ON A CRITERION FOR THE WEAKNESS OF AN IDEAL BOUNDARY COMPONENT

KOTARO OIKAWA
ON A CRITERION FOR THE WEAKNESS OF AN IDEAL BOUNDARY COMPONENT

KÔTARO OIKAWA

1. Exhaustion. Let F be an open Riemann surface. An exhaustion $\{F_n\}$ of F is an increasing (i.e., $F_n \subset F_{n+1}$) sequence of subregions with compact closures such that $\bigcup_{n=1}^{\infty} F_n = F$. We assume that ∂F_n consists of a finite number of closed analytic curves and that each component of $F - F_n$ is noncompact. This is the most common definition used in the theory of open Riemann surfaces. Sometimes, however, we shall add the restriction that each component of ∂F_n is a dividing cycle; if this is the case we shall call the exhaustion canonical.

2. Weak boundary component. Let γ be an ideal boundary component of F, and let $\{F'_n\}$ be a canonical exhaustion of F. Then there exists a component γ_n of ∂F_n which separates γ from F'_n. Let n_0 be a fixed number and consider the component G_n of $F_n - F_{n_0}$ ($n > n_0$) such that $\gamma_n \subset \partial G_n$. There exists a harmonic function $s_n(p)$ on G_n which satisfies the following conditions:

(i) $s_n = 0$ on γ_{n_0} and $\int_{\gamma_{n_0}}^{} *ds_n = 2\pi$, ($\gamma_{n_0} = \partial F_{n_0} \cap \partial G_n$)

(ii) $s_n = \log r_n = \text{const.}$ on γ_n,

(iii) $s_n = \text{const.}$ on each component $\beta_{n\gamma}$ of $\partial G_n - \gamma_n - \gamma_{n_0}$ and $\int_{\beta_{n\gamma}}^{} *ds_n = 0$.

The condition $\lim_{n \to \infty} r_n = \infty$ depends neither on n_0 nor on the exhaustion. If it is satisfied, γ is said to be weak.

Weak boundary components were introduced for plane regions by Grötzch [1] in connection with the so-called Kreisnormierungsproblem. He called them vollkommen punktförmig. They were generalized for open Riemann surfaces by Sario [6] and discussed also by Savage [7] and Jurchescu [2]. The above definition was given by Jurchescu [2].

A noncompact subregion N whose relative boundary ∂N consists of a finite number of closed analytic curves is called a neighborhood of γ if γ is an ideal boundary component of N as well. Let $\{c\}$ be the family of all cycles c (i.e., unions of finite numbers of closed curves) which are in N and separate γ from ∂N. Jurchescu [2] showed that $\lambda\{c\} = 0$ if and only if γ is weak, where $\lambda\{c\}$ is the extremal length of the family $\{c\}$.

Received October 22, 1958. This paper was prepared under Contract No. DA-04-495-ORD-722, OOR Project No. 1517 between the University of California, Los Angeles and the Office of Ordnance Research, U. S. Army.
3. Savage's criterion. Let \(\{F_n\} \) be an arbitrary exhaustion. Let \(E_n \) be the smallest union of components of \(F_n - \overline{F}_{n-1} \) such that \(\gamma_{n-1} = \partial E_n \cap \partial F_{n-1} \) is a cycle which separates \(\gamma \) from \(F_{n-1} \) \((n = 2, 3, \ldots) \). Evidently \(\gamma_n \subset \partial E_n \). If \(\{F_n\} \) is canonical, \(E_n \) is connected and \(\gamma_n \) is a closed analytic curve.

There exists a harmonic function \(u_n(p) \) on \(E_n \) such that

(i) \(u_n = 0 \) on \(\gamma_{n-1} \) and \(\int_{\gamma_{n-1}} *d u_n = 2\pi \),

(ii) \(u_n = \log \mu_n = \text{const.} \) on \(\partial E_n - \gamma_{n-1} = \partial E_n \cap \partial F_n \).

The quantity \(\log \mu_n \) is called the modulus of \(E_n \) (cf. Sario [4,5], who called \(\mu_n \) the modulus). It is expressed in terms of extremal length as follows:

\[
\log \mu_n = \frac{2\pi}{\lambda \{\gamma_n\}}
\]

where \(\{\gamma\}_n \) is the family of cycles in \(E_n \) homologous to \(\gamma_{n-1} \).

Since \(\sum_{n=1}^{\infty} 1/\lambda \{\gamma\}_n \leq 1/\lambda \{\gamma\} \), we get the following criterion:

Theorem 1 (Savage [7]). *If there exists an exhaustion such that \(\prod_{n=1}^{\infty} \mu_n = \infty \), then \(\gamma \) is weak.*

The purpose of the present note is to discuss the converse of this theorem.

4. Jurchescu's criterion. Suppose the exhaustion \(\{F_n\} \) is canonical. There exists a harmonic function \(U_n(p) \) on \(E_n \) such that

(i) \(U_n = 0 \) on \(\gamma_{n-1} \) and \(\int_{\gamma_{n-1}} *d U_n = 2\pi \),

(ii) \(U_n = \log M_n = \text{const.} \) on \(\gamma_n \),

(iii) \(U_n = \text{const.} \) on each component \(\beta_{n\nu} \) of \(\partial E_n - \gamma_n - \gamma_{n-1} \) and \(\int_{\beta_{n\nu}} *d U_n = 0 \).

Jurchescu's paper [2] contains implicitly the following result:

Theorem 2 (Jurchescu). *A boundary component \(\gamma \) is weak if and only if there exists a canonical exhaustion such that \(\prod_{n=2}^{\infty} M_n = \infty \).*

Proof. *Sufficiency:* Let \(\{\gamma\}'_n \) be the family of cycles in \(E_n \) separating \(\gamma_n \) from \(\gamma_{n-1} \). It is not difficult to see that \(\log M_n = 2\pi/\lambda \{\gamma\}'_n \). Since \(\sum_{n=2}^{\infty} 1/\lambda \{\gamma\}'_n \leq 1/\lambda \{\gamma\} \), we conclude that \(\sum_{n=2}^{\infty} \log M_n = \infty \) implies \(\lambda \{\gamma\} = 0 \).

Necessity: Consider a canonical exhaustion \(\{F_n^0\} \). The desired exhaustion \(\{F_n\} \) is obtained by taking its subsequence as follows:

\(F_1 = F_1^0 \). To define \(F_2 \), consider the quantity \(r_n \) introduced in No. 2 with respect to \(F_n^0 - \overline{F}_n^0 \) \((n = 2, 3, \ldots) \). Take \(n_2 \) so large that \(r_{n_2} \geq 2 \),
and put $F_2 = F_{n_2}^0$. Evidently $M_2 = r_{n_2}$. Similarly, $F_3 = F_{n_3}^0$ is defined by considering $F_{n_3}^0 - F_{n_2}^0 (n = n_2 + 1, n_2 + 2, \cdots)$ and by taking $n_3 > n_2$ so large that $r_{n_3} \geq 2$ where r_n is the quantity r_1 introduced in No. 2 with respect to $F_n - F_{n-1}^0$. We have $M_3 = r_{n_3}$. On continuing this process, we obtain a canonical exhaustion such that $\sum_{n=2}^{\infty} \log M_n \geq \sum_{n=2}^{\infty} \log 2 = \infty$. The idea of this proof was first used by Noshiro [3].

5. The converse of Savage’s criterion. We shall now show that Savage’s criterion in Theorem 1 is also necessary.

Theorem 3. If γ is weak, then there exists an exhaustion such that $\prod_{n=2}^{\infty} \mu_n = \infty$. It is not necessarily canonical.

Proof. By Theorem 2 there exists a canonical exhaustion \(\{F_n^0\} \) such that $\prod_{n=2}^{\infty} M_n^0 = \infty$. From this we construct a canonical exhaustion $\{F_n^*\}$ as follows:

\[F_1^* = F_1^0. \]

To construct F_2^*, let $\partial E_2^0 - \gamma_2^0 - \gamma_2^0 = \beta_{21} \cup \beta_{22} \cup \cdots \cup \beta_{2k_2}$ be the decomposition into components, and let H_3^* be the component of $F_3^0 - F_2^0$ such that $\partial H_3^* \cap \overline{F_2^0} = \beta_{2v} (v = 1, 2, \cdots, k_2)$. F_2^* is the union of $F_1^*, E_2^0 \cup \gamma_2^0$, all the other components of $F_3^0 - F_2^0$, and $\bigcup_{v=1}^{k_2} H_v^*$. In this way, F_n^* is defined as the union of $F_{n-1}^*, E_n^0 \cup \gamma_{n-1}^0$, every component of $F_{n+1}^0 - F_n^0 (m \geq n)$ which is adjacent to F_{n-1}^*, and $\bigcup_{v=1}^{k_n} H_v^*$. By construction, $E_n^* = E_n^0 \cup \bigcup_{v=1}^{k_n} H_v^*$.

The desired exhaustion $\{F_n^*\}$ is obtained by taking a refinement of $\{F_n^*\}$ as follows: Consider E_n^0 and the function U_n^0 for the exhaustion $\{F_n^0\}$. Let $\partial E_n^0 - \gamma_n^0 - \gamma_{n-1}^0 = \beta_{n1} \cup \beta_{n2} \cup \cdots \cup \beta_{nk_n}$ be the decomposition into components and let $U_n^0 = \alpha_v$ on $\beta_{nv} (v = 1, 2, \cdots, k_n)$. We may assume, without loss of generality, that the α_v’s are different by pairs. We suppose that

\[0 = a_0 < a_1 < \cdots < a_{k_n} < a_{k_n + 1} \equiv \log M_n^0. \]

Take $a_v' (a_{v-1} < a_v' < a_v; \nu = 1, 2, \cdots, k_n, a_{k_n + 1} \equiv \log M_n^0)$ and $a_v'' (a_v < a_v'' < a_{v+1}; \nu = 1, 2, \cdots, k_n, a_0'' = 0)$ so close to α_v that

\[(1) \quad \sum_{v=1}^{k_n+1} (a_v' - a_{v-1}') \geq \log M_n^0 - 2^{-\nu}. \]

Consider the sets

\[D_n^\nu = \{ p; a_{v-1} < U_n^0(p) < a_v' \}, \quad \nu = 1, 2, \cdots, k_n + 1, (a_{k_n + 1}' \equiv \log M_n^0) \]

\[D_n^\nu = \{ p; a_{v-1} < U_n^0(p) < a_v' \}, \quad \nu = 1, 2, \cdots, k_n + 1. \]

The modulus $\mu^\nu(p)$ of D_n^ν with respect to $\beta^\nu = \{ p; U_n^0(p) = a_{v-1}' \}$ and $\partial D_n^\nu - \beta^\nu$ is equal to $a_v' - a_{v-1}'$, since the function $U_n^0(p) - a_{v-1}'$ plays the role of $u_n(p)$ introduced in No. 3. Let $\mu^\nu(p)$ be the modulus of D_n^ν.
with respect to β^v and $\partial D^*_n - \beta^v$. Since $\mu^{(\gamma)} \geq \mu^{(\gamma)}$, we obtain, by (1),

$$
\sum_{n=1}^{k_n + 1} \log \mu^{(\gamma)} \geq \log M^0_n - 2^{-n}.
$$

We have decomposed E^0_n into $k_n + 1$ subsets D^*_n. $E^*_n - E^0_n$ consists of components H^*_n such that $\beta^\nu = \partial H^*_n + 1 \cap \partial E^0_n (\nu = 1, 2, \cdots, k_n)$. By decomposing H^*_n into $k_n - \nu + 1$ slices, we obtain a decomposition of E^*_n into $k_n + 1$ parts. It is possible to divide each of the other components of $F^*_n - \bar{F}^*_n$ into $k_n + 1$ pieces so that we get an exhaustion $\{F_n\}$ which is a refinement of $\{F^*_n\}$. D^*_n plays the role of E^*_n with respect to this exhaustion. Therefore, by (2), we get

$$
\sum_{n=2}^{\infty} \log \mu_n \geq \sum_{n=2}^{\infty} \log M^0_n - 1 = \infty.
$$

6. Remark. On a "schlichtartig" surface, every exhaustion is canonical. If F is an arbitrary Riemann surface, the question arises whether or not Savage’s criterion is still necessary under the restriction that $\{F_n\}$ is canonical. The answer is given by

Theorem 4. There exist a γ of an F which is weak and such that

$$
\prod_{n=2}^{\infty} \mu_n < \infty \text{ for every canonical exhaustion.}
$$

Construction of F: In the plane $|z| < \infty$, consider the closed intervals

$$
I_k : [2^{k^2}, 2^{k^2} + 1] \quad (k = 2, 3, \cdots)
$$
on the positive real axis, and the circular arcs

$$
\alpha_v : |z| = \nu, |\arg z| \leq \frac{\pi}{2}
$$

$$
(\nu = 2^{k^2} + 2, 2^{k^2} + 3, \cdots, 2^{(k+1)^2} - 1; k = 2, 3, \cdots).
$$

Take two replicas of the slit plane ($|z| < \infty$) — $\cup_{k=2}^{\infty} I_k$ and connect them crosswise across $I_k (k = 2, 3, \cdots)$. From the resulting surface, delete all the α_v’s on both sheets. This is a Riemann surface F of infinite genus.

F has an ideal boundary component γ over $z = \infty$, which is evidently weak.

Let $\{F_n\}$ be an arbitrary canonical exhaustion. Consider E_n corresponding to γ (No. 3). The interval I_k determines a closed analytic curve C_k on F. Since $\gamma_{n-1} = \partial E_n \cap \bar{F}_{n-1}$ is a dividing cycle, the intersection number $\gamma_{n-1} \times C_k$ vanishes and, therefore, $\gamma_{n-1} \cap C_k$ consists of an even number of points whenever it is not void.* Take two consecutive points

* Added in proof. We should have mentioned the case where γ_{n-1} tangents C_k. The following discussion covers this case if the number of the points of $\gamma_{n-1} \cap C_k$ is counted with the multiplicity of tangency and case $p=q$ is not excluded.
p and q in $\gamma_{n-1} \cap C_k$. There are two possibilities according as the arc $\overline{pq} \subset \gamma_{n-1}$ is homotopic to $\overline{pq} \subset C_k$ or not. If the latter case happens for at least one pair of p and q, we shall say that γ_{n-1} intersects C_k properly.

Since γ_{n-1} is a closed curve separating γ from F_{n-1}, there exists a number k such that γ_{n-1} intersects C_k properly. If there is more than one k, we take the greatest one and denote it by $k(n)$.

To estimate μ_n, let $\{c\}_n$ be the family of all cycles in E_n separating γ_{n-1} from $\partial E_n - \gamma_{n-1}$. We have mentioned that $\log \mu_n = 2\pi \lambda \{c\}_n$. Let C_k be a curve for which there are numbers n with $k(n) = k$. Evidently these n are finite in number and consecutive. Let n_k be the greatest.

I. If $k(n) = k$ and $n < n_k$ then γ_{n-1} and γ_n intersect C_k properly. Since every $c \in \{c\}_n$ separates γ_{n-1} from γ_n, it has a component which intersects C_k and is not completely contained in the doubly connected region A_k consisting of all points that lie over $\{z; 2^{k^2 - 1} < |z| < 2^{k^2 + 2}, |\arg z| < \pi/2\}$. Therefore, every c contains a curve in $\{c'\}^{(k)}$ which is the family of all curves in the right half-plane connecting I_k with the imaginary axis. Consequently

$$\sum_{\substack{n \neq n_k \ni k(n) \ni k}} \frac{1}{\lambda \{c\}_n} \leq \frac{1}{\lambda \{c'\}^{(k)}} .$$

II. $k(n) = k$ and $n = n_k$. Consider all the $\alpha_v (v \geq 2^{k^2} + 2)$ on the upper sheet. Let G_{n-1} be the component of $F - \overline{F_{n-1}}$ such that $\partial G_{n-1} = \gamma_{n-1}$. For a sufficiently large v, α_v is an ideal boundary component of G_{n-1}. Let $v(k)$ be the least v with this property. If $v(k) = 2^{k^2} + 2$, then every $c \in \{c\}_n$ separates γ_{n-1} from $\alpha_{v(k)}$ and, therefore, it has a component intersects either C_k or one of four line segments over $[2^{k^2 - 1}, 2^{k^2}]$ or $[2^{k^2 + 1}, 2^{k^2 + 2}]$. When $v(k) = 2^{k^2} + 2$ for some $l > k$, then γ_{n-1} separates $\alpha_{v(k)}$ from $\alpha_{v(k)}$ and every $c \in \{c\}_n$ separates γ_{n-1} from $\alpha_{v(k)}$, so that c has a component with the above property. If $v(k)$ is not of the form $2^{k^2} + 2$, then, for the same reason, every $c \in \{c\}_n$ has a component which intersects the line segment on the upper sheet lying over $[v(k) - 1, v(k)]$, and is not contained in the simply connected region on the upper sheet consisting of all points over $\{z; v(k) - 1 < |z| < v(k), |\arg z| < \pi/2\}$. In any case, every $c \in \{c\}_n$ contains a curve in $\{c''\}^{(k)}$ which is the family of all curves in the right half-plane connecting $[v(k) - 3, v(k)]$ with the imaginary axis. Therefore,

$$\frac{1}{\lambda \{c\}_n} \leq \frac{1}{\lambda \{c''\}^{(k)}} .$$

By (3) and (4), we obtain

$$\sum_{n=2}^{\infty} \log \mu_n = 2\pi \sum_{n=2}^{\infty} \frac{1}{\lambda \{c\}_n} \leq 2\pi \sum_{k=2}^{\infty} \left(\frac{1}{\lambda \{c'\}^{(k)}} + \frac{1}{\lambda \{c''\}^{(k)}} \right) .$$
To show the convergence of $\sum_{k=2}^{\infty} 1/\lambda\{c^{(k)}\}$, we make use of the transformation $z \rightarrow z^2$. It is immediately seen that $\lambda\{c^{(k)}\}$ is equal to the extremal distance between $[-\infty, 0]$ and $I_k = [2^{2k^2}, (2^{2k^2} + 1)^2]$ with respect to the region $A = \{[-\infty, 0] \cup I_k\}^c$. Since A is conformally equivalent to Teichmüller's extremal region $\{[-1, 0] \cup [P, \infty]\}^c$ where

$$P = \frac{2^{2k^2}}{(2^{2k^2} + 1)^2 - 2^{4k^2}},$$

we have (Teichmüller [8])

$$\lambda\{c^{(k)}\} \sim \frac{\log P}{2\pi} \quad (P \rightarrow \infty)$$

$$\sim \frac{k^2 \log 2}{2\pi} \quad (k \rightarrow \infty),$$

and, therefore, $\sum_{k=2}^{\infty} 1/\lambda\{c^{(k)}\} < \infty$. Similarly $\sum_{k=2}^{\infty} 1/\lambda\{c^{(k)}\} < \infty$ because $\nu(k) \geq 2^{2k^2} + 2$. We conclude that

$$\sum_{n=2}^{\infty} \log \mu_n < \infty.$$

REFERENCES

UNIVERSITY OF CALIFORNIA, LOS ANGELES,
AND
TOKYO INSTITUTE OF TECHNOLOGY
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Frank Herbert Brownell, III, *A note on Kato’s uniqueness criterion for Schrödinger operator self-adjoint extensions* .. 953
Edmond Darrell Cashwell and C. J. Everett, *The ring of number-theoretic functions* ... 975
Heinz Otto Cordes, *On continuation of boundary values for partial differential operators* .. 987
Philip C. Curtis, Jr., *n-parameter families and best approximation* 1013
Uri Fixman, *Problems in spectral operators* .. 1029
I. S. Gál, *Uniformizable spaces with a unique structure* 1053
John Mitchell Gary, *Higher dimensional cyclic elements* 1061
Richard P. Gosselin, *On Diophantine approximation and trigonometric polynomials* .. 1071
Gilbert Helmberg, *Generating sets of elements in compact groups* 1083
James Patrick Jans, *Projective injective modules* 1103
Samuel Karlin and James L. McGregor, *Coincidence properties of birth and death processes* ... 1109
Samuel Karlin and James L. McGregor, *Coincidence probabilities* 1141
J. L. Kelley, *Measures on Boolean algebras* ... 1165
John G. Kemeny, *Generalized random variables* 1179
Donald G. Malm, *Concerning the cohomology ring of a sphere bundle* 1191
Marvin David Marcus and Benjamin Nelson Moyls, *Transformations on tensor product spaces* .. 1215
Charles Alan McCarthy, *The nilpotent part of a spectral operator* 1223
Kotaro Oikawa, *On a criterion for the weakness of an ideal boundary component* ... 1233
Barrett O’Neill, *An algebraic criterion for immersion* 1239
Murray Harold Protter, *Vibration of a nonhomogeneous membrane* 1249
Victor Lenard Shapiro, *Intrinsic operators in three-space* 1257
Morgan Ward, *Tests for primality based on Sylvester’s cyclotomic numbers* .. 1269
L. E. Ward, *A fixed point theorem for chained spaces* 1273
Alfred B. Willcox, *Šilov type C algebras over a connected locally compact abelian group* .. 1279
Jacob Feldman, *Correction to “Equivalence and perpendicularly of Gaussian processes”* .. 1295