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1. Introduction. In an earlier paper [3] with a similar name (to
be referred to as I) we introduced the idea of a direct factor set (P-set)
and the residue system (mod n) associated with such a set. We first
review briefly these concepts. Two non-vacuous subsets P, Q of the
positive integers Z are said to form a conjugate pair of direct factor
sets provided the following two conditions are satisfied:

(i) an integer » > 0 is in P (or Q) if and only if, for each factori-
zation, n=nn,, (n, n,) =1, n, and n, are also in P (or Q),

(ii) every positive integer n possesses a unique factorization of the
form, n=ab such thatae P, be Q. A set of integers a(modn) such that
(@, n)e P is said to form a P-reduced residue system (mod n), or P-system
(mod %), and the number of elements in such a system is denoted by
¢p(n). The fundamental result of 1 was a generalization of the Mobius
inversion formula to conjugate pairs of direct factor sets. This result
is reformulated in § 2 of the present paper.

In this paper we extend the notion of a P-system (mod %) from the
set of integers X to ¢-dimensional vectors over X (briefly, X,-vectors),
t = 1. The one dimensional case (f = 1) is the case already investigated
in I. Two X,-vectors, A = {a,}, B = {;}, are said to be congruent
(mod ¢, n), written A = B(mod ¢, n), provided a, = b(modn), ¢ =1, ---, ¢.
Moreover, we place (a;) = (a,, -+, a,), using the convention, (0, ---, 0) =0,
and define vector sums and scalar multiples in the usual way. A P-
reduced residue system (mod ¢, n), or P-system (mod ¢, n), is defined to
be a maximal set of mutually incongruent X,-vectors (modt,n), {a},
satisfying ((a,), )€ P. The number of elements in such a system depends
only on ¢ and n, and is denoted J, »(n) and called the (¢, P)-totient of n.
In case P is the unit set 1, J, »(n) reduces to the ordinary Jordan totient,
J,(n) = Jy(n). A P-system with P= 27 is called a complete residuc
system (mod ¢, n); clearly J, ,(n) = n’.

REMARK 1.1. An X,-vector whose components are in Z will be called
a Z,-vector, and a P-system (mod ¢, n) consisting of elements of Z, alone
will be called a positive P-system (mod ¢, n).

We summarize now the salient points of the paper. In §2 an
enumerative principle for X,-vectors (Theorem 2.1) is formulated, general-
izing a result proved in [3, § 3] in the case ¢t = 1. This result is used,
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668 ECKFORD COHEN

in conjunction with the inversion principle of I, to obtain an evaluation
of J, »(m). A function ¢, »(n), formally generalizing J,(n), is also intro-
duced, along with a generalized divisor function o, »(n). Certain closely
related functions, ¢} -(n) and ¢} ,(n) are also defined in § 2.

In §3 we introduce the zeta function ¢,.(s) associated with a direct
factor set P. In case P = Z, {(s) is the ordinary ¢-function, ¢(s). Em-
ploying the generalized inversion function pz(n) of I we also define
“‘reciprocal”’ ¢-functions ¢ ,(s) and obtain in (8.8) a generalization (P =1,
Q = Z) of the familiar fact,

ﬂ(n) — g—l(s) , s>1,

1 nf

(1.1)

T8

where p(n) denotes the Mobius function. Broad generalizations of other
basic identities involving ¢-functions are also deduced.

In §4 we obtain mean value estimates for the functions ¢, (n) and
0., 7(n), valid for arbitrary direct factor sets P, extending basic properties
of ¢(n) and a(n) = 0, ,(n). For example, (4.5) reduces in case a =1,
P =1, to the celebrated result [1, Theorem 330] of Mertens for the Euler
¢-function,

3t
(1.2) 2.9 = —+ O(x log x) .

Using results of §4, we obtain in §5 (Theorem 5.1) for ¢ = 2, the
asymptotic density of Z,-vectors {a,}, such that (a;,) € P. Numerous special
cases are considered (Corollary 5.2). We mention that Corollary 5.3, in
case t = 2, yields a result of Kronecker asserting that the density of
the integral pairs with a fixed greatest common divisor r is 6/7%.

In §6 we generalize the so-called ‘‘second Mobius inversion formula’’
to conjugate sets P, @ (Theorem 6.1). Application of this extended
inversion relation yields in (6.3) a generalization of broad scope of Meissel’s
well known identity,

(1.3) > p) 2] =1,

1<n<x n
We also evaluate in § 6 a generalization to P-sets of Legendre’s totient
function ¢(x, n), defined to be the number of integers a such that
l1<a=z2 (a,n)=1.

REMARK 1.2. It is noted that many of the results of this paper
are valid, not merely for direct factor sets, but for quite arbitrary sets
of integers P. For example, this is true in the case of Corollary 5.1.
Moreover, a number of the remaining results can be reformulated in such
a manner as to be valid for arbitrary sets P. We shall restrict our
attention, however, to direct factor sets, reserving the treatment of more
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general sets for a later paper, to be based on other methods. The
advantage of a separate treatment of direct factor sets arises from the
applicability of the generalized inversion theorem.

2. Generalized totient and divisor functions. Let P and @ denote
an arbitrary conjugate pair of direct factor sets, and define, as in I,

(2.1) 0p(n) = 11 (neP)
0 (ngP),
(2.2) 1tp(n) :dszz“npp(d)/z(ﬁ) .

The functions p,(n) and p,(n) are termed, respectively the characteristic
function and inverston function of the set P. The inversion formula
of I can be restated in the form,

23) i) = 5 0,d)g(®) 2 g(n) = X 1) F(O) .

as=n

This principle is a direct consequence of the relation,
(2.4) el d)ou®) = o)

where o(n) = po(n) (that is, o(n) = 1 or 0 according as » =1 or n > 1).
Note that yt.(n) reduces to p(n) when P = 1.

In order to evaluate J, p(n), we shall need the following results
generalizing Theorem 4 of I to ¢ dimensional vectors.

THEOREM 2.1. If d ranges over the divisors of m contained in Q,
and for each d, x ranges over the elements of a P-system (modt, o),
ds = m, then the set dx constitutes a complete residue system (mod t, n).

We omit the proof, which is analogous to the proof in case ¢ =1,
On the basis of this result it follows immediately that
(2.5) SZ (D), »(3) = n' .

ad=n

Application of (2.3) to (2.5) yields

THEOREM 2.2.
(2.6) g, (1) :MZ:nd‘/zp(S) .

Define now for a an arbitrary real number, the generalized totient,
@7 bp() = 3 d°712(0)

so that ¢, » = J, »(n) in case « = ¢ is a positive integer. We also define
analogously a generalized divisor function by placing
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2.8) Tun(n) = 3 d%0:(0) = S .

Corresponding to the functions ¢, (1), g, »(n) we define related functions,
(2.9) $a.p(n) = > d*pp(d)
(2.10) ¥ p(n) = d% d*pp(d) = % d= .

aer

The following simple relations are noted.
(2.113.) 4’*04 (n) Pa, P(n)

(2.11b) (wa,p(n) = Uw,l’(n) .
f ne

Corresponding to the case P =1, we place ¢,,(n) = ¢.(n), ¢, = ¢X(n),
and corresponding to the case P = Z, we write 0, ,(n) = 0,(n) = 0 ,(n).

The following result is a generalization of [3, Theorem 8, @ = 1] and
can be proved similarly.

THEOREM 2.3.
(2.12) Po.p(n) = 55 $u(d)0£(3) .

We also note, by inversion of (2.7), the following generalization of
(2.5).

(2.13) % 0 d)ba,(8) = m*

3. The zeta-functions of a P-set.

REMARK 3.1. In the definitions and general results of this section,
s is assumed to be limited to values for which all occuring series converge
absolutely.

First we define for real s,

(3.1 o) =5 50 = 5

The function ¢p(s) will be called the zeta-function of the direct factor
set P. Note that &,(s) = ¢(s), ¢i(s) = 1. We define the reciprocal zeta-
function of P by

(3.2) Fole) = 3 2200

the function ¢,(s) will be designated the conjugate zeta-function of P.
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By (1.1) it follows that £(s) = Z,(s) = 1/¢(s). We mention that Diricelet
series of the form (3.1), (3.2) were discussed by Wintner [10, Chapter
II] in case P is a semigroup generated by a set of primes.

First we prove two relations analogous to (2.4).

LEMMA 3.1,
(3:3) S 0p(d)og(®) = 1.
Proof. This is an immediate consequence of property (ii) of the

conjugate pair P, Q.

LEMMA 3.2.

(3.4) };nyp(d)/jQ(B) = umn) .

as

Proof. By the definition of /¢,(n), we have, with the left member
of (3.4) denoted by S(n),

Sn) = asg‘n nnzia‘u(D)EEZesﬂ(E) - m)'%':n‘u(D)H(E)
D'ep

E'EQ D'EP,L'EQ
=S uDymd) | 5, 1.
DE|n D'E’'=n/DE

D'EP,E'EQ

By property (ii), it follows then that
Stw) = S5 uD)(E) = 5, (1D), 33 (1(F)

and (3.4) results by the fundamental property of ru(n), ((2.4) with P =1,
Q=27).

The following relations are basic.

THEOREM 3.1.
(3.5) £(8)2a(8) = £(s)
(3.6) Er(8)Za(8) = £71(s)
(3.7) £p(8)Co(s) = 1.

Proof. By the nature of the Dirichlet product, (3.5), (3.6), and (3.7)
follow, respectively, from (3.3), (3.4), and (2.4).
By Theorem 3.1 one obtains the following generalization of (1.1):

COROLLARY 3.1,

3.8 Py =82 1
55 “O=%9 T 4o
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The equality of the first two expressions in (8.8) is equivalent to the
fact [3, (4.6)],

(3.9) 5 112(d) = ps(0)

The following identities can be verified by Dirichlet multiplication,
in connection with (3.8), (2.13), and (2.11a).

THEOREM 3.2.

3.10 S ¢w P(“). _ts—a) _ s — a)c_?p(s) :
barpm) . E(s)  _ cj(s)é,‘P(s —a)
(3.11) z poe s D e

THEOREM 3.3.

(3.12) 3 22t = o5 — @)
(3.13) 5,780 — ¢(o)p(s — a) .

n=1

Note that in case P = Z, both (3.12) and (3.13) reduce to [7, Theorem 291].
It is also noted, on the basis of (3.12) and (3.8), that

COROLLARY 3.3.

(314) (S) Z Oy, P('ﬂ') Z O'a(’l’l,) .

n=1 ,ns
Multiplying (8.14) by £.(s) and comparing coefficients, one obtains the
arithmetical relation.

COROLLARY 3.4.
(3.15) Ta,p(1) = 3 0u(d)112(3) .

This analogue of (2.12) can also be proved arithmetically on the basis of
(3.9) and the definition of o, »(n).

In the remainder of this section, we list for later reference, explicit
evaluations of £,(s) for various sets P. Let k& and # denote fixed positive
integers and p a fixed prime. We define direct factor sets P = A,, B,,
C,, D,, E, as follows: A, (the set of kth powers), B, (the set of k-free
integers), C, (the non-negative powers of p), D, (the divisors of ), E,
(the complete divisors of 7»). A divisor d of » is said to be complete if
(d, r/d) = 1.

We have the following representations.
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(3.16) £, (s) = £lks) (ks > 1),
_ &) 1
(3.17) 0,00 = S (s > 1),
(3.18) £o () = —2 (s > 0),
P p— 1
(3.19) £o(5) = 2 = 5 ),
s
(3.20) £, () = 2 (’”) =),

where ol(r) denotes the sum of the sth powers of the complete divisors
of ». For a proof of (3.17) we refer to [7, Theorem 303]; (3.18) results
on summing a geometric series.

We mention the following special cases of (3.10) and (3.12), which
result on the basis of (3.16) and (3.17), respectively.

(3.12) Z P an(1) _ E(s — @)L(ks) (s >a, s>1),
a1 &(s)

(3.22) S Twn () Els — L(s) (s>, s> 1)
n=1 ns (ks)

4, Mean values of totient and divisor functions. In this section
we prove, along classical lines, some simple estimates for the functions

introduced in §2. We require no morc than the following clementary
facts:

0(1) if >1,
4.1) L Jogog @) if =1,

n=e N

Oz~ if w<1;

(4.2) no = 2 ,{0(90“) it >0,

= a+1 " lou) if —1<a<0;
(4.3) l:o(, 1) a>1.

n>sN® pe-1

LeEMMA 4.1. For P an arbitrary direct factor set, tt,(n) is bounded ;
wm fact, for each n >0, py(n) =1, —1, or 0.

Proof. In view of the factorability [3, Theorem 1] of pi(n), it suf-
fices to prove the lemma in case » = p”, p prime, A > 0. We have then
by (2.2),

Le(p") = pp") — 0",



674 ECKFORD COHEN

so that
1 (p" e P, p"* ¢ P)
(4.4) 1r(p") = -1 (o & P, p"" € P)
0 (otherwise).

The lemma is proved.
As a consequence of Lemma 4.1, one obtaing

COROLLARY 4.1. The series (3.2) is absolutely convergent for s > 1.
In the following, x will be assumed > 1.

THEOREM 4.1. For oll a >0

(45) et = (57 )y T O
= Q
(*.6) 3000 (m) = (27 Jerl 4 1) + Ofe@))
where
x® (@>1)
e, (x) = juw log x (a=1)
x (a <1).

Proof. We prove (4.5). By (2.7)

(4.7 Our®) = 3 duol) = ; z smP< : )
= =7 (@szn)
:dszs:zswﬂp(d) = dES:z)UP(d)GSle/dSm .
Hence by (4.2) and Lemma 4.1,

Vur@) = 3 1@ EDZ 4 0(2)7))

F1
_ 3 ﬂp(d)_*_()(xw dl)

o + 1 d<z dcw-l

By (4.1) and Corollary 4.1, one may write then

(4.8) Do p(¥) =

L 2e(d)
Abr(a+ 1) - 5L 4 @)

But by Lemma 4.1 and (4.3), it follows that
(4.9) s £e(@) ( 5 L) = 0<l)

i>z dw+1 iSz dw-l-l el
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for all &« > 0. By (4.8), (4.9), and (3.8) the proof of (4.5) is complete.

The proof of (4.6) is similar and the details will be omitted; likewise
for the following result.

THEOREM 4.2. For all a >0

(4.10) 2 Plap(n) = m + O(ez (@) ,
(4.11) >, 0%, p(n) = agp(a + 1) + Ofed(x)) ,

nzz

were el(x) = x~%,(x) and e (x) is defined as in Theorem 4.1.

5. Asymptotic density of vector sets. We shall refer to the greatest
common divisor (a;) of the components of a Z,-vector {a,} as the index
factor of the vector. Let S be a set of positive integers and let N(z, S)
denote the number of Z,-vectors with components a, < x (1 =1, «--,¢)
and with index factor in S. Then place

8,(S) = lim === N(w S)

(if this limit exists) and call §,(S) the asymptotic density of the set of

Z,-vectors with index factor in S. We now prove the principal result
of this section.

THEOREM b5.1. If t is an integer =2, then

(5.1) Nz, P) = *_ {O(x log x) @:f t =2,
g@(t) O(xb‘l) 'Lf t > 2

Proof. For positive integral », x = 1, place

2, p(x) =n§Zz Sy, (1) :ngéﬁbr,z’(n) ) Do p(x) =1.

Let j be a fixed integer, 1 < j < t, and let 4, ---, 7, be a set of distinct
integers satisfying 1 <¢<-.--< 1, <t. Consider all Z,-vectors such
that the components in the positions 7,, ---, ¢, have the same value =,
the components in the remaining positions are <=, and the index factor
is in P. Denote by S, the set of all such vectors, including repetitions,
obtained by letting n range over the set, 1 <n < x, and by choosing
the set, %, +-+,4,, in every possible way. Then if N(S,) denotes the
number of elements in S,, it follows that

(5.2) NS = (5 )00-ste) -
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Congider now a fixed Z,-vector, B, € S,, 1 <k <t, with exactly k&
of its components equal to » and the remaining components <n. Then

B, appears (?) times in S, it being understood that ( jk> =01if 5> k.
In view of the fact,
L k
— 1)+ =
E(5) =1,
it follows that 3, is contained exactly once in the set
t
(=DM,
Consequently
t
Nz, P) = J; (—=1)*N(S)) ;
hence by (5.2),
N@, P) =%, (——1)-"”(3-)&'5_1,1,(%) .

The theorem follows by (4.5) on taking limits.
As a corollary of Theorem 5.1 one obtains by (3.8),

COROLLARY 5.1 (cf. [2, p. 8]). If t =2, then &(P) exists and is
given by

_ 1 &r(t)
(5.3) S(P) = = 2037
‘ Loty gt
As in §3 let » and k denote positive integers and p a positive prime.
On the basis of the evaluations (8.16)—(3.20), we obtain the following
special cases of Corollary 5.1.

COROLLARY 5.2. The asymptotic density of the Z,<-vectors,, t = 2,
(i) with index factor a kth power is

5.4 5,4, = L&)
(5.4) (4, o)

(i) with k-free index factor is

5.5 i\ Dy
(5.5) B = L

(ili) with wndex factor a mon-negative power of » is

(5.6) (0 =(55) 7
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(iv) with index factor a divisor of r 1s

5.7 8(D,) = Td1) .
(5.7) (D) = 20

(v) with index factor a complete divisor of r is
5.8 S(E.) = ai(r) _ ol (1) .
¢-9 (&) r'g(t) ¢(t)

The results contained in (5.4) and (5.5) are due originally to Gegen-
bauer [5]. In case k = 1, (5.5) becomes 3,(B,) = 1/¢(t), t = 2 [9, p. 156].
Further specialization of (5.5) to the case k = 1, ¢ = 2 yields the classical
result [7, Theorem 332] asserting that the probability that a pair of
integers be relatively prime is 6/7%. By (5.4), with k =2, t = 2, it fol-
lows that the density of the integral pairs whose greatest common divisor
is a perfect square is 7%/15. The case p = 2, t = 2 in (5.6) shows that
the density of the integral pairs with greatest common divisor a power
of 2is 8/n%. By (5.7) with » = 8, ¢ = 2, it follows that the density of

the pairs of integers whose greatest common divisor is a factor of 8 is
255/327%,

COROLLARY 5.3. If t =2 and r is a positive inleger, then the
asymptotic density of the Z,-vectors with index factor r is

(5.9) 5,(r) = T;(5 .

Sketch of proof. The corollary is true in case » = 1, as noted above
on the basis of (5.5), or alternatively by (5.7) with » =1. The proof
can be completed for arbitrary » by induction on the number of distinet
prime factors of » and application of (5.8). The details are omitted.

The preceding corollary is due to Kronecker in case t = 2 [8, p. 311].
It was proved in the general case by Cesaro [1, p. 293]; a further
generalization was given by G. Daniloff [4, p. 587].

6. Generalization of the second Mobius inversion formula. In case
P=1, @ = Z, the following inversion relation reduces to a familiar

analogue [7, Theorem 268] of the Mobius inversion formula.

THEOREM 6.1. Let x denote a positive real variable; then

(6.1 f@) = S pumo(L) 2 o) = S s (L) .

x
n nED

Proof. Let g(x) be defined as on the right of (6.1). Then
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Seo(L) = 3 pom) 3, ) (2L2)

U=nd)
- L_g;:f<%>l=2d‘nﬂp(d)‘0@(n) = f(x),

on the basis of (2.4). The converse is proved similarly.
We define [x], to be the number of positive integers <« belonging
to P. It is evident, by property (ii) of the conjugate pair P, @, that

(6.2) 1= [zl = S L] = 5[ £ 0w

Applying the above inversion theorem to (6.), one obtains

THEOREM 6.2.
(6.3) [l = 5 prelm)] £ ]

We deduce two special cases of (6.3). Let A,, B, be the P-sets de-
fined in § 3 and place (as in I), N\ (n) = ta(m), p(n) = )uBk(n). Putting

[«]. = [«]s, and nothing that [V zl= [«],,, one obtains

COROLLARY 6.1.

(64) o, = 3 0] 5| = S p@ %]
(6.5) Vzl=3 xk(n)[%] .

These formulas are classical [6], [9, p. 35]. Note that (6.4) and
(6.5) reduce to (1.3) in the cases k = 1 and k = 0, respectively.

It can be shown easily, on the basis of (6.4), that 5,(B;) = 1/¢(k),
k>1 (cf. [7, Theorem 333] in case k=2). In words, this states that the
asymptotic density of the k-free integers (¥ = 2) is 1/¢(k); in conjunction
with (5.5) it therefore follows that

COROLLARY 6.2, If kt = 2, then the asymptotic density of the Z,-
vectors with k-free index factor is 1/¢(kt).

Finally, we consider the function ¢,(x,n) defined to be the number
of positive integers a < x such that (a,n)e P. In case P=1, ¢p(x,n)
becomes Legendre’s function ¢(x,n). To deal with ¢(x, n) we have the
following extension of [3, Theorem 4] which can be proved in much the
same way.

LEMMA 6.1. Let d range over the divisors of m, deQ, and for
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each such d, let y range over the positive integers a < x/d such that
(@, n/d)e P. Then the set dy consists of the positive integers = x
An immediate consequence of this lemma is

THEOREM 6.3.

(6.6) S (2 Boyd) = 1]

THEOREM 6.4.
o« X
(6.7) b, m) = 3 m(d)[ﬂ .

Theorem 6.4 can be deduced from (6.6) by a direct application of
the following easily proved extension of (2.3).

THEOREM 6.5. If f(x, n) and g(x,n) are functions of the real vari-
able x and the positive integral variable n, then

68 g m) = Soddr(S 22 fam) = DL, %)

The proof is omitted.
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