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Here we shall study only uniformizable Hausdorff spaces. In general
if a topological space X is uniformizable then there are many uniform
structures 7/ compatible with the topology of X. If X is compact then
there is only one uniform structure for X and there are also non-compact
spaces whose structures are uniquely determined by their topology. (See
[1] and [2].) The purpose of this note is to give a necessary and
sufficient condition that % be uniquely determined by X. Let C(X) be
the algebra of bounded real valued continuous functions on X and let
C(X) be topologized by the topology of uniform convergence on the whole
space X. By A(X) we denote the subalgebra of those real valued con-
tinuous functions which are constant on the complement of some compact
set in X. We shall prove the following

THEOREM. The uniformizable Hausdorfl space X admits only one
uniform structure if and only if A(X) is dense in C(X).

Another necessary and sufficient condition for uniqueness was found
earlier by R. Doss [3]: The closed sets C, and C, are called normally
separable if there exists a continuous real valued function f on X which
takes the value 1 on C, and the value 2 on C,. Doss proved the follow-
ing:

Uniqueness takes place if and only if of any two normally sepa-
rable sets at least one is compact.

The following proof of the Theorem makes no use of this criterion
given by Doss. However at the end it will be proved that the criterion
stated in the Theorem and the criterion due to Doss are equivalent.
This gives a new, simpler proof of Doss’s theorem. Approximately at
the same time when [3] was published P. Samuel in [5] and T. Shirota
in [6] proved that

Among the unmiform structures compatible with the topology of X
there is a weakest vf and only if X ts locally compact.

The two halfs of this theorem are stated as of Lemma 8 and Lemma
6 below. Their proofs are independent of the rest of the paper and so
they furnish a simple proof for the Samuel-Shirota theorem.

A space X is said to be normally imbedded in the space Y if every
real valued continuous function on X admits a continuous extension to
Y. If this property is supposed to hold only for bounded functions one
speaks about a bounded normal tmbedding. E. Hewitt in [4] proved
that
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The Hausdorff space X is normally imbedded in every uniformi-
zable space containing X as a dense subspace if and only if of any two
disjoint sets at least one 1s compact.

Among all uniform structures compatible with the topology of a
uniformizable space X there is a strongest called the Weil structure or
the universal structure of X. Its existence follows from the faect that
the union of all uniform structures compatible with X is a subbase for
a uniform structure which is compatible with X. The Weil structure
%, 1s uniquely determined by the following property: If 2" is a uniform
structure for Y and f: X — Y is continuous with respect to the topology
of X and the uniform topology associated with <#” then f is uniformly
continuous with respeet to %%, and . In general %4 is not a
precompact structure.

Let X satisfy the criterion given by Doss and let 2/ be the unique
structure compatible with its topology. The uniqueness implies that &
is identical with the Weil structure of X. Let X be a dense subspace
of the uniformizable space Y and let ¥~ be a uniform structure for Y.
The restriction of %7~ to X is the Weil structure of X and so every real
valued continuous function f on X is uniformly continuous with respect
to 7. Consequently f can be extended to a uniformly continuous func-
tion on Y and so X is normally imbedded in Y. Thus by Hewitt’s
theorem one of any two disjoint closed sets of X must be compact.
Combining the present Theorem with the theorms of Doss and Hewitt
we obtain:

Any two of the following statements are equivalent:

(i) X has a unique uniform structure.

(ii) If C, and C, are normally separable closed sets in X then at
least one of them is compact.

(iii) If C, and C, are disjoint closed sets in X then at least ome
of them 1is compact.

(iv) A(X) is demse in C(X).

(v) X is normally tmbedded in every uniformizable space contain-
wng X as a dense subspace.

We omitted the analogue of (v) concerning bounded normal imbed-
dings. For we have:

If X has a unique uniform structure then every real valued con-
tinuous function is bounded on X.

This follows from Lemma 1 below. Using (iii) one can also prove
that any two disjoint closed sets are normally separable.

The following notations will be used: Open sets will be denoted by
O, closed sets by C, neighborhoods by N, and open neighborhoods by
0,. For the closure of a set A we write A and c¢A stands for the com-
plement of A with respect to a given set containing A. Uniform struc-
tures will be denoted by </, &, ---; the completion of a uniform space
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X with respect to a structure 2 will be denoted by X and the complete

structure will be denoted by 7. As usual Uo V is the composition of
the vicinities U, Ve 2 and Ulxl=1ly: (x, y) e U]l. If Z; (t e I)
are uniform structures for X then lub %, denotes the uniform structure
generated by the subbase U %;. It is the weakest structure which is
stronger than any %/, (¢ € I). If £ is uniformly continuous on X then
F denotes its extension to X. The structure %, used in the proof of
Lemma 5 is the so-called Cech structure which was introduced by
Samuel in [5]. The fact that the definition given in [5] is equivalent
to the present simpler definition follows from Lemma 4. %/, is the
strongest precompact structure compatible with the topology of X and
its completion is the Stone-Cech compactification BX.

Levmma 1. If A(X) is dense tn C(X) then every uniform structure
% compatible with the topology of X is precompact.

Proof. This follows by a simple argument which is used also in
[3]: Suppose that X is a topological space and < is a non-precompact
structure compatible with the topology of X. Then there is a symme-
trie vieinity U € 2 and a sequence of points #,, %, +-+ in X such that
(%m, %,) € U only if m = n. We choose a symmetric V e 7~ satisfying
VoV c U and a symmetric W € o satisfying Wo W< V. Since X
is completely regular there is a real valued continuous function f, on X
with the property that |f,(x)| <1 for every x € X, the closure of
Wiz,] is a support of f, and f,(x) = + 1 according as n is even or
odd. By Wo W < V the closure of WJx,] is contained in VI[z,] and
by VoV < U the sets V[z,] and V]z,] intersect only if m = n. There-
fore the series JXf,(x) contains for each x € X at most one non-
vanishing term and it defines a bounded continuous function f on X.
Neither {x,, %, ++-} nor {x,, x, ---} is compact and so f can not be
approximated uniformly on X by elements of A(X). Hence the existence
of non-precompact structure implies that A(X) is not dense in C(X).

LEmMMA 2. If A(X) s dense in C(X) then X 1s locally compact.

Proof. Let O, be an open neighborhood of the point # € X and let
f be a real valued continuous function on X such that 0 < f(§) <1 for
every £ e X, f(x) =1 and f(§) =0 if £ ¢ O,. Since A(X) in dense in
C(X) there is a continuous function ¢ which is constant on the complement
O of a compact set C and is such that | f(§) — g(£)| < ¢ for every £ ¢ X.
It N,=1[& f(§) >1 —¢] is a subset of C then N, is a compact neigh-
borhood of x. If this is not the case then O and N, have a common
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point £. Then for every € O we have
J) =9(m) —e=9(¢) —e=>f(§) —2>1—-3>0

and so » € O0,. Since O € O, where C = ¢O is compact we see that the
complement of O, is compact. If this is the situation for every open
neighborhood O, of x then X is compact. Henece either N, is a compact
neighborhood of x for every z € X or X is a compact space.

Let f map X into Y and let ° be a uniform structure for Y.
The sets f~(V) = [(x,, %) : (f(xy), f(x,) € V](V e 7) form a base for a
uniform structure % for X, called the inverse image of &~ under f.
If f is a real valued function on X and " is the usual structure of the
reals the inverse structure will be denoted by %/,. It is a pseudo-metric
structure which is generated by the pseudo-metric d (x,, x,)= | f(2,)—f(x.)!.
If f is bounded then %/, is precompact. If {f} is a family of real
valued functions on X we call lub %/, the uniform structure generated
by the family {f}. Every fin {f} is uniformly continuous with respect
to lub %/,. Moreover if 7/ is a uniform structure for X and if every
fin {f} is uniformly continuous with respect to Z then lub %/, < Z.
If every f € {f} is bounded then lub %/, is a precompact structure for
X. These simple consequences are presented in greater detail in Chapter
IX of [1].

Some interesting uniform structures are structures generated by
families of real valued functions {f}. For example let X be locally
compact and let {f} be the family A(X). Given z € X and a compact
neighborhood C, of x there is a real valued continuous function f on X
such that f(z) =1 and C, is a support of f. Hence C, is a neighborhood
of xz in the uniform topology associated with %/. It follows that
7y = lub %/, is compatible with the topology of X. Every f e A(X)
is constant on the complement of a compact set and so it is uniformly
continuous with respeect to any uniform structure <~ which is compatible
with X. Therefore 2 < 2" and so % is the weakest structure compa-
tible with the topology given on X. Hence we proved the following
lemma, which incidentally is an’ exercise in [1]. (See Chap. IX. p. 16
Exercise 11.)

LEmMMA 3. If X is a locally compact Hausdor(f space then there is a
weakest uniform structure which is compatible with the topology of X.
It is the uniform structure generated by the family A(X).

The weakest structure if it exists is necessarily precompact. Now
we show that every precompact separated structure can be generated by
families of real valued functions. For let % be a precompact separated
structure for X and let X be the completion of X with respect to % .
The completed structure will be denoted by 2. Let %; denote the
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uniform structure generated on X by the real valued function f given
on X. It is clear that the restriction of %% to X is the same as the
structure 7/, generated on X by the restriction f of f to X. More
generally if {f} is a family of real valued functions on X then the
restriction of lub %5 to X is the structure lub %/,. If {f} is the
family of all real valued continuous functions on X then lub %5 is
compatible with the topology of X and so by the compactness of X we
have 7 = lub %/;. Therefore % = lub %/, where {f} is the family
of the restrictions of continuous functions f to X. Since f is the re-
striction of some f if and only if f is uniformly continuous with respect
to 27 we have

LEMMA 4. FEwvery precompact separated structure 7/ is generated
by the family of those real valued functions which are uniformly con-
tinuous with respect to 7.

The topology of uniform convergence on X is meaningful on the
linear space L of all real valued functions on the set X: The e-neigh-
borhood of 0 consists of those functions f on X for which supr | f(z) | < e.
Let A, CC L and let A be dense relative to C. By #Z/, and %, we
denote the uniform strutures generated by the families A and C,
respectively. Then for every ¢ € C and ¢ > 0 there is an a € A such
that |a(x) — c(x) | < ¢/4 for every x € X and so

[, v):[e(@) —c) | < el 2 [(90’ v): la@) —a@] < ;]

This implies that every vicinity of %/, contains a vicinity of %4, so
that 7, < %/,. If in addition A < C then %, < %/, and so we have

LEMMA 5. If A is dense in C then they generate the same uni-
Jorm structure.

Now it is easy to show that if A(X) is dense in C(X) then there
is only one uniform structure which is compatible with the topology of
X: By Lemma 2 the space X is locally compact and so by Lemma 3 it
has a weakest uniform structure %, which is compatible with its
topology. By the same lemma %/, is generated by A(X). It will be
sufficient to show that %/, is identical with the Weil structure %/, of
X. By Lemma 1 7/, is precompact and so by Lemma 4 it is generated
by the family of those real valued functions on X which are uniformly
continuous with respect to %,. By the precompactness and by the
definition of %/, this family is C(X). Since A(X) is dense in C(X) by
Lemma 5 they generate the same structure, that is %, = %% . This
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proves the sufficiency of the condition given in the Theorem.

Now we shall prove that the condition stated in the Theorem is
also necessary. First we suppose that X is a locally compact Hausdorft
space. Let X = X U {0} be the Alexandroff compactification of X and
let 7/, be the uniform structure obtained for X by restricting the unique
structure of X to X. We prove that a real valued function f is uniformly
continuous with respect to 7/, if and only if f belongs to the uniform
closure of A(X). For compact X this is obvious so we may assume
that X is not a compact space. Since the elements of A(X) are uniformly
continuous with respect to any structure compatible with the topology
of X the same holds for the elements of its closure A(X) and so it
will be sufficient to show that if f is uniformly continuous with respect
to 7/, then f e A(X). However if f is uniformly continuous with
respect to 7/, then it has a continuous extension f to X. By the con-
tinuity of f at oo for every ¢ > 0 there is a compact set C c X such
that | f(x) — f(e0) | < ¢ for every « ¢ C. Let O be an open neighborhood
of C which does not contain . Since X is normal there is a real
valued continuous function g on X which takes the value 1 on C, vanishes
outside of O and satisfies 0 < g(x) <1 on X. Then h = (f — f(c))g +
F(e0) belongs to A(X) and is such that | h(x) — f(x) | < ¢ for every « ¢ X.

Let us now suppose that A(X) is not dense in C(X). Then there
is an f € C(X) which is not in A(X) and so it is not uniformly con-
tinuous with respect to %/,. Since every element of C(X) is uniformly
continuous with respect to the uniform structure %/, generated by C(X)
we see that 7/, and %/, are distinct structures compatible with the
topology of X. This proves the necessity of the condition in the case
of locally compact spaces.

The proof of the Theorem will be completed by showing

LEMMA 6. If the wniformizable Hausdorff space X is not locally
compact then there is no weakest among the uniform structures which
are compatible with the topology of X.

Proof. First we notice that if X is a Hausdorff space and if
the Hausdorff space X is a compactification of X which contains only
finitely many more elements than X then X is locally compact. Now
let 2 be a uniform structure which is compatible with the topology
of the uniformizable Hausdorff space X. We assume that X is not
locally compact. Let B denote the family of those bounded real valued
funetions on X which are uniformly continuous with respect to % and
let &2 be the uniform structure generated on X by B. Then 7 is

precompact and is not stronger than Z/. Let X be the compact comple-
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tion of X with respect to %#°. By the foregoing remark X — X is an
infinite set. We consider the space Y obtained from X by identifying
a finite number of distinct points , «+-, 2, (n > 1) of X — X. The
identification space Y will be compact and separated, so it has a unique
uniform structure whose restriction to X will be denoted by 9#~. Then
Y is the completion of X with respect to 97 and X is the completion
of X with respect to #°. By Lemma 4 both <" and 27 are generated
by their families of real valued uniformly continuous functions. A real
valued function is uniformly continuous with respect to 97~ if and only
if it is uniformly continuous with respect to %" and its extension to
X assumes the same value at w,, ---, #,. Hence X being separated
there are real valued functions on X which are uniformly continuous
with respect to ¥ but not with respect to 5#~. Therefore o7 <7 <%/
and so X has no weakest structure compatible with its topology. Lemma
6 and the Theorem are proved.

We finish by proving that the condition given in the Theorem is
equivalent to the condition of Doss. First suppose that A(X) is dense
in C(X). Let C, and C, be normally separated by f. We may assume
that 0 < f(x) <1 for every x € X, f is 0 on C, and 1 on C,. We choose
a g € A(X) satisfying | f(») — g(%)| <& < % everywhere on X. Let g
be constant on the complement of the compact set C. If this constant
value is neither 0 nor 1 then both C, and C, are compact. Otherwise
we may restrict ourselves to the case when C is a compact support of
g. If x ¢ C then g(x) =0 so f(x) < e and x € C,. = [2: f(x) < €]. Therefore
¢C < Cyp. € cCpe =[x : f(x) <1 — €]. This shows that C,=[z: f(x) =1]c C
and so C, is compact.

Next we suppose that X satisfies Doss’s condition. Let f e C(X)
and & > 0 be given. We consider the closed sets C, = [z : | f(x) — ke | < £]
where 1 =0, +1, + 2, ---. Their union is X. Any two of the sets
Cp k=0, £1, + 2,.-.) are normally separable so at most one of them
is not compact. Similarly at most one of the sets C,,.. (k =0, =1, +£2,--.)
can be non-compact. Moreover if C,, and C,,, are not compact they
must have common points and so

Coo U Coper = I:w : s(m - —é—) < fle) < e(m + %)]

for some m. We define

f(x) if x e Cyand k< m
g(ac): e(m——%—) 'fo € Czk U sz+1
flxy—¢ ifxeC,oand k>m+1.

Then | f(x) — g(x)| < ¢ for every x € X and g € A(X) because f being
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bounded there are only finitely many non-void sets among the sets C..
If only C,, or only C,,, is non-compact the construction is similar.
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