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COINCIDENCE PROPERTIES OF BIRTH

AND DEATH PROCESSES

SAMUEL KARLIN AND JAMES MCGREGOR

A birth and death process (for brevity referred to henceforth as
process B) is a stationary Markov process whose state space is the non-
negative integers and whose transition probability matrix

(1) Pij(t) = Pr{x(t) = j \x(0) = ί}

satisfies the conditions (as t —> 0)

( 2 ) Pί3{t) =

\t + o(t) if j = ί + l

μ%t + o(t) if j = i - 1

~ (λt + [h)t + o(t) if j = i

where Xt > 0 for i > 0, μt > 0 for i > 1 and μ0 > 0. We further assume
that Pu(ί) satisfies the foward and backward equation in the usual
form. In this paper we restrict attention to the case μ0 — 0 so that
when the particle enters the state zero it remains there a random length
of time according to an exponential distribution with parameter λ0 and
then moves into state one etc.

In order to avoid inessential difficulties we assume henceforth that
the infinitesimal birth and death rates Xt and μi uniquely determine the
process. This is equivalent to the condition Σ~-o (πn + l/λn7Γn) = °°
where

π0 = 1 and πn = ° 1 2 ***—n—ι- [ 2].

In the companion paper we show that for all t > 0

/ iu i2, , in\ k < i* < % < * <
(3) det (P<μf Jv(t)) = Pit

has the following interpretation : Start n labled particles at time zero
in states il9 i2, •• ,in respectively, each governed by the transition law
(1) and acting independently. The determinant (3) is equal to the prob-
ability that at time t particle 1 is located in state jly particle 2 is
located in state j2 etc., without any two of these particles having occupied
simultaneously a common state at some earlier time τ < ί. We refer to
this event as a transition in time t of n particles from initial states
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occur. This problem is completely solved in § 4. By means of trivial
arguments it is shown that coincidence is certain if the original birth
and death process is recurrent, while coincidence is not certain if the
original process is strongly transient. If the original process is weakly
transient coincidence may or may not be certain, and this case presents
a much more difficult problem. A criterion is given which expresses the
necessary and sufficient condition that coincidence be certain, in terms
of the constants of the original birth and death process. Finally in § 3
some interesting examples are considered. A technique for computing
the distribution of the time until coincidence is developed, and applied
to the telephone trunking model and some linear growth models.

l Positivity properties of Q(%1> *»'••''*» \
κx19x2, •••,&/

Let M, K and L be functions of two variables satisfying

( 8 ) M(ξ, η) - Γ K(ξ, ξ)L(ξ, V)dσ(ζ)
Jα

where ξ traverses X, ζ ranges through Y and η varies over Z all of
which are linearly ordered sets and where σ(ξ) denotes a measure defined
in Y. Xcan denote an interval of the real line or a set of discrete
points on the line. In the latter case, the set will usually consist of
the integers. The same applies to Y and Z. When Y consists of a
discrete space then, of course, the integral sign of (8) is interpreted as
a sum. We define the Fredholm determinant

( 9 )
Λ,zn

M(xlf zx), M(xlt z2), , M(xl9 zn)

M(x2, zί)9 M(x2, z2), , M(x2, zn)

M(xn, zj, M{xn, z2), , M(xn, zn)

with xx < x2 < < xn and zλ < z2 < < zn and analogously for K
and L.

If the formula (8) is viewed as a continuous version of a matrix
product, then the extension of the multiplication rule which evaluates
subdeterminants of M in terms those of K and L becomes

(10)
I'X*' ' • # ' a ? Λ = ί ί
l, *2, * * , Zn a<VJy<.Jp * i Vn Zl9 Z2, , Zn

dσ(yx)dσ{y2) dσ(yn) .

For the proof of (10) we refer to Pόlya and Szego I [8 p. 48]
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( 6 )

where iλ < i2

of (5) t h a t

%AJi «

i (&i), Q* ( O , ••%©. fan?ι n n

ΐw and xλ < x2 < < ίcw we obtain by virtue

( 7 )

".ί-J
dψ(xn) .

(See Paragraph A of Section 1.)
The above formula displays in the simplest possible way the depen-

dence of Pit -1' \\\'%>) on the time t, the initial state (ίlt •••, ίn) and
final state (jlf * , i w ) . For the birth and death process itself formula
(5) has proven to be a very powerful tool in analyzing the statistical
properties of the process. It may be expected that formula (7) will be
of comparable utility in the study of the compound process. However
certain technical details stand in the way of such a study. While the
general properties of the orthogonal polynomials {Qn(%)} have been
intensively investigated by numerous mathematicians, the somewhat more

complicated polynomials \Q(τi' °"' ln)\ appear to be new objects of
I \xii ' * f %n/ )

study. At the present time we possess numerous interesting theorems
about these polynomials but our results are still incomplete. In a separate
publication we will elaborate on the structure of this determinantal
polynomial system. In the present paper we develop only those properties
directly relevant to our analysis.

We investigate two types of problems associated with the compound
process. The first problem is concerned with the behavior of the ratio

P(t;
Jl> i 3n

Pt;
. rClf

as t —•> oo. This requires some knowledge of positivity properties of the

polynomials QI lf ' n ). In § 1 these required positivity properties
\Xι, , Xn)

are developed, and in § 2 it is shown that the above ratio converges to
a finite positive limit as t—^ca. The second problem is that of deter-
mining for which processes coincidence in a finite state is certain to
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iu %, , in to the states j 1 9 j 2 , , j n respectively, without coincidence.
In particular, for t > 0 the expression (3) is always positive. For con-
tinuous time discrete state space processes, the converse proposition is
also true. Specifically, if (3) is always positive, then Pij(t) is the transi-
tion matrix of a birth and death process [6].

In this paper, we investigate certain aspects of the structure of the
Markov process describing the transitions of n particles conditioned that
no coincidence takes place.

We refer to this process as the compound birth and death process
of order n. Frequently, when no ambiguities arise the terms " b i r t h
and d e a t h " and " o r d e r n" will be suppressed. The basis of the sub-
sequent analysis is principally an integral representation for

which is derived from a corresponding representation formula for Pi^t).
Let Qn(x) denote a sequence of polynomials of degree n defined by

the recursive relations

(4 ) - xQn(x) = - (λn + μn)Qn{x) + KQn+1(x) + μnQn-i(x) n > 0

QQ(x) = 1 Q^(x) = 0 .

These equations may be written in compact form as

- xQ = AQ

where Q represents the vector (Q0(x), Qi(^), Q2(%)f •• •,) and A is the
infinitesimal matrix of the process

A =
μ2 — (λ2 + μ2) λ2

μz - (λ3 + μ3) λ3

Let ψ(x) denote the unique measure on [0, oo) with respect to which
Qn(x) are orthogonal. (The measure ψ is unique because of the assump-
tion Σ in* + l/λfcπfc) = oo.) Then

( 5 ) Pnm(t) = πm \~ e-^Qn(x)Qm(x)dψ(x) .
Jo

Introducing the notation
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The relevance and utility of this identity will be abundantly clear.
We record several relations which are applications of it.
(A) The derivation of (7) from (5) is a special case of (10).
(B) The identity

(Π) Σ:

can be expressed in the form (8) with ξ = n, ζ = j , and ΎJ = x

M{ξ, rj) = Hn(x)

Άte>S> ~ (0 ζ > ξ

L(ζ, rj) = Qj(x)

(Qj(x) = 0 for j a negative integer and dσ(ζ) = πό when ξ = j.)
Since

^\i ^2> * * * y ^n

unless 0 < lx < ilf ix < l2 < i2f , ίn^1 < ln < in, in which case its value
is one, we obtain by applying (10) to (11)

(12) i, h,

= Σ ΣΣ Σ ••• Σ πhπh...πι
Q h, k, ••*,In

(C) We shall need to evaluate determinants of the form

(13)

QnJίO), Qίo(O),

Q«,(θ), Q'φ),

-t(0), Q'.kΦ),

, nQ

which for convenience of writing we give the name a(no,n19 • *,/^fc)
We assume tentatively in what follows that Qn are normalized such

that Qn(0) — 1. This can be accomplished with no loss of generality
since Qn(0) are different from zero. The value of the determinant
a(n0, nlf * ,nk) in the general situation would be altered by the multi-
plicative factor l/Qno(0)GΛl(0) QΛfc(0).

A more convenient expression for (13) is obtained as follows : By
subtracting the first row from each of the succeeding rows and using
the fact that Qn(0) — 1 for all n we have
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a(no,nun2,

^(0) - Q'no(O). . Q<*>(0) - Q<*>(0)

;2(0) - Q'^0) -. Q<*>(0) - Q<*>(0)

- QUO) Q<"(0) - Q<*>(0)

We next observe that relation (11) provided with successive differen-
tiation yields

(14) Q<r+Y>(0) - QΓft

+1)(O) = - (r
λ v 7 Γ v μ

Σ πμQίΓ»

(n > no,r = 0 ,1 ,2 , •••,)

In order to apply (10) to (14), we may identify

M(ξ, rj) = QZ£\0) - Qζ+1

and dσ(ξ) = l/λvττv where ^, f, 57 each traverse the set of non-negative
integers. By virtue of (10) utilizing the representation (14) we obtain

(15) a(nQfn19n2, •••,%)

-(-i)*(fc!) Σ Σ ••
ι 1 Z 1

Σ

where we have employed the specific evaluations of the Fredholm sub-
determinants based on K(ξ, Ύ]).

Another application of (10) shows that

(16) L ^ 1 * 1 * " Φ > l ] c

h h
= Σ Σ + i Σ ^o^x n^aiPo, fa> * , t*k-i)

Putting (15) and (16) together establishes the recursive relation

(17) a(nQ9nl9 - - ,nk) = {-lfk\ Σ Σ
k 1 1

1 L l l 2

2-ι 2-1 μuμ,, ' , μk_) •

Note that the range of summations guarantee that μ0 < μ1 < μ2 < <
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Furthermore, (17) exhibits determinants a(no,nl9 •• ,nk) of order k + 1
in terms of corresponding determinants of order k. Consequently, the
procedure may be iterated out of which follows whenever Qn(0) > 0 that

(18) ( - 1)*<*+1>" a(no,nl9n2, ••-, w*) > 0

for all choices of nt provided n0 < nλ < n2 < < nk. It is also routine to
calculate the explicit value of a(n0, nlyn2< < nk) by iteration of (17).

In particular

a(n0,

a(n0, nlf
n2

'"1

jS 1

) — V

1
λ f cτr f c

1
1 λ f c 7Γ e

1
V

ι

Σ π μ «(//0, μλ) .
μ^k + i

The derivation of the identity (17) was predicated upon the fact
that Qn(0) = 1 for all n. If all the Qn(0) are of negative sign then the
sign of (13) is altered by the factor (— 1)&+1 where k + 1 is the order
of the matrix. Indeed, all we need do is replace Qn(x) by Qw(ίc)/Qw(0) =
Pn(x) and apply the argument to Pn(x). The value of a(no,nlf •••,?&*)
based on Pn(x) differs only by an obvious multiplying factor from that
based on Qn(x).
(D) Following the same lines of argument as above we shall show

(19) ( - i)<

provided xι < x2 < x3 < < xk < a where a denote the smallest value
in the spectrum of ψ, and where Qn(0) > 0 by our normalization condi-
tion. The result expressed in (19) may be regarded as a generalization
to the compounded polynomial system of the property that Qn(x) for
x < a is of one sign.

Suppose for definiteness that the polynomials Qn(x) are orthogonal
functions with respect to a measure ψ on [0, oo). The proof is by
induction on k. Since Qn(x) are normalized to be positive at 0, it follows
that Qn(x) > 0 for all x < a which is the assertion of (19) when k = 1.
We shall assume that the validity of (19) for A th order determinants
has been demonstrated for any system of orthogonal polynomials whose
weight function concentrates on the interval [0, oo), and proceed to show
the result is valid for the k + 1st order determinants. Let xlf x2i , xk+1

denote a set of values arranged in increasing order with xk+1 < α.
Replacing Qn(x) by Qn(x + Xk+ύlQΛ^ic+i) we may, without loss of gener-
ality assume xk+1 — 0 and that Qn{%k+i) = 1 for all n. This alters
the original determinants by a positive multiplicative factor, provided
we evaluate the changed matrix polynomial system at the points
Vi — Xi — Xk+i' H e n c e
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,nk+1\ _

Subtracting the fcth row from the k + 1 row, the fc-lth row from the
fcth row, etc., and finally the first from the second row we have

(20)
* " 1 >

Observe that

(21)

where

e w ^ W — ** .2-ι

— x

comprise an orthogonal system of polynomials with respect to the measure
xdψlλ0 which concentrates its measure on (0, oo) since ψ does [2, p 504].
Therefore,

whenever xλ < x2 < xz < < xfc < 0 and mλ < m2 < < mfc since

•ffί(O) = Σ'=o ̂ Qj(O) > 0. Inserting (21) into (20) shows that

(~ l YQiyy β#β>^*+1>) can be written as

μ/S

where the //?s traverse the sets n3 < μs < nJ+1 — 1, j = 1, 2, , k re-
spectively, and 7μlf...,μ > 0. Taking account of the inequality x5 < 0,
i = 1, 2, , k and the induction hypothesis which insures the inequality

( , * ' M > 0 we obtain
Juu , XJC /
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as asserted. This completes the proof.
A little manipulation of (19) will show that

(22) ( -

Q4
Qnί

QW' QV-'KΎ)

Qnij) Q'niΊ) •

> 0

true for every γ < a. This is verified by subtracting the last column of
(19) from the next to last and using the mean value theorem. Repeating
this k times and afterwards letting all the xt converge to γ produces
(22). Subject to the correct normalization the argument employed in
paragraph (C) above shows that these determinants are actually strictly
positive.

A further sharpening of the relation (19) and (22) is possible. In
order to describe this extension we must assign a special meaning to the

determinant
, x 2 t , xk

where nx < n2 < < n^ and xλ < x2 < < xfc and distinguished in
that several of the x's can be equal. (The asterisk sign on the Q shall
always occur when one or more of the x's are equal and indicates that
a special interpretation is to be made.) Let us illustrate by means of an
example.

If xλ < x2 = x3 < x4 — x5 = x6 then

% $ * * * ^

Qn2(Xl) Qn.^) Qn.^d

Q'nJ&t)

In general, when there is a block of equal x values present, the succes-
sive columns, corresponding to these x values in forming Q* are deter-
mined by the successive derivatives, i.e. (Qn), (Q'n), (Q"), , (QSί"1) where
r is the number of equal x values.

One can show by a more tedious elaboration of the methods in (C)
and (D) that generally

(23) /
fcλ \ Q

J
when xx < x2 < < xk < a with the emphasis on strict inequality in (23).
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We do not indicate the details since an analogous argument will be
used in the proof of Theorem 1.
(E) With the aid of the results of (C) and (D) we shall deduce deter-
minantal inequalities valid for special choices of positive #'s. Let Qn(x)
be a system of orthogonal polynomials normalized as usual so that Qn(0)>0
and ψ its measure on [0, oo). Let us suppose the measure ψ begins
with isolated jumps located at aλ < α2 < < ar followed by a non-isolated
point in the spectrum starting at ar+1 where r may be 0,1, 2, ••• . In
particular, when r — 0 then the first point in the spectrum of ψ is not
an isolated jump. On the other extreme if r = oo then the first portion
of the spectrum ψ consists of an infinite number of isolated jumps which
could include the full spectrum. It is not necessary, in what follows,
to describe more precisely the spectrum beyond ar+1.

THEOREM 1. Let 0 < n1 < n2 < n3 < < nkj and Qn be normalized
as usual such that Qn(0) > 0 then for k < r,

(24) (— i)*(*-i)/2Q/^i> n*> ' # Φ > nΛ > 0

and for k > r,

(25) ( ]_wfc-i)/2Q*/™i> 2̂> » ̂ r, nr+ly nr+2, , nk \ . Q

where Q* is defined as above.

Proof. The proof is by induction on the order of the determinant k.
The case where r = 0 has already been completely examined in paragraph
(C). Hence, we assume r > 1. We suppose furthermore that the theorem
has been established with regard to any orthogonal polynomial system
whose spectral measure concentrates on the non-negative axis with the
number of initial isolated jumps totalling less than r. Let r be fixed
and > 1 and suppose we have established the theorem for determinants
of size < k. Denote by Pn(x) — Qn(x + a^jQn(a^). These polynomials
constitute an orthogonal system with respect to the measure ψ(x + ax)
whose first mass points occur at 0, a2 — alf α3 — alf , ar — aλ. Observe
that

% , n2, , nΛ = Q^nlf n2,.*-, " . W f ^ . . . f nj

, δ 2 , •••, bk au a2, , aj

where C(n19 n2, , nk) > 0 and

bi = 0, b2 = α2 — al9 , br = ar — alf b3 ~ ar+1 — aλ for j > r + 1 .

Subtracting the Λ-lth row from the fcth row, the k-2th row from
the fc-lth row etc., we obtain
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Ύ\ Ύ)

Q Q

) - Pn^i), br+1) - Pni(br+1),

The right-hand side is a determinant of size k — 1. Dividing the respec-
tive columns by — 1/6V, v = 2, 3, , (remember δ2 > 0 since r > 1), we
have

(26) ( - I)*- 1 sign P * p ' ™2' # * ** ' n

= sign

Pnβ>%) -

— b2 — br+1

— 6 r + 1

Let

and set

Hr(x) = λ*π*
— x

— x

I = 0,1, 2, •••, so that M(

r

0) = Zfr and λ* and μΐ are the parameters
corresponding to the polynomial system Pn(x). Finally, for 0 < μx < μ2 <
• < //fc»! define

b2, , bk

Expanding the right-hand side of (26), using (21) and an analogous
formula for the successive derivatives of Qn(x), we obtain
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(27) s ign(- i)*-ψ*(ni> n** ~*>nA

= BipΣ7μ l lμ1,.,μ t.1J

where the γ's are positive and n% < μt < nt+1, (i — 1, , k — 1). But

Z - l

Hence by suitable operations on the columns of L we obtain

LI1' 1j — H ^ λj

where the H* determinant is formed from the polynomial system Hn in
the same way that Q* is constructed in terms of Qn.

The H system represent orthogonal polynomials with respect to a
measure da(x) — C xdψ(x + aλ). The jump at the origin of dψ(x + α^
is obliterated due to the factor x. Otherwise, a possesses r — 1 initial
jumps located at α2 — alf , ar — ax and the non-isolated portion of the
spectrum begins at the point ar+1 — ax. By the induction hypothesis

(—l)tk-V(*-vi2H*(^1'^2\\\*'JJlJc~~1j>0. This fact in conjunction with

(27) shows that

/ J\fc(fc~l)/2jD*( Wit W2f

 # # , ΎljΛ ^ Q

K K , h

as desired. The proof of the theorem is complete.
What is essential for the validity of (25) is that the first r choices

of yt > 0 used in evaluating (25) should coincide with the first spectral
points a% of ψ (here r has the same meaning as in the theorem).
Otherwise the values of y5 (j>r + 1) can be arbitrarily chosen from
the interval ar < y < ar+1 with the restriction that they are arranged
in ascending order even allowing equalities. Actually, more is true. A
careful examination of the above arguments shows that

(28) ( - l)*c*-Ό/W^i> n* , nt, nβ+1, ,n
X a l f a 2 t • * , a g , y 8 + 1 , - - ^ y

where w4 strictly increase and yό for j > s + 1 satisfy as < ys+1 < ys+2 <

••• <yk <as+1.
To complete the story we note without proof that it is possible

to construct examples which show that Q( ™' nJ~ ) does not possess a
\x, y j

fixed sign for all n when x and y satisfy x < αx and aγ < y < α2.
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2. The compound process. The infinite matrix P(t) satisfies the
differential equations

**& = AP(t) ,
dt

= P(t)A ,
dt

called respectively the backward and the forward equations of the birth
and death process. Either equation may be derived from the other when
it is known that both P(t) and A satisfy the symmetry relations

Pi3(t)πi = Pjt(t)πJf aiμi = a3iπ3 .

As a consequence of these equations we deduce the backward and forward
equations of the compound process :

d pίf. in •••> K\ _ v in pff if Λ">ir-i> % — 1,

jl,- ,jn r β l ^ 3 l , " m , 3 r - l , 3 r , J r + l f - - ' , 3 n

(29)

^ p Λ . ί i , > i Λ _ v î v pit î> * * > ̂ - i ' ̂ > V+i, * * ' , K \
a t ^ jl,-- ,jn T = l { ^ ii, '--Jr-lJr ~ 1, jr + l, "'Jn

Here we employ the natural convention t h a t Pit;1.1' '*' V) for ίx<

• < in and \̂ < < j n is zero if any two iv or any two j v are equal
or if iλ — — 1 or i i = — 1. The first of the above equations (backward
equation) follows a t once from

d

= Σσ (sign (j)PM (ί) Pi , ( ί) l—P 4 j (t)iPi j (t) Pi > (*)

on applying the backward equation, Pr(t) = AP(ί). Here Σ σ denotes

summation over all permutations σ = ( ' **"' ) of 1, 2, •••, w. The

forward equation may be obtained in a similar way from the forward
equation of the original process. Alternatively either of the two equa-
tions is a consequence of the other one together with the symmetry
relations
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P(t; ^ —
V 3if *~,

and λrτrr = μr+1 πr+1.
The backward and forward equations of the compound process may

also be derived from the representation (7) and the fact the determinantal

polynomials Q[%1' "*9%n\ satisfy the recurrence formula\xl9 , xnj

(30)

- ( λ r

where Q(y' * * *' !̂* ) for i x < ^ j n is taken to be zero if any two j \
\Xl, # , M/jj/

are the same or if j \ = — 1. This recurrence formula follows at once
by applying the basic recurrence formula —xQ(x) = AQ{x) to the right
member of the identity

= Σ Σ σ (sign o)Qi^xσ^ Qίr_1(^σ _ x ) [~ ^σ-rQί (^σ-)] * * Qin(
x<rJ

I t is not difficult to see t h a t Pit; V ***' M converges to zero as
\ 3i, mmm,3J

t —> oo. In fact if the original birth and death process is either transient
or recurrent null then Ptj(t) —> 0 for each i and j so the determinant
—• 0. On the other hand if the original birth and death process is
recurrent (either ergodic or recurrent null) and Fi0(t) is the probability
that first passage from state i to state 0 occurs in time < t then FitQ(t) —> 1
and from probabilistic considerations

pit; %1 β " ' M < 1 - F<n,0(ί) -> 0 a s ^ - c o .
ii, , 3n

Thus we have two reasons why the determinants may —> 0 and at
least one of them is always in force.

According to the Doeblin-Chung ratio theorem [1]

lim 3u

exists and is finite and positive. For the compound process of the birth
and death process we are able to make the following considerably sharper
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statement.

THEOREM 2.

p(t. h, •••, ^

exists and is finite and positive.

Proof. It is evidently sufficient to consider the case when (ftj, ,lcn) =
(Zx, . . . , ln) = (0,1, , n — 1). Let f(xu , #n) be the polynomial such
that

We wish to show that

» , JΛ = Λχiψ ... f φ / 0 , ... f n - 1\T β

converges to a finite positive limit as t —> oo. Suppose there are x values
0 < aλ < < ar+1 such that the function ψ(x) has positive jumps at
au •••, ar but no other spectrum in 0 < x < ar+1 while ψ has infinitely
many points of increase in every interval αr+1 < x < ar+1 + ε. We consider
separately the cases r >n, 1 < r < n and r = 0. The case 1 < r < w,
which exhibits all the necessary arguments, will be discussed in detail
and the other two cases are left as an exercise for the interested reader.
When 1 < r < n integrals of the form

j j F(x19 , xn)dψ(xλ) dψ(xn)

may be written in the form

\ I F(xlf , x^dψix^ dψ(xn) .

Ύ ^> Π
«Λ/2 i _ W'2

•

xr+i ^ ar+1 .

For large t the main contributions to the integrals in (31) therefore
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come from the neighborhood of the point (xlf « , xn) ~ (αr, , ar,
ar+1, •• ,ar+1). To make this precise we first observe that Theorem 1
shows that f(au , α r, ar+1, , α r + 1) = c is positive and that the measure

has positive mass in every "right-hand" neighborhood of the point
(«!, * , α r , α?.+1, , α r + 1). The expression (31) can be written in the
form c + (/i/J2) where

J J

, xn) - e]dθ(x19 , xn) ,

J 2 = I . . . I e - ^ 1 + + ^ ) ί + («14- . α r + α r + 1 + . . . + α r

Given ε > 0 we choose S > 0 so | f(xly , xn) — c | < ε for | a?i — ^ | +
• + I ίcr — α r I + I £ r + 1 — α r + 11 + + | xn — ar+1 \ < 8. Let R8 and ^
denote the parts of the region 0 < xλ < < xn where

%i + + xn < ax + + ar + (n — r)ar+1 + δ and where

xλ+ + xn > aλ + + ar + (n — r)α r + 1 + δ respectively.

Then

while

> f ... f e-c

> f .. ~ht

>Be~

where J5 > 0. Consequently lim sup^*, | (/i)/(/2) I < ε and the theorem
follows.

3* Some examples of the probability distribution of the time
until coincidence. A random variable of natural interest to the study
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of the compound process of order n is the time ί* until coincidence.
To expedite the discussion we restrict attention to the case of the
compound process involving two particles. The obvious extensions are
left to the reader. In general, coincidence need not occur with certainty.
We define ί* to be the time of first coincidence if this is finite and to
be +CΌ otherwise. In the next section the condition that coincidence
be a certain event is expressed in terms of the parameters of the birth
and death process. In this section the explicit distribution of £* is
determined for some important examples.

We begin with a few remarks concerning the general character of
this problem. We may consider a two-dimensional birth and death process
whose states are all pairs (i, j) with i > 0, j > 0 and transition proba-
bility law

In this formulation the problem is to determine the distribution of the
time of first hitting the diagonal ray i = j .

Alternatively, we may consider the compound process with state

space (i, j), 0 < i < j and transition probability law p(t; ]' •?). In this
formulation, coincidence occurs if the particle is in some state (k, k + 1)
and is then absorbed—the process terminates at (k, k + 1). The problem
is then to determine the distribution of the time until the process ter-
minates in this manner.

Let Si3(t), (0 < i < j) denote the probability distribution of the time
until coincidence when the initial states of the particles are respectively
i and j i.e.

S»{t) = Pr{£* < 11 x(0) = i, y(0) = j , i < j}

Because the path functions are continuous (a particle moving from state
i to state j in time t must occupy all the intermediate states in the
intervening time), coincidence can only occur following a transition from a
state (k, k + 1) for some k. More exactly, the probability that coincidence
happens during the time interval [t, t + K] with h sufficiently small
requires that the two particles occupy adjacent states before coincidence
at time t and at the next transition the particles meet. The probability
of this event is clearly

Σ P(t h j )(λΛ + μk+1)h + o(h)
fc=0 v fc, k + V

and the density function of the time until coincidence is

Rίj{t) = dS^{t) = £ {κ + )

d t *=o v &, A:
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The method we use to compute Sίj(t) consists of determining explicitly
the generating function

G(z, w) = Σ Rij(t){zιwj - zjwl)
0£ί<j

or sometimes more conveniently

H(z, w) = Σ πiπjR
iJ(t)(zίw) - zjwι)

and then reading off the coefficient of zιw\ (i < j).
If we have available

(32) Mz, t) = Σ PΛtY

and hence

we obtain employing (10) the determinantal identity

, Z, W, ί ) = JΓS7ΓS+1

», t) Λ+i(w, ί)

= Σ πhπhP(t llf l* \whzh - whzh)
°*h<h 2 v k, k + V

where z < w.

Direct summation gives

(33) Σ (λ* + i"*+i)Λf(fcf ί , w , ί ) =
k 0 0

Σ

In many cases it is possible to recognize the left-hand side of (33)
in terms of classical functions and then obtain Rιιh(t) by picking out the
proper coefficient in the series expansion. We record several important
examples.

EXAMPLE 1. Consider the telephone trunking model (λn = λ, μn —
nμ, n > 0) [4]. The orthogonal polynomials are the Poisson Charlier
polynomials. The generating function of the transition probabilities is
known to be

f (v f\ — Λ-α(l-z)(i-e~^ ί)Γ1 (Λ ?\s>-μtΊJc ^ (~\ΓO (~V|fc

jk\Zj o) — v yκ '[_! — ̂ i — z)e * j — cxt(Z)ipt(Z)]

where a = X/μ and at(z) and βt{z) are defined in the obvious fashion.
The preceding calculations in this case yield
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Σ πιπιRh-h{t)\whzh - whzh]
0 < ί < ! i

1127

(34)

= a(w - [(k λ]
\ (k + 1)!

where 7t(wf z) = βt(z)βt(w). This is a combination of Bessel functions
viz. μlo(2\/aλγ) + X/VaF/ I1(2ι/αiγ) where Iv denotes the usual Bessel
function with imaginary argument. If we specialize to the coefficient
of z°wτ we get

R01(t) = e-^e-2aσ\IQ(2aσ) + — IΎ(2aσ)\ where (7 = 1 - e~^ .

EXAMPLE 2. Consider the linear growth birth and death process
where

ί V) I 1 I /y\κ" Q TΊ f\ It M /t" Ύt ~~~^> C\
m V ~T~ -*- "l t Λ /Λ' (X1X.WX h-^γi It/IV Iv *^ \j

and a is real, a > — 1. The associated orthogonal polynomials are the
Laguerre system normalized at the origin equal to 1. Utilizing the
generating function of [5 eq. (25)] we obtain

Σ πιπιRhh{t)\whzh - whzιi\

(3 5) = tc(a + lMz)8t{w)\yt(w) - 7t(z)]{2F(a + 1, a + 2, 1, uβ(2

+ aF(a + 1, α + 2, 2, u ^ , w)}

where î 1 denotes the standard hypergeometric function

and (α)n = Γ(a + n)/Γ(a). Here,

( i - h«ί)(

1

/

\

/

1 -
1 + _

1 +

and %t(«, w) = 7t(2)7((w). The coefficient of Λυ1 in (35) reduces to

(36) +
+ aF(a + 1, α + 2, 2, (-

+ ict

The coincidence time density function R01(t) is the expression (36) apart
from the constant factor lj(a + 1). When a is a non-negative integer
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the coincidence time density function reduces to a rational function.
In the particular case a — 0f we obtain

R«\t) = - 2/c

+ 2fctγ

which shows that coincidence is certain with the expected time until
coincidence infinite. This is true of all the linear growth processes
introduced in this example.

If we examine a linear growth process where there exists a permanent
absorbing state at —1 then obviously coincidence is never certain. It
is of some interest to compute the probability of coincidence before
absorption. Let us illustrate by considering the model where Xn = (n + l)/c
and μn — (n + l)/c for n > 0. A calculation similar to that above gives

R*\t) = 2κ κ

(l + 2fcty(i + tcty (l + ictγ

It is easy to evaluate I R°\t)dt = 251A — 8 log 2. The reader may verify
Jo

that this lies between 0 and 1 (approximately. 71).

4 The probability of coincidence* In this section we shall determine
the exact conditions which imply that coincidence in a finite state is
certain to occur. Our results apply to the case of n independent particles
moving simultaneously subject to the transition law of the same birth
and death process (B). Our methods may be extended in the obvious
way to treat the case in which the particles are subject to different inde-
pendent birth and death laws. Such a generalization is left to the reader.

If the process (B) is recurrent then coincidence is clearly certain.
In fact, if two particles originate in states i and j > i, respectively
then the second particle reaches the state 0 in finite time with proba-
bility one and coincidence must precede this event because of ' 'continuity''
of paths. Thus it remains to decide the probability of coincidence when
the process (B) is transient.

In [3] we classified two kinds of transient processes. A transient
birth and death process is said to be ''weakly transient" if ΣΓ-o-P«j(£) = 1
for all t and some i. In terms of the birth and death rates this is
equivalent to the divergence to infinity of the sequence

where Qm are the associated polynomials of the process (B).
A birth and death process is said to be strongly transient if for

some t and i, ΣΓ-O-FYJOO < l A necessary and sufficient condition for
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the process to be strongly transient is that, for any starting position
and for any positive time value t, with positive probability the diffusing
particle reaches infinity in time t.

It becomes evident that for strongly transient processes coincidence
is not a certain event, since with positive probability one particle may
stay in a given state (say i) in any specified length of time while the
other particle moves to infinity without touching state ί during this
same period of time. An analogous argument will prove that the
probability of coincidence for the case of n independently moving par-
ticles is not a certain event when the process is strongly transient.
We shall determine in Theorem 3 the exact condition for coincidence
to be certain. It will be clear that the criteria is the same for two,
three or n particles.

We concentrate in what follows on the case of two particles. It
is tempting to proceed as follows. Let wi3 denote the probability of no
coincidence in finite time when two particles start respectively in states
i and j (i < j). We set wklc — 0. Writing out a recursion relation in
terms of the first transition, we obtain

Xi + Xj + μ% + μj X% + Xj + μ% +

(37) λ < . nt

Xi -j- Xj -f- μ% ~r y-j χ% ~τ xj -\~ μ% ~τ μj

valid for all 0 < i < j. A sufficient condition guaranteeing that coinci-
dence is certain is that the only bounded positive solution of the system
(37) is the identically zero solution. In the situation of non-certain
coincidence it would also be of interest to calculate the probability of
no coincidence wi}. The investigation of this problem is complicated by
the abundance of positive solutions that (37) possesses.

The study of (37) is interesting in itself and indicative of the
difficulties associated with solving two-dimensional difference equation
systems even in comparatively simple cases having probabilistic signi-
ficance.

To illustrate this we exhibit several solutions of (37). Suppose the
spectral measure ψ of (B) is located in the interval [α, oo) where a > 0.
Then

(38) wtj{a) = - JL
QAμ)

Qj(a)
= -±QQ2a V-α, a

for each a satisfying 0 < a < a is positive by virtue of Theorem 1.
when a = 0, wtJ(0) is interpreted as -Q;(0) + Q[(0) = ΣtΛ l/λfcττfc Σί-o^r
The verification that for all a, w^ia) is a solution of (37) is accomplished
by choosing xλ — — a and x2 = a in the recursion law (30).
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Unfortunately, there is no natural ordering among the solutions
Wtj(ά). We show first that woj(a) is increasing in a (0 < a < a) for each
j . To this end, observe that

ί
wQj(a) = Qj(-a) - Qj(a) = Σ αJfcα

fc

where aj1c is positive for k odd and zero for k even. Hence, wQj(a)
increases as asserted. On the other hand, we show that wj>j+1(a)
is decreasing in the same range of a. In fact, by virtue of a known
representation [9 p. 42] we have

wJJ+1(a) = -A- Σ πrQr(a)Qr(-a) .

Hence, w'JtJ+1(a) = l/λ,7Γ, Σ U τϋr[-Qr(a)Qf

r(~a) + Q'r(a)Qr(-a)]. It is
enough to show since Qr(a)Qr( — a) is positive that

a) = _ Q'r{-a) , QM < 0
V Qr(a)QΛ-a) Qr(-a) Qr{a)

But the roots of Q'r(x) are separated by the roots of Qr(x) and since Qr(x)
has no roots in [— c», a) [9, p. 43] we conclude that —Qr

r(x)IQr(x) is
increasing.

The lack of order and the multiplicity of natural positive solutions
seem to be the main sources of difficulty in proving the non-existence
of any bounded positive solutions of (37). The solution ^ ( 0 ) should be
singled out because it is always present (as a > 0) and also lim^*, woj(O) = oo
is precisely the condition that the process be weakly transient.

It should be added that the one parameter family of solutions, dis-
played in (38), when a is a positive number, does not exhaust in terms
of linear span the totality of solutions. It appears that one can always
construct at least a three parameter family of determinantal extremal
solutions. The problem of characterizing all solutions of (37) in general
remains open and relates to the problem of determining all determinantal
polynomial systems satisfying the recursion law of (30).

We now turn to a discussion of the main theorem of this section.

THEOREM 3. // the process (B) is recurrent or weakly transient
then coincidence is certain if and only if

(40) Vn = Σ ΣΣ
0

where wm — ΣίΓ"1 V\^i Σ*-o πj a n d wo — 0
Before embarking on a proof of the theorem, it is necessary to

interpret condition (40). To this end, denote by th the random vari-
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able which represents the length of time for a particle subject to
the transition law of the process (B) to move from state i to state
i + 1. In other words ί4 denotes the first passage time from state i to
state i + 1. In the same way, since the path functions are continuous,
zn — t0 + tx + + tn-.λ represents the first passage time from state 0
to state n. The ti are evidently independent but not identically distributed
random variables.

The Laplace transform φn(s) of the distribution of zn is given by

when Qn is the nth orthogonal polynomial. More generally, the Laplace

transform of the distribution of tm + tm+1 + ••• + ίB_j is

These formulae are proved as follows: The well-known Laplace transform
formula, which expresses the first passage time distribution from state
i to state j in terms of the transition probability function is

(41) F^s) ξd?l

Inserting the formula of [2 p. 522] in (41) gives the desired result.
From knowledge of the Laplace transform it is routine (successive

differentiation of φn(s) at zero) to determine the moments of zn. In
particular,

E(zn) - Σ - - — Σ πr = wn - - Qf

n(0)
0 λfc7Γfc r-0

and

(42) variance (zn) = - Q;'(0) + [Q'MV

From identity (11), we get

n~1 1 c n~1 1

= Σ i Σ πλQ'Φ)] Σ J
1

- Σ πλ-Q'rΦ)] = Σ - J - Σ πrwr.
0 Xπ Ό

Inserting this in (42) leads to

But
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\wl = Σ (wr+1 - wr)wr+1 - i- Σ,(wr+1 - wrf

= Σ ( - ^ Σ π, W+ 1 - 4 Σ (w,*i - wrγ

(43) 1 Var (zn) = Σ - ^ - Σ Φ , « - w.) - Σ
Z 0 Xπ k = 0 2 r =

= tfn-i ~ — Σ (
2 r=0

Since w4 is increasing in i

v > y v

and hence

) > Σ

If the series ΣΓ (^r+i ~ wrY is divergent then vn~λ —>oo and J Var (zn) —>&>,
but if the series is convergent then vn-x — J Var(zn) is bounded. In any
case {vn} and {Var(2n)} either both converge or both diverge.

It is possible for wn to increase to infinity while at the same time
vn stays uniformly bounded. For example, let

τrr = — and - i - = -4- for r > 1.
r λr7Γr ee

A straightforward calculation shows that

n 1 r ^e n 1

Σ —7-Σ -Γ- = Σ — + a convergent series
r 0 β fcl fc 0 γ

1 r ^e^ n 1

Σ -Γ- = Σ
fc r=0

~ log n + c .

Also

The inner sum grows like its largest term and we have

vn — Σ —[1°& (k + 1) — log fc] + a convergent sequence

which clearly exhibits ^w as uniformly bounded.
A class of examples in which vn —* oo can be constructed as follows.

Suppose, πn and obey the asymptotic relations
λnπn
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πn ~ n«-γL(n) (a Φ 0) and — — ~ nβL*(n)

where L(n) and L*(%) are slowly oscillating sequences (L(n) is said to

be slowly oscillating if for every c > 1, —ψβjL —> i) 2 - < oo and
L(n) λwπw

ww tends to infinity. Under these conditions we show that vn tends to
infinity. In fact

wn ~ Σ rβ+«L(r) ~ n«+β+1L(n)
r=l

where L(n) — c L{n)L*(ri), (c is a constant) and provided a + β + 1 > 0.
(Similar conclusions hold even in the cases a — 0 and α + /3 = ~ 1 in-
volving iterates of L(n).)
We next observe that

vn > A± rβL*(r)± k^L(k)[wr+1 - wk]
(44) r=[

r = 0 fc=l

where A and A' stand for fixed constants. The estimate in (44) is valid

since wr grows like r*+β+1L(r). Finally,

> ^ " Σ rβLΣ
r=0

(r)r«L(—r)
V 2 /

and the proof is finished.
Some other useful conditions that assure the validity of (40) are as

follows: If the spectral measure ψ of the birth and death procsse (B)
has either

(a) positive measure in every neighborhood of the origin, or if
(b) ψ has an infinite number of points of increase, contained in a

bounded interval 7, then vn tends to infinity.
The proof of these statements depend on an alternative representa-

tion of the quantity Var zn. To this effect, we observe that the Laplace
transform of zn can be factored in the form

(45) φn(s) = - =: -

π (i + 7*~

where ani are the roots of Qn (recall that the ani are real and positive).
A direct calculation shows that

n ^ n 1

Var zn = Σ —— and wn = Σ —
ί _ i •v2 ί _ 1 rv
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In case (a), the first root anl tends to zero and hence Var zn becomes
unbounded. In case (b) as n increases the interval /must contain an un-
bounded number of roots anl, and therefore Varzn is unbounded. Sever-
al notable applications may be recorded.

Queueing models, defined by the parameters Xn = λ, n > 0, μn — μ,
n > k0, μ0 = 0, and kQ a prescribed positive integer, have the property
that coincidence is a certain event. In fact, for these examples case
(b) applies (see [4]).

The situation of linear growth, birth and death processes, (i.e.
χn = Xn + α, n > 0, μn — μn + b, n > 0, μQ = 0) with regard to the
probability of coincidence is as follows. If μ — λ, then coincidence is
always certain (case (b) above). If μ > λ then the process is recurrent
and coincidence is trivially certain. If μ < λ then the process is weakly
transient and coincidence is not certain. This last assertion is proved
as follows. The spectral measure is discrete with mass points located
essentially at an arithmetic series. The roots of Qn{ — s) for any n are

separated by the mass points of ψ and hence always 2( — ) < &Σ—Γ < C.
\oίnij n

We turn now to the proof of the theorem. The arguments are
divided into a series of lemmas.

DEFINITION (Levy [7]). A series of independent random variables
#i + + %n = sn is essentially divergent if there exists no sequence
of constants an such that sn — an converges almost surely to a finite
random variable.

LEMMA 1. If vn is divergent then the series of independent random
variables t0 + tλ + + tk-x — zk is essentially divergent. (The mean-
ing of tr is as before.)

Proof. Suppose we can find a sequence of constants an such that
zn — an converges. In particular, its characteristic function

—^—^— converges for each real λ

to a characteristic function <£>(λ). It follows that the corresponding
symmetrized random variable with characteristic function

for each real λ and uniformly in any finite interval. But, by virtue of
(45) for λ > 0

\Qn(-iV\-)\> = π (l + -M > l + XΣ 4-
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Hence, for λ Φ 0, \Qn(-i\)\2 tends to infinity and |cp(λ)|2 = 0. Thus
φ(X) is not a characteristic function as required. The contradiction
implies that zn — an cannot converge for any sequence of constants and
consequently zn is essentially divergent as was to be shown.

COROLLARY 1. Suppose vn is divergent and let tt and t\ represent
independent observations of the first passage time from state i to state
i + 1. Then

is essentially divergent.

Proof. This is clear since the characteristic function of zk — z'k
(μk = a sequence of constants) is

which for real λ Φ 0 tends to zero as shown in the proof of Lemma 1.

LEMMA 2. With the same notation as in Corollary 1, if vn diverges
then for every fixed r

(46) Pr {[t0 + tx + + ί J - [ί; + tUi + - + *ί] < 0 i.o.} = 1

(i.o. is an abbreviation of infinitely often).

Proof. With r held fixed it will be sufficient to prove that

(47) Pr {tf

r + t;+ 1 + + t'k - tr - tr+1 tk > Ci.o.} - 1

for every positive constant C. Indeed, the validity of (47) implies that
for almost every value of ί0 + tλ + + i r - 1

1 - Pr{ ί o .+ ••• +tk- (t'r+ ••• + tί) < OLo. |ίo + t 1 + ••• + ί r - i } .

Invoking the law of total probabilities leads immediately to the con-
clusion (46).

We devote ourselves now to the proof of relation (47). Since the
series (t'r — tr) + (tf

r+1 — tr+1) + + (t'k — tk) — Tk (the dependence of
Tk on r is suppressed since we are keeping r fixed) is essentially diver-
gent we may appeal to a theorem of P. Levy [7 p. 147] and deduce
that if Ak is any sequence of constants

(48) Fv{Tk>Aki.o.}

is either 0 or 1. We select for our purpose all Ak — 0. Since Tk con-
stitute a series of symmetric random variables the value of the expres-
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sion (48) is clearly 1. By virtue of a second theorem of P. Levy [7 p.
147],

Pr{T f c>Ci.o.} = 1

for any constant C and the proof of the lemma is finished.

Proof of the Sufficiency of Theorem 3. Suppose for definiteness
that particle labeled (i) starts in state 0 and particle labeled (ii) starts
in state r, each independently subject to the same transition law. Let
tt and t'i9 for particles (i) and (ii) respectively, represent as previously
the first passage time from state i to state i + 1. Lemma 2 assures
that with probability 1 there is a state k such that the particle labeled
(i), having started at zero, reaches k for the first time earlier than the
particle labeled (ii) whose initial state was r. Since the path functions
are continuous, the two particles necessarily cross and coincidence is
certain.

Necessity. The proof of necessity will likewise be written in the
form of a series of lemmas.

LEMMA 3. If vn is bounded then

(49) P r {t0 + t, + ••• + t*-! -•«; - t'r+1 «ί > 0

for all k > r} > 0 .

Proof. Consider T* = (ίj - ΐr) + ••• + {t'k - tk), k = r, r + 1, ••-,
which is a partial sum composed of independent symmetrically distributed
random variables. The hypothesis (see (43)) means that the variance of
Tk is uniformly bounded. Therefore, invoking the three series theorem
(because t — tt are symmetric only the convergence of the series formed
by the variances of the successive terms has to be verified), we may
conclude that Tk converges almost surely to a finite valued random

Let £* denote the limit of Tk. Take any value C such that

Pr {\t*\ < C} > 0 .

Since Tk converges almost surely to ί* there is a kQ such that

Pr {|Tk\ < C for all k > k0} > 0 .

Making C even larger (say C) if necessary we can assure

(50) Pr {|Γfc| < C" for all fc = r, r + 1, •••,} > 0 .

Consider now the random variable ί0 + ίi + + fr-i which is inde-
pendent of all Tk, k > r. Since t0 is exponentially distributed it follows
that
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(51) Pr {t0 + tλ + . . . + tr-λ > C'} > 0

for any C sufficiently large. Combining (50) and (51) yields the estimate

Pr {t0 + tλ + + tr-x - Tk > 0 for all k > r}

> Pr {tQ + + tr^ > C"} Pr{Tfc < C" for all k > r} > 0

for an appropiate positive constant C.
This means that with positive probability a particle starting at zero

never reaches a state k > r + 1 for the first time at an earlier time
then a particle beginning in state r. The proof of the lemma is finished.

LEMMA 4. // coincidence is a certain event when the particles
have a prescribed pair of initial states r, s (r < s) then coincidence is
a certain event for any pair of initial states.

Proof. This is a direct consequence of the fact that with positive
probability any pair of state i, j (i < j) can be attained starting from
the initial states r and s without the occurrence of coincidence.

Consequently, if there exists positive probability of no coincidence
starting from i and j , respectively then the same is true for r and s
contrary to the hypothesis.

LEMMA 5. Let coincidence be a certain event. Suppose the initial
states of the two particles (i) and (ii), respectively are i0 and j0 > i0.
Then the event that particle (ii) reaches every state k (k > k0) for the
first time ahead of particle (i) has probability zero.

Proof. We shall prove the lemma by producing an infinite sequence
of states kλ < k2 < with the following properties (called A). If the
initial states of the particles (i) and (ii) are any pair r and s where
r < s and s < kt then the probability exceeds 1/4 that particle (i) will
reach state ki+1 ahead of particle (ii).

Let us suppose statement (A) is established and now show how to
finish the proof of the lemma. To this end, we have

Pr {(ii) reaches state k prior to (i) for all k > k0}

< Pr {(ii) reaches state kt prior to (i) for all kt > k0}

< Π (1 — Pr {(i) reaches state kt+1 prior to (ii)l(ii) reaches state

kt prior to (i))} .

The infinite product is zero since on account of statement (A) infinitely
many factors are < 3/4.

It remains to prove statement (A).
Suppose we have already constructed kuk2i , kt. Since coincidence

is a certain event regardless of the pair of initial states r and s, (r < s
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and s < ki) there exists a time value t0 so that with probability > 1 — ε
coincidence occurs sometime earlier then t0. The value of t0 may be
determined for each pair of initial states r and s. However, since there
are only a finite number of possibilities r, s (r < s) where s < kt we can
choose t0 large enough so that the same value of t0 applies for any of
these pairs of starting states. By further reducing to a subset of paths
of probability > 1 — 2ε (ε can be specified in advance as small as desired)
we can determine a state ki+1 > kt which is not entered by either par-
ticle in the time duration (0, ί0). The existence of kt+1 is guaranteed
since the hypothesis of the lemma postulates that coincidence is cer-
tain and hence the process cannot be strongly transient. Restricting
consideration to this set of paths we note that at the first instance of
coincidence the two particles are indistinguishable and hence, with prob-
ability 1/2, particle (i) will enter state ki+1 ahead of particle (ii). Let
Ei denote the event that (i) reaches state ki+1 ahead of (ii) when the
initial states respectively are any pair r and s, s < kt.

The above argument establishes that Pr {E,} > (1 - 2ε)/2 > 1/4 and
the proof is hereby complete.

Proof of Necessity. This is immediate by comparing Lemmas 3
and 5.

The problem of computing the probability of coincidence for the
case when vn is bounded remains open.

We close with some observations regarding the problem of deter-
mining criteria which guarantee finite expected time for coincidence.
First it is evident that for an ergodic birth and death process the ex-
pected time until coincidence is finite. To decide when the event of
coincidence has a finite expected time is in general an open question.

The following two examples are of some interest. In the case of
the linear growth processes associated with the Laguerre polynomials,
we were able to determine a double generating function for the explicit
distribution of the coincidence time (33). Here, it is easy to show by
direct calculation that the expected coincidence time is infinite.

We shall now prove that for the recurrent null or transient queue-
ing model (labeled B) the expected coincidence time is infinite. For
definiteness Xn — λ, n > 0 and μn — μ, n > 1, μ0 = 0.

We consider for the situation of two particles starting in states i
and j , 0 < ί < j , the following induced random walk W whose state
space is composed of the non-negative integers. We say that W is in
state r if j — i — r. Transitions in W are engendered whenever one
of the particles of process B changes its state. Explicitly a transition
of W occurs from state r to r — 1 if and only if after the first change
the state labels of the two particles, undergoing the process B, are
either (i + l,j) or (i, j — 1). A movement from r to r + 1 occurs in
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the contrary case. The motion on W, thus induced by the birth and
death process will be understood to apply only when i > 0. The homo-
geneity of the queueing model implies that the changes engendered in
W are independent of the specific states occupied by the two particles
of the process B and only depend on their distance (j — i) apart provided
i > 0. Hence

Prw{r -> r - 1} = Prw{r — r + 1} = 1/2 for r > 0 .

It is well known that for this random walk the time until first
passage into the state 0 from any non-zero initial state has an infinite
expected value [3]. Moreover, first passage into 0 obviously corresponds
to the event of coincidence for the original birth and death process.
There is one slight complication in the above argument arising from
the fact that when one of the particles of process B starting at i
reaches zero, the transition probabilities of the induced random walk do
not agree with the probabilities of the changes in distance between
the particles. This is due to the reflecting character of state zero, i.e.
when one of the particle of its process is in state 0 then this particle
can only move to state 1. We will show that this complication is of no
consequence in deciding whether coincidence in B occurs with finite
expected time.

Let the particles begin in states i and j,(ί< j). Since coincidence
is certain let us consider all those paths E where coincidence occurs
without either particle ever reaching zero. Conditioned in this way the
induced random walk describes the changes of the " distance" (number
of states separating the two particles) until coincidence. But, for the
random walk W the expected number of transitions for the first passage
into zero is infinite. Since the expected time between transitions for
the birth and death process is l/(λ + μ), the expected time until coinci-
dence averaged over the paths of E is infinite. Next, let F denote the
set of paths in the process B where the particle, starting in state i<j,
reaches state zero before coincidence. Since the process B is null re-
current or transient, again the expected time length of the paths of F
is infinite. Hence, under either circumstance the expected time until
coincidence is infinite.

The above argument may be extended to prove that if a birth and
death process is null recurrent of transient with certain coincidence, then
the expected time of coincidence is infinite provided Xίlil/P^ + /O — °°>
and

1 γ, __ π _ vπjav ^i ~t~ f ^ i + n 'JO — 1
1 -~ Vn — Qn — m a x — — — • , pQ — i

*>o λ f + μ + χ.+n + μί+n

are the transition parameters of a recurrent null or transient random
walk W on the integers (i.e. PrTF {n —> n + 1} = pn).
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On the other hand, the expected coincidence time is finite whenever

Jt±±J*ϊ+*.
λ4 + μt + Xi+n + μi+n

1 - Pn = Qn = m i n

describes an ergodic random walk W and max l/(λ^ + μ3) is bounded.
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