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1. Introduction. An algebra 2 of continuous functions on a com-
pact Hausdorff space C will be understood to be a set of complex-valued
functions on C which is closed under the operations of addition, multi-
plication, and multiplication by complex numbers. The algebra A is
called separating if to any two distinet points of C there exists a func-
tion in A which takes distinet values at the given points. The norm
Il of a continuous function f on a compact space is defined to be the
maximum absolute value of the function. The algebra U is thus a
normed algebra. 2 is called a Banach algebra if it is complete with
respect to its norm, i.e., if the limit of every uniformly convergent
sequence of elements of U is in A.

An important theorem of Silov (see [5], p. 80) asserts that if A is
a separating algebra of continuous functions on a compact Hausdorft
space C then there is a smallest closed subset S of C having the prop-
erty that every function of 2 attains its maximum absolute value at
some point of S. This set is called the Silov boundary of 2. A simple
example is obtained by taking C to be a compact subset of the complex
plane and 2 to be the set of all continuous functions on C which are
analytic at interior points; in this case the Silov boundary of 2 coincides
with the topological boundary of C.

Given a separating normed algebra 2 of continuous functions on a
compact space C, it seems natural to ask, in view of Silov’s theorem,
whether there exists a smallest subset M (not necessarily closed) of C
having the property that every function in 2 attains its maximum ab-
solute value at some point of M. The answer in general is no. How-
ever, it will be shown (Theorem 1 below) that such a set M, called the
minimal boundary of 2, always exists if in addition it is assumed that
2 is a Banach algebra and that there is a countable basis for the open
sets of C, i.e., that C is metrizable. An example will be given to show
that the metrizability of C is necessary.

If the minimal boundary M exists, it is clear that the closure of M
is the Silov boundary. An example will be given to show that M need
not be closed, so that M in general is smaller than the Silov boundary.
This raises the question of the topological structure of M, which is an-
swered (Theorem 2) by showing that M is a G, i.e., a countable inter-
section of open sets.
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The next portion of the paper concerns the representation of bounded
linear functionals on 2 by measures. It is an easy consequence of the
classical Hahn-Banach theorem and the Riesz representation theorem
that any bounded linear functional @ on 2 of norm 1 can be represented

by a (complex-valued, Borel) measure ¢ of norm 1 on the Silov bounda-
ry S of 2, in the sense that ¢(f) = S fdp for all £ in 2. It is natural
S

to conjecture that ¢ can actually be taken to be a measure on the min-
imal boundary M of A. The author will devote a subsequent paper to
a proof of this result and a consideration of related questions. Karl de
Leeuw also has a proof of this result, based on work of Choquet [3]. In
the present paper we prove a special case, which is needed to prove the
general result and which will be sufficient for the applications considered
here. This special case, Theorem 3 below, states that for any point x
in C — M there exists a non-negative valued measure ¢ of norm 1 on

C — {x} such that f(x) = S fdy for all f in 9.

The final section is concerned with problems of approximation in
one complex variable. Necessary and sufficient conditions are obtained
on a compact set C without interior of the complex plane that every
continuous function on C be uniformly approximable by rational funec-
tions whose poles lie in the complement of C. Mergelyan [6] has ob-
tained sufficient conditions, of a different type, that the approximation
be possible.

A summary of the results of this paper was given in [1].

2. The minimal boundary.

DEFINITION 1. Let f be a continuous function on a compact space
C. Then S(f), the maximal set of f, consists of all points x in C such

that |f (@) = lI£Il.

DEFINITION 2. Let U be a separating algebra of continuous func-
tion on a compact space C. A subset N of C 1is said to bound A f
NN S(f) is non-vord for all f in A. If the class of subsets of C which
bound A contains a smallest set M, the set M will be called the minimal
boundary of 2A.

THEOREM 1. Let U be a separating Banach algebra of continuous
Sfunctions on a compact metrizable Hausdorff space C. Then A has a
mimimal boundary M and M equals the subset M, of C consisting of all
x in C such that there exists f in A with S(f) = {«}

Proof. Let N be an arbitrary subset of C which bounds 2. For
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each x in M,, there exists f in 2 with S(f) = {z}. Thus {z} NN =
S(f)NN is non-void. Hence ze N. Therefore M,CN.

To show that M, is indeed the minimal boundary of 2, it remains
to prove that M, bounds 2. It must therefore be shown that M,NS(f)
is non-void for each f in 2A. Let f be given. Let I' be the class of
all subsets v of C such that there exists f, in %A with S(f,) =v. By
Zorn’s lemma, there is a subeclass /7, of /" which contains S(f), which
has the finite intersection property, and which has the property that no
larger subclass of I" has the finite intersection property. Since C is
compact and since each v in /7, is closed, the set D = (7 is non-void
and closed. Since there is a countable basis for the open sets of C,
and since the family {C — v: ve ')} of open sets covers C — D, there
exists a sequence {7,} from 7", such that {C — v,} covers C — D, i.e.,
such that D = Nv,. Fix a point z, of D. Define

Fo = L @)1, -

Clearly S(f,) = 7, and ||f,|l = ful®,) = 1. Thus the series >, 27"f,
converges uniformly on C to a function ¢ in A with ||g|| = g(x,) = 1.
If zeC — v, then |g(x)| = 327" f.(x)] <1 since |f,(x)| =1 for all n
and |fi(x)| < 1. Therefore S(g)cv,. Thus S(g)cNv, =D. Assume
that S(g) contains more than one point. Since U separates points, there
exists h, in A which is not constant on S(g). We may assume that the
maximum of |k,] on S(g) is 1 and that h, takes thc value 1 at some
point of S(g). If we set h = h, + ki, it follows that the maximum of
|h] on S(g) is 2 and that this maximum is attained only where %, takes
the value 1. Thus |k is not constant on S(g). Therefore the set

E = {x: xeS(g) and |h(x)| = |k(y)| for all y in S(g)}

is a proper closed subset of S(g).
Let =, be any point in E. Define the functions

9, = [9(x,)]™'g
and
by = [M(@)] ' .

Thus |lg,|l = gi(x,) =1 and S(g,) = S(g). Also hyx) =1, |h(x)| =1 if
xeS(g), and |h(x)| < 1 if xeS(g) — E. Let K = ||hy|l. For each posi-
tive integer n, let

Ve=1{o: 1+ 2K —1) < |hy2)| =1 + 27K — 1)} .

Clearly UV, = {x: |hy(x)| >1}. Thus V,NS(9) = V.NS(g,) is void for
each n. Therefore |g,(x)| < 1 for each « in V,. Since V, is compact,
it follows that there exists a positive integer p, such that |g.(x)|*» < 1/2
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for all z in V,. Since ||g,|]l £ 1, the series
ho + A(K — 1)n§:"f 2-"gn
converges uniformly on C to a function & in A. We have
() =1 + 4(K — 1)§2-n =1+ 4K—1).

If xe S(g9) — E, then |k(x)| <1 and |g,(x)| = 1, so that |k(x)| <1+ 4(K—1).
If xe C — UV,, then |h(z)| < 1and |gx)| =1, so |k(x)| <1 + 4K —1).
If zeV,, then |h(x)| <1+ 277K — 1), |g(®)|» <1 for all n, and
lg/(x) 175 £1/2, so that |k(x)| £1 4+ 4(K — 1). Therefore k(x,) =1+ 4(K—1) =
lIEll. Thus «, € S(k) and S(k) is disjoint from S(9)— E. Since x, € S(9)c D=
N7, and since S(k)e ", it follows from the maximality of /7, with
respect to the finite intersection property that S(k)e I",. Therefore
S(@9)cN,y<S(k). Since S(g) — E is non-void, this contradicts the fact
that S(g) — E is disjoint from S(k). Therefore the assumption that
S(g) contains more than one point is false. Thus S(g) consists of a
single point x,. It follows that x,e M,. Since S(9)cD = N,vCS(f),
it follows that x,e S(f)NM,. Thus S(f)N M, is non-void, as was to be
proved.

We now give an example to show that Theorem 1 fails if C is not
metrizable. Let I denote the unit interval [0, 1] with the usual topology.
Let I be an uncountable set. Let C consist of all families * = {%,}4ex
with z,€ I for each «. Thus C is the Cartesian product of an uncountable
number of intervals, and is therefore compact. Let A consist of all
continuous functions f on C which have the property that there exists
a countable subset 4 of I" such that f(x) = f(y) whenever & and y are
points in C such that x, =y, for all a in 4. It is easy to see that A
is a separating Banach algebra of continuous functions on C. By the
Stone-Weierstrass theorem it follows that 2 consists of all continuous
functions on C. Let N, = {x: x, = 0 except for a countable set of a}
and N, = {z: x, =1 except for a countable set of a}. It is easy to
see that N, and N, bound 2. Since N,NN, is void, it follows that A
does not have a minimal boundary.

For an example of a function algebra whose minimal boundary is
distinct from its Silov boundary, let C be the subset {z: |z2| = 1} of the
complex plane and let A consist of all continuous functions f on C which
have the property that there exists a continuous function f on {z:|z| =1}
such that f () = f(2) for z in C, such that f is analytic on {z: 2| < 1},
and such that f(l) = f(O). It is easy to see that 2 is a separating
Banach algebra of continuous functions on C. It is also not difficult to
show that the Silov boundary of % is C, whereas the minimal boundary
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of A is the set {z:|z| =1,z 1} = C — {1}.

THEOREM 2. Let U be a separating Banach algebra of continuous
functions on a compact metrizable Hausdor(f space C. For each positive
integer n, let U, consist of all points x in C such that there exists f
m A with ||| <1, |f(x)| > 38/4, and |f(y)| < 1/4 for all y in D,(x),
where D,(x) = {y: p(x,y) = n~'} and p is a metric on C. Then U, is
open and MU, = M, where M 1is the minimal boundary of 2.

Proof. If f is any function in 2, it is clear that the set o,(f) =
{x:xeC,|f(x)| > 3/4, |f(y)| < 1/4 whenever ye D,(x)} is open for each
n. Since U, is the union of the sets belonging to the class

{on():f e, lifll =1},

it follows that U, is open.

If xe M, by Theorem 1 there exists f in A with S(f) = {«x}. It is
clearly no restriction to assume that ||f|| =1. Hence |f(x)| = 1. Since
|f(y)] <1 when ¥ is in the compact set D,(x), it follows that there ex-
ists a positive integer p, such that |f(y)|”» < 1/4 when ye D,(x). Thus
x € ,(f). Therefore xe U,. Since this is true for each n, it follows
that e N U,. Therefore Mc N U,.

Now consider a fixed z in (U,. We must prove that xe M. To
this end, we construct by induction a sequence {g,} of functions in 2
having the following properties:

(i) Hgn+1 - gn“ é 2—n+1

(i) llg.ll =31 — 2

(i) ga.(x) =31 —2™)

(V) 1Guni(y) — gu(y)] < 27771 if ye Dy(x) .

We first construct g,. Since xe U,, there exists a function f in U such
that ||f]] £1 and zea(f). Let

g = —‘;[f(x)]‘lf :

Since |f(x)| > 3/4, we have ||g,|| <3/2-4/3 =2< 31 — 27%), so that g,
satisfies (ii). Clearly ¢,(x) = 3(1 — 27"), so that g, satisfies (iili). Hence
g, satisfies all of the relevant conditions. Assume now that g, «--, g,
have been chosen to satisfy all of the relevant conditions. Since g,(x) =
3(1—2-%), there exists an integer j >k such that |g,(y)|<3(1—2-*)4-2-*-2
for o(x,y) < j71, i.e., for y in C — D). Since ze U,, there exists a
function f in A such that [[f{|=<1 and xeo,f). Define h =
3. 27k f(x)]"*f. Thus h(x) =3 .27*', Since ||f]| =<1 and |f(z)| > 3/4,
we see that ||2]| < 27+, Since also |f(y)| < 1/4 for y in D,(x), we see
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that |k(y)| < 27%-' for y in Dy(x). Let g,., =g, + h. It follows im-
mediately that

@) Ngen — gell =275+,
that
(1v) 19en(y) — 9:(¥)| < 2771 if ye Dy(w) ,
and that

(lll) glc+1(x) = gx(x) + h(.’l?) =31 — 27%) 43 . 27
—3(1 — 2-%-1) |

If ye Dy(«x), then

19| = 10| + 1)
< “glc“ + 27t <L 3(1 — 2—k-1) 4 2-k=1
=8 -2 <31 —-27"7).

If ye C — Dy(x), then

19| = 19| + [h(y)| = 31 — 27F) + 27 + || ]|
< (1 — 27F) 2782 27+l = (1 — 27-?)

It follows that
(11) |lglc+1” = 3(1 — 2_"_2) .

Thus g,., has the relevant properties. We have thus constructed the
sequence {g,}. By condition (i), the sequence {g,} converges uniformly
on C to a function ¢ in A. By (i), |lg|l <£3. By (ii), g(x) =3. If
y € D,(x), then

90| = 191l + 2 10000) - 60)] < 8L — 277 + 327 < 3.
Thus S(g) = {#}. Therefore xe M, as was to be proved.

COROLLARY. If U 1is a separating Banach algebra of continuous
Sfunctions on a compact metrizable Hausdorff space C, then the minimal
boundary M of 2 is a countable intersection of open sets.

3. Representation by measures.
We now prove the fundamental result of this paper.
THEOREM 3. Let U be a separating Banach algebra of continuous

functions on a compact metrizable Hausdorff space C. Let U contain
the function 1, Let x be a point of C — M, where M 1is the minimal
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boundary of . Then there exists a non-negative Borel measure v of
norm 1 on C — {a} such that f(x) = Sfdv for all f in 2.

Proof. We assume that a metric 0 on C is given. For each posi-
tive integer n, let

D, ={y:yeC, px,y)=n'}.

Let b and ¢ be real numbers such that 0 < b < 1/4 < 3/4 < c¢< 1. For
each positive integer n and each positive integer m, let h,, be a con-
tinuous function on C such that h,,(y) = b'™ for ye D,, h..(y) = c'™
for ye C — D,,, and 0™ < h,,(y) < ¢'™ for all y. Such a function exists
because the closures of the sets D, and C — D,, are disjoint. There
are two cases to consider. Either there exists (Case 1) for each positive
integer n a positive integer m and a function f in 2A such that
[f(x)] > (B/4)"™ and |f(y)| = hpa(y) for all ¥ in C, or (Case 2) there ex-
ists a positive integer % such that for all positive integers m and for
all f in o either |[f(x)] < (3/4)"™ or |f(y)| > huw(y) for some y in C.
We shall show that Case 1 is impossible and that Case 2 implies the
theorem to be proved.

Assume now that Case 1 obtains. Let the positive integer 7 be
given, and choose f in 2 and a positive integer m such that |f(x)|>(3/4)'™
and |f(y)| = huu(y) for all y.

Write g = f™. Since |f(¥)| = hun(y) = ¢'™ for all y, we have
lg(y)| < ¢ for all y. Thus ||g|l = ¢ < 1. Since |f(x)| > (3/4)'™ we have
lg(@)| > 3/4. Since |f(Y)| = huu(y) = b'™ for y in D,, we have |g(y)| =
b < 1/4 for y in D,. It follows that x e U,, where U, is the set defined
in Theorem 2. Since this is true for each n, we have xe N U, = M,
by Theorem 2. This contradicts the hypothesis of Theorem 3. There-
fore Case 1 is impossible.

We are therefore justified in assuming that Case 2 obtains. Thus
there exists a positive integer m, henceforth fixed, such that for all
positive integers m and all fin A either |[f(x)] =< (3/4)"™ or | f(y)|>Rm(y)
for some y in C. Consider now a positive integer m. For each f in 2
either |f(z)| =< (3/4)"™ or ||fh~'|| > 1, where h =h,,. Thus |f(z)] <
(3/4)"™ whenever fe 2 and ||f27'|| = 1. Let B be the Banach space of
all continuous functions on C, under the uniform norm, and let B, be
the subspace {fh~": f e A} of B. Define the linear functional ¢ on B,
by defining @(fh™') = f(x) for each f in . Since |f(x)| = (3/4)™ if
feWand ||[frR']| <1, it follows that |||l < (8/4)V". By the Hahn-
Banach theorem, there exists an extension ¢, of @ which is a linear
functional on B with ||¢,|| < (3/4)V™. By the Riesz representation theo-
rem, there exists a measure v, on C such that ||v,|| < (3/4)"™ and

P f) = S fdvy,, for all continuous functions f on C. Thus
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F@) = p(fh) = py(Fh-) = th*dum

for all fin A. If we define the measure p, by
1alS) = | hdv,
N

for all Borel subsets S of C, it follows that f(x) = S fdu, for all f in

A. In particular, 1 = Sd‘um. Thus ||¢,. |l = 1. Let the measure 9, the

restriction of v, to the set D,,, be defined by v%,(S) = v,(S N D,,) for
each Borel set S. Let v, the restriction of v, to C — D,,, be defined
similarly. Thus

A1+l = livall = (3)

Similarly, let y, be the restriction of 2, to D,,, and let p4, be the re-
striction of p, to C — D,,. Thus

el + el = llpall =2 1.
Since [A(y)]™* = ¢ Y™ for all y in C — D,, and since ¢, (S) = S h~'dy,,
S—D2n
for all Borel sets S, we see that p, = ¢7Y™l, so that ¢'™||uLll = llvnll.

Since |A(y)|™* < b~ for all y, and therefore for all ¥y in D,,, Wwe see
similarly that dY=|| g2 || < ||v%.]l. Thus
3 \Um
1/m 0 1/m 1 < 0 1 < (=
A A P P Cy

Combined with the inequality
DUl ]+ bl il 2 B
this gives

[oe — bl = () — o

Thus

leals((3)" - pom Jere — b

Since ||t |l = [l Il + | 2]l < 07" [[V5ll + 7" I
= b7Mlvall = 07V,

there exists a subsequence {,, } of {s,} which converges in the weak
star topology for measures on C to a measure ¢ on C with ||p¢|| < 1.
Also,
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[ran = tim | rapm,, = f@)

for each f in A,
Since C — D,, is open and since

H‘M:HH é [<%>1lm . bl/m][cl/m . bl/m]—l

for each m, we have

“‘”1” g lim [<%>1lm . bum.:][cllm . bl/m,]-—l ,

where ! is the restriction of ¢ to C — D,,. Now

(13 o o

=tim [ (2 )(2Y — @byt Jianope” — auvpr1

h—0

= ]:ln% — lnb:][lnc — Inb] = ln<—i-b“1>[ln(cb“’)]“1 <1.

Thus, if /¢ denotes the restriction of g to the set {x}, we have ||| <
gl < 1. Thus there exists a constant a with |a| <1 such that

S fdp = af(x) for all continuous functions fon C. Let ¢£ be the restric-
tion of st to C — {x}, so that g2 + /£ =g and |[/2]| + |2l =llp¢ll < 1.
Thus

gfd/l = de‘% + gfol/z3 = af(x) + gfdlzz3

for all £ in 9. Therefore (1 — a)f(x) :S fdr, for all f in 9. Since
2l £ 1=l =1—lal, and since 1€, we have 1 —|a| < |1 —a| =

‘ Sldﬂs
Thus

< |lIll £1 —|al. Thus @ is positive. Define v = (1 — a)'tt..

F@ = (= o ap, = [ ray

for all £ in A. Also, |[Y|I= A —a) /el £1. Since 1€ we have
1= Sd'y. Therefore v is a non-negative valued measure. This completes

the proof of the theorem.

COROLLARY. Let 9 be a separating Banach algebra containing the
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unit function of continuous functions on the compact metrizable Haus-
dorfl space C. Let N, consist of all functions on C which are real
parts of functions in A, and let RN be the uniform closure of R,. Let
M, consist of all points © im C such that there exists f im RN with
£ (@) > |f )] for all y + x im C. Then M, equals the minimal boun-
dary M of 2.

Proof. 1If xe M, there exists g in C such that [g(x)| > |g(y)| for
all y #+= « in C. It is no loss of generality to assume that g(x) = 1. If
we let f be the real part of g, then fe R,cCR and [f(x)]| = |g(x)| >
lgw)| = |f(y)| for all y = x. Hence xe M,.

If x is not in M, then there exists a real-valued measure v on

M — {x} of norm 1 such that g(x) = Sgdv for all g in A, by Theorem
3. Since v is real-valued, it follows that f(x) = S fdy for all f in R,

Thus f(x) = S fdv for all £ in R. If x where in M, there would exist
fin R with 1= f@) > |f@)| for all y =z Thus 1= f(1) = S fdy <

Hfd'yl < 1, since |f(y)| < 1 for y # « and since ||v|| =1. This contra-

diction shows that x is not M,. Hence M = M, as was to be proved.
DeLeeuw has found a proof of Theorem 3 which is somewhat simpler
than the one given here.

4, Applications. We now apply the results of the previous sections
to certain problems of approximation in one complex variable.

DEFINITION 3. Let C be a compact subset of the complex plane.
Then /\O(C) will comsist of all continuous functions on C which are
analytic at interior points of C, and A (C) will consist of all continu-
ous functions on C which can be uniformly approximated arbitrarily
closely by rational functions whose poles lie in the complement of C.

It is clear that A (C)c A (C), and that A (C) and A (C) are sepa-
rating Banach algebras of continuous functions on C. Mergelyan [2] has
shown that A (C) = A(C) in case the complement of C consists of only
a finite number of components. No necessary and sufficient condition is
known that A (C) = A (C). In case C has no interior, we shall obtain
in Theorem 5 below a necessary and sufficient condition that every con-
tinuous function on C be uniformly approximable by rational functions
with poles in —C.

THEOREM 4. Let C be a compact subset of the complex plane with
no interior and let M be the minimal boundary of AI(C). Then either
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A](C) = AU(C ) or C — M has positive 2-dimensional Lebesgue measure.

Proof. Assume that A (C)# A (C). We must show that C— M
has positive 2-dimensional Lebesgue measure. Now A (C) is the Banach
space of all continuous complex-valued functions on C, and A (C) is a
proper subspace, since A (C) # A(C). By the Hahn-Banach theorem,
there exists a continuous linear functional ¢ # 0 on A (C) which vanishes
on A (C). By the Riesz representation theorem, there exists a finite
complex-valued Borel measure ¢ on C which represents ¢. Thus g+ 0

and Sfd/z =0 for all f in A(C). In particular, S(z— O~du) =0

whenever z is not in C, since the function (z — ¢)~! is a rational func-
tion of ¢ whose pole, #z, is not in C. Since the function z~' of z is in-
tegrable with respcet to Lebesgue measure dady over any finite region
of the plane, and since ¢ is a finite measure on the compact set C, the
integral

he) = (2 — £)7dpue)

will exist for almost all values of 2z, and the function A(z) so defined,
called the convolution of the measure /¢ and the function z-' and writ-
ten h =z""xu, will be integrable with respect to Lebesgue measure over
any finite region of the plane. Since we have seen above that h(z) = 0
if 2z is not in C, it follows that % is integrable.

Assume that the integrable function % vanishes almost everywhere,

so that the integral h(z) = S(z — &)7'dup(¢) exists and vanishes for almost

all z. To obtain a contradiction from this assumption, we use the equa-

tion 0—2*_% =7rd ([7] p. 49) from the theory of distributions. This means

that for any function g on the complex plane which vanishes in a neigh-
borhood of oo and which has continuous partial derivatives of all
orders we have

_H(z _ g)—1%<§;- + i%)g(@dxdy = 7mg(¢)

1
2
both sides of the above equation with respect to ¢t we obtain

for all values of ¢. If we write g,(2) = (5%— + i%)g(z) and integrate

mlo@ape) = -|{{| @ - 0 0@dsay}ane)
= -Sggl(z){g(z - C)“dﬂ(t)}dwdy =0,
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since h(z) vanishes almost everywhere. The use of Fubini’s theorem is
justified since z — ¢, and therefore (z — ¢)~!, is measurable with respect
to the product of the measures g,(z)dxdy and dp(¢) and since

[{[T1a@1z — ¢ 1~ asay}iape))

is finite. Now every continuous function g, on C can be uniformly ap-
proximated by such functions g, so thatggo(;’)dy(;‘) = 0. By the unique-

ness part of the Riesz representation theorem, it follows that p = 0.
This contradiction shows that there exists a set I" of C of positive
Lebesgue measure such that the integral h(z) exists and does not vanish
for all z in I". We may clearly assume that at no point of /" does p
have point mass.

Let z, be any point in I, so that A(z,) = ¢ exists and is not zero.
Let f be any function in A (C) such that f(z) =0. Let {f,} be a
sequence of rational functions with poles in the complement of C con-
verging uniformly to f on C. Since f,(z,) — f(z,) = 0 as n— o, we see
that {g,} converges uniformly to f on C, where g, = f, — fu(2,). Thus
g, 18 a rational function with poles in —C which vanishes at z,, so that
there exists a rational function ¢! with poles in —C such that ¢,(z) =
9.(2)(z — z,) for all z. Hence

[0 - 2ape) = [ou@dne = o
for each n, since g,e A (C). Passing to the limit, we see that
[7@E - 2 due = 0.

Since this is true for all f in A (C) with f(z) = 0, it follows that for
an arbitrary f in A (C) we have

Sf(z)(z — 2) () = S[f(z) — Pz — 2)dpe(z)
+ Sf(zo)(z — ) dpz) = 0 + FE)—hz) = —cf (2) -

If we let §, denote the measure of mass +1 at the point z, it follows
that
v = (2 — 2,)7 't + €8,

is a measure on C which annihilates A (C). Now if z, were in M, there
would exist f in A (C) with f(z) =1 and [f(2)| <1 for all z# 2, in C.

Since v({z2,}) = ¢ # 0, it is clear that S f"dy # 0 if n is sufficiently large,
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This is a contradiction, since f*e A (C). This shows that z, is not in
M. Since z, was any point in /" we have ['cC — M. Since [' has
positive measure, C — M has positive measure, as was to be proved.

To restate the theorem, if for every point z on C, with the possible
exception of a set of measure 0, there exists a continuous function f on
C with [f(z)| > |f()] for all ¢+ 2z in C which can be uniformly ap-
proximated by rational functions with poles in —C, then every continuous
function on C can be uniformly approximated by rational functions whose
poles lie in —C.

THEOREM 5. Let C be a compact subset of the complex plane withowt
wmterior. Let A (C) be the algebra of all continuous complex-valued
Sunctions on C and let A (C) be those functions in A (C) which can be
uniformly approximated by rational functions with poles in —C, and
let M be the minimal boundary of A (C). Let 4,(C) consist of all con-
tinuous real-valued functions on C, and let 4,(C) consist of all continu-
ous real-valued functions on C which are uniformly approximable by
real parts of functions in A(C). Let M, consist of all points z in C
such that there exists f in 4,(C) with |f(z)] > |f(&)| for all & + z in C.
Then M = M, and the following statements are equivalent:

(1) ALC)= ALC)

(ii) C — M has measure 0
(i) M=~C

(iv) 4(C) = 4(C) .

Proof. The fact that M = M, is a special casc of the corollary to
Theorem 3. It is clear that (i) = (iii) = (ii). Butl (ii) = (i) by Theorem
4. Thus (i), (ii), and (iii) are equivalent. It is also clear that (i) = (iv).
But (iv) implies that M, = C. Thus (iv) = (iii). This proves Theorem 5.

Theorem 5 thus gives results concerning approximation on a nowhere
dense subset of the complex plane by rational functions or by real parts
of rational functions, and shows that the two problems are related.
The results for approximation by the real parts of rational functions
are similar in outward appearance to results of Brelot [2] and Deny [4],
who consider approximation by functions harmonic in a neighborhood of
C, but there does not seem to be an essential connection, due to the
fact that a function harmonic in the neighborhood of C need not be the
real part of an analytic function, since the conjugate harmonic function
might be multiple-valued.
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