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GENERALIZED RANDOM VARIABLES

JOHN G. KEMENY

We will consider random variables on a denumerably infinite sample
space. However, the range R of the random variables will not neces-
sarily be a set of real numbers. In Part I the range will be a subset
of a given metric space, and in Part II it will be an arbitrary set.
Since each distribution on the sample space determines a distribution on
R (for a given random variable), the sample space may be ignored
entirely, and we may restrict our attention to distributions on R. Thus,
instead of discussing means and variances of random variables on the
sample space, we will discuss'means and variances of distributions on
the set R.

In classical probability theory R would be a set of real numbers,
and the mean and variance of a distribution on R would also be real
numbers. Of these restrictions only one will be kept, namely that the
variance will always be a non-negative real number. As indicated above,
R may be a more general space, and the means will also be selected
from more general spaces. The defining property of a mean will be the
property of minimizing the variance of the given distribution. It will
be shown that these means still have many of the classical properties,
though in general means are not unique, and in certain circumstances
there may be no mean.

While the mean is classically taken to be a real number, it need
not be an element of R. For example, the mean of a set of integers
may be a fraction. This approach is extended in Part I, where the
means may be arbitrary points of a certain metric space Γ, and R is
any subset of T. Even the form chosen for the variance is the same
as in classical probability theory.

In Part II the concept of a random variable and of means is fur-
ther generalized. Here R is an arbitrary set, and the topological space
T from which means are chosen need not be metric and need bear no
relation to R. The variance is still a numerical function on Γ, but of
a much more general form than in Part I. In both frameworks an
analogue of the strong law of large numbers is proved, to show that
classical results can be generalized to these new kinds of random variables.

In Part III we consider certain generalizations. The positive result
in this part is that the restriction to independent random variables in
Parts I and II is unnecessary; the results hold for any metrically
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transitive stationary process. There are also certain negative results,
showing that some " obvious generalizations" fail.

PART I

We consider a metric space T, from which our means will be selected.
Let φ be the metric on T. The range R = {rj of our random variables
may be any denumerable subset of T. We impose one restriction on
the space T:

(1) The closed spheres in T are compact.

As indicated above, instead of considering the random variables
themselves, we will consider only distributions P = {p4} on R. For each
such distribution we define two numerical functions on T:

WP(t) = Σ φ(rt, t) Vi and VP(t) = Σ <P\ri91). Pί .

The former may be thought of as a mean distance to t with respect to
P, and the latter as a variance computed with respect to t. Both func-
tions are non-negative real valued, with + ω as a possible value. We
will, however, consider only distributions that satisfy the condition:
(2) There is a t0 e T such that VP(t0) is finite.

DEFINITION. The variance of the distribution P is defined as

vP = inf Vp(t). An element t of T is a mean of P
tβT

if VP(t) — vP. We denote the set of means of P by MP.

In view of this definition we note that (2) is equivalent to the as-
sumption that P has finite variance. Should P have infinite variance,
then all points of T would be means of P according to the definition.
While the theorems to be proven below would all be true, they would
become trivial. It is possible to give a more sophisticated definition of
the mean for the case of an infinite variance (see [3]), but this leads
into problems beyond the scope of the present paper.

LEMMA 1. If WP{Q and VP{Q are finite, then

I WV(*i) — WP(t2)\<φ(tut2) and

I VP{tx) - VP(t2)\ < φ(tlf t2) [2VP{tx) + 2 + φ(t19 ta)]

Proof. I WP{Q - WP(t2) I < ΣI φ(ri9 tt) - φ(rt, Q \ . Pi
i

< Σ <p(ti, *2) Pi = <p(tif *a)
i

using the triangle inequality on φ.
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I VP{tλ) - VP(t2) I < Σ I φ\ri9 tx) - φ\riy t2) | . Vi

< <p(t1912) Σ [φ(ri9 tx) + φ(ri9 ί2)] . Vi

t1)+ WP(t2)]

where in the second step we factored and applied the triangle inequality,
while in the last step we used the result proved above. The second
part of the lemma then follows if we observe that WP(t) < VP(t) + 1
for any t.

LEMMA 2. WP(t) and VP(t) are finite for all t.

Proof. This is a consequence of the restriction (2). Choose tQ as
in (2). Then WP(t0) is also finite. Lemma 1 yields that | VP(t0) - VP(t)\
is finite, hence the lemma follows.

LEMMA 3. VP(t) is a continuous function of t.

Proof. Suppose that tu t2, is a sequence converging to t then
by Lemma 1, | VP(t) - VP(tk)\ < φ(t, tk) [2VP(t) + 2 + φ(t, tk)]. But
Φ(t, tk) - φ(t, t) = 0, hence VP(tk) - VP(t).

There is one closed sphere that will occur frequently below. Let
S± = Sph ("l/βFpίrJ/Pi, ̂ i)» that is the set of all points in T whose ψ-
distance from rx is at most the specified amount. Then Sλ is compact
by (1).

THEOREM I. MP is a non-empty compact set.

Proof. If t $ Slf then VP(t) > φ\rly t) - pλ> <oVP{rλ). Hence VP(t)
is bounded away from vP. Thus the inf of VP on all of T is the same
as on Sλ. But VP is continuous, by Lemma 3, and hence FP(Si) is com-
pact. This means that VP actually takes on its inf on Slf hence P has
at least one mean. Furthermore MP — VP\{v^)> hence it is a closed
subset of S19 and thus compact.

We will suppose that a sequence of point x19 x29 is selected from
R. The points are selected independently, at random, according to
a distribution Q satisfying (2). [We may consider R to be our new
sample space, and the x3 to be identity functions on R. Then they are
independent, identically distributed generalized random variables.] For
each n, we associate a distribution Hn = {h^} with the first n points
in this sequence; namely hf is the fraction of the first n points that
are equal to ri9 or hf is the frequency of occurrence of rt among the
first n random variables. It will be convenient to write Vn in place of
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Vπny to write vn for the variance of Hn, and Mn for the set of means
of Hn. Clearly Hn has the property (2).

LEMMA 4. For any t e T, Vn(t) —> VQ(t) with probability 1.

Proof. We may consider φ*(xj9 ί), for a fixed ί, to be a sequence
of ordinary random variables on R. They are independent and identi-
cally distributed. Their mean is VQ(t). Since this is finite by Lemma
2, the ordinary strong law of large numbers applies to them. But this
states precisely that Vn(t) —• VQ(t) with probability 1. (See [2], p. 208).

LEMMA 5. For any compact set C there is probability 1 that
Vn(t) —* VQ(t) uniformly on C.

Proof. Since C is compact and VQ is continuous, VQ < A on C.
For any integer k we can find a finite set of points Ck such that the
spheres of radius 1/fe about points in Ck cover C. Since the union of
the sets Ck is denumerable, it follows from Lemma 4 that there is prob-
ability 1 that Vn(t) -> VQ(t) for all points in all the Ck. [The set of
sequences on which convergence fails at one point has measure 0, hence
the union of all these denumerably many sequences has measure 0, and
hence the complement of the union has measure 1.] We restrict our-
selves to such sequences of x5. Let t be any point in C. Select a point
tk e Cfc so that φ(t, tk) < 1/fc. Then

I vn(t) - vQ(t)\ < I vn(t) - vn{tk)\ + i vn(tk) - vQ(tt)\

+ \VQ(tk)~ VQ(t)\

< ±\2Vn(tk) + 2 + l Ί + I Vn(tk) - VQ(tk) I
k\- k Δ

f[2A + 3] + 3 | F , ( y - VQ(t*)\
k

where Lemma 1 was used in step 2, and the uniform bound A applied
and terms combined in step 3.

Given ε > 0, we choose k large enough to make the first term less
than e/2. Since Ck has only a finite number of elements, for sufficiently
large n, \Vn(tk) — VQ(tk)\ < ε/2 for all tk e Ck. Hence for sufficiency
large n, \Vn(t) - VQ(t)\ < ε for all { e C.
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LEMMA 6.1 With probability 1, for sufficiently large n Mn c Sτ.

Proof. By the ordinary strong law of large numbers, h" —> ft with
probability 1; and by Lemma 4, Vn{r^) —> ̂ ( r j with probability 1.
Hence we can select a sequence with probability 1 on which both events
take place. On such a sequence, for sufficiently large n,

vn < Vn{rx) < 2VQ(r1) and Λ» > ft/2 .

Hence, if /; ̂  Slf then for sufficiently large nf

Vn(t) > φ*(r191) Mz >

which is bounded away from vn. Hence if ί 0 Sx, then £ 0 Λfw. And
hence Λfw c S1#

We are now in a position to prove a version of the strong law of
large numbers. This states that the sequence of sample means con-
verges to the mean of the distribution with probability 1. In our more
general framework we do not have unique means, though we do have
assurance from Theorem I that the set of means is non-empty both for
the samples and for the distribution. We thus want to prove that the
sequence of sets Mn converges to the fixed set MQ with probability 1.
As the criterion for convergence we require that every open set con-
taining MQ should contain almost all Mn. If the means happen to be
unique, this is equivalent to ordinary convergence.

THEOREM II. Mn —> MQ with probability 1.

Proof. By Lemma 5, there is probability 1 that Vn(t) —> VQ(t) uni-
formly on Si. By Lemma 6, almost all Mn are subsets of Sx with
probability 1. Hence with probability 1 we may restrict ourselves to
^-sequences on which both events occur. Let 0 be an open set containing
MQ. Then Si Π 0 is compact, and hence VQ takes on a minimum value
v on it. But no mean is in this set, hence v > vQ. Let m e MQ and

t e s, n ό.

Vn(t) - Vn{m) = \Vn{t) - VQ(t)] + \Vq{t) - VQ(m)] + [VQ(m) - Vn(m)] .

From the uniform convergence of Vn we know that for sufficiently
large n the first and third terms will both be less than (v — vQ)β in
absolute value. The middle term is at least v — vQ. Hence for suf-
ficiently large n the difference is positive, and hence t $ Mn. Hence no
element of Sx Π 0 is in Mn, and we also know that Mn c; Sλ for almost
all n. Hence Mn c 0 for almost all n.

1 Si is here defined with respect to the Q-distribution, that is, VQ and q\ take the
place of Vp and p\ in the definition. This will be the sphere used from here on in Part I.
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THEOREM III. vn—>vQ with probability 1.

Proof. \vn-vQ\<\ Vn{mn) - VQ(mn) | + | VQ(mn) - VQ(m) | if mn e Mn,
me M.

As in the previous theorem, we may combine Lemmas 5 and 6 to
assure that the first term tends to 0 with probability 1. The sequence
of mn's will, with probability 1, have a limit point, by Lemma 6 and
the compactness of Sx. And by Theorem II this limit point will, with
probability 1, be in MQ. It then follows from the continuity of VQ that
if we choose as m this limit point, the second term goes to 0 with
probability 1.

One interesting set of applications of these theorems may be obtain-
ed by choosing for T a metric space with compact spheres, and choosing
for ψ a suitable function of the metric. If d is the metric, and / is
a numerical function such that /(0) = 0, / ' > 0 and / " < 0, then φ(tlf t2) =
f(d(tlf t2)) is also a metric on T. In particular, we may choose φ = d*,
for k < 1. The choice of k — 1 yields the generalization of the ordinary
arithmetic mean, and k — 1/2 yields a generalization of the median.

If for I7 we choose Euclidean w-space, and let φ — d, then Theorem
II yields the classical strong law of large numbers for the case of dis-
crete random variables with a finite variance.

Condition (1) is a natural condition to impose when generalizing
results from Euclidean w-space. But it is reasonable to ask whether
the condition is really necessary. For example, could one replace it by
the assumption that T is locally compact ? The following example shows
that local compactness does not suffice: Let T — R Ό S, with S = {sj
for i = 1, 2, •••. We introduce the metric φ as follows.

φ(rif r3) = φ(8t, Sj) = 2 ( 1 - 8 , , ) and φ(rt9 Sj) = \
2 if j < %

Let Pi = 1/2*. Then vP — 1, and rx is the unique mean. Suppose that
Hn is a close approximation of P, with A? < 1/2. This has positive prob-
ability. If iQ is the last i for which hi > 0, then Sj is a mean of Hn

for all j > iQ. Hence Mn does not converge to MP — {rj. This metric
topology, which happens to be discrete, violates condition (1), but T is
locally compact.

PART II

We will now consider a more general framework in which R is an
arbitrary set, and T any topological space. We will consider the space
P of all possible measures P = {pj on R. But since R is an arbitrary
denumerable infinite set, we may—without loss of generality—take P to
be a measure on the integers. The basic tool in Part I was a numerical
function VP(t) on T, for each measure P, satisfying certain conditions.
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We will again assume that there is a function VP corresponding to
each P in P.

We will introduce metrics on two basic spaces. On the space P of
all measures on the integers we define d(P, Q) — 2« \Pι — Qi I On the
space F of all non-negative bounded real-valued functions on T we define

Our basic assumptions concern the mapping P —> VP from P into F.
We require that :

(1) Each image VP is a function that takes on a minimum on every
closed subset of T.

(2) The mapping is continuous.
We may then introduce means and variances as in the definition in
Part I. We may prove near analogues of the previous theorems.

THEOREM Γ. MP is non-empty for each P e P.

Proof. Vp takes on a minimum on every closed subset of T, by
(1), hence it takes on its minimum on T.

We will again consider sequences xJf selected independently at ran-
dom according to a distribution Q. We define the sample distributions,
means, and variances as in Part I.

LEMMA. Hn —> Q with probability 1.

Proof. The lemma asserts that d(Hn, Q) -+ 0 with probability 1.
From the definition of the metric on P we see that this asserts that
Σ J ^ ? ~ ^ i l ~ > 0 with probability 1. This was proved by Parzen in
a paper that has not yet appeared (see [4]).

THEOREM IP. Mn —> MQ with probability 1.

Proof. Let 0 be an open set containing MQ. Then 0 is closed,

and hence VQ takes on a minimum value on it, by (1), say v. Since no

mean of Q is in 0, v > vQ.

Suppose that Hn —> Q in P, which occurs with probability 1 by the

lemma. Then by (2), Vn —• VQ in F. But this means that Vn(t) con-

verges uniformly to VQ(t). Let t e O, m e MQy then

Vn{t) - Vn(m) = [Vn(t) - VQ(t)l + [VQ(t) ~ VQ(m)]

+ ίVQ(m) - Vn(m)] .

By the uniform convergence of Vn we can make the first and third
terms less in absolute value than (v — vQ)β, for all t e 0, for sufficient-
ly large n. The middle term is at least v — vQ, hence for all sufficiently
large n the difference is positive, and hence for these n, Mn cz 0.
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THEOREM IIP. vn —• vQ with probability 1.

Proof. vn < Vn(m) < vQ + | Vn{m) - VQ(m) |, for m e MQ .

And vQ < VQ(mn) < vn + | VQ(mn) - Vn{mn) |, for mn e Mn .

Hence, \vn - vQ\ < sup| Fw(ί) - Fβ(t)l = d(^»> Vq) .
tET

But this tends to 0 with probability 1, by the lemma and (2).

Let us consider some applications of these theorems. First we will
suppose that VP(t) = Σψ2{r,u t) p.if where φ is a numerical function on
R x T. This is the nearest analogue we have to Part I. But even in
this case the assumptions made in Part II are not comparable to those
in Part I. The easiest way to assure that (2) is satisfied is to require
that \ψ\ < B on R x T. Then Vp is always bounded, and

I vP(t) - v&)\ < Σ<p2(n, ί) \Vi - Qλ < B> Σ I P * - ?«l

Hence d(VP, VQ) < B2 d(P, Q). Hence the mapping P—> VP is continuous.
There are various ways of fulfilling (1). One very interesting case

is where T is compact and φ{ru t) is lower semi-continuous on T for
each rt e R. Then every closed subset is compact, and hence a lower
semi-continuous function will take on its minimum on it. And VP is
the uniform limit of a sequence of monotone increasing lower semi-
continuous functions, hence it itself has this property.

Thus if T is compact, we may choose as φ any function bounded
on R x T, such that each φ(rt, t) is lower semi-continuous on T. Ob-
vious examples of this may be found by choosing R c T, where T is
a compact metric space and ψ a continuous function of the distance.
Thus we see that if we are willing to assume that T is compact, we
are allowed to choose φ in much greater generality than in Part I.

If, in particular, Tis a finite metric space, then Theorem IP has
an interesting corollary. Since the topology is discrete in this case,
Mn —> MQ implies that Mn c MQ for sufficiently large n. Hence there is
probability 1 that for sufficiently long sample sequences all sample means
are means of the distribution. If the distribution has a unique mean,
then there is probability 1 that all sufficiently large samples have this
mean as their unique mean.2

Let us now consider an example of a compact space with a bounded
φ, where φ is only lower semi-continuous. Let T be the set of all vec-
tors {αj, i = 1, 2, •••, where a% > 0 and Σ* α * ^ l We define the
distance φ(A, B) between two vectors as Σt I α« ~~ &* I However, T is

2 An interesting application of this result is worked out by the author and J. L. Snell
in a forthcoming book: It can be shown that there is a " natural " metric for the space of
all rankings of k individuals. Thus our result allows certain statistical procedures for
rankings.
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not compact with respect to the metric topology. So we choose for T
a weaker topology, namely the topology of componentwise convergence
of vectors. T is compact with respect to this weaker topology, and ψ
is lower semi-continuous on the resulting topological space. Clearly,
Ψ < 2, hence all our conditions are satisfied, and hence the theorems
are applicable.

Let us next consider an example where φ is bounded, but Tis not
compact. Let R c: T, and T an arbitrary topological space. Define
φ(r, t) = 1 - δr t. Then VP(t) = 1 if t <£ /?, and 1 - pt if t = r*. Hence
on a set not intersecting R the minimum of 1 is taken on at all points,
while otherwise the minimum is taken on where pt is largest. Hence
VP satisfies condition (1), and we see that MP is always a non-empty,
finite set. It is the set of modes of the distribution P.

Finally, let us consider one example where VP is not of the general
form of Part I. Let T be a compact metric space, and R c T. If d
is the metric, we define VP(t) as the inf of Σ ί € j d(rif t) pt over all
sets / such that Σ i 6 J P i > .9. Here VP is lower semi-continuous on the
compact set, hence (1) holds. Since d is bounded on Γ, say by B,
a change of ε in P will produce a change of at most Be in VP; hence
(2) holds.

This result has the following "practical" application. Suppose that
a state legislature decides to establish a state university. They may
insist that the University service at least 90 percent of the state's
population, and that it be in the "most convenient location" for the
population. This may be interpreted by introducing as a metric distance
between rέ and t the distance a person at rΛ has to travel to reach
a university located at t. Then we find the mean of the VP described
above, with pt taken proportional to the population at location rt.
Theorem IP then states that if the college population is a cross-section
of the entire population, and if the university is large enough, then
there is an excellent chance that the location '' most convenient for the
entire population" will be "most convenient for the freshman class"
in any given year. While the practicality of this procedure is debat-
able, it is more reasonable than the location of a state university in the
geometric center of the state. It also shows that the theorems of Part
II lend themselves to many unorthodox applications.

It is worth remarking that if VP is lower semi-continuous, then MP

will be closed. So in all the examples discussed above where VP was
a lower semi-continuous function on a compact space, we obtain the full
equivalent of Theorem I, since MP is compact. And in the example of
the modes MP was finite.

But we can't always expect this to happen in the very general
framework of Part II. As a matter of fact, MP may be any subset of
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T. Let S be a subset of T, and define f(t) to be 0 on S and 1 on S.
If we assign this same function to all distributions, that is VP = / for
all P, then both conditions (1) and (2) are fulfilled. But MP = S.

It may be worth pointing out that the mapping P—* VP need not
be defined on all of P. It suffices if it is defined and continuous on
a subspace, as long as this subspace includes all measures having only
a finite number of positive pt. The theorems then apply to measures
in the subspace. This extra freedom is convenient in a situation where
the desired definition of VP leads to unbounded functions for certain
distributions.

PART III

In conclusion we will show that certain other classical ideas fail to
generalize. If X19 X2 are two random variables, we can introduce a mean
random variable X which corresponds to 1I2(X1 + X2) in the classical
case. We define the value of X to be the mean of the values of X19

X2, if there is a unique mean. If there is more than one mean, we
assume that X is equally likely to take on each of these values. We
would at least expect that if X± and X2 have the same unique mean,
then X also has this mean. However, Figure 1 shows a distribution on
a metric space with eight points (each line represents a unit distance),
which provides a counter-example. If Xx and X2 each have the distri-
bution of Figure 1, then X has the distribution of Figure 2. While Xx

and X2 have the unique mean A, X has the unique mean B.

,04

Fig. 1. Fig. 2.

Next we will consider classical proofs using Chebyshev's inequality.
We may state a version of this inequality, in the terminology of Part I
as

Pr [φ(x, MQ) > fc] < vjk2 .

This inequality may be proved by an exact analogue of the classical
argument. However, the usual method for obtaining the weak law of
large numbers from it fails. We would need to show that if we define
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a mean random variable X, as above, its variance tends to 0. However,
this is rarely the case. If, for example, R consists of two points, and
we have probability 1/2 for each point, then the variance of X tends
to 1/2.

On the other hand, it is easy to extend our results to stochastic
processes more general than those considered so far. In Parts I and II
only identically distributed independent generalized random variables
were considered. However, the only property of the process used in
Part I was that the strong law of large numbers held. In Part II only
the Parzen result was used. Both of these hold for metrically transitive
stationary processes (see [1], Ch. X Sects. 1-2, and [4]). Hence all our
results hold for these stochastic processes.
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