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Introduction. The set £ of all functions a(n) on N = {1,2,8, +--}
to the complex field F' forms a domain of integrity under ordinary ad-
dition, and arithmetic product defined by: (a - B)n) = 3 a(d)B(n/d),
summed over all d|n, d e N. The group of units of this domain contains
as a subgroup the set of all multiplicative funetions. Against this back-
ground, the ‘‘inversion theorems’’ of number theory appear as obvious
consequences of ring operations, and generalizations of the standard
functions arise in a natural way. The domain 2 is isomorphic to the
domain P of formal power series over F' in a countable set of indetermi-
nates. The latter part of the paper is devoted to proving that the
theorem on unique factorization into primes, up to order and units, holds
in P and hence in 2,

1. Definition. The class 2 of all number-theoretic functions a,
f4; Ch. IV], i.e., functions a(n) on the set N of natural numbers
n=1,2,8.-- to the complex field F, forms a domain of integrity (com-
mutative, associative ring with identity and no proper divisors of zero)
under ordinary addition: («a + B)(n) = a(n)+ B(n), and an operation,
frequently occurring in number theory in various disguises, which we
call the arithmetic product:

(@ B)(n) = X a(d)B(d")

the summation extending over all ordered pairs (d, d’) of natural numbers
such that dd’' = n.

The commutativity a - B = 8 - o follows from the faet that the cor-
respondence (d, d') — (d’, d) is one-to-one on such a set of ordered pairs to
(all of) itself, while the associative law « - (8 - 9) = (¢ - B) + ¥ can be verified
by observing that, in either association, (a - B - ¥)(n) = 3} a(d)B(d")v(d"),
summed over all ordered triples (d, d’, d"”) with dd'd" = n.

The zero 0 and additive inverse —a«a of « are of course the functions
defined by 0(n) =0, and (—«a)(n) = —a(n), and one sees at once that
the function ¢ with (1) = 1, e(n) = 0 for » > 1, is the identity: ¢ - a = «
for all « of 0.

That the ring £ has no proper divisors of zero may be seen in
various ways, three of which occur incidentally in the following sections
(2, 4, 5).

2. A norm for number-theoretic functions. A function N(a) on
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£ to the set of non-negative integers 0,1, 2, --- which is zero if and
only if @ =0, and has the property N(« - 8) = N(a@)N(B) for all a, 3 of
2, may be defined by setting N(0) = 0, and, for all « = 0, taking N(«)
to be the least natural number » for which a(n) # 0.

Indeed, we find that, if & and B are non-zero functions of 2 with
N(a) = a and N(B) = b, then (« - B)(n) = 0 for all (if any) n of N with
n < ab, and («a - B)(ab) = w(a)B() + 0. It follows that 2 is domain of
integrity, and that the norm N(«) has the multiplicative property.

3. Group of units. If for «, 8 in the domain of integrity 2, there
exists a v in 2 such that a« = 8- v, we say B divides a and write B|a.
The set 7" of all units v, i.e., elements of 2 which divide the identity e,
forms a commutative group under (-) with identity ¢. Two functions «,
B of Q are called associates (notation o ~ 8) in case there is a unit v
such that 8 = a - v. One sees that &« ~ 8 if and only if |8 and Bla,
and that (~) is an equivalence relation which splits 2 into disjoint
classes [ ] of associates. For example, the class [0] contains only O,
while [e] = 7. These trivial properties are shared by all domains of
integrity.

In our ring £, an element « is a unit if and only if a(1l) == 0,
equivalently N(a) =1. For, if ao’ =¢, 1=¢1) = a(l)a’(l) implies
a(1) # 0. To see that this is also sufficient, we first introduce the
(number-theoretic) function \(n) defined by \M1) =0, Mp, -+- p) = for
any product of /[ (not necessarily distinct) primes. We have \(a) = 0 if
and only if ¢ =1, and Mab) = Ma) + Mb) always. This function has
the property of classifying all natural numbers according to their length.
We have now to construct a function o in 2 with (a - &’)(n) = ¢(n) from
a given a for which a(l) = A =+ 0. Manifestly, for » > 1, this relation
itself defines the value of a’'(n) unambiguously for each n of length
Mnr) =/ in terms of values a’(d’) with Md') < [. Thus, if we define
a’'(1) = 1/A for the single n of length 0, and proceed inductively on \(n),
we automatically obtain the desired o'.

We note in passing that if «, 8 are any two number-theoretic funec-
tions and v -y =¢, then B =a - vif and only if &« = B - v'. This trivial
relation between associates is the bagis for the so-called inversion theorems
of number theory. (Cf. §7).

4. The degree of a number-theoretic function. Just as a natural
order 1 <2< 38 < --- of the set N permitted the definition of a norm,
so does the order implicit in the )\ function enable us to introduce what
we may call the degree D(«) of a non-zero function a of Q.

Specifically we take D(a) = d to mean that a(n) = 0 for all (if any)
n of N with Mn) < d, and that there exists an n with \Mn) =d for
which a(n) + 0. Thus D(a) is a function on all non-zero « of Q to the
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non-negative integers, with D(a) = 0 if and only if a is a unit, and
D« + B) = D(a) + D(B) for all non-zero «, 3.

We may indeed show somewhat more. Let D(a) = d, D(B) = e, and
suppose a and b are respectively the least integers with Ma) = d, Mb) = e,
for which a(a) = 0, B8(b) # 0. Then (a - 8)(n) = 0 for all (if any) n with
Mn) < d + e; (a- B)ab) = a(a)B(b) # 0, where, of course, Mab) = d + ¢;
and finally, indeed, (- B)(n) = 0 for all n < ab with M=) = d + e, that
is to say, ab is itself the least integer of its length at which « - 8 does
not vanish.

5. A second norm. The final remarks of the preceding section
make it clear that another norm M(«) is available. Specifically, set
M) =0, and for a # 0 with D(a) = d, set M(«a) = @, where a is the
least integer of length M\a) =d for which a(a) = 0. It follows that
M(«) is a function on all o of 2 to the non-negative integers such that
M(e) = 0if and only if a =0, M(a) =1 if and only if « is a unit, and
M(a - B) = M(a)M(B) always.

Thus M(«) has all the properties proved for N(a) and moreover
determines D{a) = M M(«)) for a +# 0.

6. The multiplicative functions. This and the following few sections
(7-10) are to some extent expository, our object being to observe how
familiar results appear when considered from the point of view of the
ring £ or to propose some natural generalizations suggested by the new
notation. After this we return to the ‘“arithmetic’’ of the domain £
itself.

A number-theoretic function « is said to be multiplicative in case
(a, b) = 1 implies a(ab) = a(a)a(b) and (to exclude the trivial @ = 0) there
is an integer n for which a(n) # 0. In the presence of the former
property, the latter is equivalent to the condition «(1) = 1, which signifies
for us that the set M of all multiplicative functions is a subset of the
group 1” of units of 2.

Clearly (1) a function « for which a(1) =1 and a(/Ip*) = Ha(p®) is
multiplicative, a(p*) being quite arbitrary for each power a =1,2, ---
of each prime p; and (2) two multiplicative functions identical on all
such p* are equal.

That M- M c M follows readily from the definition of M, and the
identity ¢ is in M, seen perhaps most trivially from (1) above. To see
that M is a subgroup of 1" requires only the further fact that the inverse
«’ of a multiplicative function «, which we know exists uniquely, is
itself multiplicative. This we prove in a way which provides a second
construction of the inverse in the case of a multiplicative funection.
[5; p. 89]
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Given « in M, define a function 3 in £ as follows. Set B(1) = 1.
For each p, define B(p*) for a =1, 2, --- successively by the relation
Sia(d)B(d’) = 0, summed over all pairs (d,d’) with dd’ = p*. Finally,
define B(Ip*) = HB(p*). The B thus defined is in M by (1) above.
Since « is also in M, we know a - Be M- M < M. To verify that the
functions a+ B8 and ¢ of M are equal, it suffices, by (2) above, to
observe that (a - B8)(p*) = &(p*) = 0, which is the defining equation for
B(p*). Since the inverse of any unit is unique, the B so constructed
must coincide with that obtainable by the A construction of § 3.

7. The special multiplicative functions n*. Define the (multiplica-
tive) function v, for arbitrary real &k by v.(n) =n*. Its inverse v, is
seen by the preceding construction to be: vi(l) =1, vi(n) = (—1)n*
when » is a product of [ distinet primes, and zero otherwise.

Now (a) v, -y, =¢, and (b) if a, 8 are any two number-theoretic
funections, we have 8 = «a - vy, if and only if @« = 8- v.. For the special
case k = 0, (a) yields the familiar equation },;.£4(d) = &(n), and (b) becomes
the ‘“ Mobius inversion theorem” [Cf. 4; Th. 35, 38], since v, is the
Mobius function p¢. Indeed, we may write vi(n) = p(n)n* for all k, n.

We may note one further generalization in this direction. If « and
B are any two number-theoretic functions, we see that

(1) S g)m) =5 Sadmid) = 3 a6d) 560

In particular, if B is a unit, and o = 3’, we obtain

n

[n/a]
1=>.45(d) E: B0 .

d=1

Further specializing to 8 = v,,
n [n/al
1= wd)d* >, [F.
a=1 l=1
Finally, £ = 0 gives the familiar [4; Th. 36]
1= 3 wdnfd] .

8. The sum of the k-th powers of the divisors. It is clear that
the transform B(n) = 3, .a(d) of number theory [5, Th. 6-8] appears in
our notation as 8 =a-y,. Thus in particular the number theoretic
function o(n) = 3,;.d* is seen to be the (multiplicative) function
Oy =Ve*Y€M+ McC M. The most familiar are 7 =0,=1y,-y, the
number of divisors, and ¢ = ¢, = v, - v,, the sum of the divisors.

As an illustration, note that equation (1) of the preceding section
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yields

S (a-v)m = 3 a@infd] ;

in particular, for a = y,,

S r(m) = ) [n/d]

m=1 a=1

and for a = v,
So(m) = 3 dn/d] .

The inverse oj(n) is 1 for n=1, (=1 (pf+2—a,) for n=pf -« p%,
where 1 < a, < 2 and » = M(n), and zero otherwise. This may be seen
from o, = v} - v, and the value of (v} - v.)(p*) obtained from §7. For
the special case k£ =0, we may write 7/(n), for n of the second type,
as (—1)Y2la, -+ ai.

We note that the relation o, = v} - v], besides determining the
function o) explicitly as indicated above, yields also the equation
al(n) = S dipu(d)pn/d), in particular ©'(n) = S .d)(n/d).

9. A generalized @-function. The well-known relations @ - vy, = v,
and @ = y; - v, satisfied by the Euler @-function [4; Th. 39, 40] suggest
definition of a general function ¢, = v - v,, specifically

P (n) = n! ;‘T;Z (d)dr-t

which has the value n/II,(1 — p¥~!) for n =pf1 ... p%, We should then
have the relation v, - ¢, , = v, or 3,9 (d)d~F = nl~*,

It is clear that the derivation of relations between arithmetic func-
tions becomes simplified by employing the algebra of the ring 2, or of
the groups ¥ or M. Consider for instance how' easily ¢ =y, -y,
v, =y, - @, and y, - v, = T implies ¢ = 7 - @,

Not quite so elegant is the generalization:

(1) o) = (v - v)(n) ,
(2) V)=V Py,
(3) Y, » Vp(n) = nFr(n) (special case of (1)),

imply nka[—k(n) = dedkf(d)([’k,[(n/d).

10. The @-function. Define the number-theoretic function @(n) to
be the sum of the integers in N which are prime to n and do not ex-
ceed n. Obviously @(n) = ne(n)/2 unless » = 1 and @(1) = 1. Although



980 E. D. CASHWELL AND C. J. EVERETT

¢ is thus a unit in V", @(ab) = 20(a)@(b) for (a,b) =1, >1,b > 1, and
therefore @ is not in M.

If we classify the integers 1,2, ..., % according to their greatest
common divisor d with n, we find in the d-class the integers a with
(a,n) =d, 1 < a <n. There are exactly as many such a as there are
b with (b, n/d) =1, 1 £ b < n/d. This yields for Landau [4; Th. 39] the
relation >;,2(n/d) = n and the formula for ¢ by Mobius inversion. We
may note that the same partition suggests the additional relation:

K(n) = L";"_l_) = z a =S do(w/d) = @ - %)n) .

As a final example, we note that, since v, - vy, = 0,

Key,=0.0.

11. Primes. A number-theoretic function « is said to be a prime
in ease a # 0, « is not a unit, and o« = B - v implies B or v is a unit.
The associates of a prime are also prime. The remaining functions,
neither 0, units, nor primes, are called composite. The associates of a
composite function are composite.

Any function with N(a) a prime natural number is prime; more
generally any function with M(«) a prime, or equivalently, any function
with D(@) =1. As an example, note that from 8§9 §=0—vy =
Te@—Yy»@=(T—y)+®. Since §1) =0 and §2) =1, we see that
M) =2 and so o0 — v, and T — vy, are associated primes. If two non-
unit functions «, 8 are associates, we see that B(p) = (v - @)(p) = v(L)a(p)
for all prime p, where v(1) #= 0. Hence there is a continuum of non-
associated primes even of this simple type.

Naturally there are many other kinds of primes, a fact which will
become glaringly obvious in § 16.

12. The chain condition. If a, + 0, a,]«,, and in the correspond-
ing equation «, = «, - B, the (uniquely determined) 3, is not a unit, we
say «, properly divides «, and write a,lla,. For example, every com-
posite element « has a factorization &« = 8- v in which Blla and v|la.
If in a domain of integrity, every chain of proper divisors ««- a,||a,|la, # 0
is finite, we say the domain satisfies the chain condition. In any such
domain it is easy to see [2; p. 117] first that every « not zero and not
a unit has a prime divisor, and from this that every such « is expres-
sible as a finite product of primes.

That our ring satisfies the chain condition is an obvious consequence
of the properties of either the norm or the degree functions. For ex-
ample, a,lla, %0, & =a,- B, B, not a unit, implies D(B,) > 0 and
D(a,) = D(a,) + D(B,) > D(«,), where D has non-negative integral values,
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Having come this far, it is natural to ask whether the expression
of a non-zero, non-unit number-theoretic function as a product of primes
is unique (up to order and units). We have been unable to find a refe-
rence for such a theorem, and offer a proof in the remaining sections.

In the presence of the chain condition, the existence of a greatest
common divisor for every two elements is necessary and sufficient for
the uniqueness property. [2; p. 120]. Although we have an abundance
of norms, we cannot hope to obtain a Euclidean algorithm, since we
certainly could not have linear expressibility of the g.c.d. For suppose
«, B are non-associated primes. Then («, 8) certainly exists and is e.
whereas a linear relation ¢ =v.a + & - B8 is impossible (consider n = 1),

13. A reduction theorem. It simplifies matters to show first that
if the uniqueness of factorization fails, it must fail in a particularly
simple way. Suppose indeed that uniqueness in false in 2. Following
an argument of Lindemann and Davenport [1; §2.11] let us divide the
set of all non-zero non-unit elements of £ into normal elements, whose
factorization into primes is unique, and abrnormal elements, which can
be factored into primes in two essentially different ways. Clearly a
prime « is normal by definition.

We prove that if « is an abnormal element of minimal norm N(«),
and @ =0, +-+ 0, =7, -+ T, are two essentially different factorizations
of a into primes, o,, 7,, then necessarily m = » = 2 and 7y, 0,, 7y, 7, all
have the same norm N.

Note first that neither m nor n is unity, since a prime is normal.
Moreover, no o, is the associate of any 7,, for if so, cancellation would
produce an abnormal element of norm N < N(a). Without loss of gen-
erality, we may assume N(o,) < N(0,) £ -++ < N(0,), N((t)) = N(1,) =
-++ = N(z,), and N(0,) =< N(7;). Then N(o, - 71) = N(a,) - N(t}) = N(t))N(7))
<N(t))N(t,) £ N(«). If any one of these (=) relations is actually (<),
we have N(o, - 7,) < N(«), which we will see leads to a contradiction.

Suppose indeed that N(o, - 7)) < N(«), and consider 8 =a — 0, - 7,.
Certainly 8 + 0, for « = ¢, - 7, implies og,+--0, = 7,, and since 7, is
prime, we have m = 2 and 7, ~ g,, contradiction. Also 2 is not a unit,
since 0,|8. From the definition of norm N and the assumption
N(o, - 7)) < N(a) it follows that N(8) = N(o,- 7,) < N(a). Hence B is
normal. However, the non-associates ¢,, 7, both divide 8, and, B be-
ing normal, o,-7,|8. Hence 0,7l =0,+++0,=0,-7,-7v Thus
Oy++e0,=717,+7. But N(g,---0,) < N@), and g,+++ ¢, is not zero
and not a unit (m = 2). It follows that ¢,+-. 0,, = 7, - v is normal and
7, is associated with some «;, a contradiction.

We are forced to conclude that N(o,)N(t,) = N(t,)N(7,) = N(7,)N(z,)
= N(a) and so N(o)) = N(r)=N(t)=N and n =2. Hence N°’=
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N(7,)N(t,) = N(a) = N(g,) -+ N(o,,) = N™ implies m < 2. But m > 1 so
m = 2, N(s,) = N, and all is proved.

Thus if unique prime factorization fails in 2, we should have an
element of form a- B8 =7v-8, a, B, v, & primes (of identical norm N)
and a not associated with either v or 8.

14. The ring of formal power series. Let the primes p of N be
listed in any definite order p,, p,, v, ---. Then every integer n may be
written uniquely in the form n = p#pg ... and uniquely described by a
vector (a,, a,, -+-) with non-negative integral components, finitely many
of which are non-zero, all such vectors being realized as n ranges over
N. Hence a number-theoretic function & = «(n) may be associated with
a definite ‘‘formal power series’’ in a countably infinite number of in-
determinates =z, ,, ---, having coefficients in the complex field F, by
means of the correspondence

a — P(a) = Za(n)rixgz <. .

Here, the summation extends over all n = pup® ... of N,

This correspondence is clearly one to one on £ to the set
F, = F{x, x,, »++} of all such power series. Moreover, addition is pre-
served, and P(a - B) = P(a)P(8), the latter operation being the usual
formal operation on power series involving multiplication and collection
of (finite numbers of) ‘‘like terms.”’

Thus the ring of all number-theoretic functions is isomorphic to the
ring of all formal power series F, = F{x,, %,, ---}. We emphasize that
the only restriction on these series is that only a finite number of =,
actually appear (i.e., have a; > 0) in any term. However, infinitely many
x; may well occur (in terms with non-zero coefficients) in the same series,
so that we have here a more general ring than that discussed by Krull
[3; §4]. Indeed, each series of Krull’s ring of power series (over F)
corresponds to a number theoretic function zero except on a set of
integers generated by some finite set of primes.

15. Some preliminaries. We deal in the remainder of the paper only
with the power series representation A = A{x,, ,, +++} = Za(n)rixgz .-
of number-theoretic functions. The domain F, = F{x,, x,, -++} contains
(in the sense of isomorphism) for every (=1,2,--- the domain F,=
F{x, «--, 2} of power series in [ ‘‘variables.”” For the latter domains,
the theorem on unique factorization into primes is known. [3; §4 and
6; §2]. The units of F, are again the series with non-zero constant
term.

If / is any integer 1,2,... and if A = A{x,x,, ++-} is in F, or
some F,, with m = [, we mean by (A), the series A{x,, -+-,2,0,0,---}



THE RING OF NUMBER-THEORETIC FUNCTIONS 983

obtained from A by deleting all terms of A actually involving any =z,
with ¢ >/ Indeed, the mapping A — (4), is a ring homomorphism of
F, or F,onto . One can write A =(4), + A}, where the latter series
involves only terms containing at least one z, with 4 >/, and in this
way one sees that (AB), = (A)(B),

In reality all series we consider are actually in F,, but we do not
hesitate to say A{w,, ++-,%,0,0,---} is ““in F.”” Our objective is to
throw the proof of unique factorization in F, back onto the rings F,
{=1,2, +--, in which the theorem is known to be true. But first we
have to show that the primes of F, are all of a special kind.

16. The nature of a prime. If a series A of F, is neither zero
nor a unit, then there is some minimal L = L(A) for which (4), is neither
zero nor a unit of F,, (= L. For A{0,0,---} =0, and since A+ 0, 4
must contain with non-zero coefficient some product a®x%2 ... with
(@, @y =++)#(0,0, -<-), If in this term z, is the last variable with a,>0,
then (4), # 0. Hence there is a minimal L with (4),+ 0, L = 1. But
then (A), is not zero or a unit for any [ = L.

Now if A is not zero or a unit in F,, and any (4), is prime in F),
where of course [ = L = I(A), then (A),, is prime in F,, for all m =/,
and also A is prime in F,. For example, if (4), = R,S,., where R,,
S, are non-units in F,,, then (4), = (4,), = (R.)(Sn), where neither of
the latter factors in F) are units. For such A, there is a minimal integer
P = P(A) z L(A) such that (4), is prime in F, for all [ = P(A). We say
such primes are finitely prime.

The remaining logical possibility is that for some A, not zero or a
unit, we have (4), composite in F, for all [ = L(A). We shall show that
such an A is composite in F,, and hence the

Principal Lemma: all primes of F, are finitely prime.

17. Proof of the principal lemma. Let A be a fixed non-zero
non-unit series in F, with L = L(A), and suppose that, for every [ = L,
(A),= R,S, where R, and S, are non-units of F|. We say R, and S, are
true factors of (A), and RS, is a true factorization of (4), A true factor
of (A), is thus a non-unit proper divisor of (A4), in F),, and so has a
companion of the same kind.

We shall call any chain [R;, R;¢, +--, By] of true factors of the
corresponding (A),, [ = L, - -+, M telescopicif each R, = B(%,, ++-, 2,-;, 0)
= (R);-,. Now observe that any true factorization (4), = R,S., m > L
induces a true factorization of (A4),,—:=((A)n)n-1 = (Bu)m-1(Sn)m-1 = Bn-1Sn-1
and so down to (4), = R,S,, where the chain of true factors [E;, «+-, R,,]
is telescopic. Thus we have from the original assumption on A, the
existence of a sequence
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fEy = [R()o]
K= [Rw, Ru]
£y, = [Rzuy Rzla Rz:z]

of telescopic chains «; of true factors R;;,, 7 =0,1, -+, % of (A),4;.

We want to prove the existence of an infinite chain of true factors
£* = [R§, R¥, R¥, ---] which is telescopic throughout. If we could do
so, we should have (A),.; = RS} for all 5 = 0. Clearly the chain
[S&, S¥, «--] is also telescopie, since (RF,SE)) = (BFSH)ieio1 = (B )psejm1 *
(SH)pws-1 = R¥(SF);45-,. But any infinite telescopic chain defines un-
ambiguously a series of F,. If R* and S* are the (non-unit) series
defined by the R} and S¥ chains, we must have A = R*S*, since we
can prove identity of the left and right coefficients of any term by
regarding (A),., = R}S¥ for suitable 5. Thus the principal lemma would
be proved.

Since unique factorization holds in F), there are only a finite number
of classes of associates into which the true factors of any (4), can fall.
Hence (pigeon-hole principal!) an infinite set of the chains x; have their
Jfirst entry equivalent to some one true factor T, of (4),. Choose one
of these and call it ;. Of this infinite set, there is an infinite subset
of k, whose second entry is equivalent to some one true factor 7, of
(A);+;. Choose one and call it #;. Continuing in this way we are led
to a subsequence of (telescopic) chains

Ky = [Riy, ++-]
Ky = [R;rn Ry, ---]
IC; = [R;Or RL,H; R;Z: .. ']

each of which extends at least to the main diagonal, such that the entries
on this diagonal and below have the property that, foreach 5 =0,1,2, -+«
R~ T; for all 1 = j.

We can now construct the telescopic infinite chain £* working only
with the main diagonal and the diagonal next below it, as follows.
Define R} = R},. Since Rjj~ T,~ R in F,, there is a unit U, of F
such that R = R U, = (R, U,);. Define R = R,U; in F,,,, and note
that Ry is a true factor of (4),.,, (BR}), = Ry, and Rf ~ T, in F,,,.

To make the process perfectly clear and to avoid a formal induction,
we carry the construction through one more step. Since Rj ~ T, ~ R in
F,,,, there is a unit U,,, of F,,, such that R} = R,,U,,, = (RLU, )41
Define R} = R,,U,,, in F,., and note that Ry is a true factor of (A),..,
(R¥)ey = RF, and R~ T, in F,,,. The proof of the lemma is now
clear.
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18. Proof of unique factorization. Suppose unique factorization
into primes fails in 2 = F,. By §13, we must have a series of the form
AB = CD where A, B, C, D are primes in ¥, and A is not associated
with C or D. Since all primes are of finite type, there exists an integer
P such that, in the equation (AB), = (4)(B), = (C)(D), = (CD),, (A), (B);
(C), (D), are primes in F) for all /= P. Since factorization in each Fis
unique, (A), must be associated with either (C), or (D), in F, for each
[ = P. Hence there must be an infinite increasing subsequence ¢ = {m}
of integers m = P such that either (A4), ~ (C), in F,, or (A), ~ (D), in
F, for all meo. Without loss of generality we may suppose the former
case. Then (A), = U,(C),, where U, is a unit of F,, for each m of o.
If m <n are any two integers of the sequence o, U,(C), = (4), =
(Am = (U)n(Cl)m = (Up)m(C)y and U, is an extension of U,, by terms
each of which involves a variable x;, with 4 > m and so does not occur
in U,. Thus the sequence U,, meo¢ defines a unit U of F,, and
A = UC, by the same type of argument used in the preceding section
in showing A = R*S*. But then A ~ C in F,, which is a contradiction.
Hence factorization into primes exists and ts unique in the rings £
and F,, up to order and units.
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