Pacific Journal of
Mathematics

ON TCHEBYCHEFF POLYNOMIALS

JOSEPH L. ULLMAN




ON TCHEBYCHEFF POLYNOMIALS

J. L. ULLMAN

1. Introduction. Let C be a closed bounded set having an infinite
number of points. There is a unigque polynomial T,(z) of degree n, and
with one as coefficient of 27, such that if P,(z) is any other polynomial
with the same normalization,

(1.1) M, = max [ T (2)] < max |P.(2)] .

This is the Tchebycheff polynomial of degree n associated with C.

1.1. Assume that C has positive capacity, used throughout to mean
logarithmic capacity, and a connected complement D). The conductor
potential for such C is a real valued function U(z) defined in D with
the properties: (1.2) U(z) is harmonic at finite points of D, (1.3)
U(z) — log |#z] is regular at infinity and zero there, (1.4) there is a num-
ber o > —o such that U(z) > p for z in D, (1.5) if {z;} is a convergent
sequence of points with limit point on the boundary of D, then
lim U(z;) = p, except perhaps when the limit point belongs to a subset
of the boundary of capacity zero. The function U(z) has a unique rep-
resentation as a Lebesgue-Stieltjes integral

(1.6) U) = Slog 1z — tldy .

where p is a completely additive, positive set function defined for Borel
measurable sets, if it is specified that the carrier of /¢ consist of bounda-
ry points of D. [2].

1.2. Fejér [1] proved that the zeros of T,(2) lie in the convex hull
H of C. The consequence

(L.7) lzul = R,

where z,; is a zero of T,(z), and R is a finite constant independent of
n, will be sufficient for later reference. Let

(1.8) 0, = Llog M, .
n

Szego [3] proved that
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1.9) limp,=p,

where o is essentially defined for a set C of positive capacity in §1.1,
and is taken as zero when C has zero capacity. If C does not have a
connected complement, p is obtained by taking for D in §1.1 the un-
bounded component of the complement of C. The above results in con-
junction with an argument due to R. Nevanlinna [2, p. 127], can be
used to show that

(1.10) lim %log I T ()| = U) ,

for z in the complement of H. The following results concern the ex-
tension of (1.10) to points of D in H.

1.3. Summary of results. Let C be a closed, bounded set of positive
capacity, and with connected complement D. Let v, (S) be the total
multiplicity of the zeros of 7,(z) in the set S. If E is a closed subset
of D, then

I lim 2=(E) _ ¢,
n
and
(1T lim S ‘%log \T(2)| — U@)ldA =0 .

If 7" is a continuously differentiable curve consisting of points of D, and
with interior denoted by I(I"), then

(1 tim 2 L) pa ey

The set function x is defined by (1.6). In the case D is bounded by a
finite number of analytic, Jordan curves, then

av) v(E) < P,

where P is a constant depending on £, but not on n. Also in this case
) lim %Iog T 2)| = U) ,
for z in E, with the possible exception of a set of measure zero.

2. The results concerning the zeros of 7,(z), namely (I) and (IV),
are established first.

2.1. LemMMA 1. Associated with D is a set of domains {D,},
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n=1,2, ..., with the properties:
(a) D, s an unbounded domain,
(b) the closure of D, is contained in D,.,, that is D, C D,.,,
(¢) each point of D is contained tn some D,.

LEMMA 2. Let w(z) be harmonic at finite points of D and regular
at nfinity. Furthermore, if {z;} is a convergent sequence of points
with limit point on the boundary of D, suppose that lim inf u(z;) = 0,
except possibly if the limit point belongs to a subset of the boundary
of capacity zero. If, in the exceptional cases, lim inf u(z,) = —v, 0=y < e,
then in fact v =0, and wiz) =0, for z in D. [2].

2.2. The generalized Green’s function of D with pole at w, G(z, w),
where the variable z and the parameter w are points of D, has the prop-
erties:

(2.1) G(z, w) > 0,

(2.2) G(z,w) is harmonic in z, except if z = w, and is regular at
infinity,

2.3) G(z,w) + log |z — w| is regular when z = w,

(2.4) if {z;} is a convergent sequence of points with limit point on
the boundary of D, then lim G(z;, w) exists, and is equal to zero, except

perhaps if the limit point belongs to a subset of the boundary of capacity
zero, and

(2.56) at the exceptional points lim sup G(z;,, w) < M < <o, a constant
depending on w, but not on {z;}. When w = o,

(2.6) G(z, ) =U(z) — p, and

(2.7) for finite or infinite w, G(z, w) = G(w, 2).

2.3. LEmMA 3. To each domain D, there is a positive constant
m,, such that

(2.8) On— 0 = mk—lﬁt@ﬂ .
n
Proof. Let
(2.9) u(@) = ~log | 1,1,
and let z,, «++, 2um, m =< n, be the zeros of T,(z) in D. The convention

used in listing zeros will be to repeat multiple zeros according to their
multiplicity. Consider the funection

2.10) %@ZWVWMWHW@—M—%QMN+H-

+ G(z, znm)) ’
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(2.11) = A\(2) + ASz) — A7) .

Let {z;} be a convergent sequence of points of D with limit point on
the boundary. Now, lim 4,(z;) =0 by (1.1), (1.8) and (2.9), lim inf A.(z,) =0
by (1.4), and lim A.(z,) = 0, except possibly if the limit point belongs to
a subset of the boundary of capacity zero. In the exceptional case
lim sup A,(z;) £ M < o, by (2.5). In addition #,(z) is harmonic in D and
regular at infinity. The conditions of Lemma 2 are thus satisfied so
that

(2.12) v,(2) =2 0,

for z in D. Let z,, -+, Z,,, P < m, be the zeros of T,(z) in D,. Then,
by (2.1), (2.7), (2.10), (2.12),

213) 0, — 0 — (0(2) — UR) = %(G(zm, )+ e 4 Gl 2) -

If m, is the lower bound of G(z, ) on D,, then the value of (2.13) at
z = oo yields (2.8).

2.4. Proof of (1). The set E will be contained in an element of
{D,}, say D,. Hence by (2.8) and the definition of v,(S),

(2.14) vilB) — vu(D) — On— 0
n - n - My,

The result then follows by (1.9).

2.5. Proof of (IV). Szegd [4] has shown, under the added restric-
tion on D, that

IA
3=

(2.15) On— 0

where K is a constant not depending on #n. This together with (2.8)
yields

(2.16) (D) = K.
m

k
Thus if D, contains F, the assertion follows.
3. The next results proved are (II) and (V) concerning the mean

convergence in the general case, and the point wise convergence in a
special case, of the sequence u,(z) = 1/nlog |T(2)].

3.1. Let D, again be a domain containing K. Assign to each point
of E a circle centered at the point, lying in D,, and with radius not
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exceeding 1/3. By the Heine-Borel theorem, a finite number of circles
cover E. Hence it is sufficient to prove (II), replacing E by a circle in
D, with radius less than 1/3.

3.2. Let sy, -+, 8, be the zeros of T,(2) in the complement of
Dy, and let 7, «--, 7,,, be the zeros in D,.,. By the convention of
listing multiple zeros, n, + n, = n. Note that by (1),

(3.1) lim ™ —=o0.
n
Next define
(3.2) Su@) =11 = 8,
and
(3.3) R, =11z~ 7).
Now
(3.4) |%1og IT,(2)| — Uz)
(3.5) = L og |S,2)| + Llog | R.2)| — U)
n o on n
(3.6) < L jog|S,)| — U@+ 221 U@ + Lllog|Ru(2)1] .
n | N n n

It will be shown in §4.3 that the first term of (3.6) tends to zero uni-
formly in K. Also in E,|{U(z)| has a finite upper bound, so by (3.1),
the second term also tends uniformly to zero in FE.

3.3. Proof of (I1I). By the remarks of §§3.1 and 3.2, it is sufficient
to prove

3.7) lim lg log | R,()|d4, = 0 ,
N Jlz—al<8

where |z — a| < 8 is a subset of D, and & < 1/3. Let
(3.8) Llog | R,(@)| = [log Iz ~ tldps

The integral in (3.7) then has the upper bound

(3.9) Slz—ul<5,

S log |z — tld/xnldA,
lt—al<28 ]

+
lz-al <8,

dA, .

g log |2 — tldst,
lt=al=28
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By (1.7) p¢,(S) is zero for any set S in the exterior of |z| = R. Hence
the second integral in (3.9) is bounded by

(3.10) naz%max{uog IR + 8], |log|SII} .

This tends to zero by (8.1). The first integral can be written

1
3. “—"—‘“d n dAz ’
@-11) Slz—a|<8,<SlL—al<2810g lz — t] £ >
since
(3.12) lz—t|Zlz—al+t—al<36Z1.

The order of integration can be changed, to yield

1
3.13 A, ), ,
( 1 ) S[t—a[<25\z—al<ﬁ(glog IZ - tld z> f
or
(3.14) S JOLCE
lt-a)<28
where
7'[521053' ]iJth’ 8= lt - a’l <28,

(3.15) g(t) = 1
7r8210g—8- + g(sz —t—alP), O0=|t—al<$.

From this it follows that an upper bound for (3.11) is
(3.16) 2g(a) .

n
This tends to zero by (3.1).

8.4, Proof of (V). The contents of §3.2, in particular (3.6), re-
duce the proof to showing

(3.17) lim -}ng IR(2)| =0,

for z in E, except possibly for a set of measure zero. Fy (IV) there
are less than P zeros in E for each =, and each of these, by (1.7) is
inside or on the circle |z] = R. Hence it is sufficient to show

(3.18) lim 7,(2) = lim - |log |2 — a,]| = 0,
n
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where |a,| < R, for |z| < @, a disc covering FE, with the possible ex-
ception of a set 7 of measure zero. For a fixed integer & > 0,

(3.19) ra(z) > -
k
either if
g n
(3.20) 2 — a,l >exp(k>,
or
w
(3.21) |z —a,] < exp (—?) .

Now (3.20) will ultimately fail to hold since |z —a,] < R+ Q. Let
T(k) be the set of z for which (3.21) holds infinitely often, and let
T(k, p) be the set where (3.21) holds for some n = p. It is clear that

(3.22) Ty T(k, ) .

Hence if m,(S) designates the exterior measure of a set S,

(3.23) m(T () < m(T(k, p)) < 3, exp ( ﬂ;f”)

n=p

_ _—_27_0_>< _ :3) -

= exp( - 1 exp( W > .
This bound holds for all values of p. Thus the exterior measure of
T(k), and hence its measure, is zero. Since T ig the set where
(3.24) limsup r,(z) > 0,

each point of 7' is contained in one of the sets T'(k). There are a de-
numerable number of the latter, cach having measure zero. 7T thus has
measure zero.

4. Let

(4.1) 5,(2) = _5_1og 15,(2)] .

1
It is first shown that
4.2) lims,(z) = U(?) ,

for z in D,.,, and that the convergence is uniform in D,. This result
completes the argument based on (3.6). The divergence theorem is then
applied to (4.2) to yield the proof of (III).
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4.1. LEMMA 4. If

4.3) 0, = Max $,(z) ,
€0

then

(4.4) limo, =p.

Proof. By (1.1), (1.8), (2.9), (4.3),
(4.5) 0, = MaxX 8,(2) = Max u, (2) = O, .

Let 2z, be a point of C for which

(4.6) O = 84(21)

Then

@.7) 00 = U(2) = s,(2) + Llog | Ru(e),
n n
n

g, + Llog | Ru(z)] .
n n

Now z, is bounded from D,,,, the domain containing the r»,;, and |7, |
has a bound independent of » by (1.7). Hence there are positive con-
stants, ¢ and b, such that

(4.8) O<a§lz1_7'nil§b<oor

for all » and ¢. Combining this with (3.3) and (4.7) yields
(4.9) puz g, — 2K,
n n

where K = max {|loga|, |logb|}. From this and (4.5) it then follows that

(4.10) On, = 0, = " o, + M
n, n,

The conclusion of the lemma now follows by (1.9), (3.1).

4.2, Form the function
(4.11) Wi(R) = 0, — 8,(2) — (0 — UR)) .
This can be treated like v,(z), (2.10), to show that it is positive in D.

LEMMA 5. The functions w,(z) converge to zero in Dy.,, and uni-
formly in D,.

Proof. Let the disc |z — a| < v lie in D,,,, and let 2, = a + rexp (:0),



ON TCHEBYCHEFF POLYNOMIALS 921

r < s <. Since w,(z) is positive in D,,,, and clearly harmonic there,
the inequality

(4.12) Y = S pa) < waz) < LTS w,(a)
v+ 8 v — 8

holds. This shows that the convergence of w,a) to zero implies the
uniform convergence to zero in the circle |z — a| = s, and that if w,(a)
does not converge to zero, the same will be true at each point of the
circle. A similar relationship holds between the convergence of w,(c)
and the convergence of w,(z) for |z| = s, a domain lying in D,.,. Thus
the set of points of D,,, where limw,(z) =0 is an open set, and the
set where lim w,(z) # 0 is also an open set. Since D,., is open and
connected, it cannot be expressed as the sum of two disjoint open sets,
so that one of these sets must be a null set. Since w,(x) =0, —p, a
quantity tending to zero by Lemma 4, the non-null set is the one for
which limw,(z) = 0. By the Heine-Borel theorem, D, can be covered
by a finite number of circles lying in D,.,, one of which will be of the
form |z| = s. The convergence will be uniform in each circle, and hence
uniform in D,.

4.3. For application to (3.6), note that
1

1

(4.13) log S,(z) — U?)| = lw.(z)| + lo, — o] .
Thus by Lemmas 4 and 5, the left side converges uniformly to zero in
D,, and hence in E.

4.4. Proof of (III). There is no loss in generality in assuming that
I''liesin D,. If z=a + rexp(if),r < s < v, then

(4.19) [CXON R

(v — sy
where ( ), denotes the partial derivative with respect to x. It is as-
sumed that @ is on /", and that |z — a| < s lies in D,.,. The same in-
equality holds for the partial derivative with respect to y. The con-
vergence of w,(a) to zero thus yields the uniform convergence to zero
of the partial derivatives in the specified circles. An application of the

Heine-Borel theorem then shows that the convergence is uniform on 7.
Thus

(4.15) lim _LS (Wo(2))dy — (wol2))yde = 0 .
2z Jr

Using (4.11), it is seen that this is equivalent to
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(4.16) lim ig (5u(2).dy — (5.(2)),da
2w Jr

= L wen.dy - e
2
Let 2\.(S) be the total multiplicity of the zeros of S,(z) in the set S.

Now both U(2) and s,(2) are harmonic on /°, and 7" is of sufficient smo-
othness for the application of the divergence theorem, so that the result

(4.17) lim l%(’—)l = (I(1)

is obtained. For any set S it follows from (3.2) that
(4.13) YalS) — Ma(S) = v Dysy) = 0y
Thus, by (3.1) and (4.7) applied to

(4.19) MU — vl o MU o e
n - n o n n

the proof of (III) is completed.

5. Relationship to a paper by Walsh and Evans. The results (I)
and (III) we obtained by other methods in [7], and another form of dis-
cussing the asymptotic behavior of T,(z) for z in the complement of C
was used. The result (IV) is not found in [7], and we will discuss in
more detail, and in a slightly more general context the significance of
this and the other results.

Domain Polynomials. Besides the T,(z), there are other sets of
polynomials which are associated with general sets C in the plane. We
mention only the Carleman polynomials [3], C,(z), which require that C
have connected complement, and Faber polynomials [5], F(2), which re-
quire that the complement of C be simply connected. These are adequate
to illustrate our remarks.

The Location Problem is an apt name to give to results relating to
the location of zeros of domain polynomials, and known results suggest
the further distinction of interior location and exterior location, corre-
sponding to whether we refer to zeros on C or in the complement of C.

Results on Exterior Loecation. For sets with simply connected com-
plements, and bounded by a simple analytic curve /7, it has been shown
by Johnston [3] and the author [5] that ultimately the zeros of C,(z)
and F,(z), respectively, lie inside any simple interior level curve of /.
It is not known whether this is true for 7,(z), although (IV) shows that
the zeros lie ultimately inside any exterior level curve.
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A basic observation of this paper and [7] is that when C has a
multiply connected complement, then zeros of T,(z) can lie in the com-
plement of C and be uniformly bounded from C for arbitrarily large n.
In the sense defined by (I) the number must be small in comparison
with », although they can exceed any finite bound. The refinement of
(IV) states that if C is bounded by a finite number of analytic curves,
then there is an absolute constant for any exterior level curve of C,
which ultimately cannot be exceeded by the number of zeros of T,(z)
exterior to this level curve. What has not been shown is whether a
constant exists for the complement of C itself. FExamples indicate that
if there is such a constant, it cannot be less than k — 1, where k is the
number of boundary components of C.

Interior Loecation. Formula (III) states that the proportion of zeros
on any component of C, for T,(z), approaches the harmonic measure of
the component. Where on the component the zeros accumulate is not
known. The existant examples, namely T,(z) for the circle and ellipse,
indicate that the Ilimit points of the zeros, which can be called the
center, have an interior location in the set. No precise characterization
of the center for T,(z) has been found. In [6] a study is made of the
center for F,(2). The indications are that the center will not be the
same set for the different classes of domain polynomials.
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