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1. Preliminaries. It is well known that compact topological groups
have many properties similar to those of finite groups, which are of
course special cases of compact topological groups under the discrete
topology. The program of this paper is to characterize sets of elements
in a compact topological group which generate a given subgroup and,
conversely, to determine properties of the subgroup generated by a given
set of elements by an investigation of the properties of this set. Tools
for our investigation are the convolution algebra of continuous complex-
valued functions on the group and the system of irreducible represen-
tations of the group. We shall also formulate the results using those
concepts. Our results are straightforward generalizations of known
theorems on generating sets of elements in finite groups'.

From now on G will denote a compact topological group which, as
a topological space, is T,. It follows that G is Hausdorff and, there-
fore, also normal. Let e denote the identity of G. A subset H of G
will be called a subgroup of G if it is an abstract subgroup of G and
closed, unless the contrary is specifically stated. Let ¢ denote the nor-
malized Haar measure on G: u(G) = 1.

A subgroup H with positive measure p(H) > 0 is necessarily both
open and closed, as are all (left) cosets of H. Thus a compact group
G with such a subgroup is disconnected and the quotient-spaces G/H
(with respect to left cosets of H) is finite and discrete in the quotient
topology. Then 1/¢(H) is the index of H in G. The quotient space of
G with respect to left cosets of a subgroup of measure 0 contains in-
finitely many elements and is again compact, Hausdorff and normal.

Let C denote the field of complex numbers and C(G) the set of all
complex-valued continuous functions on G. Defining scalar multiplication
and addition in C(G) pointwise as usual, C(G) becomes a Banach-space
under the uniform norm: || f|| = sup.eqs {|f(®)]} (f € C(G)). Defining
multiplication in C(G) by convolution,

(f =@ = | Fayewdy

C(G) becomes a Banach algebra. Left and right translations of f ¢ C(G)
by s € G are defined by ,f(x) = f(sx) and f,(x) = f(xs) respectively.
Both ,f and f, are functions in C(G) and every f € C(G) is both left

Received April 28, 1958. Presented at the 65th Annual Meeting of the American
Mathematical Society in Cincinnati, Ohio. January 28-30, 1958.

1083



1084 GILBERT HELMBERG
and right uniformly continuous.

DEFINITION 1. The subgroup H of G is said to be generated by
a set M c G if it is the smallest subgroup of G containing M.

The subgroup generated by M will be denoted by H(M). It is
evidently the closure of the set of all finite products of positive and
negative powers of elements in M. From a theorem of Numakura®
about compact semigroups it follows that H(M) is already the closure
of the set of all finite products of positive powers of elements of M.

2. Subsets of G and corresponding ideals in C(G). With every non-
void subset M of G we shall associate the set F(M) of all functions
f € C(G) invariant under right translation by every element s € M.

FM)y={f:fe C@),f,=f for all se M} .

Obviously F(M) is non-void, since it contains the constant functions.
It is clearly a linear subspace of C(G), and it contains with every
f e F(M) the function a = f if a € C(G@) since

(@ */)e) = @ f) @s) = | alsy™)f @)y
= | atey)rwady = @+ @ .

F(M) is therefore a left ideal in C(G).
It is clear that M, ¢ M, implies F(M,) D> F(M,). If M is the closure
of M in G we have therefore F(M) > F(M).

LEMMA 1. F(M) = F(M).

Proof. We have to show F(M) < F(M). Assume that there is
f e F(M) such that f ¢ F(M). Then there is % € M such that fr +# f
and

(1) || /= — £l > a for some a > 0.

Because of the uniform continuity of f, we can choose a neighborhood
V of e such that

L f(x) — fnl < % if sy e V.

The set mV is a neighborhood of 7 and contains a point m € M. Then
2 See [6] p. 102.
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| f(x7) — f(am)| < % for all # € G

since (xm)am = m~'m € V. Since f(xm) = fr(x) and f(xm) = f(x) it
follows that ||fn — fIll < a/2 which contradicts our assumption (1).
Hence f; = f and f e F(M) for all f € f(M) and the Lemma follows.

Now let fe F(M) and a e M,b e M. Clearly f,=f. Since
f(xa) = f(x) for all x € G, we also have f(zxa~'a) = f(za™) for all x € G
or f,1=f. Moreover fu(x)= fi(xa)=f(xa)=f(x) for all z e G.
If we denote by H'(M) the abstract (not necessarily closed) subgroup
of G generated by M then evidently F(M) < F(H'(M)). On the other
hand, M c H'(M) implies F(M) D> F(H'(M)) and therefore F'(M) =
F(H'(M)). Now H(M) is the closure of H'(M) in G, and by Lemma
1 we obtain

LeMMA 2. F(M) = F(H(M)).

This result allows us to infer some further properties of the func-
tions of F(M). To simplify the notation, we shall in the rest of this
paragraph write H instead of H(M). Let {g,H:r ¢ R} be the decom-
position of G into distinct left cosets of H and G/H be the corresponding
quotient space. For f € F(H) and arbitrary h € H, we have f(9,h) =
f(g,), so that f is constant on every coset g,H. Conversely every con-
tinuous function on G constant on every left coset of H has clearly the
property f, = for all h € H and belongs to F(H). Hence F(M) is
the set of all continuous functions on G that are constant on left cosets
of the subgroup generated by M.

Let us denote by C(G/H) the set of all continuous complex-valued
functions on G/H. If we associate with every f € F(H) the function f’
on G/H defined by f'(9,H) = f(g9,) then f’ € C(G/H) and the mapping
f—f' is a linear one-to-one mapping of F(H) as a linear space onto
the linear space C(G/H).?

To identify the dimension of C(G/H) as a linear space we have to
distinguish two cases.

(a) n(H)>0. G/H is finite and discrete. The ¢ = 1/u(H) charac-
teristic functions of the points of G/H form a basis in C(G/H).
Therefore F(H) is finite-dimensional and closed in the uniform norm in
C(G).

(b) {H)=0. G/H is a normal Hausdorff space with infinitely
many points. Therefore C(G/H) and F(H) are infinite-dimensional. Let
F(H) be the closure of F(H) in C(G) and f ¢ F(H). Assume fu # f for
some he H, or

(2) || f» — f|] > a for some a >0,

3 See [5] p. 110, 111.
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There is f € F(H) such that ||f — f|| < /2 or

| f(zh) — f(xh)| < % for all z € G

| ful@) — f(@)] <% for all z e G
~ a

Hh*fH<E.

But then

o =FSA—-FI+IIF=FlI<a

which contradicts (2). Therefore f, = f forall h € H and F(H)cC F(H)
which shows that F(H) is again closed in C(G).
The results of our discussion are summed up in

THEOREM 1. F(M) is a closed left ideal in C(G) consisting exactly
of all continuous functions on G which are constant on each left coset
of the subgroup H(M). As linear subspace of C(G), F(M) is 1/p(H(M))-
dimensional if p(H(M)) > 0 and infinite-dimensional if p(H(M)) = 0.

Analogous statements hold for the set of all continuous functions
on G that are invariant under left-translation by every element m € M.

3. Subgroups of G and corresponding ideals in C(G). Let the subset
M of G be a subgroup H. We can reverse the correspondence between
H and F(H) by observing that H is completely characterized by F(H)
as the set of all elements of G which right translate every f e F(H)
into itself. In order to see this we have only to show that for every
m ¢ H there is f ¢ F(H) such that f,, #+ f. Since m~' ¢ H we have
H + m™'H. By the complete regularity of G/H, there is f' e C(G/H)
such that f'(H) =1 and f/(m—*H) = 0. Defining f € F(H) by the re-
lation f(x) = f'(xH) for all x € G, we have f(m™') =0 and f,(m™") =
f(e) =1. Hence f,, + f.

It follows that for two arbitrary subgroups H, and H, of G F(H,) D
F(H,) implies H, c H,. The converse is obviously true. We conclude:

LemMA 3. If H, and H, are subgroups of G, then H, C H, if and
only if F(H,) D F(H,).

Taking {e} and G as subgroups of G we have in particular F'(e) =
C(G) and F(G) = {al} i.e., the (left) ideal consisting of all constant
functions.

Let now N be a normal subgroup of G,n € N and f € F(N). For
every x € G we have ,f(x) = f(nz) = f(an,) = f, (x) = f(x) where n, € N.
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Therefore every element of F'(IN) is both left and right invariant under
translation by elements of N. For an arbitrary ¢ ¢ C(G) we then have:

(f @) = (F +a)am) = | Fnyady = | fouay-aw)dy
=(frxa)x) forallxeG

F(N) is then a right ideal and therefore a two sided ideal in C(G).

Suppose now that H is non-normal. Then gH + Hg for some ¢ € G.
We can assume that there is 4 € H such that hg ¢ gH. (Otherwise
there would be h, € H such that gh, ¢ Hg or hyg™* ¢ g'H, and we
could take %, and g~' in place of & and g.) Then hgH N gH = 0. We
shall exhibit functions f e F(H) and a € C(G) such that fxa ¢ F(H).
It will follow that F'(H) is not a two-sided ideal in C(G). Again we
distinguish two cases.

(a) ((H) > 0. The sets gH and Hg~' are both open and closed.
Let f be the characteristic function of gH and a be the characteristic
function of Hg~'. Then f ¢ F(H) and a € C(G).

Let us now consider fi(y) = f(hy"a(y) as a function of y. Plainly
f1 is continuous. If y € Hg-' then hy' e hgH and f(hy™') =0, since
hgH N gH = 0. Therefore f,(y)=0 for y ¢ Hg~'. However, for y ¢ Hg™,
a(y) = 0 and again fi(y) = 0. We see that

(3) () = | 7y a)dy = 0.

On the other hand, using the function f.(y) = f(y~")a(y), we see that
foe C@Q), £, =0 and fy (97" = f(9)a(9~") = 1. Since the Haar integral
is strictly positive on C(G) we conclude that

(4) (frafe) = | Fewdy >0,

Comparison of (3) and (4) shows that f=a is not constant on H.
Therefore it cannot belong to F'(H).

(b) p(H)=10. Since G/H is Hausdorff and normal, there are dis-
joint open neighborhoods U, and U, of gH and hgH respectively. In
view of the complete regularity of G/H, we can find f’ € C(G/H) such
that f' = 0, f'(9H) = 1, and f’ vanishes on the (closed) complement of
U, in G/H, which contains in particular the open neighborhood U, of
hgH.

Defining f(x) = f'(xH), we obtain a non-negative function f ¢ F(H)
assuming the value 1 on gH and vanishing on an open set U (the pre-
image of U, under the mapping « — xH) containing hg. We now choose
a symmetric open neighborhood V of e such that AgV — U and a non-
negative function ¢ € C(G) assuming the value 1 at g~' and vanishing
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outside the open set Vg~'. This choice again is possible by the complete
regularity of G.

We again consider the continuous function f(y) = f(hy~a(y). For
y € Vg' we have hy™' € hgV < U so that f(hy= ') =0 and fi(y)=0.
On the other hand, y ¢ Vg~' implies a(y) = 0 and fi(y) = 0. So

(3) (fra)m) = | Pty = 0.

Considering f.(y) = f(ya(y), we see that f,=0,f, € C(G) and
fo™ = f(@a(g™") =1 > 0. Therefore

(4 (fae) = | f@wawdy > 0.

Comparing (3') and (4’), we see again that f+a is not constant on
H and does not belong to F'(H).
As a result we obtain

LEMMA 4. A subgroup H of G is normal if and only if F(H) is
a two sided ideal n C(G).

The correspondence between F' (M) and H(M) for arbitrary subsets
M < G leads yet to another useful result.

LEemMMA 5. Let M, and M, be any subsets of G. Then M, C H(M,)
if and only if F(M, U M,) = F(M,).

Proof. Assume first M, c H(M,). Then H(M, U M,) = H(M,) and
by Lemma 2, we have

F(M, U M,) = F(H(M, U M,)) = F(H(M,)) = F(,) .

Let us now assume that F(M, U M,) = F(M,). It is clear that F(}M,) D
F(M, U M,). Using Lemma 2, we get F(H(M,)) D F(H(M,) and by
Lemma 3 M, ¢ H(M,) < H(M).

Lemma 5 states in particular that an element m € G can be approx-
imated by finite products of positive powers of elements in M if and
only if the set of all function of C(G) which are invariant under right
translation by all elements of M is not reduced by joining m to M.

Taking M, = G, we obtain as a necessary and sufficient condition
for the set M, to generate G that F(M,) be the set of all constant func-
tions on G.

Taking for M, a subset of a given subgroup H = M,, Lemma 5
states that M, generates H if and only if F(M,) = F(H).

4. Irreducible representations of G. We now list some definitions
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and facts concerning representations which we shall have to use in the
following.*

Let {R™: )\ € A} be a complete system of inequivalent irreducible
unitary continuous representations of G of degrees r, respectively. Let
R™(s) be the matrix associated with the element s in B™ for a given
basis in the corresponding vector space and R® the identity represen-
tation. Denoting by u{y € C(G) the coeflicient in the ¢th row and kth

column in R™, we have u{’(s™) = ui’(s) and

»

Zuii)(S)u“’(S) = &y

1

A

(5) |, @U@ = 818y -
G
1

A

A) W)y — . \)
uij * uprl - SXA’SjZ) uz‘q y

since the R™ are unitary.
The functions u{}’ are linearly independent and form a basis for the
linear space R(G) of all complex linear combinations

A

(6) =3

7

A

(A (A (A
ST oalPui, aiy e C.
F=

i, 1

(5) shows that R(G) is a subalgebra of C(G). The Peter-Weyl theorem
says that R(G) is dense in C(G) under the uniform norm. More speci-
fically®, every f € C(G) can be uniformly approximated by functions of
the form

3

(7) = 3 @ S @)

A=2y

ll

which belong to R(G) as shown below.
Using the notation (a, b) = S a(@)b(x)dx for a e C(G),b e C(G) we

have, as can be verified easily,

(8) WP = 3 (F u € RG)
(9) fru = 5w € RG).

From (5) and (8) we can conclude that for fixed » and ¢ the functions
uiy (k=1,2,+++,7,) form a basis for a minimal right ideal R{® of R(G)
4 See [3] §§39, 40.
5 See [5] Theorem 39D. As pointed out be Prof. Edwin Hewitt in a lecture, one can
choose the approximate identity in the center of C(G) by taking wu(x) = L} v(y~xy)dy and
having » € C(G) (v = 0) vanish outside a sufficiently small neighborhood of e.
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and C(G). Analogously it follows from (5) and (9) that for fixed )\ and
k, the functions %) (+=1,2, +--, r,) form a basis for a minimal left
ideal LY of R(G) and C(G). Finally it follows from (5), (8) and (9) that
for fixed ) the functions u{’ (i, k =1, 2, -+ -, r,) form a basis for a minimal
two sided ideal 7™ in R(G) and C(G). Each of these ideals is closed
because of its finite dimensionality.

Taking ! € R(G) as in (6) we have

1 2
uP xl = — Y alpPup) € RV
Py k=1

)
A

(10) Leu® = 1S au® e LY
Py =1

r

A 1 A
(St =1 S apup e 7o
i=1 7y k=1
and

11) I = ZhZ(uii’*l)” ZhZ(l*ukk)

A=A A=Aq

= En[Ew)-1].

We see that R(G) is the direct sum of the minimal two sided ideals
T™ which in turn are direct sums of minimal right ideals R{® and, in
the same way, of minimal left ideals L{V.

(12) RG) =S @ T®
AEA
7o — TZA@RY‘) — TZA@L;SA) .
t=1 k=1

R(G) is itself a two sided ideal in C(G) but is not closed unless it
coincides with C(G). (This occurs if and only if G is finite).

The numbers (f, ui;’) appearing in (8) and (9) can be regarded as
the Fourier coefficients of the function f € C(G). For non-zero f there
exist only a countable number of non-zero Fourier coefficients (and at
least one).

Every element a = Z;x; 1akug,§’ e R{™ can be written in vector nota-
tion as a scalar product ua where u{® stands for the Dbasis vector
(uf’, u’, --+, ui}) and a for the coefficient vector (&, a, - -+, a,,), writ-
ten as column vector. By the definition of u{}’ we obtain under right
translation by any s e G

(13) [wiR’](x) = wuip(ws) = Z%‘”(w)u“’(S) or

u = uir - B™(s) .



GENERATING SETS OF ELEMENTS IN COMPACT GROUPS 1091

Right translation by s evidently induces a linear transformation in
R{¥ whose matrix with respect to u{® as a basis is just R™(s), and
R{™ is invariant under right translation. For any function a € R{, the
effect of the translation is given by the formulas

(14) a, = ugj)a = 11?’\7R(3)(3)a — ug)‘)as
a; = RM(s)a

where a, is the coefficient vector of «,.

5. Generating sets in G and irreducible representations of G. We
investigate for a given subgroup H of G the intersection of F(H) with
the ideals of R(G), introduced above. If f e F(H) and f =+ 0, then
(f, u$y’) #= 0 for some A, 4, k. The function

A
iy = 3wy

is different from zero, lies in F(H), and by (8) also in R(G) (in fact in
R{), therefore in F'(H) = F(H) N R(G) (also in F(H)N R™). F'(H)is
again a left ideal in C(G) since R(G) is a two sided ideal in C(G) and
contains all functions of the form «{} = f for a given f € F(H). From
(7), we obtain as an immediate consequence

LEMMA 6. F'(H) = F(H) N R(G) ts dense in F(H).

Let now f’ ¢ F'(H). By (11), f’ can be written as a linear com-
bination of functions of the form wu{}’ = f which are by (10) contained
in F(H) N R{». On the other hand, every linear combination of funec-
tions in F(H) N R{» is again a function of F'"(H). On account of the
direct decomposition of R(G) with respect to the minimal right ideals
R, we see that F'(H) is, as a linear space, the direct sum of the linear
spaces F(H) N R,

(15) P(H) = 3, @ 3, ® [F(H) 0 RV

some of which may consist only of zero.

Let now F(H) N R{® be non-zero (we have already seen that there
must be at least one non-zero F(H) N R{») and let f¥ ¢ F(H) N B™.
We can write £ as a scalar product of the basis vector uf¥ of R and
the coefficient vector ™

(16) fi()\) — ll(iwf(’\) .

The function £ is invariant under right translation by all elements
h € H. In view of (14) this means that
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17) f& = RM(R)® for all h € H

ie., f® 1is an eigenvector of R™(h) with eigenvalue 1 for all » e H.
Conversely, for fixed )\, every eigenvector with eigenvalue 1 common to
all R™(h) (b € H) determines by (16) a function ¥ e F(H) N R{™.

Since for a given %, \ linear independence of functions f¥, g™ is
equivalent to linear independence of the corresponding coefficient vec-
tors ™, g we see that the dimension of F(H) N R{® as a linear space
is precisely the number of linearly independent eigenvectors ™ common
to all R™(h) (h € H) with eigenvalue 1.

DEFINITION 2. For any non-void subset M of G and for any fixed
A, let d™(M) denote the maximal number of linearly independent
eigenvectors common with eigenvalue 1 to R™(m) for all m ¢ M.

The inequalities 0 < d*(M) < r, necessarily hold. In the present
case, we see that d™(H) is the dimension of F(H) N R» for all 7=
1,2, +--,r, since it obviously does not depend on ¢. Taking d™(H)
linearly independent functions of F(H) N R{® and r — d*(H) properly
chosen u{}’ (¢, A fixed) as a basis for B amounts to transforming the
representation R™ to an equivalent one, '™ = S*R™S in which R'®
restricted to the elements of H, becomes reducible as representation of
H and is found to contain the identity-representation of H exactly
d™(H) times. Thus d™(H) can also be defined an the multiplicity with
which the identity representation of H is contained in R®, restricted
to the elements of H and considered as a representation of H.

F(H)NR{™ has the dimension d(H) for given ), as we have seen. The
subspace F(H) N T™ ig the direct sum of all F(H) N R® (i=1,2, «--, 7,)
and has therefore dimension r,d™(H). If there is only a finite number
of non-zero d™(H), then there are only a finite number of non-zero
F(H) N R{® and F(H) N T™. By (15), we see that F'(H) is a linear
space of dimension 3 ,¢,7d™(H) which is finite-dimensional, and
therefore F'(H) is closed. But then F'(H) = F(H) by Lemma 6, and
F(H) is of finite dimension 3 ,c,7d™(H). If infinitely many d™(H) are
non-zero then F’(H) is an infinite dimensional linear space and the same
must be true of F(H). Combining this result with the results of
Theorem 1, we obtain:

THROREM 2. If d™(H) is the multiplicity with which the identity
representation of a subgroup H of G is contained in R™, restricted to
the elements of H and considered as a representation of H, then

1

. if ((H) >0 .
() of H(H) >

S, rdO(H) =
A€E4

If f(H) = 0 then the series 3 ,c,r\dV(H) diverges.
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The sum 3 ,c,7d™(H) can therefore be considered as giving the
“index”” of H in G. A subgroup H has measure 0 if and only if
dV(H) > 0 for infinitely many ) € 4.

Let N be a normal subgroup of G and d™(N) > 0 for a certain .
Then F(N) N R contains a non-zero function f = Z;A: | O Assume
that «;, = 0. The set F(N) is a two sided ideal by Lemma 4, and so is
F'(N) = F(N) N R(G). Therefore F'(N) contains together with f the
function

a . . .
Fruy = }Lui;) for arbitrary 7, 1= 7.
A

This means that R{® c F'(N) and d®(N)=r,. On the other
hand, supposing that for a given subgroup H d*(H) assumes only
the values 0 or 7, for all A € A, we see that F(H) N R{" is either zero
or R{¥. Then F(H) N T is either zero or TV and F'(H) is the direct
sum of two sided ideals and itself a two sided ideal in C(G). Its closure
F(H) must also be two sided and by Lemma 4, H is normal.

THEOREM 3. A subgroup H of G s normal if and only if d(H)
asswmes only the values 0 or v, for all x e A.°

Trivial illustrations of this fact are given by the entire group
G (d(G) =1 and d“(G) = 0 for A # 0) and by the group consisting of
{e} only (d™M(e) = r, for all N e 4).

We proceed now to characterize the generating properties of an
arbitrary subset M of G by means of the representations R™. Since
M c H(M), there are by the definition of d“(H(M)) at least dV(H(M))
linearly independent functions in R{¥ that are invariant under right
translation by all elements of M and dMV(M) = dV(H(M)). Conversely,
as seen in the proof of Lemma 2, any such function of R{™ is also in-
variant under right translation by all elements of H(M) and d™V(M) <
d™M(H(M)). Together with the previous result, we now have

LEMMA 7. If M is an arbitrary subset of G, then dV(M)=d™(H(M))
for all X e 4.

The main result which we can now prove is

THEOREM 4. If M, and M, are arbitrary subsets of G, then M, C
H(M,) if and only if dM(M, U M,) = dV(M,) for all N € A.

Proof. Let M, c H(M,). Then H(M,) = H(M, U M,) and d™(M,) =
dM(M, U M,) for all x e 4 by Lemma 7. On the other hand, the

6 See also [4] and [1] Theorem 1.
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equality d™(M,) = dM(M, U M,) for all » € 4 implies by Lemma 7 that
F(H(M,)) N R = F(H(M, U M,)) n R for all » e 4,
FHM)) N T® = F(HM, U M,)) N T for all x € 4,

F(H(M,)) = F(H(M,)) N R(G) = F(H(M, U M)) N R(G)
= F'(H(M, U M,)) (by (15)),

F(H(M)) = F(HM, U M,)) (by Lemma 6) and
M, c HM,) (by Lemmas 2 and 5) .

A number of corollaries are easily obtained. Putting M,=G in
Theorem 4 and noting that d»(G) is positive only for A = 0 we obtain

COROLLARY 4.1. The subset M of G generates G if and only if
dM(M) =0 for all A 0.
Taking as M, a subgroup H and as M, a subset M of H, we get

COROLLARY 4.2. The subset M of the subgroup H of G generates
H if and only of dV(M) = dM(H) for all A e A.

Finally, combining the results of Theorem 2, 3 and Lemma 7, we
obtain

COROLLARY 4.3. The subset M of G generates a mormal subgroup
of G if and only if dV(M) assumes only the values 0 and r, for all
e do If ANV(M) >0 for only a finite number of N e A, then M
generates o subgroup of measure 1/, e, dM(M); otherwise M gener-
ates a subgroup of measure 0.

6. Finite generating sets in G. The preceding results are in par-
ticular valid for finite groups. In that case we are only concerned with
the investigation of generating properties of finite sets of elements.
Schreier and Ulam’ have shown that a connected compact metric group
G is generated by almost every pair of elements. Since the component
of the identity in any compact group G is a connected normal subgroup
of finite index in G, it is clear that there are always a finite number
of generators for a compact metric group.

For the case of a finite set M, there is a simple way to determine
d(M) and to state the conditions of the last theorems and corollaries,
based on the following lemma.

LEMMA 8. Let B¥(m,, «--, m;) be the rectangular matrix with r,
rows and sr, columns obtained by joining horizontally the s matrices
RMm) — R™Me) (k=1,2, +++,8). Let b(m,, <+, m;) be the rank of

7 See [7] and [8].
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BO"(ml, %y ms)' Then d('\)({mk: E=1,-.-., S}) =Ty — bﬂ)(mlr ey ms)’
Since this Lemma has been stated by the author in [1] without
proof it may be suitable to set down a proof here.

Proof. Let B**(m,,---,m;) be the conjugate transpose of BM(m,, +--,
m). Its rank is the same as that of B™(m,, ---,m,). Since R™ is
unitary, B**(m,, «--, m,) could have been obtained by placing the s
matrices R™(m;*) — R®e) (=1, ---,8) below each other. Since
dV({mu:k=1,+++,8}) =d¥({mz': k=1, ---,s}) we have to show that
the rank of B*™(m,, -+-, m,) is equal to r, — d¥({m;': k=1, ---,s}).
In order to simplify the notation, we shall from now on omit the index
A and the indication of the group elements when possible.

If we denote by 4, the rs x rs matrix obtained by placing the non-
singular » x 7 matrix, A, s times along the principal diagonal in a rs x rs
zero-matrix, then A, is non-singular and A;'B*A has again rank b. If
u = (%, +++, %,) is the basis of the r-dimensional linear space correspond-
ing to the matrix-representation R, then the transition to a new basis
u’ in which the d first basis vectors are invariant under the transfor-
mations corresponding to m;?, ---, m;* is given by the formula uP = w’
where P is a non-singular r x » matrix. In the new basis these trans-
formations are given by the matrices P-'R(m;")P. The d first columns
in each of these have as their only non-zero elements 1’s in the main
diagonal. In each of the matrices P-(R(m;') — R(e))P those columns
are therefore zero columns. Placing those s matrices one below the
other we obtain, as one can readily see, exactly the matrix P;'B*P.
The rank of this matrix can therefore not exceed » — d and we have
b<r—d.

Assume that b < r — d. Then one of the columns C,,,, ---,Clin
P;*B*P, say C,, would be a linear combination of the other ones. By
a permutation of the vectors u,., and u, in u’ given by W@ = u’, where
@ is the matrix of the corresponding permutation, we obtain as above
a matrix Q;'P;'B*PQ with rank b in which the d first columns vanish
and the (d + 1)-th column appears as a linear combination of the
remaining ones CJ,, = >\7...,a,CY.

Define R as the matrix obtained from R(e) by replacing in the (d +
1)-th column the zeros below the principal diagonal by — gy, =+, — @,
in that order. Passing to a new basis by the formula uw”’R = u", we
obtain as above the matrix R;'Q;'P;'B*PQR in which, as one can see
easily, the first d + 1 columns vanish. But then the first d + 1 columns
in (PQR)'R(m;")PQR have as their only non-zero elements 1’s in the
main diagonal. This in turn means that the first d + 1 basis vectors in
w” are invariant under the transformations corresponding to all elements
my;*(k =1, --+,s). But this contradicts our assumption that there are
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not more than d linearly independent vectors of that property. So
b=r—d, and the lemma is proved.

Lemma 8 allows us to determine d““({m,, ---, m,}) if the matrices
R¥m )k =1, ---,s) are given. Applying Lemma 8 to a single element
m, we see that d™({m}) is exactly the multiplicity of the eigenvalue 1 in
R™(m). If R™(m) does not have 1 as an eigenvalue, then d*(m) = r,.

Using Lemma 8, we can also reformulate the preceding results. e.g.
Corollary 4.1 takes the following form: the elements m,, ---, m, generate
G if and only if dM(m,, -+, m;) = r, for A\ = 0. This condition is in
particular satisfied if for every ) # 0 there is at least one m™” among
the m, «++ m, for which R®(m™) does not have 1 as an eigenvalue.
In this case, however, we can even say that the products of the form
mireesmis (0=a,:k=1,..-,8) are dense in G and, arranged in a
certain order, form a sequence which is equidistributed in G.* Similarly
we can see that the hypothesis of Corollary 4.2 is satisfied if for every
A e A there is at least one m™ such that the multiplicity of the eigen-
value 1 in RP(m™) is exactly d™(H), i.e., the multiplicity with which
R™ restricted to H contains the identity-representation of H. Again
in this case we can make the stronger statement that the products of
the form mé -« m% (0 < a,:k =1, --,s) are dense in H and, arranged
in a certain order, form a sequence which is equidistributed in H.
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