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A NOTE ON KATO’S UNIQUENESS CRITERION FOR
SCHRODINGER OPERATOR SELF-ADJOINT
EXTENSIONS

F. H. BROWNELL

1. Introduction. Kato [2] has shown local square integrability with
boundedness at « of the potential coefficient function to be a sufficient
condition for the Schriodinger operator in L,(R,) to have a unique self-
adjoint extension in case dimension % = 3. His statement is for » = 3p,
thus with p factors R,, but with the condition on V stated separately
for each R, factor as is natural for application to quantum mechanics ;
this in essence amounts to » = 3 from our standpoint. Using the Young-
Titechmarsh theorem on Fourier transforms, we generalize Kato’s argu-
ment to general dimension n > 1. We show the connection of the re-
sulting criterion with our earlier construction [1] of a self-adjoint
extension as the inverse of a modified Green function integral operator.
We also give a variational characterization of the spectrum here.

2. Uniqueness condition. Let V(x) be a given, real-valued, measur-
able function over x € R,, euclidean n-space. We consider the following
additional conditions upon V, using the notation (x-y)=37_,x, and
x| =1V(x-x) for x and y € R,, and also denoting % dimensional
Lebesque measure on R, by p,.

CoNDITION [. For some b < + o let V(x) be essentially bounded
(A =lesssup| V(x)|] < + ) over {x € R,||x| > Db}, and let

(1) S{ I |<b)IV(x) [amerody (x) = M, < + oo
Sfor some 0 > 0 satisfying also n + o > 2.

ConpITION II. Let V(x) satisfy Condition 1 with in addition
n+ o=4 1w 1) if dimension n < 4.

Condition II is our generalization of Kato’s uniqueness criterion, our
following Theorem T.1 in the special case n = 3 thus being due to Kato
[2]. Following Kato, we define &7, C L,(R,) as the linear manifold of
Hermite functions, polynomials in the coordinates 2x; multiplied by
exp(—1/2| x|*). Assuming Condition II), clearly the pointwise product
Vu e Ly(R,) for all w ¢ &7,. Hence
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954 F. H. BROWNELL
(2) [H, u](x) = — p*u(x) + V(x)u(x)

with p* = 37, (0%/0x2) the Laplacian, defines H, as a linear operator in
L,(R,) with dense domain <7,. Also the easily established Green’s iden-
tity for v and w € &, shows that H, is symmetric (see [3], p. 28-41,
p. 48-50 for terminology and theorems used hereafter).

Next for u € L,(R,) we have existent (see [4]) the Fourier-
Plancherel transform @ € L,(R,) defined by

( 3 ) ib(y) - 1im<-_1—>n/25(x|lxlsN}e_i(x.y)u(x)d‘un(x) ’

Now\ 27T

with the limit in the L,(R,) norm sense over y € R,; similarly

(4) uw(x) = lim<l>n/25{yl’ylsme“""’)ﬁ(y)dﬂn(y) ,

N\ 27T

with the limit also in the L,(R,) norm sense. In terms of (8) and (4),
define & as the set of u e Ly(R,) such that |y |*i(y) is also in L,(R,)
over y. Define T as a linear operation in L,(R,) with domain < by
Tu = w, wy) = |y "a(y) for w e &, w e L(R,) existing uniquely for
such w since (3) and (4) define a unitary operator and its inverse on
Ly(R,).

We may now state the main theorem of this section as follows. Ac-
tually, since Condition II will be seen at the end of the next section
to imply Condition S stated there, this theorem is a consequence of
Stummel’s theorem ([5], Th 4.2), p. 171), except for an awkward but
essentially trivial change of basic domain. Also our proof is rather
different, being much closer to Kato’s original argument. See also [6].

THEOREM T.1. Let V satisfy condition II. Then the pointwise
product [Vul](x) = V(x)u(x) has Vu € L(R,) for v e &2, and Hu =
Tu + Vu for u € & has H to be a self-adjoint operator in L,(R,) with
dense domain &. Furthermore, &, C &, H, C H, and H 1is the uni-
que self-adjoint extension of H,.

Here &7, € &7, and hence & is dense, follows clearly from the
fact ([4], p. 81, Theorem 57) that S*(<,) € &,, where S denotes the
unitary operator from L,(R,) onto itself given by (4), St = u, and where
S*u = & in (8) represents the adjoint and inverse S*. Thus Twu=—Vu
for u € &, has Tyu = Tu for w € =, from [S*(Tw)](y) = | y "u(y) by
integration by parts; hence T, € T. Thus H, € H follows from the fol-
lowing lemma (Lemma 4 of Kato [2]), which represents the heart of our
argument.
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LEmMMA T. 2. Let V satisfy Condition II. Then for uwe & follows
both Vu € L,(R,) and the L,R,) norm inequality

(5) | Vull <allTull + Bl wll

Sor some « and B positive and finite, for which o may be chosen as
small as desired with B depending on «.

To prove this lemma, we will first establish that & < L, (R,) with
' = 2(n + p)/{(n — 4 4 p) and p > 0 given in Condition II if dimension
n >4, and that 7 C L.(R,) if n =1,2, or 3. For this purpose we
start, for u € <7 and arbitrary @ > 0 and with p > 0 as in Condition
II, with the Schwarz-Holder estimate

(6) [ lita) e odp, )

1/p 1/p’

= Uﬂnlﬂ(y) FA+o'ly I“)d/ln(y)] Uﬁn(l + o'y 14)—<p'/v>dyn(y)J

) oo -1 154
= w4 ot || Tu 1 0, et dr |

= [l wlP + [ Tu |[194C, jom
— Cn . [w—(4n/n+p)” u H2 + w4p/(n+p) H Tu ||2]1/p

where

Cop=| ol gt |

where ¢, = 27" [["(n/2)]7* is n — 1 dimensional ‘‘ area’’ measure of the
unit spherical shell in R, where 1/p+1/p'=1 with 2=p[2(n+p)/(n+0+4)]
and thus 1 <p=1+4/(n+0)<2,p'/p=1/(p—1)=(n+ p)/4, —np/p’ =
— dnf(n + p), and 4 — np/p’ = 4p/(n + p).

Now if dimension » =1, 2, or 8, then # + p = 4 in Condition II and
(6) yields for u e &

bRl

(1) (esssunlueo ) < (52|, 1) | )

< (o) Cudom 1l + @) Tu | |

using also (4) with convergence almost (y,) everywhere for a subsequence
from L,(R,) norm convergence.

Now if dimension n > 4, then in (6) define » = 2(n + p)/(n + o + 4)=
2/p, and hence 1<r<2from 1 < p =1+ 4/(n+p)<2. Now 1/r+1/r'=1
has
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1 _ 1 _ 2(n+p

l—l 1_<i+ 2 ) n—4+p0
2 n 4 o

Hence the Young-Hausdorff-Titchmarsh theorem ([4], Theorem 74), p. 96),
generalizing with negligible changes in proof from R, to R,, using sub-
sequences convergent almost everywhere to show that the known exis-
tent L,(R,) and L,.(R,) norm limits in (4) must agree, yields in (6) for
uegif n>4

@) ], e [

n(l/2-1/r ) R 1r
<(o=)" ], Bi@ 1 )|

2r

1 \raiz-ur) Y[ =41 (740) 2 4 1/2
£<_2—71'— (Cop) T @) ([ [|F - @ o) || Ty [JP]Y

Thus we see if dimension n» =1, 2, or 8 that (7) with Condition II,
n -+ p =4, yields for u € &

(9) 1 ValF < (5o ) @ Ml || Tulf 4 o= [ + 4| |

over all w > 0. Thus, since 1V |[a P+ |6 <|a]|+ |b], (5) follows with
« arbitrarily small as desired for Lemma T. 2, since 4 — n > 1 here.

If dimension n >4, then we use (8), Condition II, and over the
| x| < b portion of the integral a Schwarz-Holder estimate with 27r=+'=
2(n +p)f(n—4+p0)>2 from 1 < r <2 1/7r + 1/#' =1, and thus

2 _2ntp) 1
ﬁ(n—él—&—p) 4 2
n+ p

2r = (n 4+ p).

Hence, if n >4, for w € &

(10) vl < @nyre( G e

[

< [ @0 || Tu | 4 @7 ] 4 A7 |

for all @ > 0. Thus again (5) follows in this case n > 4 with a arbit-
rarily small, since @w*/ ™+ — 0 as w — 0*. Thus the proof of Lemma T. 2
is complete.

Returning to the proof of our Theorem T. 1, from the remarks pre-
ceding Lemma T. 2 we see this lemma permits H to be defined on <~
dense, and H,CH from T,CT. Also T is self-adjoint with domain <.
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For by definition S*T'S is a purely multiplicative operator, [S*TS%u|(»)
= |y |"i(y), with the natural domain of all % e L,R,) such that
|y *u(y) is in Ly(R,). It is well known and easy to see that this makes
S*TS self-adjoint, and hence so is T since S is unitary.

Next (Tu, u) = §R Ly | liy) P’dee.(y) > 0 for || || > 0 shows that the

spectrum of T is confined to [0, + «]. Hence (T + AI)™*' is for real
A >0 a bounded Hermitian operator on L,(R,) with range <, (T+N1) < =
L(R,) following from the spectral theorem for self-adjoint 7. Thus
(much as in Kato [2], Lemma 5)), from (5), we have for all u € L,(R,)

A V(T + VD ]| < @l T+ ND=u ] + BT + VDu|
< (a+L)ju,

since || T(T + )| <1 and || (T + »I)|] < 1/\* are clear from the
spectral representation of 7. Thus choosing a < 1/2 in (5), and then

)\ sufficiently positive so that B < -;— , we gee from (11) that the oper-
ator V defined on & by [Vu) (x) = V(x)u(x) satisfies

{7 27\-1 B
a2) 1T+ 3D < (a+ £) <

Hence I + V(T + AI)-'is a bounded linear operator on L,(R,) with range
L,(R,), since

[+ V(T + D17 = T+ 5 (= IV + VD))

also exists bounded. Thus, for ) large so (12) holds,
(13) HAMNI=T+ I+ V=1[I+ VT + )T + zI)

takes <7 onto L,(R,), since T + \I has already been seen to do so. Since
T = T* has been shown and since V is obviously symmetric, it follows
that H =T + V and H + I are symmetric, H + 2 .C (H + »I)*. But
(H + 1)z = Ly(R,) in (13) thus makes H-+)\I = (H+N1)* = H*+N\1,
H = H*, and hence H is self-adjoint (see [3], p. 35).

In order to complete the proof of Theorem T. 1, it remains only to
show that the self-adjoint extension H of H, is the unique self-adjoint
extension. Since here H, € H* € H= H* C H* is well-known [3]
and likewise H}* ¢ H < H¥ for any other self-adjoint extension H,
since H = H¥* will make H} = (H})** = (H*)* = H* = H = H}*, and
since H;* = H, the closure of H,, it suffices for this uniqueness to show
HcH,.
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In order to do so, we first (Lemma 1), Kato {2]) notice that orthogo-
nality of nonzero u, € Ly(R,) to (I + TYyu = + T)u for all v e o,
would require 4, to be orthogonal to all (1 4 |y |)u(y); equivalently,
since S <) € &, and S(=,) € &, makes S*(=,) = &, = S(=,),
this would require %,(y)(1 + | g |*) exp (—(1/4) | y I)), an element of L,(R,),
to be orthogonal to all polynomials in ¥, multiplied by exp (—(1/4) |y |*).
But the density of <7, in L,(R,) and a change of scale by the factor
12 shows this to be impossible. Hence (I + 7)<, is dense in Ly(R,).

Thus given # € <» and § > 0 there exists u, € <7, such that

5> I+ Ty — (T+ Ty || = | (T + S*TS) (e — )]
=[], a+1wpriae - wwrdnw |

> (max || u — u |}, || T(w — u)|]) .
Thus by (5),

W Hu — Hu, || = [| H(w — w) || < | T(w — w) || + || V(o — ) ||
SA+)[Tw—u)||+Blu —u || <A+ a+pB)d.

Hence the graph of H is contained in the closure of the graph of H,
HC H,and H is the unique self-adjoint extension of H, as desired.
Thus Theorem T. 1 is completely proved.

3. Connection with other conditions. We will show in this section
that Condition I, which is always implied by (and for » >4 coincides
with) Condition II, implies our earlier one (Condition III, see eq. 19)
for the construction of a self-adjoint extension as the inverse of a modi-
fied Green function integral operator. In fact, it is easy to verify for
V(x) = | x| that Condition I and Condition III are each equivalent to
0 <7 < (min 2, »), so that in this sense they have the same strength.
We remark that Condition I is the natural one, used in a forthcoming
joint paper, for an asymptotic formula for the distribution of eigen-
values of the bottom part of the Schridinger operator spectrum. Finally
we will show, as noted before T. 1, that

Condition II = Condition S = Condition III .

In order to give this connection with the modified Green function,

we need to introduce the fundamental singularity ,K.(r) for —p?+ 0’

with constant @ > 0. This may be defined (see [1], p. 555) uniquely by

the requirements that ,K,(r) be continuous over » > 0, that ,K.(x|)¢e

L(R,) over x, and that [w* + |y = S K (| x |)er=wdp,(x) over y e
R

R,. Such ,K,(r) >0 over » >0 and o >n0. We define
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nf{w(r) = M,r-®» exp(— %) for n>3,

() = M1 + Vor] 1 + In(l + (or)Y)]e,
and

Ko (r) = o) = K (1),

with M, the least possible real constant having K, (r) < nkmm over all
r >0 and w > 0, such positive finite M, always existing. Finally define
for w > 0,

(14) Th=esssup| Kullx—y)i V) dmi) -
TuroREM T. 8. Let V satisfy Condition 1. Then [V], < + o for

all @ >0 and

(15) lim [V], = 0 .

Moreover for all @ >0

(16) lim [V =V, =0,

P> +oo
where Vy(x) = V(x) of |[V(x)| < p, Vy(x) =p tf V(x) > p, and Vy(x)=
—p if Vix) < — p.

The proof is rather elementary, using for n > 2 the Schwarz-Holder
inequality with » = (1/2)(n + 0) > 1 and 1/r + 1/' =1, and hence
o= 1 __nt+tp
2 n—24p
n -+ 0

Thus Condition I yields in (14) for n > 2, the Schwarz-Hoélder inequality
being used on the |y| < b portion, and also nf{m(t/w) = a)”‘znlfl(t) and
(n—2)(n + )0 — 2+ p) —n=—20/(n —2+p) <0,

_ . .
) VL < (yra-siem | o,( (Rt oo podt |
+ Aw-2onrn1i(t)tn~ldt .

In (17) the second integral is obviously finite, and so is the first for
n=2. For m >2 we see in the first integral that only the portion
0<t<1 is in doubt, and here we have to consider the integrand factor
t raised to the exponent

(n )n~2+p+n n—24+p >
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Thus the first integral in (17) is also finite for » > 2 as well as for n=2,
and (17) shows [V], < + o for all w > 0 and also that (15) follows for
n > 2.

Finally for (16), taking p > A so that V(x) — V,(x) = 0 almost (z,)
everywhere over | x| > b by Condition I, we see that in place of (17)
we have, with ¢, < -+ o by the finiteness of the first integral in (17),
for n > 2

(18) l vV — Vp 1w < an_Qp/(n+P){:S ) ‘ V(x) — Vp(x) 1(1/2)(n+p) d#n(x)]llx .

{a] 1210
Since lim,...| V(x) — V,(x)| = 0 for all x e R,, and since | V(x) — V,(x) |<
| V(x)|, we see Condition I and dominated convergence in (18) yields
(16) as desired for n < 2.

Finally consider n = 1, ,K,(r) = .K.(r) = (2w)~%~*". Notice that Con-
dition I with 1 -+ p > 2 clearly implies itself with o replaced by o' = 1.
Thus in place of (17) and (18) we have for n =1

7y | V1o < M,2w)™" + Ao,

agy TV L] Ve - Vil dme),

EIIETES)
which clearly yield (15) and (16) in the same way as above. Thus the
proof of Theorem T.3 is complete.

Now consider the following condition on V. As stated in Corollary
T.4 immediately thereafter, this condition is implied by Condition I, as
we see from (15) above.

ConDITION III. There exists some w,0 < @w < -+ oo, such that

(19) Vi.<1.

COROLLARY T.4. If Condition I is satisfied, then so is Condition 111.
Condition III is our earier condition in [1] mentioned above. For our
modified Green function, consider the formulae

@) Gux, ) = K(x-yh+ S0 |

7 7

[, Kz = 2 DVCRLEL 2 — 2 DY) -
V(pz)an(l e — Y J)d/’ln(lz)' * ’d/’!n(pz) ’
(21) [Golx) = | G, uw)dpm)

{4
[

By virtue of our earlier work ([1], p. 560, 567, Lemma 3.4, Theorem 3.5,
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Theorem 4.5), we have the following theorem, using |[V], < [V].. from
K. (r) < K., (r) in (14) for o > o'

THEOREM T.5. Let the conditions of Theorem T.8 hold and let w,,
0 < w, <+ o, be chosen so that (19) holds. Then for @ > w, the right
side of (20) converges almost (t, x p,) everywhere as a definition of
G(x,y), G (x,y) = Gy, x) almost (y, x ) everywhere, in (21) the
right side exists finite almost (p,) everywhere and is in LyR,) for
ue Ly(R,), and the operator G, on L,(R,) so defined is bounded Hermitian
|G|l < @01 — |V],)". Moreover the operator H, defined by

(22) H,=G;' — o'l

exists as a self-adjoint operator in L.(R,) independent of w > w,.
Now under Condition I here, which is less than Condition II if

n < 3, the linear manifold /"= {u € L(R,) |Vu € L(R,)} need no longer

contain <, and hence H, may not exist as an operator in L,(R,).

Thus define &, = .4"N <, and as in (2)

(23) [H, u](x) = — Vu(x) + V(x)u(x)

for w € < ; thus H, satisfies (Hu, w) = (u, Hw) for uw, we <. Note

<, = 7, and H, = H, if n > 4, Condition I and II coinciding. Hence,
after proving the following theorem, H, = H follows for n > 4.

THEOREM T.6. Let V satisfy Condition 1. Then the self-adjoint
operator H, defined by (22), known existent by Corollary T.4 and
Theorem T.5, is an extension of H, ﬁl C H,

We note here that < need not be dense in L(R),) if n<3, although
ﬁl will not be a very respectable operator from the Hilbert space view-
point if < is not dense, in particular not being symmetric. This
theorem is the same as our earlier one ({1]), Theorem 5.3, p. 572) except
for change in the initial domain from %, = .4 N % there to ?Z = _4"NZ
here. Merely sketching the proof, we first see

@) 9= [CA®I + VE)P® — VawE) )

follows for ¢ € < and u € L,(R,)N L,(R,), the proof being unchanged
from the earlier one ([1], Theorem 5.1, p. 568) for » having continuous
second partials and vanishing outside a bounded set. Taking @€ 5)1 =
A4 N, in (24) and using the facts that G, is bounded Hermitian and
that L,(R,)NL,(R,) is dense in L,(R,), we obtain from (23)

(25) G (0] + H)p = o
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for pe &. Thus &, C (range of G,) = (domain of G3Y), and @I + H, C
G.'4 H, € G;* — oI = H, as desired, proving T.6.

THEOREM T.7. Let V satisfy Condition 1 and define h, =
lim, . (essinf,, ., V(x). Then this limit exists satisfying — A < h, < A
and the spectrum X of the self-adjoint operator H, defined by (22),
known existent by Corollary T.4 and Theorem T.5, has (— oo, h)N 2
to consist of pure point spectra with (— o, h) N Y finite and having a
Jfinite dimensional eigenspace for all h<h,. If also ho——[ess inf V(x)]>

— oo, then (— o, hy) N3 s empty.

Slnce (19) and (16) follow from Condition I for large w by Theorem
T.3, this theorem follows from our earlier one ([1], Theorem 6.4, p. 579).

Finally we finish this section by proving in the following Theorems
T.8 and T.9 the implications asserted before, namely II = S = III. Since
Condition S, as noted before Theorem T.1, implies the conclusion of that
theorem, from II =S we have an alternate proof of Theorem T.1. For
knowledge of this work of Stummel [5] we are indebted to the referee.
Although Theorems T.8 and T.9 seem of sufficient interest to record,
their proofs are simple exercises in the use of the Schwarz-Holder
inequality.

We start by stating Stummel’s Condition S.

CONDITION S.

(26) {sup

xeRnS{yl‘x—ylsﬂ

| V@) | x — 1 7dp@)}< + o
Jor some real v satisfying v >n — 4 and v > 0.

THEOREM T.8. If V satisfies Condition 11, then it also satisfies
Condition S.

THEOREM T.9. If V satisfies Condition S, then equation (15) and
hence Condition 111 are satisfied by V.

To prove T.8 first, Condition II clearly yields (26) with v=0, which
thus takes care of the trivial case 1 < n < 4.

Now consider dimension # > 4. Then for the o >0 in (1) of the
given Condition II, we may choose real v to satisfy

@7) n—4n1p>>v>n_4

and must then verify (26). Take p = (1/4)(n + p) > 1 and then 1/p +
1/p’ =1, for which
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n[(n + p) — 41 > (n + p)v, n+p>4+(n+p)%,
<1~%>(n+p) >4, p:(1/4)(n+p)>(1—%>”,
R . N T 4
VY p n
and hence vp’ < m. Thus for (26) we have the Schwarz-Holder estimate

e | o Verix—uldne)

= V@@ [0 e

with 2p = (1/2)(n + p), 7»' < m, and ¢, as in (6). Thus the second factor
on the right of (28) is a finite constant, Condition II assures that the
first factor is bounded over x e R,, and (27) and (28) yield (26) for
Condition S. This completes the proof of T.8.

Now for Theorem T.9 it suffices to prove that Condition S implies
lim,.,.|V], = 0, since equation (15) yields the conclusion of Corollary
T.4 as noted there. Considering first the general case n > 4, and taking
B=n—2—9/2<n—2—(n—4)(1/2) = n/2 so that 28 < n from v >
n — 4 >0, the Schwarz inequality yields

1/p’

-

@) | VO )

e
lix-yl=1) |x —

1/2 1 1/2
<[] V@ x =yl | o] ereomar ]
{yllx-yl<1} 0

On the right here the second factor is < [w ™*Pg,['(n — 28)]"*— 0 as
w— + o since n — 28 > 0; the first factor is independent of w and
bounded over x € R, according to Condition S. Hence we see that the
left side of (29) converges to zero uniformly over x € R, as w — +
for n > 4.

In order to estimate |V],, we must also consider the left side of
(29) with the range of integration replaced by its complement in R,.
For this we define

B(j) = {xe R, [, — 2j(n)7"*| < (n)™"* for 1 <o <n}, j= (4,75 **+,Jn)
for integer j;,, and also =(j) = inf.cpy; |Xx|. Noting that B(0) =
{x||x| <1} makes {x| x| > 1} € U;»-B(j), we see with n > 4
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e—wlx—yl
Wd#n(y)

= S(zllzl>1) e | V(ix — 2) | dpn(2)

(30) | V()|

Slyl 1x-y|>1}

< Z e~ SB(D | V(x — Z) l dﬂn(z)

JF0
2 n|2 . ]1/2 (i)
= (1/’)’7) [slellgb S(yllx—ylsu I V(y)( d#n(y) {];6 ¢ ’ } )

Since |x — y|~” > 1 in (26), we see that Condition S assures that the
first factor on the far right side of (30) is a finite constant. Moreover,
we see that the second factor

{Ze'"’”"’}—>0 as w— + o,

JF0

using
r(j) = (sup !xl>— 2
X€ B(J)
to estimate the portion of this sum where

7(j) =3 by (]—/27>—n0'ngz e (r=2pn=1

which — 0 by dominated convergence, and using »(j) >1/v'n > 0 for
J # 0 to estimate the remaining finite sum portion. Thus the left side
of (30) converges to zero uniformly over xe R, as @ — + o, which
when combined with the same conclusion about (29) proved above yields
[V],— 0 and completes the proof of T.9 for dimension n > 4.

For dimension n < 4, we see Condition S becomes just (26) with

v = 0. Hence S LK. x DPd e (x) = c,0 ¢, easily seen with ¢, <+
R'VI/
for » < 4 from the definition preceding (14), gives in place of (29)

(31) [sup

x€R,, S(ylix—y)ﬁl)

| V) | Kol x—y l)d/zn(y):' = 0 @)

as w — + . Also (30) still shows the integral over the complimentary
region to converge to zero uniformly over x € B, as w — + o if n =3,
and a very similar computation gives the same result if » =1 or 2.
Hence lim, ... [V], = 0 follows from Condition S when dimension = < 4
as well as when n >4, and the proof of T.9 is complete.

4. Variational characterization of the spectrum. In this section
we will show (see T.13 following) that a variational characterization of
the spectrum, well-known at least for continuous V and bounded domains,
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also holds for H, with V subject only to Condition I. This is rather
easy to obtain ([2], p. 209, eq. (23)) under Condition II, and the major
effort in our argument amounts to showing that Condition I, which is
weaker for 1 < n < 3, actually suffices.

We start with the following theorem, where by the L, sense of the
Fourier transform # for we L,(R,) we mean (8) with no limit and

S replaced by the oridinary Lebesque integral S . Notice that
{x||x]<N} R

if we L(R,) N L(R,), then by taking subsequences we Innay be sure that
the two definitions of #u(y) are equal almost (y,) everywere. Hereafter
|| # ||, denotes the L,.(R,) norm of %, and ||« || or || w]|, the L,(R,) norm.

THEOREM T.10. Let V satisfy Condition 1 and let ), be in the point
spectrum of H,, defined by (22), with eigenvector wu,€ 7, = G, (Ly(R,)),
Huy = M, and [[u, || = 1. Then Vu,e Li({x| x| < b}) and over ye R,

(32) |y [Pit(y) + Po(l) = Notho(y)

where \r, = Fo+ 0o fo 1s the L, sense transform of fox) = V(x)ux)y,(x)
with y,(x) the characteristic function of {xe R,||x| <b}, and g, is
the usual L, transform of ¢, = Vu, — fo.

If (» + p) >4, then Condition II follows from Condition I, H,= H
and u, € 2, = < by Theorems T.1 and T.6, Vu, € L(R,) by Lemma T.2
and hence eL,({x]|| x| < b}), ¥, exists as defined and = 1;1\40 defined in
the usual L, sense, and (32) follows from Hu, = \u, and the definition
of H.

The proof of T. 10 thus being complete for (n + p) > 4 and hence
for n > 4, we now consider the remaining case 2 < n + p < 4, for which

1 <n <38. Since G,uy = (N + @) 'u, with )\, + @* > 0 for v > w, fol-
lows from (22) and H,u, = \u, we see ([1], (3.5), (3.6), and (3.21), p.
558 and 562) by using the Schwarz inequality that u, is essentially
bounded, u, € L.(R,) and ||%,]|]. = ess sup |uo(x)] < 4 oo. Thus by Con-
dition I, Vu, e L.({x||x| <b}) < Ll({snc] x| <b}) with » =4(n + p)
satisfying 1 < » < 2, and +, exists as defined.

Now, L, N L, being dense in L,, there exists a sequence u, € Ly(R,) N
LyR,) such that the L, norm ||u, — u;||, > 0. Hence as above, u, =
N + ®»G,u, has u, e L.N L, and both [[u, — u.|l,— 0 and also
||y — ||l — 0. Actually ([1], Lemma 4.1, p. 565), u, and Vu, € L,(R,)
also, and

(33) (gl = M)u@) + Puly) = (v + o) {i(y) — @ (y)}

with , = I?uk in the L, sense. Defining f, and g, from u, analogously
to f, and g, from u,, Jr, = f,c 4+ g, defined in the L, sense. Moreover,

1fo = Fello < @™ fo = filli < @7) ™V [luall %o — ] — 0
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with

Vi ={__ 1V@ldme),

{x||x1<db}

and ||g, — gxll. < Alluy — ull,— 0 by using Condition I. Thus, after
taking subsequences, we may assume almost (x,) everywhere that

Vi) = @) + 0:0) — Fi®) + 6) = Vo), @) — i)

and @}, (y) — uy), since ||&, — Ayll; = ||[Up — Uoll; — 0 and ||, — U,]], =
[l — ol — 0. Thus (33) yields (82), and the proof of theorem T. 10
is complete.

We next give some approximation lemmas.

LEMMA T. 11. Let V satisfy Condition 1 with n 4 p >4, and
hence Condition 11 also; let u, € 2. Then there exists a sequence of
U, € ', satisfying simultaneously ||u, — ugll — 0, || T(u, — uy)|| — 0,
HV(uy — u)]] — O for these L(R,) norms.

This was proved in the last two paragraphs of § 2. In the following
we denote (z- &) = 37..2,£, |z| =1/(z- 2) for z and § e C,, unitary
n space. Z, = G, (Ly(R,)) for w > w, is the domain of H, as usual.

LeEmMMA T. 12. Let V satisfy Condition 1 with 2 <n + o < 4 and
let w, € Z, satisfy Hu, = Mu, and ||u,|| = 1. Then |y|i(y) € L(R,)
and u, € L.(R,) and u, € L(R,), and there exists a sequence of u, € Z,
such that simultaneously ||u, — |l — 0, ||, — Ug|l. — O,

[ 1V fux) — w0 pdpne) =0,

and

[, 1Pentts0) = Puso) P pra(x) — 0,

where V denotes the ordinary gradient differential operator and V.u
the C, vector valued function whose components are in Ly(R,) and have
the components of iyi(y) as their L, sense Fourier transforms.

To prove T. 12, first notice 2 < n + p < 4 makes 1 <n <3, and
hence, as shown in proving T. 10, %, € L.(R,) and f, € L(R,) with
r=3%n+ p), 1 <r<2 Thus, using the Young-Hausdorff-Titchmarsh
theorem as in (8), the L, sense ﬁ, e L,(R,) with

1,.’

=1 _ _n+p >2, and ¥ =
1-1r n+4+p—-2

ifm+p=2.
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Next notice that for 0 < v < 2 we have from (32)

GY (T el = (5 ) ) - )

— 1+ [y fulw) -

Thus we may conclude |yl|"i(y) € Ly(R,), as desired, whenever this
holds for both terms on the right of (84). The first term is obviously

in Ly(R,). For the second term we use fo e L,(R,) and the Schwarz-
Holder inequality with

n+p

1 _ m+p
n+p—2

200 = ' = o =
“=r I—1ja 4—(m+p)

>2, o

holding even for n+p=2, for which @ = « and «’ = 1. Thus, with
o, as in (6),

| fulm) el T T
(35) SRn (1 - |y.)2(2—v) d#u(y) = H f()”r {:O'ngo (1 + t)z(z—v)w' j‘ <+
provided that

_ r_ 2n+ )2 —)
n < (2 — v)2a ypraar el

This last inequality is equivalent to

A= (et o)
2T St )

s

and this to

fptmn+o) _m o, 20
V< 2(n + p) 2+n+;0'

We see for our n =1,2, or 3, p >0, 2 < n + p < 4, that this last in-
equality is always satisfled for v =1 and for v =y, = n/2 + p/(n + ).
Note n/2 < v, < 2. Thus we have shown |y|iu,(y) and |y 4(y) to be
€ Ly(R,).

Next for any finite set of v, > 0, define

[Liw) = (1+ 51y Jitw) -

As in the last two paragraphs of §2, L is dense in L,(R,), since any
u € Ly,(R,) has

(1+ Slulv)exp(—4y i) e LR
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and therefore is not orthogonal to all Q(y) exp (—%|y|) with polynomial
@, and thus 7% cannot be orthogonal to L<7. Hence, for any u € L,(R,)
such that Lit € Ly(R,) there exists (since < transforms onto <) a
sequence u, € <, such that ||L(it — i,)|l, — 0, and thus simultaneously

[, 1917si@) — i) Pdata) — 0

for the finite set of v, as well as ||u — u,||, = ||& — %] — 0. Applying
this result to u, € L,R,) with the finite set {1, v} of v's, since |y|it(y)
and |y, (y) were shown to be in L. R,), there thus exists a sequence
of u, € &, such that simultaneously

b — welly = 1% — G ]l — 0, SR ly I luy) — wly) Pdpy) — 0,

and

[ 1) — ) P — 0

n

with

=" L »r.
5 2+n—|—p>2

From the second limit statement just proved, and from |y|i,(y) €
L(R,), we see that FP,.u, exists as defined and that, since vy, (y)
clearly has its components the L, transforms of the C, vector valued
funetion Pu,(x),

|, 1Peatts) = P (x) = | 1y lige) — d@)lde@ —0.
Next for u e Ly(R,) having |y|"iy) ¢ L(R,),
A A 112
@6 lulo< M| @+ e awidee ]
A ) A 12
<l + M| 1wPia@rdnw |,
. oo tn—l 1/2 -
M= [ango TH dt] < 4o,
using the Schwarz inequality and 2y, > n. Thus from |y["i(y) e LA(R,)

we conclude ||i,]l; < +o and u, € L(R,), and likewise ||, — |/, — 0
follows from

[, 1w i) — d)idp @) — 0

n

shown above. Thus we have
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[Nt — Ul < (20) 2|4ty — 4 ]|, — O

from the L, sense of (4) agreeing here with the L, sense as usual.
Hence finally

G | IV ) — w0
<= wl] IV EOlpGE) + Al —

by Condition I with the right side — 0 as k— +oo. Thus the proof of
Lemma T. 12 is complete.

We now are ready to give our variational characterization of the
spectrum 3 of H, assuming only Condition I. Define

h, = lim (elss‘ inf V(x)> ,
and by Theorem T.7 we know that 3 N (— oo, h) for h < h, consists of
a finite set of N which are each in the point spectrum of H, with finite
multiplicity. Thus there is uniquely defined a finite or countable set
N =2 N (—oo, k), N, < N\psy, and the A, =\ repeat according to the
multiplicity of each X in the point spectrum of H,. In the statement
following, u 1 S means (u, w) = 0 for all w e S.

THEOREM T. 13. Let V satisfy Condition 1 and let {\,}, possibly
empty, be defined as above. Then each such \, satisfies

@) n=_suwp { inf [ (rur+ VEu@ndme@}
SQLZ(RW,)' UE Gy Ry,
card S<p |lw|l=1,ulS
and such ), exists for any integer p > 1 for which the right side of
(88) is <h,. Moreover, in this statement <, may be replaced by =,
the set of all w e LyR,) which possess continuous second partials
everywhere and such that u(x) together with all its partial derivatives
of order <21s O([1 + |x|™]exp (—4|x[?)) over x € R, for some integer
m > 0 depending on u.

For integer p >1 define 7,(%%) as the right side of (38), and
similarly 7,(<,) with <, replaced by <, <,2 & clearly makes
() < t,(Z,). Thus to prove theorem T. 13 we need only show first
that any existing ), has )\, > 7,(<), and secondly that 7,(Z;) < h, has
A, existing with 7,(Z) > \,.

Now for each ), we may choose ¢, € <, the domain of H,, such
that H,p, = N9, and (9,, 9,) = &,,, since H, is self-adjoint. Thus
using T. 10 and multiplying (32) by ¢,.(y) and integrating over R, we
have, since (®,, Po) = (P, Pp) = &) pr,
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(39) Mbw = | AP0 + 1 w)pr @) |

the integral of each term in (39) existing finite in the Lebesque sense.
This finiteness is clear if » + p > 4, since then Condition II holds and
P, € L=, lylo,(y) € L(R,) and r, € L(R,) by T. 2. Otherwise
2<n+p<4, and T.12 yields |y|p,(y) € L(R,) and ¢, € L(R,) N
L(R,); hence +,=f,+ 0, with §, € L(R,) and f, € L.(R,) from
f» € Li(R,) also makes the second term integral be finite as well as the
first. Also Parseval’s equality applied to the terms on the right side
of (39) yields

(40) 7\’10810,1”' - SR {(Vgen¢p(x) ° Vgenq)p’(x)) + V(x)cp,,(x)(p—ﬂ—(;)} d/'ln(x) ’

n

provided that in addition we show

|, e @ = | fior,Edme)

in the case 2 < n + p < 4, where as usual f,(x) = V(x)p,(x)y,(x) as in
T. 10. Replacing V by the truncate V, defined for (16) and defining

ofo = ViPsts, then .f, € L(R,) and (.fy, ) = (fy 7,) follows by
Parseval’s equality. Clearly Condition I, ¢, € L.(R,) by T.12, and
dominated convergence over {x||x| <b} yields ||f, — ,f»li—0 as

q — +o, and hence also pr — qu,ll.,a—>0. Thus ¢, € L.(R,) and
@, € L(R,) by T.12 in our case 2 < n + p < 4 gives the desired result

@ | A7 = G ) = n G, 2,)
= | S @,

and (40) is completely proved.
Now from (40), for v = >\)_.c,»; we have

@2 | APl + V@ @ = Snler

< Slol ] = llulr

Next by T. 11 and T. 12, since &, = &7 if n 4 p > 4, for each ¢, € Z,,
1 <j < p, we can choose a sequence ,p, € <, having ||9; — . 2;|l.— 0,

[ V@120 = ) dpn) — 0,

and
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[, 1700 = P () P pa() — 0

as k — oo, and also satisfying ||, — .2,|l. < 1/(3p) for all k. This last
requirement assures that |(,2,, xP;) — 8, ;| < 0/p for some fixed 6 <1
(actually ¢ = § here), and hence the set {,»,} over 1 < j < p is linearly
independent and thus spans a p dimensional manifold _#, of <. Thus
given S ¢ L,(R,) with card S < p, the orthogonal projection of S into
the subspace ., spans at most a p — 1 dimensional manifold, and
hence there exists u, € .7y, ||u,]l =1, u, L S. Also
»
Uy = ;gl' xCs kP s

has
1=lul :,JZ‘:J‘C-’ WCy (kP s wPy) = Z:{ luCy|®
6 D 2 » 9
—4(Slel) =@ -0 3 el
p Jj=1 j=1
by the Schwarz inequality,

Id
2l <@ =07 < oo,
=1

and hence by taking subsequences we can assume ¢, — ,, for some
complex ¢, as k— +o for each 5, 1 <j<p. Thus u,= >}, P,
has u, — w, in each of the three quadratic form norms for which ¢, — @,
above, using the Minkowski inequality. Hence (42) for u, has the left
side to be equal the limit as k — + o of the same expression with u,
replacing w,. Since u, € 7, < <, ||us|| =1, and u, 1 S, we thus
see that 7,(=) <\, holds for existing \, < h;, which completes the
first part of our proof.

In order to complete the proof Theorem T. 13, we must show
() < h, has 7,(,) >\, with A, existing. Consider fixed u, € Z,.
The truncate V,, defined as for (16), with ¢ > A satisfies Condition II
clearly, and thus defines the self-adjoint ,H with domain & 2 & as
in T. 1, and ,H 2 ,H, defined on <, by (2) with V,. Hence by inte-
grating by parts, and using the exponential bounds in the definition of
2, .l being the spectral measure for ,H,

@ [ APur + V00 L) = (Huo )
= |7 MBI, w)
={ & B} + | €GB
qu<IL AZh

= { S ABAAD )} + hllwlf = S (Bl Du,u)]
q)\j<n q}\j<h
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for any h < h,, the sum Z A< being finite then by T. 7 and here being
defined to give one term for each distinet \ e X,

Now taking g — + oo in (43), by Condition I and dominated conver-
gence the limit of the left side is obtained by replacing V, by V. On
the right side [V —V,|,—0 by (16) under Condition I, and hence
|G, — Goll— 0 ([1], 3.20, p. 561). Defining F, as the spectral measure
of G, and f,(\) = 1/(» + ®?), we have ([1], Theorem 4.5, p. 567) E(B) =
F(f.(B)) for Borel subsets B of the spectrum X of H,; also the usual
loop integral formula

F([a, c]) = —g (eI — G)'dz

holds in the weak sense, where C is a rectangular curve in the complex
plane with sides parallel to the axes whose interior region intersects
the real axis in (e, ¢), provided both ‘“a’ and ‘¢’ are at a positive
distance from f,(%). Thus ||G, — ,G,|| — 0 implies ||E(B) — ,E(B)||—0
for any closed interval B C (— oo, &) whose endpoints are not in {X,}.
Hence ,\; — \; for \; existing, and (43) becomes

@ | gruwr+ v o e
= { S0EOD 0 + il - S E@O D, )
J J
= { Sndle o)t} + 1{lulr = 3 1w, 001}
J J

for w € & and h < hy, the sum 3, ., meaning as usual one term for
each index j satisfying ), < h. !

Now assume 7,(=;) < h, for some integer p > 1, set &’ = [h, + T,()],
and thus 7,(9;) < k' <h,. Now consider the particular S = {p,; |\, < I’
exists and j < p} € Ly(R,), for which (card S) < p clearly. Thus (44)
with [ju|| =1, (4, ;) =0 for @, € S, and & = ' would give 7,(=;) = I’
if either A, did not exist or else )\, > 7/, yielding the contradiction
W<t (z;) < h'. Thus \, <k < h, must exist, and (44) with [« || = 1,
(u, ;) =0 for j < p, and h =\, gives 7,(Z) >\, as desired. Thus
the proof of Theorem T. 13 is complete.
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THE RING OF NUMBER-THEORETIC FUNCTIONS
K. D. CAsHWELL AND C. J. EVERETT

Introduction. The set £ of all functions a(n) on N = {1,2,8, +--}
to the complex field F' forms a domain of integrity under ordinary ad-
dition, and arithmetic product defined by: (a - B)n) = 3 a(d)B(n/d),
summed over all d|n, d e N. The group of units of this domain contains
as a subgroup the set of all multiplicative funetions. Against this back-
ground, the ‘‘inversion theorems’’ of number theory appear as obvious
consequences of ring operations, and generalizations of the standard
functions arise in a natural way. The domain 2 is isomorphic to the
domain P of formal power series over F' in a countable set of indetermi-
nates. The latter part of the paper is devoted to proving that the
theorem on unique factorization into primes, up to order and units, holds
in P and hence in 2,

1. Definition. The class 2 of all number-theoretic functions a,
f4; Ch. IV], i.e., functions a(n) on the set N of natural numbers
n=1,2,8.-- to the complex field F, forms a domain of integrity (com-
mutative, associative ring with identity and no proper divisors of zero)
under ordinary addition: («a + B)(n) = a(n)+ B(n), and an operation,
frequently occurring in number theory in various disguises, which we
call the arithmetic product:

(@ B)(n) = X a(d)B(d")

the summation extending over all ordered pairs (d, d’) of natural numbers
such that dd’' = n.

The commutativity a - B = 8 - o follows from the faet that the cor-
respondence (d, d') — (d’, d) is one-to-one on such a set of ordered pairs to
(all of) itself, while the associative law « - (8 - 9) = (¢ - B) + ¥ can be verified
by observing that, in either association, (a - B - ¥)(n) = 3} a(d)B(d")v(d"),
summed over all ordered triples (d, d’, d"”) with dd'd" = n.

The zero 0 and additive inverse —a«a of « are of course the functions
defined by 0(n) =0, and (—«a)(n) = —a(n), and one sees at once that
the function ¢ with (1) = 1, e(n) = 0 for » > 1, is the identity: ¢ - a = «
for all « of 0.

That the ring £ has no proper divisors of zero may be seen in
various ways, three of which occur incidentally in the following sections
(2, 4, 5).

2. A norm for number-theoretic functions. A function N(a) on

Received March 8, 1959.
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£ to the set of non-negative integers 0,1, 2, --- which is zero if and
only if @ =0, and has the property N(« - 8) = N(a@)N(B) for all a, 3 of
2, may be defined by setting N(0) = 0, and, for all « = 0, taking N(«)
to be the least natural number » for which a(n) # 0.

Indeed, we find that, if & and B are non-zero functions of 2 with
N(a) = a and N(B) = b, then (« - B)(n) = 0 for all (if any) n of N with
n < ab, and («a - B)(ab) = w(a)B() + 0. It follows that 2 is domain of
integrity, and that the norm N(«) has the multiplicative property.

3. Group of units. If for «, 8 in the domain of integrity 2, there
exists a v in 2 such that a« = 8- v, we say B divides a and write B|a.
The set 7" of all units v, i.e., elements of 2 which divide the identity e,
forms a commutative group under (-) with identity ¢. Two functions «,
B of Q are called associates (notation o ~ 8) in case there is a unit v
such that 8 = a - v. One sees that &« ~ 8 if and only if |8 and Bla,
and that (~) is an equivalence relation which splits 2 into disjoint
classes [ ] of associates. For example, the class [0] contains only O,
while [e] = 7. These trivial properties are shared by all domains of
integrity.

In our ring £, an element « is a unit if and only if a(1l) == 0,
equivalently N(a) =1. For, if ao’ =¢, 1=¢1) = a(l)a’(l) implies
a(1) # 0. To see that this is also sufficient, we first introduce the
(number-theoretic) function \(n) defined by \M1) =0, Mp, -+- p) = for
any product of /[ (not necessarily distinct) primes. We have \(a) = 0 if
and only if ¢ =1, and Mab) = Ma) + Mb) always. This function has
the property of classifying all natural numbers according to their length.
We have now to construct a function o in 2 with (a - &’)(n) = ¢(n) from
a given a for which a(l) = A =+ 0. Manifestly, for » > 1, this relation
itself defines the value of a’'(n) unambiguously for each n of length
Mnr) =/ in terms of values a’(d’) with Md') < [. Thus, if we define
a’'(1) = 1/A for the single n of length 0, and proceed inductively on \(n),
we automatically obtain the desired o'.

We note in passing that if «, 8 are any two number-theoretic funec-
tions and v -y =¢, then B =a - vif and only if &« = B - v'. This trivial
relation between associates is the bagis for the so-called inversion theorems
of number theory. (Cf. §7).

4. The degree of a number-theoretic function. Just as a natural
order 1 <2< 38 < --- of the set N permitted the definition of a norm,
so does the order implicit in the )\ function enable us to introduce what
we may call the degree D(«) of a non-zero function a of Q.

Specifically we take D(a) = d to mean that a(n) = 0 for all (if any)
n of N with Mn) < d, and that there exists an n with \Mn) =d for
which a(n) + 0. Thus D(a) is a function on all non-zero « of Q to the
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non-negative integers, with D(a) = 0 if and only if a is a unit, and
D« + B) = D(a) + D(B) for all non-zero «, 3.

We may indeed show somewhat more. Let D(a) = d, D(B) = e, and
suppose a and b are respectively the least integers with Ma) = d, Mb) = e,
for which a(a) = 0, B8(b) # 0. Then (a - 8)(n) = 0 for all (if any) n with
Mn) < d + e; (a- B)ab) = a(a)B(b) # 0, where, of course, Mab) = d + ¢;
and finally, indeed, (- B)(n) = 0 for all n < ab with M=) = d + e, that
is to say, ab is itself the least integer of its length at which « - 8 does
not vanish.

5. A second norm. The final remarks of the preceding section
make it clear that another norm M(«) is available. Specifically, set
M) =0, and for a # 0 with D(a) = d, set M(«a) = @, where a is the
least integer of length M\a) =d for which a(a) = 0. It follows that
M(«) is a function on all o of 2 to the non-negative integers such that
M(e) = 0if and only if a =0, M(a) =1 if and only if « is a unit, and
M(a - B) = M(a)M(B) always.

Thus M(«) has all the properties proved for N(a) and moreover
determines D{a) = M M(«)) for a +# 0.

6. The multiplicative functions. This and the following few sections
(7-10) are to some extent expository, our object being to observe how
familiar results appear when considered from the point of view of the
ring £ or to propose some natural generalizations suggested by the new
notation. After this we return to the ‘“arithmetic’’ of the domain £
itself.

A number-theoretic function « is said to be multiplicative in case
(a, b) = 1 implies a(ab) = a(a)a(b) and (to exclude the trivial @ = 0) there
is an integer n for which a(n) # 0. In the presence of the former
property, the latter is equivalent to the condition «(1) = 1, which signifies
for us that the set M of all multiplicative functions is a subset of the
group 1” of units of 2.

Clearly (1) a function « for which a(1) =1 and a(/Ip*) = Ha(p®) is
multiplicative, a(p*) being quite arbitrary for each power a =1,2, ---
of each prime p; and (2) two multiplicative functions identical on all
such p* are equal.

That M- M c M follows readily from the definition of M, and the
identity ¢ is in M, seen perhaps most trivially from (1) above. To see
that M is a subgroup of 1" requires only the further fact that the inverse
«’ of a multiplicative function «, which we know exists uniquely, is
itself multiplicative. This we prove in a way which provides a second
construction of the inverse in the case of a multiplicative funection.
[5; p. 89]
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Given « in M, define a function 3 in £ as follows. Set B(1) = 1.
For each p, define B(p*) for a =1, 2, --- successively by the relation
Sia(d)B(d’) = 0, summed over all pairs (d,d’) with dd’ = p*. Finally,
define B(Ip*) = HB(p*). The B thus defined is in M by (1) above.
Since « is also in M, we know a - Be M- M < M. To verify that the
functions a+ B8 and ¢ of M are equal, it suffices, by (2) above, to
observe that (a - B8)(p*) = &(p*) = 0, which is the defining equation for
B(p*). Since the inverse of any unit is unique, the B so constructed
must coincide with that obtainable by the A construction of § 3.

7. The special multiplicative functions n*. Define the (multiplica-
tive) function v, for arbitrary real &k by v.(n) =n*. Its inverse v, is
seen by the preceding construction to be: vi(l) =1, vi(n) = (—1)n*
when » is a product of [ distinet primes, and zero otherwise.

Now (a) v, -y, =¢, and (b) if a, 8 are any two number-theoretic
funections, we have 8 = «a - vy, if and only if @« = 8- v.. For the special
case k = 0, (a) yields the familiar equation },;.£4(d) = &(n), and (b) becomes
the ‘“ Mobius inversion theorem” [Cf. 4; Th. 35, 38], since v, is the
Mobius function p¢. Indeed, we may write vi(n) = p(n)n* for all k, n.

We may note one further generalization in this direction. If « and
B are any two number-theoretic functions, we see that

(1) S g)m) =5 Sadmid) = 3 a6d) 560

In particular, if B is a unit, and o = 3’, we obtain

n

[n/a]
1=>.45(d) E: B0 .

d=1

Further specializing to 8 = v,,
n [n/al
1= wd)d* >, [F.
a=1 l=1
Finally, £ = 0 gives the familiar [4; Th. 36]
1= 3 wdnfd] .

8. The sum of the k-th powers of the divisors. It is clear that
the transform B(n) = 3, .a(d) of number theory [5, Th. 6-8] appears in
our notation as 8 =a-y,. Thus in particular the number theoretic
function o(n) = 3,;.d* is seen to be the (multiplicative) function
Oy =Ve*Y€M+ McC M. The most familiar are 7 =0,=1y,-y, the
number of divisors, and ¢ = ¢, = v, - v,, the sum of the divisors.

As an illustration, note that equation (1) of the preceding section
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yields

S (a-v)m = 3 a@infd] ;

in particular, for a = y,,

S r(m) = ) [n/d]

m=1 a=1

and for a = v,
So(m) = 3 dn/d] .

The inverse oj(n) is 1 for n=1, (=1 (pf+2—a,) for n=pf -« p%,
where 1 < a, < 2 and » = M(n), and zero otherwise. This may be seen
from o, = v} - v, and the value of (v} - v.)(p*) obtained from §7. For
the special case k£ =0, we may write 7/(n), for n of the second type,
as (—1)Y2la, -+ ai.

We note that the relation o, = v} - v], besides determining the
function o) explicitly as indicated above, yields also the equation
al(n) = S dipu(d)pn/d), in particular ©'(n) = S .d)(n/d).

9. A generalized @-function. The well-known relations @ - vy, = v,
and @ = y; - v, satisfied by the Euler @-function [4; Th. 39, 40] suggest
definition of a general function ¢, = v - v,, specifically

P (n) = n! ;‘T;Z (d)dr-t

which has the value n/II,(1 — p¥~!) for n =pf1 ... p%, We should then
have the relation v, - ¢, , = v, or 3,9 (d)d~F = nl~*,

It is clear that the derivation of relations between arithmetic func-
tions becomes simplified by employing the algebra of the ring 2, or of
the groups ¥ or M. Consider for instance how' easily ¢ =y, -y,
v, =y, - @, and y, - v, = T implies ¢ = 7 - @,

Not quite so elegant is the generalization:

(1) o) = (v - v)(n) ,
(2) V)=V Py,
(3) Y, » Vp(n) = nFr(n) (special case of (1)),

imply nka[—k(n) = dedkf(d)([’k,[(n/d).

10. The @-function. Define the number-theoretic function @(n) to
be the sum of the integers in N which are prime to n and do not ex-
ceed n. Obviously @(n) = ne(n)/2 unless » = 1 and @(1) = 1. Although
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¢ is thus a unit in V", @(ab) = 20(a)@(b) for (a,b) =1, >1,b > 1, and
therefore @ is not in M.

If we classify the integers 1,2, ..., % according to their greatest
common divisor d with n, we find in the d-class the integers a with
(a,n) =d, 1 < a <n. There are exactly as many such a as there are
b with (b, n/d) =1, 1 £ b < n/d. This yields for Landau [4; Th. 39] the
relation >;,2(n/d) = n and the formula for ¢ by Mobius inversion. We
may note that the same partition suggests the additional relation:

K(n) = L";"_l_) = z a =S do(w/d) = @ - %)n) .

As a final example, we note that, since v, - vy, = 0,

Key,=0.0.

11. Primes. A number-theoretic function « is said to be a prime
in ease a # 0, « is not a unit, and o« = B - v implies B or v is a unit.
The associates of a prime are also prime. The remaining functions,
neither 0, units, nor primes, are called composite. The associates of a
composite function are composite.

Any function with N(a) a prime natural number is prime; more
generally any function with M(«) a prime, or equivalently, any function
with D(@) =1. As an example, note that from 8§9 §=0—vy =
Te@—Yy»@=(T—y)+®. Since §1) =0 and §2) =1, we see that
M) =2 and so o0 — v, and T — vy, are associated primes. If two non-
unit functions «, 8 are associates, we see that B(p) = (v - @)(p) = v(L)a(p)
for all prime p, where v(1) #= 0. Hence there is a continuum of non-
associated primes even of this simple type.

Naturally there are many other kinds of primes, a fact which will
become glaringly obvious in § 16.

12. The chain condition. If a, + 0, a,]«,, and in the correspond-
ing equation «, = «, - B, the (uniquely determined) 3, is not a unit, we
say «, properly divides «, and write a,lla,. For example, every com-
posite element « has a factorization &« = 8- v in which Blla and v|la.
If in a domain of integrity, every chain of proper divisors ««- a,||a,|la, # 0
is finite, we say the domain satisfies the chain condition. In any such
domain it is easy to see [2; p. 117] first that every « not zero and not
a unit has a prime divisor, and from this that every such « is expres-
sible as a finite product of primes.

That our ring satisfies the chain condition is an obvious consequence
of the properties of either the norm or the degree functions. For ex-
ample, a,lla, %0, & =a,- B, B, not a unit, implies D(B,) > 0 and
D(a,) = D(a,) + D(B,) > D(«,), where D has non-negative integral values,
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Having come this far, it is natural to ask whether the expression
of a non-zero, non-unit number-theoretic function as a product of primes
is unique (up to order and units). We have been unable to find a refe-
rence for such a theorem, and offer a proof in the remaining sections.

In the presence of the chain condition, the existence of a greatest
common divisor for every two elements is necessary and sufficient for
the uniqueness property. [2; p. 120]. Although we have an abundance
of norms, we cannot hope to obtain a Euclidean algorithm, since we
certainly could not have linear expressibility of the g.c.d. For suppose
«, B are non-associated primes. Then («, 8) certainly exists and is e.
whereas a linear relation ¢ =v.a + & - B8 is impossible (consider n = 1),

13. A reduction theorem. It simplifies matters to show first that
if the uniqueness of factorization fails, it must fail in a particularly
simple way. Suppose indeed that uniqueness in false in 2. Following
an argument of Lindemann and Davenport [1; §2.11] let us divide the
set of all non-zero non-unit elements of £ into normal elements, whose
factorization into primes is unique, and abrnormal elements, which can
be factored into primes in two essentially different ways. Clearly a
prime « is normal by definition.

We prove that if « is an abnormal element of minimal norm N(«),
and @ =0, +-+ 0, =7, -+ T, are two essentially different factorizations
of a into primes, o,, 7,, then necessarily m = » = 2 and 7y, 0,, 7y, 7, all
have the same norm N.

Note first that neither m nor n is unity, since a prime is normal.
Moreover, no o, is the associate of any 7,, for if so, cancellation would
produce an abnormal element of norm N < N(a). Without loss of gen-
erality, we may assume N(o,) < N(0,) £ -++ < N(0,), N((t)) = N(1,) =
-++ = N(z,), and N(0,) =< N(7;). Then N(o, - 71) = N(a,) - N(t}) = N(t))N(7))
<N(t))N(t,) £ N(«). If any one of these (=) relations is actually (<),
we have N(o, - 7,) < N(«), which we will see leads to a contradiction.

Suppose indeed that N(o, - 7)) < N(«), and consider 8 =a — 0, - 7,.
Certainly 8 + 0, for « = ¢, - 7, implies og,+--0, = 7,, and since 7, is
prime, we have m = 2 and 7, ~ g,, contradiction. Also 2 is not a unit,
since 0,|8. From the definition of norm N and the assumption
N(o, - 7)) < N(a) it follows that N(8) = N(o,- 7,) < N(a). Hence B is
normal. However, the non-associates ¢,, 7, both divide 8, and, B be-
ing normal, o,-7,|8. Hence 0,7l =0,+++0,=0,-7,-7v Thus
Oy++e0,=717,+7. But N(g,---0,) < N@), and g,+++ ¢, is not zero
and not a unit (m = 2). It follows that ¢,+-. 0,, = 7, - v is normal and
7, is associated with some «;, a contradiction.

We are forced to conclude that N(o,)N(t,) = N(t,)N(7,) = N(7,)N(z,)
= N(a) and so N(o)) = N(r)=N(t)=N and n =2. Hence N°’=
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N(7,)N(t,) = N(a) = N(g,) -+ N(o,,) = N™ implies m < 2. But m > 1 so
m = 2, N(s,) = N, and all is proved.

Thus if unique prime factorization fails in 2, we should have an
element of form a- B8 =7v-8, a, B, v, & primes (of identical norm N)
and a not associated with either v or 8.

14. The ring of formal power series. Let the primes p of N be
listed in any definite order p,, p,, v, ---. Then every integer n may be
written uniquely in the form n = p#pg ... and uniquely described by a
vector (a,, a,, -+-) with non-negative integral components, finitely many
of which are non-zero, all such vectors being realized as n ranges over
N. Hence a number-theoretic function & = «(n) may be associated with
a definite ‘‘formal power series’’ in a countably infinite number of in-
determinates =z, ,, ---, having coefficients in the complex field F, by
means of the correspondence

a — P(a) = Za(n)rixgz <. .

Here, the summation extends over all n = pup® ... of N,

This correspondence is clearly one to one on £ to the set
F, = F{x, x,, »++} of all such power series. Moreover, addition is pre-
served, and P(a - B) = P(a)P(8), the latter operation being the usual
formal operation on power series involving multiplication and collection
of (finite numbers of) ‘‘like terms.”’

Thus the ring of all number-theoretic functions is isomorphic to the
ring of all formal power series F, = F{x,, %,, ---}. We emphasize that
the only restriction on these series is that only a finite number of =,
actually appear (i.e., have a; > 0) in any term. However, infinitely many
x; may well occur (in terms with non-zero coefficients) in the same series,
so that we have here a more general ring than that discussed by Krull
[3; §4]. Indeed, each series of Krull’s ring of power series (over F)
corresponds to a number theoretic function zero except on a set of
integers generated by some finite set of primes.

15. Some preliminaries. We deal in the remainder of the paper only
with the power series representation A = A{x,, ,, +++} = Za(n)rixgz .-
of number-theoretic functions. The domain F, = F{x,, x,, -++} contains
(in the sense of isomorphism) for every (=1,2,--- the domain F,=
F{x, «--, 2} of power series in [ ‘‘variables.”” For the latter domains,
the theorem on unique factorization into primes is known. [3; §4 and
6; §2]. The units of F, are again the series with non-zero constant
term.

If / is any integer 1,2,... and if A = A{x,x,, ++-} is in F, or
some F,, with m = [, we mean by (A), the series A{x,, -+-,2,0,0,---}
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obtained from A by deleting all terms of A actually involving any =z,
with ¢ >/ Indeed, the mapping A — (4), is a ring homomorphism of
F, or F,onto . One can write A =(4), + A}, where the latter series
involves only terms containing at least one z, with 4 >/, and in this
way one sees that (AB), = (A)(B),

In reality all series we consider are actually in F,, but we do not
hesitate to say A{w,, ++-,%,0,0,---} is ““in F.”” Our objective is to
throw the proof of unique factorization in F, back onto the rings F,
{=1,2, +--, in which the theorem is known to be true. But first we
have to show that the primes of F, are all of a special kind.

16. The nature of a prime. If a series A of F, is neither zero
nor a unit, then there is some minimal L = L(A) for which (4), is neither
zero nor a unit of F,, (= L. For A{0,0,---} =0, and since A+ 0, 4
must contain with non-zero coefficient some product a®x%2 ... with
(@, @y =++)#(0,0, -<-), If in this term z, is the last variable with a,>0,
then (4), # 0. Hence there is a minimal L with (4),+ 0, L = 1. But
then (A), is not zero or a unit for any [ = L.

Now if A is not zero or a unit in F,, and any (4), is prime in F),
where of course [ = L = I(A), then (A),, is prime in F,, for all m =/,
and also A is prime in F,. For example, if (4), = R,S,., where R,,
S, are non-units in F,,, then (4), = (4,), = (R.)(Sn), where neither of
the latter factors in F) are units. For such A, there is a minimal integer
P = P(A) z L(A) such that (4), is prime in F, for all [ = P(A). We say
such primes are finitely prime.

The remaining logical possibility is that for some A, not zero or a
unit, we have (4), composite in F, for all [ = L(A). We shall show that
such an A is composite in F,, and hence the

Principal Lemma: all primes of F, are finitely prime.

17. Proof of the principal lemma. Let A be a fixed non-zero
non-unit series in F, with L = L(A), and suppose that, for every [ = L,
(A),= R,S, where R, and S, are non-units of F|. We say R, and S, are
true factors of (A), and RS, is a true factorization of (4), A true factor
of (A), is thus a non-unit proper divisor of (A4), in F),, and so has a
companion of the same kind.

We shall call any chain [R;, R;¢, +--, By] of true factors of the
corresponding (A),, [ = L, - -+, M telescopicif each R, = B(%,, ++-, 2,-;, 0)
= (R);-,. Now observe that any true factorization (4), = R,S., m > L
induces a true factorization of (A4),,—:=((A)n)n-1 = (Bu)m-1(Sn)m-1 = Bn-1Sn-1
and so down to (4), = R,S,, where the chain of true factors [E;, «+-, R,,]
is telescopic. Thus we have from the original assumption on A, the
existence of a sequence



984 E. D. CASHWELL AND C. J. EVERETT

fEy = [R()o]
K= [Rw, Ru]
£y, = [Rzuy Rzla Rz:z]

of telescopic chains «; of true factors R;;,, 7 =0,1, -+, % of (A),4;.

We want to prove the existence of an infinite chain of true factors
£* = [R§, R¥, R¥, ---] which is telescopic throughout. If we could do
so, we should have (A),.; = RS} for all 5 = 0. Clearly the chain
[S&, S¥, «--] is also telescopie, since (RF,SE)) = (BFSH)ieio1 = (B )psejm1 *
(SH)pws-1 = R¥(SF);45-,. But any infinite telescopic chain defines un-
ambiguously a series of F,. If R* and S* are the (non-unit) series
defined by the R} and S¥ chains, we must have A = R*S*, since we
can prove identity of the left and right coefficients of any term by
regarding (A),., = R}S¥ for suitable 5. Thus the principal lemma would
be proved.

Since unique factorization holds in F), there are only a finite number
of classes of associates into which the true factors of any (4), can fall.
Hence (pigeon-hole principal!) an infinite set of the chains x; have their
Jfirst entry equivalent to some one true factor T, of (4),. Choose one
of these and call it ;. Of this infinite set, there is an infinite subset
of k, whose second entry is equivalent to some one true factor 7, of
(A);+;. Choose one and call it #;. Continuing in this way we are led
to a subsequence of (telescopic) chains

Ky = [Riy, ++-]
Ky = [R;rn Ry, ---]
IC; = [R;Or RL,H; R;Z: .. ']

each of which extends at least to the main diagonal, such that the entries
on this diagonal and below have the property that, foreach 5 =0,1,2, -+«
R~ T; for all 1 = j.

We can now construct the telescopic infinite chain £* working only
with the main diagonal and the diagonal next below it, as follows.
Define R} = R},. Since Rjj~ T,~ R in F,, there is a unit U, of F
such that R = R U, = (R, U,);. Define R = R,U; in F,,,, and note
that Ry is a true factor of (4),.,, (BR}), = Ry, and Rf ~ T, in F,,,.

To make the process perfectly clear and to avoid a formal induction,
we carry the construction through one more step. Since Rj ~ T, ~ R in
F,,,, there is a unit U,,, of F,,, such that R} = R,,U,,, = (RLU, )41
Define R} = R,,U,,, in F,., and note that Ry is a true factor of (A),..,
(R¥)ey = RF, and R~ T, in F,,,. The proof of the lemma is now
clear.
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18. Proof of unique factorization. Suppose unique factorization
into primes fails in 2 = F,. By §13, we must have a series of the form
AB = CD where A, B, C, D are primes in ¥, and A is not associated
with C or D. Since all primes are of finite type, there exists an integer
P such that, in the equation (AB), = (4)(B), = (C)(D), = (CD),, (A), (B);
(C), (D), are primes in F) for all /= P. Since factorization in each Fis
unique, (A), must be associated with either (C), or (D), in F, for each
[ = P. Hence there must be an infinite increasing subsequence ¢ = {m}
of integers m = P such that either (A4), ~ (C), in F,, or (A), ~ (D), in
F, for all meo. Without loss of generality we may suppose the former
case. Then (A), = U,(C),, where U, is a unit of F,, for each m of o.
If m <n are any two integers of the sequence o, U,(C), = (4), =
(Am = (U)n(Cl)m = (Up)m(C)y and U, is an extension of U,, by terms
each of which involves a variable x;, with 4 > m and so does not occur
in U,. Thus the sequence U,, meo¢ defines a unit U of F,, and
A = UC, by the same type of argument used in the preceding section
in showing A = R*S*. But then A ~ C in F,, which is a contradiction.
Hence factorization into primes exists and ts unique in the rings £
and F,, up to order and units.
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ON CONTINUATION OF BOUNDARY VALUES
FOR PARTIAL DIFFERENTIAL OPERATORS

H. O. CorbES

Let
(1) L = 3, a,()0/03, + b(z)

be a first order partial differential operator acting on m-component
vector functions and defined in a bounded domain D with smooth
boundary I°. Suppose the m x m-matrices a,x) are hermitian sym-
metric and continuously differentiable in D - I". Further let the m xm-
matrix b(x) be bounded and measurable over D + I'.

Recently K. O. Friedrichs [3] has developed a theory of boundary
value problems of the type

(L — a)u = f, xeD

2
(2) Tu = 0, xel'

where « denotes a nonvanishing real constant and 7 a certain m x m-
matrix defined all over the boundary 7T and satisfying certain further
conditions. Concurrently the author worked on the same type of bounda-
ry value problem from a different approach extending Friedrich’s re-
sults to the case of nonlocal boundary conditions [1].

Study of these extensions showed that investigation of the follow-
ing problem is of basic importance for the author’s method:

The question is asked whether a given m-component vector function
@ defined on the boundary I’ can be continued into the domain D to
become a classical solution u of the equation

L(u) = f

where f is any arbitrary measurable function defined and squared in-
tegrable over D, which is not given in advance but may be defined
after @ has been fixed.

Obviously this question is trivially answered ‘‘yes’’ if the boundary
and the boundary function are sufficiently smooth. On the other hand
if this is not the case, counter examples can be given. It is trivial to
find counter examples for special nonelliptic systems but one also can
find some for elliptic systems. For instance if the boundary functions
Uy, v, on the periphery of the unit circle #* + y* = 1 are defined by

(3) %, = o) sin ¥/2, v, = — a(Jd) cos F/2, 0<d<2r

Received January 12, 1959. This paper has been prepared under the sponsorship of
the Office of Naval Research, Contract No. Nonr 2-228(09).
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and if a(d) is piecewise continuous and has a jump for any &, # 0, 2z,
then it will be shown in §4 that there does not exist any couple u, v
of real or complex valued functions both being defined and continuously
differentiable in the open unit disk x* + y* < 1 and such that

(a) —U+ vy =f, Uy t+v,=g

both are squared integrable over x* + 9* < 1;

(b) u, v are uniformly bounded on x* + y* < 1 and
(c) lim u(r cos &, 7 sin &) = uy(H)

r—l1

lim v(7 cos &, r 8in &) = v ()

r—1

almost everywhere on 0 < ¢ < 2r.

Congidering this problem more carefully it shows that the essential
reason for this continuation to be impossible is the following:

The above problem can be connected with the differential operator

(5) L = a,0/6x + ap|oy

with a,, a, being the matrices

(6) (—1 0> (0 1)
= a, = .
% 01 “T\1 o
Using this operator notation we can say that the equation
(7) Ly =+

with @, ¥» being two component vector functions has no classical solu-
tion, defined in the unit disk and achieving the boundary values defined

by
(8) P, y) = (ud), v(#) @ =cosd,y = sind
in the sense of the conditions (a), (b), and (c) mentioned above.

If we define

(9) A = a,cos ¢ + a,sin &
10) Z(z?) = @, co8 ¢ — a, sin &
then

(11) L = A®)afor + rA(9)0]od .

Hence A(¢) is the coefficient of the derivative in the direction
normal to the boundary.
We note that A(J) is a non-singular (even orthogonal) matrix for



ON CONTINUATION OF BOUNDARY VALUES 989

every . It will follow from our development that this is the reason why a
continuation of discontinuous boundary wvalues becomes impossible. If
for some more general operator L the matrix which corresponds to A(<)
is singular on a point or on a set of points then this set can be allowed
to contain discontinuities of certain types. And conversely it will be
our main result that if ¢, is bounded measurable only at the boundary
and if in addition Ag, is Lipschitz continuous then a continuation in the
above sense is possible.

The main result is stated in Theorem 3.1. HEssentially we will ob-

tain the continuation by use of the elementary solution of the parabolic
equation

(12) Vou = 0ufot .

We shall use this for a kind of mollifier. In §§1 and 2 we prove some
auxiliary results most of which will be known. In order to keep the
paper as self contained as possible most of the facts required have been
proved explicitely.

1. Auxiliary results. In this section we will establish some known
results which have to be used essentially in the following. Let

1.1 =87+ 8+ «++ + 8

and let the function

1.2) D(s;t) = D(sy, +=+, 85 1)

be defined by

(1.3) O(s; t) = (4nt)~"* exp (—|s|*/4t) .

It is known that this function @(s; t) is the elementary solution of
the parabolic equation

(1.4) Vo = i 0°u)os? = oufot .

First we note

LEmMMmA 1.1.
(15) [Ispre—[s|re""ds = 24 7=p(p + 2)(p + 4) -+- (0 + 2 — 2).
Here the integral extends over the whole (s,, «--, s,)-space.

The proof of Lemma 1.1 can be obtained by repeated application

of Green’s formula.

LEMMA 1.2, Let
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(1.6) () =f (81 22+, 85)

be a (scalar) complex valued bounded measurable function defined and
nonnegative for

(1.7) ‘_°°<sj<°°, j=1,---,p.
Let s, be any point and let 4 denote the cube
(1.8) |s; — 851 <6, J=1---,p.

Statement. If

(1.9) lim a—pg f(s)ds = 0
—0 4
then
(1.10) limg O(s, — 83 O)f (s)ds’ = 0

the integral in (1.10) being taken over the whole s-space.

Proof. It is obvious that we can restrict ourself to the case s, = 0.
Now, (1.9) being satisfied, let

(1.11) £6) = sup{ 87| f(s)as}"
and let
(1.12) 2(8) = 8(5 + B(5)

7(8) is a strictly monotonically increasing function of 8, and ¥(0) = 0.
Hence the inverse function & = 8(v) exists in some right neighborhood
of y =0 and 8(0) = 0. Also

(1.13) 7| £©)ds < 6 + BE)7BEP
< BE) — 0,8 — 0 .

Hence

(1.14) lim ys f(s)ds = 0.

Let

(1.15) T =0y,

then

(1.16) limz(y) = o .

70
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Let 4’ be the cube |s;|<v,7=1,-.--,p. Then by (1.15) 4 can be
written in the form

(1.17) 4=r1d
and (1.14) reads

(1.18) lim 'y‘pg f(s)ds =0.
y—0 T4’
Now for any given ¢ > 0 set ¥ = t*?, then

(1.19) g@(so — ;1) f(s) ds' = Sq)(S? t)f(s)ds = S,A, + S

C(74')

where C(z4’) denotes the complement of the cube 74" with respect to
the whole s-space. But remembering the definition of @(s;t) we obtain
for the first integral

(1.20) < (471:)"”/27"”5 Fs)ds

and hence for ¢t— 0, i.e., v — 0 the first integral tends to zero by
(1.18). On the other hand f(s) is assumed to be uniformly bounded,
hence the second integral can be estimated by

(1.21) cOS O(s; tyds
C(74dr)

< 00(477)"’/27”1’{8 e"’%zd(f}p

lol=7y
_ —p 2,( —o? P
= cdm)™ lSlalgfe da} )

But by (1.16)

(1.22) T = () = (")

tends to « at t — 0. Therefore the second integral also tends to zero.
This proves the lemma.

LeMMA 1.3. Let @(s; t) be as defined in (1.3) and let

(1.23) V(s;t) = 0/0s,D(s; t) .
Then

(1.24) Sds(ﬁ(s — 8 0)P(s — 8", t) = (8rt) " exp (—|s’ — s"|*/8t)

(1.25) Sds!ﬁ'i(s — T (s — s 1)
= (4t)7'(8xt)~**(1 — (s} — s/')[At) exp (—|s’ — s”|*/8t)
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both integrals being taken over the whole (s, ---, s,)-space.

Proof. We only remark that

(1.26) exp (—|s — s'|}/4t) exp (—|s — 8" |*/4t)
= exp (—|s" — s”|"8t) exp (—|5["/21)

where we denote

(1.27) §=s—1/2s' +8").

Therefore the integral (1.24) equals to

(1.28) (47t)~7 exp (—|s' — " [2/8t)Sexp (—|31/26)d3
and clearly

(1.29) Sexp (—|3P/20d% = (2rt) .

This proves the first formula. TFor the second formula we note that

(1.30) V(s; t) = —(2t)~'(4mt)-?"s, exp (—|s|*/4t) .
Now
(1.31) (s: — si)(s; — si') = &1 — 1/4(s] — s}")* .

Hence the integral (1.25) gets the form
(1.32) (2t)*(4zt)-? exp (—|s’ — s"|*/8%)

x {S & exp (—| 3 [/2t)d3—1/4(s, — s;')zs exp (—|3 |2/2t)d§} .
But

(1.33) Ssi exp (—|3[}/20d8 = 12ty .
If we substitute (1.29) and (1.33) into (1.32) then we get

(1.34) = (4t)"}(8xt)~*"*(1 — (s} — si'y’/4t) exp (— |8’ — 8" |*/8%)
which completes the proof.
LEMMA 1.4, Let
(1.35) Q.(s; t) = (2t)"Y(4xt)-*? exp (—|s|*/4t)
(1.36) Q4(s; ) = |s|(2t)~*(4nt) """ exp (— |s|/4E) .

Statement,
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(1.37) Sds.Ql(s — Qs — 87 D3 (5 — S5 — o
—1/2d/db((St)-*" exp (— |’ — s [/8t)

Uy

dsQy(s — 5 ))Qs — 8”3 )3 (5, — s)(s; — sU')
=1

(1.38) —1/2d/dt[(8mt)-7*{(8t)"? s’ — 8" |*

+ p(8t)7s" — 8" [* + 1/4(p + 2)(p + 4)} exp (—|s" — s"[[8t)] .

Il

Proof. We introduce the notation
(1.39) o = (28)""%(s — 1/2(s’ + s")), o* = (8t)"1*(s' — s")

and we observe that
z 12 2
(1.40) E{ (8 — si)(s; — si) = 2¢(|6 P — |o*[) .

Now if we substitute (1.36) and (1.40) into the integral (1.37) this in-
tegral equals

(1.41) (2t)"'(8n’t)"*" exp (— |o* lz)S(W2 — |o*[") exp (— |6]°dd)
= (8m) =} (p[4t=P2~* — 1/16]s’ — s"'|*t~?*?) exp (— |8’ — s"|*/8t)

Here for the evaluation of
(1.42) S;& Pexp (— |6 [)dé

Lemma 1.1 has been applied. Now (1.41) is equal to the derivative in
(1.37) as can be proved by differentiation. Therefore (1.37) is proved.
For the second integral we get in a similar way the expression

(1.43) (2t)-(8n’t)-*2 exp (— |0*|?)

X Slff — 0*Plo + a* (|6 — |o* ") exp (—|6[)ds .
Here we were using that
(1.44) s — 8" = (2t} (o — o), s — s = (26 + %) .
We observe that
(1.45) |6 — 0*Plo + o* [ = (|67 + | 0* [ — 460™)

and further that

(1.46) S(fw"‘f(lt‘fl2 — |o* ) exp (—|6)do
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P

3 {@r|@rar — 1o% exp (—1ads)

i=1

= plo*[|o (o — 0% ) exp (~ |8 /)5 .

fl

Here we used that
(1.47) g&iak(w — |0 [)exp (—|8[)de = 0,7 = k .

Substituting (1.45) and (1.46) into (1.43) we get the expression

(1.48) (2t)—1(8n2t)—we—Iv*l“g(l&[4

+ [6*[* + 2(p — 2)[p|Gla* N6 — |o* e *Vdé .
Further
(1.49) (161 + |o*|* + 2(p — 2)[p|ola* (G — |o*[)

= 161"+ (p — Yplo'|o*[* — (p — Y[plo[|o*|* — |o*[".

We substitute this into (1.38) and then use Lemma 1.2 to evaluate the
integral, then this integral equals

(1.50) 7= {1/8p(p + 2)(p + 4)
+ 1/4(p + 2)(p — Dlo™*'—1/2(p — Hlo™|* — |o*[} .

On the other hand by calculating the derivative (1.38) we get the ex-
pression

(1.51)  —1/28m)~**{—1/2(p + 4)t~*"o* [*~1[2p(p + 2)t~7*7 | o* !
— 1/8p(p + 2)(p + 4)¢~**7"} exp (—[0™*[")
—1/@2t)8xt)=**{|o* ' + plo*|* + 1/4(p + 2)(p + 4)|*['} exp (—]0*[")
= —(2¢)7'(8xt)*" exp (—{o* ){|o*|° + 1/2(p — 4)|o™[*
—1/4(p + 2)(p — Dlo* " — 1/8p(p + 2)(p + 4)} .
If we substitute (1.50) into (1.49) and then compare the obtained ex-

pression with (1.51) we find that both are equal. Therefore formula
(1.38) is proved.

2. Lemmata about special integral operators. The following lemma
was used earlier by K. O. Friedrichs [2]. It can be considered to be

a translation of a theorem about infinite matrices going back to I.
Schur [6].

LEmMA 2.1. Let
(2'1) X(S;S'):X(Sl,"',Sp;S{,°'°,S{,"',S;,)
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be defined and continuous for s, s’ € D,, D, being any region of (s,, =--, s,)-
space, and let

(2.2) 7= supS | X(s;8")|ds’
sEDﬁ Dy
(2.3) S = sups | X(s; sNlds .
t’€DyJ by
Statement.
(2.4) S ds S X(s, s')u(s’)ds’|2 <o S lu(s) | ds
Dy Dy Dy

holds for every complex valued measurable function #(s) which is squared
integrable over D,.

Proof. By Schwarz’ inequality
§ ds 2g§ dsq | X(s; )| |u(s")| ds')"
Dy Dy Dy

< Lods{ﬁ%l X(s; &) ds’ SDJ X(s; )| |u(s") 'ds'}

S X(s; s"yu(s")ds’'

< XDOI u(s')|2<SD01X(S; s’)[ds)ds’ < o Spolu(s')lzdsr .

Now let @(s; t), ¥.(s;t); 2.(s; 1), 2 s;t) be defined as in (1.1), (1.23),
(1.35), and (1.36).

LEMMA 2.2.

(2.5) g SS dsdt ‘ g%(s — s u(s')ds’

2

< Sgu(s)pds
for every u(s) squared integrable over the whole s-space and having
a compact carrier. Here the integral Sdt is taken over the interval
0 <t <1, the integrals Sds and Sds’ are considered to be taken over

the whole s-space.

Proof. First of all by Lemma 1.3:

2

@6 3 “ dsdt H T (s — s'; tyu(s')ds'

= lim._, “ ds'ds"u(s")yu(s') Sl dt i S ds¥ (s — §'; ) (s — s"; t)
€ i=1

= lim._, “ ds'ds a5 )u(s") Xl dt(4t)-'(8xt)-7"

X (p — (48)7'|s' — s"|?) exp(— |8 — s"|*8¢) .
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But as we saw in the proof of Lemma 1.4 (formula (1.51)) this integrand
is equal to

2.7) — 1/2d/dt {(8xt)-?"* exp (— |8’ — s |*/8t)}
and hence the right hand side equals to
= —1/21lim “ds’ds"u(s’)u(s”)
x {(8m)"?*exp (— |8 — s"|*8) — (8mwe)~** exp (— |s' — s'|*/8)}
< 1/21lim S ds’u(s’)g ds”(8me)~?? exp(— |8’ — s"|*/8)u(s")
g0
< 1/2lim H lu(s) | *ds(8me)-?

X Sds’

S exp(— |s' —s" 2/8z3)u(.s”)ds"l2}”2 .

Here we were using that the kernel exp (— |8’ — s”|%8) is positive de-
finite as can be easily seen by Lemma 1.3. Since

(2.8) S exp (— |8’ — §"|?8e)ds’ = S exp (— |8 — §"|?/8e)ds = (8me)?!?
Lemma 2.1 yields

2.9)  (8re) g ds' ] S exp (— |8 — s |*/8e)u(s”

< S[u(s)Pds.
This completes the proof of Lemma 2.2.

LEMMA 2.3, Let
(2.10) (s; t) = d/dtd(s; t)

and let v(s) be Lipschitz continuous over the whole (s,, «--, s,)-space and
with compact carrier.

Statement.

(2.11) SS dsdtlgds’,@(s — t)v(s)r <p S S:lovjos.|ds .

Proof. Since @(s;t) is a solution of the parabolic equation (1.29)
we get

(2.12) As;t) = 21 808,70 (s t)

and hence by Green’s formula
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(2.13) gds’Q(s — Dl = 3, S Tis — o'; tywys)ds’
where we denote

(2.14) v4(s) = 0/0s8,(v(8)) .

Consequently

(2.15) H dsdt S ds'Q(s — §'; t)v(s’)r

l/\
Ms

i

]
=

H dsdtl S dsW (s — &' tyi(s")|

AN
HM‘G TM’@

(z SS dsdt H dsW (s — & t)vi(s')‘

k=1

D

<p

S |0v]ds, |*ds

which prove the lemma.
In the following ¢ always denotes a constant not depending on u(s).

LEMMA 2.4.
(2.16) SS detIS ds'Q(s — s'; t)(s; — sg)u(s’)l2 <c Slu(s)lzds

for any arbitrary w(s) with compact carrier and squared integrable over
the s-space.

Proof. Clearly

2.17) Qs; t) = ddtd(s; t)

= (4nt)~**(|s|*/(4)" — p/(2t)) exp (— |s]*/4)
= Qy(s; t) — p(s; T) .

Hence the integral in (2.16) can be estimated by
2.18) 2%, SS dsdtlgds'!)z(s — & (s — s;)u(s')|2
i=1

+ 2p? iz SS dsdt‘g ds'Q(s — ' t)(s; — shu(s')|

Now this can be written in the form
(2.19) 2lim SS ds'ds"u(s"yu(s")
-0
X gldt Ef_‘, S dsQ,(s — §'; t)2y(s — 8"; t)(s; — si)(s; — i)

+ 2p*lim SS ds'ds"u(s"u(s")
g-»0
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X Sldt ﬁ S ds2i(s — 8; £)2(s — s"; t)(s, — si)(s; — si) .

We apply Lemma 1.4 and this equals
2.20) — lims ds'ds"a(sYu(s")
g0

x {(8m) ""Ey(|s — s'|*/8) — (8mwe)""E(|s” — 5" |*[8¢)}
x exp (— |8’ — §"”[%8¢)

where H,(«) means a certain polynomial in @ with constant coefficients
and of degree two, the coefficients only depending on p. By a treat-
ment similar to the last expression of Lemma 2.3 we get the final
statement.

LEMMA 2.5,
2.21) “ dsdtlgds'lﬁ(s s t)|]s — & reu(s)|
< c(e) S |u(s)|*ds

for any positive € and for any arbitrary u(s) with compact carrier and
squared integrable over the whole space, c(e) being a constant indepen-
dent of u(s).

Proof. Clearly it suffices to prove the corresponding inequality with
(s — §'; t) replaced by 2,s — ¢';t),7 =1,2. In order to achieve these
estimates we again use the notation (1.49) and estimate as follows:

2.22)  ds|9s — & 0)1[s — 573 B)|[[s — '[*]s — 5" [10*"

= (26)"1+¢(87%t)~"* exp (— | 8’ — 8" |*8t) S dée- 19"

x {(16]* + [o% ] — 4(da*y}aron
= (2t)*+*(8n%) " exp (— |s' — 8" |*[8t)J(s" — s |*/8t)

where
@28) S0 = [ doe o+ o)y - ey erer
< [ 6 exo (~ 161 (151 + o yeeo
< 2| o exp(~ o110 1 + 2% [ do exp (= 101

< %(e)t1*3(8xt) " exp (— |s" — " [8[1)
+ (&)t~ e (8xt)~ [ |8’ + s"|*/8t]'** exp (— |’ — s"|*81) .
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Here Hoelders inequality has been employed. Hence (2.22) can be
estimated as follows:

i

+ v.(¢e) S:dtta‘l SS ds'ds"u(s"yu(s")(8xt)=?* exp (— |8’ — s”|%/8t)

2
(s — s'; t)\ s — s'| "™ u(s’)

+ 74() Sldtt“"1 SS ds'ds" u(s")u(s")
x (8mt)~?1*(|s' — s"|*/8t)** exp (— |s' — §""|?/8¢)
< () S:dw—l S lu|'ds = y(e) S lu(s)|*ds .

Here again Lemma 2.1 and Lemma 1.1 were employed. A quite analo-
gous argument is possible for Qs — s';t); therefore Lemma 2.5 is

proved.
LEMMA 2.6.

(2.25) “ pdsd H Qs — 8 yu(s)ds'|

<cS|u(s)|2ds

for arbitrary u(s) with compact carrier squared integrable over the whole
s-space.

Proof. Again it suffices to prove this inequality for 2 replaced by
2, and 2,. Now

(2.26) [ases — 55006 -5

— (2t)*(8T*t)~""* exp (— |s' — 5" |*/8¢) S dé exp (— |6
= (26)"*(8xt)" exp (— |8’ — " |*/8¢) .
Hence by Lemma 2.1:

e ([avasueiue) [asoe - 55006 - 50
< @0 {Ju(s)|ds .

Consequently

(2.28) I tzdsdtls s — 85 byu(s)ds' |

< 1/4S|u(s)l2ds :
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Again a similar argument proves the corresponding inequality for £,;
therefore Lemma 2.6 is proved.
We finally use the preceding lemmata to establish

LeEMmA 2.7. Let
(2.29) A(s; 1) = ((auls; )

be an m x m-matrixz with coeffictents a(s; t) having uniformly Hoelder
continuous and wuniformly bounded first partial derivatives in the
domain

(2.30) Dy= {s},+°=,8,;t9 — o0 <5, < + 0, b=1,00,p; 0t <1} .
Let
(2.31) U(8) = (Uy(8), * =+, Un(s))

be an m-component vector function having a compact carrier and being
squared integrable over the whole (s, +--, s,)-space. Let the vector
function

(2.32) A(s; 0)u(s) = v(s)

be Lipschitz continuous over the whole (s, ---, s,)-space.

Statement. There exist two constants c¢,, ¢, which are independent
of u(s) such that

(2.33) SS dsdt.A(s; ) S ds'Q(s — o3 t)u(s’)‘2

< clglu(s)lzds + c2i Slav/asilzds .

Proof. We decompose as follows:
(2.34)  A(s; ¢) S ds'Q(s — '; tyu(s') = S Qs — §; H)o(s')ds’
+ (Als; &) = AGs3 0) | 906 — o5 Du(s)ds’
+ 3 S Qs — 85 t)(s; — shuy(s"ds’

i=1

+ S Qs — '3 )[A(s; 0) — A(s'; 0)

— 3 (5 — s00J08,A(s'; O)Ju(s))ds’

where
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(2.35) v(s) = A(s; 0)u(s), u,(s) = [0/0s;(A(s; 0))]u(s) .
By our assumption for A(s;t) we get

(2.36) [(A(s; t) — A(s; O)w| < ct|w]

and

(2.37) I[A(s; 0) — A(s'; 0) — iZyl (8: — 81)0/0s,(A(s"; 0))]u(s")|
<cls —s'|"*|u(s)] .

Therefore we can use the Lemmata 2.3, 2.4, 2.5, and 2.6 respectively
to estimate the integrals in (2.33) for the succeeding terms in (2.34) by

either ¢ S |u(s)|* ds or Slav/asi]“ds. Hence Lemma 2.7 is proved.

LEMMA 2.8. Let u(s) be a bounded measurable m-component vector
function defined in the whole s-space and let it have a compact carrier.
Further, with the notations of Lemma 2.7, let

(2.38) v(s) = A(s; 0)u(s)
be Lipschitz continuous over the whole s-space.
Let
(2.39) u(s; t) = S O(s — §'; tyu(s")ds' .
Then
(2.40) lim u(s; t) = u(s) almost everywhere
and
(2.41) v(s; t) = A(s; t)u(s; t)

is continuous all over in the domain D, defined in (2.80) and its boundary.

Proof. Let ¢ > 0 be given. Since u(s) is bounded and measurable,
by Lusin’s theorem a measurable set E. of p-dimensional measure m(E:)
less than ¢ exists such that u(s) is continuous on the complement C(Z.)
of E. with respect to the s-space. If y(s) denotes the characteristic
function of E. and if 4 denotes the cube with sides 28 defined in (1.8),
then by well known facts

(2.42) lim -7 S 7(s)ds = 0
80 4

for every s, € C(E. + N.) where N, denotes a certain nullset. We will
show that for every s, € C(E. + E.) relation (2.40) holds. This will
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prove the first statement of the lemma, because then obviously it is
possible to construet a monotonically decreasing sequence of sets which
converges toward a nullset and such that after exempting any set of
the sequence the statement (2.40) holds.

Now, s, € C(N. -+ E.) being given, decompose as follows :

(2.43) S@(so — ' tu(s)ds’ = S

CCEZIN4y SEEHJU Sou(p

where 4, denotes the cube (1.8) with side 8§ = §,. Then

(2.44) = Uy, SU(E‘)MU@(SO — §'; t)ds'

where f,, denotes a mean value of u(s) in the cube 4,.
But since w is continuous in C(E.) N 4 it follows that
(2.45) [ 1, — u(so)| < &'

if §, > 0 is sufficiently small. Also

(2.46) D(s, — §'; t)ds' < S(P(so —st)ds = 1.

Soms)ruo

Consequently, using (2.44) and (2.46) we get

(2.47) D(s, — §'; Lyuw(s)ds — uls,)

SC(EE)HAO

<ty — ws)| + o D, — ' ()

+ CS ?(s — 8'; t)ds’
)

cidy

with ¢ = sup|u(s)|. Finally for the second and third integral in (2.43)
we obtain estimates

(2.48) S <ec S O(s — &' tyy(s)ds'
B N4y 4y
and
(2.49) S < S O(s — &'; t)ds’ .
C(4p) cdyp

Hence by (2.43), (2.47), (2.48), and (2.49)
(2.50) |Sa?(s — & tyu(s)ds' — u(so)l
< [ty — uls) 26| 0 — 75 (s

+ 205 O(s — & t)ds' .

deN;
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Choosing first 8, sufficiently small the first term can be made arbi-
trarily small; then keeping §, fixed by Lemma 1.2 and (2.42) the second
term also can be made arbitraily small by choosing ¢ small. Also the
last term for fixed §, becomes arbitrarily small if ¢ tends to zero.
Hence formula (2.40) is proved.

In order to prove the continuity of (2.41) we decompose

(2.51) v(s; t) = S@(S — 85 u(s") ds’
n Scp(s 8 1) (A(s; 8) — A(s'; O)u(s) ds’ .

Since w(s) is assumed to be Lipschitz continuous, the first term obuiously
is a continuous function in D,. The second term is also continuous for
every t > 0. But since u(s) is assumed to be bounded we get

(2.52) S(D(s — o B (A®s; t) — A(ss 0))u(s') ds’

<t S(D(s — s t)yds' + C'S@(S — 8 t)|s—¢|ds
="t + ¢tV —0,t— 0,

Therefore the continuity is also proved for ¢ = 0. This proves the
lemma.

3. A continuation theorem. Let D be a bounded domain of the
(x,, ---, x,)-space with a twice continuously differentiable boundary I”
which consits of a finite number of simple nonintersecting hyper surfaces.
More specifically we assume that the boundary 7" has second derivatives
satisfying a uniform Hoelder condition. Let

@3.1) a,() = ((a(2))), © =1, -+, n, b(x) = ((ba(®)))

be m x m-matrices with complex coefficients defined in D + /I, Let
a;(x) be hermitian symmetric and its coefficients be continuously differen-
tiable in D + " and let the derivatives satisfy a uniform Hoelder condi-
tion in D 4 I'. Let b(x) have continuous coeflicients in D + I'. Let
A(x), xe D + I" be any hermitian symmetric m x m-matrix having con-
tinuously differentiable coefficients in D + I" and such that

(3.2) A(x) = ?—3 a,(x) v(@), © e I

where v(x) = (vi(x), -+ -, v,(x)) denotes the exterior normal on /I'. We
define the differential operator L, in D, by

(3.3) Lu = g a,(@)0u/dx, + b(x)u(x)



1004 H. O. CORDES

for complex valued m-component vector functions

(3.4) u(@) = (uy(), * -+, un())

where D, is the space of all u(x) satisfying the following conditions:
(a) u, 0u/ox;,, 1 =1, -, n, continuous in D.
(b) u(x) uniformly bounded in D.
(¢) lime,,u(x — ev) = u(x) for every xz e [’, except possibily on an
n-1-dimensional null set.
(d) v(x) = A(x) u(x) is continuous on D + [’

() S | L de < oo.
D
We prove the following

THEOREM 3.1. Let u,x) be an m-component vector function which
18 defined measurable and bounded on I’ and for which

(3.5) vy(@) = A(w)u(x)

ts Lipschitz continuous on I'.
Then there exists a function u(x)e D, such that

(3.6) u(x) = ux) on I .

Proof. We consider any arbitray point x,€ I'. There is a certain
neighborhood

8.7 U,=1{x3 |z —x]<e¢}

which can be mapped by a twice Hoelder continuously differentiable one
to one mapping

(3.8) ¥ = y(@)

onto a bounded region in the (y, ---, %.)-space in such a way that the
point %, goes into the origin y = (0, ..., 0), the intersection

(3.9) r,=r,nu,

into a certain neighborhood of (0, ---, 0) on the hyperplane y, = 0, and
the intersection

(3.10) D,=(D+InU,

into a certain half neighborhood of (0, -.-,0) satisfying y, > 0. We
also can assume that the Jacobian does not vanish.

(3.11) det ((8y,/0w,)) # 0, ye D, + I, .
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The image y(D,) of D, under this transformation contains a cube of
the type

(3.12) Q, ={ye0 <y, <nx), |y, | <1/219(x), v =2, -+, 0} .

We denote the intersection of Q. with the hyperplane y, = 0 by q,, and
we set

(3.13) ©(Q,) = Qf, 2(dz,) = 0k,

where © = z(y) denotes the inverse transformation of (3.8). There is
a hypersphere

(3.14) UL, = {za]w — o | < ()}
such that
(3.15) D. =D, N U;O c 5,

and such that the same inclusion still holds for 7'(z,) being replaced by
a somewhat larger number.

This construction can be employed for every x,e/’. Since I" is a
bounded closed set, the whole I" can be covered by the interior points
of a finite number of spheres

(3.16) UL, v=1,---, N.
There is a decomposition of the identity, i.e., a set of N functions
(3.17) (/)y(w), Y = 1’ o, N

being defined and infinitely differentiable in the whole (z,, ---, x,)-space
and such that

(3.18) @,(x) = 0 outside of U;V
and
(3.19) S o @)=1onT.

ym=1

Now any vector function u,(2) being given which satisfies the conditions
of the Theorem 3.1, define

(320) uv,o(x) = uﬁ(x)¢v(x)y HAS] r: V= 1! M} N.

Clearly wu, ((x) also satisfies the assumptions of Theorem 3.1, especially
because

(3.21) Ay o) = (A@)uo(x))P () -

We will prove that every u, (x) can be continued to a function u.(x) € D, .
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in the sense of the assertion. This obviously will prove Theorem 3.1,
because the sum of all u,(x) will be the desired continuation of wu,(x).

Now, if we apply the mapping just defined in each particular
neighborhood D, then the vector function u,,(x) will be transformed
into a certain function

(3.22) Wy,o(Y) = Uy o(2(Y))

defined and measurable on y(I", ) which contains the cube q,,. Since by
definition u, (x) = 0 outside of D’ and since

(3.23) y(D,)) < Q,,

holds, the function w, (y) is defined for yeq,, and has its carrier in
the interior of this n-1-dimensional cube. We can consider w, (y) as
being defined on the whole hyperplane %, = 0 by setting it equal to zero
outside of q,,. We would like to apply the various lemmata of §2. In
order to do this we first transform the operator L, to the new variables y.

n

(3.24) Ly = 3, a/u)8/oy; + b(y) ,y & y(D.)
where
(3.25) Q) = X oufowaa@)); By) = b)) .

Further we define

(3.26) A(y) = Ax(y)), yey(D,,) ,

Clearly it is possible to continue the matrix fi(y) to a matrix function
being defined, bounded and continuously differentiable on the whole
semispace

(3.27) Y =0, —co <y, <+oo, v=2, 0., 1;

its first derivatives satisfying a uniform Hoelder condition in every
compact subregion. Now we remark that for

(3.28) Y=t Yo =S, Ys =8y, ***, Y =8, p=n—1

the functions w, (y) and fl(y) satisfy every assumption necessary for
application of Lemma 2.2, Lemma 2.7, and Lemma 2.8. Hence the
function

(3.29) () = | @(s =55 ), (5") ds’

satisfies the following conditions:
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(a) w,, ow,/0y, continuous for y, > 0.

() w, uniformly bounded for y, > 0.

(v) lim._,w,(y — €z) exists for every y with ¥, = 0 and every vector
z=1,2,=0, =2, ..., n with the possible exemption of a
set of n-1-dimensional measure zero which is contained in g, .

(8) wv(y) = A@y)w,(y) is continuous for y, > 0.
(e)

@30 | {lw) F+ | AWow, oy, [ + 32| ow,foy, fdy <<

¥;20

Finally take any infinitely differentiable function ¢,(y) being =1 on
y(D:,) and having its carrier in y(D, ) and take

(3.31) wy(Y) = e(Y)w(y) .

Clearly i,(y) also has the properties («), ---, (¢). Transform this func-
tion back to the old variables and continue it zero outside of D, ().
Call the new function u,(x). Then it is clear that

(3.32) Uy (x) = U, o(x) on I,
Also u,(x) satisfies the conditions (@), (b), (¢), and (d). Since

(338) | La < d | A@ou/oy [ + 310w oyl + lu ]

(3.30) yields the condition (e¢) too. Hence u,(x) is the desired continua-
tion and Theorem 3.1 is proved.

4, A counterexample. Let D be the unit circle 22 + 22 < 1 and
accordingly I" be the periphery of the unit circle z? + 22 =1. In D we
consider the operator defined in formula (5) of the introduction

(4.1) L, = a,0/0%; + a,0[0x,
with

4.2) a=("g 1) a=(] o)
Then the equation

(4.3) Lu=f

for the 2-component vector functions

(4.4) u = {u, w}, f={f, fi}
defined in D + I’ is equivalent to the system
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(4.5) —0u,[0x, + Ou,/0x, = fi
ou,[0x, + Ou,/0x, = f, .

Hence for real valued u,, u, we get
(4.6) SD(ff + ) de = sn(()’ul/aoc1 — OU,[02,) + (Fuy/dx, + Ou,/0xw) da
= SD[(aul/axl)‘"’ + (0u,/0x,)* + (Ou,/ox,)* + (0u,/ox,)*] dx
-4 251)(6%/01:26@02/6901 — 0u,/0x,0u,/0x,) dx .

Now, assuming u twice continuously differentiable in D -+ I” we can
apply Green’s formula to the last integral:

@7 S (O, 02,000, — D |0,0us00,) dat

= 5 U (2,0U,/02, — 2,0U,/0U,[0%,) dT .
r

Hence the last integral in (4.6) is equal to

(4.8) 28 U (2,0U,[0x, — X, 0U,[0x,) dd = — ZSMulauz/a& dd
r Q

where

4.9) & = arc tg x./x, .

Now we impose on u the condition

(4.10) u, Sin /2 + u,cos¢/2 =0 .
Then
(4.11) —2&2”u16u2/8¢9dz9 = (" 0/90uz)1 cot 92

2

. S"’uga/a&(cot 912) 49 = 1/2&2”@@ sin—*9/2 d .
0 0

This integration by parts is legitimate because the condition (4.10) implies
u,=0at 9 =0, 2r. Since u is supposed to have continuous first
derivatives it follows that u?sin-%%/2 remains bounded also for & = 0, 2.
Consequently

(4.12) SD| Lalds = S I de
= | [oujon) + @ujon) + @ujow) + @ujov)] do
+ 1/28“ u sin-2 92 d9 .

Since the last integral is nonnegative we obtain
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(4.13) S | Lo de > S [(0uyf9,) + (9u,0,)"
+ (0u,/0x,)* + (0u,/0x,)] da .

Next assume ¢ = {p,, @,} to be some function satisfying the conditions
(a), (b), (¢), and (e), of Theorem 3.1 applied to the special operator L,
defined in (4.1). Also assume that on the boundary I':

(4.14) P, = a(F) cos ¥2, ¢, =— a(Hsindf2, 0 < I < 27,

Let a(Jd) be real valued and piecewise continuous but not continuous.
Then we will show that this leads to a contradiction.

First of all the vector function ¢ can be assumed to be real valued
in D+ I' because any complex valued such ¢ being given, 1/2(¢ + ¢)
would satisfy the same conditions as ¢ and would be real valued.

Now, if L_ in ©,_ denotes the restriction of the operator L, in P,
to the space ©, of all functions twice continuously differentiable in
D + I' and satisfying the boundary conditions (4.10) then we obtain a
dissipative operator in the sense of R. S. Phillips {4], which is characterized
by local boundary conditions. For the matrix

(4.15) A= é ay;, = a, cos ¢ -4 a,sin
i=1

we get the representation

(4.16) A() = <—cos ¢ sin z?) _ <sin2 ¥/2, sin/2cos 19/2>

sin /2 eos ¥#/2, cos® 92
<cos2 3/2, -—sin ¥/2 cos &/2)
—sin ¢/2 cos ¥#/2, sin®J[2

sin ¢ cos &

and it is easy to see that the two matrices of this last decomposition
are identical with the matrices P, and N, respectively which project
orthogonally onto the spaces of all eigenvectors corresponding to the
eigenvalues +1 and —1 respectively. The boundary condition

(4.17) Pu=0on I

obviously is equivalent to the condition (4.10). Hence the inner product
uAu is <0 for all u satisfying the condition (4.17) (or (4.10)). Hence

(4.18) Qu, u) = 2Reg il do = S 7Audo <0,
D r
which proves that L_ in ©, is dissipative. On the other hand in the

sense of K. O. Kriedrichs [3] this boundary condition is ‘‘admissible”’,
because
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(4.19) A=P,— N, P,>0, Ny>0.

Also the rank of A is constantly equal to two.
Hence if L* in D,+ denotes the adjoint of L_ in O, with respect

to the inner product
(4.20) Cuy v> = S v de
D

and if L, in ®, denotes the operator analogous to L. in D, with the
boundary condition (4.17) replaced by Nju = 0, xe I, then
(4.21) L** = L% .

But ¢ is a function of L* because from the conditions (a), (b), (¢) and
(e) it follows immediately that

(4.22) L, Lud> + L, uy = SF;oAu do = 0
for all we®, . Hence (4.21) implies

(4.23) P e Dpxx

Therefore a sequence @™ e D, exists such that

(4.24) " — @, " —pp—>0, n—> o

(4.25) Iun(p" — @), Li(¢" — 9))— 0, n— o .
Now (4.25) implies

(4.26) {L(p" — ™), L(¢" — ¢™)p — 0, m, m —— oo .
Let
(4.27) Pr = Q" — @™

then (4.13) yields
(4.28) {Op™™|0x,, dp"™[0x,y + {Bp™™[0x,, Bp"™[0x,)

>0, n, m — oo,
Hence o¢"/0x,, 0¢"[0x, converges in the square mean. Let
(4.29) 0|0, —— ", N — o ,

and let « be any vector function continuously differentiable in D + I”
and vanishing outside of some circle |2 | < r < 1. Then

(4.30) {opr|ox,, uy =— {p", Oulox.) .

For n — « we get



ON CONTINUATION OF BOUNDARY VALUES 1011

(4.31) Lp, uy =— Lp, oulox,y .

But ¢ is continuously differentiable for |x| < 1. Hence, using the
special properties of u, we get

(4.32) G, 6 = — L, Oufowy = Opfow,, U .
Or
(4.33) p — OplOxy, uy =0

for all w with the above properties. But the set of all such w is dense
in the space L,; hence

(4.34) Jr = 00w, .
In the same manner we obtain the relation
(4.35) Op"[0x, —— O[O, .

Hence the derivatives 8p/0x,, 0¢/0x, are squared integrable and the
Dirichlet-integral of ¢ exists.

But it is a well known fact that a function ¢ with the properties
(a), (b), (¢) which is piecewise continuous on the periphery of the unit
circle and has a jump, cannot have the Dirichlet integral existing.
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n-PARAMETER FAMILIES AND BEST APPROXIMATION

PuiLip C. CURTIS, JR.

1. Introduction. Let f(x) be a real valued continuous function
defined on a closed finite interval and let F' be a class of approximating
functions for f. Suppose there exists a function g, e F such that
Hf — gll = inf ser Il f — g1l where || f]| = sup.eraslf(®)|. The problem
of characterizing g, and giving conditions that it be unique is classical
and has received attention from many authors. The well-known results
for polynomials were generalized by Bernstein [2] to ‘‘ Chebyshev”’
systems. Later Motzkin [10] and Tornheim [15] further extended these
theorems to not necessarily linear families of continuous functions. The
only essential requirement was that to any n-points in the plane with
distinet abscissae lying in a finite interval [a, b], there should be a uni-
que function in the class F passing through the given points. Such
a system F' is called an m-parameter family. Constructive methods for
determining the function from F of best approximation to f, due to
Remes [14] in the polynomial case, were extended to the above situation
by Novodvorskii and Pinsker [13]. In this paper and in the paper of
Motzkin two apparently additional requirements were placed on the
system F. One, a continuity condition, was shown by Tornheim to fol-
low from the axioms of F. The other, a condition on the multiplicity
of the roots of f— g,f,geF, also follows from the definitions as will
be shown in §2. In § 3 the characterization of g, is discussed. Methods
for constructing g, are given in §4. These are based on the maximiza-
tion of a certain function of n 4+ 1 variables. In §5 it is shown that
an n-parameter familiy has a unique function of best approximation to
an arbitrary continuous function in the L,y norm if and only if F is
the translate of a linear n-parameter family. The problem of the ex-
istence of m-parameter families on general compact spaces S is discussed
in §6. Under additional hypotheses on F it is shown that S must be
homeomorphic to a subset of the circumference of the unit circle. If n
is even this subset must be proper.

2. meparameter families functions. Following Tornheim we define,
for a fixed integer n > 1, an wm-parameter family of functions F' to be
a class of real valued continuous functions on the finite interval [a, b]
such that for any real numbers

iy oooy Loy Yy 200y Yy & Xy < 2y < vme <xn£b

Received February 17, 1959. This research was supported in part by the Space Tech-
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there exists a unique fe F such that f(x,) =y, ¢ =1,---,n. For con-
venience we will usually take [a, b] to be the interval [0,1]. We will
include the possibility that 0 and 1 are identified. Then of course z, + x,,,
and the functions of F are periodic of period 1. We call such a family
a periodic n-parameter family. If we wish to consider specifically the
case when 0 and 1 are not identified, we will refer to F as an ordinary
n-parameter family. If F is a linear vector space of functions then we
will call F' a linear n-parameter family (e.g., polynomials of degree <
n — 1). The following continuity theorem of Tornheim [15] is a generali-
zation of a result of Beckenbach [1] for n = 2.

THEOREM 1. Let F be an n-parameter family on [0,1]. For
k - 1, 27 *ey let xik)v *ty, x;bk)! yik), “',y%’”, 0 S xgk) L oo K xgb}c) S 1

be given sequences of real mumbers and let f, be the unique function
from F such that

Fe(@®) =y t=1,0,m.
Suppose for each

i, limaf® = 2, limyl® =y, and 0 < 2, < voe <2, <1 2
k—oo k—o0

Let f be the umique function from F suchthat f(z;) =y, 1t =1, «++, n.

Then lim . fr = f uniformly on [0, 1].

Proof. If 0 and 1 are not identified the proof is given in [15].
Therefore, let 0 and 1 be identified and the functions of F be periodic.
Suppose f, does not tend uniformly to f. For some ¢ > 0, there exists
a sequence {u,} C [0, 1] such that for each k, | f(u,) — fu(ue)| > ¢. Since
a subsequence of {u,} converges, we may assume {u,} does and let
# = lim,_,..u,. By a suitable rotation of [0, 1] we may assume u, x,,*++,x,
all lie in the interior of an interval [a, 5],0 < a < b < 1. But F forms
an ordinary n-parameter family on [a, b] and hence f, — f uniformly on
[a, b] which is a contradiction. This completes the proof.

We now verify that n-parameter families are unisolvent in the sense
of Motzkin [10]. Let f, ge F and let x be an interior point of [0, 1].
If z is a zero of f — ¢g and if f — g does not change sign in a suitably
small neighborhood about x then we will say the zero x has multiplicity
2, otherwise we say 2 has multiplicity 1. If 0 and 1 are not identified
and either is a zero of f — g, then the multiplicity is taken to be 1.
We shall denote the sum of the multiplicities of the zeros of f— g
within an interval [a, b] by m,,(f, g). The following generalized con-

1 If 0,1 are identified we assume 2%’ < 1 and x, <1,
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vexity notion is also useful. A continuous funection 2 will be said to be
convex to F' if h intersects no function of /' at more than # points.
The following result extends Theorems 2 and 3 of [15].

THEOREM 2. Let F be an n-parameter family on [0,1] and let h
be convex to F. Then for any f, g€ F,m, (f, h) <n and m, (f, 9) <n—1.

Proof. We assume first that 0 and 1 are not identified and that F’
is an ordinary #-parameter family. We verify the first statement by
induetion on #. For n = 1 the result follows by [15] Theorem 2. Hence,
let & be a continuous function convex to a & 4+ 1 parameter family F
and assume the conclusion holds for all k-parameter families. For fe F
let ,,7=1, ---, m, be the zeros of f/— & ordered from left to right
and assume m,(f, h) >k + 1. Choose a point « such that x, < u < x,.
If F,= {ge Flg(x,) = h(x,)}, then F, is a k-parameter family on [u, 1].
feF, and h is convex to F,. By our inductive assumption m, .(f, h) <
k. Therefore x, must be a zero of f — &, and m,, (f, h) =k + 2. By
the same reasoning we may assume z,, is a double zero of f — h.

We now construct a set E of & points from [0, 1] in the following
manner. First choose an ¢ > 0 such that », + 2e < 2,4, — 26,9 =1, + -+,
m — 1. If x is a single zero of f — h then let x belong to E. If x is
a double zero of f — h,x + %, 2, let x4+ ¢, and x —e belong to E.
We add the points @, + ¢, @, —e. Since My .en (fih) =k —2 it
is clear that E contains exactly & points. Choose a point «’, x, + ¢ <
' < w, —e. Let f, be the unique function in F’ such that

fal®) = fx), xe K
Fal@) = fl@) + %sgn [f@) — ()]

Now f, —f has k zeros which must all be simple by [15] Theorem 3,
Within the interval [z, x.]f., —» has exactly k simple zeros since
f» was chosen so that at the points @, + 26,0 =2, <+, m — 1, 2, + 2¢,
Z., — 2¢, f lies between f, and h. Hence for 0 <z <z, and z, <2 <1, f,
and % are on the same side of f (i.e., sgn [ f.(x) — f(®)] = sgn [h(x) — f(x)].
But by Theorem 1, f, tends uniformly to f as #n — c. Hence for =
sufficiently large f, — h must have at least k + 2 zeros which is a con-
tradiction.

The case when 0 and 1 are identified and F is periodic causes no
difficulty. For if %, ---, 2, are the zeros of f — h, using a suitable
rotation we may assume that there is an interval [a, b], such that
0<a<m< <2, <b<1l. F is an ordinary n-parameter family on
[a, b] and Mo, (S5 h) = Mgo(f) k) < n.
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The verification of the second assertion is very similar to the above,
and we leave the details to the reader.

COROLLARY. There are no periodic n-parameter families when n is
an even integer.

Proof. Suppose false. Let F be a periodic n-parameter family and
n an even integer. Let fe F and choose x, ¢ = 1, .-+, % such that 0 <
X, < Xy < voe <, <1, Choose ge T such that g(x;) = f(x) 1 =1, ---,
n —1, g(x,) = f(x,) + 1. By Theorem 2, f — g changes sign at each of
the points #,, ¢+ =1,---n — 1; and since f — g can have no other zeros
within [0, 1], g(1) > f(1). On the other hand g(0) < f(0) which is a
contradiction, since f, g are periodic of period 1.

3. Best approximation in the L. norm. If g is continuous on
[0,1], g€ F, then {g — f} forms a new n-parameter family. Hence
without loss of generality we may consider the characterization and con-

struction of the function f € F such that

11l = infrerllf 1l =&
We first adopt the following notation. If S c [0, 1]

8s = infye, SUD es | f()].

Let T denote the class of vectors u = (uy, ««+, U4,+,) satisfying the con-
dition that 0 <u, < u, < -+ u,+; < 1. The statements and proofs of the
results of this section are valid when F consists of continuous periodic
functions on [0,1]. We shall assume, however, that F' is an ordinary
n-parameter family and leave the details in the periodic case to the
reader.

The following two lemmas are appropriate generalizations of results
of de la Vallee Poussin [6] for polynomials. Where possible we refer
the reader to [13] for proofs.

LEMMA 1. Forany u = (U, +++, Uys,) € T there exists a unique fe F
and unique real number N such that f(u,) = (— L)n-1=1,.--,n 4+ 1.
Moreover |\| =86, and f is the only function in F with the property
that max,_,...ne1l )| = 8.. In addition suppose for k =1,2, «-- that

u® = (P, -+, u) e T and fi () = (— DA .

Then if u™ —u and ueT, it follows that f, — f uniformly on [0, 1]
and A® — \,
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LEMMA 2. Let ueT and a sequence of mnon-negative numbers \,
1=1,+++,n 4+ 1 be given. If there exists an fe F such that

Ju)=(—1ni=1,--,n+1or flu) =(—1)*Ni=1,+-+,n 41
then either min ), < 8§, < max:, or \;, =8, ¢ =1,---,n + 1.

Proof. Lemma 2 is a restatement of Lemma 1 of [13]. Everything
in Lemma 1 except the facts that |A| = 8, and the function f satisfying
max,., ... ) fu)} =8, is unique is proved explicitly in [13]. To prove
the latter statements observe that if there is a g e F' satisfying |g(u,)|<
Ix{ then f(u) — g(u) =(—1)nt=1,-+-,n-+1 where either \; >0,
1=1,2,---,m4+1or N, <0¢=1,2, ---,n- 1. In either case by [12],
Lemma 1, f — ¢ must have at least » zeros between u, and u,., counting
multiplicity which is a contradiction.

For ue T we will usually denote the function f of Lemma 1 by f,.
Next we define a function &(u,, «--, U,.,) of % + 1 variables.

8(u) = 8(uly *ey un+1) = 8u if u= (ul; *tty un+1)e T
= () otherwise .

If we restrict the points wu, to lie in some subset S C [0, 1], then
8(Uyy ++ -, Upsy) Will be denoted Ss(uy, « -+, U,yrs).

LEMMA 3. 8(uy, + -+, Upsy) 18 continuous on R+

Proof. Assume that 8(u,, --, u,.;) i not continuous at some point
w= (U, **+, Upe;). We may assume 0 <u, <uy < oo < Upey < 1, and by
Lemma 1 we may assume that m(< n) of the points wu, are distinet.
Consequently &(u, ++-, #,.,) = 0. Suppose there exists an ¢ >0 and
a sequence {u,} < T such that u,— u and Ou, = €. Let u® be the ith
coordinate of u,. Choose n points u},0 < uj < --- < u, <1 such that
m of the points u, coincide with the m distinet points u,. Let f, be
the unique function in F such that f(u]}) = 0. Choose 7 such that for
any 7 |uj — u;| < v implies |fy(u,)| < ¢/2. Choose k so large that all co-
ordinates of u, are within 7 neighborhoods of some coordinate of u’.
Then f,,k(uﬁ"”) — fo(u{®) = (= 1)\, where sgn ¥ =sgnr\f®, ¢t =1,--+,m.
As in the proof of Lemma 1 it follows that f,,,c — f, must have at least
n zeros within [0, 1] which is a contradiction.

Using the function &(u,, - - -, u%,.,) one can give a simple proof of the
Theorem of Motzkin and Tornheim characterizing the function f which
has minimum deviation from zero.

THEOREM 3. There exists a unique f € F such that || f | =1inf ;e {l FII.
f 1s uniquely characterized by the fact that for some u = (Uy, »++, Up)) €T
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Ilf’ll = 8,. u will have this property if and only if 6(uy, <++, U,s,) 1S an
absolute maximum, and then f = fu-

Proof. Since 8(u,, ++-, %,4+,) is a continuous function on a compact
set, its maximum is attained for some u = (u,, +-+, U,.,) € T. Assert
 full = 8.. If || full > 8., then there is a point 2’ in [0,1] for which
| ful2) ] = |l full. We form a new vector w’eT by replacing one co-
ordinate u; of u by %’ in the following way. If u, < 2’ < Uy, 2 =1,-++, 7
and sgn f,(u;) = sgnf,(x’) then let w),=wu, 5+ and u,=2o. If
sgn f(u;) = (— 1) sgnfu (') let w,=u, 7+ 4+ 1 and uj,, =a'. If 2’ <
(@’ > Ups,) and sgn fu(u,) = sgn f,(2') (S8R fulthn+r) = 8g0 fu(a')) let uj=wu,
J#1(#n+1) and uf = &' (up,, = ). If sgnfu(u,) = (— 1) sgn fu(@)
(sgn filthpsr) = (— 1) sgn fi(x’)) then let u) =o', u) =u,., 7 =2, -+, n+1
)=y, =1, «+-, n, u,,, = x'). Now either f,(u}) = (— 1) 71 =1, -,
n+1or fu(u) =(—1)*"Ni=1,++-,n+ 1 where N, =8, or \; = || full.
Therefore by Lemma 2, 8, < 8, < || full which contradicts the maximali-
ty of §..

It now follows immediately that || f,|| = inf;c-||f|l and that f, is
the only such function with this property. For if f,e F and || £, || < | full
then || /|l < 8, which contradicts Lemma 1. Moreover the same argu-
ment shows that if there exists an f,€ F and a ve T such that {| fil| =3,
then || foll = inf,c,|lfll. It is clear that (v, «-+, v,.,) must be an ab-
solute maximum.

In the above theorem if ||f|| is replaced by || flls = sup.es|f(t)|
where S is any closed set of [0, 1] containing at least » + 1 points, then
the same conclusions hold. Here of course, the function &(uy, <++, Up+y)
is replaced by 8s(u,, »++, U,+,) and the points u, are assumed to be in S.
The following generalization of [11] Theorem 7.1 is therefore relevant.

THEOREM 4. Let S,, S be closed sets of [0,1] such that for each
k, Sy, contains at least n + 1 points; S contains infinitely many points,
and S, CS. Let fy, f, be functions from F which minimize || ||s., | £ lls
respectively. If for each ¢ > 0 there exists an integer k, such that for
k >k, each point ueS is at a distance less than € from some point of
Sy, than f,c—+,f:, uniformly on [0, 1].

Proof. We assume 85 > 0. S, C S implies &; < 8s. Choose u =
(Uyy =+, Upsy) € T, u; €S such that §5(u,, - - -, %,4,) 18 an absolute maximum.
Let wu, = (¥, -+, u¥))e T, u e S, be chosen such that u, —u. By
Lemma 1, §,, — 8, and since SMESSS,G, Ss,c — 8,=08s. Let v,=(v{¥, »++, v$),
eT,v®eS, be chosen so that for each £, SSk(vi’“), ---,9%®)) is an ab-
solute maximum. Extract any convergent subsequence Uy, with limit o.
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If v= (v, -, v,.,), thenv,eS and 8, = 85. Also f,cj :kaj tends uni-
formly to f,, the function from F with minimum deviation on v. But
by the uniqueness of f,, f, = f,. The above argument shows that any
subsequence of { fk} contains a refinement which converges to fo. Hence
lim ,C_,mf,c = fo uniformly on [0, 1].

4, The estimation of f. In [13] Novodovorskii and Pinsker con-
sider a direct method, due to Remes [14] in the polynomial case, for the
estimation of f. However the following Lemma shows that f is con-
tinuously dependent on estimates of the best approximation. Hence if
u is a vector in T for which d(u) is an estimate of inf,c,||f||, then the
solution of the equation f(u,) = (— 1)’»4=1, ---, n+ 1 is the appropriate
estimate of f

LEMMA 4. Let {8,} be a sequence of non-negative mumbers converg-
ing to 8 = inf,c, || fIil from below. If u, are wvectors in T for which
8(u,) = 8,, then lim,.. f. = f uniformly on [0,1].

Proof. If the conclusion is false there exists a subsequence {uk}
and a number ¢ > 0 such that || f fu,c || >e. But {u,cj} may be further
refined to obtain a convergent subsequence of vectors. Calling this
{u,c } and letting u,= lim .., u,, we have by Lemma 1 8§(u,) = lim ,_,.. 0(u )
By Theorem 3 fu, = f which 1s a contradiction.

We shall consider two algorithms for estimating 8§ and prove con-
vergence of both.

Each of these algorithms can be used efficiently for actual numerical
calculations. A detailed description of method 2 for polynomials on a finite
point set can be found in [5]. Also for polynomials on an interval
a maximization procedure has been announced by Bratton [3].

For both methods the following notation is convenient. For u =
(Uy, # =+, Ups,) € T define for =1, ---, n + 1.

89)(“7) = (U ++, Uj1y Ty Ujs1y ***y Ups1) if Ujog LT < Uiy
= 0 otherwise

where we take u, = 0, u,,, = 1. We now form 7,(z) = max ., ... .., 5L(%).
From the continuity of &(u,, «++, u,.,) it follows that for each j, 6(x) is
continuous, and hence 7,(x) is continuous. Therefore there exists a point
2,0 <2’ <1 and integer 1 < m < + 1 such that

Su(x') = jzg_a};i“ilfii;ll = i1l .

For a given vector u we define u’' = (ul, ---, u,.,) by setting u)=u,, j # m,
U, = ',
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THEOREM b. If wvectors u, are defined inductively in the above fashion
with w, e T chosen arbitrarily, then lim,.. 8(u,) exists and there exists
u,eT such that 8(u) = lim,..8(u,). Furthermore S(u,) is an absolute
maximum of the function ().

Proof. {6(u,)} is a monotonically increasing, bounded sequence hence
convergent. If 6 = lim,_. 8(u,), then a suitable subsequence {uk }, con-
verges to u, and o(u,)=3. We now assert nukj(x) converges uniformly to
Nu®). It suffices to assume u; < < %;,;. Then

17 @) = 7, (@)] = [ max (3L, @), 8(2).)) — max (3L, (@), 8 ()]
< 180, (w) — 8, (@) + 18'@) — 8@

Since 8(u) is a uniformly continuous funection the latter expression tends
to zero uniformly in z.
Hence

120, Il = Lim {7 ]
J—roo
But
e 1| = O(aa 1) < Sy, ) < W,

Therefore |}7,, || =lim,%,8(u,cj) = 8(u,). It now follows by the same
argument as in the proof of Theorem 3 that || £, || = &(x,) and by Theorem
3, &(u,) is a maximum,

For the second method of estimation of f we alter slightly our
definition of &,(x) and &."(x). We now define

Gu(®) = 3(x, U, oo, Upyy) I 0 <0 <ty
= 8(“2! Usy ***y Ups1y x) if Upry L0 < 1

8‘7;+1(x) — 8(’[,{,1, coe, Uy, x) if Uy, _<_ T S 1
=0(x, Uy, oo, ) I 0< <0ty

The algorithm proceeds as follows. First let ¢ >0 be chosen. Select an
arbitrary vector we T. Maximize 8%(z) over its domain of definition. Let
2’ be a point for which &%(x) is a maximum. If 8.(x’) > (1 + ¢)8(u), replace
u, by «' forming a new vector #’. If not, let &' = u. We now maximize
8%/ (x) and continue inductively. Special attention is necessary for 2+ (x)
and &i(z). If ' is a point for which &7*}(z) is a maximum and &3*'(x) >
1 + ¢)8(u), then u’' is formed in the following way. If 2’ > u, then
U=y, T = 1,000, m, U, =2"; if ®'<u, then w'=2"u, = u;-, 1=2, <+, n+1.
In the latter case, the next function maximized is &.(x). If the first
case occurs then d,.(x) is maximized. Let 2" be a point for which &,.(x).
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is a maximum and &L (x") > (1 + ¢)8(u’). If 2" < u, then u) = x” and
w' =u; 1=2,8,--+,n+ 1. If " >ul,,, thenu) =u;,,2=1, --+, n and
., = 2. For the first case the next function maximized is 82..(x); the
second case, 03 (x). If

ou (@) < (1 &)d(u) (Bi(2") < (1 + e)d(w))

then we take u’ = u (v = ’). When there have been 7 + 1 consecutive
maximizations with no change in the vector u, ¢ is now replaced by ¢/2
and the process is repeated. We now continue inductively and pass to
the limit as ¢/2* — 0.

THEOREM 6. The conclusions of Theorem 5 hold if the sequence {u}
18 chosen inductively in accordance with the above algorithm.

Proof. As before, lim,,.0(u;) = 8 exists. We choose a particular
convergent subsequence {u, B of {u;}. For each j let u, be a vector
of {u,} such that for each ¢, i =1,.--,n4+ 1 and all appropriate
x, Sf,kj(.x) < (1 +¢/2’)8(uy ). The algorithm guarantees that for each integer
j such a vector u, exists in the sequence {u,}. Since a refinement of
this sequence is convergent, we assume {ukj} converges. Then if u,, —
u,, 8(u,) = 8. Suppose (u,) is not a maximum of &(u), then || £, I > o(uy).
Choose 2" so that | f.(x")| = ||f|ll, and form u' by replacing one point,
the 4th say, of u, by 2’ in the manner of the proof of Theorem 3. Form
u;, , by replacing the ith coordinate of u, by « Then u;j-—> u' and
S(u;j)—> S(w'). Therefore for j sufficiently large, since &(u’) > 6,

S) +

o) > 20

On the other hand for each j there is a point x and an integet m such
that

) = o5, (1) < (1+ 5 dan) < (1+-5-)8

For j sufficiently large this is a contradiction, therefore ||f, || = 8(u,)
and 8(u,) is an absolute maximum.

5. Approximation in L, y norm. For N>=n let %, ..., 2y be N
distinet points of [0,1]. In place of the sup norm let || £|l = {SX. | f(z,)] 2} ?
and assume p > 1. The fundamental problem to be considered here is
to give necessary and sufficient conditions that the funection f e F for
which || f l| = inf, el f || is unique. Now the image of F under the
mapping f — (f(x,), -+, f(®y)) is a closed set in N dimensional Euclidean
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space. By a theorem of Motzkin [9] as generalized by Busemann [4],
to each point x € E, there will exist a unique nearest point in a given
set S C K, with respect to a strictly convex metric if and only if S is
closed and convex. Hence f will be unique if and only if F' is convex,
but for m-parameter families we can say more.?

THEOREM 7. An n-parameter family F' is convex if and only if F
1s the translate of a linear n-parameter family.

Proof. If F is the translate of a linear =n-parameter family, i.e.,
there exists a continuous g on [0, 1] and a linear wn-parameter family Fj
such that each fe F' can be written uniquely as f =g + f', f€ F,, then
F is obviously convex. Conversely suppose F'is convex. Choose % dis-
tinct points ¢, «++-, x, in [0, 1]. Let f,, fi, ---, f» be the unique functions
of F' such that fi(z,) =0,7 =1, --+,n;f(x;,) =20 fork, j=1,---,n
where §,, is the Kronecker delta. We assert that each fe F has a rep-
resentation as

f=rf+ é‘lxk(fk — fo) where \, = fl®y) .

If such a representation exists it is obviously unique. Also the vector
space spanned by f, — fo, ==, fn — fo 18 obviously an n-parameter family
and the theorem is proved. To prove the assertion let

F, = {fe F|f(®s) = f(@4ss) = -+ = fl&,) = 0}
= {feF|flx,) =0 j+k}.

From the convexity of F, F is a convex one parameter family on a suitably
small interval containing x,. We assert fe F} implies f = f, + M S — So)
where )\, = f(x,). By convexity this is obviously true for 0 <, <1.
For N\, > 1 if fe F|, f(x) = \, then by convexity

1
o= f (=)
or f=fo+ M(fi —f0). If N <O,

(— M)
Jo= 1—>\,,f+1—x,cf

or f =f,+ Ne(fx — fo). To finish the proof we apply an induction. As-
sume fe F, implies that f = f, + S5, Az, — ®,) where f(x;) =\, and

2 For a discussion of related results see the article by Motzkin in the Symposium on
Numerical Approximation, University of Wisconsin Press, 1959.
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suppose ge F,,, and ¢g(x,)=p,7=1,+--,k+1. Then if g, =f, +
k200 — £y 92 = fo + 2ti(frer — So) it follows that

k+1

’ g, + 4.
0t p
9 2

and ¢'(x,) = p;,,7 =1, -+, k + 1. Therefore
9=9=f+ ;ﬂj(fj — fo) .

6. The existence of #%-parameter families on compact space. Let
fiy *+*, fns be nlinearly independent real valued continuous functions defin-
ed on a compact set S in finite dimensional Euclidean space. Let V be
the span of the functions f,, ---, f,. In 1918 Haar [7] showed that to
each continuous real valued function ¢ defined on S, there is a unique
feV satistying || f — gll = inf,er || f — gll where [|[fll = sup,es|f(s)] if
and only if no non-zero function in V vanished at more than n — 1 points
of S. Haar noted that the existence of such a set of functions V placed
a severe restriction on the set S. In 1956 Mairhuber [8] proved that if
V satisfied the above condition of Haar then S is a homeomorphic image
of a subset of the circumference of the unit circle. If n is even this
subset must be proper. It is clear that V satisfies the condition of Haar
if and only if V is a linear n-parameter family. The characterization
of those compact Hausdorff spaces on which there exist n-parameter
families F’ for n > 1 seems to be quite difficult. One can give a cha-
racterization if one imposes a rather strong local condition on F. The
result presented here includes the one of Mairhuber, and is proved by
somewhat different means. The following fundamental lemma is per-
haps of independent interest.

LEMMA 5. Let S be a compact connected Hausdorfl space with the
property that for each point x € S there exists a mneighborhood U, and
continuous real valued functions f,, f. defined on U, such that for
y,2e U,y + 2

(1) fi(y) fi(z)
Fy) fi(2)

Then S may be embedded homeomorphically into the circumference C of
the unit cirele.

#0.

Proof. Without loss of generality we assume U, is a closed, there-
fore compact neighborhood of x. f,, f, never vanish simultaneously on
U, and therefore f,/f, defines a continuous mapping of U, into the
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compactified real line. (1) guarantees that the mapping is one to one
and ¢, (u) = Arctan (f,/f,)(u) gives a homeomorphism of U, into C.

We next verify that S is locally connected. To do this it suffices
to show that for each x € S there exists a connected neighborhood which
can be mapped homeomorphically into C. In faect if ¢, is the homeomor-
phism for a point xeS constructed above, and if C, = ¢, (U,), it is
enough to show that there exists a connected neighborhood V, in C, of
A, = ¢,(%). For then ¢;%(V,) is a connected neighborhood of # contained
in U,. But C, is a compact subset of C. Therefore let I, be the com-
ponent of ), in C,. I, is a compact connected subset of C. I, is then
either an interval or all of C. If I, is the latter we are through. Also
if I, is an interval and )\, an interior point (relative to C) then ¢;'(I,)
is the required neighborhood. Hence assume that ), is an end point of
I,. This will include that degenerate case when I, is just one point.
We may also assume that there does not exist a suitably small connected
neighborhood N of )\, in C such that NNC, < I,. For then ¢;'(NNN,)
is an appropriate neighborhood of «. Therefore it now must follow that
for any connected neighborhood N of ), in C there exists A;, )\, in the
interior of N such that A\, N, ¢ C, and (A, M) N C, # . If we let F=
&3 [, N) N C,] and G = ¢ [C, ~ (M, \)] then FU (S ~U,) and G
separate S which is a contradiction.

We note that S is certainly a separable metric since a finite num-
ber of homeomorphic images of subsets of C cover S. Hence by [16]
Theorem 5.1, S is arc wise connected.

We now assert S is homeomorphic to a subset of C. Let U, ---, U,
be a finite collection of connected neighborhoods covering S each of which
is homeomorphic to a subset of C. By a suitable rearrangement we
may assume that U,N U, #+ ¢ and U, ¢ U,. Let 2,€e U~ U, z,e U,~ U,
xe U, NU, Let 4 bethe maximal subset of U,U U, connecting z,, x, £,.
This must be all of U, U U, for if ye U,UU, and y¢ A, then y may be
connected to any point in 4 by an are in U,UU,. If y is connected to
A at an end point of A, this is an enlargement of A which contradicts
maximality. If y is connected to A at a point other than an end point,
then no neighborhood of this point is homeomorphic to a subset of C.
This also is a contradiction. If U,U U, is not all of S then U,U U, is
homeomorphic to an are, and by induction the homeomorphism may be
extended to all of S.

THEOREM 8. For n > 1 let F be an n-parameter family of func-
tions defined on a compact Hausdorff space S. Suppose in addition that
to each point x € S there exists a neighborhood N, and functions fi, f.€ F'
such that
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Fi(y) fi(2)
Fy) fo?)
for y,ze N,,y + z. Then there exists a homeomorphism of S into the

circumference of the unit circle. If n is even the image of S must be
a proper subset of C.

+0

Proof. First we note that S cannot have a proper subset W homeo-
morphic to C. If » is even this follows directly from the Corollary to
Theorem 2. If % is odd, choose x e S ~ W and let F' = {fe F'|f(x) = 0};
then F” is an n — 1 parameter family defined on W. Sinece n —1
is even this is a contradiction. We may therefore assume that if = is
even S is not homeomorphic to C.

If I is a component of S then by Lemma 5 there exists a homeo-
morphism ¢ of I onto the closed interval [0, 1] considered as a subset of
C. We assert that if I is not all of S, then ¢ can be extended to an
open and closed set UD I. U and its complement then separate S. If
I is itself open in S then we take U= 1. If not, let = = ¢~%0),y =
¢7'(1). Let N,, N, be compact neighborhoods of x and y respectively
and let ¢,, ¢, be homeomorphisms of N, and N, respectively into C.
We may assume ¢, (x) =0, ¢,(y) =1 and

¢(N, N I)c[0,1] and ¢,[N, N I] C [0,1].
If we define ¢’ by

') = p(z) if zel
= ¢,(2) if ze N,~ 1
=¢,(2) if ze Ny~ 1T

then ¢’ is a homeomorphism of N,UN,UI = N into C. Also int. NDOIL
Now [0, 1] = ¢'(I) is the maximal connected subset of ¢'(N) containing
¢'(I). Therefore there exist sequences {\,}, {#,} of real numbers tend-
ing monotonically to 0 from below, and monotonically to 1 from above,
respectively such that {\,} N¢'(N) =¢ and {g¢,} N ' (N) =¢. Choose
n large enough that ¢’-'[\,, 0] C interior of N, and ¢'~'[1, &,] C interior of
N,. Clearly J, = ¢'"'[\n, #,] is a closed set containing I. J, is open in
the interior of N. Hence J, is open in S.

Let T be the class of open sets O of S which can be mapped homeo-
morphically into C. We partially order T in the following way. If
0,,0,eT then O, <0, if 0,cO, and if there exist homeomorphisms
¢, by of O,, O, respectively into C such that ¢, agrees with ¢, on O,.
By Zorn’s lemma there exists a maximal element O of T. We assert
O =3S. If not, let €S~ O. Then there exists an open and closed set
Usax and mapping ¢ such that ¢ maps U homeomorphically into C.
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ONU and O~ U are separated open sets of S. Hence if ¢’ is any
homeomorphism of O into C such ¢'(O)NHU) =¢. ¢” defined by
¢"(x) = (), e ONU, ¢"(x) = ¢'(x), te O ~ U is also a homeomorphism
of O into C. ¢"” has an obvious extension to UUO which contradicts
the maximality of O.

COROLLARY. If F is a linear n-parameter family (n > 1) defined
on the compact Hausdorff space S, them S is homeomorphic to a subset
of C. If n is even the subset must be proper.

Proof. We assume S contains more than n» points. For a given
x €S choose n — 2 distinet points @, ---, z,-, of S outside a suitably
small compact neighborhood N, of x. If F, = {fe F|f(x,) =0,1=1,---,
n — 2} then F, is a linear 2-parameter family defined on N,. Therefore,
for any two linearly independent functions f, f, in F,,

£1®) fi(?)
Jy) f2)

We now apply the theorem.

#+ 0 for y,ze N,,y + 2.
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PROBLEMS IN SPECTRAL OPERATORS

URl FIXMAN

Introduction. An important problem in the theory of spectral
operators in Banach spaces initiated by N. Dunford [5; 6] is that of
deciding whether the linear operators of the types encountered in analysis
are spectral. Various conditions for spectral operators have been given
in [5], but further research is needed in order to apply them to specific
cases. J. Schwarz [11] has shown that a class of operators arising from,
not necessarily self adjoint, integro-differential boundary-value problems
consists of spectral operators. The present investigation originated in a
problem on stationary sequences in Banach spaces which led to the study
of unitary operators, namely linear isometries of the space onto itself,
from this point of view. Accordingly, attention was focused on the
class of unitary operators, and the limitations imposed on the operators
under study were designed to include it.

Section 1 contains a summary of definitions and results from [5; 6].
A distinction, significant only in non-reflexive spaces, is made between
spectral and merely prespectral operators according to the topology in
which o-additivity of the resolutions of the identity is required. As
shown in §2, a resolution of the identity of a prespectral operator
uniquely determines the resolutions of the identity of its spectral re-
strictions. A simple example shows how this can be used to prove that
certain operators are not spectral.

Known results are combined in §3 to yield a necessary condition
for spectral operators of scalar type, which involves only the norms of
rational functions of the operators. If the space is reflexive and the
spectrum an R-set [1, p. 397], the condition is also sufficient. Using the
results of § 2 this condition is localised to ‘‘eyelic’’ subspaces generated
by single elements. A much more general approach to localization, via
the notion of vector measures associated with the operator, is expounded
in [3]. It is felt though that the present considerations retain their
interest owing to the explicit conditions given. The method of [3] also
implies the results of §2 on restrictions for the case of a reflexive space.
Section 3 ends with some characterizations of finite dimensional cyclic
subspaces.

The above results are specialized in § 4 to unitary operators which,
if the space is reflexive, satisfy all the subsidiary conditions. As a
corollary it follows that in a reflexive space a unitary operator is spectral

Received January 26, 1959. This paper is based on the author’s doctoral thesis written
at the Hebrew University. The author wishes to express his gratitude to Professor A.
Dvoretzky for his guidance and encouragement.
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if and only if every stationary sequence it generates is spectral.

The final section contains examples of non-spectral unitary operators.
It is shown that a unitary operator U in the space of continuous func-
tions defined on a compact Hausdorff space is not spectral provided the
homeomorphism determined by U is non-periodic. Using the boundness
of the norms of the values of a resolution of the identity, examples are
given of non spectral unitary operators in the spaces [,, 1 <p < oo,
p# 2. The two methods used are combined to show that if in parti-
cular the permutation of the basis, determined by a unitary operator in
the last mentioned spaces has an infinite ‘‘cycle’’, the operator is not
spectral. Examples of non spectral unitary operators in the spaces L,
p # 2, (¢) and (¢,) follow as corollaries.

1. Preliminaries. Let X denote a complex B-space and B the
Boolean algebra of Borel subsets of the complex plane p. A spectral
measure in ¥ is a homomorphism E of B onto a Boolean algebra of
projections of X such that: E(p) = I = identity operator, E(¢) = 0, and
| E(o)|| £ M < o, M independent of ¢ ¢ B. The Boolean operations on
commuting projections A, B are defined, as usual, by

ANB=AB, AuUB=A+B—AB.

A spectral measure E in X is said to be of class I' in case [I" is a
total linear manifold in X* and #*FE( )z is c-additive on B for « e %,
x* eI,

Let B(X) be the B-algebra of bounded linear operators of X into it-
self. If T e B(X) and 9 is a (closed) subspace of X, we denote by T'| Y
the restriction of T to 9, and by o(T) and o(T') respectively the spectrum
and resolvent set of 7. Thus, if ¥ is, invariant under T, ¢(T| Y) denotes
the spectrum of T considered as an operator in 9. For ¢ e o(T),
(& — T) ' is abbreviated to T(¢).

An operator T e B(X) is called a prespectral operator (of class I")
in case there exists a spectral measure E of some class I” such that

TE(e) = E(@)T, o(T|E@)E) <6, ceB.

E is then called a resolution of the identity for T.

An operator in B(X) is called a spectral operator if it is prespectral
of class X*. In this case, E is c-additive on B in the strong operator
topology, and the boundness of its range is a consequence of the other
requirements [6, p. 325]. A spectral operator 7 has a unique resolution
of the identity E[6, Th.6]. If A e B(X) commutes with T, then it
commutes with E[6, Th. 5].

It may also easily be shown that if the bounded subsets of % are
weakly sequentially conditionally compact, in particular if X is reflexive,
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then every prespectral operator in X is spectral.

Let T e B(¥X), x ¢ X. By an abuse of language, an X-valued fune-
tion f defined and analytic on an open set D(f) < p is called an analytic
extension of T(¢)x if

C-Df@=«, ¢eD).

F© =Tz on D(f)Np(T) for otherwise (¢ — T)(/(¢) — T(©)r) =
2 —x =0 would imply ¢ € ¢(T). Further we have

1.1. THEOREM. If T is a prespectral operator, and f, g are analytic
extensions of T(&)x, then f(¢) = g(&) for ¢ € D(f) N D(g). ([6, Th.2],
The further assumption D(f) 2 o(T), which is made there, is not used
in the proof).

Hence there exists a maximal open set which may serve as a do-
main of definition of an analytic extension of 7'(¢)x. This set is called
the resolvent set of x, and is denoted by p(x) (or p,(x), when more then
one operator is involved in the discussion). Its complement o(x) (or o,(x))
is called the spectrum of x. The maximal analytic extension itself is
denoted by x(¢) (or x,(¢)).

The main use of the concepts above is through the following charac-
terization of spectral subspaces [6, Th. 4]:

1.2. THEOREM. Let T be a prespectral operator in X with a re-
solution of the identity E, and let ¢ C p be closed. Then

E(0)X = {x|o(x) C o} .
Let E be a spectral measure which vanishes on the complement of
a compact set g, and let f be a complex valued function continuous on

o. Then the Riemann integral |\ f(£)E(d¢) exists in the uniform operator

topology [6, Th. 7]. An operator S is said to be of scalar type if it is
spectral and satisfies

1.3 s=ea (= em@n),

where E is the resolution of the identity of S [6, Def. 1].

The reader is referred to [4] for the definition and properties of
f(T), where T € B(X) and f belongs to a certain class of locally holo-
morphic functions. In the sequel, f will in general be a rational func-
tion with poles in po(T). If S is of scalar type with the resolution of
the identity E, then we have the functional calculus

1.4, 76 = {roB@s) .
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We refer to [6] for the general case of a spectral operator.

Finally we shall need the concept of the cyclic subspace [x] generated
by an element 2 € ¥. By this is meant the subspace spanned by
{T'(©)xle e (T)} [5, Def.1.4]. It has the following properties [5,
Lemma 1.5]:

1.5. LEMMA.

1.5.1. =z e [#].

1.5.2. fF(T)[x] < [x].

1.5.3. If y € [x], then [y] C [z].

2. Restrictions of prespectral operators. - The following is a generali-
zation of the uniqueness theorem for spectral operators mentioned in § 1.

2.1. THEOREM. Let T be a prespectral operator in the B-space ¥,
and let E be a resolution of the identity for T. Let 9 be a subspace
of X invariant under T. Then if T is spectral, its resolution of
the identity equals the restriction E|Y of K to ).

Proof. Let y € 9. The function y.g(f) is an analytic extension of
T(¢)y with domain prg(y). Thus ory(y) < 0:(y), or
(2.1.1) 0:(y) S Tng(y) .

Let F denote a resolution of the identity for T'|9. If o is a closed
subset of the complex plane, we have by 1.2

ong(F(o)y) S o
Therefore, by (2.1.1),
o (F(o)y) < o,
and again by 1.2
(2.1.2) E(o)F(o)y = F(o)y .

If ¢ is a closed set disjoint from ¢, we get, operating with E (o) on
E(@)F(7)y = F(7)y,

(2.1.3) E(@)F(tyy =0 .

(2.1.3) and the ¢-additivity of F' in the strong operator topology show
that E(0)F(¢’)y = 0 (¢’ denotes the complement of ¢ with respect to p).
This together with (2.1.2) gives

E(o)y = F(o)y , o closed.
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The properties of £ and F' now yield the same equality for every Borel
set.

The theorem above shows that invariance of ¢) under E (i.e., under
every value of K) is a necessary condition in order that T7'|9) be spectral.
This condition is by no means automatically fulfilled, and this fact can
be used to show that an operator is not spectral:

2.2. ExAMPLE. Let £ be a compact topological space. We consider
the B-space C(2) of all complex valued functions f continuous on 2 with
| £l = max,co|f(w)]. Let pre C(2), and let S be the operator of multipli-
cation by p. Heuristically, S cannot in general be spectral because
projections which ‘““ought’’ to belong to the resolution of the identity
are not members of B(C(£2)). This is made precise as follows. Let T
be the extension of the multiplication to the space ¥ = M(Q) of complex
valued functions f bounded on £ with ||f]| = sup|f(w)|. T is pre-
spectral with a resolution of the identity: FE(o) is the multiplication by
X%-(22( ), where y, is the characteristic function of g. The c¢-additivity
may be verified with respect to the total linear manifold generated by
the functionals 2, w ¢ 2, defined by )z = x(w), x € M(2). To see
that o(T| E(0)X) < o, observe that if ¢ € o', (T| E(0)X)(¢) is the multi-
plication by y.(¢( )& — p)* (here 0/0 = 0). We omit the details. Now
suppose, for instance, that ¢ is not constant on a connected component
of 2, and that w,, w, are two points in the component such that
Mw,) # (w,). Then taking ¢ = {¢(w,)} we see that E (o) does not leave
C(2) invariant. Hence S = T'|C(Q) is not spectral.

The next theorem is a partial converse of Theorem 2.1. We need
two lemmas.

2.3. LEMMA. Let T be a prespectral operator in the B-space X,
and let A € B(X) commute with T. If x € X, then o(Ax) € o(x) and

(Ax)(§) = Ax(0), ¢ € p(x).

Proof. For ¢ € p(x), (¢ — T)Ax() = A — T)x() = Ax. The con-
clusion follows by the definition of ¢(Ax) and 1.1.

2.4, LEMMA. If T is prespectral in %, x € X and T is a connected
component of o(x) such that © N p(T') # ¢, then x(¢) € [x], £ € .

Proof. Since p(x) is open in the complex plane, ¢ has the same
property and is therefore a region. Let 2* € X vanish on [x]. For
e o), x¢)=T=x € [x]; thus f(¢) = «™x() vanishes on the open
subset 7 N o(T) of z. Being regular, f vanishes identically on 7. A
well known corollary of the Hahn-Banach extension theorem yields the
conclusion.
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It may also be shown that {¢ e o(z)|2(¢) € [2]} is open and closed
in p(x). If o(T) is dense in the plane, then xz(¢) e [#] for every ¢ e o(x)
[5, Lemma 1.5.3]. Cf. however Example 2.6 below.

2.5. THEOREM. Let T be a prespectral operator in X with a re-
solution of the identity E. Let 9) be a subspace of X invariant under
T©), ¢ € o(T), and under E. Then T|%9 is prespectral with a re-
solution of the identity E|Y. If T is spectral or spectral of type m
(v. [6, p. 836]), T|Y has the same property.

Proof. Since T = Q%Sg T(¢)de , where C is a circle containing a(T')

in its interior and the integral is in Riemann’s sense and in the uniform
operator topology, 9 is invariant under 7, and 7|9 is well defined. If
T is spectral, we may assume invariance under I instead of under T'(¢),
¢ e o(T), using [6, Lemma 3].

All the assertions of the theorem are easily verified, except: For
every 6 € B, s((TIDN|(E|Y)N0)Y) = o(T| E(0))) < 6. We have to show
that if ¢ e ¢/, then £ — T induces a one-to-one mapping of E(0)?) onto
itself. Since o(T'| E(0)%X) C 7, there is no z ++ 0 in E(0)X and hence in
E(0))) such that (¢ — T)z = 0. It remains to show that the range of
¢ —THE@©0)Y is E0)). Let ze E(s)). Then E(o)z =2 hence
E(0)z = z, and therefore by 1.2 g(z) < ¢. Therefore { € 0(z), and since
(& — T)z(t) = = it suffices to show that 2(¢) € E(0))). Let 7 be an open
half plane with ¢ on its boundary. From 1.2 it follows that o(E(x")z) ©
7' U o(z), and therefore {{} U m < p(E(n')z). Since o(F(zn')z) is open,
it follows that ¢ belongs to a component of o(E(z')z) which contains
arbitrarily distant points of the complex plane and thus points of o(T).
2.4 now implies (E(x")2)(¢) e [E(x')z]. The assumptions of the invariance
of 9 show that [E(n')z] £ 9. Therefore (E(m')2)(&) € 9. But by 2.3,
we have (E(7'))(¢) = E(7')#(¢); therefore

E(mz(¢) e D .

Similarly one shows E(m)z(¢) € 9). Therefore 2(¢) = E(n')2(¢) + E(m)z(¢) e
9. On the other hand, F'(¢)z = z implies by 2.3 E(0)2({) = 2(¢). There-
fore z(¢) € E(0)Y) as required.

It follows from the proof above that, under the conditions of the
theorem, z € Y implies 2(¢) € 9), ¢ € p(2). The following example shows
that without invariance of %) under E, this need not hold even if T is
a normal operator in Hilbert space. This, in turn, amplifies Example
2.2 by showing that even if T is spectral, and not merely prespectral,
?) is not necessarily invariant under FE.

2.6. ExaMpPLE. Let X be the Hilbert space L*(2), where 2 is the
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disc {w|]w]| <1} in the complex plane. Let T be the operator of
multiplication by w. Then 7T is a bounded normal operator and spectral.
We define z € X by

m[w]z{l if 1<jwl<1
if o] < %.

The maximal analytic extension of T'(¢)x, x(¢), exists for ¢ not in the
ring o(z) = {4 <|¢| <1}, and then

1
w(@Q)lw] = {g‘—— ®
0 if lo] < .

if $<]jow|<1

We consider the subspace 9) = [«], which is invariant under 7'(¢), ¢ € o(T)
by 1.5.2, and contains x by 1.5.1. [x] is the closure of the finite linear
combinations of the functions T (&)x = x(¢) for ¢ € p(T) = 2'.

Now, suppose that for a fixed &, |¢] < 4, x(¢) were approximable
by these linear combinations in the Hilbertian norm. Since all these
functions are holomorphic in o(x), x(¢) would be uniformly approximable
by the linear combinations on a closed ring 7 concentric with and inner
to o(x) [13, p. 96]. But this is impossible, since the approximants are
rational functions with poles in the unbounded component of 7’, while
the only analytic continuation of x(¢)|7 to the other component is
1/(¢ — w), which is not regular at ¢ (v. [13, p. 25, Th. 16]).

It may also be directly shown that there exist # and ¢ such that
E(o)yx ¢ [x].

We now give an example to show that the assumption that 7|9 is
spectral cannot be dropped in Theorem 2.1 even if ¥) =%; i.e., a pre-
spectral operator may have more than one resolution of the identity.

2.7. ExampLE. We specialize Example 2.2, retaining its notation.
We take for © the set of positive integers. Thus ¥ = M(Q) is the space
usually denoted by (m). For g we chose a function belonging to X%
which satisfies

(2.7.1) ml)=1;
(2.7.2) wH+1, §>1;
(2.7.3) I@Mﬁ:L

As is well known [2, p. 34], there exists a real bounded linear functional
lim,, defined on the space (m); of all real bounded sequences, which
has the following properties:

(2.7.4), If z,y € (m)z and y(3) = 2( + 1), J=1,2, 04,
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then lim,y = lim, «;
(2.7.5) lim 2(5) < lim, = < Tim 2(5) .

We define a functional lim on X by lima = lim,«’' + 4 lim, 2", where
x = + ", 2, 2" € (m),. Evidently, lim is a bounded linear functional
which enjoys the property (2.7.4) analogous to (2.7.4),. Further we have
(T defined as in 2.2)

(2.7.6) lim Tx = lim « .

To see this, we write (Tx)(j) = (i(5) — Dx(j) + «(j). By the linearity of
lim, it suffices to show that a(j) — 0(a(s) = p(5) — 1) implies lim ax = 0.
This follows from (2.7.5); on separating a and x into their real and
imaginary parts. We define an operator A ¢ B(¥) by Az =limzx - x,
where () = &,; (Kronecker’s symbol). Using (2.7,1), (2.7.6) we get
TA = AT. On the other hand, A does not commute with E (defined in
2.2). Taking ¢ = {1} we have, using (2.7.2), (2.7.4), AE(0)z = 0 while
E(0)Axz = lim x - x,, Hence the function F, defined by

F(o) = E(o) + AE(0) — E(0)A , ceB,

differs from E. We show that F is a resolution of the identity for 7.
A straightforward calculation, based on the fact E is a spectral measure,
shows that F' is a spectral measure (In verifying that F'(¢)F(8) = F(o N 9),
one uses the fact that AE(t)A =0, ¢ € B). F is g-additive with respect
to the total linear manifold generated by the functionals z} (2 = (7)),
j>2 and z* = xf — lim; since 2iF(o)x = x]E(o)x for j > 2, while
x*F (o) = ¥ (1)(x(1) — lim «). Since T commutes with £ and A, T com-
mutes with F. Finally, to see that o(T'| F'(0)X) S g, we assert that the
restriction of (T | E(6)X)(¢) to F'(0)%, ¢ € @', isan inverse of (¢ — T')| F(0)X.
As shown in the proof of [6, Th. 5], the prespectrality of 7 implies
E(0)AE(c) = AE(o). Hence FE(¢)AE(s) = AE(o), whence it follows
that E(0)F(¢) = F(0). Therefore F(0)X C E(6)%, and the mentioned
restriction is well defined. Let x € F(0)X. Then o(z) € ¢, by 1.2,
since z € E(0)X. Further, 1.1 and 2.3 imply

(T E@)X))x = 2(§) = (F(0)x)(¢) = F(o)x(?) .

Thus the range of the restriction is included in F(o)X. The truth of
our assertion is now evident.

3. Conditions for operators of scalar type. If T ¢ B(X), the full
algebra generated by T, denoted by A(T), is the smallest subalgebra of
B(¥) which is closed in the norm topology of B(¥), which is inverse-
closed and which contains T and I [6, Def. 5]. Let o be a compact
subset of the complex plane. We denote by R(s) the set of rational
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functions regular on ¢. CR(c) denotes the closure of R(g) in C(o).
Following [1, p. 397], a compact nowhere dense set ¢ in the complex
plane is called an R-set if and only if CR(¢) = C(s). For properties of
R-gets used in the sequel see [1, p. 398] and the references there given.

3.1. THEOREM. Let S € B(X), then the following equivalent con-
ditions are necessary in order that S be of scalar type:

3.1.1. There exists a constant H < o such that for every f € R(a(S))
IFACHI = Hgﬁg [FO1 = HIF(S) s, = H I [[ £(S)"[[" .

3.1.2. There exists a constant K < o such that for every f € R(a(S))
HFS)IF < KIFESY .

If X is reflexive and o(S) is an R-set, each of the mentioned conditions

ts sufficient. KEach of the following conditions implies 3.1.1:

3.1.3. For every x € X there exists a constant H(x) (independent
of f) such that for every f e R(a(S))

1/ (S)ell < Hmax | £(©)] - [zl = H@) [1FS) llsp [l -

3.1.4. The same; with h(x), f € R(o(S|[*]) and
1S 1[D < hx) max [ FE)] = ha) | £(S|[2]) Ly

3.1.5. The same; with k(x), f € R(a(S|[x])) and

A S D [ < k(@) [[ASL=]’]] -

3.1.3 is implied by 3.1.1. 3.1.4 and 3.1.5 are necessary if S is of scalar
type and satisfies the following condition :

3.1.6. If E 1is the resolution of the identity of S, x € X and g € B,
then

E(o)x € [x] .

Proof. For the equivalence of 3.1.1 and 3.1.2 see [9, p. 78] and for
the necessity see the beginning of the proof of [6, Th. 13]. If one of
them holds, then 2(S) is equivalent to CR(0(S)), hence if ¢(S) is an
R-set, to C(a(S)). Therefore if X is reflexive, S is of scalar type by
[6, Th. 18 (IV)]. Since, from 1.5.2, 4(S|[z]) € ¢(S) and || f(S)x]| <
F(S|[x])] - ||x]l, the equivalent conditions 3.1.4, 3.1.5 imply 3.1.3. The
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proof that 38.1.83 implies 3.1.1 is much like the proof of the uniform
boundness theorem. 3.1.3 and Baire’s category theorem imply that at
least one of the sets

G,={z e X[ /)] <FUfO)ll2ll, feR(@(S)} 7=1,2---,

let it be the nth, contains a sphere {x ¢ X||lz — x,|| <7}, r > 0. 3.1.1
then easily follows with H = n(2|| «,|| + »)/r. If S is of scalar type
and satisfies 3.1.6, then every [x] is invariant under FE (because if
y € [«], then E(o)x e [y] < [«] by 1.5.3) and S(¢) (by 1.5.2). Therefore,
by 2.5, S|[x] is of sealar type, and the necessity of 3.1.4, 3.1.5, which
are 3.1.1, 3.1.2 for S|[x], follows.

REMARKS. In case the conclusion of 1.2 holds, it may be convenient
to replace o(S|{x]) by o(x) in 3.1.4, 3.1.5. One always has o(z) < o(S|[x]).
By slight modifications in the proof of [5, Lemma 1.10], one shows that,
provided S is spectral, o(x) = o(S|[«]) (for every x) if and only if for
every x and ¢ e p(x), x(¢) € [#]. As remarked after 2.5, this is the
case if 3.1.6 holds.

Taking S as in 2.2, 3.1.1 is obviously fulfilled. By an appropriate
choice of 2 and g, we may achieve that S is not spectral although
o(S) = range of p¢ is an R-set. Thus these conditions fail to assure
scalarity if ¥ is not reflexive.

We conclude the present section with some characterizations of finite
dimensional cyelic subspaces.

3.2. THEOREM. If S 1is of scalar type, satisfies 3.1.6 and x € %,
then the following conditions are equivalent:

3.2.1. [x] is of finite dimension.

3.2.2. WS)x is of the second category in [x] (or x = 0).

3.2.3. For each y € [x] there exists a U(y) € B(X), commuting
with S, such that U(y)x = y.

3.2.4. For each y e [x] there exists a V(y) € B([x]), commuting
with S|[x], such that V(y)x = y.

3.2.5. o(x) 1s finite (equivalent to 8.2.1 by mere scalarity).

Proof. Evidently we may assume x == 0. 38.2.1=38.2.2 and 3.2.3:
Since {f(S)|f e R(a(S))} is dense in 2A(S), A(S)x is a dense linear
submanifold of [x]. By 3.2.1, 2(S)x is of finite dimension; hence closed.
Therefore (S)x = [x], whence 3.2.2 and 3.2.3 follow.

3.2.2 or 3.2.3=3.2.4: Under either hypothesis the set

Z={z=U()x|U() € B(z]), U)S = SU()}
is of the second category in [#]. Suppose f, € R(a(S)), || f-(S)z| =1
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and z € Z. Then {f,(S)z} is bounded since

1 £aS)e |l = [ fa(S)U R || = || UR)F(S) |l
<NU@NFlS)e]l =1 TR .

Therefore, by the uniform boundness theorem, {|| £.(S)|[«]][} is bounded.
Hence, if f. € R(a(S)), ||fa(S)z || =1 and y € [z], then {|f.(S)yl} is
bounded. This shows that there exists a constant ¢(y) < o such that
HFSWI < e f(S)z]], fe R0(S)). We define the transformation
V(y) on {f(S)z|f e R(o(S))} by

V(S = f(Sy .

V(y) is bounded by ¢(y) on a dense linear submanifold of [x]. Therefore
it is uniquely defined, and can be extended by continuity to a bounded
operator on [x]. Evidently, this operator satisfies our requirements.

3.2.4=>3.2.6: We first show that for each y € [x] there exists a
constant ¢(y) such that

E@y] <c@)] E(@x], oeB.

As in the proof of 3.1, S|[x] is of scalar type with the resolution of
the identity E'|[x]. By the commutativity theorem, mentioned in §1,
E|[x] commutes with V(y). Therefore for every Borel set ¢

HE@wl = E@Vyel|l = [(E@)| =DV (Y]
=[[VE@) Dz <[V || E@e] .

This proves our statement. Hence, if we define
G,={yelell|E@y|<jllE@x|l,oceB}, j=12---

we have U,G, = [#]. Since the G,’s are closed, it follows by the usual
category argument that there exists a constant ¢ < « such that

IE@)| =]l < cl| E(o)x]] , g €.

Since the norm of a non null projection is at least 1, it follows that

E(6,)r— 0, 0, € B=> There exists an n, such that F(s,)|[x] =0
for n > n,.

Now, suppose o(x) were infinite. Then we could represent it in
the form a(x) = U;.,0,, where the ¢, are pairwise digjoint, g, € B and
0, <1 are non void sets open relative to o(x) (we omit the easy
proof). From the g-additivity of E in the strong operator topology it
follows that E(o,)x — 0. Hence, by what was proved above, there exists
an m > 1 such that E(s,)r = 0. ¢, = d(x) N 7, where 7 is open in the
complex plane. We have
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E(t)x = E(t)E(o(x))x = E(t N o(x))x = E(o,)x=0.

Therefore E(z')x = x. Since 7’ is closed, 1.2 implies o¢(x) € 7’. Thus
we get ¢, = d(x) N T = ¢, contradicting the choice of g,

3.2.5=3.2.1: Since we assumed x #* 0, we have od(x) + ¢. Let
o) = {¢, +--,¢}. If y e [x] there exist f, € R(6(S)) such that

FAS)x —y. By 1.4, fiS)= S £()E(ds). Using Riemann’s sums ap-
proximating the integral, we get

FASIB@) = SHEVEWED) -

But £.(S)E(o(x))x = f.(S)x; therefore

() SAEEE .
Now
(**) CE({¢)x, § =1, +«+, r are linearly independent:

If S, E({¢,})x = 0, then operating with E({¢,}), we get o, E({¢})x = 0.
But E({¢})x #+ 0 for otherwise

¢ = E(o@)z = E(o(@) — {&H)r + E{GHe = E(o(@) — {6}

would imply by 1.2 the contradiction o(x) € o(x) — {¢x}. Therefore
a, =0. From (**) and (*) it follows by a well known argument that
the sequences {f.(¢;)};-. are bounded; hence compact. Therefore there
exists a subsequence {n,} of the indices such that f, ({,) —a; j=1,
e, . So

v =SB}

The vectors E({¢,}x, j =1, ---, 7, are independent of y, and thus span

[].

4. Applications to unitary operators. To render the results of §3
conveniently applicable, one should know beforehand of an operator that
if it is spectral, it is of scaler type and satisfies Condition 3.1.6. We
shall show that this is the case for a class of operators which includes
the unitary operators in reflexive spaces. We lean heavily on [5]; and
although some familiarity with this paper is assumed in the present
section, it will be convenient to cite the pertinent definitions.

4.1. DEFINITION. Let the spectrum ¢(7') of an operator T € B(%)
lie in a closed rectifiable Jordan curve 7,. Suppose that I, is embedable
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in a family 17, —8,<38<8§, (0<8§,<3), of closed rectifiable Jordan
curves which satisfies the following conditions: I, is interior to /7,
for —8, < 8, < §,< 8, The curve ['; is defined by a function ¢(\, ),
—1 <N <1, with ¢(—1,8) =¢(1,8). As ) increases from —1 to 1, the
point &(\, 8) traces I's in a counterclockwise direction. For different
values of A, the ares ¢(n, 8), —&, < & < §, do not intersect. They are
rectifiable, and | 8| is the length of the subare with endpoints &(x, 0)
and ¢(n,d). Under these assumptions a nonnegative integer-valued
function v(\) satisfying the condition

IEOTEN, <1, 0<]8]<d, —1<r<l,

is called an index function for T.

4.2, THEOREM. If U s a unitary spectral operator, it is of scalar
type.

Proof. This is essentially proved in [5]: It is easy to show that
the spectrum of U lies in the unit circle and that if we embed the
unit circle in the family of circles I';, —4 <8 < 4, defined by
¢y, 8) =1 + 8)e™, —x < A <1, then y(\) =1 is an index function for
U. Since ¢(\, ) has continuous second partial derivatives, and the as-
sumptions of [5, Lemma 3.16] hold, it follows from [5, Lemma 3.18] that

[, (U-0E@) =00 U=[tE@).

4.3. LEMMA. Let S e B(X) be spectral with index function v(\) = 1
with respect to £(\, 8) which has continuous second partial derivatives.
Let X be reflexive. Then E({¢})x € [¢], x € %X, ¢ e [,.

Proof. Let ¢, € Iy, Then ¢, is of the form &, = &(h, 0). It is
shown in the proof of [5, Th. 3.12 (III)] that there is a y ¢ X and a
sequence 3, — 0 such that for ¢, = &(\, 6,) we have

(4.3.1) (&n — EDSER2(—)y -
Further, (4.3.2) (¢, — S)y =0,
(4.3.3) x—ye(—S)X.

y € [x] since, by (4.3.1), it is a weak limit of vectors in [x], hence a
strong limit of their linear combinations {2, p. 134. Th. 2]. (4.3.2) im-
plies, by [6, Lemma 1], E({¢,})y =y. By (4.3.3), there exist z, such
that (¢, — S)#,—y — 2, and by [5, Lemma 3.17] E({¢} )¢, — S) = 0;
therefore E({¢,})(y — x) = 0. It follows that E({¢,})x = y e [x].

4.4, LeMMA. Under the hypotheses of 4.3, if ¢, E e I'y,, & + & and



1042 URI FIXMAN

x € X, then there exist z, € [x] such that E({Z'})E({&})x = limy(S — &)* -
(S - E)zzlc'

Proof. Let ¢, & € Iy, & + &. Then, by 1.5.1, 1.5.3 and 4.3,
u = E({¢,})E({&}")x € [#]. Therefore by 1.5.3 it is sufficient to establish
the representation for u with 2z, € [u]. The argument follows closely
part of the proof of [5, Lemmas 2.6, 2.10]. As in the proof of 4.3, there
exist ¢, — &, such that

(&n — LIS (ER)W(—)E({E})u =0 .
Thus
(&0 — S)SE)u = (€0 — E)SEn)u + u(—)u .

Since S(¢,)u € [4] and since weak convergence to u implies strong
convergence of linear combinations, it follows that there exist wu, € [u]
such that

(4.4.1) & — Su,—>u .
Operating on u, with the identity
(&0 — 8Y8(€a) = (€0 — £*'SEn) + (Co — &a) + (& — S)
and letting » tend to infinity, we get
(4.4.2) (€0 — Shwe = lim (& — SPS(En)us -

But S(¢.)u, € [4,] S [#], hence (4.4.1), (4.4.2) show that there are
v, € [u] such that

(4.4.3) & — Syvy,—u.
Operating on (4.4.3) with E({&}"), we get
(4.4.4) (& — SYE({&} v —u .

But by 4.3 E({&}")v, € [v:] < [u]; therefore, by what has been proved
thus far, E({&}')v, is of the form

(4.4.5) E({&} )0, = lim (& — S) V4, » Vin € [u].

From (4.4.4), (4.4.5) our lemma follows.
4.5. THEOREM. If S is a spectral operator which satisfies the as-
sumptions of 4.3, wn particular if S is a spectral unitary operator in

a reflexive space, then it satisfies Condition 3.1.6.

Proof (After [5, Th.2.11]). Since E(@)=E@wWnI[rl,), ¢ € B, and
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since E is o-additive in the strong operator topology, it suffices to show
that E(o)x € [#] for o the closed proper subarcs of I',. Let & = ¢(),0),
E=1¢(1,0), M # o, be the ends of the arc

6 El= fe@ 0| v<a<pif x< g ag @it #<A) .

We show that E([¢, £])x € [x] (the case M = ¢ cared for by 4.3). Since
I'=E({¢}) + E({&) + E({¢})E({€}), we have

E((¢, &De = E({ehr + E({&)e + E(s, ENEW{SIE{E ) -

By 4.3 we have to show that E(¢, £])u € [«], where w = E({¢}")E({£}')x.
But by 4.4 there exists a sequence z, € [«] such that

E([g, EDu = lilfn E{g, EN6S — XS — &)z -
Thus we have only to show that z e [x#] implies

E([g, ENS — (S — &)z e [«].

Let ¢, =¢(\, 0), &, = (., 0), where the sequences )\, — N\, f, —
are so chosen that if A < p¢ then A\, <\ < < p,, while if ¢ <\ then
U<ty <Ny <A It is shown during the proof of [5, Th. 2.4] that,
since S has 1 as an index function, (S — £)X(S — &)* is of the form

(4.5.1) (S = (S — & = lm (I(, ) + I(ttay M)

where I(a, 8), —1 < a,B <1, a #+ B, are certain operators, the manner
of definition of which is explained in [5, Lemma 2.4], which enjoy the
properties:

(4.5.2) I(a, B)x] < [x] (I(c, B) being a line integral of S(¢)).
(4.5.3) o(l(a, B)y) < [5(a, 0), (B, 0)], ¥ € X [5, Lemma 2.4].

Let z € [x]. Then, by (4.5.1),

(4.5.4) E([5, ENS — (S — §%
= lim (B (g, (N 2 + B[, EDI(th Xa)2) -

But by (4.5.3) a(I(\, p)2) C [&, €], (I (s Mo)?) S [, &,] and hence by
1.2 E(g, DI, )z = I(\, p)z and

E(g, EDI(ttn, M)z = E([&, ENE((&r) &) () Ma)2
— B@I(tt M)z = 0.
Thus (4.5.4) takes the form
E([g, ED(S — (S — &%= = I(\, 1)z,
and we may conclude E([&, E)(S — £)X(S — &)= € [x] from (4.5.2).
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Generalizing the Hilbert space terminology, a two sided sequence of
vectors {x,}r._.. is called stationary if and only if the norm of any
finite linear combination >\%.,a,x;., is independent of h. If U is a
unitary operator in X and # € ¥, then the sequence {U"x};._.. is station-
ary. Conversely, if {x,};._. is stationary and 9 is the subspace spanned
by this sequence, there exists a unique operator U € B(J) which satisfies
Ux, = ,,,, an integer. U is unitary in ¥ and is termed the shift
operator of {x,}. We call a stationary sequence spectral in case its
shift operator is spectral.

The final statement of the following theorem replaces the problem
of characterization of reflexive spaces every unitary operator of which
is spectral by that of characterizing spectral stationary sequences. This
““local’’ form of the problem seems more appropriate since the spectrality
of every unitary operator in a space ¥ may depend not on ‘‘regular’’
properties of ¥ but on an irregularity which renders the class of unitary
operators very sparse.

4.6. THEOREM. Let U be a unitary operator in X. Then conditions
3.1.1, 3.1.2 and 3.1.8 are necessary in order that U be spectral. If X
1s reflexive, then each of the conditions 3.1.1 to 3.1.5 is mecessary and
sufficient; and vt s sufficient to let f in these conditions range over
polynomials. For a reflexive X, U 1is spectral if and only if every
stationary sequence it gemerates 1s spectral.

Proof. The first statement follows from 4.2. and 3.1. It follows
from 4.5 and from the fact that o(U), being a subset of the unit circle,
s an R-set that if X is reflexive, all the parts of Theorem 3.1 are ap-
plicable. Let g € R(o(U)). Using Cauchy’s integral formula, it may
be proved that there exists an admissible domain 7 (in the sense of

[4, Def. 2.2]) which contains ¢(U), such that ¢ is uniformly approximable
on 7 by functions of the form

Mo =3, —1

, A U
TN ; € p(U)

(r may depend on g, but not on the approximants. Cf. [1, p. 398]).
Since o(U) is contained in the unit circle, we may assume, diminishing
7 if necessary, that the complement of 7 is either connected or consists
of two components at most, one of which contains the point £ =0. In
either case it follows from [13, p. 47, Th. 15] that the functions #, and
hence ¢, are uniformly approximable on 7 by polynomials f in ¢ and
¢~'. Thus these polynomials form a dense subalgebra of E(c(U)), and
by the continuity of the functional calculus, the corresponding f(U)’s
are dense in {g(U)|g € R(o(U))} in the uniform operator topology. From
the proof of 3.1 it is seen that we may replace R(a(U) and R(a(U | [«]))
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by any subalgebra of R(¢(U)) with these properties. Since U is unitary,
the conditions of 8.1 remain invariant if the involved functions are
multiplied by ¢*, k an integer. Therefore polynomials in ¢ will do.
Finally it follows from what has been shown above that the subspace
spanned by a stationary sequence {U™x}7._.. is [#]. Thus the final
statement follows from the fact that 3.1.4 is the same as 3.1.1 for the
shift operator.

5. Examples of non spectral unitary operators. Let £ be a com-
pact Hausdorff space. The unitary operators in C(2) are the operators
of the form (Ux)(w) = p(w)x(Mw)), w € 2, where k is a homeomorphism
of Q on itself, ¢ e C(2) and |p(w)| =1. This is proved in [12, pp.
469-472] for the real case, but the proof can be modified to apply to
the complex case too by the use of an argument of Arens in a similar
situation (v. [9, p. 88]). The following theorem treats only the case that
h is non-periodic; for the case that % is the identity mapping Cf. Example
2.2 above.

5.1. THEOREM. Let Q be a compact Hausdorff space, and let U of
the form (Uzx)w) = o)x(M(w)) (k, tt as above) be a unitary operator in
C(2). If h is nonm-periodic, then U is not spectral.

Proof. By 4.2, 3.1 and the fact that ¢(U) is contained in the unit
circle (actually, coincides with it), it is sufficient to show that there
exists no finite constants H such that

(6.1.1) llFONI< Hflrglixlf(é)l, f a polynomial in ¢.
Let us caleulate || F(U)ll. If f(&) = S l®, then

(6.1.2) (f(U))(w) = kngo a @) e(h(w)) ,

where A% denotes the kth iterate by substitution of A(h“(w) = w). By
hypothesis there exists an w, € 2 such that the points A%(w,), k = 0, 1,
..., are distinct. Since Q is Hausdorff, there exist pairwise disjoint
open sets w,, k=20,1,.--,n such that A%(w,) € m,. Since a compact
Hausdorff space is normal, it follows by Urysohn’s lemma that there
exist functions y, € C(2) such that y,(h"(w,)) = 1, y(w) = 0 for w € 7}
and 0 < y(w) <1 on 2. We define xz, € C(2) by

z(w) = kgﬂ sgn (@) )yx(@) .
Substitution in (5.1.2) gives
(FU)m@) = 3 law@) | = 3ol .
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Since || 2| = 1, || £(U) || > Sio| @] (actually || f(U)|| = Stoo] @, ]). The
necessary condition (5.1.1) now takes the form: there exists an H <
such that for every polynomial f(¢) = Sr_a,.",

Silen| < Hmax | £©)] -

To contradict this statement we use the following example of Hardy
[8, §14]. The series

converges uniformly for |¢| = 1, while the sum of the absolute values
of its coefficients diverges. Therefore the polynomials which form its
partial sums furnish us with the required counter example.

5.2. THEOREM. In each of the sequence spaces 1, 1<p< oo,
p # 2, there exists a non spectral unitary operator.

Proof. If U is a unitary spectral operator in ¥, then necessarily
[5, Assumption 1.14]:

(5.21) MWU)=sup{lzllz,yeX llz+tyll=10x) Ny =¢} <.

This follows from the boundness of F by 1.2. Even if U is not spectral,
the conclusion of 1.1 holds because g(U) is nowhere dense; and thus
o(x) and M(U) are definable. We show that in each of the considered
spaces there exists a unitary operator U with M(U) = oo.

Let p, 1< p < oo, p+#2 be given. We denote by X, a space of
the type 1,, or I, (the last possibility is needed only for the remarks
made after the theorem). If {¥,};, is a sequence of such spaces, we
denote by 3.5, 6P X, the Banach space of all sequences {x,} with z, e ¥,
and

Hadll=(Slolr)” <o G p=o, || (@} = sl < ).

If for each j, T, € B(%X;), we denote by 3.7, @ T, the transformation T
defined on (part of) >'5.. D%, by T{x,} = {T,x,}

53. LEMMA. If X =332, PX, and for each j U, is a unitary
operator in X;, then U= 37, D U, is a unitary operator in X and
M(U) = sup,M(U,).

Proof. That U is unitary is obvious. If x, e X, for a definite j,
we denote by x} the vector {y,} € X defined by vy, = x,, ¥, = 0 for k + j.
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Since the operation * is linear and norm preserving, (& — U,)x,(¢) = =,
for ¢ e pUy(x,) implies (¢ — U)x,(0)* = ¥ where x,(¢)* is analytic on
p,,j(oc,). Therefore o,(x}) < Oy (). It is obvious how to complete the
proof,

Since !, is linearly isometric to > 5., P L, ; where n, are arbitrary
natural numbers, 5.3 shows that we have only to find indices %, and
unitary operators U, in Iy, such that sup, M(U,) = . Let ¢, j=1,
+++,m, be the natural basis of [,,. Henceforth U, will denote the
unitary operator in [, , determined by the requirements U,p, = @, 1moan-
The following lemmas will show that sup, M(U,) = «, which will finish
the proof.

We now use tensorial products asin [10]. If x = (%, «--, 2,) € I, .
Y=Yy, ***Yn) € lpm, We define x ® y to be the vector (xy, 2.y, -,
TYms Y1y Tlar %y Tolms ** 5 Loty Tulfay * =y Lu¥m) OFf Ly . This is a Kro-
necker product [7, p. 208], and the norm is a cross norm with respect
to it, that is |[|2®wy ]| =|l2ll||y|l. The tensorial product of linear
operators, Tin l, , and Sin [, ,,, is uniquely defined by the requirements

(TRS)r®y) =Te R Sy.

5.4, LEMMA. If T, S are linear operators wn 1,.,, 1, .. respectively,
then orps(x @ y) = {10 | 7 € 04(%), 0 € os(y)}.

Proof. If T is an operator in a finite dimensional space and f is
the minimum polynomial of x with respect to 7', then o,(x) is the set of
zeros of f (cf. [5, p. 589]). We may assume that neither ¢,(x) nor g4(y)
is empty since this case is trivial. In case o.(x) = {1}, o4(y) = {6} the
minimum polynomials are of the respective forms (¢ — %), (¢ — 6
(t, s > 1). By induction on ¢ and s and use of the identity

(TR®S—7)x®y) = (T -8y + 7S — 0y,

one shows that the minimum polynomial of z %) ¥ with respect to T X S,
is of the form (¢ — 70)", r > 1, and therefore o,5s(x X ¥) = {70} (actually
we need only the case ¢ = s = 1). In the general case o,(x) = {1, <+, Yu}»
os(y) = {0,, ++-,0,} we have by the finite dimensional case of the spectral
theorem ({4, § 1] or [7, p. 132]) the resolutions xz = &, v = 5.9y
where oy(x;) = {7}, os(y,) = {0,}. Let {nd|n e g,(®), 0 € g4(y)} =
{k1, =++, &} and let 2z, be the sum of the vectors x;® y, such that
0.0, = k.. Since the z,’s are linearly independent and the y,’s are dif-
ferent from zero (by our assumption x #+ 0, ¥ == 0), it follows that z, = 0.
Therefore, by the case of one point spectra, o,5s(%;) = {£:}. Since
2 QY = D2 and since the minimum polynomial of a sum of vectors
with minimum polynomials relatively prime in pairs is their product
[7, p. 68], the statement of the lemma follows.
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5.5. LEMMA. If (m,n) = 1, then M(U,,) > M(U,)M(U,).

Proof. U,Q U, is determined by requirements of the form
(U, ® U,)p; = @,r, where @,, 1 < j < mm, is the natural basis of 1,,,
and 7 is a permutation of the indices. Since (m, n) =1, 7 is eyelie, and
it is easily verified that there exists a unitary operator V in [, ,, such
that U,, = V(U,® U,)V-!, which implies that M(U,,) = M(U, R U,).
Since 1, , is of finite dimension, there exist vectors x®, y® satisfying:
0y, (#P) N 0y (Y®) = ¢, [P +y@ || =1 and [|2P|| = M(U,). Leta®,
y® play a similar role with respect to U,. Consider the vectors
=0 R, y=20RyY® +y® Q@ + y® Qy®. Since a(U,) is
the set of roots of unity of order =, 0y () and oy, (y©) are sets of
roots of unity of order n. Similarly for o, (x®) and o7, (Y®). Since
(m, n) = 1, the representation of a root of unity order mmn as a product
of a root of unity of order n by one of order m is unique. Therefore
it follows from 5.4 that 0v,e0, (%) N Oy go, (y) = ¢. By the cross property
of the norm [+ vyl =[@® + y) @ (@ +y®)||=1 and ||a| =
[e® @ a® || = M(U,)M(U,). Thus M(U,) = M(U,& U,) > M(U,)M(U,).

5.6. LEMMA. For every given p, 1 < p < o, p +# 2, there exist an
7 > 1 and positive integers k and m, such that M(Uyy+,) > 1) for m > m.

Proof. By calculating the eigenvectors of U,, one shows that the
vectors x = (x,, -+, ®,) with a,jn(oc) disjoint from ovn(y), where y = (1,
1, --+,1), are those which satisfy 3, «, = 0. Thus

MU, > sup{” ”+ ay”'Zx, =0, a arbltrary}

For 2<p< o we chose x=(1, -+-,1, —m/(n — m), +--, —m/(n — m),
where 1 is repeated m times, and

( m >(p—2)/(p—1) _1
n —m

1 n (n ;nm)l/(p—l)

Then if n =km + 1, k > 2 and

S (1]
'z + ay|P?

tends to
1 + tVe-D)(1 4 t1-7)
(V@D 4 ¢--DIG-DY t(t_’t"ly
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where t = k — 1. Although the last expression tend to 1 as £t — oo, it
is not difficult to verify that it is greater than 1 for all sufficiently large
values of ¢; hence a suitable integer k =t + 1 can be found. The case
1 < p < 2 follows by duality: If 1/p + 1/q =1 then M (U,), where the
subseript indicates that U, is to be considered as an operator in [, ,, is
the maximum of the norms of the values of the resolution of the identity
E of U,. The resolution of the identity of U} = U;' is E. Therefore
M, (U = M (U,). But U, is unitarily equivalent in [, , to U,*. There-
fore M,(U,) = M (U,); and since 2 < ¢ < o the lemma is true in this
case too., If p =1, we may takex = (1, «--,1, —n + 1), a = —1; while
if p = o, we take the same z and a = »/2.

Finally to see that 5.5 and 5.6 imply sup, M(U,) = o, we have only
to use the fact that each sequence a,, = km +1, m =1, 2, .-, containg
an infinite subsequence of pairwise prime integers. As pointed out by
Dr. Dov Jarden such a subsequence is obtained by defining inductively
My =1, Mys1 = Qp Qe+ Oy

REMARKS. For p =1, o the proof of 5.2 yields unitary operators
which are not even prespectral. It applies also to subspaces which
contain all finite sequences. It also follows from 5.2 that if Q is a
measure space which is not a finite union of atoms, then there exist
non spectral unitary operators in the space L,(2), 1 <p < oo, p+2.
An operator U in l,, 1 <p < o, p=# 2, is unitary only if determined
by Up, = M@y, 5 =1,2,---, where {p,} is the natural basis, 7 a
permutation and |\,| =1 ([2, p. 178]. The proof goes easily over to
the complex case). We decompose 7 into disjoint cycles (including the
possibility of infinite ‘‘eycles’’) and consider the unitary operators induced
by U in the subspaces spanned by the ¢,’s with 5 belonging to a definite
cycle. One shows that M(U) = sup M(V), where V runs over the
induced operators. Moreover, if we change the )\,’s into 1 and the cycle
of V into a standard one, we obtain an operator W with M(W) = M(V).
Hence Condition (5.2.1) depends only on the length of the cycles deter-
mined by #. From Theorem 5.7 it will follow that if in particular at
least one of these cycles is infinite, (5.2.1) does not hold. On the other
hand, it follows from [5, Th. 8,11, Th. 3.12 (III)] that this condition is
sufficient for spectrality of U if 1 < p < oo.

5.7. THEOREM. Let l;, 1<p<L oo, p+2 be the space of two-
sided sequences {a,}7_.. with the obvious norm. Let ¢p;, —oo < jJ < oo,

be the natural basis of l_p and U the wunitary operator defined by
Up; = @4, Then U s mot spectral.

Proof. To facilitate the writing we assume p < ., From the proof
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of 4.6 through [6, Th. 18 (IV)] (cf. 3.1), it follows that if H(U,) is the
infimum of possible constants in Condition 3.1.1 for polynomials, then
MU, < H(U,). Let K be a positive number. Then by the proof of
5.2 there exists an » such that M(U,) > 2K, and therefore there exists
a polynomial g such that ||g(U, || > 2K maxs_,|g(¢)|. If f is a poly-
nomial, £(U,) depends only on the values f assumes at the nth roots of
unity, and in a continuous manner. Therefore, by the approximation
theorem of Weierstrass, there exists a polynomial f(¢) = >.i-083:C" such
that [|f(U,) |l > 2K maxen, | f(¢)| and 2maxen., | f(5)]| > maxy .| f(E)];
hence || £(U,)|| > K max;.,| f(¢)|. Identifying I,, with the subspace of
I, spanned by ¢, - -+, ¢,, We see that there exists an x» = 3%_,&,¢, such
that

(5.7.1) %)'“—” > Kmax|£(¢)| -

It will simplify the notation if we assume, as we may, that the formal
degree s of f is of the form s = rn, r > 1. Let ¢ be a positive integer
and consider the vector &' = > LS APty - Lhen

7+ n

(5.7.2) FOR =35 3Bt Pnsinesen

=
o o

"+

= 2 i (Z Bkaj)Q(u—l)n—H;

u=1 v=1

)
¥

where the inner summation in the r.h.s. extends over the pairs j, k
satisfying (m — 1)n +5+k=wm — )n + v, where 1 <j<n, 0<k<
s=7rnand 1 <m < »r -+t On the other hand

(5.7.3)  fUJe =3 SN Btpmcman = 3 (5B

where here the inner summation is over the pairs j, k satisfying
7+ k = v(mod n) with the same inequalities. For r +1<u <r -+ ¢,
the coefficient of @(,-1yns, in (5.7.2) equals the coefficient of ¢, in (5.7.3).
Therefore

(5.7.4) A || = 7 || f(Un)z |},
and on the other hand

(5.7.5) [[&" ]| = (r + )| =]] .
(5.7.1), (6.7.4) and (5.7.5) imply

17 @) > () " Kmax| 7 @)1

Letting ¢ tend to infinity, we get || f(U)|| > Kmax|f(¢)|. Since K is
1g1=1
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arbitrary and o¢(U) is contained in the unit circle, this shows that U
does not satisfy Condition 3.1.1; hence it is not spectral.
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UNIFORMIZABLE SPACES WITH
A UNIQUE STRUCTURE

I. S. GAL

Here we shall study only uniformizable Hausdorff spaces. In general
if a topological space X is uniformizable then there are many uniform
structures 2/ compatible with the topology of X. If X is compact then
there is only one uniform structure for X and there are also non-compact
spaces whose structures are uniquely determined by their topology. (See
[1] and [2].) The purpose of this note is to give a necessary and
sufficient condition that 7/ be uniquely determined by X. Let C(X) be
the algebra of bounded real valued continuous functions on X and let
C(X) be topologized by the topology of uniform convergence on the whole
space X. By A(X) we denote the subalgebra of those real valued con-
tinuous functions which are constant on the complement of some compact
set in X. We shall prove the following

THEOREM. The uniformizable Hausdorfl space X admits only one
uniform structure if and only if A(X) is dense in C(X).

Another necessary and sufficient condition for uniqueness was found
earlier by R. Doss [3]: The closed sets C, and C, are called normally
separable if there exists a continuous real valued function f on X which
takes the value 1 on C, and the value 2 on C,. Doss proved the follow-
ing:

Uniqueness takes place if and only if of any two normally sepa-
rable sets at least one 1s compact.

The following proof of the Theorem makes no use of this criterion
given by Doss. However at the end it will be proved that the criterion
stated in the Theorem and the criterion due to Doss are equivalent.
This gives a new, simpler proof of Doss’s theorem. Approximately at
the same time when [3] was published P. Samuel in [5] and T. Shirota
in [6] proved that

Among the uniform structures compatible with the topology of X
there is a weakest 1f and only if X is locally compact.

The two halfs of this theorem are stated as of Lemma 3 and Lemma
6 below. Their proofs are independent of the rest of the paper and so
they furnish a simple proof for the Samuel-Shirota theorem.

A space X is said to be normally imbedded in the space Y if every
real valued continuous function on X admits a continuous extension to
Y. If this property is supposed to hold only for bounded functions one
speaks about a bounded mormal imbedding. E. Hewitt in [4] proved
that

Received December 24, 1958.
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The Hausdorff space X is normally imbedded in every wuniformi-
zable space containing X as a dense subspace if and only if of any two
disjoint sets at least one is compact.

Among all uniform structures compatible with the topology of a
uniformizable space X there is a strongest called the Weil structure or
the universal structure of X. Its existence follows from the fact that
the union of all uniform structures compatible with X is a subbase for
a uniform structure which is compatible with X. The Weil structure
%, 1s uniquely determined by the following property: If 27 is a uniform
structure for Y and f: X — Y is continuous with respect to the topology
of X and the uniform topology associated with 9#” then f is uniformly
continuous with respect to %5 and %¥°. In general %5, is not a
precompact structure.

Let X satisfy the criterion given by Doss and let 2/ be the unique
structure compatible with its topology. The uniqueness implies that &
is identical with the Weil structure of X. Let X be a dense subspace
of the uniformizable space Y and let " be a uniform structure for Y.
The restriction of 7~ to X is the Weil structure of X and so every real
valued continuous function f on X is uniformly continuous with respect
to 7. Consequently f can be extended to a uniformly continuous func-
tion on Y and so X is normally imbedded in Y. Thus by Hewitt’s
theorem one of any two disjoint closed sets of X must be compact.
Combining the present Theorem with the theorms of Doss and Hewitt
we obtain:

Any two of the following statements are equivalent:

(i) X has a unique uniform structure.

(ii) If C, and C, are normally separable closed sets wn X then at
least one of them is compact.

(iii) If C, and C, are disjoint closed sets in X then at least ome
of them 1is compact.

(iv) A(X) is dense in C(X).

(v) X is normally imbedded in every uniformizable space contain-
wng X as a dense subspace.

We omitted the analogue of (v) concerning bounded normal imbed-
dings. For we have:

If X has a unique uniform structure then every real valued con-
tinuous function is bounded on X.

This follows from Lemma 1 below. Using (iii) one can also prove
that any two disjoint closed sets are normally separable.

The following notations will be used: Open sets will be denoted by
O, closed sets by C, neighborhoods by N, and open neighborhoods by
0,. For the closure of a set A we write A and c¢A stands for the com-
plement of A with respect to a given set containing A. Uniform strue-
tures will be denoted by %, &, ---; the completion of a uniform space
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X with respect to a structure 2/ will be denoted by X and the complete
structure will be denoted by 2. As usual Uo V is the composition of
the vicinities U, Ve 2 and Ulxl=1{y: (x, y) e Ul. If Z;, t e I)
are uniform structures for X then lub %, denotes the uniform structure
generated by the subbase U %;. It is the weakest structure which is
stronger than any %/ (¢ € I). If £ is uniformly continuous on X then
7 denotes its extension to X. The structure %/, used in the proof of
Lemma 5 is the so-called Cech structure which was introduced by
Samuel in [5]. The fact that the definition given in [5] is equivalent
to the present simpler definition follows from Lemma 4. %/ is the
strongest precompact structure compatible with the topology of X and
its completion is the Stone-Cech compactification B8X.

LEmMA 1. If A(X) is dense in C(X) then every uniform structure
% compatible with the topology of X is precompact.

Proof. This follows by a simple argument which is used also in
[3]: Suppose that X is a topological space and </ is a non-precompact
structure compatible with the topology of X. Then there is a symme-
trie vieinity U € 2 and a sequence of points x,, «,, --+ in X such that
(Zm, %,) € U only if m =n. We choose a symmetric V € 7 satisfying
VoV c U and a symmetric W € & satisfying Wo W< V. Since X
is completely regular there is a real valued continuous function f, on X
with the property that |f.(x)| <1 for every z € X, the closure of
Wiz,] is a support of f, and f,(x) = + 1 according as n is even or
odd. By Wo W C V the closure of WJx,] is contained in V[x,] and
by VoV < U the sets V[z,] and V[z,] intersect only if m = n. There-
fore the series 2Xf,(x) contains for each x € X at most one non-
vanishing term and it defines a bounded continuous function f on X.
Neither {z,, x,, «++} nor {x,, x, ---} is compact and so f can not be
approximated uniformly on X by elements of A(X). Hence the existence
of non-precompact structure implies that A(X) is not dense in C(X).

LemmA 2. If A(X) is dense in C(X) then X is locally compact.

Proof. Let O, be an open neighborhood of the point x € X and let
f be a real valued continuous function on X such that 0 < f(¢) <1 for
every £ e X, f(x) =1 and f(§) =0 if £ ¢ O,. Since A(X) in dense in
C(X) there is a continuous function g which is constant on the complement
O of a compact set C and is such that | f(§) — g(€) | < ¢ for every & € X.
If N,=1[& f(§) 21 — €] is a subset of C then N, is a compact neigh-
borhood of x. If this is not the case then O and N, have a common
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point £&. Then for every 7 € O we have

O =gm) —e=g@E) —e>fE) —2>1—38>0

and so » € 0,. Since O € O, where C = ¢O is compact we see that the
complement of O, is compact. If this is the situation for every open
neighborhood O, of « then X is compact. Hence either NV, is a compact
neighborhood of 2 for every « € X or X is a compact space.

Let f map X into Y and let " be a uniform structure for Y.
The sets f=%(V) = [(xy, %,) : (f (&), f(x)) € V]I(V e ) form a base for a
uniform structure %/ for X, called the inverse image of ¥” under f.
If f is a real valued function on X and %" is the usual structure of the
reals the inverse structure will be denoted by %/,. It is a pseudo-metric
structure which is generated by the pseudo-metric d (., 2,)=| (@) —f(x,)].
If f is bounded then %/, is precompact. If {f} is a family of real
valued functions on X we call lub %/, the uniform structure generated
by the family {f}. Every fin {f} is uniformly continuous with respect
to lub %,. Moreover if 7/ is a uniform structure for X and if every
fin {f} is uniformly continuous with respect to % then lub %/, < Z.
If every f € {f} is bounded then lub %/ is a precompact structure for
X. These simple consequences are presented in greater detail in Chapter
IX of [1].

Some interesting uniform structures are structures generated by
families of real valued functions {f}. For example let X be locally
compact and let {f} be the family A(X). Given x € X and a compact
neighborhood C, of x there is a real valued continuous function f on X
such that f(z) =1 and C, is a support of f. Hence C, is a neighborhood
of x in the uniform topology associated with %/,. It follows that
7y = lub %/, is compatible with the topology of X. Every f e A(X)
is constant on the complement of a compact set and so it is uniformly
continuous with respect to any uniform structure <~ which is compatible
with X. Therefore v < & and so & is the weakest structure compa-
tible with the topology given on X. Hence we proved the following
lemma, which incidentally is an exercise in [1]. (See Chap. IX. p. 16
Exercise 11.)

LEMMA 3. If X is a locally compact Hausdorff space then there is a
weakest uniform structure which is compatible with the topology of X.
It is the uniform structure gemerated by the family A(X).

The weakest structure if it exists is necessarily precompact. Now
we show that every precompact separated structure can be generated by
families of real valued functions. For let 2/ be a precompact separated
structure for X and let X be the completion of X with respect to % .
The completed structure will be denoted by 2. Let %7 denote the
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uniform structure generated on X by the real valued function f given
on X. It is clear that the restriction of %% to X is the same as the
structure 7/, generated on X by the restriction f of f to X. More
generally if {f} is a family of real valued functions on X then the
restriction of lub %5 to X is the structure lub %/,. If {f} is the
family of all real valued continuous functions on X then lub w7 is
compatible with the topology of X and so by the compactness of X we
have 7 = lub %j. Therefore % = lub %/, where {f} is the family
of the restrictions of continuous functions f to X. Since f is the re-
striction of some f if and only if f is uniformly continuous with respect
to 2 we have

LEMMA 4. FEwery precompact separated structure 7/ is generated
by the family of those real valued functions which are uniformly con-
tinuous with respect to 7.

The topology of uniform convergence on X is meaningful on the
linear space L of all real valued functions on the set X: The e¢-neigh-
borhood of 0 consists of those funetions f on X for which supr | f(x) | < e.
Let A, CC L and let A be dense relative to C. By %/, and %, we
denote the uniform strutures generated by the families A and C,
respectively. Then for every ¢ € C and ¢ > 0 there is an a € A such
that |a(x) — ¢(x) | < ¢/4 for every © € X and so

[(@, ¥): | e@) — c() | < €] 2 I:(ac, ): (@) — aly) | < _52_]

This implies that every vicinity of %/ contains a vicinity of %, so
that 7z, < #/,. If in addition A < C then 7, < %/, and so we have

LEMMA 5. If A is dense in C then they generate the same uni-
Jorm structure.

Now it is easy to show that if A(X) is dense in C(X) then there
is only one uniform structure which is compatible with the topology of
X: By Lemma 2 the space X is locally compact and so by Lemma 3 it
has a weakest uniform structure %/, which is compatible with its
topology. By the same lemma %/, is generated by A(X). It will be
sufficient to show that %/, is identical with the Weil structure %/, of
X. By Lemma 1 %/, is precompact and so by Lemma 4 it is generated
by the family of those real valued functions on X which are uniformly
continuous with respect to %/,. By the precompactness and by the
definition of %/, this family is C(X). Since A(X) is dense in C(X) by
Lemma 5 they generate the same structure, that is %, = %. This
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proves the sufficiency of the condition given in the Theorem.

Now we shall prove that the condition stated in the Theorem is
also necessary. First we suppose that X is a locally compact Hausdorff
space. Let X = X U {} be the Alexandroff compactification of X and
let 7/, be the uniform structure obtained for X by restricting the unique
structure of X to X. We prove that a real valued function f is uniformly
continuous with respect to %/, if and only if f belongs to the uniform
closure of A(X). For compact X this is obvious so we may assume
that X is not a compact space. Since the elements of A(X) are uniformly
continuous with respect to any structure compatible with the topology
of X the same holds for the elements of its closure A(X) and so it
will be sufficient to show that if f is uniformly continuous with respect
to 7/, then f e A(X). However if f is uniformly continuous with
respect to 7/, then it has a continuous extension f to X. By the con-
tinuity of f at o« for every ¢ > 0 there is a compact set C c X such
that | f(x) — f(o0) | < ¢ for every « ¢ C. Let O be an open neighborhood
of C which does not contain . Since X is normal there is a real
valued continuous function g on X which takes the value 1 on C, vanishes
outside of O and satisfies 0 < g(¥) <1 on X. Then h = (f — f(x))g +
F(co) belongs to A(X) and is such that | k(x) — f(x)| < ¢ for every z ¢ X.

Let us now suppose that A(X) is not dense in C(X). Then there
is an f e C(X) which is not in A(X) and so it is not uniformly con-
tinuous with respect to %/,. Since every element of C(X) is uniformly
continuous with respect to the uniform structure %/, generated by C(X)
we see that %/, and %, are distinct structures compatible with the
topology of X. This proves the necessity of the condition in the case
of locally compact spaces.

The proof of the Theorem will be completed by showing

LemMMA 6. If the uniformizable Hausdorff space X is not locally
compact then there is no weakest among the uniform structures which
are compatible with the topology of X.

Proof. First we notice that if X is a Hausdorff space and if
the Hausdorff space X is a compactification of X which contains only
finitely many more elements than X then X is locally compact. Now
let 2 be a uniform structure which is compatible with the topology
of the uniformizable Hausdorff space X. We assume that X is not
locally compact. Let B denote the family of those bounded real valued
functions on X which are uniformly continuous with respect to 2 and
let &~ be the uniform structure generated on X by B. Then 77 is

precompact and is not stronger than %/. Let X be the compact comple-
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tion of X with respect to %#°. By the foregoing remark X — X is an
infinite set. We consider the space Y obtained from X by identifying
a finite number of distinct points ,, «+-, 2, (n > 1) of X — X. The
identification space Y will be compact and separated, so it has a unique
uniform structure whose restriction to X will be denoted by 9#~. Then
Y is the completion of X with respect to <#~ and X is the completion
of X with respect to #°. By Lemma 4 both o~ and <7 are generated
by their families of real valued uniformly continuous functions. A real
valued function is uniformly continuous with respect to <7~ if and only
if it is uniformly continuous with respect to & and its extension to
X assumes the same value at z,, ---, #,. Hence X being separated
there are real valued functions on X which are uniformly continuous
with respect to 2 but not with respect to o#~. Therefore o7 <7 <z
and so X has no weakest structure compatible with its topology. Lemma
6 and the Theorem are proved.

We finish by proving that the condition given in the Theorem is
equivalent to the condition of Doss. First suppose that A(X) is dense
in C(X). Let C, and C, be normally separated by f. We may assume
that 0 < f(x) <1 for every z € X, fis 0 on C, and 1 on C,. We choose
a g € A(X) satisfying |f(x) — g(x)| < e < % everywhere on X. Let g
be constant on the complement of the compact set C. If this constant
value is neither 0 nor 1 then both C, and C, are compact. Otherwise
we may restrict ourselves to the case when C is a compact support of
g. If x ¢ C then g(x) =0 so f(x) < cand ¢ € Cp. = [x: f(x) < €]. Therefore
¢cC < Cp. €cCe =[2:f(x) <1 — ¢]. This shows that C,=[z: f(x) =11 C
and so C, is compact.

Next we suppose that X satisfies Doss’s condition. Let f e C(X)
and & > 0 be given. We consider the closed sets C, = [z : | f(x) — ke | < 4]
where £ =0, 1, + 2, ..., Their union is X. Any two of the sets
Ch k=0, £1, +2,...) are normally separable so at most one of them
is not compact. Similarly at most one of the sets C,i (k=0, =1, £2,+-+)
can be non-compact. Moreover if C,, and C,,,, are not compact they
must have common points and so

Co U Cyppuy = [oc : e(m - —i:) < flw) < a(m + —g—)}

for some m. We define

f(x) if x e Cpand k<m
g(x) ={ e(m — %) ”fo e Cy U Cyuyy
fxy—¢e¢ ifxeC,and k>m+ 1.

Then | f(x) — g(x)| < ¢ for every # € X and g € A(X) because f being
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bounded there are only finitely many non-void sets among the sets C,.
If only C,, or only C,., is non-compact the construction is similar.
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HIGHER DIMENSIONAL CYCLIC ELEMENTS

JOHN GARY

Introduction. Whyburn, in 1934, introduced the higher dimensional
cyclic elements [5]. He gave an analysis of the structure of the homology
groups of a space in terms of its cyclic elements. His results were for
finite dimensional spaces, and he used the integers modulo two as the
coefficient group. Puckett generalized some of Whyburn’s results to
compact metric spaces [3]. Simon has shown that if E is a closed sub-
set of a compact space M, which contains all the (r» — 1)-dimensional
cyclic elements of M, then H"(E)~ H"(M)[4]. He also obtained a direct
sum decomposition of H"(M) using the cyclic elements of M. We will
extend some of these results.

The properties of zero-dimensional cyclic elements in locally con-
nected spaces, and the relation of these cyclic elements to monotone
mappings, is basic in the applications of zero-dimensional cyclic element
theory. We shall give some counter-examples concerning the generaliza-
tion of these properties to higher dimensional cyclic elements.

1. Preliminaries. Throughout this paper M will always denote a
compact Hausdorff space. We shall use the augmented Cech homology
and cohomology with a field as coefficient group. Results stated in
terms of cohomology may be given a dual expression in terms of ho-
mology by means of the dot product duality for the Cech theory.

DEFINITION 1.1. A T, set in M is a closed subset T of M such
that H"(K) = 0, for all closed subsets K of T.

DERINITION 1.2. An E, set in M is a non-degenerate subset of M
which is maximal with respect to the property that it can not be dis-
connected by a T, set of M.

The proofs of Lemmas 1.3 through 1.9 can be found in the papers
by Whyburn [5] and Simon [4]. The proofs given by Whyburn are for
subsets of Euclidean space, but they can be carried over to our case
without difficulty.

LeEmMMA 1.3. Let K be a subset of M which can not be disconnected
by a T, set. If M = M,UM,, T,-separated (by this we mean M, and
M, are proper closed subsets and M,NM, is a T, set), then K< M, (or,
Kc M,).

Received December 24, 1958. The results of this paper are contained in the authors

doctoral dissertation, University of Michigan, 1956. The author wishes to thank Professor
R. L. Wilder for his advice and encouragement.
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LEMMA 14. If K is an E, set, then K is closed and connected.

LEMMA 1.5, If K, and K, are both E, sets and K, + K,, then
KNK, s a T, set. Any T, set is also a T,., set.

LeEmMMA 1.6. If K is a mon-degenerate subset of M, which can not

be disconnected by a T, set, then K 1is contained in a wunique E,. set
wn M.

DEFINITION 1.7. If e H"(M) and D is a minimal, closed subset
of M such that *(v") + 0 (where *: H'(M)— H"(D) is the inclusion
map), then D is called a floor for 7.

LEMMA 1.8. If v"e H(M) and "+ 0, then there exists a floor
Jor 7.

LEMMA 1.9. If D is a floor for o7, then D can not be disconnected
by a T,_, set.

LEMMA 1.10. If {E%, ---, E™} is a finite collection of E,._, sets in
M, with M + U, E?, then there exist proper, closed subsets, M, and
M,, of M such that (1) M = M,UM,, (2) M,N M, is the union of a finite
number of T,_, sets (therefore, M,NM, is a T, set), (3) M,DUr, E".

Proof. The proof will be by induction on #. The case n =1 fol-
lows from Lemma 1.3.

Assume the lemma is true up to » — 1. Since M is not an E,_,
set, we have M= M,UM, T, ,-separated. Let EF = U E' If
(M — EYN(M — (M,N M,)) = ¢, then the desired T, -separation of M
could be obtained by using the boundary of an open set in M,NM,.
Therefore, we can assume (M — E)N(M — M,) + ¢. By Lemma 1.3,
we can assume Ui, E'C M, and Ur,,, E'CM,, where 1 <s<n. We
must have E'C(M — M,), for 1 <+ < s. Otherwise, we could separate
E' by the T,_, set (M — M,)0(M,NM,). Since (M — E)N(M — M,) + ¢,
(M — M,) + U;i-. E*. Thus, by the induction assumption, (M — M,) =
M,U M;, where Ji., E* is contained in M, and M,N M, is the union of
a finite number of T,., sets. If we let M, = M,UM, and M, = M,
then

(1) M= M1Ujrlzy

(2) Mmfm is the union of a finite number of T,_, sets,

() Ur E'cM,

4) Ml and Mz are proper closed subsets of M.
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2. Cyclic elements and the structure of M.

DEFINITION 2.1. A closed subset A of M is called a L, set if every
E,_, set, whose intersection with 4 is not a 7, set, is contained in A.
The proofs of the following theorems are given below.

THEOREM 2.2. If A is a L, set, then *: H"(M)— H"(A) is onto.
Thus, by duality, i,: H(A) — H(M) 1is one-to-one.

THEOREM 2.3. Let A be a closed subet with the following property:
if K is an E,_, set and H'(E)+# 0, then E 1is contained tn A. Then
the map v*: H'(M)— H"(A) is one-to-one and, by duality, i,: H(A)—
H, (M) s onto.

THEOREM 2.4. Suppose there are only a finite number, say
{E*) «++, E"}, of E,_, sets such that H"(E')+ 0. Let A=UL E'
Then the mappings i*: H'(M)— H"(A) and 1i,: H{(A)— H,(A) are iso-
morphisms.

REMARK. Theorem 2.4 can not be generalized to an infinite number
of E._, sets, as the following example shows. In Euclidean space let
M=DU[U:. C], where D= {(x,¥9,2)|z=0,2>+9y* =<1} and C, =
{(¢,y,2)|z =1/i, 2> +y*=1}. We do not have H,(U:r,C,) =~ H(M),
under the inclusion mapping.

THEOREM 2.5. Let v"e€ H'(M) and suppose U is an open set, such
that if D is a floor for v, then D 1is contained in U (see Definition
1.7). Then there exists a v,e H'(M, M — U) such that v = j%(v3),
where 7% H'(M, M — U) — H"(M).

THEOREM 2.6. Assume E is an E,_, set in M and N is a closed
subset of M, where NN E=¢. Then the composite mapping j,i.: H(E)—
H.(M, N) is omne-to-one. Here, v,: H(E)— H(M) and j,: H(M)—
H/(M, N) are the natural mappings.

LEMMA 2.7. Let (M, A) be a compact pair with v e H(A). If
3*(v") #+ 0, where &*: H'(A) — H™'(M, A), then there is a mimmal
closed set B such that BcC A, and 8;(vy) #+ 0. Here, 85: H(B)—
H™Y(M, B) and % = 1*(v"), where *: H(A) — H"(B).

LeMMA 2.8. Let B be a minimal set defined in Lemma 2.7. There
exists a minimal closed set N such that 6*(vy) #+ 0, where 8*. H'(B) —
H™+Y(N, B).
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Proof. The proof of these lemmas is obtained from the continuity
of the Cech theory and Zorn’s lemma.

LEMMA 2.9. The set N, in Lemma 2.8, can not be disconnected by
a T,_, set.

Proof. Suppose N = N,UN,, where N,NN,is a T,_, set. We will
show this to be impossible, unless N = N,. Let B be as defined in
Lemma 2.8, and define B, = N,NB (i =1,2). We will show that the
mapping induced by inclusion

K*: H"*(N, B) — H"*Y(N,, B,) ® H"*'(N,, B;)

is an isomorphism. We use the relative Mayer-Vietoris sequence given
below; note that T'= N,NN, is a T,_, set [2].

H™(N,, B) @ H™(N,, B)) —— H"*(N, B)

Ji ki Jo
H'(N, N) — H™*(N, N,UB) + H*(N, N,UB) —— H"*N, BU T)
— H"™*(N, N) .

The mappings ¢¥ and ¢} are isomorphisms by excision, the map K* by
exactness. Using the three exact sequences given below we see that
7* is an isomorphism.

H"'BNT)—>HBUT)— HB)YPH(T)—H®BNT)
H(BUT)— H(B)— H*BUT, B)— H*(BU T) — H**'(B)
H®BUT,B)-H*N,BUT)— H*N,B)— H*(BUT,B).

The first is a Mayer-Vietoris sequence, the second is a sequence for a

pair, the third is a sequence for a triple. Thus K* is an isomorphism.
In the diagram below, since 83(7;) # 0, we may assume &y ¢(v5) # 0.

H"*(N, B) K H™*(N,, B)@® H"*(N,, B,)
7 Fo i
X /
Ox H™*(M, B) 3%, 3% .
N OF
b5 @ b AN
H'(B) H'(B)® H'(B,)

We now have &f¢i(v3) # 0, since 8¢ (v3) = 85,0 (v3) # 0. This im-
plies B, = B, by the definition of B. Therefore, ¢f(v;) = 7: and
Sy df(vy) = 85 (v3) #+ 0. Since N is minimal, we must have N,= N.
Thus, N can not be disconnected by a T,_, set.
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Proof of Theorem 2.2. We will show &6*(v") = 0, for all v"e H"(A),
where 6% H"(A) — H"(M, A). Suppose not; then choose N and B ac-
cording to Lemma 2.8. Then there exists an E,_, set containing N, by
Lemma 1.6. Let E denote this E,_, set. Since E contains N, we have
ENA>B. Since H(B) + 0, B is not a T, set. Therefore EC A, be-
cause A is an L, set. This implies that N is contained in 4. But this
is impossible, as the diagram below shows. By the definition of the
pair (N, B), §*¢*(y") # 0.

o
H'(A)— H""'(A, B)

R

H'(B) =" H'"(N, B).
Proof of Theorem 2.3. Consider the exact sequence:

HY(M, A) -2 2 -5 HA(A) |

Suppose j*(7") # 0, where v"e H"(M, A). By Lemmas 1.9 and 1.6 there
is an E,._, set which contains a floor for j7*(v"). Let E be this E,_, set.
Since E contains a floor for j%(v"), H"(&) + 0. Therefore, £ C A; which
implies 1*7*(7*) # 0, since F contains a floor for 7*(v"). Therefore j*
is a trivial map and ¢* is one-to-one.

Proof of Theorem 2.4. By Theorem 2.3, 1*: H(A) — H/(M) is onto.
If ©.(Z,) =0, for some Z, e H,(A); then there is a minimal set K such that

1) KDoA, and

(2) 15(Z,) = 0, where 5 : H(A)— H(K) [2]. If K+ A; then, by
Lemma 1.10, we have K = K,UK,, T,-separated. The Mayer-Vietoris
sequence below implies 25:(Z,) = 0, where %1 : H(A) — H(K,).

H(K.NK.)— H(K))® H(K.) — H(K) .

Therefore, K = A and Z, =0, or 7, is one-to-one.

Proof of Theorem 2.5. Consider the exact sequence,
H{(M, M — U)—1 H(M) - H(M — U).

We will show 7*(y") =0, where v is the element of H"(M) given in
the theorem. Suppose i*(v") # 0; then, by Lemma 1.8, there exists a
floor for ¢*(y") contained in M — U. If D is this floor, then D is a
floor for o7, since i;=1;,1*. Here, i;: H'(M)—H"(D) and 1,,: H(M —U)—
H’(D) are inclusion mappings. Therefore, by the definition of U, D is
contained in U. This is impossible, hence 7*(y") = 0.
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Proof of Theorem 2.6. Let ¢, = j.i,, and suppose ¢.(Z,) =0, for
some Z.¢ H(F). Then there exists a minimal closed set K in M such
that KD E and ¢%(Z,) = 0, where ¢f: H(E)— H(K, KN N) is analo-
gous to ¢, defined above. This follows from Zorn’s lemma and conti-
nuity. We will assume K + E. Since E is an E,., set, we can write
K=K UK, T,_-separated. Also, we can assume F C K,. Consider the
following commutative diagram:

H,_(K.NK,NN)  H,_(K.NK)

j&
H(KNN)———— H{(K) ———— H(K, KN N)
1 1R /!
AN K
ok 9% HJ(E)
"
H(K,NN) H(K)— " —— H(K,, K,(\N)
D ® @
H(K,NN) — % H(K)

| T

H(K.NK,NN)  H(K.NK)

The two vertical sequences are Mayer-Vietoris sequences. Also, the
two horizontal sequences are exact. We have

H.(K,NK,) = H.(K,NK,NN) = H(K.NK,) = H(K,NK.NN) =0,

since K,NK, is a T,_, set. Since ¢%(Z,) = j5i%(Z,) = 0, there exists a
Zte H(K N N) such that 3.(Z}) = 15(Z,). There exists

(Z1, Z3)e H(K,NN)YD H(K,NN)
such that «\.(Z%, Z}) = Z:. By commutativity,
V(Z)), BLZ) (2], Z7) = 13(Z7) = 1il(Z,) ,
and
Vi (154(Z,), 0) = 15(Z,) .
By exactness, % is an isomorphism, hence 4.(Z}) = i51(Z,). Therefore,

75 Z,) = jEu'(Z}) = 0. But this is impossible, since K is minimal.
Thus, K = E and ¢* is one-to-one.
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3. Cyclic elements in locally connected spaces. The zero-dimen-
sional eyclic elements in a locally connected continuum have several
useful properties. For example, if the continuum M is locally connected,
then the zero-dimensional cyclic elements of M are also locally connected
and these cyclic elements form a null sequence. Also, the simple
0-links (definition below) are identical with the E, sets in an l¢® space [6].
The examples below show that these properties do not generalize.

DEFINITION 3.1. A non-degenerate subset K of M is called a simple
r-link of M, if K is maximal with respect to the following property:
if M= M, U M,, T,-separated, then K < M, (or K< M,). In other words,
K is a maximal subset which can not be separated by a 7T, set that
also separates M.

LEmmA 3.2, All simple r-links in M are closed. If K, and K,
are two distinct simple r-links in M, then K NK, its a T, set. If L
is a non-degenerate subset of M that is not disconnected by any T, set
which also disconnects M, then L ts contained in a simple r-link of M.

Proof. The proof is similar to those for the corresponding lemmas
for eyelic elements.

ExampLE. We will construct an l¢” space M in which the collection
of E, sets does not form a null sequence. This example will also show
that, in an lc¢" space, the simple 7-links need not be the same as the
E, sets.

For each positive integer n, let R, be a solid, three dimensional
rod of height one and diameter 1/2". In Euclidean three-space, define
ITby I=1{=wvy2|cx=0y=00=<z=<1}. Imbed R, in three-space so
that R, is tangent to R,,, and the sequence of sets R, converges to [
(i.e. R, = {(x,z,2)|2x*+ (y — 3/2"*' ) <12 0<z=<1}). Let M be
the set [U;., R,JUI. Then M is a compact l¢' space, each E, is an K,
set in M, but the collection {R,} is not a null sequence. Also, I is a
simple 1-link, but is not an E, set.

THEOREM 3.3. If M is s —lc and E 1s an E, set of M, where
s=r, then E is s — le.

Proof. Given any xe E, and an open set U° of E containing zx,
then there exists an open set U of M such that UN E = U°. Since M
is s — l¢, there exists an open set V, containing #, such that Vc U
and any compact s-cycle in V bounds on a compact subset of U. Let
Z, be a compact cycle on VN E = V° Then there exists a minimal
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closed set K in M such that V°c Kc U, and Z, bounds on K. By using
the Mayer-Vietoris sequence, as it was used in the proof of Theorem
2.4, we can show Kc U°’. Therefore Z, bounds in U° and E is s — lec.

ExamMpPLE. We will construct a compact l¢” space which contains
an FE, set which is not l¢". Consider the following curve in three-space:

r=0,y=t¢t,z=sin(x/t), for 0 <t =1.

Expand this curve slightly so that it becomes a solid, three dimensional
figure, which oscillates as it approaches the origin. Let N be this space,
along with its limiting line segment on the =z-axis. Let P =
{(z,9,2)|le=0,0=y <1, —1 <2 <1}; then define M = PUN. Thus
N is an E| set in M and M is l¢' but N is not 0 — le.

4. Cyclic elements and monotone mappings. A very basic property
of the zero-dimensional cyclic element theory is the following: if f: M —
N is a monotone mapping (i.e. the inverse image of any point is con-
nected), M and N are I¢°, and E, is an E, set in N; then there is an
E, set in M whose image under f contains E,. This result does not
hold in higher dimensions, as the example below demonstrates. The
best result we have obtained in this direction is Theorem 4.2.

DEFINITION 4.1. A mapping f: M— N is r-monotone, if H*(f~'(y))=0,
for all ye N and 0 < s < r.

THEOREM 4.2. Let f be an (r — 1)-monotone mapping of M onto N,
where M and N are compact Hausdorff spaces. If Dy is a floor for
v € H'(N), then there exists a floor D, for f*(v%y) such that f(Dy)=Dy.

Proof. Since f is (r — 1)-monotone, f*: H"(N)— H"(M) is a one-
to-one mapping [1]. Therefore, f*(v%) # 0. Consider the commutative
diagram below. The vertical mappings are inclusion mappings; and D,
is defined below.

M _r N
b

' Dy) ——— Dy

Tiu IJ‘N
Je

DM ——)f(DM) .

The mapping f, is the restriction of f to f-'(Dy). Therefore, f, is
(r — 1)-monotone. Since D, is a floor for v%,i5(v%) # 0. Since
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[ H'(Dy) — H'(f~'(D)) is one-to-one, i} f*(vy) = fiii(vy) # 0. There-
fore, f~*(Dy) contains a floor for f*(v%). Denote this floor by D, and
let f, be the restriction of f to D,. By the definition of a floor,
Jutaf () # 0. Since ginf™(vy) = figxin(vy), we have j¥if(vy) # 0.
This implies f(Dy) = Dy, since Dy is a floor for +%.

We shall omit the proofs of Lemmas 4.3 and 4.5.

LEMMA 4.3. Let N, and N, be subsets of M which can not be dis-
connected by a T. set. Suppose that N,UN, is not a T. set. Then
N,UN, can not be disconnected by a T, set.

LEMMA 4.4. Let f: M— N, and suppose TC N is a T, set such
that f~Y(T) is also a T, set. Also, assume f is a homeomorphism of
M —fYT) onto N—T. Then, if TV s a T, set in N, f~(T") is a
T, set in M.

Proof. Let K be a closed subset of f-3(T%). Denote f-4T) by
T-*. In the commutative diagram below £} is an isomorphism, by ex-
cision. Therefore, by exactness, H"(K) = 0.

H(K, KNT— H(K)— H(K N T

N

H'(f(K), f(KNT™)— H'(f(K)) —

LEMMA 4.5, Assume f is a mapping of M onto N such that the
inverse image of any T, set in N s a T, set in M. If KC M can
not be disconnected by a T, set in M, then f(K) can not be disconnected
a T, set in N.

ExamMpPLE. If f is an r-monotone mapping of M onto N, where M
and N are lc~ spaces and E¥ is an F. set in N; there may not be an
E, set, ¥, in M such that f(E*)DE”.

We will construct the example in three space. Consider the follow-
ing solid cylinders:

M ={@y2a+y =<1 0<z=<1)
M2:{(x’y7z)ix2+(y—2)2§1, 0§z§1} .

The cylinders M, and M, are tangent along I = {(z,y,z2)|x =0,
y=1,0=<2=<1}. Let M, be an arc joining the endpoints of I, which does
not meet M,U M, except at these endpoints. Let M = Ui, M,. We
will define a decomposition of M, and will let f: M — N be the decom-
position mapping.
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To form N, identify all the points in M, into a single point. Then
the mapping f: M — N is r-monotone for all » and the restriction of f
to M — M, is a homeomorphism.

We will show that N is an E, set. First, neither M, nor M, can
be disconnected by a 7, set. Lemmas 4.4 and 4.5 imply that neither
f(M,) nor f£(M,) can be disconnected by a T, set. By Lemma 4.3, N =
F(M)U f(M,) can not be disconnected by a T, set, since f(M,) U f(M,)
contains an essential l-cycle. If K is a closed subset of M such that
f(K)DN, then K> M, U M,. Then K can be disconnected by a T, set,
namely M, M, Therefore, there is no E, set in M whose image is N.

Note that M is obviously l¢” for all ». Therefore N is also l¢,
for all 7, since f is r-monotone, for all r.
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ON DIOPHANTINE APPROXIMATION AND TRIGO-
NOMETRIC POLYNOMIALS

RICHARD P. GOSSELIN

The usefulness of Diophantine approximation in achieving both posi-
tive and negative results in the subject of trigonometric interpolating
polynomials is well established (cf. e.g. [1], [4]). The trigonometric
polynomials, hereafter called simply polynomials, which we shall con-
sider mainly and designate by I,.(x;f) are those of order n taking
on the values of a given function f at the points u + 27k/(2n + 1),
k=0,1,--+,2n. Thus

Low; f) = 52 8 (a4 a?)Dife — u — ai?)

Dy(x) = sin 2n + 1)x/2 o = 27k

2sin (#/2) on +1

It is assumed that f is periodic and defined almost everywhere so that
for almost every wu, I, . (x; f) is defined for all n. Marcinkiewicz and
Zygmund [4] have shown that each p,1 < p < 2, there is a function f
of class L” such that for almost every point of the square 0 < z < 2rx,
0=u=<2nI,,x; f) diverges. They made strong use of the following
classical result of Diophantine approximation: for each x there are in-
finitely many rationals p/q such that |z — p/q| = 1/¢%

Our aim in this paper is to generalize the result of Marcinkiewicz
and Zygmund. The chief tool of proof is a result proved in the next
section, concerning the approximation of reals by rationals in which the
range of the denominators is restricted. In the third section we give
our main theorem to the effect that for any increasing function
defined on (0, ) there is an f such that « (| f|) is integrable over
0 <« < 27 and such that I,.(x;f) diverges for almost every (z,u).
In the last section we show this result holds for Jackson polynomials.

2. We begin with a preliminary lemma. If F'is a measurable set,
|F'| will denote its measure. We shall let C, C,, and C, denote con-
stants, independent of the values of the integers N, M, and m.

LEMMA 1. Let N, M, and m be three integers such that 0 < N< M <
m(2. Let F be the subset of (0,1) such that for each xz in F there is
an trreducible rational p/q, 0 < p< q, N < g = M satisfying |2 — plq| =

Received December 10, 1958. This work was supported by the National Science Founda-
tion through Research Grant NSF G-2789.
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1/gm. Then

12(M — N)

- log (M +1).
w'm

~ Lrgewmin = p g BM-N)  C
m T
If only 0 < N < M < m, then the second inequality above holds.

F' is the union of intervals of the form (p/q¢ — 1/gm, p/q + 1/qm).
The number of irreducible rationals with denominator ¢ of the above
form is ¢(g) where ¢ is the Euler function. The contribution to the
measure of F' from a given ¢ is no more that 2¢(q)/gm so that the
measure of F does not exceed

2 5 )

m a=N+1 @

Let 4(0) = 0, y(n) = 337, d(q). Applying Abel’s transformation to the
above sum, we obtain

2 &9 2 [ (M) _ _W(N)
(H) Ilm<mq%+lq(q+1)+miM+1 (N+1)}'

By a known theorem (cf. e.g. [3, p. 120])

— Cyqlog (g+1) = () = 2L 3‘1 + Cglog (g +1).

(2) 3¢
T

Substitution of (2) into (1) gives

6 X q 6M 6N C
Fl<-— 9 4! S - S 2
1Fi= *m rzzvl+1q+1+7tm 77:m(N+1)+

log? (M +1) .

This implies the second statement of the lemma. In case M < m/2,
there is no overlapping of the (open) intervals (p/q — 1/qgm, p/q + 1/qm).
For otherwise, there are distinct rational 7/s, p/q (let us say r/s > p/q)
of the required form such that

1 1

o< -2t v 1 ando<crg—ps< s <1,
s q sm qm m

This contradicts the fact that r¢ — ps is an integer. Thus

=2 5 #O

m gq=N+1 q

Now the inequality (2) implies the lemma.

THEOREM 1. (i) Let m be a sufficiently large positive integer, and
let v be a real number such that 0 < v < w*/12. Let E be the subset of
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(0, 1) such that for each x in E there exists an irreducible rational
/g, 0 < p < q,ym < g < m for which |x — plq| < 1)ym?. Then there is
an absolute constant C such that

12y

2

|E|=1-— — Cm~*log*m .

(ii) Let v be a real number such that 0 < v < 7%24. Let E, be
the subset of (0, 1) such that for each x in K, there exists an irreduci-
ble rational plg,0 < p<q,vm<qg=m, with q odd for which
| —plq] < 2/v*m*. Then there s an absolute constant C such that

|El=1— A{?’ — Cm~'log*m .
T

As in the proof of the theorem mentioned in the introduction (ef.
[6, p. 43]) we may find for each x in (0, 1) an irreducible rational p/q
such that

1
qm

(3) v — plg] = y0<g=s=m.

If z is restricted to the (open) interval I = (1/m,1 — 1/m), then 0 <
p < q. We shall say ¢ and = are associated if (3) holds with x in I
.and with p/q irreducible, 0 < p < q,0 < g < m. Let F, be the subset
of I for which all ¢ associated with x do not exceed vm. Since each
2 is associated with some ¢, the set F, is a subset of the set F' of
Lemma 1 for which N =0 and M = [ym], the greatest integer not ex-
ceeding ym. We may assume without loss of generality that ym > 1.
Let E be the complement of F| with respect to I. Since the measure
of F does not exceed 12v/7* + Cm~'log® m, part (i) follows from (3) and
the inequality g > ym.

Let F, be the subset of I for which all ¢ associated with an « in
F, are such that 1 —yym < q¢q<m. F, is a subset of the set F of
Lemma 1 for which M =m, N=[(1 — v)m]. Let E, be the comple-
ment of F, U F, with respect to I. Then |E,| = 1 — 24v/7* — Cm~log* m.
If x belongs to E|, there is a ¢ associated with z such that ym < ¢ <
m(l —v). If ¢ is even, we may find integers » and & such that

(4) 7 — Eq =1

where 7 must be odd, and automatically &/ is irreducible. Let 7, be
the least positive solution of (4) (cf. [1] for a similar argument). If
7, = ym, it follows that
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and

1,1 2

= qm 721’}7/2 ’Y2m

2

(5) |o-t

g‘x_ﬁi_;_{ﬂ_é
q q 7o

If 9, <om, let ), =7,4+¢q. Then ym < qg=<79 <vym+q=m, and (5)
holds with &,/7, replaced by &,/n,. We may assume that o* > 1/m so that
0 < &< n=<m as required.

3. We begin this section with a lemma which is related to the
results of the preceding section, but it contains only as much informa-
tion as will be used in the proof of the next theorem.

LEMMA 2. Let m be a sufficiently large integer, A, a real satis-
fying 1 < A, < logm, and d logm an integer with 8 < d < 10. Let 4~
be the set of odd positive integers 2n + 1 not exceeding m and such
that

(6) -ﬁyﬁ —(2n 4+ 1) 447 for some (¢, v) such that
y

O<pu=sy<d logm.

Let G be the subset of (0, 1) such that for x in G, there is a 2n + 1 in
A and a k,0 < k< 2n+1 for which |x — k/(2n + 1)| < 24Y%/m?> Then

G| < 36d*log®* m
= m .

For a given ¢ and vy, no more than 1 + 8AY}v integers 2n 41
satisfy (6). For a given v, no more than vy 4 8AY? integers may satis-
fy (6) for some ¢ < v. Hence N, the number of distinct integers in
4 does not exceed d?log®m + 8dAY?log m. If x belongs to G, x is con-
tained in an interval of length 4AY}m’ centered about some point
k/(2n + 1). For each 2n + 1, the total length of the intervals is no
more than 4AY*/m. Thus,

G| < 4NA;? _ 86d° log* m
= m = m .

THEOREM 2. Let +r be a monotone increasing function defined on
(0, ). There exists a function f such that < (|f]) is integrable on
(0, 27) and such that the sequence I,.(x;f) diverges for almost all
points of the square 0 < x < 2rx,0 < u < 2x.

Let A, be a positive number satisfying the inequality 16 < 4, <
(log m)¥*, A more exact specification of A, will be given at a later
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point. The function f will be a sum of periodic, step functions f, of
the following form. When x belongs to one of the intervals

@ — 2mj/m| < 4w A m?,  j=0,1,---,m —1

let f..(x) = A,,; when = belongs to one of the complementary intervalg
of (0,2rx) let £, (x) = 0. Let E, be the set of Theorem 1, part (ii), cor-
responding to m and v = A;"*, and expanded to the interval (0, 27) on
the u axis. For m sufficiently large, | E,| = 2r(1 — 25/7*A%*). Let G be
the set of Lemma 2 expanded to the interval (0, 27) on the u axis. Let
E,, be the difference set £, — (G U G,) where G, is the set of u such
that |4| < 27/(log m)*. By our above estimates

(7) |E|227‘c[1— 25 36d’log®m 2 ]
"= T2AL m (log m)"?

Let E,, be the set FE, translated by — 2zj/m,5=0,1,---,m —1:
i.e. u belongs to E, ;if and only if % + 27j/m (modulo 27) belongs to E,,.
Let — u belong to E, , We may assume that — u + 27j/m belongs to
the interval (0, 27). Since E,, is a subset of E,, there exists, according
to Theorem 1, part (ii), an odd integer, 2n + 1, m/A)) < 2n + 1 < m,
and an integer k, 0 < k£ < 2n 4+ 1, such that

2rq 2k 4T AL
8 — < n_
(8) ]u m + 2n+11 7 m?

This inequality implies that f,(u + 27k/(2n + 1)) = A,,. Since — u + 2mj/m
does not belong to the set G, the integer 2n + 1 cannot belong to the
set 4~ defined by (6). If f.(u + 2r(k -+ p)/(2n + 1)) = A,, for some
nonzero integer ¢, then there must be a nonzero integer v such that

(9) oo 2 | ekt ) | A
m 2n + 1 me

We may assume that ¢ > 0,v > 0. The inequalities (8) and (9) imply
that

(10) l /2 _ng 44"
2n +1 ml— m

and (10) implies that ¢ < v. For if ¢ > v, then

¢ ro. 1 A
on + 1 m  2n+1 m:

It also follows from (10) that
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—@n+1)l< 4APCn + 1) < 4A

ym y
Comparison of this inequality with (6) shows that lv| > d(log m). Our
analysis shows, in fact, that if f,(u + ™) = A,,, then f(u + z{¥) =0
when |v| < d(logm) and 2n 4+ 1 does not belong to .77 For each
j=0,1,---,m — 1, let I, be the set of the z axis defined by

27
m

<’x_

T ‘< T
mAUt = ~ m

If x belongs to I,, and if — w belongs to E,, ;, then we find from (8)

that
©— o — 27k Iglx 27rgl+|u+ 2k 2mj
2n + 1 2n +1 m
12
< ® 4 AmAr o 3w
m m? 2m

for some k& and for some n for which m/AY* < 2n + 1 < m. Furthermore

¢ — oy _ 27k ,glm»_&fj ~i%+ 2k  2my
2n + 1 2n + 1 m
T AmAll T
mAY* m* 2mAL
These inequalities imply that
1 m
(11) S o oD s 151n<%+ (w - u)|
ain (o 2 )73
2 2n + 1
> sin -~ - 1 .
- 4A1/2 - 2A1/z

Now we are ready to estimate I,,.(x;f,) with  in I, and — » in
E, ;.

(12) I, (x; f,) = Jo& + 26°) (= 1) sin (n + 1/2)(@ — )

2n + 1 sm——(ac u — )

4 Sin(n + 1/2)(x — u) S Sl + (V) (= 1)
2n + 1 ik

.1 )
sin—(x — u — x{™
2( )

Denote the first and second terms on the right by D, and D, respectively.
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By (8) and (11)

2)sin (n + 1/2)(x — u)|mA,,

(13) 1Dz s@n £ D)

> [sin(n + 1/2)(x — u)|£3m_ .

We may assume that for the terms of D,, |%{® — (| < 7 so that ex-
cept possibly for one term of the sum which can be ignored, | — u —
x| < 7w. Hence for the terms of D,,|sin2 '(z—u—2|=|c—u—a™|/x,
and

D)< Elsin(n b U2)e — ) 5 _fulut o)
n + 1 L;élclx_u__x(z)|

The denominator of the terms in the sum increases with |7 — k|. Fur-
thermore if ¢ and ¢’ are distinet values of the index for which the
numerator is nonzero, then |[¢ — k| > dlogm, |V — k| > dlogm, and
|t — 4| >dlogm. Thus we find that

2r|sin(n + 1/2)(x — w)| A, & 2n +1

| D,| =
2n + 1 =1 2nrd log m
< |sin (7 + 1/2)(x — )] A, log (M+1) M:<2n+1 >
- dlog m " ’ 2d log m

We denote by {y> the least integer = y. From this inequality and from
(11), (12), and (13), we deduce that if x belongs to I, and if — u be-
longs to E,, ,, there exists an integer, 2n -+ 1, and a positive constant
C such that
. CA1/2

(14) I L(2; fu) | = Clsin(n + 1/2)(x — u)| A,, = 5

The product set I, x K, , of the wxu-plane has two dimensional
measure equal to 2x|E, |(1 — A;Y")/m. There are m such mutually dis-
joint sets, and the total measure of their union, H,, is 2z | K, |(1 — A;").
Thus if (¢, — u) belongs to H,, then (14) holds for the proper n. We
note here that lim|H, | = 4x* if lim A,, = .

Let

(15) F@) = 3 faef@) -

We shall impose various conditions on the sequence of positive integers
m(7), all related to the rapidity of its growth. Let {B,} be a sequence
of reals going to o« so that 3,.,B, < BY/*. Let m(%) increase so rapid-
Iy that log m(i) = B? and that

(16) y(@B,) (og m )" ot
m(1)
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Let A, = B; so that A4, < (log m(?))** as required. Now f,(x) is 0
except on a set of measure not exceeding 47w Ay*m < 4zn(log m)"*|m. Let

2 (log m(3))""* i 0, < oo .

= m(z)

It follows that the series in (15) converges almost everywhere and that
S fm(x) is 0 outside a set of measure 47p,. Let K, be the set of
« values for which f,,(x) # 0, and f, () =0 when j > i. The K/'s
are mutually disjoint, and their union is, except for a set of measure
0, the set where f(x) + 0. Moreover, |K,| < 4n(log m(2))"*/m(i). When
x is in K,

HIS@D S+ 5 Fsk®)) = H2B)
Thus by (16)
[ @)ds = S 9@B)IK| < o .
In the estimation of the interpolating polynomials, we shall require

certain other conditions. Thus we assume that f belongs to L* for some
» > 1 and that

2-7 .
K,|2B) £ ———q, 1.
| K,|(2B;) =G =1 3>
From this it follows that
(17) S S fuo@)|7de < K| 2By = 2.
0 J>i > m(,',)

Furthermore we note that 321 f.(%) is a funetion of bounded
variation so that, for each u, the interpolating polynomials converge to
the function at every point of continuity, 7.e. outside a finite set [6; p.
86]. Thus, given m(1), m(2), ---, m(i — 1), we choose m(7) so large that
for 2n + 1 = m(7)/ B,

(18) L@ 5 fucs)| = 2max (S @) < 243

for (x, u) outside a set of two dimensional measure not exceeding 2-¢.
Finally since lim|H,,| = 47, the m(7) can be spread out so sparsely that

(19) S Hio| < o

where H), is the complement of H,.
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To estimate I, (x;f), we let m(:)/Bi* < 2n + 1 < m(i). Then

(20) In,u(x; f) = In,u(x; ;ifm(j)) + [n,u(x;fm('i)) '{" In,u(x; Jz\lifm(j)) .

Let g(x, #) be the maximum of the absolute value of the last term on
the right for 2n + 1 < m(¢). A result of Marcinkiewicz and Zygmund
[4] implies that

[T wirasan s s 7] e Sfw) | dadu

2n +1=m(l)
. 2r )
< Cm()| | S fucs@)

and the last term on the right does not exceed C,2-' by (17). C, is
a constant depending only on p. Thus

max 3 llll,u(x; gfm(j))l g lel/”
31>

2n+1=m(i

outside a set of measure 2-!. This, together with (18) and (20), implies
IIfnu(x’fN 2 ]qu(x;fm(z))f - ‘?‘A}n/?i) - C}D/p

outside a set of measure 2-'*!, Combining the above with (14) implies
that for each (x, — u) outside a set of measure |H) |+ 27'*', there
exists an » and a positive constant C such that

IInu(%’,f)l = CA%?» .

From (19) this inequality is true for almost every (x, — %) with sufficient-
ly large © and appropriate n, and the theorem follows.

4. That Theorem 2 holds for Jackson polynomials is relatively easy
to prove. We have

S5 f) =
1 2 o) SIn27n + (@ —w — ¢*) )* L _  2m
(n + 1) Z{,}f(u i )){ sin 2-Y(x — u — &™) J’ Zh n+1"
If f(z) = ful®) =0,
. Fut + ™) ( sin 27 (n 4 1)(x — u))*
(21) Juul®; ) = (n + 1y l Sn2 o — = o } .

Thus all of the previous proof devoted to showing that there was not
undue interference with one dominant term is now unnecessary. The
rest of the proof is very much like the previous one. With some adjust-
ments in the function, we gain additional information.
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THEOREM 3. Given « as before, there exists f such that (| f|) s
wntegrable over (0, 27) and such that the sequence J, .(x; f) diverges for
almost every point of the square 0 < x < 27,0 =< u < 2rx. Further-
more for any p=1 and &, 0 <& < 1, there is a function f of class L?
such that for almost every point (x, u)

N nl-e

Let a, B, and A,, be positive reals to be specified at a later point.
Let £, be a periodic step function of the following form. When « be-
longs to one of the intervals

jx__zilll_g_%, 7=0,1,¢c0e,m—1
m m?

let f,.(x) = A,; when x belongs to one of the complementary intervals
of (0, 27), let f.(x) = 0. Let E, be the set E of Theorem 1, part (i),
corresponding to m and v, = A% expanded to (0, 27) of the u axis.
Let E, ; be the translation of E, by — 27j/m; and let I, be the set of
the x axis such that for some j satisfying 0 <7< m — 1,

__ 2wy

_2r SIx
m

e < Ig -z,

mAE m

Given — % in E, ; and « in I, there exists an n, m4,* =< n 4 1= m,
and a k£ such that

2w AL

m2

Iu _ 277.7 + t;ﬂn)
m

=

For proper choice of A,, we have as before

;,,7},,\ < [g(; — Y — t;c")| < __3_7?_
mAE 2m

so that from (21) J, .(x; f) exceeds A, *#/10. Since || f,||2 = 4T AL**/m,
we need only have A2** = o(m) to write f(x) = Do fmw(x) with the
m(t) spread out sufficiently. If a and B are small, the result follows.

Since the sequence of Jackson polynomials corresponding to a con-
tinuous function converges uniformly to that function [6; p.47], it is
essentially only for the class of bounded functions that the question of
the behaviour of the Jackson polynomials on the square 0 < x < 27w,
0 < u < 27 is unresolved. However this is no longer true for the or-
dinary polynomials I, ,(x; f) which may act in a quite irregular way
(cf.[2],[5]); and the behaviour of I,.(x;f) for f continuous still pre-
sents a problem of considerable interest.
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GENERATING SETS OF ELEMENTS IN
COMPACT GROUPS

GILBERT HELMBERG

1. Preliminaries. It is well known that compact topological groups
have many properties similar to those of finite groups, which are of
course special cases of compact topological groups under the discrete
topology. The program of this paper is to characterize sets of elements
in a compact topological group which generate a given subgroup and,
conversely, to determine properties of the subgroup generated by a given
set of elements by an investigation of the properties of this set. Tools
for our investigation are the convolution algebra of continuous complex-
valued functions on the group and the system of irreducible represen-
tations of the group. We shall also formulate the results using those
concepts. Our results are straightforward generalizations of known
theorems on generating sets of elements in finite groups'.

From now on G will denote a compact topological group which, as
a topological space, is T,. It follows that G is Hausdorff and, there-
fore, also normal. Let e denote the identity of G. A subset H of G
will be called a subgroup of G if it is an abstract subgroup of G and
closed, unless the contrary is specifically stated. Let ¢ denote the nor-
malized Haar measure on G: u(G) = 1.

A subgroup H with positive measure p(H) > 0 is necessarily both
open and closed, as are all (left) cosets of H. Thus a compact group
G with such a subgroup is disconnected and the quotient-spaces G/H
(with respect to left cosets of H) is finite and discrete in the quotient
topology. Then 1/¢(H) is the index of H in G. The quotient space of
G with respect to left cosets of a subgroup of measure 0 contains in-
finitely many elements and is again compact, Hausdorff and normal.

Let C denote the field of complex numbers and C(G) the set of all
complex-valued continuous functions on G. Defining scalar multiplication
and addition in C(G) pointwise as usual, C(G) becomes a Banach-space
under the uniform norm: || f|| = sup.eqs {|f(®)]} (f € C(G)). Defining
multiplication in C(G) by convolution,

(f =@ = | Fayewdy

C(G) becomes a Banach algebra. Left and right translations of f ¢ C(G)
by s € G are defined by ,f(x) = f(sx) and f,(x) = f(xs) respectively.
Both ,f and f, are functions in C(G) and every f € C(G) is both left

Received April 28, 1958. Presented at the 65th Annual Meeting of the American
Mathematical Society in Cincinnati, Ohio. January 28-30, 1958.
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and right uniformly continuous.

DEFINITION 1. The subgroup H of G is said to be generated by
a set M c G if it is the smallest subgroup of G containing M.

The subgroup generated by M will be denoted by H(M). It is
evidently the closure of the set of all finite products of positive and
negative powers of elements in M. From a theorem of Numakura®
about compact semigroups it follows that H(M) is already the closure
of the set of all finite products of positive powers of elements of M.

2. Subsets of G and corresponding ideals in C(G). With every non-
void subset M of G we shall associate the set F(M) of all functions
f € C(G) invariant under right translation by every element s € M.

FM)y={f:fe C@),f,=f for all se M} .

Obviously F(M) is non-void, since it contains the constant functions.
It is clearly a linear subspace of C(G), and it contains with every
f e F(M) the function a = f if a € C(G@) since

(@ */)e) = @ f) @s) = | alsy™)f @)y
= | atey)rwady = @+ @ .

F(M) is therefore a left ideal in C(G).
It is clear that M, ¢ M, implies F(M,) D> F(M,). If M is the closure
of M in G we have therefore F(M) > F(M).

LEMMA 1. F(M) = F(M).

Proof. We have to show F(M) < F(M). Assume that there is
f e F(M) such that f ¢ F(M). Then there is % € M such that fr +# f
and

(1) || /= — £l > a for some a > 0.

Because of the uniform continuity of f, we can choose a neighborhood
V of e such that

L f(x) — fnl < % if sy e V.

The set mV is a neighborhood of 7 and contains a point m € M. Then
2 See [6] p. 102.
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| f(x7) — f(am)| < % for all # € G

since (xm)am = m~'m € V. Since f(xm) = fr(x) and f(xm) = f(x) it
follows that ||fn — fIll < a/2 which contradicts our assumption (1).
Hence f; = f and f e F(M) for all f € f(M) and the Lemma follows.

Now let fe F(M) and a e M,b e M. Clearly f,=f. Since
f(xa) = f(x) for all x € G, we also have f(zxa~'a) = f(za™) for all x € G
or f,1=f. Moreover fu(x)= fi(xa)=f(xa)=f(x) for all z e G.
If we denote by H'(M) the abstract (not necessarily closed) subgroup
of G generated by M then evidently F(M) < F(H'(M)). On the other
hand, M c H'(M) implies F(M) D> F(H'(M)) and therefore F'(M) =
F(H'(M)). Now H(M) is the closure of H'(M) in G, and by Lemma
1 we obtain

LeMMA 2. F(M) = F(H(M)).

This result allows us to infer some further properties of the func-
tions of F(M). To simplify the notation, we shall in the rest of this
paragraph write H instead of H(M). Let {g,H:r ¢ R} be the decom-
position of G into distinct left cosets of H and G/H be the corresponding
quotient space. For f € F(H) and arbitrary h € H, we have f(9,h) =
f(g,), so that f is constant on every coset g,H. Conversely every con-
tinuous function on G constant on every left coset of H has clearly the
property f, = for all h € H and belongs to F(H). Hence F(M) is
the set of all continuous functions on G that are constant on left cosets
of the subgroup generated by M.

Let us denote by C(G/H) the set of all continuous complex-valued
functions on G/H. If we associate with every f € F(H) the function f’
on G/H defined by f'(9,H) = f(g9,) then f’ € C(G/H) and the mapping
f—f' is a linear one-to-one mapping of F(H) as a linear space onto
the linear space C(G/H).?

To identify the dimension of C(G/H) as a linear space we have to
distinguish two cases.

(a) n(H)>0. G/H is finite and discrete. The ¢ = 1/u(H) charac-
teristic functions of the points of G/H form a basis in C(G/H).
Therefore F(H) is finite-dimensional and closed in the uniform norm in
C(G).

(b) {H)=0. G/H is a normal Hausdorff space with infinitely
many points. Therefore C(G/H) and F(H) are infinite-dimensional. Let
F(H) be the closure of F(H) in C(G) and f ¢ F(H). Assume fu # f for
some he H, or

(2) || f» — f|] > a for some a >0,

3 See [5] p. 110, 111.
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There is f € F(H) such that ||f — f|| < /2 or

| f(zh) — f(xh)| < % for all z € G

| ful@) — f(@)] <% for all z e G
~ a

Hh*fH<E.

But then

o =FSA—-FI+IIF=FlI<a

which contradicts (2). Therefore f, = f forall h € H and F(H)cC F(H)
which shows that F(H) is again closed in C(G).
The results of our discussion are summed up in

THEOREM 1. F(M) is a closed left ideal in C(G) consisting exactly
of all continuous functions on G which are constant on each left coset
of the subgroup H(M). As linear subspace of C(G), F(M) is 1/p(H(M))-
dimensional if p(H(M)) > 0 and infinite-dimensional if p(H(M)) = 0.

Analogous statements hold for the set of all continuous functions
on G that are invariant under left-translation by every element m € M.

3. Subgroups of G and corresponding ideals in C(G). Let the subset
M of G be a subgroup H. We can reverse the correspondence between
H and F(H) by observing that H is completely characterized by F(H)
as the set of all elements of G which right translate every f e F(H)
into itself. In order to see this we have only to show that for every
m ¢ H there is f ¢ F(H) such that f,, #+ f. Since m~' ¢ H we have
H + m™'H. By the complete regularity of G/H, there is f' e C(G/H)
such that f'(H) =1 and f/(m—*H) = 0. Defining f € F(H) by the re-
lation f(x) = f'(xH) for all x € G, we have f(m™') =0 and f,(m™") =
f(e) =1. Hence f,, + f.

It follows that for two arbitrary subgroups H, and H, of G F(H,) D
F(H,) implies H, c H,. The converse is obviously true. We conclude:

LemMA 3. If H, and H, are subgroups of G, then H, C H, if and
only if F(H,) D F(H,).

Taking {e} and G as subgroups of G we have in particular F'(e) =
C(G) and F(G) = {al} i.e., the (left) ideal consisting of all constant
functions.

Let now N be a normal subgroup of G,n € N and f € F(N). For
every x € G we have ,f(x) = f(nz) = f(an,) = f, (x) = f(x) where n, € N.
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Therefore every element of F'(IN) is both left and right invariant under
translation by elements of N. For an arbitrary ¢ ¢ C(G) we then have:

(f @) = (F +a)am) = | Fnyady = | fouay-aw)dy
=(frxa)x) forallxeG

F(N) is then a right ideal and therefore a two sided ideal in C(G).

Suppose now that H is non-normal. Then gH + Hg for some ¢ € G.
We can assume that there is 4 € H such that hg ¢ gH. (Otherwise
there would be h, € H such that gh, ¢ Hg or hyg™* ¢ g'H, and we
could take %, and g~' in place of & and g.) Then hgH N gH = 0. We
shall exhibit functions f e F(H) and a € C(G) such that fxa ¢ F(H).
It will follow that F'(H) is not a two-sided ideal in C(G). Again we
distinguish two cases.

(a) ((H) > 0. The sets gH and Hg~' are both open and closed.
Let f be the characteristic function of gH and a be the characteristic
function of Hg~'. Then f ¢ F(H) and a € C(G).

Let us now consider fi(y) = f(hy"a(y) as a function of y. Plainly
f1 is continuous. If y € Hg-' then hy' e hgH and f(hy™') =0, since
hgH N gH = 0. Therefore f,(y)=0 for y ¢ Hg~'. However, for y ¢ Hg™,
a(y) = 0 and again fi(y) = 0. We see that

(3) () = | 7y a)dy = 0.

On the other hand, using the function f.(y) = f(y~")a(y), we see that
foe C@Q), £, =0 and fy (97" = f(9)a(9~") = 1. Since the Haar integral
is strictly positive on C(G) we conclude that

(4) (frafe) = | Fewdy >0,

Comparison of (3) and (4) shows that f=a is not constant on H.
Therefore it cannot belong to F'(H).

(b) p(H)=10. Since G/H is Hausdorff and normal, there are dis-
joint open neighborhoods U, and U, of gH and hgH respectively. In
view of the complete regularity of G/H, we can find f’ € C(G/H) such
that f' = 0, f'(9H) = 1, and f’ vanishes on the (closed) complement of
U, in G/H, which contains in particular the open neighborhood U, of
hgH.

Defining f(x) = f'(xH), we obtain a non-negative function f ¢ F(H)
assuming the value 1 on gH and vanishing on an open set U (the pre-
image of U, under the mapping « — xH) containing hg. We now choose
a symmetric open neighborhood V of e such that AgV — U and a non-
negative function ¢ € C(G) assuming the value 1 at g~' and vanishing
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outside the open set Vg~'. This choice again is possible by the complete
regularity of G.

We again consider the continuous function f(y) = f(hy~a(y). For
y € Vg' we have hy™' € hgV < U so that f(hy= ') =0 and fi(y)=0.
On the other hand, y ¢ Vg~' implies a(y) = 0 and fi(y) = 0. So

(3) (fra)m) = | Pty = 0.

Considering f.(y) = f(ya(y), we see that f,=0,f, € C(G) and
fo™ = f(@a(g™") =1 > 0. Therefore

(4 (fae) = | f@wawdy > 0.

Comparing (3') and (4’), we see again that f+a is not constant on
H and does not belong to F'(H).
As a result we obtain

LEMMA 4. A subgroup H of G is normal if and only if F(H) is
a two sided ideal n C(G).

The correspondence between F' (M) and H(M) for arbitrary subsets
M < G leads yet to another useful result.

LEemMMA 5. Let M, and M, be any subsets of G. Then M, C H(M,)
if and only if F(M, U M,) = F(M,).

Proof. Assume first M, c H(M,). Then H(M, U M,) = H(M,) and
by Lemma 2, we have

F(M, U M,) = F(H(M, U M,)) = F(H(M,)) = F(,) .

Let us now assume that F(M, U M,) = F(M,). It is clear that F(}M,) D
F(M, U M,). Using Lemma 2, we get F(H(M,)) D F(H(M,) and by
Lemma 3 M, ¢ H(M,) < H(M).

Lemma 5 states in particular that an element m € G can be approx-
imated by finite products of positive powers of elements in M if and
only if the set of all function of C(G) which are invariant under right
translation by all elements of M is not reduced by joining m to M.

Taking M, = G, we obtain as a necessary and sufficient condition
for the set M, to generate G that F(M,) be the set of all constant func-
tions on G.

Taking for M, a subset of a given subgroup H = M,, Lemma 5
states that M, generates H if and only if F(M,) = F(H).

4. Irreducible representations of G. We now list some definitions
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and facts concerning representations which we shall have to use in the
following.*

Let {R™: )\ € A} be a complete system of inequivalent irreducible
unitary continuous representations of G of degrees r, respectively. Let
R™(s) be the matrix associated with the element s in B™ for a given
basis in the corresponding vector space and R® the identity represen-
tation. Denoting by u{y € C(G) the coeflicient in the ¢th row and kth

column in R™, we have u{’(s™) = ui’(s) and

»

Zuii)(S)u“’(S) = &y

1

A

(5) |, @U@ = 818y -
G
1

A

A) W)y — . \)
uij * uprl - SXA’SjZ) uz‘q y

since the R™ are unitary.
The functions u{}’ are linearly independent and form a basis for the
linear space R(G) of all complex linear combinations

A

(6) =3

7

A

(A (A (A
ST oalPui, aiy e C.
F=

i, 1

(5) shows that R(G) is a subalgebra of C(G). The Peter-Weyl theorem
says that R(G) is dense in C(G) under the uniform norm. More speci-
fically®, every f € C(G) can be uniformly approximated by functions of
the form

3

(7) = 3 @ S @)

A=2y

ll

which belong to R(G) as shown below.
Using the notation (a, b) = S a(@)b(x)dx for a e C(G),b e C(G) we

have, as can be verified easily,

(8) WP = 3 (F u € RG)
(9) fru = 5w € RG).

From (5) and (8) we can conclude that for fixed » and ¢ the functions
uiy (k=1,2,+++,7,) form a basis for a minimal right ideal R{® of R(G)
4 See [3] §§39, 40.
5 See [5] Theorem 39D. As pointed out be Prof. Edwin Hewitt in a lecture, one can
choose the approximate identity in the center of C(G) by taking wu(x) = L} v(y~xy)dy and
having » € C(G) (v = 0) vanish outside a sufficiently small neighborhood of e.
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and C(G). Analogously it follows from (5) and (9) that for fixed )\ and
k, the functions %) (+=1,2, +--, r,) form a basis for a minimal left
ideal LY of R(G) and C(G). Finally it follows from (5), (8) and (9) that
for fixed ) the functions u{’ (i, k =1, 2, -+ -, r,) form a basis for a minimal
two sided ideal 7™ in R(G) and C(G). Each of these ideals is closed
because of its finite dimensionality.

Taking ! € R(G) as in (6) we have

1 2
uP xl = — Y alpPup) € RV
Py k=1

)
A

(10) Leu® = 1S au® e LY
Py =1

r

A 1 A
(St =1 S apup e 7o
i=1 7y k=1
and

11) I = ZhZ(uii’*l)” ZhZ(l*ukk)

A=A A=Aq

= En[Ew)-1].

We see that R(G) is the direct sum of the minimal two sided ideals
T™ which in turn are direct sums of minimal right ideals R{® and, in
the same way, of minimal left ideals L{V.

(12) RG) =S @ T®
AEA
7o — TZA@RY‘) — TZA@L;SA) .
t=1 k=1

R(G) is itself a two sided ideal in C(G) but is not closed unless it
coincides with C(G). (This occurs if and only if G is finite).

The numbers (f, ui;’) appearing in (8) and (9) can be regarded as
the Fourier coefficients of the function f € C(G). For non-zero f there
exist only a countable number of non-zero Fourier coefficients (and at
least one).

Every element a = Z;x; 1akug,§’ e R{™ can be written in vector nota-
tion as a scalar product ua where u{® stands for the Dbasis vector
(uf’, u’, --+, ui}) and a for the coefficient vector (&, a, - -+, a,,), writ-
ten as column vector. By the definition of u{}’ we obtain under right
translation by any s e G

(13) [wiR’](x) = wuip(ws) = Z%‘”(w)u“’(S) or

u = uir - B™(s) .
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Right translation by s evidently induces a linear transformation in
R{¥ whose matrix with respect to u{® as a basis is just R™(s), and
R{™ is invariant under right translation. For any function a € R{, the
effect of the translation is given by the formulas

(14) a, = ugj)a = 11?’\7R(3)(3)a — ug)‘)as
a; = RM(s)a

where a, is the coefficient vector of «,.

5. Generating sets in G and irreducible representations of G. We
investigate for a given subgroup H of G the intersection of F(H) with
the ideals of R(G), introduced above. If f e F(H) and f =+ 0, then
(f, u$y’) #= 0 for some A, 4, k. The function

A
iy = 3wy

is different from zero, lies in F(H), and by (8) also in R(G) (in fact in
R{), therefore in F'(H) = F(H) N R(G) (also in F(H)N R™). F'(H)is
again a left ideal in C(G) since R(G) is a two sided ideal in C(G) and
contains all functions of the form «{} = f for a given f € F(H). From
(7), we obtain as an immediate consequence

LEMMA 6. F'(H) = F(H) N R(G) ts dense in F(H).

Let now f’ ¢ F'(H). By (11), f’ can be written as a linear com-
bination of functions of the form wu{}’ = f which are by (10) contained
in F(H) N R{». On the other hand, every linear combination of funec-
tions in F(H) N R{» is again a function of F'"(H). On account of the
direct decomposition of R(G) with respect to the minimal right ideals
R, we see that F'(H) is, as a linear space, the direct sum of the linear
spaces F(H) N R,

(15) P(H) = 3, @ 3, ® [F(H) 0 RV

some of which may consist only of zero.

Let now F(H) N R{® be non-zero (we have already seen that there
must be at least one non-zero F(H) N R{») and let f¥ ¢ F(H) N B™.
We can write £ as a scalar product of the basis vector uf¥ of R and
the coefficient vector ™

(16) fi()\) — ll(iwf(’\) .

The function £ is invariant under right translation by all elements
h € H. In view of (14) this means that
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17) f& = RM(R)® for all h € H

ie., f® 1is an eigenvector of R™(h) with eigenvalue 1 for all » e H.
Conversely, for fixed )\, every eigenvector with eigenvalue 1 common to
all R™(h) (b € H) determines by (16) a function ¥ e F(H) N R{™.

Since for a given %, \ linear independence of functions f¥, g™ is
equivalent to linear independence of the corresponding coefficient vec-
tors ™, g we see that the dimension of F(H) N R{® as a linear space
is precisely the number of linearly independent eigenvectors ™ common
to all R™(h) (h € H) with eigenvalue 1.

DEFINITION 2. For any non-void subset M of G and for any fixed
A, let d™(M) denote the maximal number of linearly independent
eigenvectors common with eigenvalue 1 to R™(m) for all m ¢ M.

The inequalities 0 < d*(M) < r, necessarily hold. In the present
case, we see that d™(H) is the dimension of F(H) N R» for all 7=
1,2, +--,r, since it obviously does not depend on ¢. Taking d™(H)
linearly independent functions of F(H) N R{® and r — d*(H) properly
chosen u{}’ (¢, A fixed) as a basis for B amounts to transforming the
representation R™ to an equivalent one, '™ = S*R™S in which R'®
restricted to the elements of H, becomes reducible as representation of
H and is found to contain the identity-representation of H exactly
d™(H) times. Thus d™(H) can also be defined an the multiplicity with
which the identity representation of H is contained in R®, restricted
to the elements of H and considered as a representation of H.

F(H)NR{™ has the dimension d(H) for given ), as we have seen. The
subspace F(H) N T™ ig the direct sum of all F(H) N R® (i=1,2, «--, 7,)
and has therefore dimension r,d™(H). If there is only a finite number
of non-zero d™(H), then there are only a finite number of non-zero
F(H) N R{® and F(H) N T™. By (15), we see that F'(H) is a linear
space of dimension 3 ,¢,7d™(H) which is finite-dimensional, and
therefore F'(H) is closed. But then F'(H) = F(H) by Lemma 6, and
F(H) is of finite dimension 3 ,c,7d™(H). If infinitely many d™(H) are
non-zero then F’(H) is an infinite dimensional linear space and the same
must be true of F(H). Combining this result with the results of
Theorem 1, we obtain:

THROREM 2. If d™(H) is the multiplicity with which the identity
representation of a subgroup H of G is contained in R™, restricted to
the elements of H and considered as a representation of H, then

1

. if ((H) >0 .
() of H(H) >

S, rdO(H) =
A€E4

If f(H) = 0 then the series 3 ,c,r\dV(H) diverges.
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The sum 3 ,c,7d™(H) can therefore be considered as giving the
“index”” of H in G. A subgroup H has measure 0 if and only if
dV(H) > 0 for infinitely many ) € 4.

Let N be a normal subgroup of G and d™(N) > 0 for a certain .
Then F(N) N R contains a non-zero function f = Z;A: | O Assume
that «;, = 0. The set F(N) is a two sided ideal by Lemma 4, and so is
F'(N) = F(N) N R(G). Therefore F'(N) contains together with f the
function

a . . .
Fruy = }Lui;) for arbitrary 7, 1= 7.
A

This means that R{® c F'(N) and d®(N)=r,. On the other
hand, supposing that for a given subgroup H d*(H) assumes only
the values 0 or 7, for all A € A, we see that F(H) N R{" is either zero
or R{¥. Then F(H) N T is either zero or TV and F'(H) is the direct
sum of two sided ideals and itself a two sided ideal in C(G). Its closure
F(H) must also be two sided and by Lemma 4, H is normal.

THEOREM 3. A subgroup H of G s normal if and only if d(H)
asswmes only the values 0 or v, for all x e A.°

Trivial illustrations of this fact are given by the entire group
G (d(G) =1 and d“(G) = 0 for A # 0) and by the group consisting of
{e} only (d™M(e) = r, for all N e 4).

We proceed now to characterize the generating properties of an
arbitrary subset M of G by means of the representations R™. Since
M c H(M), there are by the definition of d“(H(M)) at least dV(H(M))
linearly independent functions in R{¥ that are invariant under right
translation by all elements of M and dMV(M) = dV(H(M)). Conversely,
as seen in the proof of Lemma 2, any such function of R{™ is also in-
variant under right translation by all elements of H(M) and d™V(M) <
d™M(H(M)). Together with the previous result, we now have

LEMMA 7. If M is an arbitrary subset of G, then dV(M)=d™(H(M))
for all X e 4.

The main result which we can now prove is

THEOREM 4. If M, and M, are arbitrary subsets of G, then M, C
H(M,) if and only if dM(M, U M,) = dV(M,) for all N € A.

Proof. Let M, c H(M,). Then H(M,) = H(M, U M,) and d™(M,) =
dM(M, U M,) for all x e 4 by Lemma 7. On the other hand, the

6 See also [4] and [1] Theorem 1.
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equality d™(M,) = dM(M, U M,) for all » € 4 implies by Lemma 7 that
F(H(M,)) N R = F(H(M, U M,)) n R for all » e 4,
FHM)) N T® = F(HM, U M,)) N T for all x € 4,

F(H(M,)) = F(H(M,)) N R(G) = F(H(M, U M)) N R(G)
= F'(H(M, U M,)) (by (15)),

F(H(M)) = F(HM, U M,)) (by Lemma 6) and
M, c HM,) (by Lemmas 2 and 5) .

A number of corollaries are easily obtained. Putting M,=G in
Theorem 4 and noting that d»(G) is positive only for A = 0 we obtain

COROLLARY 4.1. The subset M of G generates G if and only if
dM(M) =0 for all A 0.
Taking as M, a subgroup H and as M, a subset M of H, we get

COROLLARY 4.2. The subset M of the subgroup H of G generates
H if and only of dV(M) = dM(H) for all A e A.

Finally, combining the results of Theorem 2, 3 and Lemma 7, we
obtain

COROLLARY 4.3. The subset M of G generates a mormal subgroup
of G if and only if dV(M) assumes only the values 0 and r, for all
e do If ANV(M) >0 for only a finite number of N e A, then M
generates o subgroup of measure 1/, e, dM(M); otherwise M gener-
ates a subgroup of measure 0.

6. Finite generating sets in G. The preceding results are in par-
ticular valid for finite groups. In that case we are only concerned with
the investigation of generating properties of finite sets of elements.
Schreier and Ulam’ have shown that a connected compact metric group
G is generated by almost every pair of elements. Since the component
of the identity in any compact group G is a connected normal subgroup
of finite index in G, it is clear that there are always a finite number
of generators for a compact metric group.

For the case of a finite set M, there is a simple way to determine
d(M) and to state the conditions of the last theorems and corollaries,
based on the following lemma.

LEMMA 8. Let B¥(m,, «--, m;) be the rectangular matrix with r,
rows and sr, columns obtained by joining horizontally the s matrices
RMm) — R™Me) (k=1,2, +++,8). Let b(m,, <+, m;) be the rank of

7 See [7] and [8].
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BO"(ml, %y ms)' Then d('\)({mk: E=1,-.-., S}) =Ty — bﬂ)(mlr ey ms)’
Since this Lemma has been stated by the author in [1] without
proof it may be suitable to set down a proof here.

Proof. Let B**(m,,---,m;) be the conjugate transpose of BM(m,, +--,
m). Its rank is the same as that of B™(m,, ---,m,). Since R™ is
unitary, B**(m,, «--, m,) could have been obtained by placing the s
matrices R™(m;*) — R®e) (=1, ---,8) below each other. Since
dV({mu:k=1,+++,8}) =d¥({mz': k=1, ---,s}) we have to show that
the rank of B*™(m,, -+-, m,) is equal to r, — d¥({m;': k=1, ---,s}).
In order to simplify the notation, we shall from now on omit the index
A and the indication of the group elements when possible.

If we denote by 4, the rs x rs matrix obtained by placing the non-
singular » x 7 matrix, A, s times along the principal diagonal in a rs x rs
zero-matrix, then A, is non-singular and A;'B*A has again rank b. If
u = (%, +++, %,) is the basis of the r-dimensional linear space correspond-
ing to the matrix-representation R, then the transition to a new basis
u’ in which the d first basis vectors are invariant under the transfor-
mations corresponding to m;?, ---, m;* is given by the formula uP = w’
where P is a non-singular r x » matrix. In the new basis these trans-
formations are given by the matrices P-'R(m;")P. The d first columns
in each of these have as their only non-zero elements 1’s in the main
diagonal. In each of the matrices P-(R(m;') — R(e))P those columns
are therefore zero columns. Placing those s matrices one below the
other we obtain, as one can readily see, exactly the matrix P;'B*P.
The rank of this matrix can therefore not exceed » — d and we have
b<r—d.

Assume that b < r — d. Then one of the columns C,,,, ---,Clin
P;*B*P, say C,, would be a linear combination of the other ones. By
a permutation of the vectors u,., and u, in u’ given by W@ = u’, where
@ is the matrix of the corresponding permutation, we obtain as above
a matrix Q;'P;'B*PQ with rank b in which the d first columns vanish
and the (d + 1)-th column appears as a linear combination of the
remaining ones CJ,, = >\7...,a,CY.

Define R as the matrix obtained from R(e) by replacing in the (d +
1)-th column the zeros below the principal diagonal by — gy, =+, — @,
in that order. Passing to a new basis by the formula uw”’R = u", we
obtain as above the matrix R;'Q;'P;'B*PQR in which, as one can see
easily, the first d + 1 columns vanish. But then the first d + 1 columns
in (PQR)'R(m;")PQR have as their only non-zero elements 1’s in the
main diagonal. This in turn means that the first d + 1 basis vectors in
w” are invariant under the transformations corresponding to all elements
my;*(k =1, --+,s). But this contradicts our assumption that there are
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not more than d linearly independent vectors of that property. So
b=r—d, and the lemma is proved.

Lemma 8 allows us to determine d““({m,, ---, m,}) if the matrices
R¥m )k =1, ---,s) are given. Applying Lemma 8 to a single element
m, we see that d™({m}) is exactly the multiplicity of the eigenvalue 1 in
R™(m). If R™(m) does not have 1 as an eigenvalue, then d*(m) = r,.

Using Lemma 8, we can also reformulate the preceding results. e.g.
Corollary 4.1 takes the following form: the elements m,, ---, m, generate
G if and only if dM(m,, -+, m;) = r, for A\ = 0. This condition is in
particular satisfied if for every ) # 0 there is at least one m™” among
the m, «++ m, for which R®(m™) does not have 1 as an eigenvalue.
In this case, however, we can even say that the products of the form
mireesmis (0=a,:k=1,..-,8) are dense in G and, arranged in a
certain order, form a sequence which is equidistributed in G.* Similarly
we can see that the hypothesis of Corollary 4.2 is satisfied if for every
A e A there is at least one m™ such that the multiplicity of the eigen-
value 1 in RP(m™) is exactly d™(H), i.e., the multiplicity with which
R™ restricted to H contains the identity-representation of H. Again
in this case we can make the stronger statement that the products of
the form mé -« m% (0 < a,:k =1, --,s) are dense in H and, arranged
in a certain order, form a sequence which is equidistributed in H.
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THE H,PROBLEM AND THE STRUCTURE
OF H,GROUPS

D. R. HUGHES AND J. G. THOMPSON

1. Introduction. Let G be a group, p a prime, and H,(G) the sub-
group of G generated by the elements of G which do not have order p.
In a research problem in the Bulletin of the American Mathematical
Society, one of the authors posed the following problem: is it always
true that H,(G) =1, H,(G) =G, or [G:H,(G)]=p? This problem is
easily settled in the affirmative for p =2, and a similar answer was
recently given for »p =3 ([5]). In this paper (Section 2) we give an
affirmative answer for the case that G is finite and not a p-group.
Furthermore (Section 3) we are able to give a rather precise description
of the structure of G in the most interesting case, when [G : H,(G)] = p.
This structure theorem depends heavily on the deep results of Hall and
Higman ([4]) and Thompson ([6]) on finite groups. If H (= 1)is a finite
group and there exists a group G such that H,(G) is isomorphic to H,
where H,(G) + G, then we call H an H,-group; it is seen that H,-groups
are natural generalizations of ‘‘Frobenius groups.”” By a Frobenius
group we mean a finite group G possessing an automorphism ¢ of prime
order p such that 27 = « if and only if x = 1. It is easy to show that
this implies

~1 ~1
x1+o—+.-.+u-p — x(mﬂ') cee (m”p ) =1 ,

for all z in G. This last equation characterizes H,-groups,’ and as a
generalization of Thompson’s result ([6]) that Frobenius groups are nil-
potent, we show that H,-groups are solvable, among other things.

Throughout the paper, if B is a group, A a subgroup of B, then
Ny(A) and Cy(A) mean, respectively, the normalizer and centralizer of A
in B. By Z(A) we mean the center of A.

2. The H,-problem. Let G be a group, and let H = H,(G). Suppose

(1) G is finite,

(2) G is not a p-group,

(3) the index of H in G is greater than p,

(4) G is a group of minimal order satisfying (1), (2), (3). Note that
every element of G which is not in H has order p. .

Let ¢ be a prime dividing [G:1], ¢ # p, and let @ be a Sylow g-
group of G; then Q is also a Sylow ¢-group of H. Let N = Ny(Q); then

Received January 16, 1959. The first author was supported in part by the United States
Air Force through the Air Force Office of Scientific Research of the Air Research and

Development Command under contract No. AF 18 (600)-1383.
1 Unless the group is a p-group; see Theorem 2.

1097



1098 D. R. HUGHES AND J. G. THOMPSON

by the Frattini argument (see [1], p. 117, for instance), G = NH. Thus
[G:1]=[NH:1]=[N:1][H:1]/[N n H:1].

First, let us suppose N = G. Then clearly H,(N) < H,(G), so
H(N)C HN N. Since Q < H,(N), it follows that H,(N)=# 1, so
[N:H(N)]<p, and hence [N:NNH]<p. So p=[G:H]=
[G:1)/[H:1]=[N:1)/[INN H:1] =[N:N n H] < p. This is impossible,
so we must have N = G, and thus @ is normal in G.

Now let Q, (# 1) be any subgroup of @, normal in G, and consider
G/Q,. Clearly H,(G/Q) =1 or H,G/Q, has index p in G/Q,, unless
G/Q, is a p-group. Indeed, it is obvious that H,(G/Q) < H/Q,. But
[G/Q,: HIQ] = [G: H] =9, so [GQ,: H(G/Q)] > [G/Q: HIQ] = p, im-
plies H,(G/Q,) = 1. So G/Q, is a p-group.

LemMA 1. If [G: H] = 9% then Q is an elementary abelian q-group,
none of whose proper subgroups (#+ 1) is normal in G, Q is nmormal in
G, and G = PQ, where P is a Sylow p-group of G.

Proof. We have shown that @ is normal. If @, above is taken to
be the Frattini subgroup of @, then @, is normal in G, since it is charac-
teristic in Q. Since @, # @, G/Q, cannot be a p-group, so we must have
@, =1. Thus @ is elementary abelian. Since G/Q is a p-group, it is
clear that G = PQ, and the rest of the lemma follows similarly.

In what follows, P is a Sylow p-group of G and P, & P is a Sylow
p-group of H; clearly [P: P,] = p* and P, is normal in P, since P, = PN H.

If # (+1)is in Q, while ¢ is in G, not in H, and if ax = za, then
ax has order pq. But ax is not in H, since a is not in H, and thus ax
has order p; hence ax + xa. If P, =1, then P, of order p? is an auto-
morphism group of H = @ such that no non-identity element of P fixes
any non-identity element of Q. But by ([2], pp. 334-335) this means
that P is cyclic, whereas P is clearly elementary abelian in this case
(for all its elements have order p). So P, 1.

Since P, is normal in P, P, N Z(P) + 1 (see [3], p. 35, for instance).
Let z be an element of P, N Z(P), chosen to have order p, and let Z,
be the subgroup (of order p) generated by z; note that z and Z, are
contained in H. Let K = Z,Q, and observe that [K:1] = p[@ :1]. Let
a be an element of G, not in H, and G, = {a, K} = the group generated
by @ and K. Then Q € H,(G,)) € HN G, + G,, so [G,: H(G)] =p, by
induction. Hence Z, € K € H,(G,), so there must be an element y in K
of order pq. Then ¥” is in @ and ¥* is in z'Zx, for some x in K,
since Z, is a Sylow p-group of K. By adjusting our choice of P, we can
assume that y? is in Z,; let u =9, v =9 Then u# 1, v+ 1, uisin
Q, v is in Z, and wv = vu. So if Q, = {u}, we have Z, C C¢(Q,). But
then z'Zx < Cyz~'Q.x), and if z is in P, this implies Z, € Cy,(x'Q.x),
for all  in P. But, from Lemma 1, the subgroup generated by all
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x7'Qx, as x ranges over P, must be @, and so Z, C Cy(Q). Since Z, is
in the center of P, it follows that Z, is normal in G, so we consider
G/Z,. One easily sees that H,(G/Z,) < H|Z,, and H,(G|Z,) equals neither
1 nor G/Z,, Hence p*=|[G:H]|=1[G|Z,: HZ] < |G|Z,: H(G|Z)] = p,
which is a contradiction. So:

THEOREM 1. If H(G)# 1 or G, and if G s finite and not a p-
group, then [G : H(G)] = p.

If G is a p-group, or is infinite, the situation seems more inacces-
sible; as remarked earlier, Theorem 1 still holds if p = 2 or 3, no matter
what G is. But the proof for p = 3 (see [5]) utilizes the Burnside theorem
(for p = 3) and this strongly suggests that the infinite case at least is
considerably harder.

3. Structure of H,groups. Let us suppose that G is a finite group,
and that H = H (G) has index p in G. Then we say that H is an H,-group.

THEOREM 2. If H is not a p-group, then H is an H,-group if and
only if H has an automorphism ¢ of order p such that

ml+c’+-..+o'p_l =1 ,

for all x wn H.

Proof. 1If H= H,G), let a be in G, a not in H, and define z° =
a~'za, for & in H. Since (ax)’ =1, while (ax)’ = a?(®)(@°) -+~ ("),
the equation of the theorem follows immediately.

Conversely, if ¢ exists satisfying the hypotheses of the theorem, then
let G be the holomorph of H by the automorphism group {¢}. It is easy
to see that H,(G) € H. Since H,(G)-+ 1 (for H is not a p-group), it
follows that [G : H,(G)] = p, from Theorem 1, so H,(G) = H.

Note that if #° = x, then the equation of Theorem 2 implies z* = 1.
So if p does not divide the order of the H,-group H, then H is even a
Frobenius group, and so is nilpotent ([6]).

THEOREM 3. If H is an H,-group, then H = PK, where P is a Sylow
p-group of H, K is normal in H and is nilpotent, and PN K =1. In
particular, H is solvable.

Proof. We can assume that P = 1, and that H is not a p-group.
Inductively, suppose the theorem is true for all H,-groups whose order
is less than the order of H, and (using Theorem 2) let v be an auto-
morphism of H, of order p, such that

~1 .
g™ = 1 all o in H.
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If A is a v-invariant subgroup of H, then A is an H,-group or is a p-
group, while if B is a y-invariant normal subgroup of H, then H/B is
an H,-group or is a p-group.

Now let B be any v-invariant subgroup of P, B normal in P, B + 1;
let N = Ngy(B). If N=H, then H/B is an H,-group, so H/B = (P/|B)(K,/B),
where K,/B is normal in H/B and is nilpotent. So K, is normal in H
and since K,/B is v-invariant in H/B, so is K, v-invariant in H. So K,
is an H,group. If K, # H, then K, = BK, where K is normal in K,
and is nilpotent, and K N B = 1. But then K is characteristic in K,
hence is normal in H; every Sylow g¢-group of H, q # p, isin K. So K
is characteristic in H and clearly H = PK, PN K = 1.

If K,=H for every such B, then B = P is the only v-invariant
normal subgroup of P, other than 1. Hence in particular P is elementary
abelian. Then HJP is an H,-group, and even a Frobenius group, so is
nilpotent. Furthermore (since H is then solvable), H = PK, where K is
isomorphic to H/P. Let K = Q,Q,---@Q,, where Q, is a Sylow ¢;-group
of K (and of H) for distinct primes q,, q,, «--, ¢,.

Now let G be the holomorph of H with the group {¥}. Then, by
the Frattini argument, N«(Q,) N H # N4Q,), so by an appropriate choice
of v, in G, v, not in H, we can assume that Q, is 7;-invariant. Thus PQ,
is 7;-invariant and so it is an H,-group (it is straightforward to check
that any element of G, not in H, can play the role of v).2

If t > 1, then PQ, has order smaller than H, so @, is normal in PQ,.
Thus both P and K are contained in Ngz(Q,), so @; is normal in H, hence
K, which is the direct product of the @,, is normal in H, so we are done.

Ift =1, let Q = Q,, and as above, choose v in G, not in H, so that
@ is y-invariant. If @, # 1 is a v-invariant normal subgroup of @, then
PQ, is an H,-group, smaller than H = PQ if @, + Q; thus P normalizes
@y, 80 @, is normal in H. Then by considering H|/Q,, we find that Q/Q,
is normal, so @ is normal in H, and again we are done. Thus we can
assume that @ is elementary abelian with only trivial y-invariant normal
subgroups.

Now we consider the holomorph G again. The maximal normal p-
group of G is P, since {v} (as part of G) is not normalized modulo P
by Q. Then G/P is a solvable (and in particular, p-solvable) group of
automorphisms of the elementary abelian group P, and G/P has no normal
p-group (# 1). Furthermore, this representation of G/P as a linear trans-
formation group on Pis faithful, since Cn(P) N @ = 1 (otherwise C,(P) N Q
would be a non-trivial y-invariant normal subgroup of @). Thus we can
utilize Theorem B of Hall and Higman ([4]); since @ is abelian, Theorem
B asserts that v, as a linear transformation of P, has the minimal

2 In these references to the holomorph G, we are not making a distinction between an

element as an automorphism of H and as an element of G; the automorphism is actually
identified with an element of G which induces the prescribed automorphism in H.
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polynomial (z — 1)*. But in fact, v has a minimal polynomial which
divides 1 + 2 4 -+ 4+ 2?7}, since

b1+1/+...+y]’“1 =1 ,

for all b in P. Thus we have a contradiction, and so @ is normal in H,
and we are done.

Now we must consider the case that if B (s 1) is any v-invariant
subgroup of P, normal in P, then N = N,(B) is never equal to H. Hence
N, being v-invariant, is an H,-group or is a p-group, so N = P,K,, where
P, is a Sylow p-group of N, K, is normal in N and is nilpotent, and
K, NP, =1. Since B is normal in N, K, is contained in Cy(B), and thus
contained in Cy(B), so Ny(B)/Cx(B) is a p-group (i.e., is isomorphic to
P,/P,, for some subgroup P, of P). But then, since this holds for all
such B, Thompson’s theorem ([6]) asserts that P has a normal comple-
ment K in H; i.e., H= PK, where PN K =1 and K is normal in H.
Since K consists exactly of the elements of H whose order is prime to
p, K is characteristic. Thus K is an H,-group (even a Frobenius group)
and is nilpotent, so we are done.
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PROJECTIVE INJECTIVE MODULES
J. P. JANS

1. Introduction. In this paper we prove several theorems about
rings having a generous supply of projective injective modules. This is
a curious class of rings. For instance, every module over a semisimple
ring with minimum condition is both projective and injective, while
over the integers only the zero module has this property. On the other
hand, for some non-semisimple rings, Quasi Frobenius rings [5], every
projective module is injective. For others no non-trivial projective
module is injective (for example, a primary algebra over a field with
radical square zero and having vector space dimension greater than two).

We begin our study in § 2 by considering primitive rings. We give
(Theorem 2.1) a necessary and sufficient condition for a primitive ring
to have a faithful projective injective irreducible module. By means of
this condition we prove a structure theorem (Corollary 2.3) for rings
having both a left and a right injective projective irreducible module
with the same anihilator.

In § 3 we generalize both halves of a theorem originally proved by
Thrall for finite dimensional algebras [10, Theorem 5]. This theorem
states that a necessary and sufficient condition for the minimal injective
[3] of the ring to be projective is that the ring have a faithful injective
module which is a direct summand of every faithful module. We prove
this theorem in one direction for semi-primary rings and, in the other
direction, for rings with the ascending chain condition. It should be
noted that we have rephrased the theorem to eliminate the duality given
by the field. We find that this can be replaced by the dual concepts,
projective and injective.

Throughout the paper we shall only consider rings with identity 1
and modules over such rings on which 1 acts like identity. ‘‘ Minimum
condition ”’ means minimum condition on left ideas [1].

The author wishes to express his appreciation to John Walter for
many stimulating conversations which contributed to the formulation of
this paper. We also wish to thank Alex Rosenberg for suggesting clear
concise proofs of Theorems 2.1 and 3.2.

2. Projective injective irreducibles. We shall begin by considering
primitive rings. Recall that a (right) primitive ring B has a faithful
irreducible right module M [7, p. 4]. The module M is always the
homomorphic image of E, and if M is projective then M is induced by

VReceived~Jaunary 28, 1959. The author was supported by the National Science Foun-
dation,
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a minimal right ideal of R. That is, R is a primitive ring with minimal
right ideals. Conversely, if R is a primitive ring with minimal right
ideals then the faithful irreducible module is induced by an idempotent
generated (= direct summand) right ideal of R. Thus, the faithful
irreducible is projective.

In the following we shall study primitive rings with minimal right
ideals and we shall establish a necessary and sufficient condition for the
faithful irreducible module of such a ring R to be injective. We are
greatly aided in this study by the rich structure theory for these rings;
see for example Jacobson’s book [7, Chapter IV].

Using the notation and the structure theorem from [7, p. 75], we
have S= F(M, N)c Rc L(M, N) where M, N are dual spaces over
a division ring D and M (N) is a right (left) irreducible faithful projec-
tive R-module. S is the socle of R.

THEOREM 2.1. The module M is R injective tf and only if M =
N* = Hom,(N, D).

Proof. If M = Hom,(N, D) then by Prop. 1.4 p. 107 of [2], M is
R injective.

For the converse, assume that M is R injective. In this case, it is
enough to show that for every maximal right ideal J of S there is
a nonzero element a of S such that aJ = 0. Then the left ideal Sa
contains an idempotent e #= 0 such that e¢J = 0 and J is a modular [7]
(called regular in [9]) right ideal. But Rosenberg has shown [9, p. 131]
that if every maximal right ideal of S is modular then M = N* =
Hom,(N, D).

Identify M with a minimal right ideal of S. Since J is maximal
in S we can consider the R exact sequence of modules

O JeS—sM—0.

Since M is R injective by [2, Th 3.1, p. 8] the homomorphism # has
the form 6(s) = as for some a # 0 in the right ideal M of S. But since
Ker 8 = J,aJ = 0. Theorem 2.1 then follows from the remarks above.

One should note that the corresponding theorem with right and left
interchanged is proved analogously, hence we have the following

COROLLARY 2.2. If R is a primitive ring then R is a simple ring
with minimum condition tf and only if R has both a left and a right
Saithful irreducible projective injective module.

Proof. If R is a simple ring with minimum condition then it has
faithful irreducible left and right modules [7, p. 39] and every module
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over such a ring is both projective and injective [2, p. 11].

To show the converse, we appeal to the theorem. Using the nota-
tion of the theorem, M = N* and M* = N. But we know [7, p. 68],
that this can only happen when both have finite dimension over D. In
this case R is isomorphic to all transformations on M and is a simple
ring with minimum condition [7, p. 39].

The theorem and its corollary also have applications to any ring
having left and right projective injective irreducibles. It is clear that
if a ring R can be written as a ring direct sum S + K where S is
a simple ring with minimum condition, then R has both a left and a right
projective injective irreducible module, each having anihilator K. It is
interesting to note that the converse is also true.

COROLLARY 2.3. If R has both a left and a right projective im-
jective irreducible, each having anthilator K, then R =S + K (ring
direct sum) where S is a simple ring with minimum condition.

Proof. Under the above assumptions R/K is both a left and a right
primitive ring and the faithful irreduecible left and right modules con-
sidered as R/K modules are still projective and injective. Thus, by
Corollary 2.2, R/K is a simple ring with minimum econdition and both
as an R module and as an R/K module is the direct sum of a finite
number of copies of the left irreducible projective injective module.
Thus the sequence of left B modules 0 - K — R — R/K — 0 splits and
R =S@ K, left R direct. The proof will be established if we can show
that S is really an ideal of R.

Certainly, KS = (0) because S is the direct sum of modules anihi-
lated by K. Let k belong to K and consider the left ideal Sk contained
in K. It is clear that (Sk)* = SkSk = (0) because &k anihilates S on the
left. Suppose that Sk is not zero. In this case, Sk is the homomorphic
image of the completely reducible module S and is the direct sum of
a finite number of injective irreducible modules. But that makes Sk
injective and a direct summand of R. However, this contradicts the
fact that Sk is square zero, since direct summands of R are idempotent
generated. Thus we have established that Sk = (0) and that the de-
composition given above is a ring direct sum.

REMARK. There is a one-sided version of Corollary 2.3, in which
one assumes only the existence of a projective injective irreducible left
module plus the ascending chain condition on left ideals in R modulo its
Jacobson radical. The conclusion is the same. However, the conclusion
is two sided, so the existence of a projective injective left irreducible
and the above mentioned chain condition (or semi-primary, ete.) implies
the existence of a projective injective right irreducible,
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3. Minimal faithfuls and minimal injectives. Following Thrall’s
paper [10], we shall say that the ring R has a minimal faithful left
module M if M is a faithful injective module and if M appears as a
direct summand of every faithful module. It is clear that M must be
projective, for the ring itself is a faithful projective module. M will
always be isomorphic to some left ideal direct summand of R.

If T is any R module, the minimal injective Q(7T') of T is the unique
‘“ smallest ’’ injective- module containing 7 as a submodule, [3]. Using
these two concepts, we can prove a generalization of one half of a theorem
of Thrall [10, Theorem 5]. Thrall proved it for finite dimensional al-
gebras over a field.

THEOREM 3.1. If R is right Noetherian and if R has a minimal
 faithful left module M then Q(R), the left minimal injective of R, is
projective. '

Proof. As noted above M must be isomorphic to a projective in-
jective left ideal which we also denote by M.  In R consider the
collection of right ideals generated by finite sets of elements of M.
Since we have assumed R to be right Noetherian, there is in this col-
lection a maximal right ideal H generate by =, ---,2, belonging to
M. Since H is maximal with respect to this property, we know that
M c H. For if not, H could be enlarged by adjoining another generator
from M.

If xisin R and z2, =0 for 1 =1, +--,n, then xH = (0) and con-
sequently M = (0). But M is faithful, so £ = 0. Now let Q@ be the
direct sum of n copies of M and for x in R define 6: R — Q by letting
the ith component of 6(x) be xx,. This is a left module homomorphism
of R into @ and, by the remark above, is a monomorphism. @ is pro-
jective and injective since it is the direct sum of a finite number of
projective injective modules. The minimal injective of R is a direct
summand of @ and is therefore projective.

We should note that if R is both left and right Noetherian and has
a minimal faithful left module then the minimal injective of any pro-
jective module is projective. This follows from the fact that every free
module can be embedded in a projective injective module, a direct sum
of copies of M. We need the assumption that R is left Noetherian to
insure that the direct sum of left injectives is injective. Compare this
to the definition of Quasi Frobenius ring [5]: ‘‘Every projective is
injective *’.

To prove the other half of Thrall’s theorem we consider the class
of semi-primary rings. The ring R is said to be semi-primary if it has
a nilpotent Jacobson radical N and R/N has minimum condition on left
ideals. An important property of semi-primary rings is the fact that



PROJECTIVE INJECTIVE MODULES 1107

every module over such a ring has minimal submodules. For, if M is
a module over the semi-primary ring R with radical N then in the
sequence M D NM o --- D N'"M = (0) of submodules of M there is
a point where N*M =+ (0) but N***M = (0). N*M, a module over R/N,
is the direct sum of irreducibles each of which is minimal. Note also
that R has only a finite number of nonisomorphic irreducible modules.

THEOREM 3.2. If R is a semi-primary ring and if the left minimal
mjective Q(R) of R is projective then R has a minimal faithful module.

Proof. By the remark above, we know that R itself has minimal
left ideals. Let MM, ---, M, be one each of the non-isomorphic minimal
left ideals of R. From [8], we know that the minimal injective Q(M,)
of M, is indecomposable. In addition each Q(M;) is projective since it
appears as a direct summand of Q(R). But the projective indecomposable
modules over a semi-primary ring actually appear as left ideal direct
summands of the ring [4, p. 331]. Thus each Q(M,) is isomorphic to
a projective injective indecomposable left ideal L, of E. Note that for
1 # §, L; is not isomorphic to L, since each has a unique minimal sub-
module [8] and these are not isomorphie,

Let M be the direct sum of the modules L;,, we wish to show that
M is the minimal faithful module for R. From its definition it is pro-
jective and injective. If M, is a minimal ideal of R, M, is isomorphic
to a minimal submodule of M. Since M is injective that isomorphism
has the form 2 — xm for some m in M [2, p. 8]. Hence M, does not
anihilate M. If no minimal left ideal of R anihilates 3/, then no non-
zero left ideal anihilates M and M is faithful.

Now let T be an R module such that M,T =+ 0. Then there exists
t in T such that Mt == 0. Consider the homomorphism > (x) = xf of L,
into 7. This homomorphism restricted to M, is not zero and since M,
is the unique minimal submodule of L, Y is actually a monomorphism
of L, into T. L, is injective so T= L, P T,.

From the preceding argument we conclude that for ¢ = 5 M,L; = 0
since L, and L, are indecomposable and not isomorphic. Now let F' be
a faithful R module. Since M,F' -+ 0, the argument above shows that
F=L@®F, where M,F, = 0 for © > 1. Continuing inductively, F,_, =
L,® F, where M,F, + 0 for all § > 4. Thus we see FF'=MP F, and
M appears as a direct summand of every faithful R module. This com-
pletes the proof of Theorem 3.2.

REMARK. Since a ring with minimum condition is both semi-primary
and Noetherian, both halves of Thrall’s theorem hold for these rings,
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COINCIDENCE PROPERTIES OF BIRTH
AND DEATH PROCESSES

SAMUEL KARLIN AND JAMES MCGREGOR

A birth and death process (for brevity referred to henceforth as
process B) is a stationary Markov process whose state space is the non-
negative integers and whose transition probability matrix

(1) Py (t) = Pr{x(t) = j | 2(0) = 1}
satisfies the conditions (as t — 0)

At + o(t) if j=1+1
(2) Pi(t) = |t + oft) if j=i—1
1 — (n 4 )t 4 o(t) if 7=1

where N, > 0 for ¢ >0, s, > 0 for ¢ > 1and g, > 0. We further assume
that P,(t) satisfies the foward and backward equation in the wusual
form. In this paper we restrict attention to the case p, = 0 so that
when the particle enters the state zero it remains there a random length
of time according to an exponential distribution with parameter A, and
then moves into state one ete.

In order to avoid inessential difficulties we assume henceforth that
the infinitesimal birth and death rates ), and y, uniquely determine the
process. This is equivalent to the econdition >V, (7, + /A7) = o
where

MM = Ny
Hallofls o oo Ly

In the companion paper we show that for all ¢ > 0

7, =1and 7w, =

[21.

7:1;?:2;"'77:71, i1<i2<7:3<"'<7:n
(3) det (P, () = P(¢;

jlyj2y""jn j1<jz<j3<"'<jn

has the following interpretation: Start # labled particles at time zero
in states 1,, 1,, «-, 1, respectively, each governed by the transition law
(1) and acting independently. The determinant (3) is equal to the prob-
ability that at time ¢ particle 1 is located in state j, particle 2 is
located in state j, ete., without any two of these particles having occupied
simultaneously a common state at some earlier time v < ¢{. We refer to
this event as a transition in time ¢ of n particles from initial states

Received December 18, 1958. This work was supported in part by an Office of Naval
Research Contract at Stanford University.
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occur. This problem is completely solved in §4. By means of trivial
arguments it is shown that coincidence is certain if the original birth
and death process is recurrent, while coincidence is not certain if the
original process is strongly transient. If the original process is weakly
transient coincidence may or may not be certain, and this case presents
a much more difflcult problem. A criterion is given which expresses the
necessary and sufficient condition that coincidence be certain, in terms
of the constants of the original birth and death process. Finally in § 3
some interesting examples are considered. A technique for computing
the distribution of the time until coincidence is developed, and applied
to the telephone trunking model and some linear growth models.

?:1) 7:2, "'9?:71. >
Lyy Lay ¢y Ty,
Let M, K and L be functions of two variables satisfying

1. Positivity properties of Q(

(8) M, 7 = | K&, 0L, o)

where £ traverses X, ¢ ranges through Y and 7 varies over Z all of
which are linearly ordered sets and where ¢(¢) denotes a measure defined
in Y. Xcan denote an interval of the real line or a set of discrete
points on the line. In the latter case, the set will usually consist of
the integers. The same applies to Y and Z. When Y consists of a
discrete space then, of course, the integral sign of (8) is interpreted as
a sum. We define the Fredholm determinant

M(wly zl)r M(xly ZZ), ) M(xl’ Zn)
M(QC2, z1)v M(xzy Z2), M) M(xzy zn)

(9) Mxlyxm"'yxn): . . .
21y %oy 20y Rn . . .

M(xm zl)! M(xm zz)’ ) M(xnv zn)

with ¢, <2, < +-+ <2, and 2, <2, < +-- <2, and analogously for K
and L.

If the formula (8) is viewed as a continuous version of a matrix
product, then the extension of the multiplication rule which evaluates
subdeterminants of M in terms those of K and L becomes

(10) M(”””“): SS K(wlwx)L(yyy)

Ry Ry 2%y 2 a5y, <y,<-- <y, <b Y1y Ysy ***y Yn Z1y %y 220y %y

do(yl)do(yz) s da(yn) .
For the proof of (10) we refer to Pélya and Szégo I [8 p. 48]
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Qij(xl)y Qil(xz)) ) Qil(mn)
(6) Q(il! Ty =0y Uy > — Qi (%), Qi (%), - -+, Q; (2,)
Ly Lgy =2y Ty ae

Qu (@), @ (), +++, Qu ()

where 4, <4, < +-- <14, and z, <2, < --- < &, we obtain by virtue
of () that

(7) P(t; /1:1!7:2’°"y?:n>

JisJes =% In
=TTy, e T S ces S e—(11+.vz+---+m7z)cQ<@1y Toy 225 Un >Q J1s Jas =y Jn) .
z Lay<ee <z Lyy Ly =00y Ty Ly Loy =2y Ty

- A (@)dp(,) -+ » dop(w,)

(See Paragraph A of Section 1.)
The above formula displays in the simplest possible way the depen-

dence of P(t; “v o ;" on the time ¢, the initial state (¢, ---, 7,) and
1y ’ n

final state (5, +--,7.). For the birth and death process itself formula
(b) has proven to be a very powerful tool in analyzing the statistical
properties of the process. It may be expected that formula (7) will be
of comparable utility in the study of the compound process. However
certain technical details stand in the way of such a study. While the
general properties of the orthogonal polynomials {@.(x)} have been
intensively investigated by numerous mathematicians, the somewhat more
Uiy 22y Uy
Xy oo, Ty
study. At the present time we possess numerous interesting theorems
about these polynomials but our results are still incomplete. In a separate
publication we will elaborate on the structure of this determinantal
polynomial system. In the present paper we develop only those properties
directly relevant to our analysis.

We investigate two types of problems associated with the compound
process. The first problem is concerned with the behavior of the ratio

P<t; ily MR} /Ln)

J1s ""jn

. kl, ...’kn
P<t’ L, oo, 1, )

as t-— . This requires some knowledge of positivity properties of the

polynomials Q(;C“ U 1;:
are developed, and in § 2 it is shown that the above ratio converges to
a finite positive limit as ¢ — «. The second problem is that of deter-

mining for which processes coincidence in a finite state is certain to

complicated polynomials {Q( >} appear to be new objects of

>. In §1 these required positivity properties
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i, 1y, =+ +, 1, to the states j,, 5, -+, j. respectively, without coincidence.
In particular, for ¢ > 0 the expression (3) is always positive. For con-
tinuous time discrete state space processes, the converse proposition is
also true. Specifically, if (3) is always positive, then P,,(t) is the transi-
tion matrix of a birth and death process [6].

In this paper, we investigate certain aspects of the structure of the
Markov process describing the transitions of » particles conditioned that
no coincidence takes place.

We refer to this process as the compound birth and death process
of order m. Frequently, when no ambiguities arise the terms ‘‘ birth
and death’ and ‘‘ order n’’ will be suppressed. The basis of the sub-
sequent analysis is principally an integral representation for

P(t Iils 7;2; ] 'Ln>
jlyjz, ""jn

which is derived from a corresponding representation formula for P,,(t).
Let Q.(x) denote a sequence of polynomials of degree n defined by
the recursive relations

(4) — 2Qu(X) = — Ay + 1)Qn(®) + NQnii(T) + (Qn-1() n >0
Qu(z) =1 Q_(x)=0.

These equations may be written in compact form ag
— 2@ = AQ

where @ represents the vector (Q,(x), Q.(x), @,(x), ---,) and A is the
infinitesimal matrix of the process

R
Lo — ) N
28 =t ) N

s — (N 1) N

Let +(x) denote the unique measure on [0, o) with respect to which
Q,(z) are orthogonal. (The measure +» is unique because of the assump-
tion > (7, + 1/\7w,) = o.) Then
(5) Pon®) = 7 || e Que)Qu@)d (@)

0

Introducing the notation
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The relevance and utility of this identity will be abundantly clear.
We record several relations which are applications of it.
(A) The derivation of (7) from (5) is a special case of (10).
(B) The identity

(11) En: 7,Q(x) = AT @ i() — Q(2)] = H,(%)
i —

can be expressed in the form (8) with ¢ =n,& =4, and ==
M(&, ) = H()
_ 1 g<é
I(g, 1) = Q)

(Q,x) =0 for j a negative integer and do(¢) = 7, when ¢ = j.)
Since

K /1:1;?:29 "'yin> :0
lly lz; “'7ln

unless 0 <1, <1,1, <1, <1y, eo, 1,., < I, <1, in which case its value
is one, we obtain by applying (10) to (11)

(12) H(ily in A} /Z:n
Ly Loy y X
i i 4
— Z i . Zn T[llﬂzz ces ﬂ-an(lh l2; *t ey ln )
{=0ly=iy+l b=ttt Lyy Lgy ***y Ty

(C) We shall need to evaluate determinants of the form

Q.(0), @7,(0), ---, Q,(0)
in(o)’ Q;LI(O), R Q;’LAI)(O)

(13) y My < My e My,

Q.. (0), @,(0), -+, Q(0)

which for convenience of writing we give the name a(ng, n,, <+, n,).

We assume tentatively in what follows that @, are normalized such
that @,(0) = 1. This can be accomplished with no loss of generality
since Q,(0) are different from zero. The value of the determinant
a(h,, n,, -++, n,) in the general situation would be altered by the multi-
plicative factor 1/@,(0)@,(0) --- @, (0).

A more convenient expression for (13) is obtained as follows: By
subtracting the first row from each of the succeeding rows and using
the fact that @,(0) =1 for all » we have
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Q.,(0) — @4, (0) -+ - QP(0) — Q(0)
Q..(0) — Q4(0) -+ - Q¥(0) — Q5(0)

a’(’)’l/o, Mgy Ngy * -, nk) =

Q.,(0) — Q1(0) - -+ @E2(0) — Q(0)
We next observe that relation (11) provided with successive differen-
tiation yields

n v

(14) QU0 —Qr™(0)=—(r+1)

V=

(r)(O)

+1 =0

(n>%0,,’.:0’1’2, "")-

K0

In order to apply (10) to (14), we may identify
M(&, 1) = Q7H(0) — Qi *(0)

K& o) =1 §3%

L(e,7) = 3, mQ{(0)

and do(¢) = 1/n\,7m, where &, ¢, 7 each traverse the set of non-negative
integers. By virtue of (10) utilizing the representation (14) we obtain

(15) a(”o; Ny, nz, i nlc)

= (= Dk ). S e w11 L L(lulz,---,lk>

=g+l Iy=ny+l Lp=mgy*1 Ay Ty Ny, T, )‘lkﬂ-lk 0,1,+++, k-1

where we have employed the specific evaluations of the Fredholm sub-
determinants based on K(§, 7).
Another application of (10) shows that

o )

i 2 ‘i
=3 3 .- 3 Ty, * = nyk_la()uo’ Py oo, ﬂk—l) .
P=Op =l +1 g g=l g1

Putting (15) and (16) together establishes the recursive relation

n. n, n

1 2 &
A7) a(g, My =oe, M) = (=11 S, - 1 1
L =mptl  ly=ng+l U=y _q+1 )\,117511 )\,LZTCZZ
1 Yy L, 4,
cee x Z_ . Z cee 2 Mg, * ﬂ:"kﬂa(#‘)’ oy Moy oo, ‘uk—l) .
1,700, Fo=0  By=ip+l Bp—1=lg—+1

Note that the range of summations guarantee that g, < g, <ty < <=« < iy
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Furthermore, (17) exhibits determinants a(n,, n,, <+, n,) of order k 4 1
in terms of corresponding determinants of order k. Consequently, the
procedure may be iterated out of which follows whenever @,(0) > 0 that

(18) (— DeDE e a(mg, nyy Ny, <2+, M) > 0

for all choices of n, provided n, < n, < n, < --+ < n,. It is also routine to
calculate the explicit value of a(n,, n,, n, < +-- < n,) by iteration of (17).
In particular

n

1 k
a(ng, n) = — >
k=ng+l N TT, (=0
7l1 1 n2 1 % 1
a(ng, my, ) = 3] > TTuy } Zk:“ﬂu-la(#o; )al) .
=

k=ny+1 )\,kﬂ'k t=n +1 N\ TT; #y=0

The derivation of the identity (17) was predicated upon the fact
that Q,(0) =1 for all n. If all the Q,(0) are of negative sign then the
sign of (13) is altered by the factor (— 1)**' where k£ + 1 is the order
of the matrix. Indeed, all we need do is replace @,(x) by Q,(x)/Q.(0) =
P,(x) and apply the argument to P,(x). The value of a(n, %, +--, %)
based on P,(x) differs only by an obvious multiplying factor from that
based on @Q.(x).

(D) Following the same lines of argument as above we shall show

(19) (= D=vrg(" ottt M)
-7/'1, x?v ccy xlc

provided =, < x, < 2, < -+ < x, < a where a denote the smallest value
in the spectrum of +r, and where @,(0) > 0 by our normalization condi-
tion. The result expressed in (19) may be regarded as a generalization
to the compounded polynomial system of the property that @Q.(x) for
x < a is of one sign.

Suppose for definiteness that the polynomials Q,(x) are orthogonal
functions with respect to a measure +» on [0, ). The proof is by
induction on k. Since Q.(x) are normalized to be positive at 0, it follows
that @,(x) > 0 for all * < a which is the assertion of (19) when k£ = 1.
We shall assume that the wvalidity of (19) for kth order determinants
has been demonstrated for any system of orthogonal polynomials whose
weight function concentrates on the interval [0, ), and proceed to show
the result is valid for the k& + 1st order determinants. Let x,, @,, -+, %y,
denote a set of values arranged in increasing order with z,,, < a.
Replacing Q.(x) by Q.( + 24..)/Q.(%,..) Wwe may, without loss of gener-
ality assume «,,, =0 and that Q.(x..,) =1 for all n. This alters
the original determinants by a positive multiplicative factor, provided
we evaluate the changed matrix polynomial system at the points
Y, = %, — Xz+,. Hence
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in(xl)r in(xz) e in(xk) 1
Q(’"/u Mgy o2, nk+1) — an(xl), an(g@) see an(xk) 1
xlyxb “'yxk-bl E 5 S ;
Qo (2, Quy, (@) -+ Qu, (@) 1
Subtracting the kth row from the %k + 1 row, the k-1th row from the

kth row, etc., and finally the first from the second row we have

(20) Q(nl’ Ngy o=, nk+l>
Lyy Loy =00y Tiuy

Qu()  — Qu (%), Qny(@) — Qu(@o), -+ -, @u(®)  — Qu ()

= (-1
an+1(x1) — th(xl)y e an+1(xk) - an(xk)
Observe that
(21) Q) — Qu_ (@) = — & 5, L H ()
where

ffi(x) _ AT Qias(%) — Qu(2)]

— X

comprise an orthogonal system of polynomials with respect to the measure
xdrr/N, which concentrates its measure on (0, ) since + does [2, p 504].
Therefore,

(— 1)k(k—1)/2H<m17 My o0, mk) >0
Ly, Lgy oo, Xy

whenever x, <, < 2, < «+» <2, <0 and m, < m, < -+ < M, since
H,(0) = 35, 7,Q,0) > 0. Inserting (21) into (20) shows that

(— 17Q Nyy Ngy ooy Ny

can be written as
Lyy Loy * o2y Lgaq

(_ l)kxlx2 cee 2, Z VMI’“Z‘_._’MEH</11: Mo, s F‘h)
wos Lyy Loy ¢ 2y Xp,

where the (’s traverse the sets n, < ¢, <%, —1,7=1,2, -+ k re-
spectively, and Vigsoresiry, > 0 Taking account of the inequality z; < 0,
j=1,2,+--,k and the induction hypothesis which insures the inequality

(— 1)’“('“"1)'2H<§:” Tt ﬁ") > 0 we obtain
1

oo, 2y

(— 1)¥(— 1)k(k—1)l2Q(n1y Ny ** 2, nkﬂ) >0

Ly, Lgy o0ty Lgay
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as asserted. This completes the proof.
A little manipulation of (19) will show that

in("/) Qr(7) -+ Q;:i—l)(ry)
(22) (— 1)FcE-De2 Qf._,(ry) .ee -

Qu (1) Q1)+ ++ QL)

true for every v < a. This is verified by subtracting the last column of
(19) from the next to last and using the mean value theorem. Repeating
this % times and afterwards letting all the x, converge to v produces
(22). Subject to the correct normalization the argument employed in
paragraph (C) above shows that these determinants are actually strictly
positive.

A further sharpening of the relation (19) and (22) is possible. In
order to describe this extension we must assign a special meaning to the

H . cee M
determinant Q*("n Ny, ) ;c)
Lyy Loy = 2*y Ty,

where 7, < N, < s+ <M, and 2, < 2, < »+» <2, and distinguished in
that several of the z’s can be equal. (The asterisk sign on the @ shall
always occur when one or more of the x’s are equal and indicates that
a special interpretation is to be made.) Let us illustrate by means of an
example.

If e, <a,=2, <2, =2,=2, then

Q* Nyy Mgy o2 0y Ng

Xy, X, ...,906>
Qo (@) @uf(®) Qu(x) Qn(w) @Qu(z) Q)
an(xl) an(x2) Q;z_,(xz) an(m;) Q;,l(m) Q;L;(x‘;)

Qu(@) Q) Q@) Qu(z) Qu(w) Q@) |

In general, when there is a block of equal x values present, the succes-
sive columns, corresponding to these x values in forming Q* are deter-
mined by the successive derivatives, i.e. (Q,), (Q), (QY), -+, (Q7™") where
r is the number of equal x values.

One can show by a more tedious elaboration of the methods in (C)
and (D) that generally

(23) (__ 1)k(7c—1)/2Q*<n1, Ngy =, nk> ~ 0
Lyy Loy ==, Ty

when o, < 2, < .-+ < 2, < a with the emphasis on strict inequality in (23).
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We do not indicate the details since an analogous argument will be
used in the proof of Theorem 1.
(E) With the aid of the results of (C) and (D) we shall deduce deter-
minantal inequalities valid for special choices of positive x’s. Let Q. (x)
be a gystem of orthogonal polynomials normalized as usual so that @,.(0)>0
and + its measure on [0, ). Let us suppose the measure +r begins
with isolated jumps located at a, < a, < --- < a, followed by a non-isolated
point in the spectrum starting at a,,, where  may be 0,1,2, ---. In
particular, when » = 0 then the first point in the spectrum of +» is not
an isolated jump. On the other extreme if » = o then the first portion
of the spectrum +r consists of an infinite number of isolated jumps which
could include the full spectrum. It is not necessary, in what follows,
to describe more precisely the spectrum beyond a,.,;.

THEOREM 1. Let 0 < m, < n, < 1y < »-+ < 0, and @, be normalized
as usual such that Q,0) > 0; then for k < r,

(24) (— 1)"(75—1)12Q<n1, Ny ==, ’I’bk) >0
Wyy Qgy * 22, Gy
and for k> r,
(25) (.__ 1)k(k—1)/2Q>}<<n19 Mgy =22y Mypy Wpsgqy Wypgny * =, Ny ) > 0

Qyy Qgy o0y Qpy Qpyyy Qpsyy =2y Qpyy

where Q* 1s defined as above.

Proof. The proof is by induction on the order of the determinant k.
The case where » = 0 has already been completely examined in paragraph
(C). Hence, we assume r > 1. We suppose furthermore that the theorem
has been established with regard to any orthogonal polynomial system
whose spectral measure concentrates on the non-negative axis with the
number of initial isolated jumps totalling less than ». Let r be fixed
and > 1 and suppose we have established the theorem for determinants
of size < k. Denote by P, (x)= Q.x + a)/Q.(a,). These polynomials
constitute an orthogonal system with respect to the measure y(x + a,)
whose first mass points occur at 0,a, — a,,a;, — a,, -+, a, — a,. Observe
that

SNy Ny 2o, N Nrs Moy o0, N
Px( 1 T ’ Ic>:Q* 19 Tlay ’ k)C(’VLI, nz’.,,’nk)
bl’bZ"”)bk Qyy Qgy 2y Ay
where C(n,, 1y, +++, n,) > 0 and
b=0,b,=0a,—a,, -+, b, =a, —a,b;=a,,, —a, for j>r+1.

Subtracting the k-1th row from the kth row, the k-2th row from
the k-1th row ete., we obtain
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P*<n11 Mgy ¢, nk)
bly b2y "'yblﬂ

Pnz(b2) - Pnl(bz)y Yy Pn2(br+1) - Pnl(br+1)y P?iz(br'*-l) - Pvgl(br-l-l)

Pn,c(bz) - Pnk_l(bz), ccty Pnk(br“rl) - Pnk_l(br-i-l)’ Prik(br-i-l) - Pék_l(br+1) b

The right-hand side is a determinant of size k¥ — 1. Dividing the respec-
tive columns by — 1/b,,v = 2,3, «--, (remember b, > 0 since r > 1), we

have

. Nyy Mgy ¢, N
(26) (_ 1)]6—'1 Slgn P* 1y 2y ’ k
< 1y be *t ey bk )

Pnz(bz) - Pnl(b2) e Pnz(br-é-l) - Pnl(br+1)
_ b2 ’ ’ _ br+1 ’
Prll,z(br+1) - Pvil(br+1) cee
- br+1
= sign
Pnk(bz) - Pnk__l(bz) e Pnk(br+1) - Pn,c_l(brﬂ) ,
- bz , , - br+1
P,'Lk(br_,_l) - P’I;k_l(br+1) v
- br+1
Let
HJ(z) = )\I:Fn.;k[ P,.\(%) _x Pr(w)]
and set

M PY() — PO()]
—

M®(z) =

1=0,1,2,---, so that M{” = H, and )\ and p* are the parameters
corresponding to the polynomial system P,(x). Finally, for 0 < g, < p, <
eos < My, define

HMl(bz) cee H;Ll(brﬂ)’ M,:Inl(brn) °ec M;(;.’i—l_r)(brﬂ)
I, Ly oo
<b2y ) blc

Hi#,c_l(bz) °*e H,U-k_l(brﬂ), M;,Lk_l(brﬂ) cec M;L’;__ll-”(brn) .

Expanding the right-hand side of (26), using (21) and an analogous
formula for the successive derivatives of Q,(x), we obtain
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(27) sign(— 1)"‘1P*<n1’ Tgy =, Ny
b, by, +e-, b,
ﬂl; ﬂZr e, [lk__l)

= sign >, w,,uz.~~,uk_1L<
“ bz,bs,”'ybk

where the v’s are positive and n, < g, < 144, (¢ =1, -+, k —1). But
H®P@) = MO(@) + 3 c(@)MP(x)
t=0
Hence by suitable operations on the columns of L we obtain

) G )

where the H* determinant is formed from the polynomial system H, in
the same way that Q* is constructed in terms of @Q,.

The H system represent orthogonal polynomials with respect to a
measure da(x) = C-xdyr(x + a,). The jump at the origin of dy(x + a,)
is obliterated due to the factor x. Otherwise, a possesses » — 1 initial
jumps located at a, — a,, ---, a, — a, and the non-isolated portion of the
spectrum begins at the point a,,, — a,. By the induction hypothesis

(— 1)¢-De- ”’ZH*(Z)?“ pz,.-.-.-,,u,c 1> > 0. This fact in conjunction with
(27) shows that

2y Y3y !Ic

(— l)k(rc-l)/zP*(nu Ty * =, nk) >0
blr va ) bk

as desired. The proof of the theorem is complete.

What is essential for the validity of (25) is that the first » choices
of ¥, > 0 used in evaluating (25) should coincide with the first spectral
points @, of +» (here » has the same meaning as in the theorem).
Otherwise the values of y, (j > r + 1) can be arbitrarily chosen from
the interval a, < ¥ < @,,, with the restriction that they are arranged
in ascending order even allowing equalities. Actually, more is true. A
careful examination of the above arguments shows that

I O e e ) P R ()
Apy Qgy **%y Agy Y1y =y Y

where n, strictly increase and y, for j > s + 1 satisfy a, < ¢4y < Yssa <
coe LYy < gy

To complete the story we note without proof that it is possible
n,n 4+

)
fixed sign for all » when « and y satisfy = < a, and a, < y < a,.

to construct examples which show that Q( ) does not possess a
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2. The compound process. The infinite matrix P(t) satisfies the
differential equations

dP(t) _

dP(t)

= P(H)A ,
It (t)

called respectively the backward and the forward equations of the birth
and death process. Either equation may be derived from the other when
it is known that both P(t) and A satisfy the symmetry relations

P, (), = P;(t)m;, a,m = aum; .

As a consequence of these equations we deduce the backward and forward
equations of the compound process :

d < Gy ey ) Gy ooy oy B — 1,4y z>
_Pt; 1 » Yn) — " t; (24 y Yr—=1s Yr y Yr+ly
dt . ) L{#,P(

.719...!.7.714 r=t .7.17“‘Yj’)"‘l?j'T’jT"‘l!..‘!jn
— (ur + pm)P(zs; bttt ’”) + MP(t; B 2t e Bt Ly ey e Z)}
Jis ***sJn Jis ** s Jo=15drs Jr+19 ** %9 In
(29)
_d_ P<t, 2% "".7'”> — Z {XJT,_I.P(t; CTRARN 7/.7‘—17 ’I’-r’ Vpt1s =%y Un . )
dt Jis ***s Jn et .71,"'y.?r—lajr‘—1!Jr+1v"'y.7n
— (N, + )UJT)P<t} @_1’ T %"> + ﬂ.f,.+1P<t ; Z_" T Z_"“ z',., bres Tr ) >} .
.71,"'9.771 .71,".7.7r—1’.7r+1y.7r+1y"'yjn
Here we employ the natural convention that P(t : ;“ ’;"> for 7, <
1 ’ n

.- <1, and 5, < +-- < 7, is zero if any two 4, or any two j, are equal
or if 1, = —1 or j, = — 1. The first of the above equations (backward

equation) follows at once from

iP(t; Z.u "'y%n)
dt Jis ey In

= S, (sign 0Py (1) - P,‘T_qur_l(t){%Pirde(t)IrPiHleHl(t)- ©-Py, (0)

on applying the backward equation, P'(t) = AP(t). Here >\, denotes

1’ cee, M
DI ) of 1,2, m. The
forward equation may be obtained in a similar way from the forward
equation of the original process. Alternatively either of the two equa-
tions is a consequence of the other one together with the symmetry
relations

summation over all permutations ¢ = <
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P<t; .1, ’ _n>7ri1°"7rin:P(t; .7.17 ’j.n>7cj1"‘7tjny
Jis ***yJn Ty 22y Un

and \,7, = Hri1 TWpaae
The backward and forward equations of the compound process may

also be derived from the representation (7) and the fact the determinantal

by 22y 7’”) satisfy the recurrence formula
Lyy ooy Ty

polynomials Q<

) ISl P R

(30) Ly, vee, X, 7T Dy, seececccscsccccaces , 0
— ()\, + ﬂ)Q(tl, --‘,7:7,‘> + XTQ<’£1’ cee, g, ’Lr-{— 1,’I,T+1’ ...’@n)j]
Ly, v, Xy XLy, cecesesscee ceeense cee X,

where Q(‘gc“ ,an> for j, < «-+ < j, is taken to be zero if any two j,
1 ’ n

are the same or if j, = — 1. This recurrence formula follows at once

by applying the basic recurrence formula —zQ(x) = AQ(x) to the right

member of the identity

— @t e+ ) Q( )

Lyy *22, Ty

3. (sign Qs -+ Qs _(@s_)— @0 Q@) +++ @ (3. -

M=

r=1

It is not difficult to see that P(t; “» °°"» %) converges to zero as

cee

b

t — . In fact if the original birth and :i’eath p;ocess is either transient
or recurrent null then P,,(t) — 0 for each ¢ and ;7 so the determinant
— 0. On the other hand if the original birth and death process is
recurrent (either ergodic or recurrent null) and Fj(t) is the probability
that first passage from state ¢ to state 0 occurs in time < ¢ then F}; (¢) — 1
and from probabilistic considerations

P(t; 711. --~,’1:n> Sl—Fin,o(t)_’O as t— oo .
Jiy s n

Thus we have two reasons why the determinants may — 0 and at
least one of them is always in force.
According to the Doeblin-Chung ratio theorem [1]
SBP<T; 721’ “.’,L.")df
lim 22 Jis s Jn

T p(es e e

exists and is finite and positive. For the compound process of the birth
and death process we are able to make the following considerably sharper
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statement.
THEOREM 2.
Pt bty
lim Ju 220 I
R h)

exists and 1s fintte and positive.

Proof. Itisevidently sufficient to consider the case when (k,,+--,k,) =
(ly, -+, 1,)=1(0,1, ««-,m —1). Let f(x,, -+-, x,) be the polynomial such

that
Q(il’ ""i"')Q(jl' "'yjn) _—— ""xn)[Q<O’ cee, M — 1>T-

Lyy ooy Xy Lyy =0y Xy Lyy 200y Xy

We wish to show that

S S A RS xn)[Q(O’ ”“1”2@(%1) cee du(,)

(31) 0<%, <o ey Lyy ooy Ty
S cee S e—(zl+..-+zn)tQ[<Oy ...’n—1>—I2d\l/\(x1) cee d’\!]‘(wn)
Osx1<---<xn l/'cly c xn

converges to a finite positive limit as ¢t — c. Suppose there are x values
0<a, < -+ <@, such that the function +(x) has positive jumps at
@, *++,a, but no other spectrum in 0 < x < a,,, while +» has infinitely
many points of increase in every interval a,,, < < @,., + &. We consider
separately the cases r >#n, 1 <r <% and r =0. The case 1 < » < n,
which exhibits all the necessary arguments, will be discussed in detail
and the other two cases are left as an exercise for the interested reader.
When 1 < r < n integrals of the form

S . S F(w,, =+, 2,)dr(®) » =+ dpr(2,,)

<
0$1‘1<-«-\zn

may be written in the form

S S F(@,, ««, x,)d(@,) -+« dr(z,) .

A ST S STy,

Ty = @y

xr'*‘l Z a’r+1 .

For large ¢ the main contributions to the integrals in (31) therefore
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come from the neighborhood of the point (v, ---, z,) = (a,, ---, a,,
Oprgy *+*, Qrpy). To make this precise we first observe that Theorem 1
shows that f(a,, -+, a,, a,.,, ==+, @,.,) = ¢ is positive and that the measure

CU

wl! M ’ x‘)’l/
has positive mass in every ‘‘right-hand”’ mneighborhood of the point
(A, «++,a,, Ay, =++,a,..,). The expression (31) can be written in the
form ¢ + (I,/I,) where

@) -« duia) = doga, -+, )

I1 - S Tt S S R L R R I L
[f(xu cccy xn) '_ C]da(x‘l) °cy xn) ’
Iz = S b S SR O G R R R LS ol de(xlr cc xn) .
Given ¢ > 0 we choose 8 >0 so |f(x, ---,2,) —c¢|<e for |x, —a,|+

cee tlx—a | By — Qi | e 2, — Ay | < 6. Let Rs and R}
denote the parts of the region 0 < «, < --- < %, where

X, 4 e+, <a,+ 00 +a,+ (0 — r)a,., + 5 and where
X+ e+, >0, + -0 +a,+ (0 — r)a,., + 8 respectively.

Then
e
Ry Rg
é e S cee S e—(:cl+.--+xn)&+(a1+...)t dg(xly cee, xn)
et | e [ 1wy e @) — e ldoG, <o @)
Ry
while

PAEIRE | e o, oy @)

B

> S e Se—-(xl+---)b+(a1+--~)b do(x,, -+, x,) > Be"‘}“

E,
,28

where B > 0. Consequently lim sup,...|([)/(L)]| <& and the theorem
follows.

3. Some examples of the probability distribution of the time
until coincidence. A random variable of natural interest to the study
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of the compound process of order 7 is the time ¢* until coincidence.
To expedite the discussion we restrict attention to the case of the
compound process involving two particles. The obvious extensions are
left to the reader. In general, coincidence need not occur with certainty.
We define t* to be the time of first coincidence if this is finite and to
be + oo otherwise. In the next section the condition that coincidence
be a certain event is expressed in terms of the parameters of the birth
and death process. In this section the explicit distribution of ¢* is
determined for some important examples.

We begin with a few remarks concerning the general character of
this problem. We may consider a two-dimensional birth and death process

whose states are all pairs (4, j) with ¢ >0, 7 > 0 and transition proba-
bility law

Pi]':kl = Pilc(t)le(t) .

In this formulation the problem is to determine the distribution of the
time of first hitting the diagonal ray ¢ = j.

Alternatively, we may consider the compound process With state

space (¢, 7), 0 <4 < 4 and transition probability law P(t; ;C’ %) In this
formulation, coincidence occurs if the particle is in some sta’te (k, k+1)
and is then absorbed—the process terminates at (k, & + 1). The problem
is then to determine the distribution of the time until the process ter-
minates in this manner.

Let S%(t), (0 < 1 < j) denote the probability distribution of the time
until coincidence when the initial states of the particles are respectively
1 and 7; i.e.

SH(t) = Pr{t* < t|x(0) =1, y(0) = j, © < J}

Because the path functions are continuous (a particle moving from state
7 to state 5 in time ¢ must occupy all the intermediate states in the
intervening time), coincidence can only occur following a transition from a
state (k, & + 1) for some k. More exactly, the probability that coincidence
happens during the time interval [t, ¢t -+ k] with % sufficiently small
requires that the two particles occupy adjacent states before coincidence
at time t and at the next transition the particles meet. The probability
of this event is clearly

S P65 T Yow o b+ o(h)
k=0 k, k+1
and the density function of the time until coincidence is

. dS¥ - i, g
Rit) =22(1) = S (0 OP(t: Y )
) =220 = S 0w + me)P( hk+J
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The method we use to compute S¢/(t) consists of determining explicitly
the generating function

Gz, w) = X, RY@)(Zw! — 2'w?)

0<i<y
or sometimes more conveniently

H(z, w) = > 7, R w’ — z'wh)

0<i<

and then reading off the coefficient of z'w’, (¢ < j).
If we have available

(32) iz, ) = 3 Pult)?
and hence

R fule 8) = ST PultR"
we obtain employing (10) the determinantal identity
fulz, 1) frril2, 0)

fk(w7 t) fk+1(w’ t)

= 3 nllanP(t; by L
OSl1<l2 k, k+ 1

M(ky z, W, t) = Mg

)(w’2zlx — whzls)

where z < w.
Direct summation gives

(33) S O+ )Mk, 2, w, 8) =S, 7w RS [whes — whes] .
k=0 0£11<Z2

In many cases it is possible to recognize the left-hand side of (33)
in terms of classical functions and then obtain R%:(t) by picking out the
proper coefficient in the series expansion. We record several important
examples.

ExaMPLE 1. Consider the telephone trunking model (A, =\, 4, =
ny, n > 0) [4]. The orthogonal polynomials are the Poisson Charlier
polynomials. The generating function of the transition probabilities is
known to be

fulz, 1) = 002001 (1 — g)e ]t = a,(2)[B(R)]*

where a = \/¢ and a,(z) and 3,(z) are defined in the obvious fashion.
The preceding calculations in this case yield
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> T, Rt w'eh — wha')
()Sll<l2
®Y : [0, T

— _ -l 1 y

= alw = Deraaw) S [ + Dyt + el
where v, (w, 2) = B,(2)B,(w). This is a combination of Bessel functions
viz. pl(2V'a*) 4+ \V'a®y I(2Va*y) where I, denotes the usual Bessel
function with imaginary argument. If we specialize to the coefficient
of 2'w' we get

RYt) = e‘“‘e“"“"[i[o(Zao) + —LL(ZOLG)] where ¢ =1 — e * .
ao

ExampPLE 2. Consider the linear growth birth and death process
where

A =(n+1+ a) and py, = nk n >0

and « is real, « > — 1. The associated orthogonal polynomials are the
Laguerre system normalized at the origin equal to 1. Utilizing the
generating function of [5 eq. (25)] we obtain

7, T, Rals(D)[wheeh — wha'ls
o<t <,

= m(a + 1)3,(2)8,(w)[v(w) — 7, ()] {2F (¢ + 1, a + 2, 1, u,(z, w))
+ aF(a +1, a + 2, 2, u(z, w)}

(35)

where F' denotes the standard hypergeometric function

Fla, b, ¢, t) = 5 (D)

a=0 (e),n!
and (a), = I'(a¢ + n)/I'(a). Here,
1 o t <1 iz th)
oe) = "t = Zi
@+ a1 - ) (- )

and u,(z, w) = 7,(R)v,(w). The coefficient of 2’w' in (35) reduces to

- eyt f(i ;)1){2F<a +1, a+2, 1(1_%5»

+ aF(a +1,a+ 2, 2, (1 _,}C_t,;f,)Z)} '

The coincidence time density function R°(¢) is the expression (36) apart
from the constant factor 1/(a + 1). When « is a non-negative integer
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the coincidence time density function reduces to a rational function.
In the particular case o = 0, we obtain

R(t) = 2K
1 + 2xt)y

which shows that coincidence is certain with the expected time until
coincidence infinite. This is true of all the linear growth processes
introduced in this example.

If we examine a linear growth process where there exists a permanent
absorbing state at —1 then obviously coincidence is never certain. It
is of some interest to compute the probability of coincidence before
absorption. Let us illustrate by considering the model where \,=(n-+1)x
and p¢, = (n + 1)k for n > 0. A calculation similar to that above gives

RO(t) = 2% SRS
1+ 26t)"(1 + &ty (A + &ty

It is easy to evaluate r R(t)dt = 25/4 — 8 log 2. The reader may verify
0
that this lies between 0 and 1 (approximately. 71).

4. The probability of coincidence. In this section we shall determine
the exact conditions which imply that coincidence in a finite state is
certain to oceur. Our results apply to the case of » independent particles
moving simultaneously subject to the transition law of the same birth
and death process (B). Our methods may be extended in the obvious
way to treat the case in which the particles are subject to different inde-
pendent birth and death laws. Such a generalization is left to the reader.

If the process (B) is recurrent then coincidence is clearly certain.
In fact, if two particles originate in states ¢ and ;7 > 4, respectively
then the second particle reaches the state 0 in finite time with proba-
bility one and coincidence must precede this event because of ‘‘continuity”’
of paths. Thus it remains to decide the probability of coincidence when
the process (B) is transient.

In [3] we classified two kinds of transient processes. A transient
birth and death process is said to be ‘‘“weakly transient” if 37, P,,(t) =1
for all ¢ and some ¢. In terms of the birth and death rates this is
equivalent to the divergence to infinity of the sequence

1
)‘nn-n

m=1 n
S —(3m) = - QU
n=0 k=0
where @, are the associated polynomials of the process (B).
A birth and death process is said to be strongly transient if for
some t and %, >.5., P;(t) < 1. A necessary and sufficient condition for
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the process to be strongly transient is that, for any starting position
and for any positive time value ¢, with positive probability the diffusing
particle reaches infinity in time ¢.

It becomes evident that for strongly transient processes coincidence
is not a certain event, since with positive probability one particle may
stay in a given state (say %) in any specified length of time while the
other particle moves to infinity without touching state 7 during this
same period of time. An analogous argument will prove that the
probability of coincidence for the case of n independently moving par-
ticles is not a certain event when the process is strongly transient.
We shall determine in Theorem 3 the exact condition for coincidence
to be certain. It will be clear that the criteria is the same for two,
three or n particles.

We concentrate in what follows on the case of two particles. It
is tempting to proceed as follows. Let w,; denote the probability of no
coincidence in finite time when two particles start respectively in states
1 and 7 (1 <j). We set w, =0. Writing out a recursion relation in
terms of the first transition, we obtain

W5 = M Wis1,5 + th Wi-1,5
A R T o A 17 MR I o e
(37) Aj My

b, i, J-1

: j+1+ w
R R e ol P 5 AR I N A Y

valid for all 0 < ¢ < j. A sufficient condition guaranteeing that coinci-
dence is certain is that the only bounded positive solution of the system
(87) is the identically zero solution. In the situation of non-certain
coincidence it would also be of interest to calculate the probability of
no coincidence w;;. The investigation of this problem is complicated by
the abundance of positive solutions that (37) possesses.

The study of (37) is interesting in itself and indicative of the
difficulties associated with solving two-dimensional difference equation
systems even in comparatively simple cases having probabilistic signi-
ficance.

To illustrate this we exhibit several solutions of (387). Suppose the
spectral measure +r of (B) is located in the interval [a, ) where a > 0.
Then

U@, Q@] o )
Q—), Q(a) 2o AT &

for each a satisfying 0 < a < a is positive by virtue of Theorem 1.
when « = 0, w;,(0) is interpreted as —Q’(0) + Qi(0) = S\t 1/\w, SF, 7T,

The verification that for all a, w;(«) is a solution of (37) is accomplished
by choosing #, = — @ and %, = « in the recursion law (30).

1

(38) wil@) = = o~
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Unfortunately, there is no natural ordering among the solutions
w; (a). We show first that w,,(«) is increasing in a (0 < & < a) for each
j. To this end, observe that

@) = Q—) — Q@) = a0t

where a,, is positive for © odd and zero for % even. Hence, w,(a)
increases as asserted. On the other hand, we show that w; .,(@)
is decreasing in the same range of a. In fact, by virtue of a known
representation [9 p. 42] we have

anQr(a)Qr( a) .

gy =0
Hence, w) ;.(@) = 1/nm; Sl 7w [-Q(0)QN(—a) + Q)@ (—a)]. It is
enough to show since Q,(a)Q,(—«) is positive that

_Q@QU—a) + QUaR(—a) _ _ QU—a) . QUa)
(39) U@, (—a) oo T o <

Wy, 5e(@) =

But the roots of Qj(x) are separated by the roots of @Q,(x) and since Q,(x)
has no roots in [—oo, a) [9, p. 43] we conclude that —Q(x)/Q.(x) is
increasing.

The lack of order and the multiplicity of natural positive solutions
seem to be the main sources of difficulty in proving the non-existence
of any bounded positive solutions of (37). The solution w;;(0) should be
singled out because it is always present (as @ > 0) and also lim .. w,;(0)= o
is precisely the condition that the process be weakly transient.

It should be added that the one parameter family of solutions, dis-
played in (38), when « is a positive number, does not exhaust in terms
of linear span the totality of solutions. It appears that one can always
construct at least a three parameter family of determinantal extremal
solutions. The problem of characterizing all solutions of (37) in general
remains open and relates to the problem of determining all determinantal
polynomial systems satisfying the recursion law of (30).

We now turn to a discussion of the main theorem of this section.

THEOREM 3. If the process (B) is recurrent or weakly transient
then coincidence is certain if and only if

(40) =3t

Zﬂ(wk+1_w)__’oo
AyTC, =0
where w,, = >0 1/\m, S, and w, = 0.
Before embarking on a proof of the theorem, it is necessary to
interpret condition (40). To this end, denote by ¢, the random vari-
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able which represents the length of time for a particle subject to
the transition law of the process (B) to move from state ¢ to state
1+ 1. In other words ¢, denotes the first passage time from state ¢ to
state ¢ + 1. In the same way, since the path functions are continuous,
2, =ty -+t + +++ 4 t,-; represents the first passage time from state 0
to state n. The ¢, are evidently independent but not identically distributed
random variables.
The Laplace transform ¢,(s) of the distribution of z, is given by

@n( ) — X
n(_s)
when @, is the nth orthogonal polynomial. More generally, the Laplace
transform of the distribution of ¢, + t,.1 + +++ 4+ £,-, is

Qu(—5) |
Qn(—s)

These formulae are proved as follows: The well-known Laplace transform
formula, which expresses the first passage time distribution from state
1 to state j in terms of the transition probability function is

) 1(8) y y
41 = * 7.
( ) L}( ) Pj](s) v J

Inserting the formula of [2 p. 522] in (41) gives the desired result.

From knowledge of the Laplace transform it is routine (successive
differentiation of ¢,(s) at zero) to determine the moments of z,. In
particular,

E(zn) = n;_ll"_“l_ i‘x Ty = Wy = — Q;L(O)

NaTTy, 720
and
(42) variance (z,) = — Q;/(0) + [€.(0)F .
From identity (11), we get
B =S L Sirl-Quo) = o Sew

Inserting this in (42) leads to

Var(z,) _ wn "Z":l

1 14
- > —— 2. W, .
2 2 =0 AT, rgo §

But



1132 S. KARLIN AND J. McGREGOR

U= 5 Wy — W — - 5 (W — W)
S . St _ 2
—go(mz; s = 2 3 (10,0 — )
1 N - 7 1 n-1 .
49) S Var@) = 5 S mw,, — w) = 3 5 W — 1)
_ 1% :
= Up—y — E §=.‘| (wrﬂ - wr)

Since w, is increasing in <

3

Vpey >

-1 1 r n-1 2
; ﬂk(wr+1 - wr) = Z (wr+1 - wr)
r=0 )\,7][7, k=0 r=0

and hence

2 Var@) = 4 5 —w)

If the series Yo (w,,, — w,)* is divergent then v,_, —c and % Var (z,) — o,
but if the series is convergent then v,_, — 4 Var(z,) is bounded. In any
case {v,} and {Var(z,)} either both converge or both diverge.

It is possible for w, to increase to infinity while at the same time
v, stays uniformly bounded. For example, let

e’
T, =2 and 1 ——1T— for r > 1.
r N,TC, e’

A straightforward calculation shows that

Wiy ~ 2 _ﬁi LA Zl -+ a convergent series
7=0 g k-1 k =0 7
~logn +ec.
Also
n—1 1 k e
Vy ™~ Z Z ———(wlc-l-l - 'wz) .

k=1 ee =1

The inner sum grows like its largest term and we have

= nil %[Iog (k + 1) — log k] + a convergent sequence
k=1

which clearly exhibits v, as uniformly bounded.
A class of examples in which v, — oo can be constructed as follows.

Suppose, 7, and obey the asymptotic relations

n'tn
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1

nitn

o~ n*'L(n) (o #+ 0) and ~ nPL*(n)

where I(n) and L*(n) are slowly oscillating sequences (IL(n) is said to

e bion o L(en]) _, 1
be slowly oscillating if for every ¢ > 1, L) 1), 2..__)%%” < o and
w, tends to infinity. Under these conditions we show that v, tends to
infinity. In fact

Wy, ~ Zn] 7B+ (F) ~ neB+1L(n)

where L(n) = ¢ + L(n)L*(n), (¢ is a constant) and provided e+ 8 +1>0.
(Similar conclusions hold even in the cases « =0 and a 4+ 8 = —1 in-
volving iterates of L(n).)

We next observe that

v, > A PPLH)S kL) 10,4, — w,]
=0 k=0

(44) " o

> A'S LX), ke L)

where A and A’ stand for fixed constants. The estimate in (44) is valid
since w, grows like r’”“ﬁ“IN/(T). Finally,

=0

v, > A”f‘, VﬁL*(r)r"‘L<%r>

2 A///,nw +B +1L(/n)

and the proof is finished.

Some other useful conditions that assure the validity of (40) are as
follows: If the spectral measure +r of the birth and death procsse (B)
has either

(a) positive measure in every neighborhood of the origin, or if

(b) 4 has an infinite number of points of increase, contained in a
bounded interval I, then v, tends to infinity.

The proof of these statements depend on an alternative representa-
tion of the quantity Var z,. To this effect, we observe that the Laplace
transform of z, can be factored in the form

1 1
(45) Puls) = -

i=1 (2%

where «,; are the roots of @, (recall that the «,; are real and positive).
A direct calculation shows that
1

1
and w, = 3, .
a?;i i=10y,

7
Varz, = 3,
i=1
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In case (a), the first root «,, tends to zero and hence Var z, becomes
unbounded. In case (b) as n increases the interval I must contain an un-
bounded number of roots «,;, and therefore Varz, is unbounded. Sever-
al notable applications may be recorded.

Queueing models, defined by the parameters A, =1, n >0, y, = 1,
n >ky th =0, and k, a prescribed positive integer, have the property
that coincidence is a certain event. In fact, for these examples case
(b) applies (see [4]).

The situation of linear growth, birth and death processes, (¢.e.
M=wm+a, n>0, t,=pn+b, n>0, ¢, =0) with regard to the
probability of coincidence is as follows. If g =\, then coincidence is
always certain (case (b) above). If g > )\ then the process is recurrent
and coincidence is trivially certain. If g < )\ then the process is weakly
transient and coincidence is not certain. This last assertion is proved
as follows. The spectral measure is discrete with mass points located
essentially at an arithmetic series. The roots of Q,(—s) for any #n are
Ly<wl <c

n

We turn now to the proof of the theorem. The arguments are
divided into a series of lemmas.

separated by the mass points of 4 and hence always 2<

DEFINITION (Levy [7]). A series of independent random variables
X, + oo + 2, =s, is essentially divergent if there exists no sequence
of constants a, such that s, — a, converges almost surely to a finite
random variable.

LEMMA 1. If v, is divergent then the series of independent random
variables t, + t, + +«» + t,., = 2, s essentrally divergent. (The mean-
wng of t, is as before.)

Proof. Suppose we can find a sequence of constants a, such that
2, — @, converges. In particular, its characteristic function

eiank

to a characteristic function @(\). It follows that the corresponding
symmetrized random variable with characteristic function

1
[@n(—N) [
for each real N and uniformly in any finite interval. But, by virtue of
(45) for x >0
Qu—ivr =T (1+2) 21425 1

1 2 4 2
i=1 ni i=1

=1+ AVarg, .

converges for each real )

converges to |@(\)|?
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Hence, for A # 0, |Q.(—%\)|* tends to infinity and |@(\)]?=0. Thus
@(\) is not a characteristic function as required. The contradiction
implies that z, — a, cannot converge for any sequence of constants and
consequently z, is essentially divergent as was to be shown.

COROLLARY 1. Suppose v, is divergent and let ¢, and ¢, represent
independent observations of the first passage time from state ¢ to state
¢+ 1. Then

to+t1+ cee ‘l“tk—l*‘tf;—t{_ M _tl,c—lzzk*zilc
is essentially divergent.
Proof. This is clear since the characteristic function of z, —z2; —a;
(a; = a sequence of constants) is
ei)\ak
[Q(— N [*
which for real A = 0 tends to zero as shown in the proof of Lemma 1.

LEMMA 2. With the same notation as wn Corollary 1, if v, diverges
then for every fixed r

(46)  Pr{lty+t, 4+ cc + ]l — [t + i+ --- + 1] <0i0.} =1

(i.o. is an abbreviation of infinitely often).

Proof. With » held fixed it will be sufficient to prove that
(A7) Pri{tl 4 thay 4+ ooe +th —t, — by — =o» —t, > Ci.0} =1

for every positive constant C. Indeed, the validity of (47) implies that
for almost every value of ¢, + ¢, + ««» + ¢,_,

L=DPr{ty+ eoe 4+ by — (th4 ooo + 1) <010 [ty + b+ +or + 2} .

Invoking the law of total probabilities leads immediately to the con-
clusion (46).

We devote ourselves now to the proof of relation (47). Since the
series (t, —t,) + (the; — tou) + =+ + (¢ — t,) = T, (the dependence of
T, on 7 is suppressed since we are keeping r fixed) is essentially diver-
gent we may appeal to a theorem of P. Levy [7 p. 147] and -deduce
that if A, is any sequence of constants

(48) Pr{T, > A,i.0.}

is either 0 or 1. We select for our purpose all 4, = 0. Since T, con-
stitute a series of symmetric random variables the value of the expres-
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sion (48) is clearly 1. By virtue of a second theorem of P. Levy [7 p.
147],

Pr{T,>Cio} =1

for any constant C and the proof of the lemma is finished.

Proof of the Sufficiency of Theorem 3. Suppose for definiteness
that particle labeled (i) starts in state 0 and particle labeled (ii) starts
in state 7, each independently subject to the same transition law. Let
t; and t;, for particles (i) and (ii) respectively, represent as previously
the first passage time from state ¢ to state ¢+ 1. Lemma 2 assures
that with probability 1 there is a state k& such that the particle labeled
(i), having started at zero, reaches k for the first time earlier than the
particle labeled (ii) whose initial state was ». Since the path functions
are continuous, the two particles necessarily cross and coincidence is
certain.

Necessity. The proof of necessity will likewise be written in the
form of a series of lemmas.

LemmA 3. If v, ts bounded then

(49) ] Pr{to+t1+"‘+tk—1"‘t;_‘tfr+1"""'_t;c>0
SJorall k>7r} >0.

Proof. Consider T, =, —t)+ -+ @ —1%), k=r,r+1,---,
which is a partial sum composed of independent symmetrically distributed
random variables. The hypothesis (see (43)) means that the variance of
T, is uniformly bounded. Therefore, invoking the three series theorem
(because t; — t; are symmetric only the convergence of the series formed
by the variances of the successive terms has to be verified), we may
conclude that T, converges almost surely to a finite valued random

Let ¢t* denote the limit of 7,. Take any value C such that

Pr {|t*] < C} >0.
Since T, converges almost surely to t* there is a k, such that
Pr{|T,|<C foral k >k} >0.
Making C even larger (say C’) if necessary we can assure
(50) Pr{T,|<C'" forall k=r,r+1,---,} >0.

Consider now the random variable ¢, + ¢, + --- + t,_;, which is inde-
pendent of all T,, k > r. Since t, is exponentially distributed it follows
that
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(51) Pr{ty+ t, + -+ +t,, > C} >0
for any C’ sufficiently large. Combining (50) and (51) yields the estimate

Pr{t, +¢t, + +ec +t..,—T,>0 for all &k > 7}
>Pr{ty+ - +t._,>C'} Pr{T, < C’' for all k > 7} >0

for an appropiate positive constant C.

This means that with positive probability a particle starting at zero
never reaches a state &k > » + 1 for the first time at an earlier time
then a particle beginning in state . The proof of the lemma is finished.

LEMMA 4. If coincidence is a certain event when the particles
have a prescribed pair of initial states r,s (r < s) them coincidence is
a certain event for any pair of initial states.

Proof. This is a direct consequence of the fact that with positive
probability any pair of state 1,5 (¢ < j) can be attained starting from
the initial states » and s without the occurrence of coincidence.

Consequently, if there exists positive probability of no coincidence
starting from ¢ and j, respectively then the same is true for » and s
contrary to the hypothesis.

LEMMA 5. Let coincidence be a certain event. Suppose the initial
states of the two particles (i) and (ii), respectively are i, and j, > 1,.
Then the event that particle (ii) reaches every state k (k > k,) for the
first time ahead of particle (i) has probability zero.

Proof. We shall prove the lemma by producing an infinite sequence
of states k, < k, < --- with the following properties (called A). If the
initial states of the particles (i) and (ii) are any pair  and s where
r < s and s <k, then the probability exceeds 1/4 that particle (i) will
reach state k,,, ahead of particle (ii}.

Let us suppose statement (A) is established and now show how to
finish the proof of the lemma. To this end, we have

Pr {(ii) reaches state k prior to (i) for all k > k}
< Pr {(ii) reaches state k;, prior to (i) for all k;, > k,}
< II 1 — Pr {(i) reaches state k;., prior to (ii)|(ii) reaches state

ki>k0

k; prior to (i))} .

The infinite product is zero since on account of statement (A) infinitely
many factors are < 3/4.

It remains to prove statement (A).

Suppose we have already constructed k,, k,, +--, k,. Since coincidence
is a certain event regardless of the pair of initial states » and s, (r<s
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and s < k;) there exists a time value ¢, so that with probability >1—¢
coincidence occurs sometime earlier then ¢,. The value of ¢, may be
determined for each pair of initial states » and s. However, since there
are only a finite number of possibilities #, s (r < s) where s < k, we can
choose t, large enough so that the same value of ¢, applies for any of
these pairs of starting states. By further reducing to a subset of paths
of probability > 1 — 2¢ (¢ can be specified in advance as small as desired)
we can determine a state £k,,, > k, which is not entered by either par-
ticle in the time duration (0, ¢,). The existence of k., is guaranteed
since the hypothesis of the lemma postulates that coincidence is cer-
tain and hence the process cannot be strongly transient. Restricting
consideration to this set of paths we note that at the first instance of
coincidence the two particles are indistinguishable and hence, with prob-
ability 1/2, particle (i) will enter state k,., ahead of particle (ii). Let
E; denote the event that (i) reaches state k,,, ahead of (ii) when the
initial states respectively are any pair » and s,s < k.

The above argument establishes that Pr {E;} > (1 — 2¢)/2 > 1/4 and
the proof is hereby complete.

Proof of Necessity. This is immediate by comparing Lemmas 3
and 5.

The problem of computing the probability of coincidence for the
case when v, is bounded remains open.

We close with some observations regarding the problem of deter-
mining criteria which guarantee finite expected time for coincidence.
First it is evident that for an ergodic birth and death process the ex-
pected time until coincidence is finite. To decide when the event of
coincidence has a finite expected time is in general an open question.

The following two examples are of some interest. In the case of
the linear growth processes associated with the Laguerre polynomials,
we were able to determine a double generating function for the explicit
distribution of the coincidence time (33). Here, it is easy to show by
direct calculation that the expected coincidence time is infinite.

We shall now prove that for the recurrent null or transient queue-
ing model (labeled B) the expected coincidence time is infinite. For
definiteness A, =\, n >0 and p¢, =g, n >1, 1, =0.

We consider for the situation of two particles starting in states 7
and 7,0 < ¢ < 7, the following induced random walk W whose state
space is composed of the non-negative integers. We say that W is in
state r if § — 1 = ». Transitions in W are engendered whenever one
of the particles of process B changes its state. Explicitly a transition
of W occurs from state » to » — 1 if and only if after the first change
the state labels of the two particles, undergoing the process B, are
either (¢ +1,j) or (4,5 — 1). A movement from r to r + 1 occurs in
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the contrary case. The motion on W, thus induced by the birth and
death process will be understood to apply only when 7 > 0. The homo-
geneity of the queueing model implies that the changes engendered in
W are independent of the specific states occupied by the two particles
of the process B and only depend on their distance (5 — 7) apart provided
1 > 0. Hence

Pry{r—r—1} =Pr,{r—r+1} =1/2 for »r > 0.

It is well known that for this random walk the time until first
passage into the state 0 from any non-zero initial state has an infinite
expected value [3]. Moreover, first passage into 0 obviously corresponds
to the event of coincidence for the original birth and death process.
There is one slight complication in the above argument arising from
the fact that when one of the particles of process B starting at ¢
reaches zero, the transition probabilities of the induced random walk do
not agree with the probabilities of the changes in distance between
the particles. This is due to the reflecting character of state zero, 1.e.
when one of the particle of its process is in state 0 then this particle
can only move to state 1. We will show that this complication is of no
consequence in deciding whether coincidence in B occurs with finite
expected time.

Let the particles begin in states 4 and 7, (¢ < 7). Since coincidence
is certain let us consider all those paths E where coincidence occurs
without either particle ever reaching zero. Conditioned in this way the
induced random walk describes the changes of the ‘‘distance’ (number
of states separating the two particles) until coincidence. But, for the
random walk W the expected number of transitions for the first passage
into zero is infinite. Since the expected time betweéen transitions for
the birth and death process is 1/(A + f), the expected time until coinci-
dence averaged over the paths of F is infinite. Next, let F' denote the
set of paths in the process B where the particle, starting in state 7 <7,
reaches state zero before coincidence. Since the process B is null re-
current or transient, again the expected time length of the paths of F'
is infinite. Hence, under either circumstance the expected time until
coincidence is infinite.

The above argument may be extended to prove that if a birth and
death process is null recurrent of transient with certain coincidence, then
the expected time of coincidence is infinite provided >72.1/(\; + t,) = o,
and

1— p,=¢q,= max Ni i ,
>0 Ny -+ 2 + Njen + Hivn

are the transition parameters of a recurrent null or transient random
walk W on the integers (i.e. Pry {n —n + 1} = p,).

D=1
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On the other hand, the expected coincidence time is finite whenever

min )‘/t + #i+n
>0 Ny A M+ Njap T Lina

describes an ergodic random walk W and max 1/(\; + p,) is bounded.
J
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COINCIDENCE PROBABILITIES

SAMUEL KARLIN AND JAMES MCGREGOR

1. Introduction. It was shown in [14] that if P(t) = (P;,(t)) is the
transition probability matrix of a birth and death process, then the
determinants

Pt Py
(1) Pty = :
Jivee G P, y(t) -+ P, ()

where 7, < 1, < +++ < 4,and 5, < 7, < --- < J, are strictly positive when
t > 0. In this paper it is shown that these determinants have an inter-
esting probabilistic significance.

(A) Suppose that n labelled particles start out in states i,,++-,1,
and execute the process simultaneously and independently. Then the
determinant (1) is equal to the probability that at time t the particles
will be found in states j,, -+, 7, respectively without any two of them
ever having been coincident (simultaneously in the same state) in
the tntervening time.

From this statement it follows that the determinant is non-negative, and
as will be seen strict positivity can be deduced from natural hypotheses,
for example if P, (&) >0 fora=1,---,n and every ¢ > 0.

The truth of the above statement rests chiefly on the facts that the
process is one-dimensional —its state space is linearly ordered, and that
the path functions of the process are everywhere ‘‘continuous’. Of
course the path functions are discontinuous in the ordinary sense but the
discontinuities are only of magnitude one. Thus when a transition occurs
the diffusing particle moves from a given state only into one of the two
neighboring states, and even if the particle goes off to infinity in a finite
time it either remains there or else it returns in a continuous way and
does not suddenly reappear in one of the finite states. These two prop-
erties of one-dimensionality and ¢ continuity ’’ have the effect that
when several particles execute the process simultaneously and indepen-
dently, a change in the order of the particles cannot occur unless a
coincidence first takes place. (The states are all stable so that with prob-
ability one a transition involves only one of the particles.)

It is also important for our results that the processes involved have
the strong Markoff property of Hunt [10], [11], (see also [19]). However
it is a consequence of theorems of Chung [3] that any continuous time
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parameter Markoff chain whose states are all stable has the strong Mar-
koff property.

There exist processes of birth-and-death type whose path functions
may have discontinuities at infinity. Such processes have been described
in some detail by Feller. Although the above result (A) does not apply
to these processes they fall within a more general class of processes
which we diseuss next.

We consider a stationary Markoff process whose state space is a set
of integers and whose states are all stable. Let (P,,(¢)) be the transition
probability matrix. Then ‘

(B) Suppose that n labelled particles start in states t,, ---, 1,
and execute the process simultaneouly and independently. For each
permutation o of 1, ---,n let A, denote the event that at time t the
particles are in states J.p, ***, Jo Tespectively, without any two
of them ever having been coincident in the intervening time. Then

P(t; ’5.1, e, %) = 3 (sign 0)Pr{4,}

Jis *** jn

where the sum runs over all permutations of 1,---,n and

sign ¢ = 1 or —1 according as ¢ 1s an even or an odd permutation.

The first stated result is seen to be a special case of this one. For
if the path functions are *‘ continuous’ and 4, < =+ < 1,7, < *++ <7,
then Pr{A,} is zero except when o is the identity permutation. There
is one other case in which the general formula permits an interesting
simplification, namely when the process is a local cyclic process. By
this we mean that the states may be viewed as N+1 points 0,1, -+, N
on a circle and transitions occur only between neighboring states, 1 and
N being neighbors of zero and N — 1 and 0 neighbors of N. We take
0<g < e <y, < Nand 0 < g, < +-+ < j, < N and then Pr{A4,;} is zero
unless ¢ is a cyclic permutation. Since the cyclic permutations of an odd
number of objects are all even permutations we have in this situation

(3) P(t; '5.1‘,-.-,?;,7,): ZPI'{AU'}} n odd .

Jis *° %y .7n eyetie s

This determinant is therefore non-negative.

Analogous results hold for one dimensional diffusion processes. Let
P(t, x, /) be the transition probability function of a stationary process
whose state space is an interval on the extended real line. It will be
assumed that the process has the strong Markoff property and that its
path functions are continuous everywhere. Given two Borel sets E, F
the inequality E < F will denote that « <y for every x € E,y e F.
We take n states x, < %, < +-- < %, and n Borel sets E\<FE,<---< E,
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and form the determinant

P(ta Ly, El) e P(t’ Ly En)
(4) p(e; Tty 2|
By oo Bu” | Pt a,, B -+ Pt 30, B,)

(C) Suppose that n labelled particles start in states x, «+-, &,
and execute the process simultaneously and independently. Then the
determinant (4) is equal to the probability that at time t the parti-
cles will be found in the sets K, -+, E, respectively without any
two of them ever having been coincident in the interveming time.

Next consider a stationary strong Markoff process whose state space
is a metric space and whose path functions are continuous on the right.
We take n states «,, ---, x, and n Borel sets £, ---, F, and again form
the determinant (4).

(D) Suppose that n labelled particles start in the states x,,--+, %,
and execute the process simultaneously and independently. For each
permutation ¢ of 1,2, ---,mn let A, denote the event that at time t
the particles are in the states K, , ---, E, respectively without any

two of them ever having been coincident in the intervening time.
Then

(5) P<t; ;v“"”;t):;<signo)Pr{Aa}

19 *° 0y Luy

where the sum runs over all permutations o.

The last result contains all of the preceding ones as special cases.
It has another interesting special case, namely when the state space is
a circle and the path functions are continuous.

There is a mapping 6 — ¢ = x of the closed interval 0 < 4 < 27
onto the circle. Given n Boral sets £, ---, E, on the circle we say
E < -.- < E, if there are n Borel sets E! < ... < E’ in the interval
(0, 27] or [0, 27) which are mapped onto E,, ---, E, respectively by the
above mapping. Specializing the sets to be one point sets gives the
meaning for z, < .-+ <, when %, ---, 2, are n points on the circle.

Now let P(t, z, EI) be the transition probability function of a strong
Markoff process on the circle with continuous path functions. Because
of the continuity of paths a change in the cyclic order of several diffus-
ing particles on the circle cannot occur unless a coincidence first takes
place. Thus the terms in (5) corresponding to non-cyclic permutations ¢
will all be zero. Finally we take advantage of the fact that the cyclic
permutations of an odd number of objects are all even permutations,
and obtain the following.

(E) Suppose x;, < <+ < @,, B} <+« < E, and n labelled parti-
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cles start at x,, -- -, x, respectively and execute the process simultane-
ously and independently. If n is odd and A, is defined as before
then

(6) P(t; Z0 7 n @) = 5 Pridl)
Ely"'yEn cyclic o

where the sum runs over all cyclic permutations.

Similar but more complicated results are valid in still more general
situations. For example we restrict our discussion to stationary processes
although both the methods and the results can be extended to non-
stationary processes. A generalization of another type which has in-
teresting applications is obtained when the % particles execute different
processes.

Let P,(t,z,E),a =1,-.--,n be transition probability functions of
n strong Markoff process on the real line with continuous path functions.
Choose n states z, < --- < «, and n Borel sets E, < --- < E, and form
the determinant

( 7 ) det Pw(ty xwy Eﬁ) .

If n labelled particles start in states x,, - --, x, respectively, and execute
the processes simultaneously and independently, the ith particle executing
the 7th process, then the determinant (7) is the probability that at time
t the particles will be found in the sets E,, ---, K, respectively, without
any two of them ever having been coincident in the intervening time.
The formal proofs of formulas (5) and (6) and of the interpretation

of P(t, Ty Ly =y x,,) are elaborated in § 5. For this purpose the rele-
E,E ---,E,

vant preliminaries and definitions concerning Markoff processes are

summarized in § 4. _

In §6 we offer some observations on the problem of determining
when the strong Markoff property applies to direct products of processes.
In this connection we direct attention to those aspects of this problem
relevant to our analysis of the main theorem of §5.

Section 2 contains a brief heuristic proof of (C) in the situation of
two particles. This is inserted in order to motivate the formal proof of
§ 5. Section 3 discusses the connections of the concept of total positivity,
to statements (A) - (E).

Total positivity is significant in relation to the theory of vibrations
of mechanical systems [8], the method of inversion of convolution trans-
forms [9], and the techniques of mathematical economics [13]. In this
paper total positivity is shown to be also important in describing the
structure of one dimensional strong Markoff processes whose path func-
tions are continuous. In a vague sense the most general totally positive
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kernel can be built from convolutions of stochastic processes whose path
functions are continuous. In principle, the representation desired is
similar to the representation formula which applies to Pdélya frequency
functions discovered by Schoenberg [20]. A detailed discussion of this
idea will be published separately. In this connection we mention that
Loewner has completely analyzed the generation of totally positive mat-
rices from infinitesimal elements [18].

In § 7 we investigate conditions which insure that the determinant
(4) is strictly positive. We find that this is the case if P(¢, 2z, E) >0
whenever ¢ > 0, E is any open set and P(t, %, F') represents the transi-
tion probability function of a strong Markoff process on the real line
with continuous path functions.

The following converse proposition is of interest. Suppose the transi-
tion function P(¢, z, E) of a Markoff process has the property that all
determinants of the form (4) are non-negative. Does there exist a
realization of the process such that almost all path functions are conti-
nuous? This is true with some mild further restrictions. In §8 with
the aid of a theorem of Ray [19] we are able to establish a partial converse
based on a restriction about the local character of P(¢t, x, E). It will be
recognized that most cases of Markoff processes obey this requirement.

In §89 we characterize the most general one dimensional spatially
homogeneous process whose transition kernel is totally positive.

The final section presents a series of examples of totally positive
kernels derived from Markoff processes with continuous path functions.

2. A heuristic argument. In this section we give a non-rigorous
outline of the method of proof for the case of two particles. Let P(¢, z, E)
be the transition probability function of a stationary Markoff process on
the real line. Suppose that two distinguishable particles start at x, and
x, > «, and let E, < E, be two Borel sets. The determinant

P(t; % %) = P(t, 2, B)P(t, 0, B) — P(t, , B)P(t, , )

1 2

is equal to Pr{A]} — Pr{A4;} where A] is the event that at time ¢ the
first particle is in F,, the second in E, and A4, is the event that at time
t the first particle is in E,, the second in E,. Each event A!, regarded
as a collection of paths, may be split up into two disjoint sets A, + A}
where A, consists of all the paths in A} for which no coincidence occurs
before time ¢t and A} consists of the paths in A/ with at least one coin-
cidence before time t. We assume the paths are sufficiently smooth so
that for each path in A and A} there is a first coincidence time. This
will certainly be the case if all paths are continuous on the right.
Choose a path in A and at the time of first coincidence interchange the
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labels of the two particles. This converts the given path into a path in
Al and the resulting map of A! into A} is clearly one-to-one and onto.
Because of the Markoff property and because the particles act indepen-
dently it is plausible that this map is measure preserving so that

Pr {Al'} = Pr {AV}
and granting this it follows that

P(t; 9; 9;3) — Pr {A]} — Pr {4}
1 2

=Pr{A} — Pr{4,},

which is the general form of the result. If the path functions are all
continuous then Pr {4,} = 0 and the formula becomes

P(t; @y ”) — Pr{A]}.

3. Total positivity. A matrix is called (strictly) totally positive if
all of its minors of all orders are (strictly positive) non-negative. Such
matrices and their continuous analogues the totally positive kernels occur
in a variety of applications and have been studied by numerous authors.
A lucid outline of the theory together with an extensive bibliography
has been given by Schoenberg [21], Krein and Gantmacher [8]. Our re-
sults indicate the existence of large natural classes of semi-groups of
totally positive matrices and totally positive kernels. One simply takes
the transition probability function of a one dimensional diffusion process
with continuous path functions. A number of interesting examples are
given in §10.

Conversely the total positivity of the transition function may be used
to draw conclusions regarding continuity of the path functions. A pro-
gram along these lines has already been carried out by the authors for
the case of birth and death processes [12]. (see also §8.)

Our attention was first drawn to total positivity in connection with
diffusion processes by unpublished results of C. Loewner who showed
that the fundamental solution of

o @ o™ u ou

ot oz ox

on a finite interval with smooth a and b and classical boundary conditions,
is totally positive.

4, Definitions. As indicated in the introduction we are chiefly con-
cerned with processes on the integers, the real line, or the circle. In
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order to deal with all cases at once it is convenient to discuss certain
results for a more general process whose state space is a metric space
X.

Let X be a metric space, B the Borel field generated by the open
sets of X, and B’ the Borel ring generated by the finite intervals on
0 <t < oo. Suppose there is given a set 2 called the sample space and
an X-valued function 2(t, ®),0 <t < owo,w € 2. Let M be the Borel
field of subsets of 2 generated by the sets of the form {w; x(¢, w)e E}
where ¢t > 0 and EF € B. Suppose that for each x € X there is given
a probability measure P, on X such that P,{w; (0, ) = x} = 1. Then
the function x(f, w) is called a stochastic process on X with sample space
2 and distributions {P,}.

The stochastic process is said to have right continuous path functions
if for every fixed w the function (-, w) is right continuous on 0<t < .

Let _# denote the Borel field generated by all sets {w; (s, w)e E}
where £ ¢ B and 0 < s <t. Conditional probabilities relative to I, will
be denoted by P,{---|x(s),s <t}. The stochastic process is called a
stationary Markoff process if for every fixed ¢

Pz{w(tz+t:w) € Ei;i: 1; "','nlm(S),S St}
- z(b,w){x(ti! (l)) € E’iy ’L - 17 ° ey %}

with probability one when 0 < ¢, < «-- < ¢, and E,, ---, B, € B.

We will be concerned only with stationary Markoff processes in X
with right continuous path functions. It will always be assumed that
the function

P(t,z, E) = P,{x(t, w) € E}
is measurable relative to ¥’ ® B. This function satisfies the Chapman-

Kolmogoroff equation :

Pt + 5,0 E) = SP(t, %, dy)P(s, v, E) .
Let F be a closed set in X. The time of first hitting F' is defined
as
To(w) = inf {t; x(¢, w) € F}

where the inf of the void set is taken to be + . The place of first
hitting F is defined, if 7,(w) < <, as

Er(w) = 2(75(w), ) .

The Markoff process will be called a strong Markoff process if for
any closed set F' we have the first passage relation
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P {x(t, w) € E} = P, {x(t, w) € E, tx(w) >t}

e e e 10 )

In this relation it is implicitly assumed that the sets {w; v(w) < t}
and {w;t(w) <t &w) e H} where H is a closed subset of F', are B,
measurable for each ¢. A discussion of the validity of these assumptions
made in §6. It is there shown that under very slight conditions on the
transition function the assumption holds.

It seems reasonable to believe that the direct product of a finite
number of strong Markoff processes is again a strong Markoff process.
At the present time we are not able to prove that this is generally true,
although in the proof of the main theorem we assume this result. On
the other hand proofs can be given which cover the vast majority of
the special cases of interest. As noted above it follows from theorems
of Chung that the strong Markoff property is preserved under direct
products for processes with countably many states all of which are stable.
This includes the birth and death case. In § 6 we give a proof for direct
products of a one dimensional diffusion process whose transition prob-
ability function P(¢, xz, E') is jointly continuous in ¢ and x. This covers
the case when P(¢, z, E') comes from a diffusion equation

au au

ot

with a(x), b(x) continuous and a(x) > 0. References to other theorems of
this kind are given in §6.

Let X;,i =1, --.,n be metric spaces and for each 1 let (¢, ®,) be
a stationary Markoff process in X, with sample space 2, and distributions
{PP}. We form the product space X=X ®-+-+X®X, in which the
generic point is an n-tuple # = (x,, -+, x,) with x;, € X,. The space X
with the distance o(Z, y) = Zp(x;, ¥;) is a metric space. The vector valued
function Z(¢, ) = (x,(¢, ®)), -- -, z,(t, ®,)) is a stationary Markoff process
in X whose sample space is the direct product 2 of the £, and whose
distributions are the direct product measures

P"—HP(D 5:(x1y'°'7xn)'
Z(t, w) is called the direct product of the given processes.

5. The main theorem. Let X be a metric space, and «(t, w) a
stationary strong Markoff process in X with right continuous sample
functions, sample space 2 and distributions {P,}. We form the direct
products X, 2 of n copies of X and R respectively and the direct product



COINCIDENCE PROBABILITIES 1149

Z(t, w) of m copies of the given process. We say this direct product
process represents ‘‘n labelled particles executing the z(¢, @) process simul-
taneously and independently’’, and this is the sense in which that phrase
is to be interpreted in statements (A)-(E) of the introduction. We
assume x(t, ®) 1s a strong Markoff process (see § 6).

The associated distributions are

P;:ﬁva ﬁ:(xlr"';xn)-
i=1 v

The set F' of coincident states consists of the points z=(x,,---, x,)
with at least two of the 2, equal to one another. A permutation \ of
the n letters 1,2, --., n is called a transposition if there are two letters
2 < 7 such that M4) = 7, M) = ¢, and M#) = rif i == » = j. In this case
we use the notation N = (¢,7). A coincident state z = (x,, +--, x,) is
said to belong to the transposition » = (¢, 5),7 < 7 if z, --+, ®,-, are all
different but 2, = #,. Thus every coincident state belongs to a unique
transposition, and for a given X\ the set of all coincident states belong-
ing to A will be denoted by F()\). The group of all »! permutations of
1,2, --.,n will be denoted by S and the set of all transpositions by 4.

Given m Borel sets £, ---, E, in X and a permutation ¢ € S, the
direct product set

Ea‘ = Eu'(l) ® e ® Ea'(n)

is a Borel set in X. Let A, = {w; Z(t, ) € E,} where t > 0 is fixed.
Then if Z = (x,, ---, x,)

Plt: Ly o20y Ty — : — ’

by definition of the determinant and of P-.
The time (@) of first coincidence is defined as the time of first
hitting F':

T(w) = 7.(®) = inf {t; z(t, ®) ¢ F} .

The place of first coincidence is &@) = Z(z(®), @). Our main result can
now be stated very simply as follows.

THEOREM 1. The sets
A, ={w;mw e A, t(w) >t}

are all measurable and

P(t; Ty '"’x">: S (sign o)P7{4,} .
Elv""En 7€y
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Proof. Since 7 is measurable the sets A, are also measurable. For
each ¢ we apply the strong Markoff property to obtain

Pe{As} = Pr{Al} + | a0() | Pyt — 5, e B}u(dy)

where

?(s) = Pz{r(®) < s},
M) = Pz{E(®@) € M|=(@) = s} .

Now F'is the union of the disjoint Borel sets Fi(A\),» € A4, and if ¥ e
F(\) then Py;{&(t—s,w) e E,} = P;{a(t — s, ®) € E,,}. Hence

>, (sign o) [Pr{A;} — Pr{A.}]
g€eS

= 5 3 Giena)| a0 | Prat —s,0) e Budy)

oES AEA

= 5 5~ Gigmo)|doe | Prixt —s,@) e Biludy)

o€8 AEA

= — lrzejs(sign o) [P7{Al} — P;{A,}].
This quantity is therefore zero and

P (t; Lyy o225 Ty > = Z (Sign O')Px_{A(’r}

s e UeS

1y , n

= ZS(sign 0)P;{A,} .

The various assertions (A)- (D) of the introduction can be obtained
by specializing the above theorem in the appropriate way.

6. Strong Markoff property for direct products. For the vast
majority of one-dimensional diffusion processes which are met in appli-
cations one finds that the transition probability function P(¢, z, F) is
jointly continuous in ¢ and z. It will be shown that the direct product
of m-copies of such a process has the strong Markoff property. The proof
imitates the proof of a theorem of Dynkin and Jushkevich [7].

THEOREM 2. Let x(f, ) be a stationary Markoff process on the real
line with continuous path functions and transition probability function
P(t,xz, E) which ts jointly continuous in t,x. Then the direct product
Z(t, ®) of n copies of this process 1s a strong Markoff process.

Proof. Let F be a closed set in the n-dimensional space, t(w) the
time of first hitting F' for the direct product process, and £(@) the place
of first hitting F. The fact that 7(w) and &w) are measurable functions
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is a trivial consequence of the continuity of the path functions. With a
given integer m > 1 let 7,(®) = k/m, where k is the integer such that

k

k=1 @<t
m

and let £,(@) = #(z,(®), ®). Then for any Borel set E

P;(&(t, w) € E} = P;{&(t, ®) € E, 7,,(®) > t}
+ 3 P;{az(t, @) ¢ E, 7,(®) :ﬁ} .
m

1<kE<mi

Let
§1 it @) =~
_ m.
A(®) = I
'0 it @) £
and
fay={+ £ vel,
if y¢
Then
P |7, @) e B, wu(@ = L] = Ex{A@)/(t, )}

= B5 {E{4@)f (@t )| o(s), 5 < £}

= B {A@B{f @, @) | 2(s), s < L]
= Bz { A@Psm ]t - % @) < B}

- S}p;{:g(t _k @) e E_}P; {Em(@) € dy, Tn(®) = %}

B m
and hence we have the first passage relation for 7, :

Po{at, ®) e E} = Pz{a(t, ®) € E, T,(®) >t}

4 ([ Pt — s, @) e Byp- @) € do).
wr ‘.{:m(a) € dy

For every @ we have 7,(®) > T,.(®) | 7(®) and by continuity of path



1152 SAMUEL KARLIN AND JAMES McGREGOR

functions &,(®) — &w) as m—o. Hence 7,(®), &,(®) converge in mea-
sure to (@), &@). Since P;{%(t — s, ®) ¢ E} is jointly continuous in ¥
and s and is bounded we may let m — o in the above formula and ob-
tain the first passage relation for 7(w). This completes the proof.

The referee has brought to our attention the following stronger
theorem of Blumenthal, [1, Theorem 1.1], which is slightly reworded
here.

THEOREM. If the process has right continuous path functions and
if for every bounded continuous function f the functiong JWP(t, x, dy)
is continuous in x for each t>0, then the process has the strong Mar-
koff property.

In this theorem the state space X is any metric space. Naturally
this theorem requires more involved arguments than the above Theorem
2. Finally we mention that a very thorough discussion of the Markoff
chain case has been given by Chung [4].

7. Strict total positivity. Let X be the non-negative integers and
2(t, w) a stationary strong Markoff process on X with all states stable
and ‘‘continuous’ path functions. If P(t) = (P,«(t)) is the transition
probability matrix of the process then it follows from assertion (A) that
this matrix is totally positive. Let us call the process a strict process
if P,(t) > 0 for every 7,7 -and all £ > 0. We will prove

THEOREM 3. If the process is strict then its transition probability
matrix s strictly totally positive for every t > 0.

Proof. The proof is similar to the proof of a related theorem in
[14], namely Theorem 20 on page 543. It is seen from the proof of that
theorem that it is sufficient for our purposes to prove that if ¢, < 7, <
«v. < 1, then

P(t; ’L'L) >0

Tiyosey Iy

for every t > 0, that is the principal subdeterminants are strictly posi-
tive. However since

P<2t; @:1, ,zn> Zl:P(t; ff'l, "':%)T

Uy 2oy 1y Ty 2oy U

it is enough to show that these determinants are strictly positive for
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sufficiently small ¢ > 0. Because the path functions are right continuous,
if {r,} is an ordering of the positive rationals, the set

lj N {o;x(r, o) =1]20, w) =1}

m=1 rkSI/m
has probability one. Hence for some m = m(i) > 0 there is a positive
probability R, that a path starting at ¢ remains at ¢ for at least up to
time 1/m(¢). Now if 0 < ¢ < max 1/m(i,) then we have

1<k<n

P(t;‘@" ---,%) > ﬁ Rz,c S 0
ri“ .eo, an k=1
and this proves the theorem.
Now let z(t, w) be a stationary strong Markoff process on the real
line with continuous path functions satisfying the hypothesis of Theorem
1. Let P(t,x, F) be the transition probability function of the process.

The process will be called strict if P(t,«, F) > 0 whenevert > 0 and E
is any non-void open set. We will prove

THEOREM 4. [If the process is strict then its transition probability
function is strictly totally positive in the sense that if t>0, x,<-++<
x, and E, < .- < E, are non-void open sets then

P(t; xly"'yxn>>0.
Elr"'yEn

We begin with two lemmas in which the hypotheses of the theorem are
assumed.

DEFINITION. If a,b are two points on the real line then

T(w) = inf{t; 2(¢, w) = a} ,
Mt, x, a) = P{t (w) <t} ,
M(t’ x, a, b) = Pz{Ta(w) S ty Tb(w) > t} *

LEMMA. If a <2x<b then M(,x,a,b) >0 and M, x,b,a) >0
for every t > 0.

Proof. Assume that M(t,z,b,a) = 0 for some ¢ = ¢, > 0 and hence
for every t < t,. Then if J = [b, o) we have for every t < t,

P(t,x, J) = S”P(t — s, a, J)d,M(s, «, a)
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and in virtue of the continuity of paths
P(t, a,J) = S‘P(t — s, @, J)d,M(s, a, @) .
0

Now because of the continuity of paths we can choose ¢, so 0 < t, < t,
and

M, a,x)M(t, x,a) < 1/2 for 0 <t <t .

Since P(s,a,J) <1 for all s <, it follows from the integral equations
that

P(s,a,J) <1/2 for s <¢,,

and by an iteration argument we obtain P(¢,, a, J)=0 which contradicts
the hypothesis. Hence M(t, z, b, a)>0 for ¢>0. Similarly M(¢, z, a, b)>0
for t > 0.

DEFINITION. Given an open interval V = (a, b) let
R(ty 93, V) = Px{z—a(w) > t} 7'-b(a)) > t} .
LEmMMA 2. If z € V = (a, b) then R(t,z, V) >0 for all t > 0.

Proof. Assume that for some x € V and ¢'>0 we have R(t', x, V)=0.
Then R(t,xz, V) =0 for all ¢ > ¢'. Because of continuity of paths ¢, =
inf{t; R(t, x, V)= 0} is positive. Now choose anyy € V,y # x. To fix
the ideas we assume z < y < b. If ¢ > 0 is so small that M (¢, z, ¥, a)—
M(e, 2, 9, a) > 0 then the inequality

0= R, V)= | R — 7y, V).M(z, 2, y,0)

shows that R(t’ — e, vy, V)=0. Consequently if ¢t,=inf{t; R(t, y, V)=0}
then
0<t, <t,—e<t.

But we can now repeat the argument and show that ¢, < ¢,. This con-
tradiction proves the lemma.

Proof of the Theorem. Letx, < -+« < x,and E;, < --- < E, be non-
void open sets. The index of the determinant

PR
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is defined to be the number % of values of ¢ for which x, is not in E,.
Thus the index of an nth order determinant of this kind is an integer
between 0 and % inclusive.

In each set E, choose a non-void open interval U, such that x, e U,
if x, € E, but U, contains no x,if x, ¢ E,. Because of the probabilistic
interpretation

P(t; 1y "',(X/'n> ZP(t; 2y ""xn).
Ely "'7En Ul, ) Un

These two determinants have the same index k. If &k =0, then from
the probabilistic interpretation and the second lemma above

Pt %0 ) > 1Rt @, U) >0,
U, ---, U, i=1

Thus the subdeterminants with index zero are positive. Now suppose
the index is £ > 0. We can find # open intervals U, -+, U, whose
closures are mutually disjoint such that z, € U} for every ¢ and U,=U,
if x, € U,. We can choose » points %!, - -+, 2, such that x} € U, for every
1 and o = @, if 2, € U;. Now in the collection U, ---, U,, U}, ---, U,
there are exactly m = n + k distinect intervals and they are disjoint.
Denote them by V, < «-+« < V,,. Similary in x,, «--, ,, ®!, ---, 2, there
are exactly n + k distinet points. Denote them by v, < --- < ¥, and
then y, € V, for each i. Let B(t) be the m-square matrix with elements

bij(t) = P(tr Ys» V]) .

The determinant P (t; Loy 2oy x") is a minor of B(t). Moreover B(t)
Ulv A Un

is totally positive, all of its elements are strictly positive, and its prin-

cipal minors have index zero and are therefore strictly positive. Hence

by Lemma 14 of [14] all minors of B(t) of index one are strictly positive.

This proves that P(t; TR x") > 0 if the index of this determinant
E'ly *ty En
is <1. We now assume that for some integer 7,1 < r <n, all the

determinants of the type P(t; @y, e, 2,

)with index < r are strictly
E,---,E,

positive.
Let 1<, <eee <4, <m, 1 <5, < 000 <5, <m and

i|iv—jv|=r+1.
Then
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P(t—l—s; g::'.‘.j’y‘;t)

n

> Z S ...S P(t; ytly"'ayin )P(S; ’01,°",'Un)
1sw1<-.-<wn5m v, €V v €V N dvl’ oo, d’l)n le’ .ee, an

1 '”1 n an

and in this sum there is at least one term with
L 2 .
Zjlzv_avlg'r; Elllav—]vlg/r'
V= v=

For this term the integrand P(s; Y =0ty Va
Vi oo Vi,
vy, +++, v, in the range of integration because v, € V; for at <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>