows.

If g=f* and A = S one has
[, Be10.an = | {] s0Pw, d]@a

7 This lemma may be considered a generalization of (A) of the appendix to [2]. As
in [2] the condition that g be positive can be weakened. Chung showed in Example 3 of
[2] that even the special case (A) is false if no condition on g is assumed.
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= Ar@ | P Q) = | ro. .
THEOREM 6.1. (a) If 9(@) + 9(¥) = 9(Z + 'y) for all paths T and ¥,
then

ZG < g(Y(D)) and E, { f(Y(D))} = SAEu{f( Y,(A))} @u(dy)
(= E, {f(V(AN}QW(A) if QA) < ).
(b) If 9(&) + 9(y) = 9(& + 'Y) for all paths T and ¥, then

S1G = A(Y(D) and B, (FYD)) = | B,A(Y(A)}Qu(dy)
(= Bo {A(ANIRAA) if QA) < ).

Proof. The theorem follows immediately from Lemma 6.1.

Note that for p =1 (0 < p < 1) the function f(Z) = (U*(Z))" satisfies
condition (a) (condition (b)) of the theorem. Call U*(Y(B)) the recur-
rence time to B when Be ¢7; and if furthermore Q(B) < oo, p = 0 call
E, {(U*(Y(B)))’} the pth stationary moment of the recurrence time.
It follows that when Q(S) =1 (Q(S) = «),p >0, and Be ¥ (Be. %
and (B)) < =), the pth stationary moment of the recurrence time to B
is finite only if the same is true for every Borel superset (subset of
positive Q-measure).

The hypotheses of parts (a) and (b) of Theorem 6.1 cannot both be
satisfied by the same g unless g is a constant multiple of U*. The
theorem below, on the other hand, is such that for a wide class of funec-
tions both the hypotheses of (a) and (b) may be satisfied.

With reference to the hypotheses in Theorem 6.2 observe that if
Be <# the three statements

(a) E.{g(Y(B))} is uniformly bounded for all x€ B,

(b) E,{9(Y.(B))} is uniformly bounded for all probability measures
@ on B,

(¢) E,{9(Y(B))} < « for all probability measures ¢ on B,
are all equivalent.

THEOREM 6.2. Let Ae &

(@) Suppose (i) ¢ >0 and f(T +'Y) = c(f(Z) + () for all paths %
and Y, and (i) M >0 and E{f(Y(A)} <M for all xeA. Then
EA{f(Y(D))} is uniformly bounded for all xe D.

(b) Suppose (i) ¢ > 0 and f(z) + f(y) < cf(x +'y) for all paths =
and y, and (i) M >0 and E{f(Y(D)} =M for all xeD. Then
Bo, (f(Y(A)} < o .
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Proof. Assume (i) and (ii) of (a) and let xe D. Let v be the first
7 such that n = 2 and Xy weD, so that G, = 0 for ¢ > v. Using (i) of
(a) repeatedly, and (ii) of (a), one has,

EAfV(D)} = 5B UAV(A) + Vi) + -+ YV D)ly = K} Pl = £]
< ic““gz’”“Ex{iGilu - k}P[y — K] < i}lc“““z““chP[u — k] .

Since Ae &2, P[v = k] decreases exponentially and (a) follows.
Assume (i) and (ii) of (b). Let v have the same significance as
above. One has then, by Lemma 6 and repeated applications of (i) of (b),

S B, (F(V(A) 47 oo+ YAy = k) Ply = ket

k co -

> EQD{ Gy = k}P[u = K = F,] 3 Gt}- — E, {f(Y(A)}Q(A) .

Note that when v =%k Y, (D) = Y(A) +'--- + 'Y {A); so assumption
(ii) of (b) ensures that in the inequality above each of the expectations
in the first member is at most M. Since Ae < P[y = k] decreases ex-
ponentially. This proves (b).

As an application consider the following situation: there exist Borel
sets D and C each of finite positive @Q-measure and each containing only
one point. Let A be the union of D and C. If ¢ satisfies (i) of (a) in
Theorem 6.2 and (i) of (b) in the same theorem, one has E, {g(Y.(D))}<
o implies B, {g(Y,(A)} <o, By {9(Y,(A)} <o implies B, {g(Yi(C))} <
oo, since (ii) of (a) and (b) are now automatically true. In particular, g
will always satisfy (i) of (a) and (i) of (b) if ¢(x) = (U*@))?, p > 0.
This gives again the result of Chung [2] that for two points, each of
finite positive @Q-measure, the pth moment of the recurrence time exists
for both or neither,
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ON QUADRUPLY TRANSITIVE GROUPS

E. T. PARKER

1. Introduction. A major unsolved problem in the theory of groups
is whether there are any quadruply transitive finite groups other than
the alternating and symmetric groups and the four Mathieu groups of
degrees 11, 12, 23, and 24, respectively.

In this paper are proved two theorems which impose arithmetic re-
strictions on primes dividing the order of the subgroup fixing four letters
of a finite quadruply transitive group, and on the degrees of Sylow
subgroups thereof.

THEOREM 1 is stated, followed by a corollary, which is somewhat
less general but of a more direct arithmetic form.

THEOREM 1. If G is a quadruply transitive finite permutation group,
H 1is the subgroup of G fixing four letters, P is a Sylow p-subgroup
of H, P fixes r = 12 letters and the normalizer in G of P has com-
ponent A, or S, permuting the letters fixed by P, and P has mo com-
ponent of degree = p* and no set of r(r — 1)/2 permutation-isomorphic
components, then G is alternating or symmetric.

COROLLARY. If G is a quadruply transitive permutation group of
degree n = kp + », with » prime, k < p’, k< r(r — 1)/2,r =212, and
the subgroup of G fixing four letters has a Sylow p-subgroup P of
degree kp, and the normalizer in G of P has component A, or S, per-
muting the letters fixed by P, then G is A, or S,.

This corollary is a partial generalization of a theorem of G. A. Miller
[6], which may be paraphrased to read like the above with ‘‘ quadruply
transitive ’’ replaced by ‘‘ primitive’’ and the inequalities replaced by
“k<pk<r,r=5"—‘“r=3" if the component of the normalizer
of P is restricted to be S,. Miller’s theorem is proved for » =5 by
showing first that the component A, of the normalizer of P — or a sub-
group of P of index 2 - splits off as a direct factor. The argument is
completed by invoking the theorem of Netto [3, p. 207, Th. I] on pri-
mitive groups with primitive subgroups of lower degree. The proof of
Theorem 1 makes use of the techniques in Miller’s theorem; and in
addition results on the structure of the automorphism groups of non-
cyclic groups of order p?, on distribution of primes, and in particular

’
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a theorem of Bochert [1] giving a lower bound on the degrees of per-
mutations in quadruply transitive groups.

A consequence of Miller’s theorem, not mentioned in his paper, is
that for infinitely many degrees, namely p + 3 and 2p -+ 8 with p prime,
quadruply transitive groups can be only the alternating or symmetric
groups.

THEOREM 2. If G is a quadruply transitive permutation group
of degree n, and the subgroup of G fixing four letters is of order
divisible by an odd prime p, with 5p >n — 4,4p +n — 4, then G 1s
A, or S,.

Some comments on terminology are in order: A, and S, designate
respectively the alternating group and the symmetric group of degree
n. A component of a permutation group is the permutation group in-
duced on a transitive set of letters. ‘‘The subgroup fixing four letters’’
of a quadruply transitive group is the largest subgroup (unique to con-
jugacy) fixing four letters individually. (The phrase ‘ fixed set-wise”’
is used explicitly when appropriate.)

Included in the author’s dissertation is a self-contained proof that
the only quadruply transitive groups of degrees n < 27 are the alternat-
ing and symmetric groups, 6 < n < 27 and 4 < n < 27 respectively, and
the Mathieu groups of degrees 11, 12, 23, and 24. As this result is in
the literature (except perhaps for degree 27), though likely in no single
source, these rather lengthy arguments are not included in this paper.

Section 2 contains three lemmas needed to prove Theorem 1. In
§83 and 4 are the proofs respectively of Theorem 1 and its corollary,
and Theorem 2.

2. In this section are three lemmas.

LEMMA 1. If B is a transitive permutation group of degree p or
p* (p prime), and if B has a normal p-subgroup, them B has no com-
position factor' isomorphic with A, r > 5.

Proof. If B is of degree p, then B is the metacyclic® group or
a subgroup thereof, and hence is solvable.

If B is of degree 9%, then the normal p-subgroup 7 has an ele-
mentary subgroup (not necessarily proper) C normal in B. (For p-groups
are solvable, and every minimal normal subgroup is a direct product of
isomorphic simple groups.) Since B is transitive, C displaces all p?

1 A factor group of a composition series.
2 The holomorph of the group of order p.
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letters, and has all components permutation-isomorphic. C being abelian
has all components regular. Thus C is either the regular elementary
group of order p?, or a subdirect product of p p-cycles.

If C is regular, then B is in the holomorph of the elementary group
of order p>. The only unsolvable [3, pp. 428-34] composition factor of
this holomorph is LF'(2,p). The smallest alternating group of order
divisible by p is A,. LF(2, p) is isomorphic with no alternating group
whenever p > 5, since p(p’— 1)/2 < p!/2. The only unsolvable proper
subgroup of LF(2, p) is isomorphic with A, — LF(2, p) is isomorphic with
Ay, for p =05, and has such a subgroup for p = + 1 (mod 5) [3, pp.
440-50].

If C is a subdirect product of p p-cycles, then each element of B
must permute the transitive sets of C among themselves; these are sets
of imprimitivity for B. Let K be the largest subgroup of B fixing the
gets of imprimitivity; K is a normal subgroup of B. B/K is a permuta-
tion group on the transitive sets of K. Since T is transitive and K is
intransitive, T is not a subgroup of K. Hence B/K has a normal p-
subgroup. B/K of degree p is in the metacyclic group, and is therefore
solvable. K is a subdirect product of metacyeclic groups. Thus B is
solvable.

LEMMA 2. For r=9, A, has no subgroup of index t, r <t < r(r —1)/2.

Proof. Assume that A, has a subgroup L of index ¢ (r,t as above).
If L is intransitive, then L is in the group M, of even permutations
in the direct product of S, and S,_;,, 0 <1 < ». M, is of index <Z> in

A,. <Z'> =r(r—1)/2 unless =1 or r—1, Forit=1or r—1, M, is
A,_,, of index r which fails to satisfy the strict inequality. A,_, has no
proper subgroup of index < » — 1; hence M, has no proper subgroup of
index < r(r — 1)/2 in A,.

There remains for consideration the case of L transitive.

Let ¢ be a prime in the range /2 < ¢ < r. If L is of order divi-
sible by ¢, then an element of L is a g-cycle, and L is primitive [4, p.
162, Exercise 8]. If further ¢ < r — 3, then L is A, [6]. Transitive L
fulfilling the assumption must be of index in A, divisible by each prime
¢ r2<g=r—3.

A theorem on distribution of primes will now be used [2,7]: If
x = 25, then there exists a prime q such that x < q < 6x/5. A com-
putation shows that for all » = 50 there exist primes ¢, ¢,, ¢, satisfying
r2<q < ¢, < g <7 — 3. The existence of a triple of primes for each
r in the range 20 < r < 50 is verified by inspection. For any » =
20, .q,9; > (r[2)° > r(r — 1)/2.
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Degrees 9 < r <19 remain to be considered. A primitive proper
subgroup of A, has no element a ¢-cycle, with prime ¢ <r —38. If L
is primitive, then for each odd prime ¢ < » — 3 a Sylow ¢-subgroup of
L must be a proper subgroup of that of A,. Thus the index of L in
A, must be divisible by each prime ¢q,2 < ¢ < r — 3. This inequality is
satisfied by primes ¢ =3,5,7,11 when 14 <» <19; and 3.5-7.-11 >
r(r — 1)/2 for these values of ». Similarly ¢ =3,5,7 for 10 < r £ 13,
and 3:5-7 > »(» — 1)/2. Primitive L does not exist for 10 < r < 19.

Imprimitive L must be of index divisible by each prime ¢, /2 < ¢ <
r. For 17=<r<£19,¢=11,13,17, and 11-13-17 > r(r — 1)/2. For
13r<£16,11:13 > r(r — 1)/2. For r =11 or 12,7-11 > r(r — 1)/2.
The maximal imprimitive subgroups of A,, are of orders % - 21(51)* and

% - 51(21°, both of index > 10-9/2. Such a subgroup of A, has order

%-31(3!)8; index > 9.8/2.

One case remains, namely degree 9 with L primitive. L must be of
index divisible by 3 and 5. Since 3-3.-5 > 9.8/2, L can be of index
only 15 or 30 in A,. L, having a 7-cycle, is triply transitive. If L is
of index 30 in A,, then the subgroup of L fixing two letters has order
84; a group of order 84 has only one Sylow 7-subgroup. If L is of in-
dex 15, then the largest subgroup of L fixing two letters set-wise is of
order 336; but a group of degree 7 and order divisible by 2! contains
a transposition.

LEMMA 8. If G is a transitive permutation group homomorphic
onto K, and the kernel of the homomorphism 1is tramsitive on the let-
ters permuted by G, then the subgroup of G fixing one letter is homo-
morphic onto K. Moreover, the two homomorphisms belong to the same
many-to-one mapping.

Proof. Let G, be the subgroup of G fixing the letter 1. For any
k e K, there exists ¢, € ¢ such that g, — & in the homomorphism, Let
1 be the letter onto which 1 is mapped by g¢,. Being transitive, the
kernel has an element g}, mapping ¢ onto 1. Then g,¢9. maps 1 onto 1,
and corresponds to %k in the homomorphism. Since k is an arbitrary
element of K, it follows that G, has an element corresponding to any
element of K.

3. In this section will be established.

THEOREM 1. If G is a quadruply transitive finite permutation
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group, H is the subgroup of G fixing four letters, P is a Sylow p-sub-
group of H, P fixes r = 12 letters and the normalizer in G of P has
component A, or S, permuting the letters fixed by P, and P has no com-
ponent of degree = p* and mo set of r(r — 1)/2 permutation-isomorphic
components, then G 1is alternating or symmetric

Proof. Let N(P) be the normalizer in G of P. Each element of
N(P) maps any component of P onto a permutation-isomorphic com-
ponent. Let P’ be the largest subgroup of N(P) fixing set-wise all com-
ponents of P. P’ is a normal subgroup of P. The components of P
will be called points. N* = N(P)/P’ is a permutation group on points.

By hypothesis all points are of degrees =< p. By Lemma 1 no
transitive group of degree p or p* with a normal p-subgroup has a com-
position factor isomorphic with A,, » > 5. By hypothesis N(P) has com-
ponent A, or S, on the » =12 letters fixed by P. Thus N(P), or
a subgroup thereof of index 2, is homomorphic with A4,. It follows that
N* has a composition factor of A4,, since P’ has none.

N* has a subgroup N with properties:

1. N has an element permuting the 7 letters fixed by P according
to a, where a is any even permutation.

2. No proper subgroup of N has property 1.

A subgroup (not necessarily proper) of N* with property 1 exists, since
N* itself has property 1. N7*, having only finitely many subgroups,
has a minimal subgroup with property 1. It is not asserted that N is
unique.

By the minimality condition on N, each component of N is either
a single point or is homomorphic with A,, the image being represented
on the letters fixed by P. Let J designate a component of N permut-
ing more than one point (not letters fixed by P). J is homomorphic
with A,, with kernel J;, the subgroup of J corresponding to the identity
permutation of the letters fixed by P. Assume that the kernel J, is
transitive on the points permuted by J. Then by Lemma 3 the sub-
group of J fixing one point possesses the homomorphism onto A,; this
contradicts the minimality property of N. Thus each J has intransitive
kernel.

For any J, the components of the kernel .J, will be called blocks.
Since J, is intransitive on the points permuted transitively by J, it fol-
lows that J permutes more than one block. In fact, J permutes blocks
according to a group isomorphic with A,, since .J, is the kernel of the
homomorphism of J onto A,. By hypothesis P has no set of »r(r — 1)/2
permutation-isomorphic components; thus each J permutes fewer than
r(r — 1)/2 points, and a fortiori fewer than this number of blocks. By
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Lemma 2 A, for » = 9 has no transitive permutation representation of
degree strictly between r and r(r — 1)/2 (by hypothesis » = 12). Ac-
cordingly each J permutes exactly r blocks according to A,.

For r = 6 the only automorphisms [3, p. 209] of A, are conjugations
by elements of S,. Thus there is a natural one-to-one correspondence
between the letters fixed by P and the blocks permuted by any J such
that each element of N permutes the sets alike.

Select a set of s = [7/2] letters among the » fixed by P. Let N,
be a minimal subgroup of N inducing all even permutations on these s
letters. (That N, exists is argued as for N.) As each J is of degree
< r(r — 1)/2, each block contains fewer than (r — 1)/2 points, hence
fewer than s. The points of a block cannot be permuted according to
any group homomorphic with 4,. By the minimality of N,, each block
fixed set-wise by N, is fixed point-wise by N,. This is the case because
N, has a composition factor of A,, while the group permuting the points
of one block has none.

N, is a group of permutations of points (transitive sets of P’) and
letters fixed by P. Thus N, determines a subgroup M of N(P) such that
N, = M|P’. M permutes the chosen set of s letters fixed by P accord-
ing to A,. Let M, be a minimal subgroup of M with this property.
Each component of P’ (point) is transitive of degree p or p* and has
a normal p-subgroup. Hence by Lemma 1, no component of M, con-
taining a single component of P’ has a composition factor of A, (s > 5,
since r = 12). Since M, is a minimal group homomorphic with A,, each
component of P’ fixed set-wise by M, is fixed letter-wise by M,. Thus
each element of M, displaces at most s/» < 1/2 of the letters of any
component of N(P); that is, at most half the letters displaced by P.
M, has an element m digplacing exactly three letters fixed by P. As
r =12, m displaces at most half as many letters as the degree of G,
diminished by 3. The theorem of Bochert [1] asserts that quadruply
transitive G, with a non-identical element displacing so few letters as
does m, is alternating or symmetric.

COROLLARY. If G is a quadruply transitive permutation group of
degree m = kp + r, with p prime, k < p, k <r(r—1)/2,r =12, and
the subgroup of G fixzing four letters has a Sylow p-subgroup P of
degree kp, and the normalizer in G of P has component A, or S, per-
muting the letters fixed by P, then G is A, or S,.

Proof. Since k < p*, P is of degree kp < p’, so that P has no
component of degree = p°®. Since components of P are of degree at
least p, the hypothesis &k < r(r — 1)/2 implies that P has no set of
r(r — 1)/2 permutation-isomorphic components. The hypothesis of Theorem



ON QUADRUPLY TRANSITIVE GROUPS 835

1 is fulfilled, so that G is A4, or S,.

4. THEOREM 2. If G is a quadruply transitive permutation group
of degree m, and the subgroup of G fixing four letters 1is of order
divisible by an odd prime p, with 5p >n — 4,4p + n — 4, then G 1is
A, or S,.

Proof. Let H be the subgroup of G fixing four letters, and P be
a Sylow p-subgroup of H. Since 5p > % — 4, P is of degree kp < 4p.

If kp =n — 4, then k < 3, since 4p +n — 4 by hypothesis. The
theorem of Miller [6] applies with n = kp + 4 except for &k = p = 3.
However, 13 = 2.5 + 3, so that Miller’s theorem is applicable to this
case.

If kp <n — 4, then at least five letters are fixed by P. Ny (P),
the normalizer in G of P, has component 7 permuting the letters fixed
by P quadruply transitive [5, Lemma 2.2]. A normal subgroup (not the
identity) of a quadruply transitive group (other than S,) is triply tran-
sitive [3, p. 198, Th. XI]. Thus 7T is primitive and has no regular
normal subgroup, hence is unsolvable. The final subgroup in the com-
mutator series of 7T is triply transitive.

P has at most four transitive sets, which cannot be permuted by
an unsolvable group. If p > 3, then each component of P is of degree
p and has a solvable holomorph. For p = 3, a component of degree 9
has a solvable automorphism group. Accordingly, the final member of
the commutator series of N,(P) is a primitive group permuting only let-
ters fixed by P. By Bochert’s theorem [1], P is of degree at least
(n — 2)/2, so that at most (n + 2)/2 letters are fixed by P. Hence G
is at least m + 1 — (n + 2)/2 = n/2 — ply transitive [3, p. 207, Th. 1.]
But G can be at most (n + 3)/3 — ply transitive, or contains A,. [4, p.
148, Th. VI.] The theorem is established for n > 6, and is trivial for
the smaller degrees.
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ON TOEPLITZ MATRICES, ABSOLUTE CONTINUITY,
AND UNITARY EQUIVALENCE

C. R. PurNam

1. Preliminaries. Forn=0, +1,+2, ---, let {¢,} be real numbers
satisfying

(1) ¢ =0,c., =c, and }ic?z<oo,
and consider the associated real-valued, even function f(0) of period 2
and of class L*[0, 7] defined by

(2) f(f))~§]cne"""=2§;,cncosné).

(Throughout this paper it will be assumed for the sake of convenience
that ¢, = 0. If ¢, # 0, T (see below) is modified merely by the addition
of a multiple of the unit matrix.) Let A = (¢ ;), where a,; = ¢,— (= ¢;-)
or a,, = 0 according as 1< j or ¢>7(,7=1,2, ---), and define the
Toeplitz matrix T and the Hankel matrices H and K by

(3) T = (cio) = A+ A% H=(¢,-) and K = (¢1s))

The matrices T, H and K are real and Hermitian (symmetric).

Let J denote the matrix belonging to the quadratic form 2 >\ 7 ®,2,.,.
The differential of its spectral matrix is given by dp,,(6) = 27! sin 6
sin 70d6 (cf. Hilbert [5], p. 155, Hellinger [8], pp. 148 ff.). A direct
calculation (cf. [11], Appendix 2) shows that

(4) T=F+K,
where T and K are defined by (3), and F is given by
(5) F=({ r0a0.0).

with f(0) defined by (2) and (1). In particular, if ¢, =1 and ¢, =0
for m > 1, then f(0) =2 cos¢ and (5) is the spectral resolution of J
(with the usual parameter \ being given by N = 2 cos 0).

It should be noted that the IL? assumption on the sequence {c,}
in (1) does not imply the boundedness of the various matrices considered
above, although of course, the existence, in the mean, of the integrals
in (5) is assured. Moreover, all two factor products of the type A?
AA*, ete. surely exist and it can be verified that

Received August 26, 1958. This research was supported by the United States Air Force
through the Air Force Office of Scientific Research of the Air Research and Development
Command, under Contract No. AF 18 (603)-139. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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(6) AT —-TA=H*,

where A, T and H are defined by (3); ef. [11], p. 517.

It is known (Toeplitz) that 7 is bounded if and only if f(0) is
essentially bounded, so that | ()| < const. almost everywhere on [0, 7];
[3], p. 360. Moreover, if M and m denote the essential upper and lower
bounds of f, then the spectrum of 7' consists of the interval [m, M] and,
unless all ¢, = 0, is purely continuous (so that the point spectrum is
empty); [3] and [4]. Furthermore, if T is not bounded, but is still self-
adjoint, then the spectrum of T is again purely continuous and is again
the (unbounded) interval [m, M]; [4], p. 878. (Actually the results of
Hartman and Wintner mentioned above are not restricted to the case of
real sequences {c,} as in the present paper.) For necessary and suf-
ficient conditions in order that a Hankel matrix be bounded, see [9].

The matrix A is bounded if and only if g(¢) ~ 3.7 c.e™ is essentially
bounded (Toeplitz; cf. [4], p. 880, [11], p. 517). Clearly, if A is bounded,
so also is 7. In addition, if T is bounded, then f(0) of (2) is bounded
and consequently K is bounded (Toeplitz; cf. [2], p. 223, also [3], p. 365).
In view of the easily verified relation

(7) 1Hz 1 = 1 Koll* + (S e.,)

H is bounded (or completely continuous) if and only if K is bounded (or
completely continuous). It is seen that if A is bounded then all of the
other matrices considered above are bounded.

In § 2 there will be pointed out a few consequences of the relations
(4) and (5) bearing on the nature of Fourier series and the spectra of
Toeplitz matrices belonging to real valued, even functions defined by (2).
In 8§ 8 and 4, sufficient conditions guaranteeing that a Toeplitz matrix be
absolutely continuous or unitarily equivalent to a certain function of J,
will be obtained. Some applications to Hilbert matrices will be given in
§ 5.

Condition (1) on the real sequence {¢,} will be assumed throughout
the paper.

2. Toeplitz matrices and Fourier series. First there will be proved:

(I) If the Hankel matrixz K is bounded, then mecessarily T is self-
adjoint.

This is an obvious consequence of (4) if it is noted that F' of (5) is
always self-adjoint. Incidentally, it is seen that in this case the domain
of T is identical with that of F.

By the essential range of f(0) will be meant the (closed) set of
values ) for which |f(d) — A| < ¢ holds on a set of positive measure



ON TOEPLITZ MATRICES, ABSOLUTE CONTINUITY 839

on [0, w] for every ¢ > 0. Then one has:

(1) If K s bounded and satisfies || K|| < C (= const.), then any
closed interval of length 2 C contained in [m, M] contains at least one
point of the essential range of f(6).

This assertion also follows from (4). For, it is clear that the spectrum
of F is exactly the essential range of f(0) (the situation being analogous
to the problem of Toeplitz of determining the spectrum of a Laurent
matrix; cf. [3], pp. 359-360 and the references cited there). Con-
sequently, since relation (4) shows that F' is obtained as a perturbation
of T by the operator — K, the assertion now follows from the fact that
the spectrum of T is the entire interval [m, M].

A theorem similar to (II) is

(IIT) If K s completely continuous then the essential range of f(6)
s [m, M].

The proof follows from the observation that, by (the generalization
of) Weyl’s theorem, the essential (cluster) spectra of T and F are
identical. Since, by (I), T is self-adjoint, its spectrum is [m, M] ([4])
and it follows that the essential spectrum of F is also [m, M]. But the
spectrum of F'is always contained in [m, M] and hence must be identical
with this interval. This implies (III).

A curious corollary of (III) is the following assertion:

V) If g(0) ~ 3.7 ¢, sinnd is continuous on — oo < 0 < o then
the essential range of h(0) ~ 3.7 ¢, cosnd is an interval (possibly un-
bounded).

The assertion follows from (III) if it is noted that the continuity of
g(0) implies the complete continuity of the operator K. Cf. [3], p. 365.
It is stated there that H = (¢;.,-,) is completely continuous if either g(6)
or the function % f(6) ~ >\7 ¢, cosnd is continuous on [0, 7]. The proof
seems to indicate however that K = (¢;+,) (or H) is completely continuous
if either g(6) or f(0) is continuous on [— 7, 7] (and hence on — oo < § < o).
See [2], p. 223. The continuity of g(6) on [0, 7] implies its continuity
on [— 7, ] but the corresponding assertion for f(0) is false.

Another easy consequence of (4) is the following:

V) If T, and T, are two bounded Toeplitz matrices with the
representations

(4.) T.=F,+K,

where
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Ga) o= (| 7u0)d00(0)) and £,(0) ~ 2 S e, cosne,
and if K, and K, are completely continuous, then
(8) 1.1, = (| £0£000.(0) + C,

where C is completely continuous.

A relation similar to (8) holds of course for products with more than
two factors. The proof of (V) follows easily if it is noted that the
product of a bounded operator and a completely continuous operator is
completely continuous. In particular, it is seen from (8) that the es-
sential spectrum of 77, is the essential range of fi(0) f.(d). The situa-
tion is to be compared with that for Laurent matrices; cf. the remark
following (II) above.

3. Absolute continuity. It follows from Theorem 13 of [11], p. 523,
that if A is bounded, then (6) implies that 7 is absolutely continuous
whenever 0 is not in the point spectrum of H. That is, this last con-

dition is sufficient in order to guarantee that S dE(\) = 0, where
V4

(9) T = gxdE‘(x)

is the spectral resolution of 7 and Z is any set of one-dimensional
Lebesgue measure zero. However it is possible that 7T is absolutely
continuous even if 0 does belong to the point spectrum of H. In fact
each T, belonging to the sequence {¢,} with ¢, =c¢y +# 0 (N > 0) if
n= + N and ¢, =0 otherwise, is absolutely continuous; cf. [11], pp.
519, 524. This result will be generalized in the following theorem:

(VI) Let the real sequence ic,;, n =0, +1, + 2, ... satisfy (1)
define the associated matrices A, T and F as in §1, and suppose that
A is bounded. Then T is absolutely continuous whenever F is absolutely
continuous.

As remarked above, the boundedness of A implies that of all other
operators considered. It follows from the argument of [10] (cf. p. 1027,
formula line (4)) when applied to (6) that

(10) HS dEO) =0
where Z denotes any set of one-dimensional Lebesgue measure zero and

H is defined by (3). (The square root H'* appearing in [10] loc. cit. can
clearly be taken to be any self-adjoint square root of the non-negative
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self-adjoint operator H. The H appearing there corresponds to a positive
multiple of the operator H* of the present paper.) Next let ¥ be any

element in the range of S dE(\) so that
4

(11) v=| aBoe, izl < o .
Since, by (10), Hy = 0, it follows from (7) that Ky = 0. Consequently,
by (4), Ty = Fy. Rmn:QLZHHTW:SdHMmeaMinme
range of S dE(\), and it follows that T"*'y — FT". Hence

(12) Ty =Fry (n=0,1,2 ;T =F =1),
where y is defined by (11). But (12) implies E(\)y = F(\)y, where

(13) F= S MF ()

is the spectral resolution of F, and hence S dE\)y :S dF(\)y. But,
z zZ
whenever F' is absolutely continuous, g’dF(x) =0 and so, by (11),

S dEM\)x =0 for all x. That is, T is absolutely continuous and the
proof of (VI) is now complete.

4. Unitary equivalence. It was shown in [11] that each T, (see
the beginning of § 3 above) is absolutely continuous and that moreover
T, is unitarily equivalent to the corresponding F = F,. This result will
be considerably refined in the following theorem:

(VII) Let the real sequence {c,} satisfy (1) and the condition
(14) lc,| < const. a” (n=1,2 -..)

for some constant a, 0 < a < 1. Then the associated matrices T and
F are unitarily equivalent; thus, there ewxists a unitary matriz U such
that

(15) T = UFU* .

The condition (14) easily assures >'|¢,| < « and hence the bounded-
ness of A and therefore (cf. § 1 above) that of all other operators con-
sidered. If all ¢, = 0, then T and F' are both the zero operator (matrix)
and (15) is trivial. Suppose then that not all ¢, are 0. It will first be
shown that F' is absolutely continuous.

To this end, consider f(z) = 2 3.7 ¢, cosnz for the complex variable
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2=+ 1. It is clear that [cosnz| = }|e™ + e~ | < L(e™ + ™) <
e"”! and hence, by (14), |c,cos nz| < const. (ae'”)". Since 0 < a < 1, it
follows that ae' <1 for y sufficiently small and so f(z) # 0 and is
analytic in a strip containing the real axis. Consequently df(d)/d0 can
be zero at most a finite number of times on 0 < 0 < w and it follows
that the (possibly many-valued) inverse function of f(6) on [0, 7] is
absolutely continuous (more precisely, that each of the finite number of
branches of the inverse of f(d) on 0 < ¢ < w is absolutely continuous).
Moreover, if A = 2cos §, the operator F' can be represented (cf. (5)) as

F = SZ h(\M)AE,(\) where E\(\) is the resolution of the identity belong-

ing to the matrix J. Since h(\) = f(0) via the substitution N = 2cos @
it is clear that 2(\) has a (possibly many-valued) absolutely continuous
inverse and it follows (cf. [11], pp. 521-522) that F is absolutely con-
tinuous, as was to be shown. In fact, if one considers the spectral
resolution of F' as given by (13), it is seen from a comparison with (5)
that zero sets on the M-interval — 2 < A < 2 correspond to zero on the
f-interval 0 < 0 < 7 via the mapping » = 2 cos 0 and that F' is absolutely
continuous if and only if the relation

(16) {0; f(0) in Z7 is a zero set

holds whenever Z is a zero set.
By (VI) it now follows that T also is absolutely continuous. More-
over, since by (14),
DL Chy = D NChey < o,
j n

12

K is completely continuous. In order to complete the proof it will be shown
that

(17 trlK|< o,

where | K| denotes the non-negative square root of K® An application
of a theorem of Rosenblum ([12], p. 998, will then yield the desired
unitary equivalence relation (15). See also Kato [6].

There remains then to prove (17). Let {¢,}, » =1,2, ---, denote
the complete orthonormal sequence of vectors for which the n-th com-
ponent of ¢, is 1 and all others are 0. Then

tr K| = S(1IK ¢y $) < S K |$y = S
= S (S £ T Slepnl £ nleya] < o,

the last inequality by (14). Thus (17) is proved and, as remarked earlier,
the proof of (VII) is complete.
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The proof of (VII) makes clear the following assertion:

(VIII) Let the real sequence {c,} satisfy (1) and suppose that (16)
holds for every zero set Z. In addition, suppose that
(18) Sinlel < o, or even 3, (i) < oo .

Then (15) holds.

It is clear that (18) implies 3'|c,| < o and hence that A is bounded
(cf. §1 above). In addition (18) implies 3\ mc:., < o and hence the
complete continuity of K; as shown before, (18) implies (17). Moreover,
unless 7' and F' are both 0, it follows from (16) that F' (hence, by (VI),
also T') is absolutely continuous. Relation (15) now follows from Rosen-
blum’s theorem as before.

It was shown in [4], p. 878, that whenever T is self-adjoint (not
even necessarily bounded) it has no point spectrum. On the other hand,
F has a point spectrum whenever f(6) has an interval of constancy, or
more generally, whenever f(0) = const. holds on a set of positive measure.
This situation can of course easily obtain for non-trivial f(6) (f(0) % const.,
i.e., since ¢, =0, f(0) #= 0) possessing derivatives of arbitrarily high
order (but, of course, for which f(z) is not analytic). But if f(0) is of
class C?, its Fourier coefficients are O(n~""?) and so it is clear that the
hypothesis (14) of (VII) guaranteeing unitary equivalence cannot be
weakened to, say, |c¢,| < const.n™(n=1,2,..-) for any positive con-
stant m. Of course, as (VIII) implies, relation (14) is not necessary for
15).

5. Hilbert matrices. A case of special interest is afforded by the
sequence {c,} defined by ¢, =0, ¢, =n""if » >0 and ¢_, = ¢,. This
sequence is of the type considered at the beginning of this paper and
moreover T'=(|t— 7|, H=(t+j—1)") and S =A — A* = ((¢ — 7)),
with the understanding of course that the (i,1) elements of T and S
are 0. The matrices S and H are known to be bounded (Hilbert; cf.,
e.g., [2], pp. 212-213, 223). Moreover, the spectrum of H is exactly
the interval [0, #] and, in fact, is purely continuous ([6]). The matrix
T is known to be unbounded ([2]), p. 214). Concerning 7, there will
be proved the following theorem:

(IX) The matrizx T = (1t — j|™) is a self-adjoint operator and is
absolutely continuous; thus if T = SxdE(x) s the spectral resolution of

T, then S dE(\) = 0 for every set Z of one-dimensional Lebesgue measure
z

zero.
That Z is self-adjoint follows from an application of a theorem of
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Hartman and Wintner [4], p. 878, if it is noted that } f(0) = — log(2!sin 10|)
~ S rntcosnd on (— «w, ) is half-bounded. Another proof of the as-
sertion follows from (I) if it is noted that H, hence also K (cf. (7)), is
bounded, since the odd function g¢(0) defined by ¢(@) = i(x — )
~ S entsinnd on (0, w) is bounded.

It is easy to verify that

(19) ST — TS = 2H*

a relation similar to (6). Moreover, since 0 is not in the point spectrum
of H (cf., e.g. [7], p. 699 and the reference there to [1]), Theorem 13
of [11] implies, at least formally, the absolute continuity of 7. The
trouble stems from the fact that boundedness restrictions were imposed
in [10] and [11] and that, although S and H in (19) are bounded, T is
not. As a consequence, equation (19), although a valid matrix equation,
conceivably cannot be regarded as an operator equation in Hilbert space.
More precisely, it is not clear that whenever x is in the domain of T,
D,, then (19) holds, so that

(20) STx — TSx = 2Hx

with the understanding that STx and TSz of (20) should mean S(Tw)
and T(Sx) respectively. (For operator equations the associative law is
of course essentially a matter of definition.) It will be shown below
that in fact (20) does hold as an operator equation valid at least for all
2 in D,. Once this has been established, it is easy to carry out the
same reasoning as in [10], cf. pp. 1027-1028 (where the boundedness of
all operators was supposed) and to obtain the equation (10) above, cor-
responding to formula line (4) in [10]. The absolute continuity of T
then follows (cf. Theorem 13 of [11]) from the fact that 0 is not in the
point spectrum of H.

In order to complete the proof there remains to be shown that if
x is in D, then (20) holds. To this end, it will be shown that if x is
in Hilbert space, that is if ||2|| < «, then each of the series

1) }_;J En] Simbmn®, and %} ; timSmnn

is absolutely convergent for ¢ =1, 2, -.-, where, for convenience, T =
(t;;) and S =(s;;). Grant, for the moment, that this has been shown.
Then, from the absolute convergence of the first series of (21), it follows
that in the iterated series the orders of summation may be interchanged,
and hence that, for x in Hilbert space, the corresponding components of
the vectors (ST)x and S(Tx) are identical. Now, if it is assumed in
addition that « is in D,, then the vector S(Tx) is in Hilbert space, since
S is bounded. Consequently (ST)x is in Hilbert space and, since H? is
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bounded, it follows from the (matrix) equation (19) that (7'S)x is in
Hilbert space. The absolute convergence of the second series of (21)
then implies that (7'S)x = T(Sz), so that T(Sx) is in Hilbert space (that
is, essentially, that Sx is in D,). Moreover, it is now seen that (19)
implies the validity of (20) as an operator equation valid at least for all
vectors in D,.

Thus, in order to complete the proof of (IV) there now remains to
be shown that the series of (21) are absolutely convergent whenever
llz]] < co. Consider the series S; = 3., 3, |Simtwn®.|. Since t;;, > 0 for
all 4, 7 and s;; > 0 or s;; < 0 according as © > j or © < 7, it is clear that

(22) Si= = 3 (Sswtunlend ) + S (S sutulal) .

But the inside series of the first double series on the right of equation
(22) is finite and, consequently, the orders of summation may be inter-
changed to obtain — >.i .8, (Xirituel®,|). Since x and the rows of
T are in Hilbert space, the inside summation of this last series is al-
ways convergent by the Schwarz inequality. Hence the first series of
(21) is absolutely convergent if and only if the series

(23) S (35 suntun )12l

obtained through modification of S; in (22) by changing the sign of the
first series, is convergent. Now the inside summation of (23) is the
(7, n) element of ST = D = (d;,). Since S is bounded and the columns
of T are in Hilbert space, the columns of D are in Hilbert space, that
is 3,d%, <co. But the matrix equation (19) can be written as D + D* =
2H?; hence, since H* is bounded, the columns of D* and therefore the
rows of D, are also in Hilbert space. Hence > ,di, < o and so (23) is
convergent by the Schwarz inequality. It has now been proved that the
first series of (21) is absolutely convergent (for ¢ = 1,2, --.). Using the
fact that |s;;| = ¢,; it is seen that the absolute convergence of the first
series of (21), that is, the convergence of Y, 3, tutu.l2,|, Whenever
|z |l < oo, implies the absolute convergence of the second series of (21).
Thus both series are convergent for all x in Hilbert space and (IX)
follows as indicated above.
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ON NONLINEAR POSITIVE OPERATORS

H. H. SCHAEFER

Introduction. The purpose of the present paper is to apply the well
known Schauder fixed point theorem, in its general from due to Tychonov
[8], to the situation of nonlinear (or rather, not necessarily linear) maps
defined on (or on a subset of) the *‘ positive ’’ cone in a partially ordered
locally convex linear space. Throughout this paper, no use is made of
possible linear properties of the maps under consideration. As far as the
author is informed, there is little history to the study of such mappings;
the only work done seems to be contained in papers by Krein-Rutman
[2], Rothe [9] and Morgenstern [3]. In [2], the Schauder theorem is
largely applied to linear maps (where it can be avoided) and a few non-
linear cases'. In [4], the author paid attention mainly to the case of
linear compact maps in general locally convex spaces. At the end of
that paper, with a somewhat sketchy proof, a general nonlinear theorem?
is stated which however seems to need some improvement.

In this paper, the essential proposition resulting from the fixed point
theorem is stated in the form of three different theorems to throw some
light on potential ways of argument. While Th. 1, depending on a special
convexity argument, is of a different character, Th. 2 is almost a special
case of Th. 3. But as Banach spaces with normal order cones (with
which Th. 2 is concerned) seem to be the most important ones in non-
linear analysis, it might be useful to have the theorem stated separately,
a much simpler proof than that of Th. 3 going with it. Applications
have been selected so as to furnish a non-trivial example to each of the
three theorems, the one to Th. 1 showing that it is not always fruitful
to restrict attention to normed topologies. It is understood that each
example constitutes a new result in its respective field.

Preliminary material. In the present section, we are going to collect
some theorems and definitions on which argumentation will be primarily
based in the sections to follow. The main tool will be the

FIXEDp POINT THEOREM (Tychonov). Let E be a locally convex linear
space, M a convex compact subset of E. If T is o continuous map on
M into M, then T has a fixed point x,€ M.

Received September 29, 1958, and in revised form February 11, 1959.

1 Also, considerations are restricted to Banach spaces.

2 Satz 3.1. This is restated and proved in this paper as Th. 3. The additional as-
sumption to be made in [4] may be any one of hypotheses «,B stated with Th. 3 of the
present paper.
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For the proof, see [8]. To make this theorem more easily applica-
ble to mappings that carry sets not necessarily compact into compact
ones, we state the following slightly more general

FIXED POINT THEOREM (2nd form). Let M be a complete convex set
wm K. If T is continuous on M into M such that T(M) is relatively
compact, then T has a fixed point x,e M.

Proof. Let M, be the closed convex hull of T(M). As M is com-
plete, M, is compact (Bourbaki [1], p. 81) and since obviously T(M,) c M,,
Tychonov’s theorem yields the desired result.

Let E be a linear space over the real scalar field. A partial ordering
of K is a binary relation ‘“ < ’’ such that

1 x < x for all xe & .
2 e<y&y<zl=r<z.
3 e<y&y<al=owx=vy.

Such an ordering is said to be compatible with the linear structure of
FE if in addition

4 { >0&N=0} =2 >0.
5 r>Y>ax+z>Y+z for all ze & .

The set of all x € £ such that « > 0 is a convex cone C which con-
tains its vertex 0, and which is proper (i.,e. C N — C = {0}). C will be
referred to as the positive cone with respect to a given partial ordering
of E®). Conversely, each cone in E with the listed properties defines
a partial ordering satisfying axioms 1 through 5, # < ¥ meaning y — x e C.

Let E be a linear space, partially ordered by some such cone C.
If T is a mapping defined on a subset of C, we will say T 1is positive
whenever the range of Tis in C. If E is, moreover, a topological space,
T will be called strictly positive if T(x,) > 0 implies x,— 0 for any
sequence {z,} in the domain of 7.

Examples.

1. Let E be Hilbert space L, (0,1) in its natural order, i.e. the
positive cone C consisting of all elements f: f(t) = 0, t € [0, 1]. The positive
mapping, defined on all of F,

7(7) = | rie)ds

3 In this paper, all orderings are understood to be compatible with the linear structure
of the space involved. Also, we exclude the trivial case C = {0}.
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is not strictly positive. Take f, =1/ nt**, then || f,|| =1. Now as

T(f,) = tn, | T(f)ll = ﬁ 0.

2. Let E be the B-space of continuous functions on the unit in-
terval, with its natural partial order. Let K(f,7) be = 0 (but %= 0) and
continuous on the unit square. If P(z) is a polynomial with non-negative
coefficients,

7(f) = | K(t, ©)PLAE)ds
is strictly positive if and only if the constant term in P is > 0.

3. Denote by {£,} a collection of topological linear spaces, each
E, being partially ordered by some positive cone C,. Then the produect
space K = [|.E, is ordered by C = [[.C,. Let A, be a positive map
on F into E,, and consider the map

A@) = (-++, Aul), - ++)

on F into E. Then A is strictly positive on C if and only if to each
«, there is a B(«) such that Au(x) — 0 (in E},) implies x, — 0 (in E,).
In particular, if A,(x) = A.(2,), then A is strictly positive if and only
if each A, is.

I. Morgenstern’s theorem. If E is the Banach space L,, partially
ordered by the positive cone C = {f: f(t) =0}, it turns out that the
intersection of C with the unit sphere S = {f:{lf|l =1} is convex.
This is true for any abstract L-space or, more generally, for any normed
space in which the norm is additive on C. To this situation Morgenstern
[3] applied Schauder’s fixed point theorem. He obtained the following

THEOREM (Morgenstern):. Let E be a Banach space, partially order-
ed by a positive cone C which 1s closed and on which the norm is addi-
tive. Then if T is continuous and strictly positive on C N {||z|l = ¢},

¢ >0, mapping this set imto a compact one, there is some \ >0 and
z e C such that xx = T(x), ||z]] = c.

The proof is readily obtained by applying the fixed point theorem
(2nd form) to the map ¢T'(x)/||T(x)|| on the set C N {|lz|l =¢c}. How-
ever, it may be so arranged as to yield a much more general proposition.

¢+ The theorem is stated in our terminology and a slightly more general form.
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THEOREM 1. Let E be a locally convex space, partially ordered by
a complete cone C, and let T be a continuous, strictly positive transfor-
mation on C, mapping bounded sets into compact ones. Assume H: f(x)=1
is a closed hyperplane meeting C in a monvoid, bounded set. Then to
each ¢ > 0, there is an x€ C and N > 0 with

e = T(x), fle)y=-c.

Proof. 1t follows from our assumptions that the continuous linear
form f(x) is >0 at every non-zero point of C. For assume there is
an x,€ C, x, = 0, with f(x,) = 0. Then if y,e H N C, we would have
f(W + px) =1 for all ¢ = 0 which contradicts the hypothesis that H N C
be bounded. It is now also clear that f cannot be < 0 on C. Apply-
ing the fixed point theorem (2nd form) to the map ¢T'(z)/f[T(x)] on the
set H N C, we get the desired result letting x = f[T(x)]. ¢~

REMARK. We should point out the relation between Morgenstern’s
theorem and Th. 1. If, under the assumptions of the former, the norm
coincides on C with a continuous linear form, then Morgenstern’s theorem
is a corollary of Th. 1. (This is the case in L, e.g.). Assume then,
still under the assumptions of Morgenstern’s theorem, that there is no
such linear form. Now C N {|lz|| = ¢} is convex (¢ > 0), so there is a
closed hyperplane H separating this set from a convex open neighborhood
of 0. Obviously H N C is bounded and Th. 1 can be applied provided T
is ecompact, continuous and strictly positive on C.

II. Banach spaces with normal positive cones. We will now extend
Morgenstern’s theorem to ordered Banach spaces in which the norm is
not necessarily additive on the positive cone C. This assumption will be
replaced by the weaker hypothesis that C is normal. A convex cone of
vertex 0 in a normed space E is normal [5] if the topology of E is
generated by a norm which is monotone (with respect to the order in-
duced in E by C) on C. In terms of the given norm on E, z — ||z||,
this amounts to saying there is a constant v > 0 such that

He +yll =z vyl for all xe C,yeC .

It ecan easily be checked that for all classical Banach spaces, the positive
cones pertaining to their natural partial orders are normal ([5], p. 130).

THEOREM 2. Let E be a normed space, partially ordered by a com-
plete normal cone C. Let T be a strictly positive transformation, which
18 continuous and maps bounded subsets of C into compact ones. Then
to each ¢ >0, there is xe C and N > 0 with

=T, llzll=c.
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Proof. Consider the mapping
& — S, (x) = T(x) + |c — llzll |y

for fixed 0 = ye C and ¢ > 0. This is a continuous map carrying bound-
ed subsets of C into compact ones. T being strictly positive, we have

inf {HT(x)I[: reC&llzll = %«c} =¢ > 0. Hence, C being a normal cone,

we obtain
in || S,(@)ll = 7 - inf sup (| T@1, [e = llell | 111) = vsup(e, Lellyll)> 0.

Thus z — R.(x) = ¢S (x)||S.(x)||* mapsC N {||z]]| < ¢} into a compact
subset. So by the fixed point theorem (2nd form) there is an « in this
subset with x = R.(x). Clearly |lz|| = ¢, and letting ) = ¢7!||S.(x)]] we
have xx = T(x). Since ¢ > 0 is arbitrary, the proof is complete.

III. A third theorem. The theorem presented in this section weakens
the assumption in Th. 2 that E be normed and removes the hypothesis
that C be a normal cone. Instead, we require either one of conditions
a, B of hypothesis H (s. below) to hold. As the conclusion is only
established for some continuous semi-norm % — p(x) on E (which, how-
ever, may be assumed to generate the topology of E if E is normed),
Th. 3 is not a generalization of Th. 1 or 2. We start out with a

LEMmMA. If E is a locally convex space, C a closed proper convex
cone i K of vertex 0, then there exists a continuous linear form on K,
non-negative on C and >0 at a given non-zero element of C.

Proof. Let 0+ yeC. Since Cis proper and closed, there is a con-
vex open neighborhood U of — y such that C and U,.,A U do not in-
tersect. Hence there is a closed hyperplane H separating C and U ...\ U.
Obviously H contains 0, so has an equation f(x) = 0. After a potential
change of sign, f will meet the requirement.

Now let £ be any locally convex space, partially ordered by a com-
plete positive cone. A mapping T, defined on a neighborhood of 0 in
C into C, will be called of type ‘“ P’ if it satisfies:

1. T is continuous and strictly positive.

2. There is a neighborhood U of 0 such that the image under T of
U N C is relatively compact.

Consider

HypoTHESIS H. We will say that hypothesis H is satisfied if one of
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the two following statements is true:

«. To each compact subset of C, there exists a continuous semi-
norm which is > 0 at each non-zero point of that set.

B. T is positive-homogeneous of some degree g > 0, i.e. T(\x) =
N T(x) for £e C and N > 0.

For instance, condition a is automatically fulfilled if there exists
a continuous norm on E (or even on C)°. Condition /3 is of course satisfied
if T is a linear map.

THEOREM 3. Assume hypothesis H holds and T 1is a wmapping of
type “P’’. Then there exists a continuous semi-norm p such that for
each 0 < ¢ <1, there are an xe C and N > 0 satisfying

e = T(x), plx)=ec.

Proof. Let U = {x:q(x) <1} be a closed neighborhood of 0 such
that T(U N C) is relatively compact. Second, let ¢, be selected, accord-
ing to which one of conditions «a, 8 in H is satisfied, as follows:

Case . Let ¢, be a continuous semi-norm strictly positive on
T(U n C).

Case B. Let q,= q,.
Third, by the lemma, we may choose an ye C and a continuous linear
form f such that £ =0 on C while f(y) > 0. We may further suppose
that sup {q.(%), ¢.(v), f(¥)} = L.

Put p =sup{q, ., | f|} and consider the set U, = {xe C: p(x) < ¢},
¢ being any fixed real number between 0 and 1 (1 included). For any
positive integer n, form the mappings

Tux) =T(x) 4+ |1 — p(Tx)| - n'y

and S,(x) = ¢T,(x)/p[To(x)]. Obviously, S, is a transformation of type
“ P, mapping U, into itself, provided the denominator p[7T,(x)] has
a positive lower bound. To show that this is true, consider first all

x e U, such that p(T(x)) = —i— Then

p(T) = fLT(@)] = fﬁﬂy) 2 0.

For the remaining elements x e U, we have p(T(x)) > T’i-, hence

P(To(@) = p(T(@)) — |1 — p(T(@))|n"p(y) > % - % = % .

5 Condition a can be weakened so as to require the existence and continuity of the
semi-norms involved only on C.
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Applying the fixed point theorem (2nd form) to S,, we are sure there
is an x,e U, satisfying «, = S,(x,), p(x,) = ¢. Letting N, = p(T(,)) ¢,
by definition of S, we obtain

(*) Mty = T(,) + |1 — p(T(w,) Iny .

{T(x,)} being relatively compact, it follows that {)\,} is a bounded sequence.
Assume, for the moment, that {\,} has a positive lower bound. Then
as the right-hand side of our last equation is relatively compact, so is
{=,}. (Here we may remark that for a convergent subsequence of
{#x,}, the corresponding subsequence of \’s converges automatically to
some A > 0.) Hence for each limiting point of a subsequence of {\,z,},
such that N, — A, \x = T(2) and, by continuity, p(x) = c.

All that remains to prove is that A, > 7 > 0 for all n. Suppose there
were a subsequence {\,} tending to zero. From this it would follow
that p(T(x,)) - 0 which, by definition of p, in turn would imply
q¢«(T(x,)) — 0. On the other hand, T being strictly positive, 0 is no limit-
ing point to the sequence T(x,) because of p(x,) = c¢. Thus if a of His
satisfled, we arrive at a contradiction. Now assume H holds by virtue
of condition 5. Letting z, = \,%,, {2,} has a limiting point z, say. Be-
cause T is strictly positive, we must have z # 0. Multiplying equation
*) by N\, we get

Nz = T(z,) + 0(%)?/ .

Now if there were any subsequence {\,} of {\,} such that \, — 0, we
would obtain (as Af— 0) T(z) = 0 for some ze C, z + 0. This again con-
tradicts the hypothesis that 7 be strictly positive, and the proof is
complete.

REMARK. Hypothesis H was needed to prove that {\,} does not
have 0 as a limiting point. The proof of Satz 3.1 in [4] is essentially
the same as the one presented here, but is incorrect at the point where
it says “X > 07" (lLec., p. 329, line 3 £f.b.).

Applications. The remainder of this paper is concerned with a num-
ber of applications to the preceding theorems.

1. Consider the linear space w of all real sequences & = (&, &y, =+ +),
partially ordered by the positive cone C = {z:2,=0,i=1,2,+--}. In
the product topology (i.e. considering @ the product of countably many
real lines) @ 1is locally convex. Let » >0 be a fixed integer and let
k = (k, k,, ---) denote any sequence of non-negative integers such that
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Sk, =»" Since the set {k} of all such % is countable, we may
arrange it into a sequence; hence consider {k} as ordered by the natural
order of subsecripts.

Further, denote by x* the product I, 2" Now if to each k and
each positive integer ¢ there corresponds a real number a,, = 0 such
that

Eailc < C ’
)
where C is independent of ¢, the equations

Yo = Dlayx"

(%)

define a mapping y = A(x) on the subspace of all bounded sequences
into itself such that each y, is a homogeneous form of degree r in the
variables x,, ,, -+« (If » =1, then A defines a bounded linear map on
the B-space (m)).

Consider the properties

a. There are n rows in A (the first » rows, say) such that
}%sz =y for all k and all j > n .

B. En] ¥, — 0 implies S, — 0
i=1 i=1
We prove the following theorem:

If a mapping A of the above mentioned type satisfies a and 3, there
are ¢ x>0 and an & >0 for which

A= Ax) .

REMARK., If » =1, then the point spectrum of the bounded map
A on (m) contains a positive real number.

Proof. Consider in « the cone C,=C N {x: 7.2, = x;, 5 > n}.
Owing to a, A(x) is defined on the cone C, into itself. Since w is com-
plete and C| closed, C, is a complete cone in w. Next we show that
A, which is in general not defined but on a dense subset of w, is con-
tinuous on C,. Let z,— 2 in C,. It follows from the definition of C,
that all coordinates of all the z, are uniformly bounded, say by some

6 A more general theorem results if we admit all & such that > k; << 7.
=1

7 Cf. Example 3 in the preliminary section.
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constant M = 1. Given ¢ > 0 and any fixed subscript i, we can find
a k, such that

Then if y, = A(x,) and y = A(z), we obtain

[, — )il = D lagay — a2 + 3 ager + ) a2t .
lc§lcu IG>I£O 16>Icn

The last two righthand terms are, by the choice of k, each less than
1

Ee-:. The first righthand term will be less than %s for n > n, if n, is
large enough, since there are only finitely many coordinates of both x,
and « involved. Thus we have |(y, — ¥);| < ¢ if n > n, and continuity
is established.

Now f(x) = ixi is a continuous linear form on w. The intersection
of the hyperplamle1 f(®) =1 with C, is certainly bounded as (0 =) x; =
1,7 =1,2, .-+, in that intersection. Moreover, a set {x} is bounded in
o if and only if |x;| < M, uniformly on {z}. If M, can be chosen in-
dependently of ¢, then the set is relatively compact by the well known
Tychonov theorem. Thus on C, closed bounded sets coincide with com-
pact sets, and A transforms bounded sets into compact ones on C,.

By hypothesis 3, A is strictly positive on C,. (Conditions more ex-
plicit than S may be obtained easily by applying the reasoning of Ex-
ample 3, preliminary section.) Hence A meets all the requirements of
Th. 1 and the proof is complete.

2. In a recent paper [7], Schmeidler proved the existence of an
eigenvalue to the homogeneous algebraic integral equation of order =

(*) 1ry(s) — ; 1Py(s)as(s, ¥) = 0, 0=s<1)
where n is an odd integer > 0 and
aB(S’ y) = SO M SOKB(Sy tl; ccty tv)yl“.l(h) e yq".](tv)dtl e dtv

are homogeneous integral forms with continuous kernels Kg(s,t, -+ t.)
such that (84 1)(v +1) =n + 1 and the K’s are symmetric with re-
spect to all their arguments. Schmeidler shows (*) to be the natural
generalization of a linear Fredholm equation with continuous symmetric
kernel. In an earlier paper [6], a theorem was stated by Schmeidler
that generalizes the well known Jentzsch theorem on linear Fredholm
integral equations with positive kernel. The proof of that theorem of
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Schmeidler’s, however, appears to be incorrect’. We are going to show
that the theorem yet is correct and holds under weaker conditions than
the ones stated in [6]. Let us call (*) an algebraic integral equation
with non-negative coefficients if n is any positive integer and

1 1
ag(s, y) = >, S A S Kpo, ---t(s,ty, 0, E)Y(E) e« Y(t,)™dt, - - - dt,
@ e tay=n—F J0 0
are homogeneous integral forms of order n — 8 with continuous kernels
Kpo,..o (8 Ly »++,8) = 0. We will prove this theorem:
If some «ag contains a term S K(sy tyy » =, 6)y(8) - - y(E,)"dt, - - - dt,

such that « is the highest power occurring in any og, and if
S:K(s, fy oeey t)ds =8> 0 For (b, +++, t,) € [0, 1];
then (*) has an eigenvalue p, > 0 with eigenfunction ys) = 0.
Proof. We first state a

LEMMA. Consider the mapping @: (G, « =, @,-,) —> 2, where 2, is the
greatest real root of

n—1
3 N B —
(1) 2 ﬁéoaﬂz =0.

Then ¢ is defined and continuous on the set {as =2 0;0 < B8 <n — 1}CE".

It is clear that z, = 0 if and only if ¢y =, = --- =a,., =0, and ¢
is continuous at that point. At any other point, however, z, is a simple
root which implies continuity of .

Recalling that « is the highest power of ¥ in any az; we observe
that ag(s, ¥) (0 < B8 < n — 1) exist for all y(s)e L,(0,1). Moreover, each
ag(s, ¥) is a continuous map on [0, 1] x L, into the space C(0,1) of con-
tinuous functions on [0,1]. For

(2) l@p(S, y) - a’B(tr ’g)l = la’B(Sr ?/) - aB(S, y)l + laﬁ(s, '_77) - aﬁ(t» ’y)l

where the first ri;ghthand term can be estimated by expressions of the
form

I= S Kly(t) — gy + « - - glE)" s yt)™ - - - y(b)mdt, - - - di, .

Using Holder’s inequality we arrive at an estimate

I < const- |ly — gllP(llyll, I7ll)

where P(u,v) is a homogeneous polynomial of order » — 8 — 1 in u, v

8 The treacherous point is that the mapping % — y, [6] p. 262 above, is not continuous.
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and || || denotes the norm in L,. Thus, ass, ¥) — au(s, ¥) — 0 uniformly

in sas ¥y —y in L,. The second righthand term in (2) can be estimated
by terms

1= (1K, b o 6) = K(t oo 600 o )t - s
so if |s — t] < 8(¢), the K’s being continuous, we obtain

I < e S J(t)nd, - - S@(u)%dt., < el|gln-?

1 1 ®
remembering that o, + -+ +a,=n — £ and | ydt < ( y“dt) if y=<a.
0

This proves continuity of az on [0, 1] x ng.o But from the above rea-
soning it is obvious that {as(s, )} is an equicontinuous, bounded set of
functions if % runs through any bounded set of L,. Hence, by the
lemma, we have established:

The mapping y(s) — z,8), 2, being defined as the greatest real root
of (1) for each se[0,1], maps any bounded subset of the positive cone
i L, onto a set of equicontinuous, non-negative and uniformly bounded
functions over [0, 1].

Thus the map y — 2z, satisfies the assumptions of Th. 2 if we can
show that it is strictly positive. For that end, let ||2,|]—0. If K is
the kernel mentioned in our present theorem, we get by (1)

1
0

zo(s)n = zO(S)B S tte SlK(Ss ty oe-, tv)y(tl)w tcc y(tv)mdtl e dtv

where va + 8 = mn. Since z, is the greatest real root of (1), there
follows

(s = S SIK(S, tyy oo e, YY) - e Y(t)dE, - - dt,
0 0

Integrating this last equation, we obtain

(3) [ atsyeds = ¢ | worar [ = slyi=.

Now assume first that % is bounded in L, as z,— 0. Then 2z, runs
through a uniformly bounded set of continuous funections and hence, as

it converges to 0 in measure, 1zo(s)“"”ds — 0. By (3) this implies ||y || — 0.

This excludes that |[yll— o as z,— 0, for division of z and y by ||y||
(remember that (*) is homogeneous) would lead to ||| = 1 while z,— 0.

9 In general, ag are not continuous for the weak topology on L.
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Thus y — 2, is strictly positive and the application of Th. 2 ends the
proof.

3. Let Q be a compact region in Euclidean n-space, C(£) the B-
space of continuous functions on 2, and D(2) the space of continuously
differentiable functions on 2 in the topology of uniform convergence of
the function and its first order derivatives. Assume a kernel K(s,t) = 0
is given on 2 x 2 and a real function f(s;u, p,) of 2n + 1 arguments
(letting s = (%,, -+, ,)) such that these conditions are satified:

1°. K(y) :S K(s, t)yr(t)dt is a compact linear transformation on
C(2) into D(Q) vs?hich has an eigenvalue )\, > 0 with an adjoint eigen-
function ¢(s) that is = 0 and bounded except on an 2-subset of (Lebesgue)
measure 0.

2°. f is a continuous real valued function, defined for s€ 2, u =0,
|pil < @ (i =1,--+,7n) and such that

wif 0 <u<s,
Feiu,p) 2 75 S =

where «, 8, K are three suitably chosen positive constants. Then the
following theorem holds: '
Under conditions 1°., 2°. the nonlinear integro-differential equation

u(s) :S K(s, t)f(t u(t), (t)>dt

has for each ¢ > 0 at least one solution u =0 with N = Mu) >0 and
lull = ¢, where || || denotes a suitably chosen norm of D(£2). Moreover,
Mu) satisfies the inequality N = \, - inf (a, Ke™).

Proof. D(Q) is partially ordered by the positive cone C = {u:u =
0 on 2} but we note that C is not a normal cone (cf. sec. 1I). For any
¢ > 0, the transformation®

T.(u) = SQK(S, t)[ f<t ", W> + e]dt

i

is, due to the continuity of f and condition 1°., compact and continuous
on C into C. For all we C we have

Ssz T.(u)ds = SS K(s, t)edtds = ¢ SS K(s, t)p(s)dtds = e\, S p(s)ds > 0

10 The following proof shows how cases may be handled where strict positiveness of
the map involved cannot be verified. (7% is not necessarily strictly positive by Example 2
of the preliminary section if ¢ =0.)
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if sup ess ¢(s) = 1. Hence T, is strictly positive and we may apply
Th. 8, hypothesis H being satisfied through condition a. TFollowing the
notation of the proof to Th. 3, choose for ¢, any norm generating the
topology of D(2), let ¢, = max |u| and write p = || ||. (Obviously p is
a norm generating the topology of D(L); it is also evident that, in the
present case, the statement of Th. 3 holds for all ¢ > 0 instead of
0<c¢c=<1) Thus, ¢ being fixed, to each ¢ > 0 there is a u. = 0 and
Xe > 0 such that

(1) Nethe = Ta(ute) , ||uell = c .

We are going to show that ). has a positive lower bound for ¢ > 0.
Multiplying (1) by @ and integrating, we obtain

(2) nggugq)dt - SS K(s, O)p(s) fua(t)) + eldsdt
- xlg PO F b)) + eldt >, g P(6) £ us()1dt .

Now £ is the union of two measurable subsets 2, and £, such that
% =< 8 in 2, whereas u. > 8 in 2,. On account of condition 2°. we have

|, orwddt = a| oudt

1

and

S @ flu]dt = KS pdt = —K—S Pudt ,
Q, Q, cy Je

2

where v < 1 is a constant such that max|u| < v|jul] for all ue D(2)".
Hence for the last integral in (2),

pu.dt = inf <a1—[£)g pu.dt
) Q

O (4

S pf[u:ldt = ag pu.dt + K g
° & cY
and we finally obtain

(3) xaginf@,—@)-xl for e > 0.
(94

Now let ¢ >0 in (1). As ||u.l| = ¢ independently of &, the righthand
side of (1) is a relatively compact sequence and so is the corresponding
sequence of u. by (3). Thus for a common convergent sequence of X,
and u., the limit function w satisfies Mu = T,(u) and the proof is complete.

1 p=sup{qy, qs | f |} (Th. 3) implies y =< 1. If f does not depend on any p;, the proof
may be carried via Th. 2 and we will have y =1, ||u|| = max |#|.
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REMARK. If f(s;u,p;) is such that & may be chosen arbitrarily
large (e.g., if f=au + g(s;u, p;) with g = 0), then we will have 2,
void and A will satisfy the inequality

Mu) = ax, .

We apply the preceding theorem to the following problem.

Let 2 be a compact region in 3-space such that Green’s function
for the first boundary problem of potential theory exists. It is then
well known that this kernel G(s, t) satisfies condition 1°. of our theorem.
It f(s; u, p;) is Holder continuous with respect to all variables, then the
equation

Nu(s) = SQG(S, ) f<t; ", %)dt

1s equivalent to the boundary problem

*) du + /\“1f<8; u, 2%
0x

>:0,u:() on 0% .

i

Hence, if f satisfies condition 2°., we have:

The nonlinear boundary problem (*) has, for suitable values n > 0,
solutions u = 0 such that max u attains any positive real number. If,
moreover, f = u + g(s; u, p;) (9 = 0), then for each such X

Mu) =\,

where ), is the largest eigenvalue of the corresponding linear problem.
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SOME CONNECTIONS BETWEEN CONTINUED
FRACTIONS AND CONVEX SETS

ROBERT SEALL AND MARION WETZEL

The purpose of this paper is to develop certain connections between
the continued fraection solutions and the convex set solutions to some of
the moment problems. In particular, we shall develop some relations
between the work of Wall [3], [4] on continued fractions and the work
of Karlin and Shapley [1] on convex sets. The paper is divided into
two parts:

I. Stieltjes-type continued fractions and convex sets.

II. Jacobi-type continued fractions and convex sets.

Two characterizations of the moment problem for the interval (0, 1),
one by Riesz [2] in terms of convex closures and one in term of Hankel
forms, are well known. The work of Karlin and Shapley [1] shows the
equivalence of these two characterizations. A third characterization in
terms of a Stieltjes-type continued fraction has been given by Wall [3],
[4]. In part T we give an interpretation of the parameters in this con-
tinued fraction in terms of ‘‘distances” in certain convex bodies. This
interpretation, through the work of Karlin and Shapley, immediately
shows the equivalence of all three characterizations.

Solutions of the moment problem for the interval (—1, 1), in terms
of the Riesz condition and Hankel forms, are also well known. In part
II we give a third solution in terms of a Jacobi-type continued fraction.
Again, through an interpretation of the parameters in this continued
fraction in terms of ‘‘distances’ in certain convex bodies and an exten-
sion of the work of Karlin and Shapley, the equivalence of the three
characterizations is immediate.

I. STIELTJES-TYPE CONTINUED FRACTIONS
AND CONVEX SETS

1. The monotone Hausdorff moment problem. A sequence of real
numbers {¢,}(n = 0,1,2, ---) is called a monotone Hausdorff moment
sequence if there exists a monotone nondecreasing real function ¢(u),
0<% =<1, such that

C, = Slu"dqb(u), n=20,1,2 --- .

Received December 8, 1958. The authors wish to acknowledge several helpful sug-
gestions from Professor Walter T. Scott of Northwestern University.
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The problem of determining such a function ¢(u) is known as the mono-
tone Hausdorff moment problem. We shall assume throughout part I
unless otherwise designated that ¢, = 1.

Wall [3], [4] has shown that a sequence {c¢,! is a monotone Hausdorff
moment sequence if and only if the power series

P(z) = > c2"
n=0
has a continued fraction expansion of the form

(1.1) ‘1 (1 — g))9:2 1- 91)922_

1 — 1 — 1 _

where 0 < g, <1, p=0,1,2,---. We shall agree that the continued
fraction terminates with the first identically vanishing partial quotient.
The sequence {(1 — g,-)g,(p =1,2,38, ---) is called a chain sequence and
the numbers g, are called the parameters of the chain sequence. In
general the parameters are not uniquely determined and we designate
the minimal set of parameters by m,. In this case m, =0 and (1.1)
takes the form

(1.2) 1 me Q—mymz (1—m)me
1 -1 — 1 — 1 -

Riesz [2], [1], [3] proved that a sequence {¢,} is a monotone Hausdorft
moment sequence if and only if the point (¢, ¢,, ---,¢,), n=1,2,3, «--,
is in the convex closure of the arc whose parametric equations are

x, =t
(1.3) ¢, = b,

x, =1 0<t<1.

The geometry of these convex bodies is developed rather fully in the
work of Karlin and Shapley [1].

2. The connecting theorem. Before stating the theorem which
connects continued fractions with convex bodies it is necessary to indicate
some special notations for the Hankel determinants. We set

le, ---c,

(21) €, Cy 00 Cpny
4271: e 3 %:071,2)"'

CpCpsy *** Cop
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c C, tes Cpat

Cy (LI

(22) 42n+1 = e , n = O’ 1, 2, ces,
Cpt1 Cpag "t Coner (4‘1 = 1) ’
¢, — € € — G ceiC, — Cpay
C,— ¢ € — ¢y et Cpay — Cpes

(2.3) Ay = . o m=1,23, .-,
Cn — Cns1 Cnar — Creg **° Con—1 — Con (LTO — 1)’ and
1_C‘ 6 — G e Cp — Cpeg

€ — Gy Co— C3 =+ Cpy1 — Cpuy
(2‘4) A2n+1: M s n = 07 1’ 27 ctt

Ch — Cn+1 Cus1 = Cpaz *** Con — Copa (A—1 = 1) .

It is well known that a sequence {c,} is a monotone Hausdorff
moment sequence if and only if the Hankel forms

& LN
2 Cia s, %5, Civjr®i®y ,
i,§=0 i,j=0
-1 n
.JZD(ci+j+l — Ciry+2) 025, .Zj‘to(ciﬂ(-j — Ci4511)%;
i, )= i, 4=

are all positive semidefinite. In (2.1) replace c¢,, by ¢, and in (2.2)
replace Cyi1 DY Consi. Setting 4,, and 4,,., equal to zero, we have the
single relation

(25) Cp = Cp — ——, %:1,2,3,"',

provided 4,.,# 0. Similarly, (2.3) and (2.4) yield

(2.6) En:Cn+ ’ n:1y2737"'!

provided 4,_,# 0. If the sequence {c,} is a monotone Hausdorff mo-
ment sequence, then the quantities ¢, and ¢, have been interpreted as
the ““downward’’ and ‘‘upward’’ projections, respectively, of ¢, on the
boundary of the corresponding convex body [1].

We can now state the following theorem:

THEOREM 2.1. If the sequence {c,: is a monotone Hausdorff moment
sequence, then the elements and the minimal parameters in the continued
fraction (1.2) can be written in the forms
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(27) Ay = (1 - mn—l)mn = Cn——g—n—‘! n = 1; 2’ 3; ey (QD = 0) ’
Cn-1 — Cn—q
and
(2.8) my=Sn"% gy =Tl 123 ...,
C, — C, Cp — Cn

From the proof it will be clear that a more general theorem is true.
If {¢,}, (¢, = 1), is an arbitrary sequence of real numbers and its cor-
responding Stieltjes-type continued fraction is written in the form (1.2),
where no longer it is necessary that 0 <m, <1, »=1,2,3, ---, the
relations (2.7) and (2.8) are still valid.

If {c,} is a monotone Hausdorff moment sequence, then the m, can
be interpreted as the ratio of the ‘‘distance’ of ¢, to the lower boun-
dary to the ‘‘distance’’ between the upper and lower boundaries of the
corresponding convex body. Similar interpretations can be given to the
a, and (1 — m,). By Theorem 2.1 the equivalence of the condition in
terms of Hankel forms and Wall’s characterization in terms of the con-
tinued fraction (1.2), for the existence of a monotone Hausdorff moment
sequence, is apparent.

Proof. The proof depends upon the following lemma:

LEMMA 2.1. The determinants in (2.1), (2.2), (2.3), and (2.4) satisfy
the relation

(29) é’kzk — 2k+14k—1 - 4k+12k—1, k= 1, 2, 3; cec .

We shall indicate two proofs to this lemma.

Proof (1). By a substitution and an equivalence transformation, we
write the continued fraction (1.2) in the form

(2.10) il & e e
z—1 -2z — 1 —

where a, =1 —m,_)m,, k=1,2,3,.--, (m, =0). The recurrence
formulas for the denominators of the continued fraction (2.10) are given by

(2.11) B.(2) = By-i(?) — @y 1By —o(2), k=1,2,8,---,
(B(z) = 1),
and
(2.12) By 1i(2) = 2By(2) — 0y By 1(2), k=0,1,2,.--,
(a, =1, B_..(z) =0, By(z) = 1).

Furthermore, we have
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(2.13) Bu(z) = Zul®) k=123, -,
22k -2

and

(2.14) Byon(?2) = %@l k=012 ---,
k-1

where A,,_, and 4,,_, are obtained from (2.1) and (2.2), respectively,
and we define

1l ¢ -«--c¢, 1

€, C; e Cp %

(2.15) do@) =6y €5 +oe Cuy 2, k=1,2,3,---,
Cp Crs1** Cypy B

and
¢, € ---c; 1
Cy €3 +ve Cpyy 7

(2.16) Ayr®) =5 € v v Cpaa 2] k=123, .- ’

Cr+1 Ciag *** Coyp 2°

By a sequence of elementary operations on 4,,(2) and 4,..(z) it is seen
that 41@(1) = Ak—lv k= 17 2; 3! cct.
Substituting this result in (2.13) and (2.14) we have

(2.17) By(1) = de=1 kb=1,2,8,---.

ZEk-2

We also note that

(2.18) ak:_é’uék__, k=1,2,3 -, (4o, =1).
4/0—2 416‘1

Substituting the results of (2.17) and (2.18) in (2.11) and (2.12), the re-

lation (2.9) follows immediately.

Proof (2). By Laplace’s Development and a sequence of elementary
operations, Lemma 2.1 can be established directly. We shall omit the
details.

The proof of Theorem 2.1 now follows. Using (2.5) and (2.18), the
relation (2.7) is immediate.

The relation (2.8) is established by induction. Assume that
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0==m, <1, n=12,3,-.--. Using (2.5), (2.6), and Lemma 2.1 it is
clear that

— _ G C, 6 — €
m, = a; = = = ’
G — & ¢, — €

¢, — C,
where ¢, = 1 and we define ¢, to be zero, and m, = ?2——%
2 La

Now assume that m, = %~ % Again using (2.5), (2.6), and Lemma 2.1

Cp — G

in the relation m,.,, = -1—%;71%—, the definition for the minimal parameters
- k

in a chain sequence [3], the induction is completed. If m, = 1 then m,,,
is defined to be zero. In this case the corresponding moments fall on
the upper and lower boundaries of their respective convex bodies.

3. Some results from the theory of chain sequences. Regarding
the uniqueness of the parameters g, in the continued fraction (1.1) and
the location of the moments in the convex bodies we have the following
theorem:

THEOREM 3.1. Given a monotone Hausdorf] moment sequence, {c,},
let

(3.1) lim% — % — 4.
If ¢ > 1 the parameters ¢, in (1.1) are uniquely determined, and if

q < 1 the parameters are not uniquely determined. In case ¢ =1 the
parameters may or may not be unique.

Proof. Wall [3] proved that the parameters in a chain sequence are
uniquely determined if and only if the series

oo MMy =« My,
L+ A = m)A — my) -+~ (1 — my)

diverges. Making use of this result and Theorem 2.1 our proof is im-
mediate.

We designate the maximal parameters of the chain sequence in the
continued fraction (1.1) by M,. The maximal parameters can be inter-
preted in terms of ‘‘distances’” in the convex bodies by the following
theorem:

THEOREM 3.2. The maximal parameters M, in the conlinued frac-
tion (1.1) can be written in the form
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¢, — € C, — ¢
(3'2) Mn = _n - + ,n n(]-//Tn)7 n = 1; 27 37 Tty
Cp — Cp Cn — Cp
where
€ —c¢ — Cpas . — C,
(3.3) Tn — 1 + 2-‘ C—n+1 Zn+1 €n+2 znt2 .. f) g: s
r=n+l Cpyp ™~ Cpiy Cpag = Cyag ¢, — Gy

in the case that the a,,, r=1,2,3,---, of (2.9) are positive. If
Aty Dpags **°y Oyyp are positive, a,.;., = 0, (k> 0), and m,., < 1, then
the summation in (3.3) runs only to » + k.

Proof. Wall [3] introduced an expression of the form (8.3) in dis-
cussing maximal parameters. Using his results and Theorem 2.1 our
proof is immediate.

II. JACOBI-TYPE CONTINUED FRACTIONS
AND CONVEX SETS

4, The “‘extended’”’ monotone Hausdorff moment problem. A ge-
quence of real number {¢,})(n = 0,1,2, ---) shall be referred to as an
“‘extended’”’ monotone Hausdorff moment sequence if there exists a
monotone nondecreasing real function ¢(u), —1 < u < 1, such that

Cn = Sl undd)(u)) n = 0; 1: 2; ttt

The problem of determining such a function ¢(u) shall be referred to
as the ‘‘extended’’ monotone Hausdorff moment problem. Again we
shall assume throughout part II unless otherwise designated that ¢, = 1.

The work of Riesz [2] can be applied to the ‘“‘extended’” monotone
Hausdorff moment problem. A sequence {¢,} is an “‘extended’’ monotone
Hausdorff moment sequence if and only if the point (¢, ¢y, = <<, ¢,), # =
1,2,3, ..., is in the convex closure of the arc whose parametric equa-
tions are given by (1.3) where —1 < ¢ < 1.

Let

(4.1) 1 @2 a2 ..
bz+1 —bz+1-—0bz+1—

be the Jacobi-type continued fraction expansion of the power series
PR) = S ¢z
n=0

We shall agree that the continued fraction terminates with the first
identically vanishing partial quotient. We shall show that if the sequence
{e,} 1is an ‘‘extended’ monotone Hausdorff moment sequence, then the
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a, and b, of (4.1) have the form of a generalized chain sequence and
the parameters can again be represented in terms of ‘‘distances’ in
certain convex bodies.

5. The connecting theorem. As in §2, it is necessary to indicate
some special notations for the Hankel determinants corresponding to an
“‘extended’”’ monotone Hausdorff moment sequence. We set

1 ¢, e Cp
€ Gyt Cpuy
(51) 427;: M ’ n:0,1,2,---,
Cn Cp+1®°* Cop
1+ ¢ ¢ + ¢ cec Cp t Cpin
€+ Cy C: + ¢ ce Cpir T Cpas
(62 Lo = S =012
2 (45=1),
Cp T+ Cnsr Cnsr + Cpaa oo Cup T Copa
1—¢ € — Gy cet Cpr — Cpu
€, — G Cy, — €4 st Cp  Cpaa
(5.3) 4y, = e o =123 -,
. m = -
" (4, = 1), and
Cp-1—Cpt1Cp — Cpay *** Cop—y — Oy
1—oa 1 — Gy c0rCp — Cpia
€, — C 6 — G tor Cpvr  Cpag
GA) D= Com=0,12
. o1 T =
4,=1).
Cn — Cnt1 Cns1 — Cpay *°° Cap — Copn

The sequence {c¢,} is an ‘‘extended’’ monotone Hausdorff moment
sequence if and only if the Hankel forms

s

=

n
Ci+ 300 5y ; (Cias + Ci+j+1)90i95j ’

ij=0

o~

3
[

n
(Civg = Ciaysn)®illy g:o (Cinj = Cinyr1)T;%5
57

i,7=0

-
n

are all positive semidefinite. As in part I replace ¢,, by ¢, in (5.1) and
Cams1 DY Copsr In (5.2). Setting 4,, and 4,,., equal to zero, we have the
single relation

(5.5) e, = ¢, — Zn_, n=1,23, .

Similarly, (5.3) and (5.4) yield
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(5.6) Gy =, + o n=1,2,3 - .
An—z

The methods of Karlin and Shapley [1] can be applied so that if the
sequence {c,} is an ‘‘extended’’ monotone Hausdorff moment sequence
then the quantities ¢, and ¢, of (5.5) and (5.6) are again interpreted as
the ‘“‘downward’”’ and ‘‘upward’’ projections, respectively, of ¢, on the
boundary of the corresponding convex body.

We can now state the following theorem:

THEOREM b5.1. If the sequence {c,} is an ‘‘extended’’ monotone
Hausdorf] moment sequence, then the elements a, and b, in the continued
fraction (4.1) can be written in the forms

GO ay=dmy(l — m, M1 —1), n=1,23, -
Oémnély (m():())y 0§ln§1,

— C,
(58) :—@ﬂ‘_ﬂ—‘; ’Vb:l, 2, 31"'7(0(1:0)»
Can-2 — Con -2
where
— C -1 — Cop-
(5_9) mn — ﬁzn Yon , ln — on 1 Yon-1 ,
Con — Can Cop-1 — Con-1

l_ﬁmn:Cm_cm 1_ln:(_32n—1""02n—1’n:1’2’3,..,,

Con — Con Can-1 — Con-1
and
(5.10) bo=1—2m, (1 —1,.) — 201 —m,_)l,,  n=123 -,
(lo = m, = O) ’
(51]_) =1 — Con-1— Cop—1 _ Cop-9 — an—z, n = 2’ 3’ 4’ cee
Con-2 — Can-2 Con-3 — Cap-3

As in part T it will be clear that a more general theorem is true.
If {e,}, (¢, = 1), is an arbitrary sequence of real numbers and its corre-
sponding Jacobi-type continued fraction (4.1) is written in the form
that the @, and b, are given by (5.7) and (5.10), respectively, where
l, = m, = 0 but it is no longer necessary that 0 <[, <1 and 0 <m, =1,
n=1,2,3, -+, then the relations (5.8) and (5.11) with (5.9) holding are
still valid.

If {c,} is an ‘‘extended’’ monotone Hausdorff moment sequence, the
geometric interpretations of the a,, b,, ,, and m, are apparent.

Proof. The proof depends upon the following lemma.

LEMMA 5.1. The determinants in (5.1), (5.2), (5.3), and (5.4) satisfy
the relations
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(5-12) _42h:+12210+1 = szzé’m + 42/”222/“

- _ - k=012, ---
zézmdzk = AZI\;+142K—1 + 42&+1A2k—1 s
Proof. By Laplace’s Development and a sequence of elementary
operations, Lemma 5.1 can be established directly. We shall omit the
details.
The proof to the theorem now follows. A well known formula for
the a, is given by

4,.4. 4.
5.13 CI,A:._—:%’_‘;M_, k:2,3,4,"', (a = "%).
( ) i PR P 1 )

The formulas (5.5) and (5.13) yield (5.8).
By a substitution and an equivalence transformation, we write the
continued fraction (4.1) in the form

(5.14) 1 ay a,
by+z—b,+2 — b, +z —

The recurrence formula for the denominators of the continued fraction
(5.14) is given by

(5.15) Bu®) = (bs + 2)By-i(2) — tu-Bi(2),
k=1,23 .-+, (a, =1, B.(») =0, B(r) =1).

Furthermore, we have

(5.16) By(z) = Au(®) k=123,
g

where 4,,_, is obtained from (5.1) and we define 4,,(z) the same as in

(2.15). By a sequence of elementary operations on 4,,(2) it is seen that

Ao(—1) = (=1)dyy, £k =1,2,8, ---. Substituting this result in (5.16)

we have

(5.17) B(—1) = (=D =123, .
_4216—2

Setting z equal to —1 in (5.15), using the formulas (5.13) and (5.17),

we can solve for b, and obtain (5.11). We note that if we had set 2

equal to 1 and followed a similar procedure, we would have obtained

the formula

(5.18) b, = Con-1 = Can-1 + fzn—z — Con-2 __ 1, n=234, .

Can-2 — Can-2a Con-3 — Cap-3

Assume that 0 < m, <1, 0510, <1, n=1,2,8,-... Using (5.5),
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(5.6), and (5.9) it can be shown directly that b, =1— 2, and a, =
4ml,(1 —1). Now by using (5.5), (6.6), (6.9), and Lemma 5.1, (5.11)
reduces to (5.10) for n =k, k =2, 3,4, ---. A similar statement applies
to (6.8). If m, =1 then m,,, is defined to be zero. A similar state-
ment applies to [,. In either case the corresponding moments fall on
the upper and lower boundaries of their respective convex bodies.

If (5.18) had been used in place of (5.11) we note that (5.10) would
have been obtained in the form

(5.19) by =2(1 — 1)1 — my_) + 2m,_l,-, — 1,
n = 1y2;3’ A ,(ZOZmOZO)'

By Theorem 5.1 and the condition in terms of Hankel forms, we
can now state a theorem which characterizes the existence of an ‘‘ex-
tended’’ monotone Hausdorff moment sequence in terms of continued
fractions. This theorem is analogous to Wall’s solution [3], [4] for the
regular monotone Hausdorff moment sequence. By Theorem 5.1 and an
extension of the work of Karlin and Shapley, the equivalence of the
continued fraction solution and the condition in terms of Hankel forms,
and hence convex bodies, is apparent.

THEOREM 5.2. The sequence {c,} is an ‘“‘extended’’ monotone Hausdor [
moment sequence if and only if the power series

P(z) = gocnz"

has a Jacobi-type continued fraction (4.1) expansion where the a, and
b, are given by (5.7) and (5.10), respectively, and l, =m, =0, and
0<0,51,0=m, <1, n=1,2,8, ---.

It should be pointed out that P(z) = .., c.2™ is a moment generat-
ing function for the ‘‘extended’’ monotone Hausdorff moment problem
if and only if Q(w) = (1 + 2)P(z), where w = 2z , is a moment gener-

14z
ating function for the regular monotone Hausdorff moment problem.

From these relations it is observed that the I, and m, of Theorem 5.1
are equal to m,,, and m,,, n=1,2,3, ---, respectively, of Theorem
2.1. These results are obtained by contraction.

It can also be noted that {¢,} is an ‘‘extended’”’ monotone Hausdorff
moment sequence if and only if

( n — z (2
2 da=3(, " e
is a regular monotone Hausdorff moment sequence. This result can be

obtained by comparing coefficients in P(z) and Q(w) under the indicated
transformation.
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6. The continued fraction of the first differences. We prove the
following theorem:

THEOREM 6.1. If

1 a2t aR?
bz+1 —bzg+1—beg+1 —

6.1) 1+ecz+cecrt+ -~

where

(6.2) b,=1-2m,,1—1,.,)—21 ~m,-),, n=12,3,---,
6.3) a,=4m,1—m,H),A1—-1), n=1,2,3,:--, ([, =m;,=0),
then

aF arz? arz? .
bfz +1—bfz+1— bfz +1—

(6.4)  de, + ez + Ao +ee ~

.
b

where Ac, = Cpyy — Cuy # =1,2,3, «+«, (d¢y, =1 — ¢,), and

6.5) bf =1 —2L(1 —m,),
b;:( =1- zmn—l(l - ln) - 217»(1 - mn)y n = 27 3! 4’ )
(6.6) af =2(1—1,),
a;l; = 4ln(1 - ln+1)mn(1 - mn)v n=12,3 ...

Proof. In order to prove the theorem it is necessary to note some
determinants for the sequence {4c¢,} corresponding to 4,, and 4,,., of
(5.1) and (5.2), respectively, for the sequence {¢,}. Noting (5.3) and
(5.4) we observe that

(6.7) A = dyerry Bor = iy k=0,1,2---.
We observe directly that

af =1—¢ = de,= 21 —1).
Using (5.13) and (6.7) we note that

* * n
42/{7 4‘2k'4 — A2k+1A2k—3

(6.8) af = Tai 14
42);—243;6“2 A?IG—IAZIG—I

The relations in (6.6) can now be established by (5.5) (5.6), (5.9), and

Lemma 5.1.
Now, by (5.5), (5.10), (5.11), and (6.7),

k X *
42k~1 4216-4 — 4;‘}-2 4"76-5

* * * *
4210—2 _4_216—3 42]&-3 _4216-4

(6.9) bt =1—
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2k 1A2k—4

N

=1—

Azk—s _ AZk—
2k =1 A2Ic—2 AZk—Z Azk—s

k=1y273""’ (4}51:_%2:1,4%3:0).

Now again by (5.5), (5.6), (5.9), and Lemma 5.1, the relations in (6.5)
follow.

We note that a similar proof could be given for the corresponding
theorem for a regular monotone Hausdorff moment sequence, thereby
giving another proof to this well known result [4].
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VARIATIONS ON A THEME OF CHEVALLEY

ROBERT STEINBERG

1. Introduction. In this paper we use the methods of C. Chevalley
to construct some simple groups and to gain for them the structural
theorems of [3]. Among the groups obtained there are two new families
of finite simple groups!, not to be found in the list of E. Artin [1].
Whether the infinite groups constructed are new has not been settled yet.

Section 5 contains statements of the main results of [3]. In §§2,
3, 4 and 7, we define analogues of certain real forms of the Lie groups
of type A,, D, and FE; (in the usual notation), and extend to them
the structural properties of the groups of Chevalley. Sections 6 and 9
treat some identifications, and § 8 deals with the question of simplicity.
In §§ 10 and 11, using the extra symmetry inherent in a Lie algebra of
type D,, we consider two modifications of the first construction which
are, perhaps, of more interest since they produce groups which have no
analogue in the classical complex-real case: in fact, a basic ingredient of
each of these variants is a field automorphism of order 8. In Sections
12 and 13, it is proved that new finite simple groups are obtained!, and
their orders are given. Section 14 deals with an application to the theory
of group representations, and § 15 with some concluding observations.

The notation is cumulative. We denote by | S| the cardinality of
the set S, by K* the multiplicative group of the field K, and by C the
complex field. An introduction to the standard Lie algebra terminology
together with statements of the principal results in the classical theory
can be found in [3, p. 15-19]. (Proofs are available in [8] or [10]).

2. Roots and reflections. We first introduce some notations. Rela-
tive to a Cartan decomposition of a simple complex Lie algebra of rank
l, let E be the real space generated by the roots, made into an Euclidean
space in the usual way, and normalized as in [3, p. 17-18]. Relative to
an ordering < of the additive group generated by the roots, let I be
the set of positive roots, and a(1), a(2), ---, a(l) the fundamental roots.
For each root r = X7, a(t), set Xz, = ht r, the height of ». The order-
ing < can always be chosen so that it r < ht s implies » <s (see
[3, p. 20, l. 35-40]); suppose this is done. Assume now the existence
of an automorphism o of E of order 2 such that o/ = [I. This restricts
the type of algebra to A, D, (I = 4) or E; (see [3, p. 18]), and hence

Received October 2, 1958, in revised form January 8, 1959.
1 Since the preparation of this paper, the author has learned that these groups have

also been discovered by D. Hertzig [6], who has shown that they complete the list of finite
simple algebraic groups.
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implies that all roots have the same length. We also denote or by 7.
Clearly o permutes the fundamental roots. Thus ht 7 = hi » for each root
r. Finally, let W be the Weyl group, W*' the subgroup of elements
commuting with g, and for each w e W denote by nm(w) the number of
roots » for which » > 0 and wr < 0.

Consider now subsets S of IT of the following three types:

(1) S consists of one root », which is self-conjugate ( = ), and
which can not be written as a sum of a conjugate pair of roots;

(2) S consists of a conjugate pair v, # such that » + 7 is not a
root;

(8) S consists of three roots of the form », #, » + 7.

Note that in case (2) one has » | 7 because htr = ht7r implies that
r — 7 is not a root. Shortly we prove the important fact:

2.1 LEMMA. If [I' denotes the collection of sets of types (1), (2)
and (3) above, then II' is a partition of II.

In any case, the fundamental sets of II'-those which contain funda-
mental roots - are disjoint because the fundamental roots are linearly
independent. If w, denotes the reflection in the hyperplane orthogonal
to r, we set w, = w,, w,wW; Or W,.; (= w,wyw,) according as S is of type
(1), (2) or (3) above. Note that w, e W™

2.2 LEMMA. For each fundamental S € II', w, maps S onto -S and
permutes the positive roots not in S. Hence n(w,) = | S|.

Proof. Since m(w,) = 1 for each fundamental root a [8, p. 19-01,
Lemma 1], and since w, can be written as a product of | S| such reflec-
tions, it follows that n(w,) <|S|. By direct verification one sees that
w,S = — S. Hence the lemma is proved.

2.3 LEMMA. The group W' is generated by the w, corresponding
to fundamental S e II'.

Proof. Using induction on n(w), we show that each w ¢ W* is a
product of elements of the given form. If n(w)=0, w=1, the statement
is clearly true. If n(w) >0, w # 1, there is a fundamental root a such
that @ >0 and wa < 0. Since @ > 0 and wa = wa < 0, it follows that
r>0, wr <0 for each root = in the set S e /I' which contains a.
Hence n(ww;') = n(w) — n(w,;) by 2.2, and the induction hypothesis can
be applied to ww;! to complete the proof.

2.4 LEMMA. W s a normal subgroup of the group generated by W
and o.

Proof. One has ow,0”' = w; for each root r. Since ¢ permutes
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the roots, and the root reflections generate W, one gets cWo™ ' = W,
and hence 2.4.

2.5 LEMMA. The element w, of W defined by w0l = — Il is in
wh.

Proof. By 2.4, ow,c~' e W. Since ow,0°*I1 = — I, one concludes
that ow,0™* = w, and that w, e W™

2.6 LEMMA. FEach S e II' is congruent under W' to a fundamental
set.

Proof. Write the element w, of 2.5 in the form w, = wy «-+ wyw,
guaranteed by 2.3. Since S > 0 and w,S < 0, there is an index ¢ such
that w,_, -+ w,S >0 and w, --- w,S < 0. If T e II* corresponds to w;,,
it follows from 2.2 that w,_,---w,S = T, and clearly equality must
hold.

By using 2.6 and examinining the fundamental root systems for
groups of type A, D, and E; (see [3, p. 18] or [8, p. 13-08]), one sees
that a set in II' of type (3) can occur only in the case A, (I even).
This turns out to be the most troublesome case in the sequel. Note
however that sets of types (1) and (3) do not occur simultaneously.

Proof of 2.1. This follows from 2.6 and the fact that the funda-
mental sets of /I' are non-overlapping.

We now associate with W' a reflection group. Let E*+ and E-
respectively denote the positive and negative subspaces of E under o,
and for each w e W*' let @ and W' denote the restrictions of w and
W' to E*. Also denote by S the vector r,r+ 7 or r + 7 in the respec-
tive cases (1), (2) or (3) of 2.1.

2.7 LEMMA. The restriction of W' to Wt is Saithful. Wis a
reflection group of tyve Crusppyy Bi-i or F, in the respective cases that
W is of type A, D, or E, and, to within a change of scale, {§IS e I}
1S a corresponding system of positive root vectors.

Proof. First if w € W', @w =1, then w maps each positive root
onto another one. Hence w = 1, and the restriction is faithful. Those
S which correspond to the fundamental S e /7' form a new fundamental
root system (to within a change of scale) of the listed type, as one sees
by considering the separate cases (see [3, p. 18]). Becuse of 2.3 and 2.6,
the proof is complete if it can be shown that,ffor each fundamental
S e II', w, is the reflection in the hyperplane 6rth0gonal to S. If
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|S|=2 and S = {a, @}, then w, has —1 as a characteristic value of
multiplicity 2. Since w,(a + d@) = — (a + @), wya — &) = — (@ — @), & +
a e E*, and a—a € E-, it follows that @, has —1 as a characteristic
value of multiplicity 1, and then that 4, is the required reflection.
If |S|=1or |S| =38, the result follows from the definitions.

2.8 COROLLARY. Any two sets of the same type in the partition
2.1 are congruent under W?.

Proof. Since sets of types (1) and (3) do not occur simultaneously,
and since W' is transitive on its root vectors of a given length, 2.8
follows from 2.7.

A new ordering < of the positive roots is now introduced. First if
R, S e II', then R < S means that min »r €¢ R < min s € S. Then if
r, s € Il, define » < s to mean that either » and s belong to distinct
sets R and S of //''and R < S, or » and s belong to the same set of
IT" and r < s,

2.9 LEMMA. The roots in each set S of II* occur comsecutively in
the ordering of the roots of Il relative to <. If r, s and r -+ s are
positive roots, them r 4+ s > min (r, s).

Proof. The first statement follows from the definition. Since <
respects heights, the second assertion is true if # 4+ s has minimum
height in the set S of //' containing it. Thus one may assume that
there is a root ¢ such that » +s=1¢ -+ ¢, »+t, » + t, and that W is of
type A, (I even). Then each positive root is a sum of a string of dis-
tinct fundamental roots, and the strings corresponding to 7 and s are
necessarily of different lengths. Thus Att = ht t > min (ht r, ht s).
Since < respects heights, this implies that » + s > min (¢, Z) > min (», s).

3. Construction of an involution. Supposec that g is a simple
complex Lie algebra with a generating system (X,, X_,, H,, r € II)
chosen to satisfy the conditions of Theorem 1 of [3]. Assume also that
g is restricted to type A,, D, (I = 4) or E; so that the results of § 2 can
be applied. Set »(H,) = r(s). Then, all roots being of the same length,
it follows that:

3.1 X, X;=NyX,i5; Ny=0, £1; r,se Il.

For the same reason 7(s) = s(r) and #(r) = 2. By the uniqueness theorem
for a simple Lie algebra with a given root structure (see [8, p. 11-04]
or [10, p. 94]), there exists an automorphism g, of g such that o,H, =
H; and o0,X,=¢X;, ¢, e C*, re Il or —JII, with ¢, =1 for each
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fundamental root a. Then each ¢_, = 1, and by induction on the height
one gets each ¢, = + 1. Next let K be a field on which an automor-
phism ¢ of order 2 acts, let K, be the fixed field, and write ok =k, k ¢ K.
Then following the procedure of [3, p. 32], one can transfer the base
field of g from C to K, and thus gain a Lie algebra g, over K and a
semi-automorphism ¢ of g, such that ¢(kH,)=kH; and o(kX,)= + kX:,
ke K, re Il or —II. Note [3, p. 32] that the field is not transferred

for roots (or weights) and that the expression 7(s) retains its original
meaning.

3.2 LEMMA. The order of o is 2. By appropriate sign changes of
the X, one can arrange things so that in the equations 6 X, = k,X;,r e II,
one has:

(@) k=k,;

(b) if ¥+, then k. =1;

() of r =, then k. @8 1 or —1 according as r belongs to an
S e II' of 1 or 3 elements.

Proof. One has ¢°X, = X,, 0°X_, = X_, for each fundamental root
a. Thus ¢ =1, and this implies (a). If »,  is a conjugate pair in /7,
if <7, and if k, = — 1, replace X, by —X,. Then (b) holds. If
| S| =3 1in (c), there is a root s such that »r = s 4+ s, and one gets (c)
by applying o to the equation X, X; = kX,. If | S| =1, assume it » > 1.
Then there is either a self-conjugate fundamental root a such that » — «a
is a root, or a conjugate pair of orthogonal fundamental roots b, b such
that » — b, » — b and » — b — b are all roots. One then applies o to
the equation X, . X, =X, or (X,.,.;X,)X; = k,X,, respectively, and
completes the proof of (¢) by induction on the height.

We assume henceforth that the normalization indicated by 3.2 has
been made and that the corresponding treatment has been given,to the
negative roots, so that one has once again the equations of structure of
Theorem 1 of [3] (in particular, X, X_, = H,).

4. Some nilpotent groups. As in [3], we set x.(t) = exp (t ad X,),
t e K, r € II, denote by %, the one-parameter group {x.(t)|t € K}, and
by 1 the group generated by all X,, r € II.

4.1 LEMMA. For », s € II and t, t, € K, one has the commutator
relation (2.(t), ,(t,)) = ©, . (N,t.l,).

Proof. This follows from [3, p. 33, [. 22] and the fact that all
roots have the same length.
A straightforward computation yields:

4.2 oexp(tad X)o7 = exp (—t ad 0 X,) .
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4.3 LEMMA. Let 3 be a subset of Il satisfying the condition
4.4 r,seld, r+sell imply r+s e .

Then each x e U, the group generated by all X, r € X, can be
written uniquely in the form x = |[x.(t,), the product being over the
roots of X arranged in increasing order relative to < (see §2).

Proof. Using the formulas 4.1 repeatedly, one sees that the set of
elements of the given form is closed under multiplication; thus each
2 € Uy has an expression of the given form. Uniqueness is proved by
induction on |Y|. If |Y| =1 and Y = {7}, this follows from z,(t)X_, =
X_, +tH, — t*’X, (see [3, p. 86, [. 15]). If |2 | > 1, let r be the least
element of ¥ (relative to <), and set 3’ = ¥ — r. Let 2 e Us be written
as ¢ = 2,(t)x, and © = x.(¢t,)x, with £, € K and x; € Uy.. Then z(t, — ¢,) =
zx;. Since x,(t, — t)X_, = X_, + (t, — t,)H, — (t, — t,)*X,, since x,(t, — t,)
€ Uy, and since » can not be written as a sum of roots larger than 7»
by 2.9, it follows that the coefficient of H,, namely ¢, — ¢, must be 0.
Thus z, = 2,, and the induction hypothesis can be applied to X' to
complete the proof.

The result 4.3 can be applied in the cases Y =/ and X =S e [I.
Because of 2.9, one gets:

4.5 COROLLARY. FEach x € U can be written uniquely in the form
x = [z, x, € U, the product being over the sets S of II' arranged in
inereasing order.

Denote now by W', U! ete. the subgroups of elements of U, 1, ete.
commuting with o.

4.6 LEMMA. If x e U ts written in the form 4.5, then x € ' if
and only if each x,e N'. A mecessary and suflicient condition for x,e U,
to be im U s that, in the cases (1), (2) or (3) of 2.1, =, has the respec-
tive form (1) z,(t),t=t, (2) x@t)x; @), v =1, or (3) z.(t)x; (v)2,.;(w),
v=1t w+ w= Nit.

Proof. If z e ' commutes with ¢, one has x = ox0! = [[(ox,07Y).
Since ox,0' e 1, by 4.2, one gets ox,06°!' = x, by the uniqueness in 4.5.
Thus each x, € 1. The converse is clear. In the cases listed in the
second statement, one has

(1) oz (t)o =z (b),

(2) ox,(t)e; w)o ' = z,(v)xy(t), and

(3) ox,(t)r; (), .; (W)o = x,(0)x; (0)2,.; (— W + N,;tv) by 3.2, 4.1
and 4.2. The required results now follow from 4.3.

4.7 LEMMA. Let II be the union of the disjoint sets X and 3’,
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each tnvariant under g, and each satisfying 4.4. Then U' = 1L UL, and
uL nuy =1.

Proof. By [3, p. 41, Lemma 11], one can write x € U' uniquely in
the form « = yy', y € Uy, ¥’ € Us,. The proof that y and %' are in W
is the same as that for the first part of 4.6.

If ¥ denotes the group generated by all X, » < 0, then one can
define V!, B,, etc., and gain for these groups corresponding results.

5. Main results of Chevalley. For each simple complex Lie algebra
g (not necessarily one for which ¢ exists), consider the groups 11 and ¥
and also the group G (denoted in [3] by G’) which they generate. For
each w € W, if Y consists of the roots » for which » > 0 and wr < 0,
we set Uy = U, (denoted in [3] by UZ). Let P, and P, respectively,
denote the additive groups generated by the roots and by the weights.
Corresponding to each character y of P, into K*, there is an automor-
phism 7 = h(y) of gr defined by hX, = x(r)X,, » € Il or — II. Let 9
(denoted in [3] by ') be the group generated by those automorphisms
which correspond to characters which can be extended to P. For
h(y) € , one has

5.1 ha, () = a,(x(r)t) .

The main results of [3] are as follows:

5.2 G contains 9.

5.3 Corresponding to each w € W there is w(w) € G such that
ow)X, = ¢,X,,, o(w)H, = H,,, ¢. € K*, v € Il or —II. The union of
the sets Dw(w) is a group W and the map w — Hw(w) is an isomorphism
of W on /9.

Parenthetically, we remark that here one has:

5.4 o(w)X,o(w)™ = X,, .

5.5 G is the union of the sets UHw(w)l,, w € W. These sets are
disjoint and each element of G has a unique expression of the indicated
form.

5.6 G is simple if one excludes the case (1) | K| = 2 and g of type
A, B,or G, and (2) | K| =38 and g of type A,.

Before proving corresponding results for the group G' generated by
' and B, we identify G* in the case that g is of type A,.

6. Some unitary groups. Consider the form
i+1

6.1 fla, B) = > (‘“l)iaigz

1

on a space of ! dimensions over K. Let U, (f) denote the correspond-
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ing unimodular unitary group and C..,(f) its center. Then one has:
6.2 If g is of type A, G' = Upni(f)]Crui(f)-

Proof. If g is of type A, one can identify g, with 8[,,,(K), the
algebra of (I + 1)th order matrices of trace 0, in such a way that, for
each fundamental root a(i), X,., € gx corresponds to I, ,.,, the matrix
with 1 in the (¢, ¢+ 1) position and 0 elsewhere [7, p. 393]. If m =
((—1)’8, 14,—,) is the matrix corresponding to f, one can then verify that
o is the product of the transformations Y — mYm™ (matrix multiplica-
tion) and Y — — Y (t = transpose). According to a recent identification
of R. Ree [7], U and ¥, respectively, consist of the superdiagonal ma-
trices (0 below and 1 on the diagonal) and the subdiagonal matrices,
acting on 8[,,, via inner automorphisms, so that the group G of Cheval-
ley is in this case the projective unimodular group. Now it follows
from material in [4, p. 66-69] that U,.,(f) is generated by its superdia-
gonal and subdiagonal elements and that C,,,(f) consists of scalar
matrices. Thus to prove 6.2 it is enough to prove:

6.3 Let x be a superdiagonal matrix. Then x ¢ W if and only if
x e U(f).

A simple calculation using the concrete form of o given above shows
that z0 = ox if and only if Z'm~‘xm commutes with each Y e 8[,,.
This is equivalent to xmz' = km, k ¢ K. If x is superdiagonal, k& must
be 1, because the (1, I + 1) entries of the matrices xma’ and m are
both —1. Thus 6.3 and 6.2 are proved.

It is to be observed that the form j has index [(I + 1)/2].

7. Structure of G!. Recall that G' is the group generated by WU
and ¥'. For each w ¢ W, set U}, =1' n U,. For each S e /I, let G!
be the group generated by 1! and ¥.. Denote by X' the group of those
characters of P, into K* which can be extended to characters y of P

which are selfconjugate in the sense that y(@) = x(a) for all a« € P, and
by ! the corresponding subgroup of . For S e I, set H = H' N G,.
Finally, for each root  and each k& € K*, denote by %, , the character
on P, defined by y, .(s) = k5.
It is assumed until further notice that g is not of type A, (I even).
We aim to prove:

7.1 LEMMA. For each w ¢ W*, Hw(w) N G' s not empty.
Once this is established, it can (and will) be assumed that w(w) € G*
for each w € W*. Then:

7.2 THEOREM. G' is the wunion of the sets W'D'w(w)ly, w e W1
The sets are disjoint and each element of G' has a unique expression
of the indicated form.
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The steps of the proof are quite analogous to those in the proof of
5.5 in view of the following:

7.3 LEMMA. Assume S € II'. Then (1) if S = {r}, there is a ho-
momorphism ¢, of SLy(K,), the unimodular group, onto G} such that

(5 1) =20 o(3 1) =00, 2§ 1) = bl

and
r/)l<_(_)1 (1)) = w(w,) (mod 9);

2) if S={r, r}, there is a homomorphism ¢, of SL,(K) onto G} such
that

(p<(1) f) = w.(t)wz (0), %G (1)) =z (tyw_; (t), (/)2(8 2)
= W(LrXre) »
and

(/)2(_01 (1)> = o(w,w;) (mod 9) .

Proof. The existence of ¢, is established in [3, p. 29, p. 36]. Since
¥, and X¥_, commute elementwise with X; and X_;, it is clear that ¢, also
exists.

Proof of 7.1. By 7.3, Sw(w,) N G* is non-empty for each S e [I'.
Thus 7.1 follows from 2.3.

Now we choose w(w) € G* for each w e W', and denote by T the
union of the sets H'w(w). Then the analogue of 5.3 holds.

7.4 LEMMA. G*' contains 9.

Proof. G' contains all h(y) € ' such that y is of the form y,,

d=a, k=1Fk, or ¥,,07 by 7.3. These characters generate X' (see [3,
p. 48, Lemma 2]). Thus G' D H.

7.5 LEMMA. For each S e II', G| is the the union of the sets UiD;
and WiOiw(w,)L.

Proof. Because of 7.3, this follows from the corresponding proper-
ties of the groups SL,(K,) and SL,K) (see [3, p. 34, Lemma 2]).

7.6 LEMMA. G*' is generated by the groups 1. and LV which cor-
respond to fundamental sets S e II'.
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Proof. This follows from 7.1, 5.4 and 4.5.
7.7 LEMMA. G'=0TWU.

Proof. This follows from 7.6, 7.5, 7.1 and 4.7 as in [3, p. 40,
Lemma 10].

Proof of 7.2. That G' is the union of the given sets follows from
7.7 and 4.7 as in [3, p. 42, Theorem 2]. The disjointness and uniqueness
follow from 5.5.

7.8 COROLLARY. '= 9 N G.
Proof. Because of 7.2, this is clear.
7.9 COROLLARY. W' is the normalizer of W' in G.

Proof. The normalizer contains U'9' by 5.1, and equality follows
from 7.2.

One also concludes from the preceding results:

7.10 COROLLARY. The sets of 7.2 are the double cosets of G* relative
to WO

7.11 COROLLARY. If K is a finite field of characteristic p, then
W and B are p-Sylow subgroups of G*.

In regard to 7.11, one sees from 4.5 and 4.6 that, if | K| = ¢* and
| I} = N, then |1I'| = ¢~.

We now remove the restriction on g and remark that the results of
this section remain valid even if g is of type A, (I even). The key
point here is that, if Se /I* and | S| = 3, then there exists a homomor-
phism of U,(f) (see 6.1) onto G} with properties like those of ¢, and
@, in 7.3. We omit the proof which can be made to depend on the
representation of G' by unitary matrices given in § 6.

8. Proof of simplicity. Our aim here is to prove:

8.1 THEOREM. If K, has at least 5 elements, then G* is stmple.

The simplicity of the group SL, over its center is assumed to be
known. It is further assumed that g is not of type A, (I even) and
that I = 3. The proof to be given can be adapted with minor modifica-
tions to the missing groups, which are in any case adequately covered
by 6.2 and [4, p. 70, Theorem 5].
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8.2 LEMMA. Assume R, T e Il', R+ T, and that r, t are elements
of R, T, respectively. Then there is y € X' such that y(r) =1, x(t) + 1.

Proof. Let R (or more simply R) denote » or r + # in the cases
¥ =7 or r +# r, respectively, and then set Yp. = %rx OF Xnr = Xox X%
accordingly. Treat ¢t and T similarly. If R(T) = 0, set x = Yr.x» k€ K7,
B+1 If RT)= +1,orif R(T)= +2and |R|=|T|=2, set y =
Arw: Xz, ke Kf, K+ 1. In the other cases of R(T)= + 2, set
X = LeaXinXes's b € K§f, k*+ 1. Finally if R(T) = + 4, set Y = Yu.xXii >
k=lklk, k e K, k, + + k,. One can check that these cases are exhaus-
tive and that x(r) = 1 and x(¢) # 1 in each case.

8.3 LEMMA. If we W' and w =+ 1, there is h € O such that
w(w)h + ho(w).

Proof. We first show that there exist y € X* and # e /I such that
x(wr) £ y(r). If there is an R € II* such that wR # + R, then y and
r exist by 8.2. If wR = + R for all R e II', then, since w # 1, one
has wR= — R for all R e II'. Since [ = 3, one can readily choose
r,t e Il so that » | 7, t=1¢ and r(t) < 0. If ke Kff, k*+ 1, then
L = Yo.x and r have the required property. If h = h()), a simple calcula-
tion now shows that X, has different images under w(w)h and ho(w).

Assume now that H is a normal subgroup of G' and that | H| > 1.

8.4 LEMMA. |H N WH| > 1.

Proof. By 7.2 there is x € H such that z +# 1 and x = uh,0(w)
with w e U, h, e  and we WL If w=1, then by 8.3 there is
h € © such that w(w)h = ho(w). Then y = haxh~'2z~' ¢ H N W'Y, and
we assert that y # 1. Indeed, if ¥y = 1, then

x = hah™' = huh~(hh,o(w)h~"'w(w) " Ho(w) ,

and by 7.2 one gets ho(w)h'w(w)* = 1, a contradiction. Thus the as-
sertion and the lemma are proved.

8.5 LEMMA. |H N W > 1.

Proof. By 8.4, there is x ¢ H N 1U'H' such that =z =+ 1. Write
x=uh, w e, h e O, and suppose h = 1. Then there is a fundamental
root r such that hX, =c¢X,, ce K, ¢c#+ 1. If r ¢ S e II', let y be the
commutator of « with x,.(1) or x,(1)x; (1) according as | S| =1 or 2. Then
y € HN U, and it remains to show that y = 1. If y = 1, then, for the
case | S| =1, one has (1) = uhx()h'u' = ux,(c)u~*. Now it follows
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easily from 4.1 that the subgroup U, of U generated by those X, for
which it r > 1 contains the commutator subgroup of U. Thus z.(1 — ¢) =
z,(1)x,(c)"* € U,, whence 1 — ¢ = 0 by 4.3. This contradiction establishes
y #+ 1. The case | S| = 2 can be treated similarly.

8.6 LEMMA. For some Re II', |HN Uy| > 1.

Proof. Among all x ¢ H N U with 2 = 1, choose one which maxi-
mizes the minimum S e IT' for which x, = 1 in the representation 4.5.
If this minimum is R, we show « = x,. Assuming the contrary, one
can write © = x 0,2, With x, + 1, 2, #+ 1, and x, denoting the remain-
ing terms in 4.5. By 8.2, 5.1 and 4.6, there is h € ' such that
hxgh™ = ¢, and hxh '+ x,. Thus hxh'=% 2z by 4.5. But then y =
xthaeh £ 1, y e HN W, and y provides a contradiction to the choice
of x.

Using 8.6, one can deduce as in [3, p. 62, Lemma 15]:
8.7 LEMMA. If |HN 4| >1 for R e II', then H O 1.

Proof of 8.1. As in 8.3 choose (fundamental) roots », ¢ such that
r 17 t=t and r(t) < 0. Since » | 7, this implies that » +¢, r + ¢
and r + 7 + t are all roots. Set R = {r, v}, T = {t}, U= {r +t, v +1t},
V=1{r+7r+t} Q) =2.Q)x: 1), 2,(1) = 2,(1), ete.. Then by 4.1 (used
several times), one gets:

3.3 (®x(1), 2,(1)) = 24(N, )2, (N, N, ;.0) -

By 8.7, 5.4 and 2.8, either x (1) or z,(1) is in H; hence so is their
commutator. For the same reason one of the elements on the right of
8.8 is in H; hence so is the other. Thus, by 8.7, 5.4, 3.1 and 2.8, H
contains all 1}, hence also 1I' by 4.5. Similarly H contains 8!, whence
H = G'. Thus G' is simple.

9. Some identifications. If g is of type A, then G' has been
identified in §6 as a projective unitary group in [ + 1 dimensions.
Similarly, if g is of type D, (I = 4), then using the representation of G
given by Ree [7], one can show that G' is isomorphic to a projective
orthogonal group corresponding to a form in 2] variables which has index
l —1 relative to K, and index [ relative to K. The details in the
complex-real case can be found in [2, p. 422]. If g is of type K, then,
again in the complex-real case, one can identify G' with a real form of
E,, the one characterized by Cartan [2, p. 493] by the fact that its
Killing form, when written as a sum of real squares, contains a surplus
of 2 positive terms. If g is of type E, and K is finite, we show in § 12
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that new groups are obtained!, not isomorphic to any appearing in the
list of finite simple groups given by Artin [1].

10. Second variation for D,. A root system for D, has a fundamental
basis consisting of roots a, b, ¢, d of the same length such that b, ¢, d
are mutually orthogonal and each makes an angle of 27/3 with a. Let
7= be the automorphism of order 3 of the underlying FEuclidean space
defined by a, b, ¢, d > a, ¢, d, b, and let W* be the subgroup of elements
of W commuting with z. One can then obtain the analogues of the
results of § 2 without essential change in the proofs. For example: W?*
is generated by the elements w, and w,w,w, and is of type G, The
roots are partitioned into sets of the types (1) S = {r}, ©r = r, and (2)
S = {r, tr, vr}. Any 2 sets of the same type are congruent under W>.
One then introduces a field K on which an automorphism 7 of order 3
acts, and defines a semi-automorphism 7 of gx by 7(kX,) = (tk)X.,. Then
1* and B* are the subgroups of 1 and B, respectively, made up of
elements commuting with = and G* is the group they generate. The
whole previous developement goes through. It turns out that in the
proof of simplicity it is enough to assume that the fixed field K, has at
least 4 elements. In §12, it is shown that once again new finite groups!
are obtained.

11. Third variation for D,. Assume now that K is a field admit-
ting automorphisms ¢ and 7 which are of orders 2 and 3 respectively,
and which generate a group isomorphic to S,, the symmetric group on 3
objects. Define corresponding semi-automorphisms ¢ and 7 of the Lie
algebra gx of type D, as in §§3 and 10. Then set 1 = 11' N 113, W =
L' N B and let G* be the group generated by 11° and L¥°. Again every-
thing goes through. It need only be remarked that the present construc-
tion is possible only if K is infinite, and that all groups of type G* are
simple.

12. Some new groups. The list L of known finite simple groups
consists of the cyclic, alternating and Mathieu groups, and the ‘‘Lie
groups’’, namely the groups G of Chevalley over A, (I = 1), B, (I = 2),
C,(1=3), D, (l=4), E, E, E, F,and G,, the groups G* over A, (I = 2),
D, (I = 4) and E;, and the groups G* over D,, all constructed on a finite
field. By the type of one of these latter groups we mean a combination
consisting of the general mode of construction (G or G' or G?), the
underlying complex Lie algebra g, and the field K. We adopt the nota-
tion: E'y(r) is the group of type G' over E; on a field of » elements.
Our aim is to prove:

12.1 THEOREM. If G is ome of the groups Eyq*) or Diq’), then G



888 ROBERT STEINBERG

is mot isomorphic to a cyclic, alternating or Mathiew group, and two
representations of G as Lie groups mecessarily have the same type.

In other words the groups FEi(¢*) and Di(¢}) are new' and distinct
among themselves. We need some preliminary results. Let G be a Lie
group over a field K of q, ¢* or ¢* elements in the cases G, G* or G*,
respectively, and set W= W, W' or W* accordingly. The Poincare
sequence of G shall mean the list of numbers Q" “(w € W) arranged in
non-decreasing order. Thus the first term is 1 and the last term is ¢?,
the integer N being the number of positive roots of g (see 2.5, 4.5 and
4.6).

12.2 LEMMA. The Poincaré sequence of Ai(q*), DiqgY), Eiq*) or

T+l 48 (1)t
Di(¢®) vs obtained by writing the respective polynomial Htlt—((11))7’
L

Lot 1 -1 41 -1 -1 41 "1
¢+l -1 t—1 t+1 ©t—=1 t-1 “+1 i-1"°'
Et+DE+1DE+ "+ 1) as a sum of non-decreasing powers of t and
then replacing t by q in the indiwidual terms.

To avoid interruption of the present development we give the proof
in the next section. We also need the polynomials for the groups of
Chevalley. As one sees from considerations in [3, p. 44, p. 64], these
polynomials take the form [[[(t*® — 1)/(t — 1)], the a(¢) being given in
[3, p. 64]. Since ¢"™ = |U.| by 4.6 and 4.7, one can use 12.2 in
conjunction with 7.2 and the definition of ' to compute |G'|. In the
same way, one can find |G?*|. Thus:

r

12.3 LEMMA. If w is the g.c.d. of 3 and q + 1, the orders of
ENg") and Diq) are u'¢®(¢° —1)(¢° + 1)(¢° — 1)(¢° — 1)(¢" + 1)(¢" — 1)
and ¢*(q* — 1)(¢° — 1)(¢® + ¢* + 1), respectively.

The orders of the other Lie groups can be found in [1]. It is
interesting to note that, if in the expressions in 12.2 and 12.3 which
relate to the group E(q®) one replaces all plus signs by minus signs,
then one obtains the corresponding properties of Ey(q). A similar pheno-
menon occurs for each of the groups Ai(q®) and Di(¢?.

12.4 LEMMA. The Poincare sequence of a finite Lie group G is
determined by the abstract group and the characteristic p of the base
field K. The type of a finite Lie group is determined by its Poincare
sequence except that B(q) and C,(q) have the same sequence, as do A,(q*)
and Ayq) also.

Proof. If G is of type G, then, to within an inner automorphism,
G and p determine U as a p-Sylow subgroup, then U9 as the normalizer
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of U, and finally the numbers |11 N zUxz~'| as « runs through a system
of representatives of the double coset decomposition of G relative to UD.
These latter numbers are just the terms of the Poincaré sequence by the
analogue of 7.10, since |1 N w(w)Uw(w) '] = ¢"™™ by 4.3. A similar
proof of the first statement holds for groups of type G' or G®. One
proves the second statement by inspection of the Poincaré sequences for
the various Lie groups.

By checking their orders, one sees that A,(¢*) and Aj(q) can not be
isomorphic. Thus the two statements of 12.4 can be combined to yield:

12.5. The type of a finite Lie group is determined by the abstract
group and the characteristic of the base field except that B,(q) and Cy\(q)
may be isomorphic.

This result has been obtained previously (for the previously known
finite simple Lie groups) by Artin [1] and Dieudonné [5, p. 71-75] by
different, more detailed methods. Artin actually draws the conclusion
under the weak assumption that only IGI and p are known.

One also concludes from 12.4 the well-known fact that A,4) and
A,y(2), both of order 20160, are not isomorphic.

An inspection of the results of 12.3 yields:

12.6 LEMMA. Let G be either Ei(q*) or Di(q°) over a field of charac-
teristic p, and let Q be the largest power of p which divides IG |. Let
Q' be any prime power which divides |G |. Then @ > |G|and Q = Q.

Proof of 12.1. Clearly G is not cyclic. Since |G >10°and Q° > [G’ B
it follows that G is not an alternating group (see [1]). D%8) does not
have the order of a Mathieu group and all other values of |G| are too
large. G is not isomorphic to either of the groups A,(p,) with p, =
2" — 1 = prime, or A,(2°) with 2° 4+ 1 = prime, since in each case one has
a prime p, such that p, divides lGl and p > lG |, and this is readily
seen to be impossible by 12.3. But except for these two types, every
simple finite Lie group verifies 12.6 (see [1] where the other groups are con-

sidered). Thus any representation of G as a Lie group must be over
a field of characteristic p. An application of 12.4 completes the proof.

13. Proof of 12.2. By 2.2, 2.3 and 2.6, n(w) = 3| S|, summed
over those S e /I' for which wS < 0. By 2.7, one can compute n(w)
within the framework of W* and its root system, but each root is to be
counted with the right multiplicity (1, 2 or 3). Assume first that the
group under consideration is KEl(¢?). Then W' is of type F, and, in
terms of coordinates relative to an orthonormal basis, its roots can be
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taken as + o, (+ @, + @, + x, + x,)/2, each of multiplicity 1, and =+ x,; + «,
(t # 7), each of multiplicity 2 (see [8, p. 13-08]). The inequalities
Xy — Xy — Xy — 2, >0, 2, — 2, >0, 2, —2x, >0, and 2, >0 determine a
fundamental region F' of Wt by [10, p. 160]. The last 3 inequalities
determine a region L whose intersection with the unit sphere is lune-
shaped with (1,0, 0,0) as one of its vertices. The subgroup V of W?
leaving (1, 0, 0, 0) fixed is of type C, and has L as a fundamental region.
Let P(t) be the polynomial sought, let P,(t) be the corresponding poly-
nomial for the group V, and let P,(t) be ¥ t"™  the sum being over
those w € W*' for which wF < L. A simple geometric argument shows
that P= P,P,, We next find P,. The point ¢ = (16, 8, 4, 2) isin F. It
has 24 transforms in L corresponding to the 24 elements @w ¢ W' for
which wF < L. These are a, b = (15,5,3,9), ¢ = (13,11,7,1) and the
points in L obtained from these by coordinate permutations. One can
now find n(w) for each of the 24 elements above. For example, if w
maps @ on b, then the roots positive at @ and negative at b are
(x, — 2y — 2, — 2,)/2, of multiplicity 1, and %, — x, and 2, — x,, each of
multiplicity 2. Hence n(w) = 5. Thus P, is determined, and the original
problem of rank 4 is reduced to one of rank 3. A similar reduction to
rank 2 is possible, whence P can be determined. If one starts with
Ai(¢*) or Di(q®) instead, the same inductive procedure can be carried
through, and for Dj(¢*) the polynomial P can be found rather quickly by
enumerating n(w) for the 12 elements of W?2 The results are those
listed in 12.2.

14. Prime power representations. In [9], 14 assumptions on a finite
group are made, and then some properties concerning the representa-
tations of the group are deduced. It is then verified that the groups of
Chevalley satisfy the basic assumptions. The verification for G* or G? is
virtually the same as for G because of the structure theorems of the
present paper. Thus one gains the results of [9] (in particular Theorem
4) simultaneously for all known finite simple Lie groups.

15. Concluding remarks, We first note that it is possible to cover
somewhat more ground than was indicated in the main development
given here by allowing certain degeneracies to occur. For example, if
o on FE is of order 2, if ¢ on K is of order 1, and if g is of type A, or
A,,_,, then the construction of §§3, 4 and 5 yields a group of type B,
or C,, respectively. Thus B,, C, and also 4, may be regarded as dege-
nerate cases of Al. Similarly D; degenerates to B,_, and D,; E} to F,
and E; and D} to G,, B,, D,, D. and D It is easily verified that no
other groups can be obtained by the present method of combining auto-
morphisms of £ and of K in various ways'.
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In regard to the construction given for G', it is to be noted that
gk, the set of fixed points of ¢, is the Lie algebra (over K;) of G! in
many cases. We could have defined G* on gy in view of the easily proved
facts that an automorphism x of g commutes with ¢ if and only if
23% = 0%, and that, in this case, the restriction of x to gk is 1 only if
2 = 1; but this would have led to a much more complicated development.
It is also to be noted that one can not define G* as the subgroup G° of
G made up of elements which commute with ¢. The difference, roughly
speaking, lies in $: a self-conjugate character on P, may be extendable
to a character on P but not to a self-conjugate one, as is proved by the
following example. Let g be of type A, and let w and a = 2w be
fundamental weight and root, respectively. Then yx defined by x(a) =
K, k*e K¥, k + k, has the given property. One sees rather easily, howe-
ver, that G°/G' is always isomorphic to a subgroup of P/P,.

The proof of simplicity given in §8 is considerably shorter than the
one given in [3], but this is at the expense of the assumption that K
has enough elements: left open is the question of simplicity for the
groups Ki(q®) with ¢ <4, and D¥q¢’) with ¢ <3. The answer quite
likely requires rather detailed methods such as those of [3].

More important, perhaps, and probably more difficult is the identi-
fication of the infinite groups constructed. An infinite analogue of 12.4
would go a long way in this direction. Finally, it seems likely that there
is some sort of description of D? and D: by Cayley numbers.
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ON THE SIMILARITY TRANSFORMATION BETWEEN
A MATRIX AND ITS TRANSPOSE

OLGA TAUSSKY AND HANS ZASSENHAUS

It was observed by one of the authors that a matrix transforming
a companion matrix into its transpose is symmetric. The following two
questions arise:

I. Does there exist for every square matrix with coeflficients in
a field a non-singular symmetric matrix transforming it into its transpose?

II. Under which conditions is every matrix transforming a square
matrix into its transpose symmetric ?

The answer is provided by

THEOREM 1. For every n x n matriz A = («,,) with coefficients in
a field F there is a non-singular symmetric matriz transforming A
wnto its transpose AT,

THEOREM 2. Ewery non-singular wmatriz transforming A imto its
transpose is symmetric if and only if the minimal polynomial of A s
equal to its characteristic polynomial i.e. if A is similar to a com-
panion matrix.

Proof. Let T = (t;;) be a solution matrix of the system 3(A) of
the linear homogeneous equations.

(1) TA— A"T =0
(2) T—T"=0.
The system >(A) is equivalent to the system
(3) TA—- A"T"=0
(4) T—-T"=0

which states that T and TA are symmetric. This system involves n* — n
equations and hence is of rank n? — n at most. Thus there are at least
n linearly independent solutions of >)(4).

On the other hand it is well known that there is a non-singular
matrix T, satisfying

TAT' = A",

Received December 18, 1958.
This part of the proof was provided by the referce. Our own argument was more lengthy.
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From (1) we derive
(1a) Ti'TA = AT'T
and conversely, (la) implies (1) so that there is the linear isomorphism
T— T:'T

of the solution space of (1) onto the centralizer ring of the matrix A.

If the minimal polynomial of A is equal to the characteristic poly-
nomial then the centralizer of A consists only of the polynomials in 4
with coefficients in F. In this case the solution space of (1) is of di-
mension n. A fortiori the solution space of >)(A4) is at most of dimen-
sion 7 since the corresponding system involves more equations. Together
with the inequality in the other direction it follows that the dimension
of the solution space of >,(A) is exactly n. This implies that every
solution matrix of (1) is symmetric.

If the square matrix A is arbitrary then we apply first a similarity
(in the field F') which transforms it to the form

where A, is a square matrix of the form

LA
L ,A
L ,A

L A
Here ,A is the companion matrix of the irreducible polynomial »
which is a factor of the characteristic polynomial of A and L is the
matrix with 1 in the bottom left corner and 0 elsewhere, of appropriate
size (Reference 1, p. 94). The matrix A is derogatory if two blocks A,
corresponding to the same p appear in B. Let A, and A, be two such

blocks.
There is a non-singular matrix Y satisfying

Y,A = ,A"Y .

The matrix of matrices V that has Y in the top left corner and 0 else-
where, of appropriate size, satisfies
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VA, = ATV .

Consider then the matrix

where S, is a non-singular matrix transforming A, into A?. It is a non-
singular non-symmetric matrix which transform B into its transpose.
Thus Theorem 2 is proved.

REMARK. M. Newman pointed out to us that the product of two
non-singular skew symmetric matrices B, C can always be transformed
into its transpose by a non-symmtric matrix, namely

B-'BCB = (BC)" = CB.

Theorem 2 shows that such a product BC must be derogatory.? This can
also be shown directly in the following way:

Let N be a characteristic root of BC and x a corresponding charac-
teristic vector, then

BCx = \x .
Since B is non-singular this implies

Cx =\B'x
or

(C—ABMx=0.

Since B is a non-singular skew symmetric matrix, it follows that the
degree of B and hence the degree of C—)\B~' is even. Moreover, the
skew symmetric matrix C — AB~! has even rank.

2 Although Newman’s comment is only significant for fields of characteristic % 2 the
remainder of this section holds generally if skew symmetric is understood to mean 7=
— TT and vanishing of the diagonal elements. We observe that this definition is invariant
under the transformation 7'-> X7T'X. This is the transformation 7' undergoes when the
matrix A in (1), (2) undergoes the similarity transformation 4 - X-14X. Since this trans-
formation preserves linear independence, we are permitted to apply it for the purpose of
finding a non ‘skew symmetric’ solution of (1), (2). We now extend the field of reference
to include the eigenvalues of A (from the theory of homogeneous linear equations it fol-
lows that the maximal number of linear independent solutions will remain the same). It
can then be observed that for a block of the Jordan canonical form of a matrix any matrix
with all coefficients zero excepting the first diagonal coefficient satisfies (1), (2). Therefore
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1t follows that another vector ¥y exists such that also
(C—AB Yy =0
and hence also
BCy = \y .

This implies that )\ is a characteristic root of multiplicity at least two
and with at least two corresponding vectors. The product of two gener-
al non-singular skew symmetric matrices B, C has every characteristic
root of multiplicity exactly 2. For, specialize to the case B = C. Then
BC is a symmetric matrix whose characteristic roots are the squares
of the roots of B, hence all exactly double for a general B. This shows
that the general BC has all its characteristic roots double with two in-
dependent characteristic vectors. Such a matrix is derogatory and its
characteristic polynomial is the square of its minimum polynomial.
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THE SUSPENSION OF THE GENERALIZED
PONTRJAGIN COHOMOLOGY OPERATIONS

EMERY THOMAS

1. The main theorem. In a previous paper [9] I have defined a
sequence of new cohomology operations, called the generalized Pontrjagin
operations. These operations use as coefficient groups the summands of
a certain type of graded ring: namely, a ring with divided powers
(defined by H. Cartan in [1]), which is termed a /'-ring in [9]. Let
A=>.A, be a ring with divided powers such that each summand A,
is a cyclic group of infinite or prime power order; we termed such rings
p-cyclic in [9]. Then, the Pontrjagin operations are functions

Lo HX; Ay)— H*™X; Asr) (k, n>0;1=0,1,---)

where H(Y, B; G) denotes the ¢th (singular) cohomology group of the
pair (Y, B) with coefficients in the group G.

Let C be a cohomology operation relative to integers », s and coef-
ficient groups G, II. That is, C is a natural transformation

C. H(Y, B; G)— H¥Y, B; II).

With each operation C we associate a second operation, S(C), called the
suspenston of C. S(C) is a natural transformation

HY, B; G)—— H**XY, B; II);

its definition is given in § 3.

The purpose of this note is to determine S(%%,), where %3, is the
generalized Pontrjagin operation. In order to state our result concern-
ing S(%%,), we need an additional cohomology operation, the Postnikov
square (see [3], [10]). This was defined in [9], but only for a restricted
class of coefficient groups. In this paper we will define the Postnikov
square as a cohomology operation

b: H(Y, B; Ay)—— H*(Y, B; Ay) , (¢, k> 0)

where A,, is an even summand of a p-cyclic ring with divided powers.
We now may state the main result of the paper.

THEOREM 1. For any cohomology operation C, let S(C) denote the
suspension of the operation C. Then,

Received October 18, 1957, in revised form December 19, 1958. This research has
been partly supported by U. S. Air Force contract AF 49 (638)-79.
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(i) S(H,) = p
(ii) S(¥,) =0, (t>2)

where 0 denotes the zero cohomology operation.

The proof of Theorem I is given in §5. In § 2 we define the opera-
tion p, while in § 3 we give the definition of the suspension. In § 4 we
discuss relative cohomology operations, while in § 6 we give some addi-
tional properties of the operation p. In particular, we show that
S(p) = 0. Finally, the last section gives the theorem, 8S(C) = C3, for
any operation C.

I would like to thank Professor N. E. Steenrod for the wvaluable
suggestions made to me at the time of revising the paper. In particular
the definition of the suspension in § 3 and Theorem 7.1 are due to him.

2. The definition of the Postnikov square. The definition of the
Postnikov square, p, is obtained by first defining a ‘‘model operation’’,
p, which uses only a restricted category & of coefficient groups. The
category ¢« is defined as follows: let Z, = Z/rZ (r =0, 1, ---), where
Z = integers = Z,. Denote by ¢’ the category of all groups of the
form Z,, where 0 is zero or a power of a prime. For each group Z; in
=~ we have defined a p-cyclic ring with divided powers,

G(Zy) = G(Zg) + -+ + G(Zy) + -+ (direct sum) (see [9; 1.17]).

In particular,

i [ Zy if 6 is zero or odd
Gz(Za) = l . .
Zy if 0 is a power of 2.
We define a generator for G4(Z,) by
1, , if 6 is zero or odd
0:(10) = | o ‘
1y, if 0 is a power of 2

where 1, =1 mod r (r =0, 1, ---). The group G,Z,) will be the coef-
ficient domain for the operation p. As remarked in [9; § 2], once we
have defined the operation b for the category of regular cell complexes,
the definition easily extends to the category of all topological spaces.
Hence, in what follows we restrict attention to regular cell complexes,
which we will simply term complexes.

Let K be a complex and L a subcomplex of K. Let Z; be a group
in the category «”; that is, 0 is zero or a power of a prime. We define
an operation

p: HY(K, L; Z)— H"*(K, L; GyZ))

as follows. Let w € HYK, L; Z,); let 8 be the homomorphism from Z,
to Gy(Z,) given by B(1,) = 6g,(1,). Define
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(2.1) pu) = By(u U d,u) .

Here, o6, is the Bockstein coboundary operator associated with the
exact sequence

0—-—>Z i Z Za 07

and the cup-product is taken relative to the natural pairing Z, ® Z =~ Z,.

It is easily seen that this agrees with the usual definition of the
operation p (see [3] and [10]). For let # ¢ CYK, L; Z) be a cochain
representing u; that is, 8u = v, for some cochain v ¢ C**Y(K, L; Z).
Then, a cocycle representing S.(u U S,u) is given by # U 8u, which
coincides with the definition given in [10].

In [9; 8.14] we defined a function w which goes from HYK; Z,) to
H**Y(K; Z). This function can be extended to the relative case, follow-
ing the method given in §4. When this is done it is easily shown that

(2.2) p(u) = B, w(u) ,

a result we will need later.

The Postnikov square, b, is defined using the operation p as follows:
let w e H(K, L; A,,), where A,, is an even summand of a p-cyclic ring
with divided powers. By hypothesis, A4,, is a cyclic group whose order
is infinite or a power of a prime. Thus, there is an integer 6 such
that A,, is isomorphic to Z,, where Z, € «°. Let v be an isomorphism
from A,, to Z,. Then, by 8.1 in [9], for each non-negative integer »
we have defined a homomorphism ¢, mapping G.(Z,) to A,,,, which is an
extension of v~!. We define the operation p by

(2.3) b(u) = ¥pvi(u) ;

that ig, p is the composition of the following functions:

HYK, L; Ay)— H(K, L; Z) ——
H#(K, L Gy(Z) > H* (K, L; Ay -

We show the independence of this definition from the particular
choice of the isomorphism vy (and hence ¢,). This is a consequence of
the fact that

(2.4) LEMMA. pary = Ga),p ,

where « 1s ¢ homomorphism from Z, to a group Z. in »°, and G)
18 the homomorphism from G.Z,) to GZ.) induced by the functor G
(see [9; 1.23)).

Using 2.2, the proof of 2.4 is entirely similar to that given for 5.22
in [9] and is omitted here. From 2.4 the proof of the independence of
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the definition of b follows along exactly the same lines as 3.5 and 3.6
in [9]; we omit the details.

3. Suspension of cohomology operations. The definition of the
suspension used here is due to N. E. Steenrod'. Let I denote the unit
interval, [0, 1], and I the subspace {0} U {1}. The group H'(I, I; Z)
is cyclic infinite; let v be a fixed generator. TFor each space X
and coefficient group G define a function ¢ from HYX; G) to
H*Y(I x X, I x X; G) by

3.1) Hu) =v x u .

We use singular cohomology for X, and the natural pairing ZQ G~ G
for the cross-product. In §7 we prove the following lemma.

(3.2) LEMMA. The fumnction ¢ is an isomorphism mapping HY(X; G)
onto H'(I x X, I x X; G)(q > 0).

Consider now any cohomology operation C, which is defined on rela-
tive cohomology groups; say, C maps H'(X, A; G) to H¥ (X, A; II) for
each pair (X, A). Define an absolute cohomology operation, S(C), which
maps H™-Y(Y; G) to H*-Y(Y; II), for each space Y, by

(3.3) S(CYw) = = Ch(w) (w e H\Y; G)).

Using the method described in §4 we may extend S(C) to an opera-
tion defined on relative cohomology groups, an operation which we con-
tinue to denote by S(C). We wish to apply this construction to the
operation ¥3,; as defined in [9], this is just an absolute operation. Thus,
to use Definition 3.8 we must first extend the definition of %, to the
relative case.

4. Relative cohomology operations. Let O(g, 7; G, II) denote the
set of absolute cohomology operations relative to dimensions ¢, * and
coefficient groups G, I/; that is, if C € O(q, 7; G, II), then C: HY(X; G)—
H'(X, II) for each space X. As is well-known the set O(q, r; G, II)
is in 1-1 correspondance with the group H"(K; II), where K is an
Eilenberg-MacLane space of type (G, ¢). The correspondance is obtained
by assigning C(¢) to ¢, where ¢ is the fundamental class in H(K; G).
Choose now a base point e € K, and let a*: H¥*(K, e; A)~ H*K; A)
be the isomorphism induced by the inclusion K c (K, ¢). For any CW-
complex X and subcomplex A, the homotopy classes of maps (X, A)—(K, )

1 This definition has the advantage that it can be used in the case of cohomology
with local coefficients.
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are in one-to-one correspondance with HYX, A; G). Thus we define a
relative cohomology operation, C’, associated with an absolute operation,
C, as follows:

(4.1) C'(w) = fFa*1C()
where u € HY(X, A; G) and f is a map (X, A) — (K, e) such that
[ra* () =u.

With the operation C’ defined, one is then interested in whether the
properties of C extend to the operation C’. We now prove a general
lemma which essentially asserts that all the properties of C’ do carry
over to C'.

Let O(q,, -+, qu 7; Gy, -++, G,, Il) denote the group of absolute
cohomology operations, 7, in n variables; that is, if u, € H%(X; G,)
t¢t=1,---,n), then, T(u,, ---, u,) € H(X; Il). The operation T extends
to a relative operation, T, using the method just given for operations
of a single variable. Suppose now we are given absolute cohomology
operations

Ce Oy, " yqu " Gy -+, G, 1),

E e O(syy =+-,8,, 1; 1y ---, I, 1),

and D, e O(qy, -+, Qn, 8; Giy-++, G, 1))
i=1,2,---, p).

Let C’, E' Dj, be the corresponding relative operations.

(4.2) PROPOSITION. Suppose that for each space X and cohomology
classes u;, € HW(X; G)t =1, ---, m), we have

C(ulr *t un) = E(Dl(uly c un); 0y Dp(uly ct un)) .

Then, for each pair (X, A) and classes uj € HW(X, A; G,) (1 =1, --+, n),
we have

C,(u;; cty u;L) = E’(D;(u{y ct Y u;l,)! ] D;)(u;y ttty u;z)) .

We give the proof at the end of this section, first illustrating the
theorem by giving several corollaries.

(4.83) CorOLLARY 1. Let Ce O(q, s; R, S), D, e O(q;, s R, S)
(1=1, 2), where R, S are rings, ¢ = q, + q,, and s = s, + 8,. Suppose
that

C(ul ] %2) = Dl(ul) U Dz(uz)
for all classes u; € HW(X; R). Then,
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C'(ui U uy) = Di(ui) U Diy(us) ,
for all classes uj € (HW(X, A; R).

Proof. Let E, e O(q,, q,, ¢; R, R, R) and E5 € O(s, s, s; S, S, S)
be the respective cup-products. Let F be the composite operation C o E,,.
Using Proposition 4.2 we see that F’' = C’'o K. But since F(u,, u,) =
E(D,(u,), Dyu,)), again using 4.2 we see that

F'(uj, uy) = Ey(Di(u,), Dfu)) ;
that is,
C'(w; U ub) = Di(u}) U Dyu}) ,

as was to be shown.
Let C, D,, D, be the same operations as in Corollary 1. Then,

(4.4) COROLLARY 2. C’'(u;xub)=Dyu})x Diu}), where u, € H(X;, A;; R)
@ =1, 2).

Proof. Let p: (X, x X,, A, x Xj) - (X, A), p: (X, x X,, X; x 4))—
(X,, A4,) be projections. Then,

wy X wy = pi(uy) U pi(ul) .
Thus,

C'(ui x w) = C'(pful U piul) = Di(piui) U Dipiul)
= pf(Di}) U ps (D) = (Diwy) x (Diul)

Here we have used Corollary 1 and the naturality of the cohomology
operations involved.

To apply this to the operations 1}, recall the way in which these
operations were defined (see §3 in [9]). We defined a set of ‘‘model
operations’, P,, which used as coefficient groups only the groups of the
category &’ (see §2). The operations %, were then defined by compos-
ing the operation P, with coefficient group homomorphisms; that is,
precisely the same pattern as followed in Definition 2.3. Thus, the
operations ¥, are defined in the relative case by simply applying the
method given in this section to the operations P,.

Let P; be the relative operation obtained from P,. We note several
facts needed later.

(4.5) LEMMA. Let u;, € HW(X,, A; Z)) (t =1, 2), where Z, ¢ =. Then
(1) PZ(ul X Uy) = Pl(ul) X PZ(uz) (¢ Odd) .
If t=2 and 6 is a power of 2, then,
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(2) Pyu, x u,) = Pyu,) x Py(u,)
+ V*[S(L(ul) X ﬂ«w(uz) + #*w(ul) X S%(“z)] .

Here, v is the homomorphism of Z, to G,(Z,;) given by v(1,) = 0g.(1y),
and g is the factor homomorphism Z, — Z,. The functions Sq¢ and w
are defined respectively in 9.6 and 8.14 of [9].

Proof. The first statement is a consequence of Corollary 4.3 and
the fact that the absolute operations P, satisfy this formula:. Equation
4.5(2) was remarked in [9; § 13] for the absolute operations P,, and the
case dim u; odd. But it follows from 8.12 in [9] that 4.5(2) holds in
general. In fact Theorem 8.11 in [9] can be obtained at once from
equation 4.5(2). The extension of the equation to the relative operation
P, follows then from application of Proposition 4.2.

Combining Proposition 4.2 and 8.2 of [9] we also obtain

(4.6) LEMMA. Let t be an an tnteger where t = p, --+ p, (p;, prime).
Let w e HYX, A; Z). (4, € &’). Then,

Piu) = P 0 -x- o P} (u).

Since it is in fact the relative operation, P}, we will work with,
from now on we drop the prime, writing only P, for both the relative
and absolute operation.

Proof of Proposition 4.2. Let Y = K(G,, q,) x -+ x K(G,, ¢.),
where each K(G,, ¢;) is on Eilenberg-MacLane space of type (G;, ¢,).
Let 7, Y— K(G,, ¢;) (j=1,--+, n), be the projection map and set
t; = mi(¢,), where ¢, is the characteristic class in H%,(K(G,, q,); G,). Let
e, be a base point in K(G,, ¢, and set Y’ = (K(G,, q.), &) X =+ X
(K(G,, q.), e,). Let ¢}, ¢ be the equivalent of ¢, and z,. Then, Proposi-
tion 4.2 follows at once from the following three lemmas (we keep the
same notation as used in Proposition 4.2)

(4.7) Cluyy ==y wp) = E(D(thyy ===y Ua)y =0y Dty + 22,5 )
if and only if

C(ty, voey €)= E(D(Cyy vy o)y ooy D€, -+, ).
(4.8)  C'(u, -+, wp) = E'(Diui, +++, wi), « -+, Diul, -+, u))
if and only if

C'(ei, v, 7)) = E'(Di(ty, »+=, Th), = oo, D2, -+, T0))

2 The operations P, are easily defined for odd dimensional classes: see |9; §7].
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(4.9) If C(?u M) Zn) - E(Dl(?! M) ?n)y vty Dp(_{_lr Sty ?n))
then,
C,(Z;7 ) ?;’L) = E’(D;(?;; Tty -Z;z)y Tty D;(?;; *t Z;z)) .

We give only the proof of Lemma 4.7, the others being entirely
similar. Assume first we are given classes u; ¢ HW(X; G,) (¢t = 1, ---, n).
Let f,: X — K(G;; q;) be mappings such that f7(¢;) = u,. Set f=f, x

« X fo: X— Y. Then, by naturality, one has

(4.10) (a) Clthyy ++ =y ) = f7C(Cs, <=+, Ca) s
(®) D(wy, ==y uy) = fDy(c1y 25 C0) (t=1,--, D).
Suppose now that
C(ty, »ovy T0) = E(Dy(Tyy o+, Ta)y oor, DTy ooy ).
Then, by 4.10,
Clatyy =y ) = fEE(D(C1) o+ 2y La)y oo ey Doty ooy 20)
But E is natural with respect to mappings. Therefore,

f*E(Dl(Zl! M) ?n)’ °t Y Dp(?n ) ?n))
= E’(f*Dl(?l! tty ?n)v *t f*Dp(?ly ) Zn))
= E(Dl(uu ] un)r M Dp(uh ttty un)) ’

again by 4.10, which completes the proof of this assertion. The proof in
the opposite direction is trivial.

5. The proof of Theorem I. Recall that the operation %3, is defined
by means of the model operations P, and coefficient group homomorphisms.
But it is clear that the isomorphism ¢, defined in 3.1, commutes with
coefficient group homomorphisms. Thus, it suffices to prove Theorem I
with 3, replaced by P,, the operation p replaced by p, and the group
A,, taken to be a group in the category =, say A, = Z,.

Assume first that £ is an odd prime p. Since ¢ is an isomorphism,
the proof of Theorem I (ii) consists simply in showing

qus(u’) =0 ’ u € HT(X; Zr?)'
But this is immediate; for
Pp(u) = Py(v x u) = P,(v x u) = P,(v) x P,(u),

by Lemma 4.5(1). Here, v is a generator of H(I, f; Z;). However,
P,(v) = 0, by dimensionality considerations. Thus, P,p(x) = 0; and hence,
S(P,) = 0.
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Now, suppose that ¢ is any integer > 1 which is not a power of 2;
say, t = mp, where p is an odd prime. Then, by Lemma 4.6
Pp(u) = Py o Pyp(u) = Pn(0) = 0.
Consequently,
S(P,)=0.

Thus, we have proved Theorem I(ii) for the case ¢ is not a power
of 2. Before concluding the proof of part (ii), we must prove part
(i). Let the classes v and v be as above, where % has coefficients in
the group Z,. If 6 is zero or odd, then by Proposition 7.4 in [9], we
have

Pvxu)y=Poxu)y=0xul=+xu=0,

since »* = 0. Thus, in this case S(P,) = 0. Suppose now that ¢ is a
power of 2.

Let 7 be the factor map Z— Z,. Then, v x u = (y,v) X u, where
the right hand side uses the pairing Z, X Z, ~ Z,. Thus, using Lemma
4.5(2), we have

P2('U X 'LL) = P2(77*?) X u) = P2(7]*?)) X Pz(u)
+ v, [Sq.(n,v) x ) + paw®,w) x Sq(u)] .

Now, P,(n,v) =0, w,w) =0 by dimensionality considerations. Also,
since 7,v is a 1-dimensional class, Sq,(7,v) = £,v, where £ is the natural
map Z — Z, (see Steenrod [4; 12.6]). Thus,

(5.1) P(v x u) = v, [Ev x pw(w)] .
Consider the following commutative diagram:

2@ 72, ., 72 6,2)

E@Ml = l(l)

Z2 ® Z2 ~ Zz _V_) Gz(ZB) ’

where B is the homomorphism of Z, to G(Z,) given by B(1,) = 09.(1,)
(see 2.1). Then, from 5.1,

P(v x u) = v, Q@ t).[v @ w(u)]
= 0,1 ® B):lv ® w(w)]
=7V X B*w(u)
=v x p(u), by 2.2.

Therefore,
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Pip(u) = Pyv x u) = v x p(u) = ¢p(u) .
That is,
S(P)=p.

This proves part (i) of Theorem I. To complete the proof of the theorem
we must show that

Pyp(u) =0, (r > 1).
But by part (i) of Theorem I and Lemma 4.6, we have
szb(u) = Py Pﬂ)(%) = Py ¢p(u)
= Py-2 P2¢)p(%) = le‘—ﬁ(/Dp(p(’LL)) =0.

Here, we use property 6.6 of the function p, which is proved indepen-
dently in the next section. This completes the proof of Theorem I.

6. The properties of the operation p. We give here the main
properties of the Postnikov square, p.

(6.1) THEOREM. Let X be a space, and let A= >, A, be a p-cyclic
ring with divided powers. Suppose that w € HY(X; A,) (¢, k > 0).
Then,*

(6.2) p(u) = 0, of order A,, is odd or infinite,
(6.3) 2p(u) =0,
(6.4) P is a homomorphism,

(6.5) iof order A, = 2" (1 > 1) and 2u = 0, then b(u) = 0,

(6.6) bb(u)) =0,
(6.7) S () = pf*(u) ,
(6.8) Wup(u) = v, (u) ,

where f* is induced by o map f from a space Y to X, and «, is
wnduced by a homomorphism « from A to a p-cyclic ring with divided
powers A'.

The proof of Theorem 6.1 falls into 2 parts. Suppose first that we
have proved 6.2 through 6.7 with the operation p replaced by the opera-
tion p, and the coefficient group A,, restricted to be a group in the
category %« . Then, the proof of 6.2-6.7 for the general case of the

3 With the exception of 6.5 and 6.6, these properties are noted by J. H. C. Whitehead
in [10].



PONTRJAGIN OPERATIONS 907

function b follows at once, using definition 2.3; that is, p = &y*py,. In
particular, 6.2-6.5 are simple consequences of the fact that ¢, and v,
are homomorphisms; 6.6 follows from 6.3 and 6.5, and 6.7 follows from
the fact that f* commutes with all coefficient group homomorphisms.
Finally, to prove 6.8 for the operation p, one uses 2.4 and exactly the
same argument as that used to prove I(9) in §4 of [9]. Thus, we are
left with proving 6.2 through 6.7 for the operation p. Let ue H(K; Z),
where Z, € z°. Then,

(i) p(w) =0, 4f 0 is zero or odd.

This follows at once from 2.1. For if ¢ is zero or odd, the homomorphism
B is zero.

(i) 2p(u) = 0

This again is immediate from 2.1; for it is always the case that
283 = 0.

(iii) p 18 a homomorphism

In §5 we showed that the operation p is the suspension of the
operation P,. But by 7.4 in [6], all operations which are suspensions are
homomorphisms.

(iv) If 0 =2 (¢ > 1), and 2u = 0, then p(u) = 0.

Since 2u = 0, we may use Lemma 13.3 of [9]: namely, there are
classes x ¢ H*(K; Z,) and y € HYK; Z,) such that

U = N 0,(2) + v (¥) ,
where 6, is the coboundary associated with the exact sequence

0 Z-2 77— 0,

A is the natural factor map Z— Z,, and v maps Z, to Z, by v(1,) =
(6/2)1, (recall that 6 = 2, © > 1). Hence, by (iii) above,

p(u) = Pr8.(®) + Py (y)
= GZ(X)*QDS*(OC) + GZ(V)*Z)(?/)
= G,(v)0(Y) ,

by 2.4 and (i) above, since 8,(u) has integer coefficients. Now,
G(v):0(y) = Go(V)Byw(u) ,
by 2.2. We show that p(u) = 0 by showing that
G,(v)B=0.
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From Definition 2.1 we recall that 8 maps Z, to G.(Z,) by B(1,) =
29,(1,). Hence, using 1.21 and 1.24 in [9],

GZ(V),B(12) = 2G2(”)92(12) = 2g,(v1,)
= 29,((0/2)1,) = 2(0°/4)g,(1 ) = (6*/2)1,p =0 .

For, ¢*/2 = 2%/2 = 2¥-1; and, 20 = 2!*'. But by hypothesis, ¢ = 2; thus
2t —1=1+ 1.

(v) p(p(w)) =0
This follows at once from (ii) and (iv) above.
(vi) SFo(u) = pf*(u) .

This is simply a special case of Theorem 3.6 of [7]. This, then
completes the proof of Theorem 6.1.

We consider one more property of the operation p: namely, its
behaviour with respect to suspension. We continue to denote by S(C)
the suspension of a cohomology operation C.

(6.9) PROPOSITION. S(p) = 0, where 0 denotes the trivial cohomology
operation.

Proof. By the same reasoning as given in § 5, it sufficies to prove
Proposition 6.9 with b replaced by the operation p, and the coefficient
group A, taken to be a group in the category -, say A,. = Z . Thus,
we need simply show that pp(u) = 0, where w ¢ HY(L; Z,). Now by
Nakaoka [2] we have®:

(v, % v,) = Py(v)) x p(vy) + p(v)) X Pyv,) ,
for classes v, € HW(X;, A;; Z) (vt =1, 2).
Thus,
pp(u) = p(v x u) = Py(v) x p(u) + p(@) x Pyu) =0,

since P,v) = p(v) = 0 by dimensionality considerations. Here, v is the
image of v in H'(I, I; Z,). Hence, S(p) = 0, as was to be proved.

7. The relation 8S(C) = C5. We give here a theorem, whose proof
is due to N. E. Steenrod.

(7.1) THrEOREM. Let C be a cohomology operation, and let 8 be the
relative cohomology coboundary operator. Then,

4 Nakaoka only proves this for the case dim #,, v, even; but the result is true in
general, as is easily shown using Definition 2.1.
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8S(C) = Cs

where S(C) is the suspension of C.

We sketch the proof; let X be a space and A — X a subspace. Let
X'’ denote the mapping cylinder of the inclusion map A < X. That is,
unite I x A and X by identifying 1 x A with Ain X. Let A’ =0 x A.
The inclusions

(X', A)— (X', I x A) —— (X, A)

induce isomorphisms of the cohomology sequence of (X, A) and (X', A')
with local cosfficients. Thus, we may discuss the behaviour of the
coboundary & in the cohomology sequence of the pair (X', A’).

Consider the following hexagonal diagram (see [8], page 42):

HY(I x X)
n/ i

/ 3* o
H0 x X) gy | g (H'(1 x X)
(7.2) Lc;k HY(I x X) Lc;,*

¥ .
1 g%

. N
Ho(l x X, 1 x X) 5% CHYI x X, 0 x X)

01 AL
H»+(I x X, I x X)

Here all homomorphisms other than &, 8,, and J, are induced by inclusions.
Standard arguments, using exactness and homotopy equivalence, show
that the arrows around the peripheries are isomorphisms. We agree to
identify H%(X) with H%0 x X) by sending w — e x u, where ¢ is the
unit of H°(0; Z). At the end of this section we will use diagram 7.2
to prove the following lemma:

(7.3) LEMMA. Let ¢ be the function defined in 3.1. Then,
¢ = Slkik—l ’

where k¥, 6, are the functions defined in diagram 7.2
Notice that this proves Lemma 3.2; for the functions J,, ki are

isomorphisms. Now let g¢g*: H*(X', A’ U X)—> H"'(I x A, I x A) be
induced by the inclusion. Using the fact that I is a strong deformation

retract of a neighborhood of 7 in I (see [8]; Chapter 1, 11.6), together
with excision, one shows that ¢* is an isomorhism onto.

(7.4) LEMMA. The following diagram s commutative, where f* 1is
induced by the inclusion
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Ho (I x A, T x )L Hovxr, AU X)

I I

Ho(A) — " Hov(xr, A7)

Thus & = f*g*'¢.

This is a consequence of Lemma 7.8 and commutativity relations in
a slightly enlarged diagram. We omit the details.

The proof of Theorem 7.1 is an immediate consequence of Lemma
7.4. For let uw ¢ H(A'). Then, by this lemma,

Co(u) = Cf*g™'o(u) .
Using the naturality of the operation C, we have
Crg™ " plu) = S g Coplu) .

But by Definition 3.1, Co = ¢S(C).
Thus,

Co(u) = f*g™$S(C)(u) = 8S(C)(u) ,
again using Lemma 7.4. This completes the proof of Theorem 7.1.

Proof of Lemma 7.3. We apply diagram 7.2 to the case X = @&,

g = 0, and coefficient group = integers. Then, the unit class of H ”(T; Z)
can be represented as a sum v, 4+ v,, where

vy = R TdE 0y + 0), v = kST (v, + 0).

Thus,

S(w,) = — 8(v,) = v = a generator of H'I, I, Z). Therefore, by
Definition 3.1,

du) =v x u = (dv,) X u.
But by the axioms for the cross-product, we may write

(5vy) x U = 8w, x u) .
Furthermore, we have
v, = 17kT(e) ,
where e = di¥(v, + v,) = unit of H°0; Z). Thus,

vy x u) = 81k Y(e) x u)
= OiFki (e x u) = 8,kF (e x u) .



PONTRJAGIN OPERATIONS 911

Here we have used the naturality of the cross-product and the commuta-
tivity of diagram 7.2. If we now identify HYX) with H(0 x X) by
sending w — ¢ x u, we then have

du) = 8(v, x u) = 8. k¥ ' (u),

as was asserted.
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ON TCHEBYCHEFF POLYNOMIALS

J. L. ULLMAN

1. Introduction. Let C be a closed bounded set having an infinite
number of points. There is a unigque polynomial T,(z) of degree n, and
with one as coefficient of 27, such that if P,(z) is any other polynomial
with the same normalization,

(1.1) M, = max [ T (2)] < max |P.(2)] .

This is the Tchebycheff polynomial of degree n associated with C.

1.1. Assume that C has positive capacity, used throughout to mean
logarithmic capacity, and a connected complement D). The conductor
potential for such C is a real valued function U(z) defined in D with
the properties: (1.2) U(z) is harmonic at finite points of D, (1.3)
U(z) — log |#z] is regular at infinity and zero there, (1.4) there is a num-
ber o > —o such that U(z) > p for z in D, (1.5) if {z;} is a convergent
sequence of points with limit point on the boundary of D, then
lim U(z;) = p, except perhaps when the limit point belongs to a subset
of the boundary of capacity zero. The function U(z) has a unique rep-
resentation as a Lebesgue-Stieltjes integral

(1.6) U) = Slog 1z — tldy .

where p is a completely additive, positive set function defined for Borel
measurable sets, if it is specified that the carrier of /¢ consist of bounda-
ry points of D. [2].

1.2. Fejér [1] proved that the zeros of T,(2) lie in the convex hull
H of C. The consequence

(L.7) lzul = R,

where z,; is a zero of T,(z), and R is a finite constant independent of
n, will be sufficient for later reference. Let

(1.8) 0, = Llog M, .
n

Szego [3] proved that

Received April 5, 1954, in revised form February 24, 1959. The author has received
support, which he gratefully acknowledges, from the O.N.R. contract Nonr-330(00) adminis-
tered by the University of Michigan. The results of this paper were presented in Abstract
515 appearing in the Bulletin of the American Mathematical Society, Vol. 60, July 1954.
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1.9) limp,=p,

where o is essentially defined for a set C of positive capacity in §1.1,
and is taken as zero when C has zero capacity. If C does not have a
connected complement, p is obtained by taking for D in §1.1 the un-
bounded component of the complement of C. The above results in con-
junction with an argument due to R. Nevanlinna [2, p. 127], can be
used to show that

(1.10) lim %log I T ()| = U) ,

for z in the complement of H. The following results concern the ex-
tension of (1.10) to points of D in H.

1.3. Summary of results. Let C be a closed, bounded set of positive
capacity, and with connected complement D. Let v, (S) be the total
multiplicity of the zeros of 7,(z) in the set S. If E is a closed subset
of D, then

I lim 2=(E) _ ¢,
n
and
(1T lim S ‘%log \T(2)| — U@)ldA =0 .

If 7" is a continuously differentiable curve consisting of points of D, and
with interior denoted by I(I"), then

(1 tim 2 L) pa ey

The set function x is defined by (1.6). In the case D is bounded by a
finite number of analytic, Jordan curves, then

av) v(E) < P,

where P is a constant depending on £, but not on n. Also in this case
) lim %Iog T 2)| = U) ,
for z in E, with the possible exception of a set of measure zero.

2. The results concerning the zeros of 7,(z), namely (I) and (IV),
are established first.

2.1. LemMMA 1. Associated with D is a set of domains {D,},
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n=1,2, ..., with the properties:
(a) D, s an unbounded domain,
(b) the closure of D, is contained in D,.,, that is D, C D,.,,
(¢) each point of D is contained tn some D,.

LEMMA 2. Let w(z) be harmonic at finite points of D and regular
at nfinity. Furthermore, if {z;} is a convergent sequence of points
with limit point on the boundary of D, suppose that lim inf u(z;) = 0,
except possibly if the limit point belongs to a subset of the boundary
of capacity zero. If, in the exceptional cases, lim inf u(z,) = —v, 0=y < e,
then in fact v =0, and wiz) =0, for z in D. [2].

2.2. The generalized Green’s function of D with pole at w, G(z, w),
where the variable z and the parameter w are points of D, has the prop-
erties:

(2.1) G(z, w) > 0,

(2.2) G(z,w) is harmonic in z, except if z = w, and is regular at
infinity,

2.3) G(z,w) + log |z — w| is regular when z = w,

(2.4) if {z;} is a convergent sequence of points with limit point on
the boundary of D, then lim G(z;, w) exists, and is equal to zero, except

perhaps if the limit point belongs to a subset of the boundary of capacity
zero, and

(2.56) at the exceptional points lim sup G(z;,, w) < M < <o, a constant
depending on w, but not on {z;}. When w = o,

(2.6) G(z, ) =U(z) — p, and

(2.7) for finite or infinite w, G(z, w) = G(w, 2).

2.3. LEmMA 3. To each domain D, there is a positive constant
m,, such that

(2.8) On— 0 = mk—lﬁt@ﬂ .
n
Proof. Let
(2.9) u(@) = ~log | 1,1,
and let z,, «++, 2um, m =< n, be the zeros of T,(z) in D. The convention

used in listing zeros will be to repeat multiple zeros according to their
multiplicity. Consider the funection

2.10) %@ZWVWMWHW@—M—%QMN+H-

+ G(z, znm)) ’
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(2.11) = A\(2) + ASz) — A7) .

Let {z;} be a convergent sequence of points of D with limit point on
the boundary. Now, lim 4,(z;) =0 by (1.1), (1.8) and (2.9), lim inf A.(z,) =0
by (1.4), and lim A.(z,) = 0, except possibly if the limit point belongs to
a subset of the boundary of capacity zero. In the exceptional case
lim sup A,(z;) £ M < o, by (2.5). In addition #,(z) is harmonic in D and
regular at infinity. The conditions of Lemma 2 are thus satisfied so
that

(2.12) v,(2) =2 0,

for z in D. Let z,, -+, Z,,, P < m, be the zeros of T,(z) in D,. Then,
by (2.1), (2.7), (2.10), (2.12),

213) 0, — 0 — (0(2) — UR) = %(G(zm, )+ e 4 Gl 2) -

If m, is the lower bound of G(z, ) on D,, then the value of (2.13) at
z = oo yields (2.8).

2.4. Proof of (1). The set E will be contained in an element of
{D,}, say D,. Hence by (2.8) and the definition of v,(S),

(2.14) vilB) — vu(D) — On— 0
n - n - My,

The result then follows by (1.9).

2.5. Proof of (IV). Szegd [4] has shown, under the added restric-
tion on D, that

IA
3=

(2.15) On— 0

where K is a constant not depending on #n. This together with (2.8)
yields

(2.16) (D) = K.
m

k
Thus if D, contains F, the assertion follows.
3. The next results proved are (II) and (V) concerning the mean

convergence in the general case, and the point wise convergence in a
special case, of the sequence u,(z) = 1/nlog |T(2)].

3.1. Let D, again be a domain containing K. Assign to each point
of E a circle centered at the point, lying in D,, and with radius not
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exceeding 1/3. By the Heine-Borel theorem, a finite number of circles
cover E. Hence it is sufficient to prove (II), replacing E by a circle in
D, with radius less than 1/3.

3.2. Let sy, -+, 8, be the zeros of T,(2) in the complement of
Dy, and let 7, «--, 7,,, be the zeros in D,.,. By the convention of
listing multiple zeros, n, + n, = n. Note that by (1),

(3.1) lim ™ —=o0.
n
Next define
(3.2) Su@) =11 = 8,
and
(3.3) R, =11z~ 7).
Now
(3.4) |%1og IT,(2)| — Uz)
(3.5) = L og |S,2)| + Llog | R.2)| — U)
n o on n
(3.6) < L jog|S,)| — U@+ 221 U@ + Lllog|Ru(2)1] .
n | N n n

It will be shown in §4.3 that the first term of (3.6) tends to zero uni-
formly in K. Also in E,|{U(z)| has a finite upper bound, so by (3.1),
the second term also tends uniformly to zero in FE.

3.3. Proof of (I1I). By the remarks of §§3.1 and 3.2, it is sufficient
to prove

3.7) lim lg log | R,()|d4, = 0 ,
N Jlz—al<8

where |z — a| < 8 is a subset of D, and & < 1/3. Let
(3.8) Llog | R,(@)| = [log Iz ~ tldps

The integral in (3.7) then has the upper bound

(3.9) Slz—ul<5,

S log |z — tld/xnldA,
lt—al<28 ]

+
lz-al <8,

dA, .

g log |2 — tldst,
lt=al=28
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By (1.7) p¢,(S) is zero for any set S in the exterior of |z| = R. Hence
the second integral in (3.9) is bounded by

(3.10) naz%max{uog IR + 8], |log|SII} .

This tends to zero by (8.1). The first integral can be written

1
3. “—"—‘“d n dAz ’
@-11) Slz—a|<8,<SlL—al<2810g lz — t] £ >
since
(3.12) lz—t|Zlz—al+t—al<36Z1.

The order of integration can be changed, to yield

1
3.13 A, ), ,
( 1 ) S[t—a[<25\z—al<ﬁ(glog IZ - tld z> f
or
(3.14) S JOLCE
lt-a)<28
where
7'[521053' ]iJth’ 8= lt - a’l <28,

(3.15) g(t) = 1
7r8210g—8- + g(sz —t—alP), O0=|t—al<$.

From this it follows that an upper bound for (3.11) is
(3.16) 2g(a) .

n
This tends to zero by (3.1).

8.4, Proof of (V). The contents of §3.2, in particular (3.6), re-
duce the proof to showing

(3.17) lim -}ng IR(2)| =0,

for z in E, except possibly for a set of measure zero. Fy (IV) there
are less than P zeros in E for each =, and each of these, by (1.7) is
inside or on the circle |z] = R. Hence it is sufficient to show

(3.18) lim 7,(2) = lim - |log |2 — a,]| = 0,
n
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where |a,| < R, for |z| < @, a disc covering FE, with the possible ex-
ception of a set 7 of measure zero. For a fixed integer & > 0,

(3.19) ra(z) > -
k
either if
g n
(3.20) 2 — a,l >exp(k>,
or
w
(3.21) |z —a,] < exp (—?) .

Now (3.20) will ultimately fail to hold since |z —a,] < R+ Q. Let
T(k) be the set of z for which (3.21) holds infinitely often, and let
T(k, p) be the set where (3.21) holds for some n = p. It is clear that

(3.22) Ty T(k, ) .

Hence if m,(S) designates the exterior measure of a set S,

(3.23) m(T () < m(T(k, p)) < 3, exp ( ﬂ;f”)

n=p

_ _—_27_0_>< _ :3) -

= exp( - 1 exp( W > .
This bound holds for all values of p. Thus the exterior measure of
T(k), and hence its measure, is zero. Since T ig the set where
(3.24) limsup r,(z) > 0,

each point of 7' is contained in one of the sets T'(k). There are a de-
numerable number of the latter, cach having measure zero. 7T thus has
measure zero.

4. Let

(4.1) 5,(2) = _5_1og 15,(2)] .

1
It is first shown that
4.2) lims,(z) = U(?) ,

for z in D,.,, and that the convergence is uniform in D,. This result
completes the argument based on (3.6). The divergence theorem is then
applied to (4.2) to yield the proof of (III).
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4.1. LEMMA 4. If

4.3) 0, = Max $,(z) ,
€0

then

(4.4) limo, =p.

Proof. By (1.1), (1.8), (2.9), (4.3),
(4.5) 0, = MaxX 8,(2) = Max u, (2) = O, .

Let 2z, be a point of C for which

(4.6) O = 84(21)

Then

@.7) 00 = U(2) = s,(2) + Llog | Ru(e),
n n
n

g, + Llog | Ru(z)] .
n n

Now z, is bounded from D,,,, the domain containing the r»,;, and |7, |
has a bound independent of » by (1.7). Hence there are positive con-
stants, ¢ and b, such that

(4.8) O<a§lz1_7'nil§b<oor

for all » and ¢. Combining this with (3.3) and (4.7) yields
(4.9) puz g, — 2K,
n n

where K = max {|loga|, |logb|}. From this and (4.5) it then follows that

(4.10) On, = 0, = " o, + M
n, n,

The conclusion of the lemma now follows by (1.9), (3.1).

4.2, Form the function
(4.11) Wi(R) = 0, — 8,(2) — (0 — UR)) .
This can be treated like v,(z), (2.10), to show that it is positive in D.

LEMMA 5. The functions w,(z) converge to zero in Dy.,, and uni-
formly in D,.

Proof. Let the disc |z — a| < v lie in D,,,, and let 2, = a + rexp (:0),
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r < s <. Since w,(z) is positive in D,,,, and clearly harmonic there,
the inequality

(4.12) Y = S pa) < waz) < LTS w,(a)
v+ 8 v — 8

holds. This shows that the convergence of w,a) to zero implies the
uniform convergence to zero in the circle |z — a| = s, and that if w,(a)
does not converge to zero, the same will be true at each point of the
circle. A similar relationship holds between the convergence of w,(c)
and the convergence of w,(z) for |z| = s, a domain lying in D,.,. Thus
the set of points of D,,, where limw,(z) =0 is an open set, and the
set where lim w,(z) # 0 is also an open set. Since D,., is open and
connected, it cannot be expressed as the sum of two disjoint open sets,
so that one of these sets must be a null set. Since w,(x) =0, —p, a
quantity tending to zero by Lemma 4, the non-null set is the one for
which limw,(z) = 0. By the Heine-Borel theorem, D, can be covered
by a finite number of circles lying in D,.,, one of which will be of the
form |z| = s. The convergence will be uniform in each circle, and hence
uniform in D,.

4.3. For application to (3.6), note that
1

1

(4.13) log S,(z) — U?)| = lw.(z)| + lo, — o] .
Thus by Lemmas 4 and 5, the left side converges uniformly to zero in
D,, and hence in E.

4.4. Proof of (III). There is no loss in generality in assuming that
I''liesin D,. If z=a + rexp(if),r < s < v, then

(4.19) [CXON R

(v — sy
where ( ), denotes the partial derivative with respect to x. It is as-
sumed that @ is on /", and that |z — a| < s lies in D,.,. The same in-
equality holds for the partial derivative with respect to y. The con-
vergence of w,(a) to zero thus yields the uniform convergence to zero
of the partial derivatives in the specified circles. An application of the

Heine-Borel theorem then shows that the convergence is uniform on 7.
Thus

(4.15) lim _LS (Wo(2))dy — (wol2))yde = 0 .
2z Jr

Using (4.11), it is seen that this is equivalent to
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(4.16) lim ig (5u(2).dy — (5.(2)),da
2w Jr

= L wen.dy - e
2
Let 2\.(S) be the total multiplicity of the zeros of S,(z) in the set S.

Now both U(2) and s,(2) are harmonic on /°, and 7" is of sufficient smo-
othness for the application of the divergence theorem, so that the result

(4.17) lim l%(’—)l = (I(1)

is obtained. For any set S it follows from (3.2) that
(4.13) YalS) — Ma(S) = v Dysy) = 0y
Thus, by (3.1) and (4.7) applied to

(4.19) MU — vl o MU o e
n - n o n n

the proof of (III) is completed.

5. Relationship to a paper by Walsh and Evans. The results (I)
and (III) we obtained by other methods in [7], and another form of dis-
cussing the asymptotic behavior of T,(z) for z in the complement of C
was used. The result (IV) is not found in [7], and we will discuss in
more detail, and in a slightly more general context the significance of
this and the other results.

Domain Polynomials. Besides the T,(z), there are other sets of
polynomials which are associated with general sets C in the plane. We
mention only the Carleman polynomials [3], C,(z), which require that C
have connected complement, and Faber polynomials [5], F(2), which re-
quire that the complement of C be simply connected. These are adequate
to illustrate our remarks.

The Location Problem is an apt name to give to results relating to
the location of zeros of domain polynomials, and known results suggest
the further distinction of interior location and exterior location, corre-
sponding to whether we refer to zeros on C or in the complement of C.

Results on Exterior Loecation. For sets with simply connected com-
plements, and bounded by a simple analytic curve /7, it has been shown
by Johnston [3] and the author [5] that ultimately the zeros of C,(z)
and F,(z), respectively, lie inside any simple interior level curve of /.
It is not known whether this is true for 7,(z), although (IV) shows that
the zeros lie ultimately inside any exterior level curve.
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A basic observation of this paper and [7] is that when C has a
multiply connected complement, then zeros of T,(z) can lie in the com-
plement of C and be uniformly bounded from C for arbitrarily large n.
In the sense defined by (I) the number must be small in comparison
with », although they can exceed any finite bound. The refinement of
(IV) states that if C is bounded by a finite number of analytic curves,
then there is an absolute constant for any exterior level curve of C,
which ultimately cannot be exceeded by the number of zeros of T,(z)
exterior to this level curve. What has not been shown is whether a
constant exists for the complement of C itself. FExamples indicate that
if there is such a constant, it cannot be less than k — 1, where k is the
number of boundary components of C.

Interior Loecation. Formula (III) states that the proportion of zeros
on any component of C, for T,(z), approaches the harmonic measure of
the component. Where on the component the zeros accumulate is not
known. The existant examples, namely T,(z) for the circle and ellipse,
indicate that the Ilimit points of the zeros, which can be called the
center, have an interior location in the set. No precise characterization
of the center for T,(z) has been found. In [6] a study is made of the
center for F,(2). The indications are that the center will not be the
same set for the different classes of domain polynomials.
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ORDERINGS OF THE SUCCESSIVE
OVERRELAXATION SCHEME

RICHARD S. VARGA
1. Introduction. One of the more frequently used iterative methods
[11, 14, 18] in numerically solving self-adjoint partial difference equa-
tions of elliptic type:
(1) Znaai,jxj:kii ai,iioy lé’bg’n,
J=1
is the Young-Frankel successive overrelaxation scheme [16, 4]. If super-

seripts denote the iteration indices, then the successive overrelaxation
scheme is defined by

t-1 n
(2) x(inﬂ) — w{j}“_‘ bi)jxg_nﬂ) ‘|“Z?”90(J") _|_ gi} + (1 _ 0))x(in) ,
~1 J=i+
where
— ;50 4, 1+ ] L
(2") bi,j: . .;gi:kz/am; 14,5570,
’ =17

The parameter w is the relaxation factor.

Since the introduction of this method, there has remained the ques-
tion of the effect of different orderings of the equations of (1) on the
rate of convergence of the overrelaxation scheme. Young [16] introduced
the concept of a consistent ordering of the unknowns for a class of
matrices satisfying his definition of property (A), and he conjectured
[17] that, with certain additional assumptions, these consistent orderings
were optimal' in the sense that, among all orderings, the consistent
orderings give the fastest convergent iterative scheme for the case of
w =1 of (2).

The problem of the relationship between orderings and rates of
convergence has been recently investigated by Heller [6], whose approach
was combinatorial. Assuming the n x n matrix A = ||a,,|| of (1) to be
multi-diagonal, Heller concentrated on the problem of finding all order-
ings whose associated Gauss-Seidel iterative method, the special case of
(2) with @ =1, had the same eigenvalues as the eigenvalues of the
Gauss-Seidel method based on the ‘‘usual ordering.’’

Our approach to the question of orderings is based on the Perron-

Received October 3, 1958. Presented to the American Mathematical Society April 18,
1958.
I For some preliminary results on this conjecture for optimum orderings, see [17].

925
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Frobenius theory of non-negative matrices.” Our main result (Theorem 4)
contains as a special case a proof of Young’s conjecture. On the
other hand, while certain orderings may produce faster convregent itera-
tive schemes than others, we prove (Theorem 5) that, for the case
w =1 of (2), different orderings have vanishingly small effect on the
rate of convergence of the Gauss-Seidel iteration method for slowly con-
vergent problems. This last result proves a conjecture by Shortley and
Weller [10, p. 338] who observed this phenomenon in the numerical
solution of the Dirichlet problem.

2. Preliminary definitions. We first define the class S of matrices.
We shall later show in § 5 that the results, based on this class of mat-
rices, hold for a large number of matrix problems (1) arising from the
numerical solution of certain partial differential equations of elliptic type.
We let B denote the square matrix of coefficients b, ; defined in (2').

DEFINITION 1. The matrix Be S if and only if B satisfies the fol-
lowing conditions:
(i) B=|b,,ll is a non-negative % xn matrix, with zero diagonal
entries, i.e., b, ;=0 for 1+ 4, and b,, =0 for all 1 < 4,7 < n.
(ii)) B is irreducible [5, p. 458], i.e., there exists no permutation
matrix 4 such that

B, B?)
0 B, ’

where B, and B, are square submatrices.
(iii) B is symmetric.
For any permutation, or ordering, ¢ of the integers 1 <1 < n, let
Ay denote the corresponding n xn permutation matrix and let B,=/1,BA;=
A4BAG', where in general A’ denotes the transpose of the matrix A.
For B e S, B, is symmetric with zero diagonal entries, so that we can
decompose B, into:

(3) By =Ly + L,

ABA- = <

where L, is a strictly lower triangular matrix.” We define
(4) Myo) = 0oL, + L, a>0.

It is clear that M,(o) is a non-negative irreducible matrix for every
o >0 and ¢. Thus, by the Perron-Frobenius theory [8, 5] of non-nega-
tive matrices, M,(o) possesses a positive simple eigenvalue, m (o), which

2 A similar approach was employed Kahan [7’] in generalizing the results of Young
[16]. Although Kahan was not directly concerned with the question of orderings, many
of his results, stated without proof in [7], are nevertheless similar.

3 An mxn matrix L = |[l;,;]| is strictly lower triangular if and only if [; ;=0 for
i<, 1=1i,j=<n.
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is greater than or equal in modulus to all other eigenvalues of My(a),
and to m,(g) can be associated an eigenvector with positive components.
It can be shown, based on further results of the Perron-Frobenius theory,
that my(o) has the following properties:

J(i) my(0) is a strictly increasing function of ¢ [3, p. 598].
((ii) my(0) is an analytic function of o, for all ¢ > 0.

(5)

Before proceeding, we briefly state some of the terminology and
conclusions of the Perron-Frobenius theory, which we shall frequently
use. If C is an arbitrary non-negative irreducible n xn matrix, we say,
following Frobenius [5], that C is primitive if the positive eigenvalue »
given by the Perron-Frobenius theory is strictly greater in modulus than
all other eigenvalues of C. If there are k(>1) eigenvalues of C with
modulus », then C is said [9] to be cyclic of index k. In particular, if
C is cyclic of index k(> 1), then [9] there exists a permutation matrix
A such that

0 0 0 C
c,0 .-« 0 0
0 C --- 0 0

( 6 ) AC A =

00 --- C,0

where the diagonal blocks of /JAC /A~ are square submatrices with zero
entries. For any matrix C, we shall let 77{C| denote the spectral radius
of C, i.e., p[C] = max |\,|, where )\, is an eigenvalue of C.

J

3. Spectral radius as a function of ordering.

LemMA 1. If BeS, then my(o) = | Blo"’hy(Ino), where hy(x) =
hy(—a) for all real «, and hy0) = 1.

Proof. For ¢ > 0, there exists an eigenvector x with positive com-
ponents such that M,(o)x = my(o)x. From definition,

—_ ro__ B 1 ] - ’ 1
My(o) = oLy + L) = a(L(,, - —(r—L"’> =oM (,,<;> .
Thus, M ’,((1I )x = %Ofi)x Since M, and M) have the same eigenvalues,
then

(7) Om(,,<—}7—> = my(7), 0 > 0.

¢ Since mgy(s) is simple root of det [My(s) — AI] =0, the analyticity of my(s) can be
proved by means of the implicit function theorem.
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If

ho(l = —m([,(O') _1/2, 0 ’
+(Ina) E] o' o >

then equation (7) shows that h,(«), a = Ino, is an even function of «.
For 0 =1, my(1) = p[B] by definition, and thus #A40) =1, which com-
pletes the proof.

From (5) and Lemma 1, it follows that h,(a) is an analytic function
of a for all real values of a.

LEMMA 2. Let A(a) = e*L + D + eI/, where L is a non-negative
strictly lower triangular matriz, and D 1s any non-negative diagonal
matrix. If L 4 L' is irreducible, and 0 < a, < «,, then plA(a)] =
1A(a)].

Proof. If C=L -+ D+ I/ =lle; ||, then by assumptions stated in
the lemma, C is non-negative and irreducible. Assume now that C is
primitive, and consider any non-zero cycle v of C of length m = 1:

V = Ci0,Cigiy ** iyt —igr where ¢, >0,5=0,---,m—1,

‘m—-1 Jrii+1
It is clear that the corresponding cycle for A(e) is t = ¢™v, where ¢ is
an integer. From the symmetry of C, there is another cycle ¢’ of A(«a)
of the form: ¢’ = e¢~%v. Since ¢ and t' are contained in the 7,-th diagonal
entry of A™(«), it follows that the trace of A™(«) is ecomposed of terms
of the form: 2v cosh(qa). Using the monotonicity of cosh(x), we obtain,

for 0 < a, £ a,,
(8) tr[A™(ay)] = tr[A™(a)]

for all m = 1. By assumption, C is primitive, which implies that A(«)
is primitive for all real a. Since the trace of a matrix is equal to the
sum of its eigenvalues, then

(9) tr[A™(@)] ~ (L A(@)])", m — oo .

Combining the results of (8) and (9), and taking mth roots, we obtain
the desired result, under the additional assumption that C is primitive.

But if C is not primitive, then C = C + BI, 8 > 0, certainly is, and
since

A[A(a) = eL + D + BI + e=*L'] = glA(a)] + /3,
the desired result again follows.

THEOREM 1. If Be S, then hy(a) is mon-decreasing for a = 0.
Moreover, for any « =+ 0,

(10) 1 £ hy(a) < cosh(«/2) .
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Proof. For ¢ > 0, consider the matrix

= MJ(O) 1 —1/2T !
(11) Pyo) = ———t = _——_{d"’L, + 07'"L}} .
T EBle* T w1 Y ’
By definition, pg[Py(0)] = hy(Ing). For any a, = a, = 0, hy(a,) = hy(a,) if
and only if f[Py(e*)] = [ Py(e™1)], and thus the first conclusion follows
from Lemma 2, with D the null matrix.
To prove the second part of the theorem, we write Py(o) in the form

(12) Py(e") = cosh(a/2) - T, + sinh(e/2) - K, ,
where

’ _ 1 . — 1 T
(127) T, = BT (Ly + Ly); K, = B (Ly — L) .

For any real a, Py(e*) is a non-negative, irreducible matrix. If x is the
eigenvector of Py(e*) with positive components corresponding to the
eigenvalue hy(a), so normalized® that (x, x) = 1, then

(Py(e”)x, x) = hy(a) = cosh(a/2) - (Tyx, x) + sinh(a/2) - (Kyx, x) .

Since K, is skew-symmetric, then h4(a) = cosh(a/2) - (Tyx, x). But, T,
is symmetric, non-negative, and irreducible, so that (Tyx, x) < p[T,] = 1.
Thus, from the first part of this theorem and Lemma 1, we have that
1 = hy(a) < cosh(a/2) for all real . Assuming o # 0, suppose that
(Tyx, x) = p[Ty] = 1. This is true only if x is also an eigenvector of
T, and thus, from (12), x is an eigenvector of K,. But since K, is a
skew-symmetric matrix, the eigenvalues of K, are pure imaginary num-
bers. By the irreducibility of B, there exists at least one positive entry
in the first row of L}, and thus the first component of K,x is a nega-
tive real number, which contradicts the fact that x is an eigenvector of
K;. Thus, for a + 0, (Tyx, x) < 1, and we have the inequality of (10),
which completes the proof.
Since h4(a) is analytic for all real «, we conclude the

COROLLARY. If BeS, then either hy(a) =1 for all real a, or hy(x)
18 strictly increasing for a = 0.

DEFINITION 2. If Be S, then ¢ is an h-consistent ordering for B if
and only if Aga) =1 for all real a. Otherwise, ¢ is a mnon-consistent
ordering for B.

We remark that the above definition of an h-consistent ordering
generalizes for the class S the definitions of a consistent ordering given

5 Here, (x, y) denotes, as usual, the scalar product of the vectors x and y. If the

n
components of x and y are wx;, ¥4, respectively, then (x, y) Eiz ;.
=1
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both by Young [16] and Arms, Gates, and Zondek [1]. To show this,
assume that Be S satisfies Young’s property (A), and that + is a con-
sistent ordering for B in the sense of Young. Then, as shown by Young
[16, p. 97], both M,(s) and ¢'*B have the same characteristic polyno-
mials, and hence the same eigenvalues. Thus, m,(0) = ¢"*f[B], from
which it follows that %,(«) = 1, proving that +r is also an h-consistent
ordering in the sense of Definition 2. That consistent orderings in the
sense of Arms, Gates, and Zondek for matrices Be S also satisfy De-
finition 2 can be proved in a similar manner.

THEOREM 2. If BeS, then there exists an h-consistent ordering ¢
for B if and only if B is cyclic of index 2.

Proof. 1If B is cyclic of index 2, then by (6) there exists an order-
ing +» and a permutation matrix 4, such that

OBI>
B, 0/’

where the diagonal blocks are square submatrices. Thus,

(18) A,BA7 =B, = (

0 B,
M) =( O),
and
oB,B, 0
Mf“(a):< 0 oBzB1>’

and thus Mi(o) = oM3(1). It follows then that m.(v) = g[Blo"’, and
h,(a) = 1, proving that - is an h-consistent ordering.

Since Be S implies that B is non-negative and irreducible, then B
is either primitive or ecyclic of index k,k > 1. Since B is moreover
symmetrie, it follows from (6) that B is either primitive or cyclic of
index 2. We shall now that if B is primitive, no ordering of B is an
h-consistent ordering. With B primitive, let ¢ be any ordering, and
consider

1 (. T

(14) Ayla) = 77-rBj-{e Ly +e*L}},a=0.

Following the notation of Lemma 2, suppose that every cycle of A,(«)
of length m has ¢ = 0, for all m = 1. This implies that every non-zero
cycle of A,(a) contains precisely the same number of terms from above
the diagonal as from below the diagonal of A,(«). Since A,(«) has zero
diagonal entries, then every non-zero cycle of Ay(«) has an even number
of terms. Thus, the greatest common divisor v of the lengths of these
non-zero cycles is evidently 2. It is known [9] that v = 2 if and only
if Ay(a) is cyclic of index 2, and, for any real «, A,(«) is cyclic of index
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2 if and only if B is cyclic of index 2. This being a contradiction to
the assumption that B is primitive, there than exists a positive integer
m,, and a positive integer g, such that the tr[Ajvu(c)] contains a term
v cosh(q,v), v > 0, while t#[A}:(0)] contains the corresponding term v. As
in the proof of Lemma 2, it follows that, for o = 0,

(15) triie)] = tr[A3e(0)] + vlcosh(qex) — 1} .
Since this particular cycle of length m, can be repeated cyclically, then
(157) trlA()] = tr[Ag"(0)] + v'[cosh(ggla) — 1].

Since B is primitive, so is Ay(a) for all real «, and from (9) and the
definition of h,(), we have

(16) hy(20) = (A ()] ~ (Er[AF()])'™, m — oo .
For a sufficiently large so that ven* > 1, we obtain from (15’) and (16)
am hy(20r) = (Ve )™ > 1,

Thus, if B is primitive, no ordering ¢ of B is an h-consistent ordering,
which completes the proof.

We finally remark that it has already been pointed out [2] that, in
general, Young’s property (A), on which Young’s definition of consistent
ordering depends, for the matrix of coefficients of (1) implies that the
matrix B of (2) is cyclic of index 2. The same is true of its general-
ization [1] to property (A7). This relationship to eyelic matrices has led
to a further generalization [15] of the Young-Frankel overrelaxation
scheme to matrices B of (2) which are cyclic of index p, p = 2.

Returning to the successive overrelaxation scheme of (2), if x™
denotes the vector with ecomponents x{™, then for B symmetric, we can
write (2) equivalently as

(18) x( D = o2 x™  f

where

(19) L= (I — oLy oL + (1 — o)},
and

19" f=wl—wL)%.

Accordingly, we make the

DeFINITION 3. &, = (I — wLy)""{wL} + (1 — w)I} is the successive
overrelaxation matriz, corresponding to the matrix B and ordering ¢.
The quantity @ is the relaxation factor.

LEMMA 3. Let BeS. If, for w >0, there exists a positive real
for which
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my(7) = (LZ)H—> )

then t is an eigenvalue of <3 .. Moreover,if 0 < w <1, pu[.<;,] is the
unique positive value of T for which

Proof. It is known® that for w >0, < v = w if and only if
(20) OL, + Lyyo = (lff‘”;l)v ,
0]

from which the first part of the lemma follows. Since L, is a strictly lower
triangular matrix, then (I — wLy)™ = I + wL, + -+ + w"'Ly~*. Clearly,
Ifor 0 < w <1, &, is a non-negative irreducible matrix.” Thus, the
argest in modulus eigenvalue of &7, 1t /7.1, is positive, and its corre-
sponding eigenvector v can be chosen to have positive components. From

Z U = (%4 Jv, we have, by (20), that ms(s) and <2j_f;_4> inter-

sect in p[.%7,]. By continuity, the result is true also for w = 1, which
completes the proof.

We remark that %{0 + @ — 1}, graphed against ¢, defines a family

of straight lines through the point (1,1). Figure 1 illustrates the second
part of Lemma 3.

(ere=)

(.1) my()

]
1
1
1
I
1
1
1

ATEAN

Figure 1

DerFINITION 4. If BeS, and 0 < ®w <1, then &[B], w) is the
g+ w— 1)
D)
For the class of matrices S, the following theorem sharpens results
due to Stein and Rosenberg [12], and Kahan [7,7'].

unique positive value of ¢ for which ¢[Blo"? =<

6 See, for instance, [16, p. 99].
7 It is, moreover, primitive.
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THEOREM 3. Let Be S, and assume 0 < w < 1. If p[B] <1, then
for ¢ a mon-consistent ordering for B,

20— o) + apB] )

2—owpB] /)’
and for ¢ an h-consistent ordering for B, E&(p[B], )= p[.<.]. If
Bl =1, then [<5.]=1. If p[B]>1, then for ¢ an mnon-consistent
ordering of B, &(p[B], w) < pl.~4; .1, and for ¢ an h-consistent ordering
for B, &p[B], w) = p[<5,.].

E(FIB), 0) < A% < (

Proof. We consider only the case when 1[B]< 1, since the other
cases follow similarly. If ¢ is an h-consistent ordering for B, then
my(0) = p[Blo"*. From Definition 4 and Lemma 3, it follows that
Ep[B], w) = y[4.,]. If ¢ is a non-consistent ordering for B, then,
from Theorem 1 and its corollary, h4(a) is strictly increasing for a = 0,
and 1 < hy(a) < cosh(a/2) for a + 0, these inequalities giving directly

— : — Ina —rp7 [0+1
1/2 1/2 . /-
(21) g[Blo"* < my(o) < p[Blo cosh(——2 ) [{[B] < 5 ), o+1.
Consider the function k,(o) defined by
- _(oto—=1
(22) ks(0) = my(o) ( ), w>0.

For & = £(p[B], w), it follows from Definition 4 and the first inequality
of (21) that k(&) > 0. On the other hand, k(1) < 0 since k(1) = p[B]—1.
Thus, since k4(o) is continuous in ¢ for all ¢ = 0, there exists a r with
E<t<1 for which ky7) =0. By Lemma 3, p[.%,] =7, so that
Ep[B], w) < p[.~;.]. Using the second inequality of (21), we have that

0 = ky(t) = my(r) — (1:'%:_1_> < ?j[B]<T‘flz‘1> _ (z‘—}—w — 1) ’

(0]

from which it follows that

21— o) + 0FIB])

T =gl < < 2 — wp|B]

which completes the proof.
The special case w =1 gives rise to inequalities like that of Stein
and Rosenberg [12]. Since &(¢[B], = 1) = t’[B], we have the

COROLLARY.® For the Gauss-Seidel method, ® = 1 of (2), if p[B] < 1,
then

8 If BeS and ji[B] <1, Young conjectured [17] that for ¢ a consistent ordering of
B, u[#¢.1] = i[£s,1] for all orderings ¢ of B. Applying the first part of this corollary,
we have a proof of this conjecture.
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FIBl = L < (512 )

equality holding i1f and only tf ¢ is an h-consistent ordering for B. If
A[B1 =1, then gl 1 = 1. If H[B] > 1, then [B] < f[-<7.], equality
holding if and only if ¢ is an h-consistent ordering for B.

We now consider the subclass of matrices Be S for which #[B] < 1.
Following Young [16], we define the quantity:

2.7 @Bl T
@ o=y =1 [ STy |

so that’ 1 < w, < 2. In Figure 1, it can be shown that @, is the unique
value of the parameter w, 0 < w < 2, for which the straight line

<E+_:;)__1> through the point (1, 1) is tangent to the curve g[Blo'’.

Thus, for 0 < w = @,, the quantity &(#[B], w) can be defined as the
largest positive value of ¢ for which

It is known [16] that if the matrix B € S satisfies Young’s property (A),
with z#[B]< 1 and ¢ a consistent ordering (in the sense of Young) for
B, then o, is the overrelaxation factor which minimizes #[.%5 ], and thus
gives the fastest convergence in (2). A similar conclusion is obtained
for the generalization of [1]. Thus, for certain matrices, w, is the
optimum overrelaxation factor.

THEOREM 4.° Let Be S, and assume p[B] < 1. Then &uB, ®) <
g, for 0 < o = @, with equality of and only if ¢ is an h-consis-
tent ordering for B. For w, < w <2, .2, = o — 1, with equality
Jor all w in this range vf and only if ¢ is an h-consistent ordering
for B.

Proof. By Theorem 3, we need only consider the case w >1. If
¢ is a non-consistent ordering for B, then A (a) > 1 for all real « = 0.
from this, it follows, as in the proof of Theorem 3, that the straight

line <—0—+%:-1> intersects my(o) in a point whose abscissa is greater

than &(¢[B], w), for all @ with 1 £ o £ ®,. Thus, by Lemma 3, .&;

“h,w

has at least one eigenvalue greater in modulus than &z[B], w), so that

9 Since B€S, B is non-negative and irreducible, which implies that z[B] > 0.
10 Without the discussion of the case of equality, this result was stated in [7], and
proved in [7’].
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EplBl, w) < gl<5 ] for 1 < w < w,. If ¢ is an h-consistent ordering for
B, it can be shown, using basically the proof of this as given originally
in [16], that the following functional relationship

(24) N+ o — 1) = o

holds, for w # 0, between the eigenvalues A of &}, and the eigenvalues
p of B. From (24), it follows easily that &(¢[B], w) = p[.«5,] for
1 < w £ w,, which completes the proof of the first part of the theorem.

For w, < w <2, we use a result of Kahan [7], which states that
for any ordering ¢ and any real value of w, ¢#[.“3,] = w| — 1|. Thus,
for the indicated range of w, [} .] = w — 1. If ¢ is an h-consistent
ordering for B, it follows, using (24), that p[. 5 .,] = w—1 for 0, <w < 2.
If ¢ is a non-consistent ordering for B, then by the first part of this
theorem, #u[.7;, 1> &(@B], w,) = w, — 1, the last equality following
from (24) and the definitions of & and w,. Thus, if ¢ is a non-consis-
tent ordering for B, then g[<5 .= w —1 for w, < w < 2, with strict
inequality for @w = w,, which completes the proof.

COROLLARY. If Be S, and p[B] < 1, then for all real w and all
orderings ¢

(25) min{min [~ I} = w, — 1,
b ®
with equality if and only if B is cyclic of index 2.

Proof. For w =0, and w > w,, p[.<,] > w, —1 for any ordering
¢, by Kahan’s result [7]. For pg[B]< 1, we have that E(¢[B], w)
is a decreasing function of w for 0 < w < w,. Since, by Theorem 2,
there exists a consistent ordering for B if and only if B is cyclic of
index 2, the result follows directly from Theorem 4.

4, Asymptotic rates of convergence. If Be S and f[B] <1, we
define, as usual [16], the rate of convergence of the iterative scheme (2) as

(26) Ry, = —lnpul<;,].

In particular, we consider the Gauss-Seidel iterative scheme, the special
case of (2) with w = 1. By the corollary to Theorem 3, in this case,

If R= — Inp[B], we have

THEOREM 5. If BeS and p[B] < 1, then for all orderings ¢



936 RICHARD S. VARGA

Ryn o1 . In2—F[B])
27 1> 26t > = 4 PRETAP
7 - 2R 2 + —2inp[B]
Thus,

lim R,, _
(28) :I[B]rlfR_ =1.

Proof. The inequalities of (27) follow directly from the discussion
above. Applying L’Hospital’s rule,

lim M2 = PBY) _ g9
wlBIN ——2l’n‘ll[B]

from which (28) follows.

The above result contains as a special case a proof of a conjecture
of Shortley and Weller [10], who observed, from numerical data, that
for the numerical solution of the Dirichlet problem in a rectangle on a
fine uniform mesh, the rate of convergence of the Gauss-Seidel iterative
method is virtually independent of the order in which the points are
swept. For illustration, we suppose, following Shortley and Weller,
that we are solving numerically the Dirichlet problem in the unit square.
Assuming that there are p equal intervals of subdivision in each coordi-
nate direction, we let u, , denote numerical approximation to w(zx, y), the
analytic solution of the Dirichlet problem, where

c=",y=L,1<4,j<(p—-1).
p

KA
p ’
Making the well-known five-point approximation to Laplace’s equation

(29) mJ=ime+mﬂﬁwmﬂ+m¢mlé@j§@~D,
4

where u, ;, U, ;, U;,, and u,,, determined by the given boundary values
of the Dirichlet problem, are known, (29) is except for iteration super-
seript of the form (2) with @ = 1. The corresponding (p — 1)*x(p — 1)
matrix B,, whose entries are one-fourth or zero, is obviously contained
in S, and, as is easily shown, u[B,] = cos(7/p).

For completeness, we include also the well-known nine-point approxi-
mation to Laplace’s equation,

1
30)  wuy,; = g{qu,j F Uimn, s Ui g+ Uy g}

+ {ui—l,]+l F Uy 41 T Uiog, 5o + ui+1,j—-1}) 1=24,5=0m—-1),

3
20
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corresponding to a (p — 1) x (p — 1)* matrix B, which is also contained™
in S. It can be shown that

7B,] = ﬂs(g—@—{zx + cos(z/p)} .

The following table gives information about the quantity

1, @ — B
31 i(B]) = — 1 + 22— BD ]
(31) QD = {1 + M
po | B QB Bl | QB |
10 .951 057 .976 103 1941 747 971 595
25 .992 115 .996 073 1990 550 .995 065
50 .998 027 .999 014 .997 633 .998 818
100 .999 507 .999 753 .999 408 1999 704
TABLE 1

Thus, for either the five- or nine-point approximation, with p = 25 as
an example, there is less than one-half of one percent difference in the
rates of convergence of the Gauss-Seidel iterative scheme for all 576!
orderings of the 576 unknowns.

5. Elliptic partial difference equations. We now show how the
preceding results can be applied to the numerical solution of certain
partial differential equations of elliptic type.

Given a closed bounded region £ in Euclidean n space with interior
R and boundary /7, and given a function g(x) defined on /I, we seek a
function u(x) defined in Q which is continuous in 2, twice differentiable
in R, which satisfies

(32) 3 Ad@) 2 4 Fo = G@), v R,
and
(33) u(x) = g(x), xel .

It is assumed" that the functions F, G, A4,, ---, 4, are given functions
of x which are continuous in 2 and twice-differentiable in R, and satisfy
the conditions

(34) Ai(x) >0, F(x) £0, xeQ, 1<ksn.

After a cartesian mesh is laid over the closed region £, the above
partial differential equation and boundary conditions are approximated
[16, 14] by the following system of N linear equations

1 For p =3, the matrix B; is cyclic of index 2, while B, is primitive.

12 For the numerical solution of (32) where F,G, Ay, ---, A, are only piecewise
smooth, see for example [14].
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=

(35) a; x; =k, 1<9

A

N,

J

1t
[y

where N is the number of mesh points interior to £. If the mesh is
sufficiently fine, the discrete approximation can be derived in such a way
that the N x N matrix A = ||a, ;|| satisfies the following properties:

(36) (i) A = lla; ;|| is symmetric and irreducible.
(i) a;;,=0fori+j,1<4,<N.
(i) Sa,,=0 for all i, 1 =i = N, with strict inequality
Jj=1

for some 1.

The matrix A is thus positive definite [13]. If D is the N x N positive
diagonal matrix with entries «,;, we may write (35) in the equivalent
form:

(35) (D *AD?)D'* =x D'k

where x and k are column vectors with components «, and k;,, 1<1< N,
respectively. If D'’x =y, D '*k = g, and D' AD'? = A, (35") reduces
to

(37) Ay=g.

~ ~

Since A has unit diagonal entries, we define the matrix B as B
and (37) can be written in the form

(37) y=By+g.

Il
~
I
»

It follows from the definition of B that B is a non-negative irreducible
and symmetric N x N matrix, which has zero diagonal entries. Thus,
BeS. Since A is positive definite, so is A, and from A =1 — B, it
follows that ﬁ[ﬁ] < 1. Thus, the discrete numerical approximation to

(32)-(33) can be reduced to the form (37’) where B e S, and the results
of the preceding sections are applicable.

BIBLIOGRAPHY

1. R. J. Arms, L. D. Gates, and B. Zondek, A method of block iteration, Journal Soc.
Indust. Appl. Math., 4 (1956), 220-229.

2. Garrett Birkhoff and Richard S. Varga, Reactor criticality and non-negative matrices,
Journal Soc. Indust. Appl. Math. 6 (1958), 354-377.

3. Gerard Debreu and I. N. Herstein, Nonnecgative square malrices, Economentrica, 21
(1953), 597-607.

4, Stanley P. Frankel, Convergence rates of iterative lrealments of partial differential
equations, Math. Tables, and Other Aids to Computation, 4 (1950), 65-75.

5. Frobenius, Uber Matrizen aus nicht negativen Flementen, Sitzungsberichte der Aka-
demie der Wissenschaften zu Berlin, (1912), 456-477.



ORDERINGS OF THE SUCCESSIVE OVERRELAXATION SCHEME 939

6. J. Heller, Ordering propertics of linear successive iteration schemes applied to
multi-diagonal type linear systems, Journal Soc. Indust. Appl. Math., 5 (1957), 238-243.
7. W. Kahan, The rate of convergence of the extrapolated Gauss-Seidel iteration, pre-
sented at the Conference on Matrix Computations, Wayne State University, September 4,
1957.

7'. W. Kahan, Gauss-Seidel methods of solving large systems of lincar equations, Doctoral
Thesis, University of Toronto, 1958.

8. 0. Perron, Zur Theorie der Malrices, Math., 64 (1907), 259-263.

9. V. Romanovsky, Recherches sur les chaincs de Markoff, Acta Math., 66 (1936),
147-251.

10. G. H. Shortley and R. Weller, The numerical solution of Laplace’s equation, Journal
Appl. Phys., 9 (1938), 334-344.

11. R. H. Stark, Rates of convergence in numerical solution of the diffusion equation,
Journal Assoc. Computing Machinery, 3 (1956), 29-40.

12. P. Stein and R. L. Rosenberg, On the solution of linear simultancous equations by
iteration, Journal London Math. Soc., 23 (1948), 111-118.

13. O. Taussky, 4 recurring theorem on determinants, Amer. Math. Monthly, 56 (1949),
672-676.

14. R. S. Varga, Numerical solution of the two-group diffusion cquation in v — y ge-
omelry, IRE Trans. of the Professional Group on Nuclear Science, NS-4 (1957), 52-62.

15. Richard S. Varga, p-cyclic matrices: a gencralization of the Young-Frankel succes-
sive overrelaxation scheme, Pacific J. Math., 9 (1959), 617-628.

16. David Young, Iterative methods for solving partial difference equations of elliplic
type, Trans. Amer. Math. Soc., 76 (1954), 92-111.

17. David Yound, Iterative methods for solving partial difference cqualions of elliptic
type, Doctoral Thesis, Harvard University, 1950.

18. David M. Young, ORDVAC solutions of the Dirichlet problem, Journal Assoc. Com-
puting Machinery, 2 (1955), 137-161.

BETTIS ATOMIC POWER DIVISION
WESTINGHOUSE ELECTRIC CORP.






ON WEAK DIMENSION OF ALGEBRAS

ORLANDO E. VILLAMAYOR

1. Introduction. In this note we try to characterize algebras whose
weak dimension is zero, i.e., algebras A which are flat A’-modules.

In this direction, Theorems 1 and 2 give the corresponding results,
for weak dimension, to known theorems for (strong) dimension. How-
ever, it seems to be more interesting to find relations between these
two dimensions.

Theorem 38 gives such a relation for commutative algebras over
a field. For the non-commutative case, only a weaker necessary condi-
tion is found in Theorem 5. However, in the case of algebras satisfy-
ing the descending chain condition for left ideals a complete picture of
the 0-weak dimensional ones is given in Theorem 6.

Section 6 applies these results to group algebras. In [2] Auslander
partially succeded in characterizing (von Neumann) regular group al-
gebras. However, concerning the group, he only proved the necessity of
the group being torsion and the sufficiency of the local finiteness. The
difference seemed to be related to the Burnside problem. Theorem &g,
then, fills the gap and the problem is now completely solved.

In the last section we study some relaitons between weak dimension-
ality and semisimplicity (in the sense of Jacobson) in tensor products
of algebras.

After this paper was written we received a copy of a paper by
Prof. Harada on the same subject [4]. However, there is no overlap-
ping of the main results.

We would like to express our thanks and indebtedness to Professor
Rosenberg for this helpful adviee and criticism.

2. Notations and terminology. Throughout this note we use the
homological notation and terminology of [2].

Since we are dealing with algebras over a (fixed) ground ring K,
all tensor products are suppose to be taken over the ground ring K,
unless otherwise specifically expressed, so, we shall use ® for Q.
Similarly, homological dimension of algebras are indicated by dim A or
w.dim. A if they are considered over K, or R-dim A (resp. R-w.dim
A) if they are considered over another ring R.

For a ring, simple and semisimple mean simple and semisimple with
minimum condition for one-sided ideals. Regular will always mean re-
gular in the sense of von Neumann.

Received October 10, 1958, and in revised form February 9, 1959. This work was partially
supported by a J. S. Guggenheim fellowship and by the Office of Naval Research.
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Semisimplicty in the sense of Jacobson is called J-semisimplicity.

3. Characterization of O-weak dimensional algebras. Let A be an
algebra over a commutative ring K. The dimension (resp. weak dimen-
sion) of A as an algebra is, following the classical definitions, the dimen-
sion (resp. w.dim) of A as an A’-module, where A° = A ® A* (A* the
algebra anti-isomorphic to A). Since A is a cyclic A%-module, we shall
start with some considerations on cyclic flal modules (i.e. cyclic modules
M with w.dim.M = O).

LEMMA 1. Let R be any ring and A a cyclic left R-module. Then
the following conditions are equivalent:

(a) A is R-flat.

(b) Torf(R/I, A) = O for every principal right ideal I in R.

() If A=R|J, a the image of 1 in A and x € J, there exists
Yy € R such that xy = O, ya = a.

Proof. (a)= (b) is obvious.

(b)=(c). Let x e J and let I be the right ideal generated by x. Ac-
cording to ([3], VI, Ex. 19, p. 126) condition (b) implies I N J = IJ.
Since x € I N J, then x e IJ, that is, there is a ze J such that © = xz,
hence za = O, and y =1 — 2 verifies vy = O and ya = a. (c) = (a). Let
B = R|/I, for any right ideal I. If xelI N J, condition (c) assures the
existence of an element ze J such that xz = «, so that xe IJ, hence
InNndJ=1J. That is, Torf(B, A) = O for every cyclic module B ([3],
VI, Ex. 19), so A is flat ([5]).

As a consequence, we obtain

LEMMA 2. Let A = R|J be a cyclic flat left-R-module. If I isa fi-
nitely generated left ideal contained in J, there is a principal left ideal
I such that IC I' C J.

Proof. We proceed by induction on the number of generators of I.
If I has one generator, I = I'. Suppose the lemma is true if I has
n — 1 generators, and suppose «,, ---, &, generate I. Let us call a the
image of 1 in A. If «, 2,6 I < J, then 2,0 = 2,04 = O and there is an
element y € R such that x,y = O and ya = a, hence z,ya = O, and there
is a ze R such that z,yz = O and za = a, so yza = a. If we call »r=
1 — yz then 7 =2, x,r =2, and ra = O. This last condition implies
red and I < I, € J where I, is the ideal generated by 7, x;, -+ -, @,.

From these lemmas, the following well known result may be im-
mediately proved:

COROLLARY 1. If a cyclic left module A = R[I is R-flat and I is
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fimitely gemerated, then A is R-projective.

In fact, Lemma 2 implies I is generated by a single element, say
2, and Lemma 1 assures the existence of yeI with a2y = x, hence
R — Ry is a projection of R onto I and I is a direct summand in R, so
A is projective.

Now, we shall apply these results to characterize O-weak dimensio-
nal algebras and the following theorem corresponds to that one given in
[3] X, Proc. 7.7, p, 179) for dim. A = O.

THEOREM 1. In order that w.dim A = 0 it s necessary and sufficient
that, for every finite set {a,, -+, a,} in A, there exists an element e in
the two-sided A-module A Q) A such that ae = ea,(1 <1 < n) and that,
under the mapping € Q y — xy the image of e in A is 1.

Proof. Let a, +--,a,e A. Suppose w.dim A = O, i.e., A is A°flat.
The elements 1 af — a; ® 1* belong to J = Ker(4®— A), then they
are contained in a principal left-ideal I < J. If z is the generator of
I, 21 =0(1e A), then there is an element ¢ such that e.1 =1 and
ze = 0, hence (1 ®af — a; ® 1*)e = O and the necessity of the condi-
tions proved.

To prove the sufficiency, let us consider an element zeJ. Thus
z2=>4101KRaf —a,Q 1)y, € A% a;€ A), so, there is an e¢e A° such that
I®af —a;®1)e=0,e.1 =1, hence z¢ = O and Lemma 1 implies A
is A°-flat.

As a consequence of Theorem 1 and [3], (IX, prop. 7.7) we obtain

COROLLARY 2. If A is a finitely generated K-algebra, then w.dim A =
0 if and only if dim. A = 0.

Of course, this result may also be obtained from Corollary 1 and the fact
that Ker(A° — A) is a left ideal generated by the set {a, ® 1* — 1 &X a%},
where the a,’s generate A as an algebra.

Now, following the same lines given by Rosenberg and Zelinsky
([9], Th. 1, p. 88) we prove

THEOREM 2. Let A be a K-algebra which is free as a K-module.
If w.dim A = O, then A s locally finite over K.'

Proof. Let {xz;} be a K-basis of A and {b,, ---,b,} be a finite sub-
set in A. If B is the subalgebra generated by the set {b, ---, b,}, then,

for every ze B,1 ® 2" —2® 1e A° is contained in the left-ideal gene-
rated by the set {1 ® b} — b, ® 1}.

1 An algebra A over a ring K will be called locally finite if every finitely generated
subalgebra is contained in a finitely generated free K-submodule of A.
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Theorem 1 shows the existence of elements ¥, ---, ¥, such that
AI®b —b,®1) > ,2,QyF =0 and >\ ,x,y, =1. Thus

A®*-2@1M)Xe,Qy =0

for every ze B, that is,

2,0 Y; = 22, QY2 -

If we write zx, as a linear combination of the x;’s, this formula
shows that y,z is a linear combination of the y’s, that is,

Yz = >k, (ke K)

hence, z = )&,z = >, ki,%y;, and, then, B is contained in the K
submodule generated by the set {xy;}

Finally, if we write the elements 2,y, in terms of a basis, say {x.},
since only a finite number of x,’s appear in each xz;,, B is contained
in a finitely generated K-free K-submodule of A.

4. Algebras over a field. In the case K is a field, then, trivially,
A is a K-free K-module and, if w.dim A = O, the conditions of Theorems
1 and 2 must be satisfied.

The results of [3] (IX, 7.5 and 7.6), referred to weak dimension
(i.e., starting from IX. 28 intead of IX. 2.8a) may be condensed, by using
the equivalence between w.gl.dim B = O and R being a (von Neumann)
regular ring [5], in the following proposition:

PrOPOSITION 1. If A is a K-algebra over a regular ring K, then
w.dim A = O if and only if A° is a regular ring.

In the case of commutative algebras over a field a complete charac-
terization of the case w.dim A = O is obtained in the following result.

THEOREM 3. Let A be a commutative algebra over a field K. Then,
then following conditions are equivalent:

(i) A s locally separable®

(il) w.dim A =0

(ili) A Q F is regular for every field F containing K.

Proof. (i) = (ii). Obviously, since A is locally separable, it satisfies
the conditions of Theorem 1.
(ii) = (iii). This is a trivial consequence of the inequality

w.gldimA ® F < w.gl.dim F + w.dim 4

obtained from the spectral sequences [3] (XVI, 5.5a p.347) and the
equivalence between w.gl.dim R = 0 and regularity obtained in [5].

2 An algebra A4 over a field K is called locally separable if every finitely generated
subalgebra is contained in a (finitely generated) separable subalgebra.
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(iii) = (1). If A is commutative and it is not locally finite over K, then
there is at least one element x which is transcendental over K, hence
A contains a subalgebra isomorphic with the polynomial ring K[zx].

For every polynomial p(x), let 0, be the set of elements ye A such
that yp(x) = 0. Let I = U 0,, then, trivially, I is an ideal in A, and
no element of K(x) is in I; otherwise, if q(x)e I, there is a p(x) such
that q(x)p(x) = O, contradicting the transcendency of x.

If A is regular, for every p(x) there is an element 2z such that
2(p(x))* = p(x), hence 1 — zp(x)el and, in A/I, the images of all p(x)
have inverses, so A/I contains a subalgebra isomorphic with the field
of rational functions K(X).

Let us call B= A/I. If A is regular, then B is regular too, and,
from the exactness of A - B— 0 we obtain F® A— F® B— 0 exact.
Then, if F® A is regular, so is F&® B.

Since B 2 K(X) and K(X) is a field, B is the direct sum of K(X)-
modules isomorphic with K(X), hence, from the fact that & distributes on
direct sums, F'® B is a direct sum of F® K(X)-modules isomorphic with
F'Q K(X). Applying now ([2], Prop. 2, p. 6569), we obtain w.gl.dim F' &
B > w.gl.dim F & K(X). Then, we must prove just that F& K(X) is
not a regular ring. In fact, if F is any field containing properly K,
then F'® K(X) contains a subring isomorphic with F & K[X] =~ F[X],
which is an integral domain, and F' X K(X) is the set of rational func-
tions q(x)/p(x) with ¢(x)e F[X] and p(x) e K[X], hence, it is an integral
domain but not a field because it has no inverse for q(x) e F[X] if
q(x) ¢ K[X], thus F® K(X) is not a regular ring.

Thus, condition (iii) implies A is locally finite.

Since A ® F' is regular and commutative, B® F has to be semi-
simple for every finitely generated subalgebra B and every field F' con-
taining K, hence B is separable and so A is locally separable.

The result of Corollary 2 can be extended, in the case of algebras
over a field, by using the following result of Kaplansky ([7], Lemma 1).

LEMMA 3. If I1isa countably gemerated left-ideal in a regular ring
R, then dim,I = O.
A direct implication of this lemma is obtained in

THEOREM 4. Let A be an algebra over a field K. If [A: K] = &,
and w.dim A = O, then dim. A = 1.

Proof. Since w.dim A = O implies A Q) A* regular, and Ker(4° — A4)
is generated by the set {#;, ® 1 — 1 ® x}} (where the x/s are generators
of A) and this set is countable, then Ker(4°— A) is projective. Thus,
dim A <1. Since dim A = O implies [A; K] finite, then [A: K] = &,
implies dim 4 = 1.
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We shall say that an algebra A is locally one dimensional if every
finite set of elements is contained in a subalgebra B such that dim B < 1.
The following theorem approximates the result obtained in Theorem 3
for commutative algebras.

THEOREM 5. Let A be an algebra over a field K. If w.dim A = O,
then A 1s locally one dimensional.

Proof. Let {a, ---,a,) be a finite set of elements in A. Let B,
be the subalgebra generated by this set. Since A° is regular, there is
an idempotent e, such that (1 ®a’* —a, @ 1)e, = 0 and e, is mapped
onto 1 by the natural mapo: A° > A (In fact, the left ideal generated
by the finite set {1®a —a, ®1} is generated by an idempotent
1 — e, which is mapped onto 0).

IfxeB,then 1®a* — 2 @ 1* = Sy, (1®af — a, ® 1)(y, € 4°%), thus
1®a* —x®1*¥)e, = O for every xe B,.

Let {b,, -+, b,} be the set of elements of A appearing in e, and
B, the subalgebra generated by 1{a,, ---,a,, b,,-+-,b,}. Then, by the
same arguments, there is an idempotent e,e A° such that . ®1 —1®
x2¥)e, = O for every xe B, and o(e,) = 1.

By repeating the process we obtain a chain of subalgebras B, <
B, cB,C--- If weecall B=UB(t=1,2,-.-) then Theorem 1 implies
w.dim B = 0. In fact, for every finite subset {«,, ---,%,} in B there
is a finitely generated subalgebra B, with x,e B,(1 <t < h), then e,.,
satisfies (z, ® 1* — 1 Q xF)ep, = 0, 0(e4r) = 1, and ey., € B,

Since B is, at most, countably generated, then Corollary 2 and
Theorem 4 imply dim B < 1.

REMARK 1. According to Proposition 1, if A is an algebra over a re-
gular ring K, w.dim A = 0 implies A° is regular. Then, in this case,
Theorem 4 may be expressed in the following way:

THEOREM 4’. Let A be an algebra over a regular ring K. If A is
denumerably generated and w.dim A = 0, then dim A < 1.

Thus, Theorem 5 is valid for algebras over a regular ring K.

5. Algebras with descending chain condition. Theorem 3 shows
that, for a commutative algebra over a field, w.dim A = 0 if and only
if A is locally separable. We do not know whether this statement is
true in the non commutative case.

In the case of algebras satisfying the descending chain condition
for left-ideals, the following result, suggested to the author by Professor
Rosenberg, characterizes completely the 0-w. dimensional case.
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THEOREM 6. Let A be an algebra over a field K satisfying the
descending chain condition for left ideals. Then, w.dim A =0 if and
only if :

(a) A is semisimgle

(b) A is locally finite over K

(¢) The center C of A s locally separable.

Proof. 1f w.dim A = 0, condition (a) follows from the regularity
of A, (b) from Theorem 1 and (¢) from Theorem 3.

Suppose, now A satisfies (a), (b) and (c). Since A is semisimple,
it is a direct sum of (a finite number of) simple algebras S; satisfying
conditions (b) and (c), and, because of the direct sum decomposition,
w.dim A = max(w.dim S;). Since each S; is a matrix ring over a divi-
sion algebra D, satisfying (b) and (¢) and w.dim S, = w.dim D,, it will be
enough to prove the sufficiency of these conditions for division algebras.

Let A be a division algebra. Condition (¢) implies w.dim C = O.
According to the sub-additivity of the dimension ([9], Th. 5, p.93) we
have w.dim A < w.dim. C + C-w.dim 4, then, it is sufficient to prove
that A X, A* is regular. This is so if A X, S* is regular for every
finitely generated subalgebra S of A.

Since A* is locally finite and S* finitely generated, then [S*:(C] <
and S* is a division ring. Thus A ®, S* satisfies the descending chain
condition. Since A is central simple and S* simple (because now we
are congidering A and S as algebras over C), then A ®,S* is simple,
hence regular, and the theorem is proved.

6. Group algebras. In [2], Auslander studies necessary and suffi-
cient conditions for a group G and a ring K to obtain (von Neumann)
regular group algebras K(G). He proved the necessity of G being a tor-
sion group and the sufficiency of G being locally finite, besides the con-
ditions on K.

In Theorem 8 we prove the necessity of the local finiteness, and
then regular group algebras are completely characterized.

A similar difference existed between Theorem 3 and 4 in [8], but
by direct aplication of Theorem 2 we fill the gap obtaining the following
result.

THEOREM 7. Let G be a group, S a subgroup contained in the cen-
ter of G and K any commutative ring, then K(S)-w.dim K(G) = O if and
only if G/S is locally finite and K is uniquely divisible by the order of
each element in GJS.

In fact, the local finiteness of K(G) as a K(S)-algebra implies the
local finiteness of G/S.
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THEOREM 8. Let G be a group and K any commutative ring. Then
K(G) is regular if and only if G is locally finite and K 1is a regular
ring uniquely divisible by the order of each element in G.

Proof. A trivial modification in the proof of ([3] X. 6.1) may be
used to prove

w.dim K(G) = r.w.dimg K .

Thus, K(G) regular implies w.dim K(G) = O and Theorem 2 implies G is
locally finite.

The remaining part of the proof follows from Auslander’s result.
It also may be seen as a special case of Theorem 7.

REMARK 2. The proof of the necessity of the local finiteness of G
for a group algebra K(G) to be regular does not need all the homological
machinery. In fact, it follows immediately from the following lemma:

LEMMA 4. Let K(G) be the group algebra generated by a group G
over any commutative ring K and g, ---, g, be elements of G. Then
the subgroup S generated by {g., -+-, 9.} s finite if and only if there is
an element x € K(G) such that (1 —g)x =01 <t <n). If this is the
case, x = sy, where s is the sum of all elements in S.

Proof. If S is finite, the sum s of all elements in S satisfies the
equations (1 — ¢,)r = 0, and so every product sy.

Conversely, suppose 1 —g)x =0 (1 <1 <n). Thus, x=gx=---=
g.2. Since every fe S is a product of powers of the g,’s, then fx = x.
Let = 3\7"khh,;eG). For every feS, fx =« implies « has a term
k.fh, and so all elements of S appear multiplied by k., hence S is finite
(because x is a finite sum). Furthermore, we obtained z = k;sh, 4+ o/,
with (1 — g,)¢’ = 0. By induction on the number of terms in z we
obtain the last result.

A complete proof of Theorem 8 may be obtained as follows: Suppose
K(G) is regular. Then the ring homomorphism o¢: K(G) — K defined by
the group homomorphism G — {1} implies K is regular.

If K(G) is regular, every finitely generated proper left ideal is
a direct summand, hence it is annihilated, on the right, by a non-zero
element x e K(G). Since all 1 — g are in Ker o, every finite set gene-
rates a proper left ideal, and so the previous lemma implies G is locally
finite.

Suppose ge G has order n. By Lemma 1 there is an element x
with o(x) =1 and (1 — g)x = O, hence Lemma 4 implies © = sy(s =
S ¢") and so g(x) = g(s)a(y) = no(y) = 1, hence » has an inverse in K
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and the necessity of the conditions is proved.

Suppose, now, K and G satisfy the conditions of the theorem. Let
x = > kg, eKerov, so, x = > ki(g; —1). Let S be the subgroup gene-
rated by ¢, ++-,¢., m its order and s the sum of all elements in S.
Since m has an inverse m~' in K, then y = m~'s satisfies zy = O, o(y) =
1, and Lemma 1 implies K is K(G)-flat. So w.dim K(G) = w.dimy K =
O (3] X, 6.2) and K(G) is regular.

7. Weak dimension and Jacobson semisimplicity. A ring will be
called J-semisimple if its Jacobson radical is (O).

If T is a ring and M a left-T-module, then the ring Hom,(M, M),
with the operations defined in the classical way is a topological ring by
defining the finite topology induced by M. ([6], Ch. IV).

If we are in the situation S € R < Hom,(M, M), where S and R
are rings, we shall say S is dense in R if it is so in the finite topolo-
gy induced by Hom,(M, M).

In this section we shall prove the following theorem:

THEOREM 9. Let A be a K-projective K-algebra. If B 1s J-semi-
simple K-algebra and w.dim A =0, then AR B ts J-semisimple.

Before proving the Theorem we shall state the following lemmas:

LEMMA 5. Let T be any ring and M a left-T-module. If S, R
are rings such that S € R € Hom,(M, M), R is regular and S is dense
in R, then S is J-semisimple.®

Proof. Let xeS. Since R is regular, there are elements y, z¢e R,
2 # O, such that z(1 — a2y) = O. Since R < Hom,(M, M), there is at
least one m € M such that m* == O and m*?-*» = O, that is, there exists
an n e M(n = m?) such that n» = O and » = n'?. Now, we have xelS,
yeR,(n*)Y =n, and S is dense in R, then there is an we S such that
(n*)* = n, that is, n'~™ = O, and 1 — xu can not have an inverse in S,
so au is not quasi-regular, and S is J-semisimple.

LEMMA 6. If A is a K-projective K-algebra and B is a K-algebra
which 18 a subdirect sum of K-algebras P,, then A X B is a subdirect
sum of AR P,

Proof. B is a subdirect sum of P,’s if and only if the sequences
B— P,— 0 and 0 — B— J| P, are exact.

3 The conditions of the lemma are, evidently, stronger that those which are really
needed in the proof. In fact, we only need S to be 1-fold transitive in R and R J-semi-
simple in which, for every element @ there is an g such that 1-wy has a left annihilator.

It may be sccn that, if S is commutative, the conditions of Lemma 5 are necessary.
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Now from the exact sequence B — P,— 0 we obtain AX B —
AR P,—0 exact. We need only to prove the exactness of 0 > AR B —
I (A® P).

Since A is K-projective, we have, from 0— B— [ P,, the exact
sequence 0 > AQ B—>AX I P,. Wehave ([3], Ex. II. 2, 31) a natural
homomorphism

AQILP —1I(AR P)

which is, trivially, a monomorphism if A = K. Since X) commutes with
direct sums, it is a monomorphism if A is K-free and, a posteriori, if
A is K-projective. Then the composite map gives the exact sequence

0-AQB—~[I[(AR P)

and the lemma is proved.

Proof of the theorem. Since B, being semisimple, is a subdirect
sum of primitive rings P,, then the previous lemma implies that A QB
is a subdirect sum of rings A & P,; then, to prove the theorem it is
sufficient to show that the rings A ® P, are J-semisimple. Now, since
P, is primitive, it is dense in a ring of linear transformations, that is,
P, € R, = Hom, (M;, M;) where the rings R, are regular and the P’s
are dense in the R;s. Since A is K-projective, we may apply the
spectral sequences [3] (XVI, 5a, p. 347) and then, R, regular and
w.dim A = O give AR R, regular.

If we show the inclusion A® P, € AQ R, € Hom 45,,(A& M,, AR M,)
and the density of AX® P; into A X R;, Lemma 5 completes the proof
of the theorem.

Since A is K-projective, we have the exact sequence 0 > A X S, —
A® R, = AR Ho,m(M,;, M,).

If A is K-free, the natural mapping A ® Hom,(M;, M;) - Hom, (M,
A M;) is the natural mapping of a direct sum into a direct product,
which is a monomorphism. Since A, being projective, is a direct sum-
mand of a free module, and since both X and Hom commute with finite
direct sums, then the given mapping is also a monomorphism.

From the natural isomorphism Hom, (M;, A ® M,) = Hom ., (A ® M,,
AR M;) we obtain the inclusions.

ARS, € A®R; € Hom g, (AQ M;, AQ M)

Let xc AQ R,, then ¢ = Ya,; X7, and v, = 3,0, ® m;, (b, € A,
My, € M;) be a finite set of elements in A ® M;. Then z(v;) = 3., 0,0, X
rmy). Since the set {m,} is finite and B, is dense in R;, for each 7,
there is an s;€ B, such that »,(m,,) = s,(m,,), then y = Sa,&s,; e AQ P,
and y(v,) = x(v,), so AR P; is dense in AR R,.
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As a consequence of this theorem we can state the following corol-
lary:

COROLLARY 3. If A, B are algebras over o field K and w.dim B = O,
Then J(AQ B) = J(A) ® B. (We call J(R) the Jacobson radical of a ring
R).

In fact, since A/J(A) is semisimple, from the exact sequence

0> JA)® B— AR® B— (A]J(4) ® B— 0

we obtain J(A) X B 2 J(A X B).

From Theorem 2 and ([6], V. 14, Th. 1, p 123) it follows that every
element in J(4) ® B is quasi-regular, so it is a radical ideal in A Q) B.
Thus J(A) Q B € J(A® B) and the corollary is proved.

This result generalizes ([1], Th. 1).
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