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Let
(1) L = 3, a(®)3/ow, + b(z)

be a first order partial differential operator acting on m-component
vector functions and defined in a bounded domain D with smooth
boundary I'. Suppose the m x m-matrices a,(x) are hermitian sym-
metric and continuously differentiable in D + I". Further let the m xm-
matrix b(x) be bounded and measurable over D + I".

Recently K. O. Friedrichs [3] has developed a theory of boundary
value problems of the type

(L — ayu = f, xeD

(2) Tu =0, xel

where « denotes a nonvanishing real constant and T a certain m x m-
matrix defined all over the boundary 7 and satisfying certain further
conditions. Concurrently the author worked on the same type of bounda-
ry value problem from a different approach extending Friedrich’s re-
sults to the case of nonlocal boundary conditions [1].

Study of these extensions showed that investigation of the follow-
ing problem is of basic importance for the author’s method:

The question is asked whether a given m-component vector function
@ defined on the boundary I’ can be continued into the domain D to
become a classical solution u of the equation

L(w) = f

where f is any arbitrary measurable function defined and squared in-
tegrable over D, which is not given in advance but may be defined
after @ has been fixed.

Obviously this question is trivially answered ‘‘yes’’ if the boundary
and the boundary function are sufficiently smooth. On the other hand
if this is not the case, counter examples can be given. It is trivial to
find counter examples for special nonelliptic systems but one also can
find some for elliptic systems. For instance if the boundary functions
Uy, v, on the periphery of the unit circle x* + y* = 1 are defined by

(3) u, = a(d) sin /2, v, = — a(d) cos /2, 0<9<2r

Received January 12, 1959. This paper has been prepared under the sponsorship of
the Office of Naval Research, Contract No. Nonr 2-228(09).
987



988 H. 0. CORDES

and if a(J) is piecewise continuous and has a jump for any &, # 0, 27,
then it will be shown in §4 that there does not exist any couple u, v
of real or complex valued functions both being defined and continuously
differentiable in the open unit disk 2* + %* < 1 and such that

(2) —U Vv =f, Uyt V=g

both are squared integrable over «? 4+ %* < 1;

(b) u, v are uniformly bounded on #* + %* < 1 and
(c) lim u(r cos &, 7 sin &) = uy()

r—1

lim v(r cos &, 7 sin F) = v(P)

r-1

almost everywhere on 0 < ¢ < 2rx.

Considering this problem more carefully it shows that the essential
reason for this continuation to be impossible is the following:

The above problem can be connected with the differential operator

(5) L = a,0/6x + a9y

with a,, a, being the matrices

-1 0 0 1
(6) a=("y 1) @=( o)
Using this operator notation we can say that the equation
(7) Ly =

with ¢, 4» being two component vector functions has no classical solu-
tion, defined in the unit disk and achieving the boundary values defined
by

(8) P(@, ¥) = (U9, v(¥#)) @ =cosd,y =sind
in the sense of the conditions (a), (b), and (c) mentioned above.

If we define

(9) A() = a,cos ¢ + a,sin &
(10) A(®) = a,co8 9 — a, sin &
then

11) L = A@®)afor + r~A)a[od .

Hence A(¢) is the coefficient of the derivative in the direction
normal to the boundary.
We note that A(J) is a non-singular (even orthogonal) matrix for
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every . It will follow from our development that this is the reason why a
continuation of discontinuous boundary values becomes impossible. If
for some more general operator L the matrix which corresponds to A(#)
is singular on a point or on a set of points then this set can be allowed
to contain discontinuities of certain types. And conversely it will be
our main result that if ¢, is bounded measurable only at the boundary
and if in addition Ag, is Lipschitz continuous then a continuation in the
above sense is possible.

The main result is stated in Theorem 3.1. Essentially we will ob-

tain the continuation by use of the elementary solution of the parabolic
equation

(12) V*u = ou/ot .

We shall use this for a kind of mollifier. In §§1 and 2 we prove some
auxiliary results most of which will be known. In order to keep the
paper as self contained as possible most of the facts required have been
proved explicitely.

1. Auxiliary results. In this section we will establish some known
results which have to be used essentially in the following. Let

(1.1) =848+ ++0 + 8
and let the function

(1.2) O(s; ) = D(sy, + =+, 835 )
be defined by
1.3) O(s; t) = (4mt)~?2 exp (—|s|*/4t) .

It is known that this function @(s;t) is the elementary solution of
the parabolic equation

(1.4) Vi = iﬁ o0t = oufot .

First we note

LEmMMA 1.1.
(1.5) Slsl”‘e—lsl”e““zds = 27"x=?Pp(p 4+ 2)(p + 4) +++ (p + 2k — 2) .
Here the integral extends over the whole (s,, -+, s,)-space.

The proof of Lemma 1.1 can be obtained by repeated application

of Green’s formula.

LEMMA 1.2, Let
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(1.6) () =f(81 +2%,85)

be a (scalar) complex valued bounded measurable funmction defined and
nonnegative for

(L.7) <8< o, i=1,p.

Let s, be any point and let 4 denote the cube

(1.8) Is, — 831 <9, g=1---p.
Statement. If

(1.9) lim a-pS f(s)ds =0
80 4
then
(1.10) limS D(s, — ' £)f(s')ds’ = 0
t-0 J4

the integral in (1.10) being taken over the whole s-space.

Proof. 1t is obvious that we can restrict ourself to the case s, = 0.
Now, (1.9) being satisfied, let

(1.11) 5(e) = sup | 575 riors] "
and let
(1.12) 7(8) = 8(8 + B(8))

v(8) is a strictly monotonically increasing function of §, and v¥(0) = 0.
Hence the inverse function & = 8(v) exists in some right neighborhood
of y =10 and 8(0) = 0. Also

(1.13) 72| Flo)ds = o + BE) 7O
< BO)— 0,8 —0 .

Hence

(1.14) lim 'y‘”SA f(s)ds = 0.

Let

(1.15) T =38y,

then

(1.16) limz(y) = o .

-0
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Let 4’ be the cube |s;|<v,7=1,---,p. Then by (1.15) 4 can be
written in the form

(1.17) 4d=1d
and (1.14) reads

(1.18) lim fy"’g f(s)ds =0.
y—0 T4’
Now for any given ¢ > 0 set v = 2, then

(1.19) S(b(so — s ) f(s)ds' = S(D(s; t)f(s)ds = SM, + S

C(r4’)

where C(z4') denotes the complement of the cube 74’ with respect to
the whole s-space. But remembering the definition of @(s;t) we obtain
for the first integral

(1.20) < (47r)-mfy-p§ f(s)ds

74’

and hence for ¢t—0, i.e., v — 0 the first integral tends to zero by
(1.18). On the other hand f(s) is assumed to be uniformly bounded,
hence the second integral can be estimated by

(1.21) cOS O(s; t)ds
C(74dr)
< 00(471')"’/27"’{S e“’%zdo}p

lolzmy
_ -p 2J —o? r
= a4m)™! l&algfe do} '
But by (1.16)
(1.22) T = 1(7) = (')

tends to o at £t — 0. Therefore the second integral also tends to zero.
This proves the lemma.

LEMMA 1.3. Let @(s;t) be as defined in (1.83) and let

(1.23) ¥ (s;t) = 0/0s,D(s; t) .
Then

(1.24) Sds(ﬁ(s — &' t)P(s — 8”; t) = (8mt) "2 exp (—|s’" — s"|*8t)

(1.25) Sds%(s — T (s — s 1)
—"(4t)-(8rt) (L — (s] — sV')/At) exp (—|s' — 8" /8F)
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both integrals being taken over the whole (s, ---, s,)-space.

Proof. We only remark that

(1.26) exp (—|s — s'P/4t) exp (—|s — §"'|*/4P)
= exp (—|s’ — s"[8t) exp (—| 5 [//2t)

where we denote
(1.27) §=s—1/2(s" +s").

Therefore the integral (1.24) equals to

(1.28) (Azct)?exp (—|s8" — s”[2/8t)Sexp (—|5}2t)d s
and clearly

(1.29) Sexp (—|51/26)ds = (2xt)?'® .

This proves the first formula. For the second formula we note that

(1.30) V,(s; t) = —(2t)"'(4mt) s, exp (—|s|*[4t) .
Now
(1.31) (s, — s)(s; — si') = 8 — 1/4(s} — sI')" .

Hence the integral (1.25) gets the form
(1.32) (2t)-*(4xt)-* exp (—|s’ — s”|*/8t)
X {Ss exp (—|8}/2t)ds—1/4(s; — s;’)zg exp (—| §]2/2t)d§} .

But
(1.33) Ssi exp (—|8}/2t)ds = t(2mt)” .
If we substitute (1.29) and (1.33) into (1.32) then we get
(1.34) = (4¢)"'(8xt)~**(1 — (s} — s}')*[4t) exp (— |8’ — s”|*/8t)
which completes the proof.

LEMMA 1.4, Let
(1.35) Q.(s; t) = (2t)~*(4xt)-*? exp (—|s|*/4t)
(1.36) Q4(s; t) = |s|M(2t)~*(4nt)-*"* exp (— |s|/4L) .

Statement,
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(1.37) Sds.Ql(s — D2 — 87 D, (5 — S — o
— —1/2d)d4(8t)""" exp (— |8 — 5" [}/8¢))

ey

D
ds(s — 5 2,5 — 55 I (5 — 56 — 57)

(1.38) —1/2d/dt[(8t)-7*{(8t)- s’ — 8" |*

+ p8t)7s" — "' + 1/4(p + 2)(p + 4)} exp (—|s" — s"[[8t)] .

i

Proof. We introduce the notation
(1.39) g = (2t)"%(s — 1/2(s" + s")), g* = (8t)~1*(s" — s")

and we observe that

(1.40) S (s, — s)(s — sV) = 2t((|6 [P — |o*]) .

f=1

Now if we substitute (1.36) and (1.40) into the integral (1.37) this in-
tegral equals

(1.41) (2t)"'(8n°t)~*"* exp (— ]o*lz)g(I&P — |o*[*) exp (— |6 ['d5)

= (8m)~?*(p[4t-P2-* — 1/16]s’ — 8" |*t~?*-?) exp (— |8’ — s |*/8t)
Here for the evaluation of
(1.42) S;& Pexp (— |6 P)déo

Lemma 1.1 has been applied. Now (1.41) is equal to the derivative in
(1.37) as can be proved by differentiation. Therefore (1.37) is proved.
For the second integral we get in a similar way the expression

(1.48) (2t)-*(8n’t)~-"* exp (— |o*?)

x (o= 0* [+ a* (1" = |o* ) exp (~|61ds .
Here we were using that
(1.44) s — s = (2t)"%(o — o%), s — 8" = (206 + o¥) .
We observe that
(1.45) |6 — 16 + a*F = (6] + |0* ) — 4(00*)
and further that

(1.46) S(?w*)z(l 0" —|o*[) exp (—|6[)do
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= S{er@rasr — 1o exp (—16 o}
= plo*{[o (ol — 10 ) exp (—161)d .
Here we used that
(1.47) S&iirk(l&l? — o) exp (—|6[)de = 0,7 = k .

Substituting (1.45) and (1.46) into (1.43) we get the expression

(1.48) (2t)"(87r2t)‘1’/2e"”*‘25(16 L

+ |o* [ + 2(p — 2)/p|6 Plo* )6 — [0* e Cdé
Further
(1.49) (o] + [o*|* + 2(p — 2)[pl 6 [|a* )| — ™)

=[6]"4-(» — Ypl6|'|o*[" — (p — DIp|oP|o*|* — |o*|".

We substitute this into (1.38) and then use Lemma 1.2 to evaluate the
integral, then this integral equals

(1.50) w2 {1/8p(p + 2)(p + 4)
+ 1/4(p + 2)(p — Dlo™*['—1/2(p — Hlo™|* — |a*['} .

On the other hand by calculating the derivative (1.38) we get the ex-
pression

(1.51)  —1/28n)~**{—1/2(p + 4)t-"*""| o™ [*—1[2p(p + 2}t~ o* !
— 1/8p(p + 2)(p + 4)t-71*~1} exp (—|0* )
—1/@20)@8xt)**{|o* " + plo*|* + 1/4(p + 2)(p + 4)| 0™ [} exp (— 0™ )
= —(2t)7'(8xt)~*"* exp (—|0* ) {|o* " + 1/2(p — 4)| 0™ [*
—1/4(p + 2)(p — Ylo*[* — 1/8p(p + 2)(p + 4)} .
If we substitute (1.50) into (1.49) and then compare the obtained ex-

pression with (1.51) we find that both are equal. Therefore formula
(1.38) is proved.

2. Lemmata about special integral operators. The following lemma
was used earlier by K. O. Friedrichs [2]. It can be considered to be

a translation of a theorem about infinite matrices going back to I.
Schur [6].

LEmMMA 2.1. Let
(2'1) .X(S;S’):.X(Sl,-",SP;S;,"',S;,°",S;})
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be defined and continuous for s, s’ € D,, D, being any region of (s, «--, 8,)-
space, and let

2.2) v = supS | X(s;8")|ds’
seno Dy
(2.3) 8 =su S | X(s; s")|ds .
t’€DyJ Dy
Statement.
(2.4) S dsH X(s, s’)u(s’)ds’|2 < o g lu(s) | ds
D Dy Dy

holds for every complex valued measurable function u(s) which is squared
integrable over D,.

Proof. By Schwarz’ inequality
[, as "< as(| XG50 u(s) sy
Dy Dy Dy

< SDods{SDJ X(s; &) |ds’ SDJ X(s; )| |u(s)] 2ds'}

S X(s; s"yu(s")ds’

<v SDOI u(s’)P(SDUIX(s; s’)[ds)ds’ < Suolu(s’)lzds' .

Now let @(s; t), ¥.(s;t); 2.(s;t), 2s;t) be defined as in (1.1), (1.23),
(1.35), and (1.36).

LEMMA 2.2.

(2.5) ;; SS dsdt . g%(s — & tyu(s')ds’

"< [ s

for every u(s) squared integrable over the whole s-space and having
a compact carrier. Here the integral Sdt is taken over the interval

0 <t <1, the integrals Sds and Sds’ are considered to be taken over
the whole s-space. ‘

Proof. First of all by Lemma 1.3:
2.6) ¥ “ dsdt ’ S T (s — 5 yu(s)ds’ l
i=1
= lim._, SS ds'ds"u(s")yu(s") Sl dt Epj S ds¥(s — s'; )y (s — s"; 1)
€ f=1

= lim., SS ds'ds"u(Zyu(s") Sl dt(4t)-(8t)-7"

X (p — (4t)7'|s' — 8" | exp(— |8’ — s"|?/8¢) .
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But as we saw in the proof of Lemma 1.4 (formula (1.51)) this integrand
is equal to

2.7 — 1/2d[dt {(8nt)~?"* exp (— |8’ — 8"'|*/8¢)}
and hence the right hand side equals to

— — 1/2lim Sgds’ds”u(s’)u(s”)

g0
x {(Bm)=*"exp (— |8 — " |*8) — (8me)" " exp (— ¢’ — s"|*[8)}
< 1/21lim S ds’u(s’)S ds"(8me)=?? exp (— |8’ — §"|?/8e)u(s")
< 1/21lim {S [u(s) |*ds(8re)-"
£-0

X Sds’

S exp (— |8 — s |¥/8e)u(s")ds" ’ }' .

Here we were using that the kernel exp (— |s’ — s”|*8) is positive de-
finite as can be easily seen by Lemma 1.3. Since

(2.8) S exp (— |8 — §"|%/8e)ds’ = S exp (— |8 — §"|*/8e)ds = (8xe)?!?
Lemma 2.1 yields

2.9)  (8me)” g ds’ | S exp (— |8 — s |*/8)u(s"

"< S|u(s)|2ds .
This completes the proof of Lemma 2.2.

LEmmA 2.3. Let
(2.10) 2(s; t) = d/dtd(s; t)

and let v(s) be Lipschitz continuous over the whole (s, «--, 8,)-space and
with compact carrier.

Statement.

2.11) SS dsdtlgds’.@(s — & t)v(s)r <p S S:l0vjos,|"ds .

Proof. Since @(s;t) is a solution of the parabolic equation (1.29)
we get

(2.12) As;t) = 21 8/08.7 (s; )

and hence by Green’s formula
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(2.13) gds’Q(s — o5 () = 3 S Vs — s'; tywy(s)ds’
where we denote

(2.14) v(3) = 8/08,((s)) .
Consequently

(2.15) H dsdt

S ds'Q(s — §'; it)v(s’)l2

IN

> SS dsdt] S as'l'y(s — s'; t)vt(s’)

=1

» > (Z SS dsdt“ ds'¥ (s — s'; t)vz(s')r)

=1

I

<p Zp“ S|8v/asi |*ds

which prove the lemma.
In the following ¢ always denotes a constant not depending on u(s).

LEMMA 2.4.
(2.16) SS det]S ds'Q2(s — s'; t)(s; — s;)u(s’)l2 <c Slu(s)l"’ds

for any arbitrary w(s) with compact carrier and squared integrable over
the s-space.

Proof. Clearly

(2.17) Qs; t) = d[dtd(s; t)

= (4zt)~"*(|s|*/(4t)" — p/(2t)) exp (— |s|*/4¢)
= 2y(s; ) — pe(s; ¢) .

Hence the integral in (2.16) can be estimated by
(2.18) 2%, SS dsdtl S ds'Qy(s — 85 £)(s, — s;)u(s')|2

+ op? ; “ dsdt

S ds'Qi(s — s'; t)(s; — spu(s’) 2

Now this can be written in the form
(219)  2lim SS ds'ds" (& yu(s")
x [t 32 [ dss — 515 00,6 — 575 06, — si)s, — 1)

+ 2p*lim SS ds'ds"u(s")u(s")
€-»0
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X S:dt ﬁ‘, X dsi(s — 8'; £)2(s — 8"; t)(s; — si)(s; — s8) .

We apply Lemma 1.4 and this equals
2.20) — limS ds'ds" a5 )u(s")
g—0

x {@m)""Ey(|s — §'|*/8) — (8me) ""E(|s” — s”|[8e)}
x exp(— |8’ — s”|*[8¢)

where E,(a) means a certain polynomial in o with constant coefficients
and of degree two, the coefficients only depending on p. By a treat-
ment similar to the last expression of Lemma 2.3 we get the final
statement.

LEMMA 2.5.
(2.21) SS dsdt‘Sds'lQ(s — 8 t)||s — s'|"*ul(s) ’
< oe) S [u(s) | ds

for any positive € and for any arbitrary u(s) with compact carrier and
squared integrable over the whole space, c(¢) being a constant indepen-
dent of u(s).

Proof. Clearly it suffices to prove the corresponding inequality with

Qs — §'; t) replaced by 2,s — s’;t),7 =1,2. In order to achieve these
estimates we again use the notation (1.49) and estimate as follows:

(2.22) SdSI-Q:(S — 85 )12 — s"; O [lls — &'[*[s — 8”70+

= (2t)-*4(8°t)~?" exp (— | s’ — s”|*/8t) S dde 15"

x {(01* + |o* ) — 4Bo*y} eror
= (26)+*(8a) " exp (— |&' — 8" |*[81)J(s" — 5'|*[8t)

where
(2.23) J(|o*|) = Scilé‘<a"‘9*2{(|r}]2 + [a*]2) — AGa*yaron
< Sd&exp(— 161{|6]* + |o* |2 a+o
< 2‘-’§d&exp(-— (G190 [*+* + 20| g*|*** Sd& exp (— 6%

< 7€)t (8nt) """ exp (— [s" — 8" [*8[t)
+ (o)t (8mt) " | 8" + 8" |*[8t]'* exp (— |8" — " |*[8¢) .
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Here Hoelders inequality has been employed. Hence (2.22) can be
estimated as follows:

SS dsdt ' [ as

+ 7,(¢) S:dtt"‘l SS ds'ds" u(s")u(s")(8xt)-?"* exp (— |s’ — s”|%8t)

(s — s'; t)tls — s'|**u(s’) ’

+ 7,6 S‘dtte—l SS ds'ds" (5 )u(s")
0
x (8xt)=?*(|s" — s |*[8t)'** exp (— |s' — s"'|*/8t)
< 'y(e)gldtte‘l S [u|*ds = vy(g)** S |u(s)|*ds .
0
Here again Lemma 2.1 and Lemma 1.1 were employed. A quite analo-
gous argument is possible for Qs — s';t); therefore Lemma 2.5 is
proved.
LEmMMA 2.6.

(2.25) SS t*dsdt H Qs — §; tyu(s)ds’ '2 <c glu(s)lzds

for arbitrary u(s) with compact carrier squared integrable over the whole
s-space.

Proof. Again it suffices to prove this inequality for £ replaced by
2, and 2,. Now

(2.26) S dsQy(s — 83 )2s — s"; )

= 207870 exp (— | — " %80) | dir exp (— |51
= (2¢)~*(8nt)"* exp (— |8’ — §""|*8¢) .

Hence by Lemma 2.1:

(2.27) SS ds'ds"u(s"yu(s") Sds.Ql(s — 85 t)2(s — 8" t)
< @) |ue)ds .

Consequently

(2.28) SS tzdsdtIS Qs — 83 tyu()ds'|

< 1/4S|u(s)|2ds .



1000 H. O. CORDES

Again a similar argument proves the corresponding inequality for £,;
therefore Lemma 2.6 is proved.
We finally use the preceding lemmata to establish

LEMMmA 2.7. Let
(2.29) A(s; ) = ((auls; 1))

be an m x m-matriz with coefficients a.(s; t) having uniformly Hoelder
continuous and uniformly bounded first partial derivatives in the
domain

(230) Dy = {s,+*+,8,;t9 — o0 <5, < + 0, k=1,+4,p;0<t <1} .
Let
(2.31) u(s) = (Us(8), ===, Un(8))

be an m-component vector function having a compact carrier and being
squared integrable over the whole (s, ---, s,)-space. Let the vector
function

(2.32) A(s; 0)u(s) = v(s)

be Lipschitz continuous over the whole (s,, ---, s,)-space.

Statement. There exist two constants c¢,, ¢, which are independent
of u(s) such that

(2.33) SS dsdt,A(s; ) S ds'Q(s — &' t)u(s’)r

»
=

<o (lu@ds + e, 3 | [ovos,|ds .
Proof. We decompose as follows:
230 AGsit) | ds'2s — o' tuls) = [ 966 = &' ol
(A5 ) — AGs3 0) | 2s — o' u(s)ds’
+ 526 - o6 - shus)as
+ | 26 - o3 DA 0) - A3 0)
— 35 (s — s0)9/0s1A(s'; Ou(s')ds’

where



ON CONTINUATION OF BOUNDARY VALUES 1001

(2.35) v(s) = A(s; 0)u(s), u(s) = [9/0si(A(s; 0))]u(s) .
By our assumption for A(s;t) we get

(2.36) [(A(s; t) — A(s; O)w]| < ct|w]

and

@371)  |[A(s: 0) — A(s'; 0) — 31 (s, — s)0/0s(A(s'; O]
< cls — ] u(s)]

Therefore we can use the Lemmata 2.3, 2.4, 2.5, and 2.6 respectively
to estimate the integrals in (2.33) for the succeeding terms in (2.34) by

either ¢ S |u(s)|* ds or S|6v/68i|2ds. Hence Lemma 2.7 is proved.

LEMMA 2.8. Let u(s) be a bounded measurable m-component vector
Sfunction defined in the whole s-space and let it have a compact carrier.
Further, with the notations of Lemma 2.7, let

(2.38) v(8) = A(s; 0)u(s)
be Lipschitz continuous over the whole s-space.
Let
(2.39) u(s; t) = S(D(s — §'; tyu(s')ds' .
Then
(2.40) lim u(s; t) = u(s) almost everywhere
t—0
and
(2.41) v(s; t) = A(s; thu(s; t)

is continuous all over in the domain D, defined in (2.30) and its boundary.

Proof. Let ¢ > 0 be given. Since u(s) is bounded and measurable,
by Lusin’s theorem a measurable set E. of p-dimensional measure m(E:)
less than ¢ exists such that u(s) is continuous on the complement C(&:)
of E. with respect to the s-space. If x(s) denotes the characteristic
function of E. and if 4 denotes the cube with sides 28 defined in (1.8),
then by well known facts

(2.42) limB‘pS Y(s)ds = 0
80 4

for every s, € C(E. + N.) where N, denotes a certain nullset. We will
show that for every s, € C(E. + E.) relation (2.40) holds. This will
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prove the first statement of the lemma, because then obviously it is
possible to construct a monotonically decreasing sequence of sets which
converges toward a nullset and such that after exempting any set of
the sequence the statement (2.40) holds.

Now, s, € C(N. + E.) being given, decompose as follows:

(2.43) S(D(so — 8" thu(s)ds' = S S + S
C(E.)N4 ByN4y o4y
where 4, denotes the cube (1.8) with side 8 = §,. Then
(2.44) S = 1, S D(s, — §; t)ds'
0(Eg)N 4, 0CEB;)N 4y

where 1, denotes a mean value of u(s) in the cube 4,.
But since w is continuous in C(E.) N 4 it follows that
(2.45) [y, — u(se)| < ¢

if 8, > 0 is sufficiently small. Also

(2.46) D(s, — 83 t)ds' < S@(s,, —sit)ds = 1.

SC(Es)ﬂdo

Consequently, using (2.44) and (2.46) we get
(2.47)

S D(s, — §'; Hyu(sds" — u(s,)
0(BIN4,

<y — )|+ o D6, — ' g
+c Sm )@(s — &' t)ds'

with ¢ = sup|u(s)|. Finally for the second and third integral in (2.43)
we obtain estimates

(2.48) S <o S O(s — '; tyy(s')ds’
By N4, 4
and
(2.49) S < cg O(s — ' t)ds’ .
o(dp) o4y

Hence by (2.43), (2.47), (2.48), and (2.49)

(2.50) ]S(D(s — 8 byu(s)ds’ — u(s,)

< [t — uls) 26| 0(s — o5 (s

+ 2c§ B(s — &5 t)ds’ .
C(4y



ON CONTINUATION OF BOUNDARY VALUES 1003

Choosing first §, sufficiently small the first term can be made arbi-
trarily small; then keeping §, fixed by Lemma 1.2 and (2.42) the second
term also can be made arbitraily small by choosing ¢t small. Also the
last term for fixed &, becomes arbitrarily small if ¢ tends to zero.
Hence formula (2.40) is proved.

In order to prove the continuity of (2.41) we decompose

(2.51) v(s; t) = S@(s — 8’5 Hu(s')ds’
-+ S@(s — 8 t) (A(s; t) — A(s"; 0)u(s’)ds’ .

Since w(s) is assumed to be Lipschitz continuous, the first term obuiously
is a continuous function in D,. The second term is also continuous for
every t > 0. But since u(s) is assumed to be bounded we get

(2.52) S(D(s — o5 1) (A(s; t) — A(s's O)u(s) ds’

<ct S(D(s — 8’ t)yds' + c’Sd?(s — 8 t)|s—s|ds
="t et ——0, t— 0 .

Therefore the continuity is also proved for ¢ = 0. This proves the
lemma.

3. A continuation theorem. Let D be a bounded domain of the
(2, +--, x,)-space with a twice continuously differentiable boundary I
which consits of a finite number of simple nonintersecting hyper surfaces.
More specifically we assume that the boundary I” has second derivatives
satisfying a uniform Hoelder condition. Let

(3.1) a(®) = (@), i =1, --+, m, b(@) = ((bis(%)))

be m x m-matrices with complex coefficients defined in D + I'. Let
a,(x) be hermitian symmetric and its coefficients be continuously differen-
tiable in D + I" and let the derivatives satisfy a uniform Hoelder condi-
tion in D 4 I'. Let b(x) have continuous coefficients in D +4 I'. Let
A(xz), xe D + I be any hermitian symmetric m x m-matrix having con-
tinuously differentiable coefficients in D + I" and such that

(3.2) A(x) = ; a @) v,x), v e I

where v(x) = (vy(x), +++, v,(x)) denotes the exterior normal on I'. We
define the differential operator L, in ®, by

(3.3) Lo = g} a,(@)0u/dx, + b(x)u(x)
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for complex valued m-component vector functions
(3.4) u(@) = (uy(®), + =+, uy(2))

where D, is the space of all u(x) satisfying the following conditions:
(a) u, ou/ox;,, 1 =1, +--, n, continuous in D.
(b) wu(x) uniformly bounded in D.
(¢) lim.,,u(x — ev) = u(x) for every xe ', except possibily on an
n-1-dimensional null set.
(d) v(x) = A(x)u(x) is continuous on D + I’

() g | L [P dz < oo.
D
We prove the following

THEOREM 3.1. Let u,x) be an m-component vector function which
1s defined measurable and bounded on I' and for which

(3.5) vy() = A(@)uq(x)

18 Lipschitz continuous on I.
Then there exists a function w(x)e Dy, such that

(3.6) u(x) = uyx) on I .

Proof. We consider any arbitray point z,€ I". There is a certain
neighborhood

3.7) U,=1{x3 |z —x]<Le}

which can be mapped by a twice Hoelder continuously differentiable one
to one mapping

(3.8) ¥ = y(x)

onto a bounded region in the (y,, -+, ¥,)-space in such a way that the
point x, goes into the origin y = (0, ---, 0), the intersection

(3.9) r,=r,nu,

into a certain neighborhood of (0, ---,0) on the hyperplane y, = 0, and
the intersection

(3.10) D, =D+ N U,

into a certain half neighborhood of (0, ---,0) satisfying y, > 0. We
also can assume that the Jacobian does not vanish.

(3.11) det ((9y,/o,) £ 0, ye D, + Iy -
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The image y(D,) of D, under this transformation contains a cube of
the type

(3.12) Q, ={ye0 <y, <), |y, | <1/29(x), v =2, -+, n} .

We denote the intersection of Q, with the hyperplane y, = 0 by g, and
we set

(3'13) W(QIO) = ;9;01 x(qwﬂ) = qfco

where © = z(y) denotes the inverse transformation of (3.8). There is
a hypersphere

(3.14) Uiy ={za|e — x| < 9'(x)}
such that
(3.15) D, =D, n U, c O,

and such that the same inclusion still holds for %'(x,) being replaced by
a somewhat larger number.

This construction can be employed for every x,el’. Since I' is a
bounded closed set, the whole I" can be covered by the interior points
of a finite number of spheres

(3.16) U,,v=1 -+, N.
There is a decomposition of the identity, i.e., a set of N functions
(3.17) p(x), v=1,+¢, N

being defined and infinitely differentiable in the whole (x,, ---, x,)-space
and such that

(3.18) @,(x) = 0 outside of U;v

and

(3.19) S o @) =1onT.
V=]

Now any vector function u,(x) being given which satisfies the conditions
of the Theorem 3.1, define

(3.20) Uy o(2) = ufx)py (), xel’, yv=1,+.--, N.

Clearly wu, () also satisfies the assumptions of Theorem 3.1, especially
because

(3.21) A(x)uy, o) = (A@)u(x))Py(2) .

We will prove that every u, () can be continued to a function u,(x) € Dy,
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in the sense of the assertion. This obviously will prove Theorem 3.1,
because the sum of all u,(x) will be the desired continuation of wu,(x).

Now, if we apply the mapping just defined in each particular
neighborhood D, then the vector function u,,(x) will be transformed
into a certain function

(3.22) Wy,o(Y) = Uy ,o(2(Y))

defined and measurable on y(I", ) which contains the cube g, . Since by
definition u, (%) = 0 outside of D’ and since

(3.23) y(D,) C Q,,

holds, the function w, (y) is defined for yeq,, and has its carrier in
the interior of this #»-1-dimensional cube. We can consider w,  (y) as
being defined on the whole hyperplane y, = 0 by setting it equal to zero
outside of q,,. We would like to apply the various lemmata of § 2. In
order to do this we first transform the operator L, to the new variables y.

(3.24) L = X a@(u)o]oy, + bw) e y(D.,)
where
(3.25) Qi) = 3. 0y, foman(=@); by) = b)) .

Further we define

(3.26) Aly) = A(x(), yey(D.,) ,

Clearly it is possible to continue the matrix A(y) to a matrix function
being defined, bounded and continuously differentiable on the whole
semispace

(3.27) 1 >0, —o<y, <+oo, v=2, -+, 1;

its first derivatives satisfying a uniform Hoelder condition in every
compact subregion. Now we remark that for

(3.28) Y =1t, Y, =8, yszsm“‘:yn:'gp;p:n_l

the functions w, ((y) and A(y) satisfy every assumption necessary for
application of Lemma 2.2, Lemma 2.7, and Lemma 2.8. Hence the
function

(3.29) w0,) = (@ =55 yw, () ds’

satisfies the following conditions:



ON CONTINUATION OF BOUNDARY VALUES 1007

(a) w,, ow,/0y; continuous for ¥, > 0.

(B) w, uniformly bounded for y, > 0.

(v) lim..,w,(y — €z) exists for every y with ¥, = 0 and every vector
z,=1,2,=0, j=2,---, n with the possible exemption of a
set of m-1-dimensional measure zero which is contained in Tz, -

(8) wv(y) = A(y)w,(y) is continuous for y, > 0.

(¢)

330 | {lw@F -+ Alow, oy [+ 5| 0w oy, fdy <eo .

¥120

Finally take any infinitely differentiable function ¢,(y) being =1 on
y(D:,) and having its carrier in y(D,) and take

(3.31) w(Y) = ¢(Y)w(y) .

Clearly ,(y) also has the properties («), ---, (¢). Transform this func-
tion back to the old variables and continue it zero outside of D, ().
Call the new function u,(x). Then it is clear that

(3.32) Uy (%) = U, o(x) on I,
Also u,(x) satisfies the conditions (a), (b), (¢), and (d). Since

(333) L[ < d | A@oufonl + 5 oujoy '+ |u [ |

(3.30) yields the condition (¢) too. Hence u,(x) is the desired continua-
tion and Theorem 3.1 is proved.

4., A counterexample. Let D be the unit circle x? + x? < 1 and
accordingly I' be the periphery of the unit circle x! + 22 = 1. In D we
congider the operator defined in formula (5) of the introduction

4.1) L, = a,0[0%, + a,0]0x,
with
(4.2) a, = (‘%) g’) azz((l) é)

Then the equation
(4.3) Lu=f
for the 2-component vector functions

(4.4) u = {U;, U}, = {fu, fz}
defined in D + ' is equivalent to the system
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(4.5) — 0,0z, + 0u,/0x, = f;
ou,[0x, 4 Ou,/ox, = f, .

Hence for real valued u,, u, we get
(4.6) SD(ff + f)dx = Sn(aul/aoc1 — OU,[0,)* + (Ou,/0x, + Ou,/0x,)* dx
= gl)[(aullfml)2 + (0u,/0x,)* + (0u,/0x,)* + (Ou./0x,)*] dx
+ ZSD(ﬁul/axﬁuz/axl — Ou, 0w, du,/0x,) da .

Now, assuming u twice continuously differentiable in D + /" we can
apply Green’s formula to the last integral:

4.7) S (Ou,/ox.0u,/0x, — 0u,/0x,0uU,/0x,) dx
D

= S U (X,0U,[0%, — X,0U,[0U,[0x,) do .
r

Hence the last integral in (4.6) is equal to

(4.8) ZS U (2,0U,[0, — 2,0U,[0%,) do = — 2suu18u2/619 d
r 0

where

4.9) d = are tg x,fx, .

Now we impose on u the condition

(4.10) U, sin /2 + u,cos 92 =0,

Then

(4.11) —ZSMulauz/a&d& = (" a0z cot 92
0 o0

_ ~Y7tu§8/6t9(00t 812) d = 1/25"”‘ug sin=29/2 d .
o 0

This integration by parts is legitimate because the condition (4.10) implies
u,=0at ¢=0, 2r. Since u is supposed to have continuous first
derivatives it follows that u?sin-%%/2 remains bounded also for & = 0, 2x.
Consequently

(4.12) S | Lo do = g | FIP da
= | [ujony + @ujory + @ujow) + @uor)y) da
+ 1/25%; sin-*9/2 do .

Since the last integral is nonnegative we obtain
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(4.13) S | Lo [P do > S [(Oufo,): + (Ouaf015,)°
+ (0usfoz)’ + (Gufo)] dev .

Next assume ¢ = {¢,, ®,} to be some function satisfying the conditions
(a), (b), (¢), and (e), of Theorem 3.1 applied to the special operator L,
defined in (4.1). Also assume that on the boundary I

(4.14) @, = a(F) cos I2, ¢, =— a(H)sind[2, 0 < I < 27 .

Let a(J) be real valued and piecewise continuous but not continuous.
Then we will show that this leads to a contradiction.

First of all the vector function ¢ can be assumed to be real valued
in D+ I because any complex valued such ¢ being given, 1/2(p + ¢)
would satisfy the same conditions as ¢ and would be real valued.

Now, if L. in D, denotes the restriction of the operator L, in O,
to the space ©, of all functions twice continuously differentiable in
D + I' and satisfying the boundary conditions (4.10) then we obtain a
dissipative operator in the sense of R. S. Phillips [4], which is characterized
by local boundary conditions. For the matrix

(4.15) A= i ay, = a,cos ¥ + a, sin &
i=1

we get the representation

—cos ¢ sin & sin® /2, sin ¢/2 cos /2
(4.16) A®S) = ( ) - < )

~ \sin /2 cos /2, cos® /2
<cos2 3/2, —sin¥/2 cos &/2)
—sin #/2 cos ¢/2, sin®H/2

sin ¢ cos &

and it is easy to see that the two matrices of this last decomposition
are identical with the matrices P, and N, respectively which project
orthogonally onto the spaces of all eigenvectors corresponding to the
eigenvalues +1 and —1 respectively. The boundary condition

(4.17) Pu=0on I’

obviously is equivalent to the condition (4.10). Hence the inner product
uAu is <0 for all u satisfying the condition (4.17) (or (4.10)). Hence

(4.18) Qu, u) = 2Re§ aLo dz = S 7Aude <0,
D r
which proves that L_ in 9, is dissipative. On the other hand in the

sense of K. O. Kriedrichs [3] this boundary condition is ‘‘admissible’’,
because
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(4.19) A=P,— N, P,>0, Ny >0.

Also the rank of A is constantly equal to two.
Hence if L* in D, denotes the adjoint of L_ in , with respect

to the inner product
(4.20) Cuy v> = S w do
D

and if L, in D, denotes the operator analogous to L. in D, with the
boundary condition (4.17) replaced by Nju = 0, xe ", then
(4.21) L** = L* .

But ¢ is a function of L* because from the conditions (a), (b), (¢) and
(e) it follows immediately that

(4.22) (o, Lud> + (Lo, uy = Spg_oAu do =0
for all we®, . Hence (4.21) implies
(4.23) P E Dyxx .

Therefore a sequence ¢"e P, exists such that

(4.24) " — @, " —9pp— 0, n—
(4.25) L(¢" — 9), Ly(9" — 9> — 0, n—> oo .
Now (4.25) implies

(4.26) {Ly(p™ — ™), L(¢p" — ™)) — 0, n, m — oo .
Let
(4.27) grm = gn — g

then (4.13) yields

(4.28) (09" [0, 09" [0w,> + (O™ [0, O™ [0,

>0, n, m — o .,
Hence d¢"/ox,, 0¢"[0x, converges in the square mean. Let
(4.29) 0p™[0x, —— Y, B — o ,

and let w be any vector function continuously differentiable in D + I”
and vanishing outside of some circle |z| < r < 1. Then

(4.30) 0" [0y, uy =— {p", oulox;> .

For n — « we get
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(4.31) lp, uy =— Lo, ouloxy .

But ¢ is continuously differentiable for |x| < 1. Hence, using the
special properties of u, we get

(4.32) G, 1y =— L, qufomy = Opfow,, u .
Or
(4.33) G — Bplom,, up = 0

for all v with the above properties. But the set of all such « is dense
in the space L, hence

(4.34) Y = 0pfox, .
In the same manner we obtain the relation
(4.35) 0" |0x, — 0|0z, .

Hence the derivatives 0¢/ox, 0p/0x, are squared integrable and the
Dirichlet-integral of ¢ exists.

But it is a well known fact that a function ¢ with the properties
(a), (b), (¢) which is piecewise continuous on the periphery of the unit
circle and has a jump, cannot have the Dirichlet integral existing.
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