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A NOTE ON KATO 3 UNIQUENESS CRITERION FOR

SCHRODINGER OPERATOR SELF-ADJOINT

EXTENSIONS

F. H. BROWNELL

1. Introduction* Kato [2] has shown local square integrability with
boundedness at oo of the potential coefficient function to be a sufficient
condition for the Schrodinger operator in L2(Rn) to have a unique self-
adjoint extension in case dimension n = 3. His statement is for n = 3p,
thus with p factors R3, but with the condition on V stated separately
for each R3 factor as is natural for application to quantum mechanics
this in essence amounts to n — 3 from our standpoint. Using the Young-
Titchmarsh theorem on Fourier transforms, we generalize Kato's argu-
ment to general dimension n > 1. We show the connection of the re-
sulting criterion with our earlier construction [1] of a self-adjoint
extension as the inverse of a modified Green function integral operator.
We also give a variational characterization of the spectrum here.

2. Uniqueness condition. Let V(x) be a given, real-valued, measur-
able function over x e Rn, euclidean w-space. We consider the following
additional conditions upon V, using the notation (JC y) = Σ 5 = i ^ ?/j and
I x I = V{x x) for JC and y e Rn, and also denoting n dimensional
Lebesque measure on Rn by μn.

CONDITION I. For some 6 < + co let V(x) be essentially bounded
(A = [ess sup I V(x) |] < + °°) over {x e Rn \ \ x \ > b}, and let

\V(x) \w*><n+<»dμn(x) - Mp < + co
i*l<δ}

for some p > 0 satisfying also n + p > 2.

CONDITION II. Let V(x) satisfy Condition I with in addition
n + p = 4 in (1) if dimension n < 4.

Condition II is our generalization of Kato's uniqueness criterion, our
following Theorem T. 1 in the special case n = 3 thus being due to Kato
[2]. Following Kato, we define &ίx c L2(Rn) as the linear manifold of
Hermite functions, polynomials in the coordinates x5 multiplied by
exp( —1/2 I x |2). Assuming Condition II), clearly the pointwise product
Vu e L2{Rn) for all u e ^ . Hence

Received December 30, 1958, amalgamation with addendum May 29, 1959. This work
was supported by an Office of Naval Research Contract, and reproduction in whole or in
part by U.S. Federal agencies is permitted.
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954 F. H. BROWNELL

( 2 ) [H, u](x) = - y*u{χ) + V(x)u(x)

with /72 = Σ?-i (d2ld%)) the Laplacian, defines Hx as a linear operator in
L2(Rn) with dense domain 2&lm Also the easily established Green's iden-
tity for u and w e 2$λ shows that Hλ is symmetric (see [3], p. 28-41,
p. 48-50 for terminology and theorems used hereafter).

Next for u e L2(Rn) we have existent (see [4]) the Fourier-
Plancherel transform u e L2(Rn) defined by

( 3 ) u{y) = Hm(

with the limit in the L2(Rn) norm sense over y e Rn; similarly

u(x) = lim(^Y [ e
\2π / }{y\\y\<N}

with the limit also in the L2(Rn) norm sense. In terms of (3) and (4),
define & as the set of u e L2(Rn) such that | y \2ύ(y) is also in L2(Rn)
over y. Define T as a linear operation in L2(Rn) with domain & by
Tu = w9 w(y) = I # |2u(#) f° r ^ e ^ > w e L2(Rn) existing uniquely for
such t6 since (3) and (4) define a unitary operator and its inverse on
L2(Rn).

We may now state the main theorem of this section as follows. Ac-
tually, since Condition II will be seen at the end of the next section
to imply Condition S stated there, this theorem is a consequence of
StummePs theorem ([5], Th 4.2), p. 171), except for an awkward but
essentially trivial change of basic domain. Also our proof is rather
different, being much closer to Kato's original argument. See also [6].

THEOREM T.I. Let V satisfy condition II. Then the pointwise
product [Vu](x) = V(x)u(x) has Vu e L2(Rn) for u e &, and Hu =
Tu + Vu for u 6 £& has H to be a self-adjoint operator in L2(Rn) with
dense domain &. Furthermore, 2$λ c £^, Hλ c H, and H is the uni-
que self-adjoint extension of Hx.

Here S^x^ 2$, and hence £^is dense, follows clearly from the
fact ([4], p. 81, Theorem 57) that S*(^±) c &rl9 where S denotes the
unitary operator from L2(Rn) onto itself given by (4), Su = u, and where
S*u — u in (3) represents the adjoint and inverse S*. Thus Txu— — V2u
for u e ^ has Tλu = Tu for u e 3>λ from \β*{T&)~\{v) = \ y \2ύ(y) by
integration by parts hence 2\ c T. Thus ϊl^^Ή. follows from the fol-
lowing lemma (Lemma 4 of Kato [2]), which represents the heart of our
argument.



A NOTE ON KATO'S UNIQUENESS CRITERION 955

LEMMA T. 2. Let V satisfy Condition II. Then for ue 2? follows
both Vu e L2(Rn) and the L2(Rn) norm inequality

( 5 ) Vu\\ < α | | Tu\\ +β\\u

for some a and β positive and finite, for which a may be chosen as
small as desired with β depending on a.

To prove this lemma, we will first establish that £ ^ c Lr,(Rn) with
r' = 2(n + p)/(n — 4 + p) and p > 0 given in Condition II if dimension
n > 4, and that & c L^(Rn) if n — 1, 2, or 3. For this purpose we
start, for u e 3$ and arbitrary ω > 0 and with p > 0 as in Condition
II, with the Schwarz-Holder estimate

( 6 ) f

^ \u(y) ni + ω* I y \ )AμM\ [ ) , 0- + ω* I V

[ fo dr

where

Γ foo fπ-i ηi/p'

w p = C Γ W dt

where <yw — 2πw/2[Γ('λi/2)]~1 is n — 1 dimensional < fareaM measure of the
unit spherical shell in Rn, where l/j>+l/p' = l with 2=:p[2(^+Jo)/(^ + io+4)]
and thus 1 < p = 1 + 4/(w + /o) < 2, p;/p = l/(p - 1) = (n + ί>)/4, - np/p' =
— 4w/(n + />), and 4 — wp/p' = Apl(n + />).

Now if dimension n = 1,2, or 3, then n + p — 4 in Condition II and
(6) yields for u e &

(ess sup I u(x) \) < ( ^
V / \2

using also (4) with convergence almost (μn) everywhere for a subsequence
from L2(Rn) norm convergence.

Now if dimension n > 4, then in (6) define r = 2(w + ρ)l(n + p + 4) =
2\p, and hence l < r < 2 from 1 < p = 1 + 4l(n+ρ)<2. Now l/r+l/r ' = l
has
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r, = 1 = 1 = 2(n + p)

λ
+

n + p
Hence the Young-Hausdorff-Titchmarsh theorem ([4], Theorem 74), p. 96),
generalizing with negligible changes in proof from Rx to Rn, using sub-
sequences convergent almost everywhere to show that the known exis-
tent L2(Rn) and Lr,(Rn) norm limits in (4) must agree, yields in (6) for
u e & if n > 4

( 8 )

Thus we see if dimension n = 1, 2, or 3 that (7) with Condition II,
+ jθ = 4, yields for i6 e &

9 ) || F ^ ||2 < (^-J(cn,p)
aMp[ft>4-» || Γw |Γ + α>-» || w ||2 + A 2 1 | w ||2

over all ω > 0. Thus, since V | a \2 + | b |2 < | a | + | b |, (5) follows with
a arbitrarily small as desired for Lemma T. 2, since 4 — n > 1 here.

If dimension % > 4, then we use (8), Condition II, and over the
x\ <b portion of the integral a Schwarz-Holder estimate with 2r — r' —

2(n + p)l(n — 4 + p) > 2 from 1 < r < 2, 1/r + 1/r' = 1, and thus

= — (^ + ^) .
_ /

V i + ^

Hence, if w > 4, for u e &

(10) || F^H2 < (Mp)4/<n+p

X [ω4p/(«+P) || Γ % ||2 + ω-4,/(,+ P) || ^ | |2 ] + A2 II ̂  II2

for all ω > 0. Thus again (5) follows in this case n > 4 with α arbit-
rarily small, since ωipl(n+p) -* 0 as ω —• 0+. Thus the proof of Lemma T. 2
is complete.

Returning to the proof of our Theorem T. 1, from the remarks pre-
ceding Lemma T. 2 we see this lemma permits H to be defined on £#
dense, and H^H from T^T. Also T is self-ad joint with domain ^ .
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For by definition S*TS is a purely multiplicative operator, [S*TSύ](y)
— V ?u{y), with the natural domain of all ϋ e L2(Rn) such that
I y Γ u(u) *s *n L2(Rn). It is well known and easy to see that this makes
S*TS self-ad joint, and hence so is T since S is unitary.

Next (Tu, u) = \ \y\2 \u{y) \2dμn{y) > 0 for || u || > 0 shows that the

spectrum of T is confined to [0, + oo]. Hence (T + λ2/)"1 is for real
λ>0 a bounded Hermitian operator on L2(Rn) with range &, (T+λ 2 i)ϋ^ =
L2(Rn) following from the spectral theorem for self-adjoint T. Thus
(much as in Kato [2], Lemma 5)), from (5), we have for all u e L2(Rn)

( 1 1 ) \ \ V ( T + X ' l y h L \ \ < a \ \ T ( T + X 2 i ) - % \ \ + β \ \ ( T + \ 2 I ) - ι u II

since || T(T + λ2!)-11| < 1 and \\(T + λ2/)"11| < 1/λ2 are clear from the
spectral representation of T. Thus choosing a < 1/2 in (5), and then

λ sufficiently positive so that -^- < — , we see from (11) that the oper-

ator V defined on £gr by [Vu\(x) = V(x)u(x) satisfies

(12) || V(T + λ2/)"11| < (a + -£) < 1 .

Hence / + V(T + λ2/)"1 is a bounded linear operator on L2(Rn) with range
L2(Rn), since

[/ + v(T + λ2/)-1]-1 = J + Σ (- i
p = l

also exists bounded. Thus, for λ large so (12) holds,

(13) H + XU = T + λ2l + V = [I + V(T + λ2/)"1](Γ + λ2l)

takes ^ onto L2(Rn), since T + λ2/ has already been seen to do so. Since
T = T* has been shown and since V is obviously symmetric, it follows
that H = T + V and H + λ2/ are symmetric, H + λ2/ c (H.+ λ2/)*. But
(if + λ 2 / ) ^ = L2(K) in (13) thus makes i ί+λ 2 / - (iί+λ2/)* - iϊ*+λ 27,
if = if*, and hence i ί is self-adjoint (see [3], p. 35).

In order to complete the proof of Theorem T. 1, it remains only to
show that the self-adjoint extension H of Hλ is the unique self-adjoint
extension. Since here Hx c iff * e H = if* c if * is well-known [3],
and likewise jfff* cz Jϊ c ff* for any other self-ad joint extension J&,
since H = jff** will make if? = (JET*)** = {H^Y = H* = H = Hf'\ and
since Hf* = ifx the closure of Hly it suffices for this uniqueness to show
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In order to do so, we first (Lemma 1), Kato [2]) notice that orthogo-
nality of nonzero uQ e L2(Rn) to (/ + T^u = (I + T)u for all u e &λ

would require ύ0 to be orthogonal to all (1 + | y \2)u(y) equivalently,
since S * ( ^ Ί ) C ^r1 and S(^r1) ^ 3fx makes S * ( ^ ) = ^ = S ( ^ Ί ) ,
this would require &0(ϊf)(l + 11/12) exp ( — (1/4) | #12), an element of L2(Rn),
to be orthogonal to all polynomials in y3 multiplied by exp ( — (1/4) | y |2).
But the density of ^ in L2(Rn) and a change of scale by the factor
l/ΊΓ shows this to be impossible. Hence (I + T)£gr1i& dense in L2(Rn).

Thus given % 6 £ r̂ and δ > 0 there exists ^ e S i such that

δ > || (I + T)u - (I + Γ

= [ J Λ ( l + I if I2)21 u(y) - Hυ) I2 <*/*»(*) J "

> (max II u — %! ||,

Thus by (5),

|| Hu - HlUl || - || H(u - Ul) \\ < \\ T(u - ux) \\ + \\ V(u - Ul) \\

< (1 + a) || T(u - ux) || + β || w - ux \\ < (1 + a + /8)δ .

Hence the graph of if is contained in the closure of the graph of H19

H c H19 and if is the unique self-adjoint extension of Hx as desired.

Thus Theorem T. 1 is completely proved.

3 Connection with other conditions. We will show in this section
that Condition I, which is always implied by (and for n > 4 coincides
with) Condition II, implies our earlier one (Condition III, see eq. 19)
for the construction of a self-adjoint extension as the inverse of a modi-
fied Green function integral operator. In fact, it is easy to verify for
V(x) — \x\'η that Condition I and Condition III are each equivalent to
0 < η < (min 2, n), so that in this sense they have the same strength.
We remark that Condition I is the natural one, used in a forthcoming
joint paper, for an asymptotic formula for the distribution of eigen-
values of the bottom part of the Schrodinger operator spectrum. Finally
we will show, as noted before T. 1, that

Condition II ==> Condition S =φ Condition III .

In order to give this connection with the modified Green function,

we need to introduce the fundamental singularity nKω(r) for - p2 + ω2l

with constant ω > 0. This may be defined (see [1], p. 555) uniquely by

the requirements that nKJr) be continuous over r > 0, that nKJ\ x\)e

Lx{Rn) over x, and that [ω2 + | y I2]"1 = I nKM{\ x \)eKx'^dμn(x) over y e

Rn. Such nKω(r) > 0 over r > 0 and ω > 0. We define
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- ^ ) for
4 /

2Kω(r) = M2[l +

and

xKJ(r) =

with Mw the least possible real constant having nKω(r) < nKω(r) over all
r > 0 and ω > 0, such positive finite Mw always existing. Finally define
for ω > 0,

(14) | F | ω - ess sup \ nKω{\ x-y\)\ V(y) \ dμn(y) .

THEOREM T. 3. Let V satisfy Condition I. Then \V\ω < + co for
all ω > 0

(15) lim \Vl = 0 .

Moreover for all ω > 0

(16) lim I 7 - V,|ω =

Fp(x) - F(x) i/ \V(x) \ < p, Vp(x) = p if V(x) > p, and Vp(x) =
-p if V(x) < - p.

The proof is rather elementary, using for n > 2 the Schwarz-Holder
inequality with r = (l/2)(n + p) > 1 and 1/r + 1/r' = 1, and hence

n- 2 + p

Thus Condition I yields in (14) for n > 2, the Schwarz-Holder inequality

being used on the \y\ < b portion, and also nKJ<t\ω) - ωn~2

nKλ(t) and

(n - 2)(n + ρ)/(n - 2 + p) - n = -2ρ\(n - 2 + p)< 0 ,

(17) |T | ω <

In (17) the second integral is obviously finite, and so is the first for
n = 2. For f i > 2 we see in the first integral that only the portion
0 < £ < l is in doubt, and here we have to consider the integrand factor
t raised to the exponent

- (n - 2 ) - » ± £ - + n - 1 = £̂ i > _ i .
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Thus the first integral in (17) is also finite for n > 2 as well as for n=2,

and (17) shows \V\ω < + oo for all ω > 0 and also that (15) follows for

n > 2.
Finally for (16), taking p > A so that V(x) - Vp(x) = 0 almost (μn)

everywhere over | x \ > b by Condition I, we see that in place of (17)
we have, with cn < + oo by the finiteness of the first integral in (17),
for n > 2

(18) \V- Vp I < cnω-2p^n+4\ I V(x) - Vp(x) |CWC»+P) dμn(x)Ύ* .
LJHι*ι<&} J

Since l i m ^ | V(x) - Vp(x) | = 0 f or all x e Rnj and since | V(x) - Vp(x) \ <
I V(x)\, we see Condition I and dominated convergence in (18) yields
(16) as desired for n < 2.

Finally consider n = 1,1Kω(r) = 1Kω(r) = (2ω)-1

e-
ωr. Notice that Con-

dition I with 1 + p > 2 clearly implies itself with p replaced by ρf = 1.
Thus in place of (17) and (18) we have for n — 1

(17)' \ΊΓ\ω < Mtfω)-1 + Aω~2 ,

(18)' W-Vp L < (2o))-1( I F(x) - Vp(x)\dμn(x) ,

which clearly yield (15) and (16) in the same way as above. Thus the
proof of Theorem T.3 is complete.

Now consider the following condition on V. As stated in Corollary
T.4 immediately thereafter, this condition is implied by Condition I, as
we see from (15) above.

CONDITION III. There exists some ω, 0 < ω < + ω, such that

(19) \V\ω<l.

COROLLARY T.4. / / Condition I is satisfied, then so is Condition III.
Condition III is our earier condition in [1] mentioned above. For our

modified Green function, consider the formulae

(20) Gω(x,y) = nKMx-y\) + ±(-iy\ f

f nKω(\ x-,2 \)V{lZ)nK^\ lZ - 2

V(pz)nKω(\ v z - y \)dμn{xz) '

(21) [Gωu](x) = ί GJix, y)u{y)dμn{y) .

By virtue of our earlier work ([1], p. 560, 5S7, Lemma 3.4, Theorem 3.5,
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Theorem 4.5), we have the following theorem, using \V\ω < |F | ω / from

nKω(r) < nKω\r) in (14) for ω > ω'.

THEOREM T.5. Let the conditions of Theorem T.3 hold and let ωlf

0 < ωλ < + oo, be chosen so that (19) holds. Then for ω > ωλ the right
side of (20) converges almost (μn x μn) everywhere as a definition of
Gω(x, y), Gω(x, y) — Gω(y, x) almost (μn x μn) everywhere, in (21) the
right side exists finite almost (μn) everywhere and is in L2(Rn) for
ue L2(Rn), and the operator Gω on L2(Rn) so defined is bounded Hermitian
II Gω II < ω~2(l — I VΊu)-1. Moreover the operator H2 defined by

(22) H2 = Gzι - of I

exists as a self-adjoint operator in L2(Rn) independent of ω > ωx.
Now under Condition I here, which is less than Condition II if

n < 3, the linear manifold ^— {u e L2(Rn) \Vu e L2(Rn)} need no longer
contain ^ , and hence Hλ may not exist as an operator in L2(Rn).
Thus define ^ = ^ " Π &19 and as in (2)

(23) [H, u](x) - - V2u(x) + V(x)u(x)

for u e <2[ thus Hλ satisfies (H^, w) = (u, Hxw) for u, w e ^ . Note

S{ — ^ί and Hx — Hλ if n > 4, Condition I and II coinciding. Hence,

after proving the following theorem, H2 — H follows for n > 4.

THEOREM T.6. Let V satisfy Condition I. Then the self-adjoint

operator H2 defined by (22), known existent by Corollary T.4 and

Theorem T.5, is an extension of Hu H1 <Ξ H2

We note here that ^ need not be dense in L2(Rn) if n < 3 , although

Hx will not be a very respectable operator from the Hubert space view-

point if ^ is not dense, in particular not being symmetric. This

theorem is the same as our earlier one ([1]), Theorem 5.3, p. 572) except

for change in the initial domain from S^ = ^/^Π ^ there to ^ = ^ f ΐ Ί ^

here. Merely sketching the proof, we first see

(24) (u, φ) = \ [Gωu\(x){(ω> + V(x)Mx) - Vφ(x)}dμn(x)

follows for φ e ^ and u e Lλ(Rn) Π L2(Rn), the proof being unchanged
from the earlier one ([1], Theorem 5.1, p. 568) for φ having continuous
second partials and vanishing outside a bounded set. Taking φ e J ^ =
<Λ" Π Si in (24) and using the facts that Gω is bounded Hermitian and
that Lλ(Rn) Π L2(Rn) is dense in L2{Rn), we obtain from (23)

(25) Gω(ωU + Hx)φ = φ
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for φ € £%. Thus ^ e (range of Gω) = (domain of G"1), and ω2l + Hx c
G;1, i^ c G;1 - ω2/ - fl, as desired, proving T.6.

THEOREM T.7. Let V satisfy Condition I and define hx =
lim^ooίess inf ,* ,^ . F ( x ) . TTkβw £ / m limit exists satisfying — A <hλ< A
and the spectrum Σ of the self-adjoint operator H2 defined by (22),
known existent by Corollary T.4 and Theorem T.5, has ( — cχ>,fc1)Πlτ

to consist of pure point spectra with (— coyh)ΓϊΣ finite and having a
finite dimensional eigenspace for all h<hλ. If also ho = [ess inf V(x)]>

xeRn

— oo, then ( — oofh0)Γ\Σ is empty.
Since (19) and (16) follow from Condition I for large ω by Theorem

T.3, this theorem follows from our earlier one ([1], Theorem 6.4, p. 579).
Finally we finish this section by proving in the following Theorems

T.8 and T.9 the implications asserted before, namely II =φ S =Φ> III. Since
Condition S, as noted before Theorem T.I, implies the conclusion of that
theorem, from II=^S we have an alternate proof of Theorem T.I. For
knowledge of this work of Stummel [5] we are indebted to the referee.
Although Theorems T.8 and T.9 seem of sufficient interest to record,
their proofs are simple exercises in the use of the Schwarz-Holder
inequality.

We start by stating Stummel's Condition S.

CONDITION S.

(26) {sup ( I V(y)\2 \x~y \-ydμn{y)\< + ~

for some real y satisfying y > n — 4 and y > 0.

THEOREM T.8. // V satisfies Condition II, then it also satisfies
Condition S.

THEOREM T.9. If V satisfies Condition S, then equation (15) and
hence Condition III are satisfied by V.

To prove T.8 first, Condition II clearly yields (26) with 7 = 0, which
thus takes care of the trivial case 1 < n < 4.

Now consider dimension n > 4. Then for the p > 0 in (1) of the
given Condition II, we may choose real y to satisfy

(27) n - d—-—) >y>n 4
\n+ p )

and must then verify (26). Take p = (l/4)(w + p) > 1 and then \\p +
\jpf — i9 for which
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n[(n + p) - 4 ] > (n + ρ)y , n + p>4 + (n ^
n

- JLVn + p) > 4 , p = (l/4)(rc + /o) > ( l - ̂ -V,

1 1 = 1<1-X,
p' p n

and hence yp' < n. Thus for (26) we have the Schwarz-Holder estimate

(28) ( \V(y)\*\x-y\-ydμn(y)

U Πi/pΓ fi ηi/p'

{iflljc-irl^i} J L Jo J

with 2̂ 9 = (l/2)(w + jθ), 7P' < w, and σw as in (6). Thus the second factor
on the right of (28) is a finite constant, Condition II assures that the
first factor is bounded over JC e Rny and (27) and (28) yield (26) for
Condition S. This completes the proof of T.8.

Now for Theorem T.9 it suffices to prove that Condition S implies
limω_+ o o |F|ω = 0, since equation (15) yields the conclusion of Corollary
T.4 as noted there. Considering first the general case n > 4, and taking
β = n-2-yl2<n-2-(n- 4)(l/2) - n/2 so that 2β < n from γ >
n — 4 > 0, the Schwarz inequality yields

(29) j W(y)\. e"1""' 2dμπ(y)
\ X — y \n~ιX —

ΰ
-jl/2 Γ f l "Ίl/2

I V(y)\> \x~y \-ydμn(y) σn\ e^^'^dr .
{y\\χ-y\<i} J L Jo J

On the right here the second factor is < [ω'(n-2β^σnΓ(n - 2β)f'2 -> 0 as
ω -^ + oo since n — 2/5 > 0 the first factor is independent of ω and
bounded over x e Rn according to Condition S. Hence we see that the
left side of (29) converges to zero uniformly over x e Rn as ω —* + oo
for n > 4.

In order to estimate \V\ω, we must also consider the left side of
(29) with the range of integration replaced by its complement in Rn.
For this we define

B(j) ={xeRn\\xt- 2ji{n)-^ | < {n)'1^ for 1 < i < n], j = (jlf j 2 , •, jn)
for integer j t , and also r(j) = mfxeB(J) \x\. Noting that B(0) c
{x || x I < 1} makes {x || x | > 1} c: \Jj¥:QB(j)y we see with n > 4
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(30) ( \V(y)\
J { \ \ \ > ι }

\(y)\ ltμM
{y\\χ-y\>ι} I x — y | n " 2

< f β-'" I V(x - z) I dμn{z)
J[z\\z\>i}

< Σ e-ωrCi) ( \V{x-z)\ dμn(z)

lJ/2 , _ _
-ωr(j)< (-*=) sup I V(y) \* dμn{y)

Since | x — # |~γ > 1 in (26), we see that Condition S assures that the
first factor on the far right side of (30) is a finite constant. Moreover,
we see that the second factor

] e-»r(j) U o as ω -> + oo ,

using

r( j) > ( sup I x M — 2

to estimate the portion of this sum where

r ( j ) > 3 by

which —> 0 by dominated convergence, and using r(j) > ijVn > 0 for
j φ 0 to estimate the remaining finite sum portion. Thus the left side
of (30) converges to zero uniformly over x e Rn as ω —> + oo, which
when combined with the same conclusion about (29) proved above yields
\~V\ω —> 0 and completes the proof of T.9 for dimension n > 4.

For dimension n < 4, we see Condition S becomes just (26) with

γ = 0. Hence I [nKω(\ x \)fdμn(x) = cwαr(4-w), easily seen with cn< + oo

for n < 4 from the definition preceding (14), gives in place of (29)

(31) Γsup f I V(y) I nKa{\ x~
L € J { | | }

as o> —> + oo. Also (30) still shows the integral over the complimentary
region to converge to zero uniformly over x e i ϋ w a s ω - ^ + oo iί n = 3,
and a very similar computation gives the same result if n = 1 or 2.
Hence limω_>+ββίVΊω = 0 follows from Condition S when dimension n < 4
as well as when n > 4, and the proof of T.9 is complete.

4. Variational characterization, of the spectrum* In this section
we will show (see T.13 following) that a variational characterization of
the spectrum, well-known at least for continuous V and bounded domains,
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also holds for H2 with V subject only to Condition I. This is rather
easy to obtain ([2], p. 209, eq. (23)) under Condition II, and the major
effort in our argument amounts to showing that Condition I, which is
weaker for 1 < n < 3, actually suffices.

We start with the following theorem, where by the Lλ sense of the

Fourier transform u for u e Lx{Rn) we mean (3) with no limit and

\ replaced by the oridinary Lebesque integral \ . Notice that
J{Λ:| |Λ:|<ΛΓ} J ^

if u e Lλ(Rn) Π L2(Rn), then by taking subsequences we may be sure that
the two definitions of u(y) are equal almost (μn) every were. Hereafter
\\u\\r denotes the Lr(Rn) norm of u, and \\u\\ or \\u\\2 the L2(Rn) norm.

THEOREM T.IO. Let V satisfy Condition I and let λ0 be in the point
spectrum of H2J defined by (22), with eigenvector w o e ^ = Gω(L2(Rn)),
H2u0 — XQuQ and || u0 || = 1. Then Vu0 e L±({x \\ x | < &}) and over yeRn

(32) I y \2u0(y) + ψo(y) = \ύo(y)

where ψo=fQ + g0, fQ is the Lλ sense transform of fo(x) = V(x)uo(x)χb(x)
with χb(x) the characteristic function of {x e Rn \\ x \ < 6}, and gQ is
the usual L2 transform of g0 — Vu0 — /0.

If (n + p) > 4, then Condition II follows from Condition I, H2 — H
and u0 6 ^ 2 = £ϊ by Theorems T.I and T.6, Vu0 e L2(Rn) by Lemma T.2

and hence εL^ {JC 11 JC | < 6}), ψ0 exists as defined and = Vu0 defined in
the usual L2 sense, and (32) follows from Hu0 = Xouo and the definition
of H.

The proof of T. 10 thus being complete for (n + p) > 4 and hence
for n > 4, we now consider the remaining case 2 < n + p < 4, for which

1 < n < 3. Since Gωu0 — (λ0 + α)2)"X with λ0 + ω2 > 0 for ω > ωx fol-
lows from (22) and H2uQ = λo^o, we see ([1], (3.5), (3.6), and (3.21), p.
558 and 562) by using the Schwarz inequality that uQ is essentially
bounded, u0 e L^RJ and ||w0||oo = ess sup \uo(x)\ < + oo. Thus by Con-

xeRn

dition I, Vu0 e Lr({x\ \x\ < b}) c Lx({x| | x | < b}) with r = \(n + p)
satisfying 1 < r < 2, and ψQ exists as defined.

Now, Lx n L2 being dense in L2, there exists a sequence u'k e Lx(iίn) n
L2(Rn) such that the L2 norm \\u0 — uf

k\\2->0. Hence as above, uk =
(λ0 + Gf)Gωu'k has uk e L^ Π L2 and both \\u0 — uk\\2 -• 0 and also
ll̂ o ~ f̂clloo—• 0. Actually ([1], Lemma 4.1, p. 565), uk and Vuk e
also, and

(33) ( |#| 2 - X0)ύk(y) + ψk(y) = (λ0 + ω*){u'k{y) - ύk(y)}

with ψk = Fufc in the Lx sense. Defining fk and srfc from ufc analogously

to /o and βτ0 from u0, ψk — fk + άk defined in the Lλ sense. Moreover,

ll/o - Λ l U < (2^)-w/2||/o - Λ H i < (2τr)-^|| F l U l ^ o - ^11- — 0
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with

llVlll'b = \{x^<JV{X)ldμn{X)'
and 11 gQ — g% | |2 < A \ \ u0 — uk \ |2 -^ 0 by using Condition I. Thus, after
taking subsequences, we may assume almost (μn) everywhere that

ψic(y) = My) + 9k(y) -*h(y) + ύo(y) = ψo(y) > My) -

and uf

}c(y)-^ύ0(y)f since | | ά & - ώ o | | 2 = \\uk - w o | | 2 -* 0 and ||&ί — &0||a =
I K — ^olla—* 0. Thus (33) yields (32), and the proof of theorem T. 10
is complete.

We next give some approximation lemmas.

LEMMA T. 11. Let V satisfy Condition I with n + p > 4, and
hence Condition II also; let u0 e 2$. Then there exists a sequence of
uk e «@r, satisfying simultaneously \\uQ — uk\\ —> 0, || T(u0 — uk)\\ —+ 0,
|| F ( ^ o — uk)\\ —> 0 /or these L2(Rn) norms.

This was proved in the last two paragraphs of § 2. In the following
we denote (z ξ) — Σ?- i^> 1*1 = τ/(^ z) for ^ and ξ e Cn, unitary
Wr space. ^ = Gω(L2(Rn)) for ω > ^ is the domain of H2 as usual.

LEMMA T. 12. Let V satisfy Condition I with 2 < n + p < 4 αwd
ίeί ^o 6 ^ satisfy H2u0 = λo^o α^d | |^ 0 | | = 1. T&ew ||f|'&0(lf) 6 -̂ a(-B»)
and u0 e Loo(i2w) and ^0 e L^JB^), and ίfeerβ exists a sequence of uk e 3ίλ

such that simultaneously \\u0 — uk\\2 —> 0, ||w0 — ^ 1 ^ —> 0,

( I F(x) I \uo(x) - u^x) fdμn{x) - 0 ,

and

ί I r^uJίx) - Γ^fc(x) \2dμn(x) - 0 ,

where V denotes the ordinary gradient differential operator and Γgβnu
the Cn vector valued function whose components are in L2(Rn) and have
the components of iyu{y) as their L2 sense Fourier transforms.

To prove T. 12, first notice 2 < n + p < 4 makes 1 < n < 3, and
hence, as shown in proving T. 10, u0 e LJfiώ and f0 e Lr{Rn) with
r = \{n + p), 1 < r < 2. Thus, using the Young-Hausdorff-Titchmarsh
theorem as in (8), the Lx sense f0 e Lr,(Rn) with

r' = 1 = ^ + ^ > 2 , and r' =
1 - 1/r n + p - 2

if w + p = 2.
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Next notice that for 0 < v < 2 we have from (32)

(34) ( τ τ k i )2~V| y ΫK{y) = (1 + ' y l)~2+v[xMy)

Thus we may conclude \y\vu0(y) e L2(Rn), as desired, whenever this
holds for both terms on the right of (34). The first term is obviously
in L2(Rn). For the second term we use fQ e Lr,(Rn) and the Schwarz-
Holder inequality with

2a = r ' = n + p > 2 , α' = 1 n + P
+ p 2

> 2 , α
n + p - 2 1 - 1/α 4 - (w + p)

holding even for n + p — 2y for which α = oo and af — 1. Thus, with
σw as in (6),

<35) ί ί H Λ μ M £ " M ^
provided that

n < (2 -
4 - (n + p)

This last inequality is equivalent to

2 - v > ί4 ~ (^ + l ° »
2(w + iθ)

and this to

v < 4p + n(n + p) _ n + 2p
2(n + p) 2 n + p '

We see for our n = 1, 2, or 3, /> > 0, 2 < w + p < 4, that this last in-
equality is always satisfied for v — 1 and for v — vx = π/2 + p/(n + />).
Note w/2 < Vj < 2. Thus we have shown \y\uo(y) and |^|vi^(i/) to be
e La(Λn).

Next for any finite set of vv > 0, define

As in the last two paragraphs of § 2, LS)Ύ is dense in L2(Rn), since any
u e L2(Rn) has

) e L2(Rn)
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and therefore is not orthogonal to all Q(y) exp( — i\y\2) with polynomial
Q, and thus ύ cannot be orthogonal to L ^ . Hence, for any u e L2(Rn)
such that Lu e L2(Rn) there exists (since £% transforms onto ^ ) a
sequence uk e ^ such that \\L(u — uk)\\2 —> 0, and thus simultaneously

t
for the finite set of up as well as \\u — uk\\2 = \\u — uk\\2 —> 0. Applying
this result to u0 e L2(Rn) with the finite set {1, i J of i/s, since |^|ίto(^)
and |^|Vl^0(ί/) were shown to be in L2(Rn), there thus exists a sequence
of uk e i ^ such that simultaneously

— Uh\U = \\U —

and

with

From the second limit statement just proved, and from \y\ύo(y) e
L2(Rn), we see that PgenuQ exists as defined and that, since iyuk(y)
clearly has its components the L2 transforms of the Cn vector valued
function Vuk(x),

\ I r,enu0(x) - Fuk(x)\*dμn(x) = ( I y |2| ύo(y) - ύk(y)\2dμn(y) -> 0 .

Next for u e L2(Rn) having \y\Vιu{y) e L2(Rn),

(36) H&ll, < Λf[jΛ (1 + | ^ | 2 V l ) l ^ ) | 2 ^ ( ^ ) ] 1 / 2

M\\ύ\\2 + Λf [ J Λ I i r r
1/2

using the Schwarz inequality and 2vλ > n. Thus from \y\Vluo(y)e L2(Rn)
we conclude ||&0||i < +°° and &0 e Lx{R^t and likewise | |u 0 — uk\\λ —* 0
follows from

( 11/ l2Vl I fco(if) - ύk(y)\2dμn(y) -> 0

shown above. Thus we have
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l | tto-tttll-<(2π)-»"| |M o-ώ i | | I —0

from the Lt sense of (4) agreeing here with the L2 sense as usual.
Hence finally

(37) j Λ I V(x)\ I uo(x) - uk(x) \>dμn(x)

< |K - uk\\l\ \V(x)\dμn(x) + A | K - uk\\l
J {Jc| \x\<b]

by Condition I with the right side —> 0 as k —> + oo. Thus the proof of
Lemma T. 12 is complete.

We now are ready to give our variational characterization of the
spectrum Σ of H2, assuming only Condition I. Define

hL = lim (ess inf V(x)) ,

and by Theorem T. 7 we know that Σ Π (— oo, h) for h < hλ consists of
a finite set of λ which are each in the point spectrum of H2 with finite
multiplicity. Thus there is uniquely defined a finite or countable set
{Xp} = Σ Π (— oo, fej), λp < Xp+1, and the Xp — X repeat according to the
multiplicity of each λ in the point spectrum of H2. In the statement
following, u ± S means (u, w) — 0 for all w e S.

THEOREM T. 13. Let V satisfy Condition I and let {Xp}, possibly
empty, be defined as above. Then each such Xp satisfies

(38) λ p = s u p ] inf ( (\ru(x)\>+ V{x)\u{x)\>)dμn{x)\ ,
SQL2(Rn), I w e ^ 1 jRn )

\\U\\=1,U±S

and such Xp exists for any integer p > 1 for which the right side of
(38) is <hλ. Moreover, in this statement ^ may be replaced by £&%,
the set of all u e L2(Rn) which possess continuous second partials
everywhere and such that u(x) together with all its partial derivatives
of order < 2 is O([l + | x |m] exp ( — | | x |2)) over x e Rn for some integer
m > 0 depending on u.

For integer p > 1 define τp(^{) as the right side of (38), and
similarly τp(^0) with S\ replaced by i^0. ^ 0 3 3>λ clearly makes
Tp(^o) < ?A&d' Thus to prove theorem T. 13 we need only show first
that any existing Xp has Xp > τ p (£^), and secondly that τp(^0) < hλ has
Xp existing with τp(&0) > Xp.

Now for each λ^ we may choose φp e &>2, the domain of H2, such,
that H2φp = \pψp and (φp, ψp.) = 8P,P., since H2 is self-adjoint. Thus
using T. 10 and multiplying (32) by φp{y) and integrating over Rn we
have, since (φ o , φv,) = (φP9 ψp,) = δPtP,,
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(39) λA,*' = ( {I if \2ΦP(y)ψAϋ) + ψMΦAυ)}dμn(y)

the integral of each term in (39) existing finite in the Lebesque sense.
This finiteness is clear if n + p > 4, since then Condition II holds and
cPp e &2= &, \y\ψP(y) e L2(Rn) and ψp e L2(Rn) by T. 2. Otherwise
2 < n + p < 4, and T. 12 yields | y \ φp(y) e L2(Rn) and φp e Lx(Rn) n
L2{Rn) hence ψp = fP + gp with gp e L2(Rn) and fp e L^Rn) from
/p 6 Lx(Rn) also makes the second term integral be finite as well as the
first. Also ParsevaPs equality applied to the terms on the right side
of (39) yields

(40) λΛ, p , = ( ί(r*n<Pp{x) V*n<PA*)) + V{x)φP{x)φAx)}dμn{x) ,
*Rn

provided that in addition we show

in the case 2 < n + p < 4, where as usual fp(x) = V(x)φp(x)χb(x) as in
T. 10. Replacing V by the truncate Vq defined for (16) and defining
JP = Vqφpχb, then Jp e L2(i2n) and (β/p, φp) = (β/p, 9V) follows by
ParsevaPs equality. Clearly Condition I, <pp e LJJR^ by T. 12, and
dominated convergence over {x \ \ x \ < b} yields || fp ~ qfp \\x —• 0 as
g - ^ + c » , and hence also \\fp — qfp 1U -^ 0. Thus φp, e L^Rn) and
^V e ^i(-β») by T. 12 in our case 2 < w + ô < 4 gives the desired result

(41) ( h{y)ψAϋ)dμn{y) = lim (β/p, φp,) - lim (qfp, φp.)

and (40) is completely proved.

Now from (40), for u = Σ ? - I C ^ J
 w e have

(42)

Next by T. 11 and T. 12, since ^ 2 = & if w + p > 4, for each φ3 e
1 < j < P, we can choose a sequence ^ 6 ^ having | | ^ ; — fc^j||2

[ I V(x) I I cPj{x) ~ kΨj(x) I2 d/i»(x) - 0 ,

and
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( I P^ψjix) - Γkφj(x) \2dμn(x) -> 0

as k —» CXD, and also satisfying \\φ3 — kφ3\\2 < l/(3p) for all k. This last
requirement assures that \(kφjy kφr) — δ J i < Γ | < θjp for some fixed θ < 1
(actually θ = f here), and hence the set {kφό} over 1 < j < p is linearly
independent and thus spans a j> dimensional manifold ^/ί k of £^ . Thus
given S cz L2(Rn) with card S < p, the orthogonal projection of S into
the subspace ^ % spans at most a p — 1 dimensional manifold, and
hence there exists uk e ^y£'h, \\nk\\ — 1, uk _L S. Also

= Σ
has

by the Schwarz inequality,
V

and hence by taking subsequences we can assume kCj —> 0Cj for some
complex Qc3 as fe->+oo for each j , 1 < j < p. Thus u0 — Σ?=io<?j^j
has uk —> u0 in each of the three quadratic form norms for which kφ3 —> φ3

above, using the Minkowski inequality. Hence (42) for uQ has the left
side to be equal the limit as k —> + oo of the same expression with uk

replacing u0. Since uk e ^//k c ^ , | | u j | = 1, and uk ± S, we thus
see that TP(^Q < Xp holds for existing Xp < hlf which completes the
first part of our proof.

In order to complete the proof Theorem T. 13, we must show
rp(iFo) < hx has rp(£^0) > Xp with Xp existing. Consider fixed u0 e £^0.
The truncate Vq, defined as for (16), with q > A satisfies Condition II
clearly, and thus defines the self-adjoint qH with domain £%r 3 ^ as
in T. 1, and qH 3 qH0 defined on £F0 by (2) with Vq. Hence by inte-
grating by parts, and using the exponential bounds in the definition of
&Q, qE being the spectral measure for qH,

(43) f {| Γuo(x) |2 + Vq{x) I uo(x) |2}dμn(x) = (qHuOf u0)

Xd(qE(X)uQ, u0)

— oo

= 1 Σ M<,E({QXj})u u)\ + \ xd(β(\)uu)
( λ <h ) Jλ^/i

Σ
λ

+ /tillM.II2 - Σ (qE({MKu0)
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for any h < hlf the sum Σ~λ.<Λ being finite then by T. 7 and here being
defined to give one term for each distinct X e Σq.

Now taking q—> +co in (43), by Condition I and dominated conver-
gence the limit of the left side is obtained by replacing Vq by V. On
the right side | V — Vq |ω —* 0 by (16) under Condition I, and hence
II Gω - qGω || -> 0 ([1], 3.20, p. 561). Defining Fω as the spectral measure
of Gω and /ω(λ) = l/(λ + ω2), we have ([1], Theorem 4.5, p. 567) E(B) =
Fω(fω(B)) for Borel subsets B of the spectrum Σ of H2; also the usual
loop integral formula

1 Γ ^
FΛβ, <?]) = — : l (zl — G^dz

2τπJ

holds in the weak sense, where C is a rectangular curve in the complex
plane with sides parallel to the axes whose interior region intersects
the real axis in (α, c), provided both " α " and " c " are at a positive
distance fτomfω(Σ). Thus || Gω - q G ω | | -* 0 implies \\E(B) - q£;(5)||->0
for any closed interval S c ( - w , y whose endpoints are not in {Xp}.
Hence qXj —* X3 for X3 existing, and (43) becomes

(44) \ {\ Vu{x) |2 + V(x) I u(x) |2} dμn(x)
n

= { Σ λ,|(u, Ψ))ή + h\\\u\\> - Σ |M, Wl

for u e &o and fe < h19 the sum Σλ <Λ meaning as usual one term for
each index j satisfying X3 < h.

Now assume τp{^) < hx for some integer p > 1, set hf = i [ ^ + r p ( ^ ) ] ,
and thus τ p ( ^ ) < Λ,' < ^ . Now consider the particular S — {ψj \ Xj < h'
exists and j < p} c L2(Rn), for which (card S) < p clearly. Thus (44)
with || % || = 1, (w, φj) = 0 for ^ 6 S, and λ = hf would give r ^ ^ i ) > hf

if either λ^ did not exist or else Xp>hr, yielding the contradiction
hf < τp(&0) < h'. Thus λp < h' < ^ must exist, and (44) with || u \\ — 1,
(u, φj) — 0 for j < p, and h ~ Xp gives r p ( ^ 0 ) > λp as desired. Thus
the proof of Theorem T. 13 is complete.
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THE RING OF NUMBER-THEORETIC FUNCTIONS

E. D. CASHWELL AND C. J. EVERETT

Introduction. The set Ω of all functions a(n) on N = {1, 2, 3, •}
to the complex field F forms a domain of integrity under ordinary ad-
dition, and arithmetic product defined by: (α β)(n) = ^Λa{d)β{n\d)1

summed over all d \n, d e N. The group of units of this domain contains
as a subgroup the set of all multiplicative functions. Against this back-
ground, the "inversion theorems" of number theory appear as obvious
consequences of ring operations, and generalizations of the standard
functions arise in a natural way. The domain Ω is isomorphic to the
domain P of formal power series over F in a countable set of indetermi-
nates. The latter part of the paper is devoted to proving that the
theorem on unique factorization into primes, up to order and units, holds
in P and hence in Ω.

l Definition, The class Ω of all number-theoretic functions α,
[4; Ch. IV], i.e., functions a(n) on the set N of natural numbers
n = 1, 2, 3 to the complex field F, forms a domain of integrity (com-
mutative, associative ring with identity and no proper divisors of zero)
under ordinary addition: (a + β)(n) == a(n) + β(n), and an operation,
frequently occurring in number theory in various disguises, which we
call the arithmetic product:

the summation extending over all ordered pairs (d, d') of natural numbers
such that ddr = n.

The commutativity a β = β a follows from the fact that the cor-
respondence (d, dr) -> (df, d) is one-to-one on such a set of ordered pairs to
(all of) itself, while the associative law a (β γ) = (a β) γ can be verified
by observing that, in either association, (a β γ)(w) = ^Ia(d)β(dr)rγ(dff)J

summed over all ordered triples (d, d', d") with dd'd" = n.
The zero 0 and additive inverse — a of a are of course the functions

defined by 0(n) == 0, and (—ά)(n) = —a(ri), and one sees at once that
the function ε with ε(l) = 1, ε(n) = 0 for n > 1, is the identity: ε a = a
for all a of Ω.

That the ring Ω has no proper divisors of zero may be seen in
various ways, three of which occur incidentally in the following sections
(2,4,5).

2. A norm for number-theoretic functions, A function N(a) on
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Ω to the set of non-negative integers 0,1,2, ••• which is zero if and
only if a = 0, and has the property N(a β) = N(a)N(β) for all a, β of
Ω, may be defined by setting JV(O) = 0, and, for all a φ 0, taking N(a)
to be the least natural number n for which a(n) φ 0.

Indeed, we find that, if a and β are non-zero functions of Ω with
N(a) = α and N(β) = δ, then (α /S)(n) = 0 for all (if any) n of JVwith
n < ab, and (a β)(αδ) = α(α)/9(δ) Φ 0. It follows that β is domain of
integrity, and that the norm N(a) has the multiplicative property.

3. Group of units. If for a, β in the domain of integrity Ω, there
exists a γ in Ω such that a — β γ, we say /9 divides α and write β\a.
The set T of all units v, i.e., elements of Ω which divide the identity ε,
forms a commutative group under (•) with identity ε. Two functions a,
β of Ω are called associates (notation a ~ β) in case there is a unit v
such that β — a v. One sees that a ~ β if and only if α|/3 and /S|α,
and that (-^) is an equivalence relation which splits i3 into disjoint
classes [ ] of associates. For example, the class [0] contains only 0,
while [ε] = T. These trivial properties are shared by all domains of
integrity.

In our ring Ω, an element a is a unit if and only if α(l) Φ 0,
equivalently N(ά) — 1. For, if aar — ε, 1 = ε(l) = α(l)α'(l) implies
α(l) Φ 0. To see that this is also sufficient, we first introduce the
(number-theoretic) function λ(w) defined by λ(l) — 0, X(pλ pt) = / for
any product of / (not necessarily distinct) primes. We have λ(α) = 0 if
and only if a — 1, and X(ab) = λ(α) + λ(b) always. This function has
the property of classifying all natural numbers according to their length.
We have now to construct a function af in Ω with (a a')(ri) = ε(w) from
a given a for which α(l) = A Φ 0. Manifestly, for w > 1, this relation
itself defines the value of a'{ri) unambiguously for each n of length
χ(n) — / in terms of values af(df) with λ(c£') < /. Thus, if we define
α'(l) = I/A for the single n of length 0, and proceed inductively on X(n),
we automatically obtain the desired a!.

We note in passing that if α, β are any two number-theoretic func-
tions and v i/ = ε, then β = a v if and only if a = β ι>'. This trivial
relation between associates is the basis for the so-called inversion theorems
of number theory. (Cf. § 7).

4 The degree of a number*theoretic function* Just as a natural
order 1 < 2 < 3 < of the set N permitted the definition of a norm,
so does the order implicit in the λ function enable us to introduce what
we may call the degree D(a) of a non-zero function α of fl.

Specifically we take D(a) — d to mean that a(n) = 0 for all (if any)
n of N with λ(w) < d, and that there exists an n with X(n) — d for
which a(n) Φ 0. Thus D(ά) is a function on all non-zero a of Ω to the
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non-negative integers, with D(a) — 0 if and only if a is a unit, and
D(a β) = D(a) + D(β) for all non-zero a, β.

We may indeed show somewhat more. Let D(a) = d9 D(β) — e, and
suppose a and b are respectively the least integers with λ(α) — d, X(b) = e,
for which α(α) =£ 0, /3(6) ^ 0. Then (a β)(w) = 0 for all (if any) n with
X(n) < d + e; (α β)(ab) — a(a)β(b) Φ 0, where, of course, λ(αδ) = d + e;
and finally, indeed, (a /3)(w) = 0 for all n < ab with λ(w) = d + e, that
is to say, α& is itself the least integer of its length at which a β does
not vanish.

5. A second norm* The final remarks of the preceding section
make it clear that another norm M(a) is available. Specifically, set
M(0) = 0, and for a Φ 0 with D(a) = d, set M(a) = α, where α is the
least integer of length λ(α) = cί for which a(a) φ 0. It follows that
M(α) is a function on all a of β to the non-negative integers such that
M(ά) = 0 if and only if a = 0, M(α) = 1 if and only if a is a unit, and
M(a /3) = M(a)M(β) always.

Thus ikί(α) has all the properties proved for N(a) and moreover
determines D(a) = λ(M(α)) for α ^ 0.

6. The multiplicative functions. This and the following few sections
(7-10) are to some extent expository, our object being to observe how
familiar results appear when considered from the point of view of the
ring Ω or to propose some natural generalizations suggested by the new
notation. After this we return to the " arithmetic'' of the domain Ω
itself.

A number-theoretic function a is said to be multiplicative in case
(α, b) — 1 implies a(ab) = a(a)a(b) and (to exclude the trivial a — 0) there
is an integer n for which a(n) φ 0. In the presence of the former
property, the latter is equivalent to the condition a(l) = 1, which signifies
for us that the set M of all multiplicative functions is a subset of the
group T of units of Ω.

Clearly (1) a function a for which α(l) = 1 and a(Πpa) = Πa(pa) is
multiplicative, a(pa) being quite arbitrary for each power a = 1,2, •••
of each prime p; and (2) two multiplicative functions identical on all
such pa are equal.

That M M c M follows readily from the definition of M, and the
identity ε is in M, seen perhaps most trivially from (1) above. To see
that M i s a subgroup of Y requires only the further fact that the inverse
af of a multiplicative function a, which we know exists uniquely, is
itself multiplicative. This we prove in a way which provides a second
construction of the inverse in the case of a multiplicative function.
[5; p. 89]
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Given a in Λf, define a function β in Ω as follows. Set β(l) = 1.
For each p, define β(pa) for a — 1,2, ••• successively by the relation
Σ a{d)β{df) — 0, summed over all pairs (d, df) with dc£' = pa. Finally,
define β(Πpa) = Ilβ(pa). The /S thus defined is in Af by (1) above.
Since a is also in M, we know a βe M M a M. To verify that the
functions a β and ε of M are equal, it suffices, by (2) above, to
observe that (a β)(pa) = ε(#α) = 0, which is the defining equation for
β(pa). Since the inverse of any unit is unique, the β so constructed
must coincide with that obtainable by the λ construction of § 3.

7 The special multiplicative functions nk. Define the (multiplica-
tive) function vk for arbitrary real k by vk(n) — nk. Its inverse vt is
seen by the preceding construction to be: v£(l) = 1, vk(n) — ( — l)ιn
when n is a product of / distinct primes, and zero otherwise.

Now (a) v'k vfc = ε, and (b) if α, β are any two number-theoretic
functions, we have β — a vk if and only if a — β v£. For the special
case Λ = 0, (a) yields the familiar equation ΣamKd) — ε(w), and (b) becomes
the "Mobius inversion theorem" [Cf. 4; Th. 35, 38], since v'o is the
Mobius function μ. Indeed, we may write v'Jyi) = μ{n)nk for all k, n.

We may note one further generalization in this direction. If a and
β are any two number-theoretic functions, we see that

( 1 ) Σ (ot. β)(m) = Σ Σ <x(d)β(m/d) - Σ <x(d)ΣΪ β(0

In particular, if β is a unit, and a — βr, we obtain

k

Further specializing to β — vk,

n ίn/d}

1 = Σ /W* Σ /*

Finally, k = 0 gives the familiar [4; Th. 36]

1 = Σ μ(d)ίnld] .

8. The sum of the k-th powers of the divisors. It is clear that
the transform β(n) — Σdin^(^) of number theory [5, Th. 6-8] appears in
our notation as β = a v0. Thus in particular the number theoretic
function σjji) = Σua\ndk is seen to be the (multiplicative) function
σk = vk vQeM Ma M. The most familiar are τ = σ0 = ι>0 v0, the
number of divisors, and σ = σx = ^ v0, the sum of the divisors.

As an illustration, note that equation (1) of the preceding section
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yields

Σ (α v*)(m) = Σ a(d)[nld]
m = 1 <Z = 1

in particular, for a = v0,

±τ(m) = tln/d] ,
TO = 1 (1 = 1

and for α = vlt

The inverse ff£(w) is 1 for n = l, ( — l)λ/7 i(p£+2 —α4) for n=p?i p"/,
where 1 ^ αβ ^ 2 and λ = X(n), and zero otherwise. This may be seen
from σ'k = V'Q vk and the value of (v'Q vk)(pa) obtained from § 7. For
the special case k = 0, we may write τ'(w), for n of the second type,
a s (~l)λ2i/a, ••• α/.

We note that the relation σ'k = v'k v'o, besides determining the
function σ[ explicitly as indicated above, yields also the equation
σί(n) = Σa\nd

kμ(d)μ(nld), in particular τ'(n) = Σ^a\nμ(d)μ(nld).

9 A generalized ^-function. The well-known relations ψ v0 = vx

and 9> = vf

0 Vi satisfied by the Euler ^-function [4; Th. 39, 40] suggest
definition of a general function φk%ί = ι>ί vt, specifically

which has the value n'Π^l — pkrί) for n =pf l ••• va

t

ι. We should then

have the relation vk φkΛ — vt or Σ^<ι\n(Pk,ι(d)d~lc = n^k.

It is clear that the derivation of relations between arithmetic func-
tions becomes simplified by employing the algebra of the ring Ω, or of
the groups T or M. Consider for instance how' easily a = vQ vlf

Vi = ô <P, and v0 v0 = r implies G — τ * φ>

Not quite so elegant is the generalization:

( 1 ) nkσ^k(n) = (vk v){n) ,

( 2 ) ^ = ^ ^ f c f / ,

( 3 ) vk vk(n) = nkτ(n) (special case of (1)),

imply nkσ^k(n) = Σa\ndkτ(d)φktί(nld).

1O The ^-function. Define the number-theoretic function Φ(n) to
be the sum of the integers in N which are prime to n and do not ex-
ceed n. Obviously Φ(n) = nφ(n)/2 unless n = 1 and Φ(l) = 1. Although
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Φ is thus a unit in T, Φ(ab) = 2Φ(a)Φ(b) for (a, b) = 1, a > 1, b > 1, and
therefore 0 is not in M.

If we classify the integers 1, 2, •••, w according to their greatest
common divisor d with n, we find in the d-class the integers a with
(a,n) — d, 1 ^ a ^ n. There are exactly as many such a as there are
b with (6, w/<Z) = 1, 1 ^ 6 ^ w/d. This yields for Landau [4; Th. 39] the
relation Σd\n<P(nld) = w and the formula for <p by Mobius inversion. We
may note that the same partition suggests the additional relation:

2 o-l

As a final example, we note that, since vx vQ = σ,

Λ: v0 = 0 . # .

11. Primes. A number-theoretic function a is said to be a prime
in case a Φ 0, α is not a unit, and α = β γ implies y8 or γ is a unit.
The associates of a prime are also prime. The remaining functions,
neither 0, units, nor primes, are called composite. The associates of a
composite function are composite.

Any function with N(a) a prime natural number is prime; more
generally any function with M(a) a prime, or equivalently, any function
with D(a) = 1. As an example, note that from §9 S == a — vλ —
τ ψ — vQ ψ — (τ — vύ) <p. Since δ(l) = 0 and δ(2) = 1, we see that
M(S) — 2 and so σ — vx and τ — v0 are associated primes. If two non-
unit functions α, β are associates, we see that β(p) = (v a)(p) = v(l)a(p)
for all prime p, where v(l) Φ 0. Hence there is a continuum of non-
associated primes even of this simple type.

Naturally there are many other kinds of primes, a fact which will
become glaringly obvious in § 16.

12. The chain condition. If a0 Φ 0, ax\a^ and in the correspond-
ing equation aQ = aλ βx the (uniquely determined) βx is not a unit, we
say ctx properly divides aQ and write αJIcto. For example, every com-
posite element a has a factorization a = /3 γ in which /8||α and 7 | | α .
If in a domain of integrity, every chain of proper divisors a2\\aΎ \\a0 Φ 0
is finite, we say the domain satisfies the chain condition. In any such
domain it is easy to see [2; p. 117] first that every a not zero and not
a unit has a prime divisor, and from this that every such a is expres-
sible as a finite product of primes.

That our ring satisfies the chain condition is an obvious consequence
of the properties of either the norm or the degree functions. For ex-
ample, a^laoΦO, aQ=^a1 βlf β1 not a unit, implies D(βλ) > 0 and
D(aQ) = D(aι) + D(βλ) > D(αx), where D has non-negative integral values.
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Having come this far, it is natural to ask whether the expression
of a non-zero, non-unit number-theoretic function as a product of primes
is unique (up to order and units). We have been unable to find a refe-
rence for such a theorem, and offer a proof in the remaining sections.

In the presence of the chain condition, the existence of a greatest
common divisor for every two elements is necessary and sufficient for
the uniqueness property. [2; p. 120]. Although we have an abundance
of norms, we cannot hope to obtain a Euclidean algorithm, since we
certainly could not have linear expressibility of the g.c.d. For suppose
α, β are non-associated primes. Then (α, β) certainly exists and is ε.
whereas a linear relation ε = γ a + 8 β is impossible (consider n = 1),

13. A reduction theorem. It simplifies matters to show first that
if the uniqueness of factorization fails, it must fail in a particularly
simple way. Suppose indeed that uniqueness in false in Ω. Following
an argument of Lindemann and Davenport [1; §2.11] let us divide the
set of all non-zero non-unit elements of Ω into normal elements, whose
factorization into primes is unique, and abnormal elements, which can
be factored into primes in two essentially different ways. Clearly a
prime a is normal by definition.

We prove that if a is an abnormal element of minimal norm N(a),
and a = σx σ,n — τλ τn are two essentially different factorizations
of a into primes, σu τj9 then necessarily m = n = 2 and σlf σ2, τlf τ2 all
have the same norm N.

Note first that neither m nor n is unity, since a prime is normal.
Moreover, no σ5 is the associate of any τJf for if so, cancellation would
produce an abnormal element of norm N< N(a). Without loss of gen-
erality, we may assume N(σλ) ^ N(σ2) ίg <£ N(σm), Nifa) <; iV(τ2) <̂
•.. ^ JV(rn), and N(σλ) ^ NfτJ. Then N(σx τx) = N{σλ) N(τx) ^ N^N^)
^N(τ^N(τ^ ^ N(a). If any one of these (^) relations is actually (<) ,
we have N(σ1 τλ) < N(a), which we will see leads to a contradiction.

Suppose indeed that N(ax τλ) < N(a), and consider β = a — σx τx.
Certainly β Φ 0, for a = σλ τλ implies σ2 σm = τlf and since τx is
prime, we have m = 2 and τλ ~ σ2, contradiction. Also β is not a unit,
since σλ\β. From the definition of norm N and the assumption
N(σλ τλ) < N(a) it follows that N(β) = N(σλ τλ) < N(a). Hence β is
normal. However, the non-associates σlt τλ both divide β, and, β be-
ing normal, σx τλ\β. Hence σλ τL\a = σx σw = σx rx γ. Thus
α2 σm — τ1 γ. But iV(cr2 σm) < JV(α), and o2 σm is not zero
and not a unit (m ^ 2). It follows that σ2 σm = τx γ is normal and
τλ is associated with some σh a contradiction.

We are forced to conclude that NiaJNfa) = NiτJNfa)
- N(a) and so iVί^) = Nfa) = N(τ2) = N and n = 2. Hence
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) = N(a) = JVifo) N(σm) ^ ΛΓm implies m ^ 2. But m > 1 so
m = 2, JV(<72) = N, and all is proved.

Thus if unique prime factorization fails in Ω, we should have an
element of form a β = y 89 a, β, γ, 8 primes (of identical norm N)
and a not associated with either γ or 8.

14* The ring of formal power series. Let the primes p of N be
listed in any definite order pl9 p29 p39 • ••. Then every integer n may be
written uniquely in the form n = pV-PP * and uniquely described by a
vector (al9a29 •••) with non-negative integral components, finitely many
of which are non-zero, all such vectors being realized as n ranges over
N. Hence a number-theoretic function a — a(n) may be associated with
a definite "formal power series" in a countably infinite number of in-
determinates x19 x29 , having coefficients in the complex field F, by
means of the correspondence

a -> P(a) = Ί<a(ri)x¥>xp

Here, the summation extends over all n = p^pp of N.
This correspondence is clearly one to one on Ω to the set

Fω = F{xl9x2, •••} of all such power series. Moreover, addition is pre-
served, and P(a β) = P(a)P(β), the latter operation being the usual
formal operation on power series involving multiplication and collection
of (finite numbers of) "like terms."

Thus the ring of all number-theoretic functions is isomorphic to the
ring of all formal power series Fω = F{xl9 x2, •••}. We emphasize that
the only restriction on these series is that only a finite number of xi

actually appear (i.e., have a% > 0) in any term. However, infinitely many
Xi may well occur (in terms with non-zero coefficients) in the same series,
so that we have here a more general ring than that discussed by Krull
[3; §4]. Indeed, each series of KrulΓs ring of power series (over F)
corresponds to a number theoretic function zero except on a set of
integers generated by some finite set of primes.

15; Some preliminaries. We deal in the remainder of the paper only
with the power series representation A — A{xu x29 •••} = Σairήxpxp •••
of number-theoretic functions. The domain Fω = F{xlf x2, •••} contains
(in the sense of isomorphism) for every / = 1,2, the domain FL =
F{xu •••,&'/} of power series in / "variables." For the latter domains,
the theorem on unique factorization into primes is known. [3; §4 and
6; §2]. The units of Ft are again the series with non-zero constant
term.

If / is any integer 1,2, ••• and if A — A{xί9x29 •••} is in Fω or
some Fm with m ^ /, we mean by (A)t the series A{xlf ••-, x[9 0, 0, •••}
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obtained from A by deleting all terms of A actually involving any xt

with i > /. Indeed, the mapping A -» (A)t is a ring homomorphism of
Fω or Fm onto FL. One can write A —{A)ί + Af, where the latter series
involves only terms containing at least one xt with i > /, and in this
way one sees that (AB)t = (A)L(B)[U

In reality all series we consider are actually in Fω, but we do not
hesitate to say A{xιy • ••, x[9 0, 0, •••} is " i n i * y Our objective is to
throw the proof of unique factorization in Fω back onto the rings F[9

/ = 1,2, ••-, in which the theorem is known to be true. But first we
have to show that the primes of Fω are all of a special kind.

16. The nature of a prime. If a series A of Fω is neither zero
nor a unit, then there is some minimal L — L(A) for which (A)[ is neither
zero nor a unit of FL, I ̂  L. For A{0, 0, •••} = 0, and since A Φ 0, A
must contain with non-zero coefficient some product xpxp with
(a19 a2, )Φ(0, 0, •)• If in this term #fc is the last variable with α f c>0,
then (A)fc Φ 0. Hence there is a minimal L with (A)z ^ 0, L ^ 1. But
then (A)/ is not zero or a unit for any / ̂  L.

Now if A is not zero or a unit in Fω, and any (A)/ is prime in Flf

where of course / ̂  L = L(A), then (A)m is prime in Fm for all m ^ /,
and also A is prime in F ω . For example, if (A)m = RmSm, where JBW,
Sm are non-units in Fm, then (A)/ = (Am)/ = (Rm)L(Sm)ίf where neither of
the latter factors in Ft are units. For such A, there is a minimal integer
P = P(A) ^ L(A) such that (A)/ is prime in FL for all / ̂  P(A). We say
such primes are finitely prime.

The remaining logical possibility is that for some A, not zero or a
unit, we have (A)t composite in FL for all / Ξ> L(A). We shall show that
such an A is composite in Fω9 and hence the

Principal Lemma: all primes of Fω are finitely prime.

17'. Proof of the principal lemma. Let A be a fixed non-zero
non-unit series in Fω with L = L(A), and suppose that, for every / ̂  L,
(A)/ = ϋ ! ^ where RL and Sz are non-units of FL. We say ^ and St are
true factors of (A)L and JB^ is a true factorization of (A)^ A true factor
of (A)/ is thus a non-unit proper divisor of (A)/ in J^, and so has a
companion of the same kind.

We shall call any chain [RL, RL+1, ••, RM] of true factors of the
corresponding (A)[9 ί = L, , M telescopic if each R^ = J B ^ I , , #/-i, 0)
= (Rj)ι-i. Now observe that any true factorization (A)m = RmSm, m > L
induces a true factorization of (A)?n_1 = ((A)m)m_1 = (#„>)„,-ΛS™)™-! = J B ^ . ^ - I

and so down to (A)ί — RLSL, where the chain of true factors \RL, , i2J
is telescopic. Thus we have from the original assumption on A, the
existence of a sequence
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fCQ =

of telescopic c h a i n s κ% of true f a c t o r s R i j 9 j = 0, 1, •••, i of ( A ) L + j .
We want to prove the existence of an infinite chain of true factors

/c* = [Rf,Rf,R*, •••] which is telescopic throughout. If we could do
so, we should have (A)£+J = RfSf for all j ^ 0. Clearly the chain
[So*, S*, •••] is also telescopic, since (Rf^Sf^) ~ (RfSf)L+j-ι — (Rf^+j^
(Sf)L+j^1 — Rf-^Sfyz+j^. But any infinite telescopic chain defines un-
ambiguously a series of Fω. If R* and S* are the (non-unit) series
defined by the Rf and S'f chains, we must have A = i?*S*, since we
can prove identity of the left and right coefficients of any term by
regarding (A)£+J = RfSf for suitable j . Thus the principal lemma would
be proved.

Since unique factorization holds in Fl9 there are only a finite number
of classes of associates into which the true factors of any {A)ί can fall.
Hence (pigeon-hole principal!) an infinite set of the chains tci have their
first entry equivalent to some one true factor To of (A)L. Choose one
of these and call it ATJ. Of this infinite set, there is an infinite subset
of κ% whose second entry is equivalent to some one true factor Tλ of
(A)£+ι. Choose one and call it κ[. Continuing in this way we are led
to a subsequence of (telescopic) chains

κ'o = [R'OOy • • • ]

κ[ = [ J R J O , R[u •••]

each of which extends at least to the main diagonal, such that the entries
on this diagonal and below have the property that, for each j — 0, 1, 2,
Rlj ~ Tj f o r a l l i^j.

We can now construct the telescopic infinite chain Λ;* working only
with the main diagonal and the diagonal next below it, as follows.
Define Rϊ = Rf

00. Since R[o ~ To ~ R* in F£, there is a unit UL of FL

such that R* = R[0UL - (R'nUL)L. Define Rf = R'nUL in F z + 1 , and note
that Rf is a true factor of (A)£+1, (Rf)£ = i20*, and i2f ^ Γx in FL+1.

To make the process perfectly clear and to avoid a formal induction,
we carry the construction through one more step. Since R'Ά ~ Tλ ~ Rf in
F£+1, there is a unit U£+1 of F£+1 such t h a t Rf = R!21U£+1 = (R!22UL+1)L+1.

Define i2* = Rf

22UL+ι in JPX + 2 and note that i?* is a true factor of (A)£+2,
(Rf)£+ι = -R*, and i22* ~ Γ2 in i^+a. The proof of the lemma is now
clear.
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18. Proof of unique factorization. Suppose unique factorization
into primes fails in Ω = Fω. By § 13, we must have a series of the form
AB — CD where A, B, C, D are primes in Fω and A is not associated
with C or D. Since all primes are of finite type, there exists an integer
P such that, in the equation (AB\ = (A)fβ)L = (C)ί(D)ί = (CD)L, (A)L, (B)ί9

(C)t, (D)ί are primes in Ft for all / ĵ> P. Since factorization in each Fί is
unique, (A)̂  must be associated with either (C)/ or (D)ί in i^ for each
/ ̂  P. Hence there must be an infinite increasing subsequence σ = {m}
of integers m ^ P such that either (A)m ~ (C)m in Fm or (A)m ^ (D)m in
î TO for all me σ. Without loss of generality we may suppose the former
case. Then (A)m = Um(C)m, where Um is a unit of Fm, for each m of σ.
If m < w are any two integers of the sequence σ, Um{C)m — (A)m =
(An)m = (Un)m(Cn)m = (Un)m(C)m, and Un is an extension of Um by terms
each of which involves a variable xi with i > m and so does not occur
in Z7TO. Thus the sequence Um, me σ defines a unit U of Fω, and
A = Z7C, by the same type of argument used in the preceding section
in showing A = R*S*. But then A ~ C in i^ω, which is a contradiction.
Hence factorization into primes exists and is unique in the rings Ω
and Fω, up to order and units.
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ON CONTINUATION OF BOUNDARY VALUES
FOR PARTIAL DIFFERENTIAL OPERATORS

H. 0 . CORDES

Let

(1) L = Σ ai{x)dldxi + b(x)
i = l

be a first order partial differential operator acting on m-component
vector functions and defined in a bounded domain D with smooth
boundary Γ. Suppose the m x m-matrices a^x) are hermitian sym-
metric and continuously differentiable in D + Γ. Further let the m x m-
matrix b(x) be bounded and measurable over D + Γ.

Recently K. 0. Friedrichs [3] has developed a theory of boundary
value problems of the type

(L-a)u=f, xeD
{ } Tu = 0, xeΓ

where a denotes a nonvanishing real constant and T a certain m x m-
matrix defined all over the boundary T and satisfying certain further
conditions. Concurrently the author worked on the same type of bounda-
ry value problem from a different approach extending Friedrich's re-
sults to the case of nonlocal boundary conditions [1].

Study of these extensions showed that investigation of the follow-
ing problem is of basic importance for the author's method:

The question is asked whether a given m-component vector function
φ defined on the boundary Γ can be continued into the domain D to
become a classical solution u of the equation

where / is any arbitrary measurable function defined and squared in-
tegrable over D, which is not given in advance but may be defined
after φ has been fixed.

Obviously this question is trivially answered "yes" if the boundary
and the boundary function are sufficiently smooth. On the other hand
if this is not the case, counter examples can be given. It is trivial to
find counter examples for special nonelliptic systems but one also can
find some for elliptic systems. For instance if the boundary functions
uQ, vQ on the periphery of the unit circle x2 + y2 — 1 are defined by

( 3 ) u0 = a(ΰ) sin #/2, v0 = - a (#) cos #/2, 0 < ϋ- < 2π
Received January 12, 1959. This paper has been prepared under the sponsorship of

the Office of Naval Research, Contract No. Nonr 2-228(09).
987
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and if a(&) is piecewise continuous and has a jump for any #0 Φ 0, 2π,
then it will be shown in § 4 that there does not exist any couple u, v
of real or complex valued functions both being defined and continuously
differentiate in the open unit disk x2 + y2 < 1 and such that

(a) -ux + vy = /, uy + vx = g

both are squared integrable over x2 + y2 < 1;

(b) u, v are uniformly bounded on x2 + y2 < 1 and

(c) lim u(r cos ϋ, r sin ϋ) = uo(ϋ)
r->i

lim v(r cos #, r sin #) = vo(??)
r-*i

almost everywhere on 0 < ϋ < 2π.
Considering this problem more carefully it shows that the essential

reason for this continuation to be impossible is the following:
The above problem can be connected with the differential operator

( 5 ) L = aβ/dx + a2d/dy

with au a2 being the matrices

(6) ax = ( ), α2 = ( ) .v ' V 0 1/ VI 0/

Using this operator notation we can say that the equation

( 7 )

with φ, ψ being two component vector functions has no classical solu-
tion, defined in the unit disk and achieving the boundary values defined
by

(8 ) <p(x, y) = (uΌ(&), vo(&)) x = cos ??, y = sin ϋ

in the sense of the conditions (a), (b), and (c) mentioned above.

If we define

(9 ) A{ϋ) = aλ cos & + a2 sin &

(10) A(ϋ) = α2 cos ϋ - αx sin tf

then

(11) L = A(&)dldr + r-xA(&)dld& .

Hence A(#) is the coefficient of the derivative in the direction
normal to the boundary.

We note that A(ϋ) is a non-singular (even orthogonal) matrix for
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every ΰ . It will follow from our development that this is the reason why a
continuation of discontinuous boundary values becomes impossible. If
for some more general operator L the matrix which corresponds to A(ΰ)
is singular on a point or on a set of points then this set can be allowed
to contain discontinuities of certain types. And conversely it will be
our main result that if φ0 is bounded measurable only at the boundary
and if in addition Aφ0 is Lipschitz continuous then a continuation in the
above sense is possible.

The main result is stated in Theorem 3.1. Essentially we will ob-
tain the continuation by use of the elementary solution of the parabolic
equation

(12) V2u = du/dt .

We shall use this for a kind of mollifier. In §§1 and 2 we prove some
auxiliary results most of which will be known. In order to keep the
paper as self contained as possible most of the facts required have been
proved explicitely.

1. Auxiliary results. In this section we will establish some known
results which have to be used essentially in the following. Let

+ si(i.•1)

and let the

(1

be

(1

•2)

! defined

.3)

function

by

Φ(s;

s2 =

0(β;

ί) =

sl +

t) =

(Aπt)

8\ +

Φ(Sl,

-pβ Q

It is known that this function Φ(s; t) is the elementary solution of
the parabolic equation

(1.4) Ψu = Σ &u\ds\ = du/dt .
ί = l

First we note

LEMMA 1.1.

(1.5) [\s\2ke-\s\2ke-lsl2ds = 2-*7Γ-*'ίp(p + 2)(p + 4) . . . (p + 2k - 2) .

Here the integral extends over the whole (su ••, sp)-space.

The proof of Lemma 1.1 can be obtained by repeated application
of Green's formula.

LEMMA 1.2. Let
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(1.6) /(β)=/(*i , ••-,*,)

be a (scalar) complex valued bounded measurable function defined and

nonnegative for

(1.7) —oo <8j< co, j = 1, •••,# .

Let s0 be any point and let Δ denote the cube

(1.8) | 8 , - β S I < δ , i = l , , p .

Statement. If

(1.9) limδ-*[ f(8)ds = 0
δ—0 J4

then

(1.10) Km ( 0(so - s'; t)f{sf)dsf = 0

the integral in (1.10) being taken over the whole s-space.

Proof. It is obvious that we can restrict ourself to the case s0 = 0.
Now, (1.9) being satisfied, let

(1.11)

and let

(1.12) γ(δ) - δ(δ + β(8))

7(δ) is a strictly monotonically increasing function of δ, and 7(0) = 0.
Hence the inverse function δ — S(j) exists in some right neighborhood
of 7 = 0 and δ(0) = 0. Also

(1.13) y^f(s)ds ^ (δ

< β(S) > 0, δ > 0 .

Hence

(1.14)
γ-*o

Let

(1.15) 7Γ = δ/7 ,

then

(1.16) limτ(7) = oo t
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Let Δ' be the cube \s5\ < γ, j = 1, •••, p. Then by (1.15) Δ can be

writ ten in the form

(1.17) Δ = τΔ'

and (1.14) reads

(1.18) limγ-*[ f(s)ds = 0 .

Now for any given t > 0 set γ = £1/2, then

(1.19) U(s0 - s';
J

C(TJ')

where C(τJ') denotes the complement of the cube τzP with respect to
the whole s-space. But remembering the definition of Φ(s; t) we obtain
for the first integral

(1.20) < (4π)-»'27-A f(s)ds
J J '

and hence for t —• 0, i.e., γ —> 0 the first integral tends to zero by
(1.18). On the other hand f(s) is assumed to be uniformly bounded,
hence the second integral can be estimated by

e-σ2dσV .
)

But by (1.16)

(1.22) π - τ(γ) =

tends to ω at ί -> 0. Therefore the second integral also tends to zero.
This proves the lemma.

LEMMA 1.3. Let Φ(s t) be as defined in (1.3) and let

(1.23) yt(s; ί) = d/dsflis; t) .

Then

(1.24) [dsΦ(s - s'; t)Φ(s - s"; t) = (8πt)-pl2exv (-\sr - s"

(1.25) [dsW^s - s'; ^Ψ^s - s"; t)
l\l - (si - sΓ
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both integrals being taken over the whole (slf • ••, sp)-space.

Proof. We only remark t h a t

(1.26) exp(- |β - s'

= exp (-1 s' - s" \28t) exp (-1 s |2/2£)

where we denote

(1.27) h = s- l/2(β' + s") .

Therefore the integral (1.24) equals to

(1.28) (47r£)-*exp(-|s' - s"|2/8£)fexp ( - | s\2l2t)ds

and clearly

(1.29) fexp(-1 s\2l2t)ds = (2πty2 .

This proves the first formula. For the second formula we note that

(1.30) W^s; t) = -(2t)-1(Aπtyϊ>ι\ exp (-|s|2/4ί) .

Now

(1.31) (st - sί)(β. - si') = 61 - l/4(s{ - sΓ)2 .

Hence the integral (1.25) gets the form

(1.32) (2t)-2(iπt)-p exp (- | s ' - s"|2/8ί)

x |fsexp(-|s |2/2i)ds-l/4(s; - sΓ)

But

(1.33)

If we substitute (1.29) and (1.33) into (1.32) then we get

(1.34) = (ttyψπtyv'Xl - (s{ - sϊYItt) exp ( - |s' - s"|2/8ί)

which completes the proof.

LEMMA 1.4. Let

(1.35) Ω^s; t) = (2ί)"1(4τrί)-p/2 exp (-|s|2/4ί)

(1.36) Ω2(s; t) - |s|2(20-2(4τr£)-p/2 exp ( -

Statement.
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(1.37) [dsΩ^s - s'; ίjβ^β - s"; ί ) Σ (β, - βί)(βt - β'J)
J i=i

= -l/2d/dί((87rί)-^2exp(- |s' - s"|2/8ί))

\dsΩ2(s - s'; t)Ω2(s - s"; ί ) Σ (β, - 8{)(β4 - si')
J i-l

(1.38) = -lβdldtlβπt)-^{(Styes' - s"|4

2)(p + 4)} e x p ( - | s ' - s"|

Proof. We introduce the notation

(1.39) σ = (2ί)-1/2(s - l/2(s' + s")), σ* = (8ί)"1/2(s' - s")

and we observe that

(1.40) Σ (β. - βί)(β4 - βί') = 2ί(| d |2 - I σ* |2) .
ί - 1

Now if we substitute (1.36) and (1.40) into the integral (1.37) this in-
tegral equals

(1.41) (2t)-\SπH)-pl2ex^(- |tf*|2)f(|£|2 - |σ* | 2 )exp(- \σ\2dσ)

= (Sπy^iplU'^ 1 - l/16|s' - s"\H'9lM) exp(- \s' - s"\2βt)

Here for the evaluation of

(1.42)

Lemma 1.1 has been applied. Now (1.41) is equal to the derivative in
(1.37) as can be proved by differentiation. Therefore (1.37) is proved.
For the second integral we get in a similar way the expression

(1.43) (2t)-1(8π2t)'Pl2exι>(- k*Γ)

σ*|2(|ό | 2 - |<τ*|2) exp(~\σ\2)dό .

Here we were using that

(1.44) s - s' = (2tγi2(σ - σ*), s - s" = (2t)ll2(ό + σ*) .

We observe that

(1.45) \σ - σ*\2\σ + σ*|2 = (\σ\2 + |<τ*|2)2 - 4(σσ*)2

and further that

(1.46)
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- Σ j«)2J(^)2(l^l2 - k*|2)exp(

Here we used that

(1.47) J*,MI*la - \σ*\*)exp(-\σ\l)dσ = 0, i Φ k .

Substituting (1.45) and (1.46) into (1.43) we get the expression

(1.48)

+ |σ* | 4 + 2(p - 2)lp\σ\2\σ*\2)(\σ\2 - \σ*\*)e-

Further

(1.49) (I σ |4 + I σ* |4 + 2(p - 2)/p| σ |2| σ* |2)(| £ |2 - | σ * |2)

We substitute this into (1.38) and then use Lemma 1.2 to evaluate the
integral, then this integral equals

(1.50) !π-

2)(p - 4)|<7*|2-l/2(p -

On the other hand by calculating the derivative (1.38) we get the ex-
pression

(1.51) -

- l/8p(p + 2)(p + 4)ί-ί)/2"1} e x p ( - | σ *|2)

exp (—Icr*|2){|cr*|6 + l/2(p - 4)|σ*|4

2)(p - 4)| σ* |2 - l/8p(p + 2)(p + 4)} .

If we substitute (1.50) into (1.49) and then compare the obtained ex-
pression with (1.51) we find that both are equal. Therefore formula
(1.38) is proved.

2. Lemmata about special integral operators. The following lemma
was used earlier by K. 0. Friedrichs [2] It can be considered to be
a translation of a theorem about infinite matrices going back to I.
Schur [6].

LEMMA 2.1. Let

(2.1) X ( 8 ; 8 ' ) = X ( 8 U . . . , β p ; 8 ί , . . . , * ί , • • - , * ; )
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be defined and continuous for s, s' 6 Do, Do being any region of (slf , sp)-
space, and let

(2.2)

(2.3)

Statement.

(2.4)

γ = \X(s;s')\ds'

8 = supί \X(s; s')\ds .

ds\[ X(s, s')u(s')ds' 2 < γ δ f \u(s)\2ds
0 \JDO }DQ

holds for every complex valued measurable function u(s) which is squared
integrable over Do.

Proof. By Schwarz' inequality

ds\\ X(s;s')u(s')ds'2 <\ ds(\ \X(s; s')\ \u(s')\ dsj

( ds\\ \X(8'f8')\d8'\ \X(s;s')\\u(s')\*ds>\

\u(s')\2([ \X(s;s')\ds)dsr <y' \ \u(s')\2ds' .

Now let Φ(s t), Ψi(s t); Ω^s t), Ω2(s;t) be defined as in (1.1), (1.23),
(1.35), and (1.36).

LEMMA 2.2.

(2.5) J [ [ dsdt I [ψ^s - s' t)u{s')ds' * < f \u(s) 12ds

for every u(s) squared integrable over the whole s-space and having

a compact carrier. Here the integral \ dt is taken over the interval

0 < t < 1, the integrals 1 ds and I ds' are considered to be taken over

the whole s-space.

Proof. First of all by Lemma 1.3:

(2.6) J [[ dsdt I [ Ψ^s - s'; t)u(s')ds' *

= lim^o ί f ds'ds"ΰ(si)u(s") Γ dt Σ

= lim^o ί f ds'ds"Ϊ6(i7)^(s") Γ

- s'; - s"; t)

x (p - s" | 2 )exp(- |s' - s"\2/8t) .
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But as we saw in the proof of Lemma 1.4 (formula (1.51)) this integrand
is equal to

(2.7) - \βd\dt {(8πt)~Pl2 exp ( - | s' - s" 12j8t)}

and hence the right hand side equals to

= - 1/2lim [[ds'ds"vffiu(8")
s-o J J

x {(8π)-*12 exp (- \s' - s " | 2 / 8 ) - (8πε)-»12 exp ( - \s' — s" 12/8)}

< 1/2 lim f ds'u(P)[ ds"(8πε)~Pl2 e x p ( - \sf - s"\2l8ε)u(s")
ε-o J J

f ds'\ [ exp ( - |s' - s" \2l8ε)u(s")ds" Ύ*

Here we were using that the kernel exp(— \s' — s"|2/8) is positive de-
finite as can be easily seen by Lemma 1.3. Since

(2.8) ί e x p ( - \sf - s"\2l8ε)ds' - f e x p ( - \sf - s"\2l8ε)ds - (8πεY12

Lemma 2.1 yields

(2.9) (8τrε)-*> [ ds'\ J exp ( - |s f - s"\2/8ε)u(s" ' < f |u(s)\2ds .

This completes the proof of Lemma 2.2.

LEMMA 2.3. Let

(2.10) Ω(s;t) = dldtΦ(s;t)

and let v(s) be Lipschίtz continuous over the whole (sl9 •••, sp)-space and
with compact carrier.

Statement.

(2.11) [[ dsdt [ds'Ω(s - s'; t)v(s) * < p ί ^Idv

Proof. Since Φ(s;t) is a solution of the parabolic equation (1.29)
we get

(9 Ί9λ O(Q t\

and hence by Green's formula
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f ds'Ω{s - 8'\ t)v(s') = Σ ( ψi(s - s ' ;

Vi(8) =

(2.13)

where we denote

(2.14)

Consequently

(2.15) [[dsdt ί ds'Ω(s - s' t)v(s') *

< V φ (( dsdt 1 \ ds'Ψt(s - s'; t)vt(s') 2

< V Σ ( Σ (( dsdt I ί dsf¥k(s - s'; t)vt(s') ')

< ί> Σ
ί

which prove the lemma.
In the following c always denotes a constant not depending on u(s).

LEMMA 2.4.

(2.16) [[ dsdt\[ ds'Ω(s - sf; t)(st - sl)u(s') * < c f \u(s)\2ds

for any arbitrary u(s) with compact carrier and squared integrable over
the s-space.

Proof. Clearly

(2.17) Ω(s;t) = djdtΦ(s;t)

- p/(2t))exp(- |8|»/4ί)

Hence the integral in (2.16) can be estimated by

(2.18) 2 Σ (J dsdt I f ds'ί32(s - s' ί)(β ι - sί)%(s')

+ 2p2 Σ 11 dsdί 11 ds'Ω^s - s' ί)(8t - sθ^(s')

Now this can be written in the form

(2.19) 2Km \ \ dsfdsfeu(^)u(s^

[dt Σ ( dsΩ2(s - s'; t)Ω2(s - s"; t)(st - 8{)(β* - «Γ)

ε->o J J

X

ds'ds"u{s')u{s")
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x [dt Σ (dsΩ^s - s'; i)^(s - s"; t)(sι - s'^ - s'/) .

We apply Lemma 1.4 and this equals

(2.20) - lim f ds^'u^nis")
ε-*o J

x {(fcr^Exde - sT/8) - (β^-^Exds ' - s"|2/8ε)}

x exp(- I s' — s" 12/8ε)

where Bλ{ά) means a certain polynomial in a with constant coefficients
and of degree two, the coefficients only depending on p. By a treat-
ment similar to the last expression of Lemma 2.3 we get the final
statement.

LEMMA 2.5.

(2.21) [[ dsdt I f ds'\ Ω(s - s' ί) | |s - s'\ 1+*u(sf) '

<c(ε)[\u(s)\2ds

for any positive ε and for any arbitrary u(s) with compact carrier and
squared integrable over the whole space, c(ε) being a constant indepen-
dent of u(s).

Proof. Clearly it suffices to prove the corresponding inequality with
Ω(s — s' t) replaced by Ω3(s — s'; t), j = 1, 2. In order to achieve these
estimates we again use the notation (1.49) and estimate as follows:

( 9 99\ I / Z Q I O ^ Q Q''f\\\O(<2 Q " / M Γ I Q Q ' I 2 I Q « " 1 2 1 ( 1 + 0 / 2

(-|s'-s"|2/8ί)5
x {(\σ\2 + \σ*\2Y- 4 ( w * ) 2 } < 1 + ε ) / 2

( - \s' - s"\2l8t)J(s' - s"\2/8t)

where

(2.23) J( I σ* 12) = [ doe-^\{ \ σ \2 + | σ* | 2 ) 2 -

|σ* | 2 + 2 ε f dσ exp ( -

(- \s' - s"|

7 a ( e ) ί - 1 + B ( 8 τ r t ) - * / a [ | β f + s " | 2 / 8 ί ] 1 + s e x p ( - \sf - s"\2/8t) .
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Here Hoelders inequality has been employed. Hence (2.22) can be
estimated as follows:

[ [ dsdt I [ ds'

+ 7i(ε)

Ωλ(s - s' t) \s - s'\ 1+2u(s')

s'ds"ΰ(sF)u(s")(8πt)-pl2exι>(-- \s' - s" |

+ 72(ε) ['dW1 [[ ds'ds"u(s7)u{s")

x (8πt)-pi\\sf - s " | 2 /8ί) 1 + 5 exp(- \s' - sff\2/8t)

< 7(e) ΫdW1 ί \u \2ds = γ(ε)2-1 [\u{s)\2ds .

Here again Lemma 2.1 and Lemma 1.1 were employed. A quite analo-
gous argument is possible for Ω2(s — s' ί); therefore Lemma 2.5 is
proved.

LEMMA 2.6.

(2.25) f f t2dsdt [ Ω(s - s' t)u(s')dsr ' < c J | %(β) 12ds

for arbitrary ^(s) with compact carrier squared integrable over the whole
s-space.

Proof. Again it suffices to prove this inequality for Ω replaced by

Ω2 and Ω2. Now

(2.26) f dsΩ^s - s'; ίjfl^s - β"; ί)

ί dό e x p ( ~ |or|

Hence by Lemma 2.1:

(2.27) (( d8'd8"vW)u(8") \ dsΩ^s - s'; t)Ωλ{s - s"; t)

<(2t)-2[\u(s)\2ds .

Consequently

(2.28) ί ί ί2dsdέ I ί β^s - s' t)u(s')dsf *

<ll4t[\u{s)\2ds .
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Again a similar argument proves the corresponding inequality for Ω2;
therefore Lemma 2.6 is proved.

We finally use the preceding lemmata to establish

LEMMA 2.7. Let

(2.29) A(s;t) = ((aik(s;t)))

be an m x m-matrix with coefficients aik(s t) having uniformly Hoelder
continuous and uniformly bounded first partial derivatives in the
domain

(2.30) D o = {8l9 , 8 p \ t 9 - C X D < S ] ύ < + ™ , k = l , . . , p ; 0 < t < 1 } .

L e t

( 2 . 3 1 ) tt(«)

be an m-component vector function having a compact carrier and being
squared integrable over the whole (s19 •••, sp)-space. Let the vector
function

(2.32) A(8

be Lipschitz continuous over the whole (slf ••-, sp)-space.

Statement. There exist two constants cl9 c2 which are independent
of u(s) such that

(2.33) (f dsdt A(s ί) ί ds'Ω(s - s'; t)u{sf) *

< d [\u(s)\2ds + c 2 φ [\dvldst\
2ds .

Proof. We decompose as follows:

(2.34) A(s ί) ί ds'Ω(s - sf t)u(sr) = f fl(β - βf ί)v(βθd8f

+ (A(s; ί) - A(s; 0)) f Ω(s - s'; t)u{sf)dsr

+ Σ ( Ω(s - 8'; ί)(84 - sίK(s')cίs'
i-i J

+ jfl(8-s';ί)[Λ(8;0)-Λ(8';0)

~ Σ (8, - 8{

where
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(2.35) v(s) = A(s; O)u(s), u^s) = [dldSi(A(s; 0))]u(s) .

By our assumption for A(s; t) we get

(2.36) I{A(s t) - A(s 0))w\ < ct\w\

and

(2.37) I [A(s 0) - A(s' 0) - Σ (β, - s't)dldSi(A(s' 0))Ms') |
i i

<c\s - s ' | 1

Therefore we can use the Lemmata 2.3, 2.4, 2.5, and 2.6 respectively
to estimate the integrals in (2.33) for the succeeding terms in (2.34) by

either c \ \u(s)\2 ds or \\dvldSi\2ds. Hence Lemma 2.7 is proved.

LEMMA 2.8. Let u(s) be a bounded measurable m-component vector
function defined in the whole s-space and let it have a compact carrier.
Further, with the notations of Lemma 2.7, let

(2.38) v(s) = A(s;0)u(s)

be Lipschitz continuous over the whole s-space.
Let

(2.39) u(s; t) =[φ(g- s'; t)u(s')ds' .

Then

(2.40) \im u(s; t) — u(s) almost everywhere

and

(2.41) v(s) t) = A(s; t)u(s; t)

is continuous all over in the domain Do defined in (2.30) and its boundary.

Proof. Let ε > 0 be given. Since u(s) is bounded and measurable,
by Lusin's theorem a measurable set Ez of p-dimensional measure m(Es)
less than ε exists such that u(s) is continuous on the complement C(E£)
of E, with respect to the s-space. If χ(s) denotes the characteristic
function of Es and if Δ denotes the cube with sides 2δ defined in (1.8),
then by well known facts

r

o(2.42) limδ-» \ χ{s)ds =

for every s0 e C(E2 + JV8) where ΛΓε denotes a certain nullset. We will
show that for every s0 6 C(EZ + EΈ) relation (2.40) holds. This will
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prove the first statement of the lemma, because then obviously it is
possible to construct a monotonically decreasing sequence of sets which
converges toward a nullset and such that after exempting any set of
the sequence the statement (2.40) holds.

Now, s0 e C(NS + Ez) being given, decompose as follows:

[
JO(JQ)

(2.43) (Φ(s0 - s' t)u(s')ds' =\ +\ +[
J JCCES)ΠJQ J ESΓ\JQ JO

where Δo denotes the cube (1.8) with side δ = δ0. Then

(2.44) ( =μA Φ(so-s';t)ds'
J O(ES)ΠJQ JOCE~)ΠJQ

where μA(j denotes a mean value of u(s) in the cube z/0.

But since u is continuous in C(ES) Π Δ it follows that

(2.45) \μjQ — u(sQ)\ < ε'

if δ0 > 0 is sufficiently small. Also

(2.46) ί Φ(s0 - s'; t)ds' < ί Φ(s0 - s'; t)ds' - 1 .

Consequently, using (2.44) and (2.46) we get

(2.47) I ( Φ(s0 - s'; t)u{s')dsr - u(s0)
I JC(ES)ΠJO

<\μjQ — u(s0)\ + c\ Φ(s0 — sr t)χ(s')ds'

+ c[ Φ(8-s';t)ds'
J C(J0)

with c = sup|^(s) | . Finally for the second and third integral in (2.43)
we obtain estimates

(2.48)

and

(2.49)

<c [ Φ(s - s'; t)χ(s')ds'

Φ(s - s' t)ds' .

Hence by (2.43), (2.47), (2.48), and (2.49)

(2.50) [φ(s - s'; t)u(s')ds' - u(s0)

;\μJβ- u(s0) I 2e\ Φ(s - s'; t)χ(s')ds'

\
J

+ 2c \ Φ(s - s'; ί) ds' .
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Choosing first δ0 sufficiently small the first term can be made arbi-
trarily small; then keeping δ0 fixed by Lemma 1.2 and (2.42) the second
term also can be made arbitraily small by choosing t small. Also the
last term for fixed δ0 becomes arbitrarily small if t tends to zero.
Hence formula (2.40) is proved.

In order to prove the continuity of (2.41) we decompose

(2.51) v(s; t) = [φ(s - 8'; t)v(s')ds'

+ [φ(s - s'; t) (A(s; t) - A(s'; 0))u(s') dsf .

Since v(s) is assumed to be Lipschitz continuous, the first term obuiously
is a continuous function in Do. The second term is also continuous for
every t > 0. But since u(s) is assumed to be bounded we get

(2.52) [φ(s - sf; t)(A(s; t) - A(s'; 0))u(s')ds'

< ct [φ(s - s'; t) dsr + cf [φ(s - s'; t) \ s - s ' | ds'

= c"t + c'l t112 > 0, t > 0 .

Therefore the continuity is also proved for t = 0. This proves the
lemma.

3 A continuation theorem. Let D be a bounded domain of the
(xlf , $w)-space with a twice continuously differentiable boundary Γ
which consits of a finite number of simple nonintersecting hyper surfaces.
More specifically we assume that the boundary Γ has second derivatives
satisfying a uniform Hoelder condition. Let

(3.1) α4(«0 - (((^(α))), i - 1, , n, b(x) = ((bίk(x)))

be m x m-matrices with complex coefficients defined in D + Γ. Let
at(x) be hermitian symmetric and its coefficients be continuously differen-
tiable in D + Γ and let the derivatives satisfy a uniform Hoelder condi-
tion in D + Γ. Let b(x) have continuous coefficients in D + Γ'. Let
A(x), xe D + Γ be any hermitian symmetric m x m-matrix having con-
tinuously differentiable coefficients in D + Γ and such that

(3.2) A(x) = Σ at(x) vt(x), x e Γ
ί = l

where v{x) — (yγ{x), •••, vn(x)) denotes the exterior normal on Γ. We
define the differential operator Lx in ®Zχ by

(3.3) Lλu = Σ ai(x)duldxt + b(x)u(x)
1 1
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for complex valued m-component vector functions

(3.4) u(x) = (uλ{x)y , un(x))

where ®£ l is the space of all u(x) satisfying the following conditions:
( a ) u, du/dXi, i = 1, •••, n, continuous in D.
(b) u(x) uniformly bounded in D.
(c ) lims^0 u(x — εv) = u(x) for every xe Γ, except possibily on an

n-1-dimensional null set.
(d) v(x) — A(x) u(x) is continuous on D + Γ

(e) \ I Lγu |2 dx < oo.
ID

We prove the following

THEOREM 3.1. Let uo(x) be an m-component vector function which
is defined measurable and bounded on Γ and for which

(3.5) vo(x) = A(x)uo(x)

is Lipschitz continuous on Γ.
Then there exists a function u(x) e ®Z i such that

(3.6) u(x) = uo(x) on Γ .

Proof. We consider any arbitray point x0 e Γ. There is a certain
neighborhood

(3.7) Uxo={x3\x-x0\<ε}

which can be mapped by a twice Hoelder continuously differentiable one
to one mapping

(3.8) y = y(x)

onto a bounded region in the (y19 •••, i/w)-space in such a way t h a t the
point x0 goes into the origin y = (0, •••, 0), the intersection

(3.9) Γ , = Γ o Π t ^

into a certain neighborhood of (0, •••, 0) on t h e hyperplane yx — 0, and
the intersection

(3.10) DXQ = (D + Γ)n UXQ

into a certain half neighborhood of (0, * ,0) satisfying yλ > 0. We
also can assume that the Jacobian does not vanish.

(3.11) det ((dyjdx,)) Φ 0, y e DXQ + ΓXQ.
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The image y{Dx) of DXQ under this transformation contains a cube of
the type

(3.12) &XQ = {y 6 0 < Vl < η(x0), \yv\< lβη{xQ), v = 2, . . . , n] .

We denote the intersection of dXQ with the hyperplane yλ = 0 by qXo and
we set

(3.13) x(£lXQ) = O i o , x(qXQ) = q i 0

where x — x(y) denotes the inverse transformation of (3.8). There is
a hypersphere

(3.14)

such that

(3.15)

U f {X 3

= D

\x

x0 1

- X o \ <

ΊU'Xΰ<z

and such that the same inclusion still holds for η'(x0) being replaced by
a somewhat larger number.

This construction can be employed for every x0 e Γ. Since Γ is a
bounded closed set, the whole Γ can be covered by the interior points
of a finite number of spheres

(3.16) U^ v = l , . . . , t f .

There is a decomposition of the identity, i. e., a set of JV functions

(3.17) φv(x), v = l, . . . , i V

being defined and infinitely differentiable in the whole (xl9 , sθ-space
and such that

(3.18) φv(x) - 0 outside of UXv

and

(3.19) Σ^v(») = 1 on Γ .
V - l

Now any vector function uQ(x) being given which satisfies the conditions
of the Theorem 3.1, define

(3.20) uv,0(x) = uo(x)φ,(x), xeΓ, v = 1, , JV .

Clearly uVtQ(x) also satisfies the assumptions of Theorem 3.1, especially
because

(3.21) A(x)u,i0(x) = (A(x)uQ(x))φ,(x) .

We will prove that every uVt0(x) can be continued to a function u^(x) e 2)Zl
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in the sense of the assertion. This obviously will prove Theorem 3.1,
because the sum of all uv(x) will be the desired continuation of uo(x).

Now, if we apply the mapping just defined in each particular
neighborhood DXv then the vector function uVΛ){x) will be transformed
into a certain function

(3.22) wVίQ(y) = Uyt0(x(y))

defined and measurable on y(ΓXy) which contains the cube qXv. Since by
definition uVtQ(x) — 0 outside of D'Xv and since

(3.23) y(iyj c QXv

holds, the function wV)Q(y) is defined for y e c\Xv and has its carrier in
the interior of this π-1-dimensional cube. We can consider wVt0(y) as
being defined on the whole hyperplane y1 — 0 by setting it equal to zero
outside of qXv. We would like to apply the various lemmata of §2. In
order to do this we first transform the operator L1 to the new variables y.

(3.24) A = Σ 5,(2/)©/%, + b(y) ,y e y(DzJ

where

(3.25) α<(2/) - Σ dyildxhak(x(y)); b(y) - b(x(y)) .

Further we define

(3.26) A(y) = A(x(y)), yey(DXv),

Clearly it is possible to continue the matrix A(y) to a matrix function
being defined, bounded and continuously differentiable on the whole
semispace

(3.27) yλ > 0 , - O D < yv < + co, v = 2, •••, n

its first derivatives satisfying a uniform Hoelder condition in every
compact subregion. Now we remark that for

(3.28) yx = t, y2 = sly y3 = s2, , yn = sp; p = n — l

the functions wy>0(y) and A(y) satisfy every assumption necessary for
application of Lemma 2.2, Lemma 2.7, and Lemma 2.8. Hence the
function

(3.29) wv(y) = JΦ(S - s ' ; y1)wv^{sl) ds'

satisfies the following conditions:
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(a) wv, dwvldy,L continuous for yx > 0.
(β) wv uniformly bounded for y1>0.
(7 ) lim^o wv(y — εz) exists for every y with yx — 0 and every vector

zλ — 1, Zj — 0, j1 = 2, , n with the possible exemption of a
set of w-1-dimensional measure zero which is contained in qXv.

( δ) vv{y) — A(y)wv{y) is continuous for y1 > 0.

( β )

(3.30) ( (I Wv(i/) |2 + I A(y)dwvldyi |2 + ± | 0wv/0y{ |2U?/ < « .

Finally take any infinitely differentiate function 7pv{y) being = 1 on
y(D'Xv) and having its carrier in y{DXv) and take

(3.31) w,(y) = φ,(vMv)

Clearly wv(y) also has the properties (α), « ,(ε). Transform this func-
tion back to the old variables and continue it zero outside of Dx^(x).
Call the new function uv(x). Then it is clear that

(3.32) uv(x) = uVi0(x) on Γ .

Also uv(x) satisfies the conditions (α), (6), (c), and (d). Since

(3.33) I L,uv |
2 < c\\ A(y)duvldy11

2 + Σ | du./dy, \2+\u, | 2 Ί

(3.30) yields the condition (β) too. Hence v̂(α?) is the desired continua-
tion and Theorem 3.1 is proved.

4 A counterexample* Let D be the unit circle x\ + x\ < 1 and
accordingly Γ be the periphery of the unit circle x\ + x\ — 1. In D we
consider the operator defined in formula (5) of the introduction

(4.1) Lλ = a1djdx1 + a2d/dx2

with

(4.2) α, = ( " J 5 ) , «, = («

Then the equation

(4.3) A % = /

for the 2-component vector functions

(4.4) u= {uu u2}, / = {/lf/a}

defined in ΰ + Γ is equivalent to the system
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(4.5) -dujdx1 + du2/dx2 = fx

dujdx2 + du2/dx1 = f2 .

Hence for real valued ult u2 we get

(4.6) [ (fl + fl) dx = f (dujdx, - dujdx2)
2 + (Θujdx, + du./dx,)2 dx

= \ [(θujdxj* + (dujdx,)2 + (dUoldXif + (dujdx,)2] dx
)D

+ 2\ (dujdx2du2/dx1 — dujdxβujdxz) dx .

Now, assuming u twice continuously differentiable in D + Γ we can
apply Green's formula to the last integral:

(4.7) \ (du1/dx,du2ldx1 — dujdxfiujdxz) dx

— I u1(x2du2ldx1 — x1du2ldu2ldx2) dσ .

Hence the last integral in (4.6) is equal to

(4.8) 2ί %ix2du2\dxx - xβUo/dXo) dσ = - 2Ϋ*uβujdd dϋ
J Γ Jo

where

(4.9) ΰ — arc tg xjxι .

Now we impose on u the condition

(4.10) ux sin #/2 + u2 cos ι?/2 = 0 .

Then

(4.11) -
Jo

do1 = Iβ^ul sin-2 <?/2 dt? .
Jo

This integration by parts is legitimate because the condition (4.10) implies
u2 = 0 at t? = 0, 2ττ. Since % is supposed to have continuous first
derivatives it follows that ul sin~2<?/2 remains bounded also for ΰ = 0, 2π.
Consequently

(4.12) [ \ L λ u \ 2 d x = [ \ f \ 2 d x

= \ [(dujdx,)2 + (dujdx,)2 + (dujdx,)2 + (dujdx,)2] dx

Since the last integral is nonnegative we obtain
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(4.13) ( I L{Λ |2 dx > [ [(dujdxtf + (dujdxtf
JD JD

+ (dujdxj2 + (du2ldx2)
2] dx .

Next assume φ = {φlf φ2} to be some function satisfying the conditions
(a), (b), (c), and (e), of Theorem 3.1 applied to the special operator Lλ

defined in (4.1). Also assume that on the boundary Γ\

(4.14) φx = a(β) cos #/2, φ2 = - a(β) sin #/2, 0 < ϋ- < 2π .

Let a(β) be real valued and piece wise continuous but not continuous.
Then we will show that this leads to a contradiction.

First of all the vector function φ can be assumed to be real valued
in D + Γ because any complex valued such ψ being given, \β{φ + ψ)
would satisfy the same conditions as φ and would be real valued.

Now, if L_ in ®z_ denotes the restriction of the operator Lλ in ®Zi

to the space ®z_ of all functions twice continuously differentiable in
D + Γ and satisfying the boundary conditions (4.10) then we obtain a
dissipative operator in the sense of R. S. Phillips [4], which is characterized
by local boundary conditions. For the matrix

2

(4.15) A = Σ aivi — aλ cos ϋ + a2 sin ϋ

we get the representation

/ - cos i? sin #\ /sin2 #/2, sin ϋ-β cos ϋβ\
(4.16) A(ϋ) = ( ) = ( )
v v V sin i? cos i?/ Vsin #/2 cos #/2, cos2^/2/

/cos2 */2, - sin #/2 cos ??/2\

"~ V-sin d-β cos */2, sin2 ?9/2/

and it is easy to see that the two matrices of this last decomposition
are identical with the matrices Po and No respectively which project
orthogonally onto the spaces of all eigenvectors corresponding to the
eigenvalues + 1 and —1 respectively. The boundary condition

(4.17) Pou = 0 on Γ

obviously is equivalent to the condition (4.10). Hence the inner product
uAu is <0 for all u satisfying the condition (4.17) (or (4.10)). Hence

(4.18) Q(u, u) = 2Re\ uL.udx = f uAudσ < 0 ,
JD JΓ

which proves that L_ in ®z_ is dissipative. On the other hand in the
sense of K. O. Kriedrichs [3] this boundary condition is "admissible",
because
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(4.19) A = Po - N09 Po > 0, No > 0 .

Also the rank of A is constantly equal to two.

Hence if L ί in ®£* denotes the adjoint of L_ in ®x_ with respect

to the inner product

(4.20) <u, v> = j uv dx
D

and if L+ in ® z + denotes the operator analogous to L_ in ®z_ with the

boundary condition (4.17) replaced by Nou — 0, # e F , then

(4.21) Lϊ* = L* .

But >̂ is a function of LJ because from the conditions (a), (b), (c) and
(e) it follows immediately that

(4.22) <cp, Lu> + <Jjψ, u) = \ ψAu dσ = 0

for all w e ® z . Hence (4.21) implies

(4.23) 99 6 ® z * * .

Therefore a sequence £>w e ^L_ exists such that

(4.24) ζcpn — φ, φn — φy > 0, ^ > oo

(4.25) <L X (^ - φ), Liφ" - <p)>—-> 0, n

Now (4.25) implies

(4.26) (L.iφ71 - φm), Lλ{φn - ^>m)> > 0, n, m > oo .

Let

(4.27) φw > m = φn — ^>m

then (4.13) yields

(4.28) <dφnmjdxu dφnmldx,y + ζdφnmldx2, dφnmldx2> > 0fn,m-+ oo .

Hence dφnjdxlf dφnjdx2 converges in the square mean. Let

(4.29) dφn/dx1 > ψ, n > oo ,

and let u be any vector function continuously differentiate in D + Γ
and vanishing outside of some circle | x \ < r < 1. Then

(4.30) <dφnldxlf u>=- < y

For n —• co we get
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(4.31) <9?, u) = — <(p, dujdx.y .

But <p is continuously differentiate for | x | < 1. Hence, using the
special properties of u, we get

(4.32) ζψ, U> = - <^, dujdx.y =

Or

(4.33) <ψ - g^/S^, w> = 0

for all u with the above properties. But the set of all such u is dense
in the space L2; hence

(4.34) ψ

In the same manner we obtain the relation

(4.35) dφnjdx2

Hence the derivatives dφ/dxlf dφ/dx2 are squared integrable and the
Dirichlet-integral of φ exists.

But it is a well known fact that a function φ with the properties
(a), (b), (c) which is piece wise continuous on the periphery of the unit
circle and has a jump, cannot have the Dirichlet integral existing.
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^-PARAMETER FAMILIES AND BEST APPROXIMATION

PHILIP C. CURTIS, JR.

l Introduction* Let f(x) be a real valued continuous function
defined on a closed finite interval and let F be a class of approximating
functions for /. Suppose there exists a function g0 e F such that
| | / - <70|| = inf geF \\f-g\\ where | | / | | = sup xe[α>6]|/(&)!• The problem
of characterizing g0 and giving conditions that it be unique is classical
and has received attention from many authors. The well-known results
for polynomials were generalized by Bernstein [2] to " Chebyshev"
systems. Later Motzkin [10] and Tornheim [15] further extended these
theorems to not necessarily linear families of continuous functions. The
only essential requirement was that to any ^-points in the plane with
distinct abscissae lying in a finite interval [α, 6], there should be a uni-
que function in the class F passing through the given points. Such
a system F is called an ^-parameter family. Constructive methods for
determining the function from F of best approximation to /, due to
Remes [14] in the polynomial case, were extended to the above situation
by Novodvorskii and Pinsker [13]. In this paper and in the paper of
Motzkin two apparently additional requirements were placed on the
system F. One, a continuity condition, was shown by Tornheim to fol-
low from the axioms of F. The other, a condition on the multiplicity
of the roots oί f — g,f, g e F, also follows from the definitions as will
be shown in § 2. In § 3 the characterization of g0 is discussed. Methods
for constructing g0 are given in § 4. These are based on the maximiza-
tion of a certain function of n + 1 variables. In § 5 it is shown that
an ^-parameter familiy has a unique function of best approximation to
an arbitrary continuous function in the LPtN norm if and only if F is
the translate of a linear ^-parameter family. The problem of the ex-
istence of ^-parameter families on general compact spaces S is discussed
in § 6. Under additional hypotheses on F it is shown that S must be
homeomorphic to a subset of the circumference of the unit circle. If n
is even this subset must be proper.

2Φ ^-parameter families functions* Following Tornheim we define,
for a fixed integer n > 1, an n-parameter family of functions F to be
a class of real valued continuous functions on the finite interval [α, 6]
such that for any real numbers
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there exists a unique feF such that /(#*) — yi i — 1, , n. For con-
venience we will usually take [α, 6] to be the interval [0,1]. We will
include the possibility that 0 and 1 are identified. Then of course xx Φ xn,
and the functions of F are periodic of period 1. We call such a family
a periodic ti-parameter family. If we wish to consider specifically the
case when 0 and 1 are not identified, we will refer to F as an ordinary
^-parameter family. If F is a linear vector space of functions then we
will call F a linear ^-parameter family (e.g., polynomials of degree <
n — 1). The following continuity theorem of Tornheim [15] is a generali-
zation of a result of Beckenbach [1] for n = 2.

THEOREM 1. Let F be an n-parameter family on [0,1]. For

k = 1,2,--.,let x?\---,x<*\y[*\"-,y<nk},0^xίk>< ••• < xίk) < 1

be given sequences of real numbers and let fk be the unique function
from F such that

Suppose for each

i, lirnα^*0 = xu \imy{k) = yi and 0 < xx < < xn < 1 -1

Let f be the unique function from Fsuch that f(xt) = yt i = 1, •••, n.
Then linifc^/fc = / uniformly on [0,1],

Proof. If 0 and 1 are not identified the proof is given in [15].
Therefore, let 0 and 1 be identified and the functions of F be periodic.
Suppose fk does not tend uniformly to / . For some ε > 0, there exists
a sequence {uk} c [0,1] such that for each fc, \f{uk) — fh{uk)\ > ε. Since
a subsequence of {uk} converges, we may assume {u^} does and let
u = limu-ooM*. By a suitable rotation of [0,1] we may assume u, x^ yXn
all lie in the interior of an interval [a, b], 0 < a < b < 1. But F forms
an ordinary %-parameter family on [α, 6] and hence fk - > / uniformly on
[α, 6] which is a contradiction. This completes the proof.

We now verify that w-parameter families are unisolvent in the sense
of Motzkin [10]. Let f,geF and let x be an interior point of [0,1].
If x is a zero of / — g and if / — g does not change sign in a suitably
small neighborhood about x then we will say the zero x has multiplicity
2, otherwise we say x has multiplicity 1. If 0 and 1 are not identified
and either is a zero of / — g, then the multiplicity is taken to be 1.
We shall denote the sum of the multiplicities of the zeros of / — g
within an interval [α, b] by mα,6(/, g). The following generalized con-

1 If 0,1 are identified we assume x^ < 1 and xn < 1,
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vexity notion is also useful. A continuous function h will be said to be
convex to F if h intersects no function of F at more than n points.
The following result extends Theorems 2 and 3 of [15].

THEOREM 2. Let F be an n-parameter family on [0, 1] and let h
be convex to F. Then for any f,geF, mO)1(/, h) <n and m o l (/ , g) < n — 1.

Proof, We assume first that 0 and 1 are not identified and that F
is an ordinary ^-parameter family. We verify the first statement by
induction on n. For n — 1 the result follows by [15] Theorem 2. Hence,
let h be a continuous function convex to a k + 1 parameter family F
and assume the conclusion holds for all k-parameter families. For feF
let xt, i — 1, •••, m, be the zeros of / — h ordered from left to right
and assume mOtl(f, h) > k + 1. Choose a point u such that xx < u < x2.
If Fλ — {g^F\g(x^) — /φ?i)}, then F± is a /c-parameter family on [u, 1].
feFx and h is convex to Fx. By our inductive assumption mUtl(f,h) <
k. Therefore xx must be a zero of / — h, and mOtl (/, h) = k + 2. By
the same reasoning we may assume xm is a double zero of / — h.

We now construct a set E oΐ k points from [0,1] in the following
manner. First choose an ε > 0 such that xt + 2ε < xi+1 — 2ε, i = 1, ,
m — 1. If x is a single zero of / — h then let x belong to E. If x is
a double zero of / — h> x Φ x19 xm let x + e, and x — ε belong to E.
We add the points x1 + ε, xm — ε. Since mXL+SίXm-s(f, h) = k — 2 it
is clear that E contains exactly k points. Choose a point x', xx + ε <
%' < oo2 — ε. Let /Λ be the unique function in F such that

fn(x) - /(a), a? e E

+

Now fn—f has & zeros which must all be simple by [15] Theorem 3.
Within the interval [xlf xm] fn — h has exactly k simple zeros since
fn was chosen so that at the points xt ± 2e, i = 2, , m — 1, xx + 2ε,
xm — 2ε, / lies between fn and /̂ . Hence for 0 < x < xλ and α?TO < a? < 1, /„
and h are on the same side of / (i.e., sgn [fn(x) —/(a?)] = sgn [̂ (a;) —f(x)~\.
But by Theorem 1, /„ tends uniformly to / a s n-> oo. Hence for n
sufficiently large fn — h must have at least & + 2 zeros which is a con-
tradiction.

The case when 0 and 1 are identified and F is periodic causes no
difficulty. For if xlf , xm are the zeros of f — h, using a suitable
rotation we may assume that there is an interval [α, 6], such that
0 < α < a ? ! < < ί c T O < 6 < l . F i s a n ordinary ^-parameter family on
[a, b] and mOtl(f, h) = matb(f, h) < n.
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The verification of the second assertion is very similar to the above,
and we leave the details to the reader.

COROLLARY. There are no periodic n-parameter families when n is
an even integer.

Proof. Suppose false. Let F be a periodic n-parameter family and
n an even integer. Let feF and choose x% i = 1, , n such that 0 <
%ι < %2 < < %n < l Choose g e T such that g(Xi) = /(#*) i = 1, ,
n — 1, g(xn) = f(xn) + 1. By Theorem 2, / — g changes sign at each of
the points xif i = 1, w —- 1; and since f — g can have no other zeros
within [0, 1], flf(l) >/(l). On the other hand g(0)< f(0) which is a
contradiction, since /, g are periodic of period 1.

3 Best approximation in the L^ norm. If g is continuous on
[0,1], gφF, then {g — /} forms a new n-parameter family. Hence
without loss of generality we may consider the characterization and con-
struction of the function feF such that

We first adopt the following notation. If S c [0,1]

Ss = mffeFs\iptes\f(t)\.

Let T denote the class of vectors u = (ulf •••, un+1) satisfying the con-
dition that 0 < ux < u2 < un+1 < 1. The statements and proofs of the
results of this section are valid when F consists of continuous periodic
functions on [0,1]. We shall assume, however, that F is an ordinary
n-parameter family and leave the details in the periodic case to the
reader.

The following two lemmas are appropriate generalizations of results
of de la Vallee Poussin [6] for polynomials. Where possible we refer
the reader to [13] for proofs.

LEMMA 1. For any u = (ulf , un+1) e T there exists a unique feF
and unique real number λ such that f{ut) = (— l)*λ ΐ = 1, * , n + l .
Moreover \ λ | = Su and f is the only function in F with the property
that max 4 . 1 , . . . , »+ 1 | / (w i ) l = δ u . In addition suppose for k = 1, 2, ••• that

uw = ( M w . . . f u ^ € τ and fk ( W ? >) = ( _ i ) * λ w .

Then if u(k) -> u and ue T, it follows that fk-+f uniformly on [0,1]
and λ<*° -> λ.
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LEMMA 2. Let ueT and a sequence of non-negative numbers Xt

i = 1, •• ,n + 1 be given. If there exists an fe F such that

then either min Xt < 8U < max Xι or λ4 = δM ί = 1, , n + 1.

Proof. Lemma 2 is a restatement of Lemma 1 of [13]. Everything
in Lemma 1 except the facts that | λ | = 8U and the function / satisfying
max<B,lf...iW+11/(^)1 = δM is unique is proved explicitly in [13]. To prove
the latter statements observe that if there is a geF satisfying |^(^ί) |<
| λ | then f(ut) — g(ut) = (— 1)% i = 1, •••, n + 1 where either λf > 0,
i — 1, 2, , n + 1 or λέ < 0 i = 1, 2, , n + 1. In either case by [12],
Lemma 1, / — g must have at least n zeros between ux and ̂ w + 1 counting
multiplicity which is a contradiction.

For ue T we will usually denote the function / of Lemma 1 by fu.
Next we define a function 8(ulf , un+1) of % + 1 variables.

δ(n) = 8(uly , wn+1) = Su if w = (%!, -, un+1) 6 Γ

= 0 otherwise .

If we restrict the points ut to lie in some subset S c [0,1], then
8(ulf , un+1) will be denoted δ ^ ^ , , un+1).

LEMMA 3. δ(ulf •• ,^ w + 1 ) is continuous on Rn+1

Proof. Assume that 8(uly •• ,un+1) is not continuous at some point
u — (uly , un+1). We may assume 0 < uγ < u2 < < un+1 < 1, and by
Lemma 1 we may assume that m(<ri) of the points ut are distinct.
Consequently 8(uu •••, un+1) = 0. Suppose there exists an ε > 0 and
a sequence {uk} c T such that uk-> u and 8U > ε. Let u^ be the ίth
coordinate of uk. Choose n points u'i9 0 < u\ < < ur

n < 1 such that
m of the points u\ coincide with the m distinct points u%. Let fQ be
the unique function in F such that fύ{u[) — 0. Choose η such that for
any i \u[ — ut\ < η implies \fo(uo)\ < ε/2. Choose k so large that all co-
ordinates of Mfc are within η neighborhoods of some coordinate of u'.
Then fU}c(τ4k)) - f,{u\k)) = ( - 1)% where sgn λf} = sgnλffi i = 1, ,w.
As in the proof of Lemma 1 it follows that fu — f0 must have at least
n zeros within [0,1] which is a contradiction.

Using the function δ(^, , un+1) one can give a simple proof of the
Theorem of Motzkin and Tornheim characterizing the function / which
has minimum deviation from zero.

THEOREM 3. There exists a unique feF such that \\f \\ — inf feF \\ f \\.

f is uniquely characterized by the fact that for some u — (uu , un+1) e T
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11/II = δw. u will have this property if and only if 8(u19 , un+1) is an

absolute maximum, and then f — fu.

Proof. Since S(u19

 Λ ,un+1) is a continuous function on a compact
set, its maximum is attained for some u = (u19 , un+1) e T. Assert
II/„![ = 8U. If H/JI > δu, then there is a point x' in [0,1] for which
\fu(xf)\ = | | / M | | . We form a new vector u'eT by replacing one co-
ordinate ui of iί by xr in the following way. If ut < xr < ui+1 i = 1, , w
and sgn /u(%) = sgn/M(#') then let u) = %, i =£ ί, and ^ = x\ If
s g n / J ^ ) = (— 1) sgnfu(xr) let u) — u5 j Φ i + 1 and wj+1 = a?'. If xf <
uλ{x' > un+1) and agn fjuj = sgn/„(&') (sgn/M(%n+1) = sgn/„(» ' )) l e t ^ί = % J
j Φl(j Φn + 1) and %J = a?f « + 1 = a?'). If sgn/ω(^) = ( - 1) sgn/„(»')
(sgn/M(^w+1) = ( - 1) sgn/„(&')) then let u[ = a?f, ̂  = u^j = 2, , w + 1
(%j = MJ+1, j = 1, . . . , n, u'n+1 = α?') Now either /M(u ) = (— If λ4 i = 1, ,
n + l o r / M (^) = ( - l)i+% i = 1, - . . ,% + 1 where λ, = 8α or λ4 = HΛll.
Therefore by Lemma 2, 8U < δω, < | | / M | | which contradicts the maximali-
ty of 8U.

It now follows immediately that | | / M | | = inf / e jp| |/ll and that fu is
the only such function with this property. For if fQ e F and | | / 0 1 | < \\fu\\
then H/oll < δ β which contradicts Lemma 1. Moreover the same argu-
ment shows that if there exists an f0e F and a, veT such that | | / 0 1 | = δv

then H/oll = inf /€JP | |/ | |. It is clear that δ(vlf •• ,ΐ>Λ+i) must be an ab-
solute maximum.

In the above theorem if | | / | | is replaced by \\f\\s = sup t€sl/(*) I
where S is any closed set of [0,1] containing at least n + 1 points, then
the same conclusions hold. Here of course, the function S(ult •• fun+1)
is replaced by Ss(ulf , un+1) and the points uh are assumed to be in S.
The following generalization of [11] Theorem 7.1 is therefore relevant.

THEOREM 4. Let Sk, S be closed sets of [0,1] such that for each
h, Sk9 contains at least n + 1 points; S contains infinitely many points,
and SK C S. Let fk9f0 be functions from F which minimize \\f\\s, 11/ IU
respectively. If for each ε > 0 there exists an integer k0 such that for

k > k0 each point ue S is at a distance less than ε from some point of

Sk, than fk -+fQ uniformly on [0,1].

Proof. We assume Ss > 0. S f c c S implies Ss < Ss. Choose u =
(u19 , un+1) eT,UiGS such that δs(uly , un+1) is an absolute maximum.
Let uk — (u[h), , uffii) e Γ, uf] e Sk be chosen such that uk -± u. By
Lemma 1, δUfc -> 8U and since δUk<δ8k, SSjc -> δu=δs. Let r f c = ( ^ w , •••, v™+ι)
€ T, v\k) e S* be chosen so that for each Jc, SSk(v[k\ , <fcΛ) is an ab-
solute maximum. Extract any convergent subsequence vk with limit v.
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If v — (vlf , vn+1), then vteS and 8V — 8S. Also fk = fvk tends uni-

formly to /„, the function from F with minimum deviation on v. But

by the uniqueness of /„,/„ = / 0 . The above argument shows that any

subsequence of {/J contains a refinement which converges to /0. Hence

lim fc-oβ/fc = / o uniformly on [0,1].

4. The estimation of / . In [13] Novodovorskii and Pinsker con-
sider a direct method, due to Remes [14] in the polynomial case, for the
estimation of / . However the following Lemma shows that / is con-
tinuously dependent on estimates of the best approximation. Hence if
u is a vector in T for which 8{u) is an estimate of inf f t e *ΊI/ | | , then the
solution of the equation f(uι) — (— l)*λ i = 1, , w + 1 is the appropriate
estimate of / .

LEMMA 4. Let {8n} be a sequence of non-negative numbers converg-

ing to 8 = inf / e F | | / | | from below. If un are vectors in T for which

8(un) — δn, then limn^fUn — f uniformly on [0, 1],

Proof. If the conclusion is false there exists a subsequence {uk}

and a number ε > 0 such that | | / — fu

k \\ > ε. But {ukj} may be further

refined to obtain a convergent subsequence of vectors. Calling this

{uk} and letting uQ — l im^^ ukj we have by Lemma 1 8(u0) — lim ^ ^ ( w ^ ) .

By Theorem 3 fUQ = / which is a contradiction.
We shall consider two algorithms for estimating δ and prove con-

vergence of both.
Each of these algorithms can be used efficiently for actual numerical

calculations. A detailed description of method 2 for polynomials on a finite
point set can be found in [5], Also for polynomials on an interval
a maximization procedure has been announced by Bratton [3].

For both methods the following notation is convenient. For u —
(ulf , un+1) e T define for j — 1, , n + 1.

8cJ}(x) = 8(ulf , Uj-19 x, uJ+1, , un+1) if Uj-! < x < uj+1

= 0 otherwise

where we take u0 = 0, un+2 = 1. We now form ηu{x) == max j=1)... jW+1 8}

u(x).
From the continuity of 8(ulf •••, un+1) it follows t h a t for each j , 8cJ\x) is
continuous, and hence Ύ]u{x) is continuous. Therefore there exists a point
#', 0 < xr < 1 and integer 1 < m < n + 1 such t h a t

θu\*fi ) ~~ max ||oMJJ = II^MII

For a given vector u we define υ! — (u[, , u'n+1) by setting Uj=uJf j Φ m,
u' = xf.
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THEOREM 5. If vectors uk are defined inductively in the above fashion
with uλeT chosen arbitrarily, then limλ;_yooδ(wλ.) exists and there exists
uoeT such that δ(w0) = limfc_+0Oδ(wΛ). Furthermore δ(w0) is an absolute
maximum of the function 8(u).

Proof. {8(uk)} is a monotonically increasing, bounded sequence hence
convergent. If δ = Iimfc_>00δ(i/fc), then a suitable subsequence {u }, con-

kj

verges to u0 and δ(κo) = δ. We now assert ΎIU (X) converges uniformly to

ηUύ(x). It suffices to assume ut < x < ut+1. Then

< IS* 0(x) - δlk(x) I + I Slζ\x) - Siζ

Since S(u) is a uniformly continuous function the latter expression tends
to zero uniformly in x.

Hence

11^11 = Km HJH | | .

But

1 1 ^ I I - δ(W f c j + 1) < 8(ukj+i) < \\VukjJ\

Therefore H^WJ1 = lim^ooδ(wA.) = δ(iί0). It now follows by the same
argument as in the proof of Theorem 3 that | |/ t t 0H — S(uQ) and by Theorem
3, δ(ϊi0) is a maximum.

For the second method of estimation of / we alter slightly our
definition of 8ι

u(x) and δ£+1(#). We now define

&l(x) = δ(a?, u29 , un+ι) if 0 < x < u2 .

= S(u2, u3, , un+1, x) if un+1 <x<l

δ%+1(x) = 8(1^, •••,%„,&) if un < x < 1

= δ(x, ulf , un) if 0 < x < uλ .

The algorithm proceeds as follows. First let ε > 0 be chosen. Select an
arbitrary vector ueT. Maximize S2

u(x) over its domain of definition. Let
x' be a point for which S2

u(x) is a maximum. If δl(x') > (1 + e)8(w), replace
u2 by αf forming a new vector w\ If not, let uf = u. We now maximize
δ*u,(x) and continue inductively. Special attention is necessary for δ£+1(#)
and Sl(x). If x1 is a point for which δ^+1(x) is a maximum and δl+1(x) >
(1 + ε)δ(w), then w' is formed in the following way. If x' > un then
u ' t = u l f i — 1 , •••, n , uf

n+1 = x f ; i f a ? f < ^ t h e n u[ — x f u \ — u%-λ i = 2, •••, n + 1 .
In the latter case, the next function maximized is δ*u,(x). If the first
case occurs then 81,(x) is maximized. Let x" be a point for which δ^(a ).
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is a maximum and δ^(#") > (1 + e)S(ur). If x" < W2 then u" = x" and
w" = wj i = 2, 3, , n + 1. If x" > uf

n+1 then u" = %i+1 i = 1, , n and
%J,+i = #". For the first case the next function maximized is δ2

ur,(x); the
second case, δ^λ(aj). If

δ2+1(»0 < (1 + ε)δ(«) (δi,(a") < (1 + e)δ(u'))

then we take u! — u (u" = %')• When there have been w + 1 consecutive
maximizations with no change in the vector u, e is now replaced by ε/2
and the process is repeated. We now continue inductively and pass to
the limit as ε/2fc -> 0.

THEOREM 6. The conclusions of Theorem 5 hold if the sequence {uk}
is chosen inductively in accordance with the above algorithm.

Proof. As before, \imk^008(uk) — S exists. We choose a particular
convergent subsequence {ukj} of {uk}. For each j let ukj be a vector
of {uk} such that for each i, ΐ = l, * ,w + l and all appropriate
#> δί («) < (1 + εj23)h{uk). The algorithm guarantees that for each integer
j such a vector uk exists in the sequence {uk}. Since a refinement of
this sequence is convergent, we assume {uk } converges. Then if uk ->
w0, δ(iί0) = δ. Suppose δ(iι0) is not a maximum of δ(κ), then H/Mo|| > δ(iί0).
Choose xf so that \fu(x')\ = 11/II, and form w' by replacing one point,
the ith say, of u0 by xf in the manner of the proof of Theorem 3. Form
u'k by replacing the ith coordinate of uk by xf Then ιιk -> u! and
δ(i4 ) -> δ(α'). Therefore for j sufficiently large, since δ(u') > δ,

On the other hand for each j there is a point a; and an integer m such
that

For i sufficiently large this is a contradiction, therefore \\fUQ\\ = δ(n0)
and δ(n0) is an absolute maximum.

5. Approximation in Lp ̂  norm. For N > n let α̂ , , xN be N
distinct points of [0,1]. In place of the sup norm let | | / 1 | = {Σί-i\f(xd\ ΨlP

and assume p > 1. The fundamental problem to be considered here is
to give necessary and sufficient conditions that the function feF for
which H/ll = inf/6^||/|| is unique. Now the image of F under the
mapping f-> (/fa), ,f(xN)) is a closed set in N dimensional Euclidean
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space. By a theorem of Motzkin [9] as generalized by Busemann [4],
to each point x e EN there will exist a unique nearest point in a given
set S c EN with respect to a strictly convex metric if and only if S is
closed and convex. Hence / will be unique if and only if F is convex,
but for w-parameter families we can say more.2

THEOREM 7. An n-parameter family F is convex if and only if F
is the translate of a linear n-parameter family.

Proof. If F is the translate of a linear n-parameter family, i.e.,
there exists a continuous ^ on [0,1] and a linear n-parameter family Fo

such that each feF can be written uniquely as / = g + f',fe Fo, then
F is obviously convex. Conversely suppose F is convex. Choose n dis-
tinct points x19 , xn in [0, 1]. Let fQ, f19 •••,/„ be the unique functions
of F such that fo(xj) = 0, j = 1, , n\fk(x3) = Sfcj for k, j = 1, , n
where δfcJ is the Kronecker delta. We assert that each feF has a rep-
resentation as

/ = /o + Σ λfc(Λ - /o) where λfc = f(xk) .
fc = l

If such a representation exists it is obviously unique. Also the vector
space spanned by fλ — f0, , fn — f0, is obviously an ^-parameter family
and the theorem is proved. To prove the assertion let

Fk - {feF\f(xk+1) - f(xk+2) = .. = f(xn) = 0}

From the convexity of F, Fl is a convex one parameter family on a suitably
small interval containing xk. We assert fe Fί implies f = fQ + λΛ(/Λ — /0)
where λfc = f(xk). By convexity this is obviously true for 0 < λfc < 1.
For λfc > 1 if feFί,f(xk) = λfc then by convexity

or / = /„ + Xk(fk - /„). If λκ < 0,

1 f I (

or / = / 0 + Xk(fk — /o). To finish the proof we apply an induction. As-

sume feFk implies that / = / 0 + Σjf-iVίO*^ ~" ô) where /(ίCj) = Xj and
2 For a discussion of related results see the article by Motzkin in the Symposium on

Numerical Approximation, University of Wisconsin Press, 1959.



^-PARAMETER FAMILIES AND BEST APPROXIMATION 1023

suppose g e Fk+1 and g(x5) = μj9 j = 1, , k + 1. Then if gλ = / 0 +

ΣUtyjifj ~ fo), Q2=fo + 2/WΛ + i -/o) it follows that

α F
Li

and '̂(Xj) = J«J, j = 1, , k + 1. Therefore

6» The existence of ^parameter families on compact space* Let
fiy ,fn> be n linearly independent real valued continuous functions defin-
ed on a compact set S in finite dimensional Euclidean space. Let V be
the span of the functions f19 •••,/„. In 1918 Haar [7] showed that to
each continuous real valued function g defined on S, there is a unique

/ e F satisfying | |/-ff | | = i n f / 6 F | | / - t f | | where | | / | | = supβ6al/(β)l if
and only if no non-zero function in V vanished at more than n — 1 points
of S. Haar noted that the existence of such a set of functions V placed
a severe restriction on the set S. In 1956 Mairhuber [8] proved that if
V satisfied the above condition of Haar then S is a homeomorphic image
of a subset of the circumference of the unit circle. If n is even this
subset must be proper. It is clear that V satisfies the condition of Haar
if and only if V is a linear ^-parameter family. The characterization
of those compact Hausdorff spaces on which there exist ^-parameter
families F for n > 1 seems to be quite difficult. One can give a cha-
racterization if one imposes a rather strong local condition on F. The
result presented here includes the one of Mairhuber, and is proved by
somewhat different means. The following fundamental lemma is per-
haps of independent interest.

LEMMA 5. Let S be a compact connected Hausdorff space with the
property that for each point x e S there exists a neighborhood Ux and
continuous real valued functions f19 f2 defined on Ux such that for
y,zeUx,y Φ z

( 1 ) My)
Mv)

Then S may be embedded homeomorphically into the circumference C of
the unit circle.

Proof. Without loss of generality we assume Ux is a closed, there-
fore compact neighborhood of x. f19 f2 never vanish simultaneously on
Ux and therefore fjf2 defines a continuous mapping of Ux into the
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compactified real line. (1) guarantees that the mapping is one to one
and φx(u) = Arctan (fjfjiu) gives a homeomorphism of Ux into C.

We next verify that S is locally connected. To do this it suffices
to show that for each xeS there exists a connected neighborhood which
can be mapped homeomorphically into C. In fact if φx is the homeomor-
phism for a point xeS constructed above, and if Cx — φx(Ux), it is
enough to show that there exists a connected neighborhood Vx in Cx of
Xx = φx(x). For then φz\Vx) is a connected neighborhood of x contained
in Ux. But Cx is a compact subset of C. Therefore let Ix be the com-
ponent of Xx in Cx. Ix is a compact connected subset of C. Ix is then
either an interval or all of C. If Ix is the latter we are through. Also
if Ix is an interval and λ̂  an interior point (relative to C) then φχ\Ix)
is the required neighborhood. Hence assume that Xx is an end point of
Ix. This will include that degenerate case when Ix is just one point.
We may also assume that there does not exist a suitably small connected
neighborhood N of λ̂  in C such that Nf)Cx c Ix. For then φ~\NΓ\Nx)
is an appropriate neighborhood of #. Therefore it now must follow that
for any connected neighborhood N of Xx in C there exists Xly λ2 in the
interior of N such that \, λ 20 Cx and (Xly λ2) Π Cx Φ φ. If we let F =
ΦΛ(\f λ

2 ) Π Cx] and G = φz\Cx ~ (λx, λ2)] then F U ( S - ?7X) and G
separate S which is a contradiction.

We note that S is certainly a separable metric since a finite num-
ber of homeomorphic images of subsets of C cover S. Hence by [16]
Theorem 5.1, S is arc wise connected.

We now assert S is homeomorphic to a subset of C. Let Ulf , Un

be a finite collection of connected neighborhoods covering S each of which
is homeomorphic to a subset of C. By a suitable rearrangement we
may assume that U2Γ\ UXΦ φ and U2 ς£ Ux. Let a^e t/x^ i72, x2e U2^ Ux

x e Uj Π CTj. Let A be the maximal subset of i7x U U2 connecting x19 x, x2.
This must be all of Uι U ί72> for if yeUΊl) U2 and ^0A, then y may be
connected to any point in A by an arc in Uι U U2. If 1/ is connected to
A at an end point of A, this is an enlargement of A which contradicts
maximality. If y is connected to A at a point other than an end point,
then no neighborhood of this point is homeomorphic to a subset of C.
This also is a contradiction. If Ux (J ίf2 is not all of S then U1U U2 is
homeomorphic to an arc, and by induction the homeomorphism may be
extended to all of S.

THEOREM 8. For n > 1 let F be an n-parameter family of func-
tions defined on a compact Hausdorff space S. Suppose in addition that
to each point x e S there exists a neighborhood Nx and functions flff2^F
such that
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My)
My)

for y, ze Nx, y Φ z. Then there exists a homeomorphism of S into the
circumference of the unit circle. If n is even the image of S must be
a proper subset of C.

Proof. First we note that S cannot have a proper subset W homeo-
morphic to C. If n is even this follows directly from the Corollary to
Theorem 2. If n is odd, choose x e S ~ W and let F' = {fe F\f(x) = 0}
then Ff is an n — 1 parameter family defined on W. Since n — 1
is even this is a contradiction. We may therefore assume that if n is
even S is not homeomorphic to C.

If 7 is a component of S then by Lemma 5 there exists a homeo-
morphism φ of 7 onto the closed interval [0,1] considered as a subset of
C. We assert that if 7 is not all of S, then φ can be extended to an
open and closed set ! 7 D 7 . U and its complement then separate S. If
7 is itself open in S then we take U — I. If not, let x — φ~\0), y —
Φ~\l). Let Nx, Ny be compact neighborhoods of x and y respectively
and let φx, φy be homeomorphisms of Nx and Ny respectively into C.
We may assume φx(x) — 0, φy(y) = 1 and

φx(Nx n 7) c [0, 1] and φy[Ny Π 7] c [0,1] .

If we define φf by

φf(z) = Φ(z) ifzsl

= φy(z) if ze Ny ~I

then φ' is a homeomorphism of NX{J Ny{jl = N into C. Also int. JVz)7.
Now [0, 1] = φ'(7) is the maximal connected subset of φ'(N) containing
Φ'(I). Therefore there exist sequences {λn}, {μn} of real numbers tend-
ing monotonically to 0 from below, and monotonically to 1 from above,
respectively such that {λj n Φr(N) = φ and {μn} Π Φ\N) = φ. Choose
n large enough that 0'-1[Xn, 0] c interior of JV, and φ' - 1[l, μn] c interior of
ΛΓy. Clearly J w = φ'"x[λn, //J is a closed set containing 7. J w is open in
the interior of N. Hence Jn is open in S.

Let T be the class of open sets O of S which can be mapped homeo-
morphically into C. We partially order T in the following way. If
O19 O2 e T then O1 < O2 if θ ! c θ 2 and if there exist homeomorphisms
φ19 φ2 of O19 O2 respectively into C such that φ2 agrees with φ1 on Oλ.
By Zorn's lemma there exists a maximal element O of T7. We assert
O — S. If not, let xe S ~O. Then there exists an open and closed set
UBX and mapping φ such that φ maps ί7 homeomorphically into C.
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0 Π U and O ~ U are separated open sets of S. Hence if </>' is any
homeomorphism of 0 into C such φ'(O)f)Φ(U) — φ. φ" defined by
φ"(x) = φ(x), xeOΓ\U, φ"(x) =Ξ= φ'(x), xe O ~ 17 is also a homeomorphism
of 0 into C. φ" has an obvious extension to U{jO which contradicts
the maximality of 0.

COROLLARY. If F is a linear n-parameter family (n > 1) defined
on the compact Hausdorff space S, then S is homeomorphic to a subset
of C. If n is even the subset must be proper.

Proof. We assume S contains more than n points. For a given
xe S choose n — 2 distinct points xlf , xn-2 of S outside a suitably
small compact neighborhood Nx of x. If Fx — {fe F\f{x^ — 0, i — 1, ,
n — 2} then Fx is a linear 2-parameter family defined on Nx. Therefore,
for any two linearly independent functions f19 f2 in Fx,

My) fά)
for y,zeNx,yΦz

We now apply the theorem.
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PROBLEMS IN SPECTRAL OPERATORS

URI FIXMAN

Introduction. An important problem in the theory of spectral
operators in Banach spaces initiated by N. Dunford [5; 6] is that of
deciding whether the linear operators of the types encountered in analysis
are spectral. Various conditions for spectral operators have been given
in [5], but further research is needed in order to apply them to specific
cases. J. Schwarz [11] has shown that a class of operators arising from,
not necessarily self adjoint, integro-differential boundary-value problems
consists of spectral operators. The present investigation originated in a
problem on stationary sequences in Banach spaces which led to the study
of unitary operators, namely linear isometries of the space onto itself,
from this point of view. Accordingly, attention was focused on the
class of unitary operators, and the limitations imposed on the operators
under study were designed to include it.

Section 1 contains a summary of definitions and results from [5; 6].
A distinction, significant only in non-reflexive spaces, is made between
spectral and merely prespectral operators according to the topology in
which tf-additivity of the resolutions of the identity is required. As
shown in § 2, a resolution of the identity of a prespectral operator
uniquely determines the resolutions of the identity of its spectral re-
strictions. A simple example shows how this can be used to prove that
certain operators are not spectral.

Known results are combined in § 3 to yield a necessary condition
for spectral operators of scalar type, which involves only the norms of
rational functions of the operators. If the space is reflexive and the
spectrum an i?-set [1, p. 397], the condition is also sufficient. Using the
results of §2 this condition is localised to "cyclic" subspaces generated
by single elements. A much more general approach to localization, via
the notion of vector measures associated with the operator, is expounded
in [3]. It is felt though that the present considerations retain their
interest owing to the explicit conditions given. The method of [3] also
implies the results of § 2 on restrictions for the case of a reflexive space.
Section 3 ends with some characterizations of finite dimensional cyclic
subspaces.

The above results are specialized in § 4 to unitary operators which,
if the space is reflexive, satisfy all the subsidiary conditions. As a
corollary it follows that in a reflexive space a unitary operator is spectral
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if and only if every stationary sequence it generates is spectral.
The final section contains examples of non-spectral unitary operators.

It is shown that a unitary operator U in the space of continuous func-
tions defined on a compact Hausdorff space is not spectral provided the
homeomorphism determined by U is non-periodic. Using the boundness
of the norms of the values of a resolution of the identity, examples are
given of non spectral unitary operators in the spaces lp, 1 < p < oo,
p Φ 2. The two methods used are combined to show that if in parti-
cular the permutation of the basis, determined by a unitary operator in
the last mentioned spaces has an infinite "cycle", the operator is not
spectral. Examples of non spectral unitary operators in the spaces Lp,
p Φ 2, (c) and (cQ) follow as corollaries.

1. Preliminaries* Let X denote a complex j?-space and 33 the
Boolean algebra of Borel subsets of the complex plane p. A spectral
measure in X is a homomorphism E of 33 onto a Boolean algebra of
projections of X such that: E(p) = I = identity operator, E(ψ) — 0, and
||i?(<7)|| < M < oo, M independent of σ e 23. The Boolean operations on
commuting projections A, B are defined, as usual, by

Af]B = AB, Al)B = A + B-AB.

A spectral measure E in H is said to be of class Γ in case Γ is a
total linear manifold in 3c* and x*E( )x is σ-additive on 33 for x e 3E,
X* 6 Γ>

Let B{ϋ) be the i?-algebra of bounded linear operators of X into it-
self. If Γ e B(H) and 2) is a (closed) subspace of 36, we denote by T\ Y
the restriction of T to 2), and by σ(T) and ρ(T) respectively the spectrum
and resolvent set of T. Thus, if 2) is, invariant under T, σ(T\ Y) denotes
the spectrum of T considered as an operator in 2). For ζ e ρ{T),
(ζ - T)'1 is abbreviated to T{ζ).

An operator T e B(ϋ) is called a prespectral operator (of class Γ)
in case there exists a spectral measure E of some class Γ such that

TE(σ) = E(σ)T , σ(T \ E(σ)ϊ) c σ , σ e S3 .

E is then called a resolution of the identity for Γ.
An operator in 33(36) is called a spectral operator if it is prespectral

of class 3£*. In this case, I? is σ-additive on 33 in the strong operator
topology, and the boundness of its range is a consequence of the other
requirements [6, p. 325], A spectral operator T has a unique resolution
of the identity E\6, Th. 6], If A e J5(3E) commutes with Γ, then it
commutes with E[6, Th. 5].

It may also easily be shown that if the bounded subsets of ϊ are
weakly sequentially conditionally compact, in particular if X is reflexive,
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then every prespectral operator in X is spectral.
Let T e B(%), x e 36. By an abuse of language, an X-valued func-

tion / defined and analytic on an open set D(f) c; p is called an analytic
extension of T(ζ)x if

(ξ - T)f(ξ) = x , ? e D(f) .

/(?) = Γ(?)« on D(f) Π /θ(T) for otherwise (ζ - T)(/(£) - T{ζ)x) =
cc — α? = 0 would imply f e σ(Γ). Further we have

1.1. THEOREM. If T is a prespectral operator, and f, g are analytic
extensions of T(ξ)x, then f(ζ) = g(ζ) for ξ e D(f) n D(g). ([6, Th. 2],
The further assumption D(f) 3 jθ(Γ), which is made there, is not used
in the proof).

Hence there exists a maximal open set which may serve as a do-
main of definition of an analytic extension of T(ξ)x. This set is called
the resolvent set of x, and is denoted by ρ(x) (or pτ(x), when more then
one operator is involved in the discussion). Its complement σ(x) (or στ(x))
is called the spectrum of x. The maximal analytic extension itself is
denoted by x(ξ) (or xτ(ξ)).

The main use of the concepts above is through the following charac-
terization of spectral subspaces [6, Th. 4]:

1.2. THEOREM. Let T be a prespectral operator in X with a re-
solution of the identity E, and let σ c p be closed. Then

E{σ)%= {x\σ(x) c σ} .

Let E be a spectral measure which vanishes on the complement of

a compact set σ, and let / be a complex valued function continuous on

σ. Then the Riemann integral \ f(ζ)E(dξ) exists in the uniform operator
Jσ

topology [6, Th. 7]. An operator S is said to be of scalar type if it is
spectral and satisfies

1.3. S

where E is the resolution of the identity of S [6, Def. 1].
The reader is referred to [4] for the definition and properties of

f(T), where T e B(%) and / belongs to a certain class of locally holo-
morphic functions. In the sequel, / will in general be a rational func-
tion with poles in p{T). If S is of scalar type with the resolution of
the identity E, then we have the functional calculus

1.4. f(S) =
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We refer to [6] for the general case of a spectral operator.
Finally we shall need the concept of the cyclic subspace [x] generated

by an element x e 36. By this is meant the subspace spanned by
{T(ξ)x\ξ e ρ(T)} [5, Def. 1.4]. It has the following properties [5,
Lemma 1.5]:

1.5. LEMMA.

1.5.1. x e \x\.
1.5.2. /(Γ)M cz [3].
1.5.3. If y e [x], then [y] c [x].

2. Restrictions of prespectral operators* The following is a generali-
zation of the uniqueness theorem for spectral operators mentioned in § 1.

2.1. THEOREM. Let T be a prespectral operator in the B-space 3£,
and let E be a resolution of the identity for T. Let 2) be a subspace
of X invariant under T. Then if T|2) is spectral, its resolution of
the identity equals the restriction 2?|2) of E to 2).

Proof. Let y e 2). The function yτ\<Aζ) is an analytic extension of
T(ζ)y with domain ρτ^(y). Thus pT\φj) £ pτ(v)9 or

(2.1.1) στ(y) c στφ) .

Let F denote a resolution of the identity for Γ|2). If a is a closed
subset of the complex plane, we have by 1.2

στm(F(σ)y) c σ .

Therefore, by (2.1.1),

στ(F(σ)y) c σ,

and again by 1.2

(2.1.2) E{σ)F(σ)y - F(σ)y .

If τ is a closed set disjoint from σ, we get, operating with E(σ) on
E(τ)F(z)y = F(τ)y,

(2.1.3) E(σ)F(τ)y = 0 .

(2.1.3) and the <r-additivity of F in the strong operator topology show
that E(σ)F{σf)y — 0 {σr denotes the complement of σ with respect to p).
This together with (2.1.2) gives

E(σ)y = F(σ)y , σ closed.
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The properties of E and F now yield the same equality for every Borel
set.

The theorem above shows that in variance of 2) under E (i.e., under
every value of E) is a necessary condition in order that T\ 2) be spectral.
This condition is by no means automatically fulfilled, and this fact can
be used to show that an operator is not spectral:

2.2. EXAMPLE. Let Ω be a compact topological space. We consider
the £>-space C(Ω) of all complex valued functions / continuous on Ω with
11/11 = maxω6Ω \f(ω)\. Let μeC(Ω), and let S be the operator of multipli-
cation by μ. Heuristically, S cannot in general be spectral because
projections which " ought" to belong to the resolution of the identity
are not members of B(C(Ω)). This is made precise as follows. Let T
be the extension of the multiplication to the space X — M(Ω) of complex
valued functions / bounded on Ω with | | / | | = sup |/(ω)|. T is pre-
spectral with a resolution of the identity: E(σ) is the multiplication by
XΛK ))t where χσ is the characteristic function of σ. The σ-additivity
may be verified with respect to the total linear manifold generated by
the functionals #*, <o e Ω, defined by x%x — x(ω), x e M(Ω). To see
that σ(T\E(σ)%) c σ, observe that if ζ e σ', (T\E(σ)X)(ζ) is the multi-
plication by χσ(μ( ))(ξ — μ)~ι (here 0/0 = 0). We omit the details. Now
suppose, for instance, that μ is not constant on a connected component
of Ω, and that ωlf ω2 are two points in the component such that
μ(ω1) Φ μ(ω2). Then taking σ = {μ(ω^} we see that E(σ) does not leave
C(Ω) invariant. Hence S= T\C(Ω) is not spectral.

The next theorem is a partial converse of Theorem 2.1. We need
two lemmas.

2.3. LEMMA. Let T be a prespectral operator in the B-space 36,
and let A e B(£) commute with T. If x e X, then σ(Ax) c: σ(x) and
(Ax)(ξ) - Ax(ζ), ζ e p(χ).

Proof. For ζ e p(x), (ζ - T)Ax(ζ) = A(ζ - T)x(ξ) = Ax. The con-
clusion follows by the definition of σ(Ax) and 1.1.

2.4. LEMMA. If T is prespectral in 3£, x e X and τ is a connected
component of ρ{x) such that τ Π p(T) Φ φ, then x(ζ) e [x], ζ e r.

Proof. Since p(x) is open in the complex plane, τ has the same
property and is therefore a region. Let x* e X vanish on [x]. For
ζ 6 ρ(T), x(ξ) = T(ξ)x e [x]; thus f(ξ) = x*x(ζ) vanishes on the open
subset T Π p(T) of τ. Being regular, / vanishes identically on τ. A
well known corollary of the Hahn-Banach extension theorem yields the
conclusion.
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It may also be shown that {ξ e p(x)\x(ξ) e [x]} is open and closed
in ρ(x). If p(T) is dense in the plane, then x(ζ) e [x] for every ζ e p(x)
[5, Lemma 1.5.3]. Cf. however Example 2.6 below.

2.5. THEOREM. Let T be a prespectral operator in X with a re-
solution of the identity E. Let 2) be a subspace of 36 invariant under
T(ζ), ζ € p(T), and under E. Then T\tj is prespectral with a re-
solution of the identity i?| 2). If T is spectral or spectral of type m
(v. [6, p. 336]), T\ Y has the same property.

Proof. Since T = -—\ T(ξ)dξ , where C is a circle containing σ(T)
2πiU

in its interior and the integral is in Riemann's sense and in the uniform
operator topology, 2} is invariant under T, and T| 2) is well defined. If
T is spectral, we may assume invariance under T instead of under T(ξ),
ζ 6 ρ(T), using [6, Lemma 3].

All the assertions of the theorem are easily verified, except: For
every σ e 83, σ((T\W\(E\ Y)(σ)W = σ(T\E(σ)ψ) c σ. We have to show
that if ξ e σ\ then ξ — T induces a one-to-one mapping of E(σ)ty onto
itself. Since σ(T\E{σ)Έ) c σ, there is no z φ 0 in E(σ)% and hence in
E(a)%) such that (ζ — T)z — 0. It remains to show that the range of
(ζ-T)\E(σ)ty is E(σ)% Let z e E(σ)ty. Then E(σ)z = z, hence
E(σ)z = 2;, and therefore by 1.2 σ(z) ^ σ. Therefore ξ* € p(z), and since
(ξ — T)z(ξ) = zit suffices to show that z(ξ) e E(a)V). Let π be an open
half plane with ζ on its boundary. From 1.2 it follows that σ(E(π')z) c
π' U σ(z), and therefore {f} U ΊZ C p(E(πr)z). Since p(E(πf)z) is open,
it follows that f belongs to a component of p(E(πf)z) which contains
arbitrarily distant points of the complex plane and thus points of p(T).
2.4 now implies (E(π')z)(ξ) e \E(π')z~\. The assumptions of the invariance
of 2) show that [E(π')z] c 2). Therefore (E(π')z)(ξ) e 2). But by 2.3,
we have (E(π')z)(ζ) = E(π')z(ξ); therefore

E(π')z(ξ) e 2) .

Similarly one shows E(π)z(ζ) e 2). Therefore z(ζ) = ^(^'^(f) + £r(^)^(ξ') e
2). On the other hand, E{σ)z = z implies by 2.3 E(σ)z(ζ) = 2(f). There-
fore 2(f) e E{σ)^} as required.

It follows from the proof above that, under the conditions of the
theorem, z e Y implies z(ξ) e 2), ξ e p(z). The following example shows
that without invariance of 2) under E, this need not hold even if T is
a normal operator in Hubert space. This, in turn, amplifies Example
2.2 by showing that even if T is spectral, and not merely prespectral,
2) is not necessarily invariant under E.

2.6. EXAMPLE. Let X be the Hubert space L2(Ω), where Ω is the
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disc {ω I I ω \ < 1} in the complex plane. Let T be the operator of
multiplication by ω. Then T is a bounded normal operator and spectral.
We define x e I by

1 i f i ^ l ^ l ^ i
0 if | ω | < i .

The maximal analytic extension of T(ζ)x, x(ξ), exists for ξ not in the
ring σ(x) = {ζ\ \ < \ ξ\ < 1}, and then

x(ξ)[ω] = —^— if i < I ω I < 1
ζ-ω
0 if I ω I < i

We consider the subspace 2) = [cc], which is invariant under T(ζ), ζ e p(T)
by 1.5.2, and contains x by 1.5.1. [x] is the closure of the finite linear
combinations of the functions T(ζ)x = x(ζ) for ξ e ρ(T) = β'.

Now, suppose that for a fixed ξ, \ξ\ < £, x(ζ) were approximable
by these linear combinations in the Hilbertian norm. Since all these
functions are holomorphic in σ(x), x(ξ) would be uniformly approximable
by the linear combinations on a closed ring τ concentric with and inner
to σ(x) [13, p. 96]. But this is impossible, since the approximants are
rational functions with poles in the unbounded component of τ', while
the only analytic continuation of x(ξ) | τ to the other component is
V(ζ - ω)> which is not regular at ξ (v. [13, p. 25, Th. 16]).

It may also be directly shown that there exist x and σ such that
E(σ)x 0 [a?].

We now give an example to show that the assumption that T \ 2) is
spectral cannot be dropped in Theorem 2.1 even if 2) =3c; i.e., a pre-
spectral operator may have more than one resolution of the identity.

2.7. EXAMPLE. We specialize Example 2.2, retaining its notation.
We take for Ω the set of positive integers. Thus 9£ = M(Ω) is the space
usually denoted by (m). For μ we chose a function belonging to ϊ
which satisfies

(2.7.1) μ(l) = 1

(2.7.2) μ(j) φl, j > 1

(2.7.3) lim μ(j) == 1 .
j

As is well known [2, p. 34], there exists a real bounded linear functional
lim^, defined on the space (m)R of all real bounded sequences, which
has the following properties:

(2.7.4)Λ If x, y e (m)R and y(j) = x(j + 1) , j = 1, 2, . . ,
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then lim^ y — lim^ x

(2.7.5)Λ lim x(j) < limβ x < lim

We define a functional lim on X by lim# = \\mRxf + ί l i m ^ " , where
x — x' + ί#", #', x" e (m)R. Evidently, lim is a bounded linear functional
which enjoys the property (2.7.4) analogous to (2.7.4)^. Further we have
(T defined as in 2.2)

(2.7.6) lim Tx = lim x .

To see this, we write (Tx)(j) — (μ(j) — l)x(j) + x(j). By the linearity of
lim, it suffices to show that a(j) —> 0(a(j) = μ(j) — 1) implies lim ax — 0.
This follows from (2.7.5)* on separating a and x into their real and
imaginary parts. We define an operator A e B(%) by Ax = lim x x0,
where #0(i) = 81:f (Kronecker's symbol). Using (2.7,1), (2.7.6) we get
TA = Aϊ7. On the other hand, A does not commute with E (defined in
2.2). Taking σ = {1} we have, using (2.7.2), (2.7.4), AE{σ)x = 0 while
2?(tf)A# = lim x αj0. Hence the function F, defined by

F(σ) = £7(0") + A&(<7) - E(σ)A , σ 6 95 ,

differs from E. We show that F is a resolution of the identity for T.
A straightforward calculation, based on the fact E is a spectral measure,
shows that F is a spectral measure (In verifying that F(σ)F(S) — F(σ Π 8),
one uses the fact that AE(τ)A — 0, τ e 33). F is σ-additive with respect
to the total linear manifold generated by the functionals xf (xjx = x{j)),
j>2 and x* = x? — lim; since xfF(σ)x — x*E(σ)x for i > 2, while
^ ^ ( σ ) ^ = χσ(l)(^(l) — lim x). Since T commutes with E and A, Γ com-
mutes with F, Finally, to see that σ(T\F(σ)T) c S, we assert that the
restriction of (T| E(σ)l)(ζ) to F(o )X, ξ* e σ\ is an inverse of (ζ - T)\F(σ)X.
As shown in the proof of [6, Th. 5], the prespectrality of T implies
E(σ)AE(σ) = AE(σ). Hence E(σ)AE(σ) = AK(σ), whence it follows
that E(σ)F(σ) = F(σ). Therefore F(σ)9e c ^(σ)^, and the mentioned
restriction is well defined. Let x e F(σ)2ί. Then σ(x) c σ, by 1.2,
since a? e E(σ)H. Further, 1.1 and 2.3 imply

{T\E{σ)H){ζ)x = x(ξ) = (F(<j)αO(?) = ^ ( ^ ( r ) .

Thus the range of the restriction is included in F(σ)%. The truth of
our assertion is now evident.

3. Conditions for operators of scalar type* If T 6 B(l), the full
algebra generated by Γ, denoted by §Ϊ(Γ), is the smallest subalgebra of
B(T) which is closed in the norm topology of JB(Ϊ), which is inverse-
closed and which contains T and / [6, Def. 5]. Let σ be a compact
subset of the complex plane. We denote by R{σ) the set of rational
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functions regular on σ. CR(σ) denotes the closure of R(σ) in C(σ).
Following [1, p. 397], a compact nowhere dense set σ in the complex
plane is called an R-set if and only if CR(σ) = C(σ). For properties of
i?-sets used in the sequel see [1, p. 398] and the references there given.

3.1. THEOREM. Let S e B(T), then the following equivalent con-
ditions are necessary in order that S be of scalar type:

3.1.1. There exists a constant H < co such that for every f e R(σ(S))

\\f(S)\\ < Hmzx\f(ξ)\ = H\\f(S)\\sp = H\im\\f(Sy\\^ .
ζeσ(S) n

3.1.2. There exists a constant K < co such that for every f e R(σ(S))

\\f(SW<K\\f(Sγ\\.

If % is reflexive and σ(S) is an R-set, each of the mentioned conditions
is sufficient. Each of the following conditions implies 3.1.1:

3.1.3. For every x e ϊ there exists a constant H(x) {independent
of f) such that for every f e R(σ(S))

\\f(S)x\\£Hmax\f(ξ)\-\\x\\=H(x)\\f(S)\U\x\\ .
ζeσ(S)

3.1.4. The same; with h(x), f e R(σ(S\ [x])) and

\\f(S [x]) < h(x) m a x \f(ξ) | - h(x) \\f(S \ [x])\\sp

ζβσ(S\iχ ])

3.1.5. The same; with k(x), f e R(σ(S\[x])) and

3.1.3 is implied by 3.1.1. 3.1.4 and 3.1.5 are necessary if S is of scalar
type and satisfies the following condition:

3.1.6. If E is the resolution of the identity of S, x e 36 and σ e SB,
then

E(σ)x e [x] .

Proof. For the equivalence of 3.1.1 and 3.1.2 see [9, p. 78] and for
the necessity see the beginning of the proof of [6, Th. 13]. If one of
them holds, then 2I(S) is equivalent to CR(σ(S)), hence if σ(S) is an
iϋ-set, to C(σ(S)). Therefore if X is reflexive, S is of scalar type by
[6, Th. 18 (IV)]. Since, from 1.5.2, σ(S\ [x]) c σ(S) and | | / ( S ) a | | <

)| | II α| |, the equivalent conditions 3.1.4, 3.1.5 imply 3.1.3. The
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proof that 3.1.3 implies 3.1.1 is much like the proof of the uniform
boundness theorem. 3.1.3 and Baire's category theorem imply that at
least one of the sets

Gj= {x e %\\\f(S)x\\ < j \ \ f ( S ) \ \ S P \ \ x \ \ , f e R ( σ ( S ) ) } ,' = 1 , 2 , . . . ,

let it be the nth, contains a sphere {x e X | || x — x0 \\ < r}, r > 0. 3.1.1
then easily follows with H — n(2\\xo\\ + r)/r. If S is of scalar type
and satisfies 3.1.6, then every [x] is invariant under E (because if
y e [x], then E(σ)x e [y] c \χ\ by 1.5.3) and S(ξ) (by 1.5.2). Therefore,
by 2.5, S\[x] is of scalar type, and the necessity of 3.1.4, 3.1.5, which
are 3.1.1, 3.1.2 for S\[x]9 follows.

REMARKS. In case the conclusion of 1.2 holds, it may be convenient
to replace σ(S\[x]) by σ(x) in 3.1.4, 3.1.5. One always has σ(x) c σ(S\[x]).
By slight modifications in the proof of [5, Lemma 1.10], one shows that,
provided S is spectral, σ(x) = σ(S \ [x]) (for every x) if and only if for
every x and ξ e p(x), x(ξ) e [a?]. As remarked after 2.5, this is the
case if 3.1.6 holds.

Taking S as in 2.2, 3.1.1 is obviously fulfilled. By an appropriate
choice of Ω and μ, we may achieve that S is not spectral although
σ(S) = range of μ is an ϋ?-set. Thus these conditions fail to assure
scalarity if X is not reflexive.

We conclude the present section with some characterizations of finite
dimensional cyclic subspaces.

3.2. THEOREM. // S is of scalar type, satisfies 3.1.6 and x e X,
then the following conditions are equivalent:

3.2.1. [x] is of finite dimension.
3.2.2. SI(S)# is of the second category in [x] (or x = 0).
3.2.3. For each y e [x] there exists a U(y) e B{W), commuting

with S, such that U(y)x = y.
3.2.4. For each y e \x] there exists a V(y) e B([x]), commuting

with SI [x], such that V(y)x = y.
3.2.5. σ(x) is finite (equivalent to 3.2.1 by mere scalarity).

Proof. Evidently we may assume x Φ 0. 3.2.1 ==> 3.2.2 and 3.2.3:
Since {f(S)\f e R(σ(S))} is dense in SI(S), SI(S)x is a dense linear
submanifold of [x\. By 3.2.1, Wί(S)x is of finite dimension; hence closed.
Therefore %(S)x = |>], whence 3.2.2 and 3.2.3 follow.

3.2.2 or 3.2.3 =φ 3.2.4: Under either hypothesis the set

Z - {z = U(z)x I U(z) e B([x])9 U(z)S - SU(z)}

is of the second category in [x]. Suppose /„ e R(σ(S))y \\fn(S)x\\ = 1
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and z e Z. Then {fn(S)z} is bounded since

\\fn(S)z\\ = \\fn(S)U(z)x\\ = II ̂ ) / n ( S ) a ? | |

<\\U(z)\\\\fn(S)x\\ = \\U(z)\\.

Therefore, by the uniform boundness theorem, {||/n(S) | [cc]||} is bounded.
Hence, if fn e R(σ(S)), ||/n(S)a?|| - 1 and y e [x\, then {\\fn(S)y\\} is
bounded. This shows that there exists a constant c(y) < oo such that
\\f(S)y\\<c(y)\\f(S)x\\, f e R(σ(S)). We define the transformation
V(y) on {f(S)x\fe R(σ(S))} by

V(y)f(S)x=f(S)y.

V{y) is bounded by c(y) on a dense linear submanifold of [x]. Therefore
it is uniquely defined, and can be extended by continuity to a bounded
operator on [x\. Evidently, this operator satisfies our requirements.

3.2.4 =φ 3.2.5: We first show that for each y e [x] there exists a
constant c(y) such that

\\E{σ)y\\<c{y)\\E{σ)x\\, σ e 33 .

As in the proof of 3.1, S\[x] is of scalar type with the resolution of
the identity i?|[cc]. By the commutativity theorem, mentioned in § 1,
E\\x\ commutes with V(y). Therefore for every Borel set σ

|| E(σ)y\\ = \\ E(σ)V(y)x || = || (E(σ) |

= || V(y)(E(σ) \ [x])x \\ < \\ V(y) \\ \\ E(σ)x \\ .

This proves our statement. Hence, if we define

Gj= {ye [x]\\\E(σ)y\\<j\\E(σ)x\\,σ e S } , j = l , 2 , - . . ,

we have \Jβό = [x]. Since the G/s are closed, it follows by the usual
category argument that there exists a constant c < oo such that

\\E(σ)\[x]\\<c\\E(σ)x\\, a e S3.

Since the norm of a non null projection is at least 1, it follows that
E(σn)x —> 0, σn e 33 =Φ There exists an n0 such that E(σn) \[χ] = 0

for n > nQ.

Now, suppose σ(x) were infinite. Then we could represent it in
the form σ(x) = \Jζ=0<7n, where the σn are pairwise disjoint, σ0 e 33 and
on, n < 1 are non void sets open relative to σ(x) (we omit the easy
proof). From the σ-additivity of E in the strong operator topology it
follows that E(σn)x —> 0. Hence, by what was proved above, there exists
an m > 1 such that E(σm)x = 0. σm — σ(x) Π T, where τ is open in the
complex plane. We have
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E(τ)x = E(τ)E(σ(x))x = E(τ n σ(x))x = ^(αw)a? - 0 .

Therefore E(τ')x = x. Since τf is closed, 1.2 implies σ(x) c τ'. Thus
we get σm = <r(#) Π r = ψ, contradicting the choice of σm.

3.2.5 =φ 3.2.1: Since we assumed x Φ 0, we have σ(x) φ φ. Let

tf (a ) = {ξ\, •••,£.}. If /̂ e [x] there exist / n e R(σ(S)) such that

MS)x-+y. By 1.4, Λ(S) = J/n(r)#(dr). Using Riemann's sums ap-

proximating the integral, we get

But fn(S)E(σ(x))x =/.(S)«; therefore

Now

(**) E({ξj})xf j = 1, •••, r are linearly independent:

If EJ-i«^({fj})» = 0, then operating with E({ξk}), we get akE({ξk})x = 0.
But Eilξ^x Φ 0 for otherwise

x = E(σ(x))x - JB7(€j(a?) - {ζk})x + E{{ζk})x =

would imply by 1.2 the contradiction σ(x) c σ(ίi?) — {ξ*fc}. Therefore
ak = 0. From (**) and (*) it follows by a well known argument that
the sequences {fn(ζj)}n=i &?& bounded; hence compact. Therefore there
exists a subsequence {%} of the indices such that fnjίζj) —> Wj, 3 — 1>
• , r. So

V=Σ><*jE({ςJ})x.

The vectors E({ζj}x, j = 1, •••, r, are independent of y, and thus span

4. Applications to unitary operators. To render the results of § 3
conveniently applicable, one should know beforehand of an operator that
if it is spectral, it is of sealer type and satisfies Condition 3.1.6. We
shall show that this is the case for a class of operators which includes
the unitary operators in reflexive spaces. We lean heavily on [5]; and
although some familiarity with this paper is assumed in the present
section, it will be convenient to cite the pertinent definitions.

4.1. DEFINITION. Let the spectrum σ(T) of an operator T e B(X)
lie in a closed rectiflable Jordan curve Γo. Suppose that Γo is embedable
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in a family Γs, — δ0 < δ < δ0 (0 < δ0 < £), of closed rectifiable Jordan
curves which satisfies the following conditions: Γ8ι is interior to /\ 2

for - δ 0 < 81 < δ2 < δ0. The curve Γδ is defined by a function f(λ, δ),
— 1 < λ < 1, with £( — 1 , δ) = f(l, δ). As λ increases from - 1 to 1, the
point ζ(X, δ) traces Γ8 in a counterclockwise direction. For different
values of λ, the arcs ζ(X, δ), — δ0 < δ < δ0 do not intersect. They are
rectifiable, and | δ | is the length of the subarc with endpoints f(λ, 0)
and f(λ, δ). Under these assumptions a nonnegative integer-valued
function v(X) satisfying the condition

1 , 0 < | δ | < δ 0 , - l < λ < l ,

is called an index function for T.

4.2. THEOREM. If U is a unitary spectral operator, it is of scalar
type.

Proof. This is essentially proved in [5]: It is easy to show that
the spectrum of U lies in the unit circle and that if we embed the
unit circle in the family of circles Γδ, — \ < 8 < J, defined by
f(λ, δ) = (1 + δ)β7rίλ, - λ < λ < 1, then v(X) = 1 is an index function for
U. Since ζ(X, 8) has continuous second partial derivatives, and the as-
sumptions of [5, Lemma 3.16] hold, it follows from [5, Lemma 3.18] that

\ (U - ζ)E(dξ) = 0 oτ U=\ζE{dζ).

4.3. LEMMA, Let S e 5(36) be spectral with index function v(X) == 1
with respect to ξ(X, 8) which has continuous second partial derivatives.
Let X be reflexive. Then E({ζ})x e [x], x e X, ζ e Γo.

Proof. Let ζ0 e Γo. Then ζ0 is of the form ζ0 = ζ(XQ, 0). It is
shown in the proof of [5, Th. 3.12 (III)] that there is a y e X and a
sequence 8n —+ 0 such that for ξn = ξ(XQ9 8n) we have

(4.3.1) (ζn - ςo)S(ζn)x(->)y .

Further, (4.3.2) (ξ0 - S)y = 0,

(4.3.3) x - y e (ζ0 - S

y e [x] since, by (4.3.1), it is a weak limit of vectors in [cc], hence a
strong limit of their linear combinations [2, p. 134. Th. 2]. (4.3.2) im-
plies, by [6, Lemma 1], E({ζQ})y = y. By (4.3.3), there exist zn such
that (ξΌ - S)zn -+y-x, and by [5, Lemma 3.17] E({ξo})(ζQ - S) = 0;
therefore #({£„})(2/ - ») = 0. It follows that E({ζo})x = y e \x\.

4 . 4 . L E M M A . Under the hypotheses of 4 . 3 , if ξ,ξ e Γo, ζ Φ ξ and
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x e X, then there exist zk e [x] such that E({ξ'})E({ξ'})x = limk(S - £)2

Proo/. Let ζOf ξ0 e ΓQ9 ζ0 Φ ξ0. Then, by 1.5.1, 1.5.3 and 4.3,
u = E({ζQ}')E({ξQ}')x e [a?]. Therefore by 1.5.3 it is sufficient to establish
the representation for u with zk e \u\. The argument follows closely
part of the proof of [5, Lemmas 2.6, 2.10], As in the proof of 4.3, there
exist ζn—>ξQ such that

Thus

(ζQ - S)S(ζn)u = (ξ0 - ξn)S(ζn)u + u{-»)u .

Since S(ξn)u e \n\ and since weak convergence to u implies strong
convergence of linear combinations, it follows that there exist uk e [u]
such that

(4.4.1) (ξo-Syuk-+u.

Operating on uk with the identity

(ζ0 - SγS(ζn) = (ζ0 - ξnγS(ζn) + (ζQ - ζn) + (Co - S)

and letting n tend to infinity, we get

(4.4.2) (ζ0 - S K = urn (ζ0 - SfS{ζn)uk .

But SiζnjUjc e [uk] c [u\, hence (4.4.1), (4.4.2) show that there are
vk e [u\ such that

(4.4.3) (fo-^-w.

Operating on (4.4.3) with E({ξQ}'), we get

(4.4.4) (&

But by 4.3 E({ξo}')vk e fe] c [^]; therefore, by what has been proved
thus far, E({ξo}')vk is of the form

(4.4.5) E({ξoy)vk = Km (|0 - S ) 2 ^ , , vfcll e [w].

From (4.4.4), (4.4.5) our lemma follows.

4.5. THEOREM. If S is a spectral operator which satisfies the as-
sumptions of 4.3, in particular if S is a spectral unitary operator in
a reflexive space, then it satisfies Condition 3.1.6.

Proof (After [5, Th. 2.11]). Since E{σ) - E(σ n Γo), σ e 93, and
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since E is tf-additive in the strong operator topology, it suffices to show
that E(σ)x e [x] for σ the closed proper subarcs of Γo. Let ξ — ζ(X, 0),
ξ = ξ(μ, 0), Xφ μ, be the ends of the arc

ίξf I] = {ζ(<*, 0) I λ < a < μ if X < μ; a $ (μ, λ) if μ < X} .

We show that !?([£, |])OJ e [x] (the case λ = μ cared for by 4.3). Since
I=E({ζ}) + E({ξ}) + E({ξ}')E({ξ}'), we have

E([ζ, ξ\)x = # ( { # ) * + ^({f})» + E&ξ, ξ\)E{{ζ

By 4.3 we have to show that E(ξ, ξ])u e [x\, where u =
But by 4.4 there exists a sequence zk e [x] such that

, ξ])(S - ξ)\S -
Jc

Thus we have only to show that z e [x] implies

- ζ)\S - ξfz 6 [x] .

Let ξn = ξ(\n, 0), ^n = (//n, 0), where the sequences Xn — λ, //„ -> ^
are so chosen that if λ < μ then Xn < λ < μ < μn, while if /̂  < λ then
μ < μn < Xn < X. It is shown during the proof of [5, Th. 2.4] that,
since S has 1 as an index function, (S — ξf(S — ξf is of the form

(4.5.1) (S - ζ)\S - ξγ = lim (7(λ, μ) + I(μn, λn)) ,

where I{a, β), —l<a,β<l,aΦβ, are certain operators, the manner
of definition of which is explained in [5, Lemma 2.4], which enjoy the
properties:

(4.5.2) I(a, β)[x] c [x] (J(α, β) being a line integral of S(ξ)).

(4.5.3) σ(/(α, /9)τ/) c [ξ-(α, 0), f(/3, 0)], » e ϊ [S, Lemma 2.4].

Let « e O]. Then, by (4.5.1),

(4.5.4) E([ξ, ξ\)(S - ?)2(S - SYz

- lim (£/([f, |]/(λ, /i)« + £?([?, |])7(//w, Xn)z) .

But by (4.5.3) σ(I(X, μ)z) c [f, £], σ(/(^M, λ n » c [ξn, ξn] and hence by

1.2 #([£, a)7(λ, /£)« = J(λ, ^ and

^ , \n)z

- E(φ)I(μn, Xn)z = 0 .

Thus (4.5.4) takes the form

E([ξ, ξί)(S - ζf(S - φ = /(λ, μ)z ,

and we may conclude E([ζ, ξ])(S - ζ)\S - ξfz e [x] from (4.5.2).
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Generalizing the Hubert space terminology, a two sided sequence of
vectors {a?n}*—.« is called stationary if and only if the norm of any
finite linear combination Σ?=iαA+ft *s independent of h. If U is a
unitary operator in £ and x e X, then the sequence {£7wx}̂ _oo is station-
ary. Conversely, if {xn}n--oo is stationary and 2) is the subspace spanned
by this sequence, there exists a unique operator U e J3(2)) which satisfies
Uxn = #n+1, an integer. U is unitary in 2) and is termed the shift
operator of {xn}. We call a stationary sequence spectral in case its
shift operator is spectral.

The final statement of the following theorem replaces the problem
of characterization of reflexive spaces every unitary operator of which
is spectral by that of characterizing spectral stationary sequences. This
"local" form of the problem seems more appropriate since the spectrality
of every unitary operator in a space X may depend not on "regular"
properties of'X but on an irregularity which renders the class of unitary
operators very sparse.

4.6. THEOREM. Let U be a unitary operator in 3c. Then conditions
3.1.1, 3.1.2 and 3.1.3 are necessary in order that U be spectral. If 1
is reflexive, then each of the conditions 3.1.1 to 3.1.5 is necessary and
sufficient and it is sufficient to let f in these conditions range over
polynomials. For a reflexive X, U is spectral if and only if every
stationary sequence it generates is spectral.

Proof. The first statement follows from 4.2. and 3.1. It follows
from 4.5 and from the fact that σ(U), being a subset of the unit circle,
s an i?-set that if ϊ is reflexive, all the parts of Theorem 3.1 are ap-
plicable. Let g 6 R(σ(U)). Using Cauchy's integral formula, it may
be proved that there exists an admissible domain τ (in the sense of
[4, Def. 2.2]) which contains <J(U), such that g is uniformly approximable
on τ by functions of the form

(r may depend on g, but not on the approximants. Cf. [1, p. 398]).
Since σ(U) is contained in the unit circle, we may assume, diminishing
τ if necessary, that the complement of τ is either connected or consists
of two components at most, one of which contains the point ξ — 0. In
either case it follows from [13, p. 47, Th. 15] that the functions h, and
hence g, are uniformly approximable on τ by polynomials / in ξ and
ξ-\ Thus these polynomials form a dense subalgebra of R(σ{U)), and
by the continuity of the functional calculus, the corresponding /(Z7)'s
are dense in {g(U)\g e R(σ(U))} in the uniform operator topology. From
the proof of 3.1 it is seen that we may replace R(σ(U) and R(σ(U\ [x]))
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by any subalgebra of R(σ(U)) with these properties. Since U is unitary,
the conditions of 3.1 remain invariant if the involved functions are
multiplied by ξk, k an integer. Therefore polynomials in ξ will do.
Finally it follows from what has been shown above that the subspace
spanned by a stationary sequence {Unx}ζ=_oo is [x]. Thus the final
statement follows from the fact that 3.1.4 is the same as 3.1.1 for the
shift operator.

5«. Examples of non spectral unitary operators* Let Ω be a com-
pact Hausdorff space. The unitary operators in C(Ω) are the operators
of the form (Ux)(ω) = μ(ω)x(h(ω)), ω e Ω, where h is a homeomorphism
of Ω on itself, μ e C(Ω) and | μ(ω) | == 1. This is proved in [12, pp.
469-472] for the real case, but the proof can be modified to apply to
the complex case too by the use of an argument of Arens in a similar
situation (v. [9, p. 88]). The following theorem treats only the case that
h is non-periodic; for the case that h is the identity mapping Cf. Example
2.2 above.

5.1. THEOREM. Let Ω be a compact Hausdorff space, and let U of
the form (Ux)(ω) — μ(ω)x(h(ω)) (h, μ as above) be a unitary operator in
C(Ω). If h is non-periodic, then U is not spectral.

Proof. By 4.2, 3.1 and the fact that o{U) is contained in the unit
circle (actually, coincides with it), it is sufficient to show that there
exists no finite constants H such that

(5.1.1) \\f(U)) II < Hm*κ\f(ξ) |, / a polynomial in ζ.

Let us calculate | |/(17) | | . If f(ζ) = Σ L o ^ f c , then

(5.1.2) (f(U)x)(ω) = Σakμ(ω)*x(h?*(ω)) ,
fc=0

where h07c denotes the kth iterate by substitution of h(hoo(ω) = ω). By
hypothesis there exists an ω0 e Ω such that the points hOJC(ωo), k — 0, 1,
• • ,w are distinct. Since Ω is Hausdorff, there exist pairwise disjoint
open sets πk, k = 0, 1, •••, n such that hok(ωo) e πk. Since a compact
Hausdorff space is normal, it follows by Urysohn's lemma that there
exist functions yk e C(Ω) such t h a t yjc(holc(ωo)) — 1, yk{o)) — 0 for ω e π'k
and 0 < yk(ω) < 1 on Ω. We define x0 e C(Ω) by

) 2 Λ

Substitution in (5.1.2) gives
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Since \\xo\\ = 1, \\f(U)\\ > Σϊ-o I α* I (actually | |/(Ϊ7)| | = Σϊ-ol"*l). The
necessary condition (5.1.1) now takes the form: there exists an H < oo
such that for every polynomial f(ξ) = Σ*=<>#*£*>

Σ | α f c | < f l max|/(?) | .

To contradict this statement we use the following example of Hardy
[8, § 14]. The series

ϊ 7 =>
fc=2 log k

converges uniformly for | ξ\ = 1, while the sum of the absolute values
of its coefficients diverges. Therefore the polynomials which form its
partial sums furnish us with the required counter example.

5.2. THEOREM. In each of the sequence spaces lp, l < p < o o ,

p Φ 2, there exists a non spectral unitary operator.

Proof. If U is a unitary spectral operator in 96, then necessarily
[5, Assumption 1.14]:

( 5 . 2 . 1 ) M ( U ) = swp{\\x\\\xfyeJif\\x + y\\ = lf σ(x) n σ(y) = Φ} < oo .

This follows from the boundness of E by 1.2. Even if ί/is not spectral,
the conclusion of 1.1 holds because o(U) is nowhere dense; and thus
σ(x) and M(U) are definable. We show that in each of the considered
spaces there exists a unitary operator U with M(U) — oo.

Let p, 1 < p < oo, p ψ 2, be given. We denote by Hό a space of
the type lp>n or ^ (the last possibility is needed only for the remarks
made after the theorem). If {ByjU is a sequence of such spaces, we
denote by ΣΓ=i©£; the Banach space of all sequences {Xj} with x3 6 lj
and

( oo \ 1/p

Σ I I ^ lK) <oo (if p =
If for each j , T} e B(Xj), we denote by Σ Γ = i θ ^ the transformation Γ
defined on (part of) ΣΓ-i θ ^ by Γ{x, } = {Γ^j}

5.3. LEMMA. If ϊ = ^ β l i φ ϊ J α?wί /or eαcfe j Z7j is a unitary
operator in Hjy then U = ΣΓ-i ® Uj is a unitary operator in 3c
M(U)

Proof. That U is unitary is obvious. If Xj e Tί5 for a definite i,
we denote by xf the vector {τ/fc} e 3£ defined by /̂̂  = xjf yk — 0 for & ̂  i
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Since the operation * is linear and norm preserving, (ζ — Uό)xό{ζ) = x3

for ξ e pUj(Xj) implies (ξ — U)x3(ζ)* = xj where x3{ξ)* is analytic on
pσ(xj). Therefore σσ(xf) c; σσ(x3). It is obvious how to complete the
proof.

Since lp is linearly isometric to Σ~=i Φ ,̂w where % are arbitrary
natural numbers, 5.3 shows that we have only to find indices n3 and
unitary operators U3 in lPtn such that &u]?3M(U3) = oo. Let φj9 j — 1,
•• ,n, be the natural basis of ZPtW. Henceforth Ϊ7W will denote the
unitary operator in lp>n determined by the requirements Unφ3 = φ j + 1 ( m o (in ).
The following lemmas will show that supw M(Ϊ7n) = oo, which will finish
the proof.

We now use tensorial products as in [10]. If x — (xlf •••, xn) e lp>n9

V = (l/i, * ,2/J € ZPtTO, we define a? (g) ̂ / to be the vector (xλy19 xλy2, ••-,
XiVmt v*Vi, oo2y2f , cca#m, , x^i, a?n2/2, , xnym) of ίp,nm. This is a Kro-
necker product [7, p. 208], and the norm is a cross norm with respect
to it, that is | |#(x)2/| | = | | # | | | | 2 / | | . The tensorial product of linear
operators, T in lp<n and S in lPtm, is uniquely defined by the requirements

5.4. LEMMA. If T, S are linear operators in lp,n, lPt7ϊl respectively,
then στ®s(x (x) y) = {ηθ \ η e στ(x), θ e σs(y)}.

Proof. If T is an operator in a finite dimensional space and / is
the minimum polynomial of x with respect to T, then στ(x) is the set of
zeros of / (cf. [5, p. 589]). We may assume that neither στ{x) nor σs(y)
is empty since this case is trivial. In case στ(x) = {η}, σs{y) — {θ} the
minimum polynomials are of the respective forms (ξ — η)\ (ζ — θ)s

(t, s > 1). By induction on t and s and use of the identity

(T (x) S - yθ)(x ®y) = (T - 7])® Sy + ηx(g)(S - θ)y ,

one shows that the minimum polynomial of x (x) y with respect to T (x) S9

is of the form (ξ — ηθf, r > 1, and therefore σms{x (x) y) — {ηθ} (actually
we need only the case t — s = 1). In the general case στ(x) = {η19 •••,%},
σs(y) = {θ19 , θb] we have by the finite dimensional case of the spectral
theorem ([4, § 1] or [7, p. 132]) the resolutions x = Σ?=A, V = Σ5=i2Λ>
where στ(xt) = {^}, <75(^) = {^}. Let {^|^ e στ{x)9 θ e σs(y)} =
{/Γi, , κc} and let a;fc be the sum of the vectors xt (x) y3 such that
ηiθ} — κk. Since the α?/s are linearly independent and the /̂̂ 's are dif-
ferent from zero (by our assumption x Φ 0, y Φ 0), it follows that 2fc Φ 0.
Therefore, by the case of one point spectra, στ®s(zk) = {/cfc}. Since
% ®V — Σfc-î fc a n ( i since the minimum polynomial of a sum of vectors
with minimum polynomials relatively prime in pairs is their product
[7, p. 68], the statement of the lemma follows.
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5.5. LEMMA. // (m, n) = 1, then M(Unm) > M(Un)M(Um).

Proof. Un (x) Um is determined by requirements of the form
(Un(g) Um)φj = φjΊCy where φJf 1 < j < nm, is the natural basis of lPinm

and 7r is a permutation of the indices. Since (m, n) — 1, π is cyclic, and
it is easily verified that there exists a unitary operator V in i p w w such
that ί7wm = V(Un® Um)V'\ which implies that M{Unm) = M(Un®Um).
Since lPtΛ is of finite dimension, there exist vectors xω, y^ satisfying:
σUn(χW)n σφv>) = φ, || x<» + yv> \\ = 1 and || x& \\ = M(Un). Let χ«>,
τ/(2) play a similar role with respect to Um. Consider the vectors
x = a?̂ ^ (x) a?^2), y = a?ci) <g) ̂ o) + ^cυ (g) a cυ + ̂ ω (g) f , Since σ(Un) is
the set of roots of unity of order n, σσ (xci)) and σσ (y^) are sets of
roots of unity of order n. Similarly for σσ (x™) and σUm(y^). Since
(m, n) = 1, the representation of a root of unity order mw as a product
of a root of unity of order n by one of order m is unique. Therefore
it follows from 5.4 that 0Vn<gσ (#) ΓΊ σσn®um(y) — Φ- By the cross property
of the norm || x + y\\ = ]\ (χ& + y^)0(x^ + y^) \\ = 1 and || x \\ =

) ̂ ) 11 = M( Un)M{ UJ. Thus M( Unm) = M{Un® Um) > M( Un)M{ Um).

5 . 6 . L E M M A . For e v e r y given p , 1 < p < o o , p ^ 2
57 > 1 and positive integers k and m0 such that M(Ukm+1) > )?/or m > m0.

Proof. By calculating the eigenvectors of Z7W, one shows that the
vectors x'= (x19 * ,xn) with σσ (x) disjoint from σUn(y), where y = (1,
1, •••, 1), are those which satisfy Σ ̂  = 0. Thus

M(Z7W) > sup I l | a ? l 1 Σ ̂  - 0, a arbitrary} .

For 2 < p < 00 we chose x = (1, •••,!., —mj(n — m), , —mj(n — m),
where 1 is repeated m times, and

n —
a =

1 4- (VL

V m /
Then if n = Λm + 1, & > 2 and

m—• oo,

tends to
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where t = k — 1. Although the last expression tend to 1 as t —> oo, it
is not difficult to verify that it is greater than 1 for all sufficiently large
values of t; hence a suitable integer k = t + 1 can be found. The case
1 < p < 2 follows by duality: If 1/p + 1/g = 1 then Mq(Un), where the
subscript indicates that ί7w is to be considered as an operator in lQtn9 is
the maximum of the norms of the values of the resolution of the identity
E of Un. The resolution of the identity of £7* = U'1 is E. Therefore
MpiU'1) = Mq(Un). But Un is unitarily equivalent in lPιti to U~\ There-
fore Mp(Un) = Mq(Un); and since 2 < q < oo the lemma is true in this
case too. If p = 1, we may take cc = (1, , 1, — w + 1), α = — 1 ; while
if p — oo, we take the same as and α = n\2.

Finally to see that 5.5 and 5.6 imply supnM(Un) = oo, we have only
to use the fact that each sequence am = km + 1, m = 1, 2, , contains
an infinite subsequence of pairwise prime integers. As pointed out by
Dr. Dov Jarden such a subsequence is obtained by defining inductively

REMARKS. For p — 1, oo the proof of 5.2 yields unitary operators
which are not even prespectral. It applies also to subspaces which
contain all finite sequences. It also follows from 5.2 that if Ω is a
measure space which is not a finite union of atoms, then there exist
non spectral unitary operators in the space LP(Ω), 1 < p < oo, p ψ 2.
An operator U in lp, 1 < p < oo, p ψ 2, is unitary only if determined
by Uφj — \jφH, j = l, 2, •••, where {φ3} is the natural basis, π a
permutation and | Xj | = 1 ([2, p. 178]. The proof goes easily over to
the complex case). We decompose π into disjoint cycles (including the
possibility of infinite "cycles") and consider the unitary operators induced
by U in the subspaces spanned by the φ/s with j belonging to a definite
cycle. One shows that M(U) = sup M(V), where V runs over the
induced operators. Moreover, if we change the λ/s into 1 and the cycle
of F into a standard one, we obtain an operator W with M{W) = M(V).
Hence Condition (5.2.1) depends only on the length of the cycles deter-
mined by π. From Theorem 5.7 it will follow that if in particular at
least one of these cycles is infinite, (5.2.1) does not hold. On the other
hand, it follows from [5, Th. 3.11, Th. 3.12 (III)] that this condition is
sufficient for spectrality of U if 1 < p < oo.

5.7. THEOREM. Let lp, 1 < p < oo, p ψ 2, be the space of two-

sided sequences {αjjl-oo with the obvious norm. Let φJf — oo < j < oo,

be the natural basis of ΐp and U the unitary operator defined by

= <pj+1. Then U is not spectral.

Proof. To facilitate the writing we assume p < oo. From the proof
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of 4.6 through [6, Th. 18 (IV)] (cf. 3.1), it follows that if H{Un) is the
infimum of possible constants in Condition 3.1.1 for polynomials, then
M{Un) < H(Un). Let if be a positive number. Then by the proof of
5.2 there exists an n such that M(Un) > 2K, and therefore there exists
a polynomial g such that ||#(Z7W|| > 2K max^=11 g(ξ) |. If / is a poly-
nomial, f(Un) depends only on the values / assumes at the nth roots of
unity, and in a continuous manner. Therefore, by the approximation
theorem of Weierstrass, there exists a polynomial f(ζ) = ΣίUtAt* such
that \\f(Un)\\>2Kmnκ(n_1\f(ς)\ and 2max^=1 \f(ζ) | > max,^ \f(ζ) |;
hence ||/(Z7n) || > Kmsixιζlml\f(ξ) |. Identifying lPtΛ with the subspace of
ΐp spanned by φlf , φn, we see that there exists an x — Σ ^ I ^ J ^ such
that

(5.7.1) \\f(Un)x\\
|| x\\

It will simplify the notation if we assume, as we may, that the formal
degree s of / is of the form s = rn, r > 1. Let t be a positive integer
and consider the vector x' = Σmt=ίiΣ?-iαj£>(m-DM+.j Then

(5.7.2) f(U)x' - Σ Σ Σ
jjc = o m-i j = l

where the inner summation in the r.h.s. extends over the pairs jy k
satisfying (m — l)n + j + k — (u — l)n + v, where 1 < j < n, 0 <k <
s — rn and 1 < m < r + t. On the other hand

(5.7.3) f(Un)x 4 t βkajφj+Kmoά^ = Σ (Σ β^)φυ ,

where here the inner summation is over the pairs j , k satisfying
j + k = ^(modn) with the same inequalities. For r + l<u<r + t,
the coefficient of 9?(M_1)w+7) in (5.7.2) equals the coefficient of φv in (5.7.3).
Therefore

(5.7.4) \\f(U)x>\\>t^\\f{Un)x\\y

and on the other hand

(5.7.5) \\x'\\ = {r + tγ»\\x\\.

(5.7.1), (5.7.4) and (5.7.5) imply

> l ) 1 ")1"κmax I/(?) I .
/ ιiι-i
)

Letting ί tend to infinity, we get ||/(Z7)|| > Kmax\f(ζ)\. Since iΓ is
l ί l-i
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arbitrary and σ(U) is contained in the unit circle, this shows that U
does not satisfy Condition 3.1.1; hence it is not spectral.

REFERENCES

1. W. G. Bade, Weak and strong limits of spectral operators, Pacific J. Math. 4 (1954),
393-413.

2. S. Banach, Theorie des operations lineaires, Warsaw, 1932.
3. E. Bishop, Spectral theory for operators on a Banach space, Trans. Amer. Math.

Soc. 86 (1957), 414-445.
4. N. Dunford, Spectral Theory I. Convergence to projections, Trans. Amer. Math. Soc.

54 (1943), 185-217.
5. , Spectral Theory II. Resolutions of the identity, Pacific J. Math. 2 (1952),

559-614.
6. , Spectral operators, Pacific J. Math. 4 (1954), 321-354.
7. N. Jacobson, Lectures in abstract algebra. Vol. II—Linear algebra, New York, 1953.
8. E. Landau, Darstellung und Begrύndung einiger neuerer Ergebnisse der Funktionen-

theorie, 2te Auf., Berlin, 1929.
9. L. H. Loomis, Abstract harmonic analysis, New York, 1953.

10. F. J. Murray, On complementary manifolds and projections in spaces Lp and lp,
Trans. Amer. Math. Soc. 4 1 (1937), 138-152.
11. J. Schwarz, Perturbations of spectral operators, and applications, Pacific J. Math.
4 (1954), 415-458.
12. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans.
Amer. Math. Soc. 4 1 (1937), 375-481.
13. J. L. Walsh, Interpolation and appoximation by rational functions in the complex
domain, New York, 1935.

THE HEBREW UNIVERSITY





UNIFORMIZABLE SPACES WITH
A UNIQUE STRUCTURE

I. S. GAL

Here we shall study only uniformizable Hausdorff spaces. In general
if a topological space X is uniformizable then there are many uniform
structures <?/ compatible with the topology of X. If X is compact then
there is only one uniform structure for X and there are also non-compact
spaces whose structures are uniquely determined by their topology. (See
[1] and [2].) The purpose of this note is to give a necessary and
sufficient condition that ^/be uniquely determined by X. Let C(X) be
the algebra of bounded real valued continuous functions on X and let
C(X) be topologized by the topology of uniform convergence on the whole
space X. By A(X) we denote the subalgebra of those real valued con-
tinuous functions which are constant on the complement of some compact
set in X. We shall prove the following

THEOREM. The uniformizable Hausdorff space X admits only one
uniform structure if and only if A(X) is dense in C(X).

Another necessary and sufficient condition for uniqueness was found
earlier by R. Doss [3]: The closed sets Cx and C2 are called normally
separable if there exists a continuous real valued function / on X which
takes the value 1 on Cx and the value 2 on C2. Doss proved the follow-
ing:

Uniqueness takes place if and only if of any two normally sepa-
rable sets at least one is compact.

The following proof of the Theorem makes no use of this criterion
given by Doss. However at the end it will be proved that the criterion
stated in the Theorem and the criterion due to Doss are equivalent.
This gives a new, simpler proof of Doss's theorem. Approximately at
the same time when [3] was published P. Samuel in [5] and T. Shirota
in [6] proved that

Among the uniform structures compatible with the topology of X
there is a weakest if and only if X is locally compact.

The two half s of this theorem are stated as of Lemma 3 and Lemma
6 below. Their proofs are independent of the rest of the paper and so
they furnish a simple proof for the Samuel-Shirota theorem.

A space X is said to be normally imbedded in the space Y if every
real valued continuous function on X admits a continuous extension to
Y. If this property is supposed to hold only for bounded functions one
speaks about a bounded normal imbedding. E. Hewitt in [4] proved
that

Received December 24, 1958.
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The Hausdorff space X is normally imbedded in every uniformi-
zable space containing X as a dense subspace if and only if of any two
disjoint sets at least one is compact.

Among all uniform structures compatible with the topology of a
uniformizable space X there is a strongest called the Weil structure or
the universal structure of X. Its existence follows from the fact that
the union of all uniform structures compatible with X is a subbase for
a uniform structure which is compatible with X. The Weil structure
*%fw is uniquely determined by the following property: If 5^ is a uniform
structure for Y and / : X —» Y is continuous with respect to the topology
of X and the uniform topology associated with 5^ then / is uniformly
continuous with respect to f/w and 5^. In general Ww is not a
precompact structure.

Let X satisfy the criterion given by Doss and let ^ be the unique
structure compatible with its topology. The uniqueness implies that <%/
is identical with the Weil structure of X. Let X be a dense subspace
of the uniformizable space Y and let ^~ be a uniform structure for Y.
The restriction of 5^ to X is the Weil structure of X and so every real
valued continuous function / on X is uniformly continuous with respect
to 3^. Consequently / can be extended to a uniformly continuous func-
tion on Y and so X is normally imbedded in Y. Thus by Hewitt's
theorem one of any two disjoint closed sets of X must be compact.
Combining the present Theorem with the theorms of Doss and Hewitt
we obtain:

Any two of the following statements are equivalent:
( i ) X has a unique uniform structure.
(ii) If Cλ and C2 are normally separable closed sets in X then at

least one of them is compact.
(iii) If Cλ and C2 are disjoint closed sets in X then at least one

of them is compact.
(iv) A(X) is dense in C(X).
(v) X is normally imbedded in every uniformizable space contain-

ing X as a dense subspace.
We omitted the analogue of (v) concerning bounded normal imbed-

dings. For we have:
If X has a unique uniform structure then every real valued con-

tinuous function is bounded on X.
This follows from Lemma 1 below. Using (iii) one can also prove

that any two disjoint closed sets are normally separable.
The following notations will be used: Open sets will be denoted by

O, closed sets by C, neighborhoods by Nx and open neighborhoods by
Ox. For the closure of a set A we write A and cA stands for the com-
plement of A with respect to a given set containing A. Uniform struc-
tures will be denoted by ^ , 5^, •••; the completion of a uniform space
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X with respect to a structure <g/ will be denoted by X and the complete
structure will be denoted by ^/. As usual U o V is the composition of
the vicinities U, 7 e f / and U[x] = [y: (x, y) e U]. If ^ (ί e I)
are uniform structures for X then lub %ft denotes the uniform structure
generated by the subbase U ̂  It is the weakest structure which is
stronger than any £?/i (ί e I). If / is uniformly continuous on X then
/ denotes its extension to X. The structure ^/0 used in the proof of
Lemma 5 is the so-called Cech structure which was introduced by
Samuel in [5]. The fact that the definition given in [5] is equivalent
to the present simpler definition follows from Lemma 4. ^/c is the
strongest precompact structure compatible with the topology of X and
its completion is the Stone-Cech compactification βX.

LEMMA 1. If A{X) is dense in C(X) then every uniform structure
^/ compatible with the topology of X is precompact.

Proof. This follows by a simple argument which is used also in
[3]: Suppose that X is a topological space and ̂ / is a non-precompact
structure compatible with the topology of X. Then there is a symme-
tric vicinity U e ^/ and a sequence of points x19 x2, ••• in Xsuch that
(xm, xn) e U only if m = n. We choose a symmetric 7 e °/ satisfying
V o V <Ξ U and a symmetric W e W satisfying W o W c: V. Since X
is completely regular there is a real valued continuous function fn on X
with the property that | fn(x) | < 1 for every x e X, the closure of
W[xn] is a support of /„ and fn(x) = ± 1 according as n is even or
odd. By W o W ̂  V the closure of W[xn] is contained in V[xn] and
by V o V ^ U the sets V[xm] and V[xn] intersect only if m = n. There-
fore the series Σfn(x) contains for each x e X at most one non-
vanishing term and it defines a bounded continuous function / on X.
Neither {xlf αs3, •••} nor {x2J ce4, •••} is compact and so / can not be
approximated uniformly on X by elements of A(X). Hence the existence
of non-precompact structure implies that A(X) is not dense in C(X).

LEMMA 2. If A(X) is dense in C(X) then X is locally compact.

Proof. Let Ox be an open neighborhood of the point x e X and let
/ be a real valued continuous function on X such that 0 < f(ξ) < 1 for
every ξ e X, f(x) = 1 and f(ξ) = 0 if ξ $ Ox. Since A(X) in dense in
C(X) there is a continuous function g which is constant on the complement
0 of a compact set C and is such that | f(ξ) — g(ξ) \ < ε for every ξ e X.
If Nx — [ξ: f(ξ) > 1 — e] is a subset of C then Nx is a compact neigh-
borhood of x. If this is not the case then 0 and Nx have a common
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point ξ. Then for every rj e O we have

f(V) > g{η) - ε - g{ξ) - ε >f(ξ) - 2ε > 1 - 3ε > 0

and so η e Ox. Since 0 c: Ox where C — cO is compact we see that the
complement of Ox is compact. If this is the situation for every open
neighborhood Ox of x then X is compact. Hence either Nx is a compact
neighborhood of x for every x e X or X is a compact space.

Let / map X into Y and let 5^ be a uniform structure for F.
The sets f~\V) = [(^, α?2): (/(a^), /(α2)) e V] (V e 5 θ form a base for a
uniform structure ^/ for X, called the inverse image of 5̂ " under /.
If / is a real valued function on X and 5^ is the usual structure of the
reals the inverse structure will be denoted by ^ . It is a pseudo-metric
structure which is generated by the pseudo-metric df(x19 x2)= |/(#i)— /(#2)l
If / is bounded then <2/s is precompact. If {/} is a family of real
valued functions on X we call lub ^/f the uniform structure generated
by the family {/}. Every / in {/} is uniformly continuous with respect
to lub ^ 7 . Moreover if ^ is a uniform structure for X and if every
/ in {/} is uniformly continuous with respect to ^/ then lub ^/s < ^/.
If every / 6 {/} is bounded then lub %Sf is a precompact structure for
X. These simple consequences are presented in greater detail in Chapter
IX of [1].

Some interesting uniform structures are structures generated by
families of real valued functions {/}. For example let X be locally
compact and let {/} be the family A(X). Given x e X and a compact
neighborhood Cx of x there is a real valued continuous function f on X
such that f(x) — 1 and Cx is a support of /. Hence Cx is a neighborhood
of x in the uniform topology associated with ^/f. It follows that
<%S = lub ^7 is compatible with the topology of X. Every / e A(X)
is constant on the complement of a compact set and so it is uniformly
continuous with respect to any uniform structure 5̂ " which is compatible
with X. Therefore <%/ < JΓ and so <%/ is the weakest structure compa-
tible with the topology given on X. Hence we proved the following
lemma, which incidentally is an exercise in [1]. (See Chap. IX. p. 16
Exercise 11.)

LEMMA 3. If X is a locally compact Hausdorff space then there is a
weakest uniform structure which is compatible with the topology of X.
It is the uniform structure generated by the family A(X).

The weakest structure if it exists is necessarily precompact. Now
we show that every precompact separated structure can be generated by
families of real valued functions. For let ^ be a precompact separated
structure for X and let X be the completion of X with respect to ^ .
The completed structure will be denoted by <%s. Let *%Sj denote the
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uniform structure generated on X by the real valued function / given
on X. It is clear that the restriction of <?/j to X is the same as the
structure <?/s generated on X by the restriction / of / to X. More
generally if {/} is a family of real valued functions on X then the
restriction of lub ^/j to X is the structure lub ^ . If {/} is the
family of all real valued continuous functions on X then lub ^/j is
compatible with the topology of X and so by the compactness of ϊ w e
have i ^ = lub <2/γ. Therefore w = lub ^7 where {/} is the family
of the restrictions of continuous functions / to X. Since / is the re-
striction of some / if and only if / is uniformly continuous with respect
to <?/ we have

LEMMA 4. Every precompact separated structure ^/ is generated
by the family of those real valued functions which are uniformly con-
tinuous with respect to ^/.

The topology of uniform convergence on X is meaningful on the
linear space L of all real valued functions on the set X: The ε-neigh-
borhood of 0 consists of those functions/ on X for which supr \f(x) | < ε.
Let A, C c: L and let A be dense relative to C. By ^/A and ^/0 we
denote the uniform strutures generated by the families A and C,
respectively. Then for every c e C and ε > 0 there is an a e A such
that I a(x) — c(x) | < ε/4 for every x e X and so

[(a?, y): | c(x) - c(y) \<e\Ώ [(α, y): \ a(x) - a(y) | < -

This implies that every vicinity of *%Ό contains a vicinity of Wo so
that ^/c < ^?SA. If in addition A c; C then ^/A < f/c and so we have

LEMMA 5. If A is dense in C then they generate the same uni-
form structure.

Now it is easy to show that if A(X) is dense in C(X) then there
is only one uniform structure which is compatible with the topology of
X: By Lemma 2 the space X is locally compact and so by Lemma 3 it
has a weakest uniform structure ^/w which is compatible with its
topology. By the same lemma ^/w is generated by A(X). It will be
sufficient to show that Ww is identical with the Weil structure ^ w of
X. By Lemma 1 *%SW is precompact and so by Lemma 4 it is generated
by the family of those real valued functions on X which are uniformly
continuous with respect to ^/w. By the precompactness and by the
definition of <?/w this family is C(X). Since A(X) is dense in C(X) by
Lemma 5 they generate the same structure, that is ^/w = Ww. This
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proves the sufficiency of the condition given in the Theorem.
Now we shall prove that the condition stated in the Theorem is

also necessary. First we suppose that X is a locally compact Hausdorff
space. Let X = X U {<*>} be the Alexandroff compactification of Xand
let %SΛ be the uniform structure obtained for X by restricting the unique
structure of X to X. We prove that a real valued function / is uniformly
continuous with respect to ^/A if and only if / belongs to the uniform
closure of A(X). For compact X this is obvious so we may assume
that X is not a compact space. Since the elements of A(X) are uniformly
continuous with respect to any structure compatible with the topology
of X the same holds for the elements of its closure A(X) and so it
will be sufficient to show that if / is uniformly continuous with respect
to ^/A then / e A(X). However if / is uniformly continuous with
respect to ^/A then it has a continuous extension / to X. By the con-
tinuity of / at oo for every ε > 0 there is a compact set C c X such
that \f(x) — 7(°°) I < e for every x $ C. Let O be an open neighborhood
of C which does not contain co. Since X is normal there is a real
valued continuous function g on X which takes the value 1 on C, vanishes
outside of 0 and satisfies 0 < g(x) < 1 on X. Then h = (/ — f(oo))g +
/(oo) belongs to A(X) and is such that | h(x) — f(x) | < ε for every x e X.

Let us now suppose that A(X) is not dense in C(X). Then there
is an / e C(X) which is not in A(X) and so it is not uniformly con-
tinuous with respect to %SA. Since every element of C(X) is uniformly
continuous with respect to the uniform structure %S0 generated by C(X)
we see that ^A and ΉSa are distinct structures compatible with the
topology of X. This proves the necessity of the condition in the case
of locally compact spaces.

The proof of the Theorem will be completed by showing

LEMMA 6. // the uniformizable Hausdorff space X is not locally
compact then there is no weakest among the uniform structures which
are compatible with the topology of X.

Proof. First we notice that if X is a Hausdorff space and if
the Hausdorff space X is a compactification of X which contains only
finitely many more elements than X then X is locally compact. Now
let ^ be a uniform structure which is compatible with the topology
of the uniformizable Hausdorff space X. We assume that X is not
locally compact. Let B denote the family of those bounded real valued
functions on X which are uniformly continuous with respect to fs and
let 5̂ * be the uniform structure generated on X by B. Then ψ~ is
precompact and is not stronger than ^ Λ Let X be the compact comple-
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tion of X with respect to 5^. By the foregoing remark X — X is an
infinite set. We consider the space Ϋ" obtained from X by identifying
a finite number of distinct points xlf •••, xn (n > 1) of X — X. The
identification space Ϋ will be compact and separated, so it has a unique
uniform structure whose restriction to X will be denoted by CW. Then
Ϋ is the completion of X with respect to 5^~ and X is the completion
of X with respect to ψ\ By Lemma 4 both 3̂ ~ and 5^* are generated
by their families of real valued uniformly continuous functions. A real
valued function is uniformly continuous with respect to ^ ~ if and only
if it is uniformly continuous with respect to 3^ and its extension to
X assumes the same value at xlr ,xn Hence X being separated
there are real valued functions on X which are uniformly continuous
with respect to 3 "̂ but not with respect to <W\ Therefore <W^<Ψ~<^/
and so X has no weakest structure compatible with its topology. Lemma
6 and the Theorem are proved.

We finish by proving that the condition given in the Theorem is
equivalent to the condition of Doss. First suppose that A(X) is dense
in C(X). Let Co and Cτ be normally separated by / . We may assume
that 0 < f(x) < 1 for every x e X, f is 0 on Co and 1 on C1. We choose
a g e A(X) satisfying | f(x) — g(x) | < ε < J everywhere on X. Let g
be constant on the complement of the compact set C. If this constant
value is neither 0 nor 1 then both Co and Cx are compact. Otherwise
we may restrict ourselves to the case when C is a compact support of
g. If x $ C then g(x) — 0 so/(#) < ε and x e Co, — [x: f(x) < ε]. Therefore
cC c Co, c cC12 = [x :f(x) < 1 - ε]. This shows that d = |>: f(x) = l ] c C
and so Cλ is compact.

Next we suppose that X satisfies Doss's condition. Let / e C(X)
and ε > 0 be given. We consider the closed sets Ck — [x : \f(x) — kε \ < ^]
where k = 0, ± 1, ± 2, •••. Their union is X. Any two of the sets
C2k (k = 0, ± 1, ± 2, •) are normally separable so at most one of them
is not compact. Similarly at most one of the sets C2fc+1 (k — 0, ± 1, ± 2, •)
can be non-compact. Moreover if C2fc and C2l+1 are not compact they
must have common points and so

C2k U C ϊ l+1 - [a?: ε(m ~ ~ ) <

for some m. We define

f(x) if x 6 Ck and k < m

ε(m — i) if x e C2k U C2z+i

f(x) — ε if x e Ck and k > m + 1 .

Then I /($) — (̂aj) | < ε for every x e X and g e A{X) because / being
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bounded there are only finitely many non-void sets among the sets Ck.
If only C2Iΰ or only C2l+1 is non-compact the construction is similar.
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HIGHER DIMENSIONAL CYCLIC ELEMENTS

JOHN GARY

Introduction^ Why burn, in 1934, introduced the higher dimensional
cyclic elements [5]. He gave an analysis of the structure of the homology
groups of a space in terms of its cyclic elements. His results were for
finite dimensional spaces, and he used the integers modulo two as the
coefficient group. Puckett generalized some of Why burn's results to
compact metric spaces [3]. Simon has shown that if E is a closed sub-
set of a compact space M, which contains all the (r — l)-dimensional
cyclic elements of M, then Hr(E) & Hr(M)[4]. He also obtained a direct
sum decomposition of Hr(M) using the cyclic elements of M. We will
extend some of these results.

The properties of zero-dimensional cyclic elements in locally con-
nected spaces, and the relation of these cyclic elements to monotone
mappings, is basic in the applications of zero-dimensional cyclic element
theory. We shall give some counter-examples concerning the generaliza-
tion of these properties to higher dimensional cyclic elements.

1. Preliminaries* Throughout this paper M will always denote a
compact Hausdorff space. We shall use the augmented Cech homology
and cohomology with a field as coefficient group. Results stated in
terms of cohomology may be given a dual expression in terms of ho-
mology by means of the dot product duality for the Cech theory.

DEFINITION 1.1. A Γr set in I is a closed subset T of M such
that Hr(K) = 0, for all closed subsets K of T.

DEFINITION 1.2. An Er set in M is a non-degenerate subset of M
which is maximal with respect to the property that it can not be dis-
connected by a Tr set of M.

The proofs of Lemmas 1.3 through 1.9 can be found in the papers
by Why burn [5] and Simon [4]. The proofs given by Why burn are for
subsets of Euclidean space, but they can be carried over to our case
without difficulty.

LEMMA 1.3. Let K be a subset of M which can not be disconnected
by a Tr set. If M = M1[j M2, T^separated (by this we mean Mx and
M2 are proper closed subsets and M1f]M2 is a Tr set), then KdM1 (or,
KcM2).

Received December 24, 1958. The results of this paper are contained in the authors
doctoral dissertation, University of Michigan, 1956. The author wishes to thank Professor
R. L. Wilder for his advice and encouragement.
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LEMMA 1.4. If K is an Er set, then K is closed and connected.

LEMMA 1.5. If Kx and K2 are both Er sets and Kλ Φ K2, then
KλP[K2 is a Tr set. Any Tr set is also a Tr+1 set.

LEMMA 1.6. If K is a non-degenerate subset of M, which can not
be disconnected by a Tr set, then K is contained in a unique Er set
in M.

DEFINITION 1.7. If yreHr(M) and D is a minimal, closed subset
of M such that i*(yr) Φ 0 (where i*: Hr(M) -> Hr(D) is the inclusion
map), then D is called a floor for γ r.

LEMMA 1.8. If γreHr(M) and Ύr Φ 0, then there exists a floor
for 7r.

LEMMA 1.9. If D is a floor for Y, then D can not be disconnected
by a Tr_! set.

LEMMA 1.10. If {E1, •• ,£rw} is a finite collection of Er^ sets in
M, with MΦ \Jΐ=ιEι, then there exist proper, closed subsets, M1 and
M2, of M such that (1) M = Mλ U M2, (2) M1Π M2 is the union of a finite
number of Tr-λ sets (therefore, M1Γ)M2 is a Tr set), (3) M^U^E1.

Proof. The proof will be by induction on n. The case n = 1 fol-
lows from Lemma 1.3.

Assume the lemma is true up to n — 1. Since M is not an Er^
set, we have M=M1[)M2, T^-separated. Let E=\J?s=1E

i. If
(M - E) n (M - (M1 n M2)) = φ, then the desired ^-j-separation of M
could be obtained by using the boundary of an open set in M1Γ\M2>
Therefore, we can assume (M — E) Π (M — Mλ) Φ φ. By Lemma 1.3,
we can assume \Ji=1E

ic:M2 and ^)ΐ^8+1E
tc:Ml9 where 1 < s < n. We

must have Eι(z(M — M^), for 1 ^ i ^ s. Otherwise, we could separate
Eι by the Tr^ set (M- MJn(M1ΠM2). Since (M-E)Γi(M- Mx) Φ φ,
(M - Mx) Φ \jUχE%. Thus, by the induction assumption, (M - Mx) =
Mά\jM5, where IJI^E1 is contained in Λf4 and M4ΓίM5 is the union of
a finite number of Tr-λ sets. If we let Mx = M^M^ and M2 = M6,
then

(1) M^M^M,,

(2) M1f]M2 is the union of a finite number of Tr_x sets,

(3) \JUE^MU

(4) Mx and M2 are proper closed subsets of M.
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2 Cyclic elements and the structure of M.

DEFINITION 2.1. A closed subset A of M is called a Lr set if every
Er-λ set, whose intersection with A is not a Tr set, is contained in A.

The proofs of the following theorems are given below.

THEOREM 2.2. If A is a Lr set, then i*: Hr(M) -> Hr(A) is onto.
Thus, by duality, v . Hr(A) —> Hr(M) is one-to-one.

THEOREM 2.3. Let A be a closed subet with the following property:
if E is an Er^1 set and Hr(E) Φ 0, then E is contained in A. Then
the map i*: Hr(M)—*Hr(A) is one-to-one and, by duality, l κ : Hr(A) —>
Hr(M) is onto.

THEOREM 2.4. Suppose there are only a finite number, say
{E\*- ,En}, of Er^ sets such that Hr(Eι) Φ 0. Let A = \Jn

i=1E
ι.

Then the mappings i*: Hr(M)—»Hr(A) and i^: Hr(A)—> Hr(A) are iso-
morphisms.

REMARK. Theorem 2.4 can not be generalized to an infinite number
of Er-.Ύ sets, as the following example shows. In Euclidean space let

M = D u tu~ i cil w h e r e D = i(χ> y>z) I * = °^2 + y2 ^ ! } a n d c* =
{(x, i/, 2) \z = 1/i, α;2 + 7/2 - 1}. We do not have ^(UΓ-i C*) & Hλ(M),
under the inclusion mapping.

THEOREM 2.5. Lei Y e Hr(M) and suppose U is an open set, such
that if D is a floor for Y, then D is contained in U {see Definition
1.7). Then there exists a γ£e Hr(M, M - U) such that γr = j*(7r

u),
where j * : Hr(M, M - U)-+Hr(M).

THEOREM 2.6. Assume E is an Er^ set in M and N is a closed
subset of M, where N Π E~φ. Then the composite mapping j* ί*: Hr(E)—+
Hr{M,N) is one-to-one. Here, ΐ*: Hr(E) -> Hr(M) and j * : Hr(M)->
Hr(M, N) are the natural mappings.

LEMMA 2.7. Let (M, A) be a compact pair with YeHr{A). If
δ*(γr) ψ 0, where δ*: Hr(A) -> Hr+1(M, A), then there is a minimal
closed set B such that BaA, and δj(γ£) φ 0. Here, δ£: Hr(B)->
Hr+\M,B) and jr

B = i*(jr), where i*: Hr(A)-+Hr(B).

LEMMA 2.8. Let B be a minimal set defined in Lemma 2.7. There
exists a minimal closed set N such that δ*(γ?

β) Φ 0, where δ*: Hr(B) —>
Hr+1(N, B).
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Proof. The proof of these lemmas is obtained from the continuity
of the Cech theory and Zorn's lemma.

LEMMA 2.9. The set N, in Lemma 2.8, can not be disconnected by
a Tr^x set.

Proof. Suppose N— Nx\)N2, where NλΠN2 is a Tr^ set. We will
show this to be impossible, unless N = Nx. Let B be as defined in
Lemma 2.8, and define Bt = NtΠB (i = 1, 2). We will show that the
mapping induced by inclusion

: Hr+\N, B) 2y B2)

is an isomorphism. We use the relative Mayer-Vietoris sequence given

below; note that Γ = JV^niVa is a Tr-λ set [2].

K*
Hr+1(N, B)

i*
K*

Hr(N, N) -> Hr+\N, NX\JB) + Hr+\N, N2ϋB) > Hr+1(N, B\jT)
-> Hr+1(N, N) .

The mappings if and if are isomorphisms by excision, the map K* by
exactness. Using the three exact sequences given below we see that
i* is an isomorphism.

HS~\B Π T)
s ( 5 U ϊ7) —

^ E U T, £ )

U Γ) HS(B n

U T) -* ί

UT,B) .

The first is a Mayer-Vietoris sequence, the second is a sequence for a
pair, the third is a sequence for a triple. Thus if* is an isomorphism.

In the diagram below, since δ|(7^) Φ 0, we may assume δj^φ?^) =£ 0.

, B) 2, B,)

\*f

H'(B)
Φ*®Φ*

We now have δ*φ*(γy ^ 0, since i?8ϊφ?(<γr

B) = 8^T(7r

B) Φ 0. This im-
plies J5X = J5, by the definition of # . Therefore, φf(7i) = YB and
8^T(7B) = δ^(7S) ^ 0. Since JV is minimal, we must have Λ^ = N.
Thus, ΛΓ can not be disconnected by a Tr^ set.
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Proof of Theorem 2.2. We will show S*(γr) = 0, for all 7 reίf'(A),
where δ*: Hr(A) —* Hr(M, A). Suppose not; then choose N and B ac-
cording to Lemma 2.8. Then there exists an Er-X set containing N, by
Lemma 1.6. Let E denote this Er-X set. Since E contains N, we have
EnAzίB. Since Hr(B) φ 0, B is not a Tr set. Therefore Ed A, be-
cause A is an Lr set. This implies that N is contained in A. But this
is impossible, as the diagram below shows. By the definition of the
pair (N, B), δ*i*(γr) Φ 0.

U

Proof of Theorem 2.3. Consider the exact sequence:

^ ^ H'(A) .

Suppose i*(γr) ^ 0, where jreHr(M, A). By Lemmas 1.9 and 1.6 there
is an Er-1 set which contains a floor for i*(7r) Let E be this 2^-i set.
Since E contains a floor for i*(γr), i ϊ r (#) =£ 0. Therefore, EczA; which
implies i*y*(γ*) ^ 0, since £/ contains a floor for i*(7r) Therefore j *
is a trivial map and i* is one-to-one.

Proof of Theorem 2.4. By Theorem 2.3, ΐ*: i7r(A) -> Hr(M) is onto.
If i^(^r) = 0, f or some Zr e Hr(A); then there is a minimal set K such that

(1) ίΓz>A, and
(2) i£(Zr) = 0, where iξ : Hr(A)-> Hr(K) [2]. If iΓ ^ A; then, by

Lemma 1.10, we have K — K^K^ 2>separated. The Mayer-Vietoris
sequence below implies iξι{Zr) = 0, where iξi : iίr(A) -

Hr(Kx Π1Q - Hr{Kλ)

Therefore, K — A and Z r = 0, or ΐ* is one-to-one.

Proof of Theorem 2.5. Consider the exact sequence,

ίΓ(ΛΓ, M - U) — ff^Jlf) - ^ ίf?(ikΓ - U) .

We will show i^(jr) = 0, where γr is the element of Hr(M) given in
the theorem. Suppose ί*(γr) Φ 0; then, by Lemma 1.8, there exists a
floor for i*(γr) contained in M — C7. If D is this floor, then D is a
floor for 7r, since ΐ£ = ΐ ^ ΐ * . Here, ΐ£: Hr(M)->Hr(D) and i^ .H'iM- U)->
Hr(D) are inclusion mappings. Therefore, by the definition of t/, Z) is
contained in U. This is impossible, hence i*(yr) = 0.
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Proof of Theorem 2.6. Let φ^ = j*i*, and suppose φ*(Zr) — 0, for
some Zre Hr(E). Then there exists a minimal closed set K in M such
that KZΪE and ψf (Zr) = 0, where φj: Hr(E)-> Hr(K, K f) N) is analo-
gous to Φ̂  defined above. This follows from Zorn's lemma and conti-
nuity. We will assume K Φ E. Since E is an Er.λ set, we can write
K=K1\JK2, Tr .^-separated. Also, we can assume EaKλ. Consider the
following commutative diagram:

, n κ2)

nHr(K Π N) —
ΐ V?

HAKv&nN)

θ θ θ

Hr(K2Γ\N) - —

The two vertical sequences are Mayer-Vietoris sequences. Also, the
two horizontal sequences are exact. We have

! n κ2 n N) = , n Λ0 = o ,

since K^K^ is a T,._i set. Since Φ%{Zr) = j%iξ(Zr) = 0, there exists a
Z^ e Hr(K n JV) such that ί%(Zl) = i%(Zr). There exists

such that

and

(Z]., Z>) 6 f ζ . ^ Π N) φ ^(X, Π 2V)

r) = Z\. By commutativity,

ψl(Zl, Zl) = i%{Z3

r) = ί*(Zr) ,

, 0) = iξ(Zr) .

By exactness, ψ% is an isomorphism, hence i\(Z\) — ί%i(Zr). Therefore,
j%ήκι(Zr) — j%ή\{Z\) — 0. But this is impossible, since K is minimal.
Thus, K — E and φ* is one-to-one.
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3. Cyclic elements in locally connected spaces* The zero-dimen-
sional cyclic elements in a locally connected continuum have several
useful properties. For example, if the continuum M is locally connected,
then the zero-dimensional cyclic elements of M are also locally connected
and these cyclic elements form a null sequence. Also, the simple
O-links (definition below) are identical with the Eo sets in an lc° space [6].
The examples below show that these properties do not generalize.

DEFINITION 3.1. A non-degenerate subset K of M is called a simple
r-link of M, if K is maximal with respect to the following property:
if M = Mx U M2, 2>separated, then KczM, (or Ka M2). In other words,
K is a maximal subset which can not be separated by a Tr set that
also separates M.

LEMMA 3.2. All simple r-links in M are closed. If Kλ and K2

are two distinct simple r-links in M> then KλΠK2 is a Tr set. If L
is a non-degenerate subset of M that is not disconnected by any Tr set
which also disconnects M, then L is contained in a simple r-link of M.

Proof. The proof is similar to those for the corresponding lemmas
for cyclic elements.

EXAMPLE. We will construct an lcr space M in which the collection
of Er sets does not form a null sequence. This example will also show
that, in an lcr space, the simple r-links need not be the same as the
Er sets.

For each positive integer n, let Rn be a solid, three dimensional
rod of height one and diameter l/2\ In Euclidean three-space, define
/ by / = {(xf y, z) \ x = 0, y = 0, 0 ^ z ^ 1}. Imbed RΛ in three-space so
that Rn is tangent to Rn+ι and the sequence of sets Rn converges to /
(i.e. Rn = {(x, x, z)\xλ + (y - 3/2n+1)2 ^ l/22n+2, 0 ^ z ^ 1}). Let M be
the set [Uw-i-KJU/. Then M i s a compact lc1 space, each Rn is an Eλ

set in M, but the collection {Rn} is not a null sequence. Also, / is a
simple 1-link, but is not an E1 set.

THEOREM 3.3. // M is s — Ic and E is an Er set of M, where
s ^ r, then E is s — Ic.

Proof. Given any x e Ey and an open set U° of E containing x,
then there exists an open set U of M such that U Π E = U°. Since M
is s — Ic, there exists an open set V, containing x, such that VaU
and any compact s-cycle in V bounds on a compact subset of U. Let
Zs be a compact cycle on V Π E — V°. Then there exists a minimal
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closed set K in M such that V°c:Kc: U, and Zs bounds on K. By using
the Mayer-Vietoris sequence, as it was used in the proof of Theorem
2.4, we can show Ka U°. Therefore Zs bounds in U° and E is s — Ic.

EXAMPLE. We will construct a compact lcr space which contains
an Er set which is not lcr. Consider the following curve in three-space:

x = 0, y = ί, z = sin (π/t), for 0 < t ^ 1 .

Expand this curve slightly so that it becomes a solid, three dimensional
figure, which oscillates as it approaches the origin. Let N be this space,
along with its limiting line segment on the 2-axis. Let P =
{(x, y,z)\x = 0,0^y^l,-l^z^l}; then define M= P\J N. Thus
N is an Eλ set in M and M is Ic1 but N is not 0 — Ic.

4. Cyclic elements and monotone mappings, A very basic property
of the zero-dimensional cyclic element theory is the following: if / : M—>
N is a monotone mapping (i.e. the inverse image of any point is con-
nected), M and N are Zc°, and EN is an Eo set in N; then there is an
EQ set in M whose image under / contains EN. This result does not
hold in higher dimensions, as the example below demonstrates. The
best result we have obtained in this direction is Theorem 4.2.

DEFINITION 4.1. A mapping/: M—>iVis r-monotone, if H8{f~\y))=Q,
for all yeN and 0 ^ s ^ r.

THEOREM 4.2. Let f be an (r — l)-monotone mapping of M onto N,
where M and N are compact Hausdorff spaces. If DN is a floor for
yr

NeHr(N), then there exists a floor DM for /*(7^) such that f(DM) = DN.

Proof. Since / is (r - l)-monotone, /* : Hr(N) -> Hr(M) is a one-
to-one mapping [1]. Therefore, /*(γ^) Φ 0. Consider the commutative
diagram below. The vertical mappings are inclusion mappings; and DM

is defined below.

M — > N

f-\DN)

VJM UN

DM —>f{DM) .

The mapping fx is the restriction of / to f'\DN). Therefore, fλ is
(r — l)-monotone. Since DN is a floor for YN, i^(γ^) Φ 0. Since
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/*: Hr(DN)^Hr(f-\D)) is one-to-one, iϊf*(yr

N) = f?i*(yr

N) Φ 0. There-
fore, f~\DN) contains a floor for /*(7^). Denote this floor by DM and
let f2 be the restriction of / to DM. By the definition of a floor,
i ίϋ/*(7i) =£ 0. Since jϊiϊf*(yr

N) = fTftiUv*), we have j*i%(yr

N) Φ 0.
This implies f(DM) = D^, since D^ is a floor for 7Γv

We shall omit the proofs of Lemmas 4.3 and 4.5.

LEMMA 4.3. Let N± and N2 be subsets of M which can not be dis-
connected by a Tr set. Suppose that iV^Uλ^ is not a Tr set. Then
N1{jN2 can not be disconnected by a Tr set.

LEMMA 4.4. Let f: M—> N, and suppose TczN is a Tr set such
that f~\T) is also a Ts set. Also, assume f is a homeomorphism of
M- f'\T) onto N- T. Then, if TN is a Tr set in N, f~\TN) is a
Tr set in M.

Proof. Let if be a closed subset of f~\TN). Denote f'\T) by
Γ"1. In the commutative diagram below ff is an isomorphism, by ex-
cision. Therefore, by exactness, Hr(K) — 0.

Hr(κ, K n T-1) -> Hr(K) — w\κ n T-1)

H'(f(K), f(K n Γ-1)) - H*(f{K)) ->

LEMMA 4.5. Assume f is a mapping of M onto N such that the
inverse image of any Tr set in N is a Tr set in M. If Kcz M can
not be disconnected by a Tr set in M, then f{K) can not be disconnected
a Tr set in N.

EXAMPLE. If / is an r-monotone mapping of M onto N, where M
and N are Zc°° spaces and EN is an Er set in N\ there may not be an
Er set, E", in M such that f{EM)i)EN.

We will construct the example in three space. Consider the follow-
ing solid cylinders:

M i = {(x,y,z)\x2 + y 2 ^ 1, 0 ^ z rg 1}

M2 = {(a?, y , z)\x2 + (y - 2)2 £ 1, 0 ^ z ^ 1} .

The cylinders Mι and M2 are tangent along / = {(x, y, z) \ x = 0,
2/ = l , 0 ^ z ^ l } . Let M3 be an arc joining the endpoints of /, which does
not meet M1[JM2 except at these endpoints. Let M= (J?=i Mi W e

will define a decomposition of M, and will let / : M —> N be the decom-
position mapping.
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To form N, identify all the points in M3 into a single point. Then
the mapping f:M—>N is r-monotone for all r and the restriction of /
to M — M3 is a homeomorphism.

We will show that N is an Ex set. First, neither M1 nor M2 can
be disconnected by a 2\ set. Lemmas 4.4 and 4.5 imply that neither
/(Mj) nor /(M2) can be disconnected by a TΊ set. By Lemma 4.3, N —
/(M,) U f(M2) can not be disconnected by a ϊ\ set, since /(M,) U /(M2)
contains an essential 1-cycle. If if is a closed subset of M such that
f(K)z)N, then Kz) Mλ U M2. Then j ί can be disconnected by a ϊ7! set,
namely Mx Π Λf2. Therefore, there is no £Ί set in M whose image is N.

Note that M is obviously lcr for all r. Therefore ΛΓ is also lcr,
for all r, since / is r-monotone, for all r.
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ON DIOPHANTINE APPROXIMATION AND TRIGO-
NOMETRIC POLYNOMIALS

RICHARD P. GOSSELIN

The usefulness of Diophantine approximation in achieving both posi-
tive and negative results in the subject of trigonometric interpolating
polynomials is well established (cf. e.g. [1], [4]). The trigonometric
polynomials, hereafter called simply polynomials, which we shall con-
sider mainly and designate by In,u{x;f) are those of order n taking
on the values of a given function / at the points u + 2πkj{2n + 1),
k = 0,1, ...,2w. Thus

2n

sin

2
+ 1
(2n-

271

V f(v

•f l)x/2

- u -

Cw) = 2πk

*D (χ)

2 sin (a/2) ' * 2n + 1

It is assumed that / is periodic and defined almost everywhere so that
for almost every u, InΛb(x; f) is defined for all n. Marcinkiewicz and
Zygmund [4] have shown that each p, 1 fg p < 2, there is a function /
of class Lp such that for almost every point of the square 0 ^ x <£ 2π,
0 ^ w <Ξ 2π, IntU(x;f) diverges. They made strong use of the following
classical result of Diophantine approximation: for each x there are in-
finitely many rationale p/q such that | x — p\q \ ̂  1/g2.

Our aim in this paper is to generalize the result of Marcinkiewicz
and Zygmund. The chief tool of proof is a result proved in the next
section, concerning the approximation of reals by rationale in which the
range of the denominators is restricted. In the third section we give
our main theorem to the effect that for any increasing function ψ
defined on (0, oo) there is an / such that ψ ( | / | ) is integrable over
0 <̂  x ^ 2π and such that In,u(x;f) diverges for almost every (x, u).
In the last section we show this result holds for Jackson polynomials.

2. We begin with a preliminary lemma. If F is a measurable set,
\F\ will denote its measure. We shall let C,CU and C2 denote con-
stants, independent of the values of the integers N, M, and m.

LEMMA 1. Let N, M, and m be three integers such that 0 ̂  N< M fg
m/2. Let F be the subset of (0, 1) such that for each x in F there is
an irreducible rational pfq, Q<Cp<q,N<q^M satisfying \ x — pjq \ rg

Received December 10, 1958. This work was supported by the National Science Founda-
tion through Research Grant NSF G-2789.
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1/gm. Then

12JM-N) _ J l l o g 2 ( M + 1 ) < ; | F | < c 12JM-N) + ^
π2m m π2m m

// only 0 ^ ΛΓ < M 5g m, ίfcβw £/̂ β second inequality above holds.
F is the union of intervals of the form (pjq — 1/gm, p\q + 1/gm).

The number of irreducible rationals with denominator g of the above
form is φ(q) where φ is the Euler function. The contribution to the
measure of F from a given q is no more that 2φ(q)jqm so that the
measure of F does not exceed

A Σ - ^
m β-jv+i g

Let i/r(0) = 0, ψ(w) = ΣJ=iΦ(g). Applying AbeΓs transformation to the
above sum, we obtain

(1) \F\<-*- v ΉQ) I 2 I t W V K ) I
TO «-^+i ?(? + 1) TO I M + 1 (JV + 1) 1 '

By a known theorem (cf. e.g. [3, p. 120])

(2) - | f l - CΛ log (« + 1) ^ ψ<?) ^J^L + ClQ log (g + 1) .

Substitution of (2) into (1) gives

2 g + 1+ 1 π2m π2m(N + 1) m

This implies the second statement of the lemma. In case M ^ m/2,
there is no overlapping of the (open) intervals (pίq — 1/gm, p\q + 1/gm).
For otherwise, there are distinct rational r/s, p\q (let us say r/s > pjq)
of the required form such that

0 < ϋ - JL < J L + _JL and 0 < rq - ps < q + s ^ 1 .
s q sm qm m

This contradicts the fact that rq — ps is an integer. Thus

Σ

m Q=^+I g

Now the inequality (2) implies the lemma.

THEOREM 1. (i) Let m be a sufficiently large positive integer, and
let γ be a real number such that 0 < y < 7Γ2/12. Let E be the subset of
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(0,1) such that for each x in E there exists an irreducible rational
PIQJ 0 < p < q, γm < q <̂  m for which \ x — pjq | <̂  1/γm2. Then there is
an absolute constant C such that

- Cm~ι log2 m .^

(ii) Let γ be a real number such that 0 < γ < τr2/24. Let Eλ be
the subset of (0, 1) such that for each x in Eλ there exists an irreduci-
ble rational p\q, 0 < p < q, γm < q ^ m, ^ i t t g odd for which
\x — p/q\ ^ 2/γ2m2. T%βw ίfcβrβ is an absolute constant C such that

1^1 ^ 1 - ^ L - C m - M o g ' m .
7Γ2

As in the proof of the theorem mentioned in the introduction (cf.
[6, p. 43]) we may find for each x in (0, 1) an irreducible rational p\q
such that

(3) \x~Plq\ ^ — , 0 < q^m .

If a; is restricted to the (open) interval I = (1/m, 1 — 1/m), then 0 <
p < q. We shall say g and x are associated if (3) holds with x in J
.and with pjq irreducible, 0 < p < q, 0 < q ^ m. Let Fx be the subset
of / for which all q associated with x do not exceed γm. Since each
x is associated with some q, the set F1 is a subset of the set F of
Lemma 1 for which N = 0 and ikf = [γm], the greatest integer not ex-
ceeding γm. We may assume without loss of generality that γm > 1.
Let E be the complement of Fλ with respect to /. Since the measure
of F does not exceed 12γ/7r2 + Cm~ι log2 m, part (i) follows from (3) and
the inequality q > γm.

Let F2 be the subset of I for which all q associated with an x in
F2 are such that (1 — γ)m < q ^ m. F2 is a subset of the set i*7 of
Lemma 1 for which M == m, iV = [(1 — γ)m]. Let £Ί be the comple-
ment of Fλ U F2 with respect to /. Then | Eλ \ ̂  1 - 24γ/π2 - Cm-1 log2 m.
If x belongs to Eu there is a g associated with x such that γm ^ q ^
m(l — γ). If q is even, we may find integers η and ξ such that

where )? must be odd, and automatically ξjη is irreducible. Let ηQ be
the least positive solution of (4) (cf. [1] for a similar argument). If

it follows that

qτ]0
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and

(5) X -A X —

Q
+ JL

q
_ j ^

qm γ 2m 2

If η0 < γm, let ηι — ηϋ + q. Then γm ^ g ^ ^ ^ γm + g ^ m, and (5)
holds with ξolηo replaced by ξγ\r}λ. We may assume that γ2 > 1/m so that
0 < | < ?? ̂  m as required.

3* We begin this section with a lemma which is related to the
results of the preceding section, but it contains only as much informa-
tion as will be used in the proof of the next theorem.

LEMMA 2. Let m be a sufficiently large integer, Am a real satis-
fying 1 ^ Am ^ logm, and d logm an integer with 8 < d < 10. Let ^i^
be the set of odd positive integers 2n + 1 not exceeding m and such
that

( 6 ) μm - (2n
AΛ1/2

for some (μ, v) such t h a t

0 < μ <J v g: d log m.

Let G be the subset of (0, 1) such that for x in G, there is a 2n + 1 in

Λ* and ak,0<k<2n + l for which \ x - kj(2n + 1) | ^ 2Aιi2jm\ Then

, G | ^ 3βcZ2log3m
== m

For a given μ and v, no more than 1 + 8A1Jι

2/v integers 2n + 1
satisfy (6). For a given v, no more than v + 8AH2 integers may satis-
fy (6) for some μ <; v. Hence N, the number of distinct integers in
Λζ does not exceed d2 log2 m + 8dA]i2 log m. If x belongs to G, x is con-
tained in an interval of length AA]^jm2 centered about some point
kj{2n + 1). For each 2w + 1, the total length of the intervals is no
more than 4A^2/m. Thus,

log 3 m

m m

THEOREM 2. Let ψ be a monotone increasing function defined on

(0, co). There exists a function f such that ψ ( | / | ) is integrable on

(0, 2π) and such that the sequence InΛ
x:>f) diverges for almost all

points of the square 0 ^ x rg 2τr, 0 ^ u ^ 2π.

Let Am be a positive number satisfying the inequality 16 ^ Am g

(logm) 1 / 2. A more exact specification of Am will be given a t a later
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point. The function / will be a sum of periodic, step functions fm

the following form. When x belongs to one of the intervals
of

x — 2πjlm | ^ j = 0, 1, , m — 1

let fm(x) = Am; when x belongs to one of the complementary intervals
of (0, 2π) let fm{x) = 0. Let Eλ be the set of Theorem 1, part (ii), cor-
responding to m and γ = A^l!\ and expanded to the interval (0, 2π) on
the u axis. For m sufficiently large, | JÊI ^ 2ττ(l - 25lπ2A1Ji

4). Let G be
the set of Lemma 2 expanded to the interval (0, 2π) on the u axis. Let
Em be the difference set Ex — (G U Ĝ ) where G1 is the set of u such
that |w| ^ 2ττ/(log m)1/2. By our above estimates

( 7 ) £L > 2τr 1 - 25 36d2 log3 m
11/4 m (log m)1/2 J

Let EmJ be the set Em translated by — 2πjlm, j = 0, 1, , m — 1:
i.e. % belongs to EmJ if and only if u + 2πj/m (modulo 2τr) belongs to Em.
Let — u belong to EmJ We may assume that — u + 2πj/m belongs to
the interval (0, 2π). Since £7m is a subset of £Ί, there exists, according
to Theorem 1, part (ii), an odd integer, 2n + I, mjA)lΐ <̂  2n + 1 ^ m,
and an integer fc,0</b<2w + l, such that

( 8 ) u —
2πj
m

2πk

2n
AπA

m2

1/2

This inequality implies that fJu + 2πkj(2n + 1)) = Am. Since — u + 2πjlm
does not belong to the set G, the integer 2^ + 1 cannot belong to the
set ^ r defined by (6). If fJu + 2π(k + μ)\(2n + 1)) = Am for some
nonzero integer μ, then there must be a nonzero integer v such that

( 9 ) u —
2π(j + v) , 2π(k

2% + 1 m

We may assume that μ > 0, v > 0. The inequalities (8) and (9) imply
that

(10)
2n + l m

11/2

m2

and (10) implies that μ^v. For if μ > v, then

μ v ^ 1 ^ 44
2n + 1 m

It also follows from (10) that

+ 1 m3
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1)

Comparison of this inequality with (6) shows that \v\ > c£(logm). Our
analysis shows, in fact, that if fm(u + Xin)) = Am, then fm(u + x[%) — 0
when | v \ ̂  d(log m) and 2n + 1 does not belong to ,sK For each
j" = 0, 1, , m — 1, let 7̂  be the set of the x axis defined by

π x —
2πj_
m

π
m

If x belongs to Iu and if — u belongs to EmJ, then we find from (8)

that

x — u —
2πk

2n + 1
/y

π
m

I

2πk
~ 2n +

Sπ

2πj

m

m 2m

for some k and for some n for which m/A]^ <: 2n + 1 ^ m. Furthermore

2πk
2n + 1

> x —

π
mAϊ

m
u +

2πk
2n + 1

π

2πj

m

These inequalities imply that

(11) X

2n

m
ΊΓ

sin (n + — )(x — u)

Now we are ready to estimate In,u(x fm) with x in /j and — u in

(12)

s in— (x — u — x[n))
Li

sin 4 W ) ) ( - 1)'

*n -r ί w* s i n — ( a ; - u - x i H ) )
Li

Denote the first and second terms on the right by Dx and D2 respectively.
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By (8) and (11)

(13) 1 Al ^ 2 | s i n ( W + V2){X - U ) l m A m ^ |Hin(n + l/2)(x , ) |
S(2n + 1) 3

We may assume that for the terms of D2, | x$n) — x(

k

n) | ^ π so that ex-
cept possibly for one term of the sum which can be ignored, | x — u —
x(tn)\ ^ π. Hence for the terms of D2y\sin2-1(x-u-x?)\
and

\D I < ^lsin(^ + l/2)(x-^)l y fju
2 + 12π + 1 «*i I a; - % - α ί n ) |

The denominator of the terms in the sum increases with | i — k \. Fur-
thermore if i and ir are distinct values of the index for which the
numerator is nonzero, then \i — k\ > cίlogm, \ir — k\ > dlogm, and
I ί — ir\ > cΠogm. Thus we find that

2π 1 sin (n + l/2)(a? - ^) 1 Am | , 2^ + 1
2n + 1 ? =i 2τrrd log m

2n + 1 \
cZ log m \ 2cZ log m /

We denote by <j/> the least integer ^ y. From this inequality and from
(11), (12), and (13), we deduce that if x belongs to Ijy and if — u be-
longs to EmJ, there exists an integer, 2n + 1, and a positive constant
C such that

(14) I /„,„(» /„) I ̂  CI sin (w + l/2)(x - tt) \Am ^ j

The product set I3 x £7m>j of the αm-plane has two dimensional
measure equal to 27r|2?m|(l — A^'A)jm. There are m such mutually dis-
joint sets, and the total measure of their union, Hm, is 2π\Em\(l — A~1/4).
Thus if (x, — u) belongs to HmJ then (14) holds for the proper n. We
note here that lim | Hm \ = 47Γ2 if lim Am = oo.

Let

(15) f(x) - Σ/»(«(»)
i = l

We shall impose various conditions on the sequence of positive integers
m(ΐ), all related to the rapidity of its growth. Let {BJ be a sequence
of reals going to co so that Yxj<iBj ^ B\f\ Let m(i) increase so rapid-
ly that log m(ϊ) ^ B\ and that

(16) t ( 2 i ? t )

m(ΐ)
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Let Am(i) = Bt so that Am{i) <: (logm(ΐ))1/2 as required. Now fm(x) is 0
except on a set of measure not exceeding kπA^jm g 47r(logm)1/7ra. Let

ij m{%) j i

It follows that the series in (15) converges almost everywhere and that
Έι7=ifmu)(χ) i s 0 outside a set of measure Aπp^ Let JBΓ€ be the set of
x values for which fm(i)(x) Φ 0, and fmU)(x) — 0 when j > i. The iΓ/s
are mutually disjoint, and their union is, except for a set of measure
0, the set where f(x) Φ 0. Moreover, \Kt\ <J 47r(logm(Ό)1/7rn(i). When
α? is in Kiy

ψ(I f ( x ) \ ) ^

Thus by (16)

\^ψ(\f(x)\)dx£±ψ(2Bi)\Ki\ < ex, .
Jo i=i

In the estimation of the interpolating polynomials, we shall require
certain other conditions. Thus we assume that / belongs to Lp for some
p > 1 and that

^ 2 " J j>i

From this it follows that

(17) ['{Zf^iWdx ί£ Σ 1̂ 1(2̂ )" ̂  --f.r
J ji jι m(%)

Furthermore we note that ^%\fmU){x) is a function of bounded
variation so that, for each u, the interpolating polynomials converge to
the function at every point of continuity, i.e. outside a finite set [6; p.
36]. Thus, given m(l), m(2), , m(i — 1), we choose m(i) so large that
for 2n + l^ m(i)IB\14,

(18)
i-l

Σ

for (α;, u) outside a set of two dimensional measure not exceeding 2~\
Finally since lim | Hm \ = 4π2, the m(ί) can be spread out so sparsely that

(19) Σ | f l i (« l<«>
i = l

where i?4 is the complement of Hm.
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To estimate In,u(x;f), we let m(i)!B\14 £ 2n + 1 ̂  m(i). Then

\Δ\J) lnίU(X\ J ) = lnv\X ] 2^Jm(j)) ~Γ ίn,u\% > / m(ί)) ~Γ ^w,ιΛ ̂ > Z-jJm(j))
j<i J>i

Let #(x, tt) be the maximum of the absolute value of the last term on
the right for 2n + 1 ̂  m(ί). A result of Marcinkiewicz and Zygmund
[4] implies that

W> u)\»dxdu g Σ

and the last term on the right does not exceed Cp2~ι by (17). Cp is
a constant depending only on p. Thus

max

outside a set of measure 2~\ This, together with (18) and (20), implies

=

outside a set of measure 2~ί+1. Combining the above with (14) implies
that for each (x, — u) outside a set of measure \H'n{i)\ + 2~i+1, there
exists an n and a positive constant C such that

\ -*-n,u\X] J )\ ~ ^Aiι(i)

From (19) this inequality is true for almost every (x, — u) with sufficient-
ly large i and appropriate n, and the theorem follows.

4 That Theorem 2 holds for Jackson polynomials is relatively easy
to prove. We have

(n + I)2 *-o * ΐ sin 2"1(> - w - ί^) ) ' * n + 1

(21) / i x / ) ̂  f'(u + ^> : > ̂  S ί n 2 ' 1 ( W + 1 ) ( X ~ M ) Γ

Thus all of the previous proof devoted to showing that there was not
undue interference with one dominant term is now unnecessary. The
rest of the proof is very much like the previous one. With some adjust-
ments in the function, we gain additional information.
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THEOREM 3. Given ψ as before, there exists f such that ψ(\f\) is
integrable over (0, 2π) and such that the sequence Jn,u(x>f) diverges for
almost every point of the square 0 ^ x tί 2π, 0 ^ u ^ 2π. Further-
more for any p ^ 1 and ε, 0 < ε < 1, there is a function f of class Lp

such that for almost every point (x, u)

lim

Let α, β, and Am be positive reals to be specified at a later point.
Let fm be a periodic step function of the following form. When x be-
longs to one of the intervals

x —
2πj

m m2
j = 0, 1, •••, m - 1

let fm(χ) — Am when x belongs to one of the complementary intervals
of (0, 2τr), let fjx) = 0. Let Em be the set E of Theorem 1, part (i),
corresponding to m and ym = A~α, expanded to (0, 2π) of the u axis.
Let EmJ be the translation of Em by — 2πjlm; and let Ij be the set of
the x axis such that for some j satisfying 0 ^ j S m — 1,

mAt
x —

2πj

m
π
m

Given — u in Em>j and x in Ijf there exists an n, mAm

a <: n + 1 ^ m,
and a fc such that

m m2

For proper choice of Am9 we have as before

π 3ττ
2m

so that from (21) Jn,u(
χlf) exceeds Air2^/10. Since | | / T O | | | = 4πAi+"lm,

we need only have Aζ+(* = o(m) to write /(#) = ΣΓ-i/OTci)(«) with the
m(i) spread out sufficiently. If a and β are small, the result follows.

Since the sequence of Jackson polynomials corresponding to a con-
tinuous function converges uniformly to that function [6; p. 47], it is
essentially only for the class of bounded functions that the question of
the behaviour of the Jackson polynomials on the square 0 ^ x <̂  2τr,
0 ^ u S 2π is unresolved. However this is no longer true for the or-
dinary polynomials IntU(x;f) which may act in a quite irregular way
(cf. [2], [5]); and the behaviour of In,u(x\f) for / continuous still pre-
sents a problem of considerable interest.
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GENERATING SETS OF ELEMENTS IN
COMPACT GROUPS

GILBERT HELMBERG

1. Preliminaries* It is well known that compact topological groups
have many properties similar to those of finite groups, which are of
course special cases of compact topological groups under the discrete
topology. The program of this paper is to characterize sets of elements
in a compact topological group which generate a given subgroup and,
conversely, to determine properties of the subgroup generated by a given
set of elements by an investigation of the properties of this set. Tools
for our investigation are the convolution algebra of continuous complex-
valued functions on the group and the system of irreducible represen-
tations of the group. We shall also formulate the results using those
concepts. Our results are straightforward generalizations of known
theorems on generating sets of elements in finite groups1.

From now on G will denote a compact topological group which, as
a topological space, is Tx. It follows that G is Hausdorff and, there-
fore, also normal. Let e denote the identity of G. A subset H of G
will be called a subgroup of G if it is an abstract subgroup of G and
closed, unless the contrary is specifically stated. Let μ denote the nor-
malized Haar measure on G: μ(G) — 1.

A subgroup H with positive measure μ(H) > 0 is necessarily both
open and closed, as are all (left) cosets of H. Thus a compact group
G with such a subgroup is disconnected and the quotient-spaces GjH
(with respect to left cosets of H) is finite and discrete in the quotient
topology. Then l/μ(H) is the index of H in G. The quotient space of
G with respect to left cosets of a subgroup of measure 0 contains in-
finitely many elements and is again compact, Hausdorff and normal.

Let C denote the field of complex numbers and C(G) the set of all
complex-valued continuous functions on G. Defining scalar multiplication
and addition in C(G) pointwise as usual, C(G) becomes a Banach-space
under the uniform norm: | | / | | = sup x e σ {|/(ίc)|} (/ e C(G)). Defining
multiplication in C(G) by convolution,

= f(ooy-1)g(y)dy ,
io

C(G) becomes a Banach algebra. Left and right translations of / e C(G)
by s e G are defined by sf(x) = f(sx) and fs(x) = /(as) respectively.
Both s / and fs are functions in C(G) and every / e C(G) is both left

i See [2].
Received April 28, 1958. Presented at the 65th Annual Meeting of the American

Mathematical Society in Cincinnati, Ohio. January 28-30, 1958.
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and right uniformly continuous.

DEFINITION 1. The subgroup H of G is said to be generated by
a set M c G if it is the smallest subgroup of G containing M.

The subgroup generated by M will be denoted by H(M). It is
evidently the closure of the set of all finite products of positive and
negative powers of elements in M. From a theorem of Numakura2

about compact semigroups it follows that H(M) is already the closure
of the set of all finite products of positive powers of elements of M.

2. Subsets of G and corresponding ideals in C(G). With every non-
void subset M of G we shall associate the set F{M) of all functions
/ 6 C(G) invariant under right translation by every element s e M.

F(M) = {/:/ 6 C(G),f8 = / for all s e M} .

Obviously F(M) is non-void, since it contains the constant functions.
It is clearly a linear subspace of C(G), and it contains with every
/ 6 F(M) the function a * / if a e C(G) since

(α */).(«) = (a*f) (xs) = ( a(xsy-1)f(y)dy
Jo

=(a*f) (x) .= \

F(M) is therefore a left ideal in C(G).
It is clear that Mx a M2 implies F(MΎ) Z) F(M2). If M is the closure

of M in G we have therefore F(M) z> F(M).

LEMMA 1. F(M) = F(Λf).

Proof. We have to show F(M) c F(M). Assume that there is
/ 6 jP(Λf) such that / $ F(M). Then there i s m e ϊ such that f^Φf
and

(1) l l / m - / l l > α for some α > 0 .

Because of the uniform continuity of /, we can choose a neighborhood
F of e such that

^if χ-*ye V.

The set m F i s a neighborhood of m and contains a point m e M. Then
2 See [6] p. 102.
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\f(xm) - f{xm)\ < — for all x e G
Li

since {xmYλxm = m~λm e V. Since f(xm) = fm(x) and f(xm) = f(x) it
follows that \\f^ — f\\ < a/2 which contradicts our assumption (1).
Hence /™ = / and / 6 F(M) for all / e f(M) and the Lemma follows.

Now let / e F(M) and a e M, b e M. Clearly fe = /. Since
f(xa) = f(x) for all x e G, we also have /(ra^α) ^/(xα"1) for all x e G
or /o-i = /. Moreover fjx) = fb(xa) = /(αα) = /(α) for all x e G.
If we denote by H'(M) the abstract (not necessarily closed) subgroup
of G generated by M then evidently F(M) c F(H'(M)). On the other
hand, M c F ( M ) implies F(M) z> F(H'(M)) and therefore F(ΛΓ) =
F(H\M)). Now iϊ(ΛΓ) is the closure of H'(M) in G, and by Lemma
1 we obtain

LEMMA 2. F(M) = F(H(M)).
This result allows us to infer some further properties of the func-

tions of F(M). To simplify the notation, we shall in the rest of this
paragraph write H instead of H(M). Let {grH: r e R} be the decom-
position of G into distinct left cosets of H and G/H be the corresponding
quotient space. For / e F(H) and arbitrary h e H, we have f(grh) =
f(gr), so that / is constant on every coset grH. Conversely every con-
tinuous function on G constant on every left coset of H has clearly the
property fh=f for all h e H and belongs to F(H). Hence F(M) is
the set of all continuous functions on G that are constant on left cosets
of the subgroup generated by M.

Let us denote by C(GjH) the set of all continuous complex-valued
functions on GjH. If we associate with every / e F(H) the function / '
on G/H defined by f'(grH) = f(gr) then / ' e C(GIH) and the mapping
/ - > / ' is a linear one-to-one mapping of F(H) as a linear space onto
the linear space C(G/H).3

To identify the dimension of C(GjH) as a linear space we have to
distinguish two cases.

(a) μ(H) > 0. GjH is finite and discrete. The i = l/μ(H) charac-
teristic functions of the points of G/H form a basis in C(GIH).
Therefore F(H)is finite-dimensional and closed in the uniform norm in
C(G).

(b) μ{H) = 0. GjH is a normal Hausdorff space with infinitely
many points. Therefore C(GjH) and F(H) are infinite-dimensional. Let
F(H) be the closure of F(H) in C{G) and / e F(H). Assume fhφf for
some heH, or

( 2 ) I I Λ - / I I >a f o r s o m e α > 0 ,
3 See [5] p. 110, 111.
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There is / e F(H) such that 11 / - /11 < a/2 or

\f(xh)-f(xh)\ < — for all x e G

IΛ(*)-/(α)|<-| for all x eG

I I Λ - / I K - | .

But then

which contradicts (2). Therefore fh=f for all h e H and F{H) c F(H)
which shows that F(H) is again closed in C(G).

The results of our discussion are summed up in

THEOREM 1. F(M) is a closed left ideal in C(G) consisting exactly
of all continuous functions on G which are constant on each left coset
of the subgroup H(M). As linear subspace of C(G), F(M) is l/μ(H(M))-
dimensional if μ(H(M)) > 0 and infinite-dimensional if μ(H(M)) = 0.

Analogous statements hold for the set of all continuous functions
on G that are invariant under left-translation by every element m e M.

3* Subgroups of G and corresponding ideals in C(G). Let the subset
M of G be a subgroup H. We can reverse the correspondence between
H and F(H) by observing that H is completely characterized by F(H)
as the set of all elements of G which right translate every / e F{H)
into itself. In order to see this we have only to show that for every
m $ H there is / e F(H) such that fm Φ /. Since m~x 0 H we have
H Φ m~Ή. By the complete regularity of G/ίf, there is / ' e C(G/H)
such that f'(H) = 1 and f\m~xΉ) = 0. Defining / e F(H) by the re-
lation f(x) = f\xH) for all x e G, we have /(m"1) = 0 and fm(m~ι) =
/(e) = l. Hence fm Φf.

It follows that for two arbitrary subgroups Hx and H2 of G jF(i?i) Z)
F(H2) implies Hλ(Z H2. The converse is obviously true. We conclude:

LEMMA 3. If Hx andH2 are subgroups of Gx then Hx c H2 if and
only if F(Ht) 3 F{H2).

Taking {e} and G as subgroups of G we have in particular F(e) =
C(G) a n d F ( G ) = {al} i.e., the (left) ideal consisting of all constant
functions.

Let now N be a normal subgroup of G, n e N and / e F(N). For
every a e G w e have nf(x) = f(nx) = f(xnλ) = fnι(x) = /(a?) where nι e N.
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Therefore every element of F(N) is both left and right invariant under
translation by elements of N. For an arbitrary a e C(G) we then have:

(/ * a)n(x) = (/ * a)(xn) = \ f(xny1)a(y)dy = I f(n1xy-1)a(y)dy

= (/ * a)(x) for all x e G

F(N) is then a right ideal and therefore a two sided ideal in C(G).
Suppose now that H is non-normal. Then gH Φ Hg for some g e G.

We can assume that there is h e H such that hg 0 gH. (Otherwise
there would be hλ e H such that ghx $ Hg or h^"1 $ g~λH, and we
could take hλ and g-1 in place of h and g.) Then hgH Π gH = 0. We
shall exhibit functions / e F(H) and a e C(G) such that / * α 0 F(JHΓ).
It will follow that .F(iϊ) is not a two-sided ideal in C(G). Again we
distinguish two cases.

(a) μ(H) > 0. The sets gH and Hg-1 are both open and closed.
Let / be the characteristic function of gH and a be the characteristic
function of Hg~\ Then / e F(H) and a e C(G).

Let us now consider fλ(y) — /(hy^aiy) as a function of y Plainly
/i is continuous. If 2/ e fljg"1 then /̂ T/"1 e /i^iί and /(hy1) = 0, since

" Π ̂ ΐΓ = 0. Therefore fλ(y) = 0 for y e Hg~\ However, for y $ Hg~\
= 0 and again /^T/) = 0. We see that

( 3 ) (/ * a)(h) = ( f(hy-1)a(y)dy - 0 .

On the other hand, using the function f2(y) = /(y^aiy), we see that
f2 6 C(G),f2 ̂  0 and f2{g-χ) =f(g)a(g~1) = 1. Since the Haar integral
is strictly positive on C(G) we conclude that

(4) (/*α)(e)= \ f(y-ι)a(y)dy > 0 .

Comparison of (3) and (4) shows that / * a is not constant on H.
Therefore it cannot belong to F(H).

(b) μ(H) = 0. Since G/H is Hausdorff and normal, there are dis-
joint open neighborhoods U1 and U2 of gH and hgH respectively. In
view of the complete regularity of G/H, we can find / ' 6 C(G/H) such
that / ' ^ 0,f'(gH) = 1, and / ' vanishes on the (closed) complement of
U1 in GjH, which contains in particular the open neighborhood U2 of
hgH.

Defining f(x) = f'(xH), we obtain a non-negative function / e F(H)
assuming the value 1 on gH and vanishing on an open set U (the pre-
image of U2 under the mapping x ~> xH) containing hg. We now choose
a symmetric open neighborhood V of e such that hgV c U and a non-
negative function a e C(G) assuming the value 1 at g-1 and vanishing
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outside the open set Vg~ι. This choice again is possible by the complete
regularity of G.

We again consider the continuous function fx(y) = f(hy~1)a(y). For
y e Vg-1 we have hy~x e hgV c U so that fQiy1) = 0 and fτ(y) = 0.
On the other hand, y $ Vg'1 implies a(y) — 0 and fx(y) = 0. So

( 30 (/ * a)(h) = \ f(hy-1)a(y)dy - 0 .
JG

Considering f<λ{y)=f{y~1)a(y)y we see that / 2 ^ 0 , / 2 e C(G) and
g-1) = 1 > 0. Therefore

(40 (/*α)(e)= f f(y-1)a(y)dy > 0 .
JG

Comparing (30 and (40, we see again that / * a is not constant on
H and does not belong to F(H).

As a result we obtain

LEMMA 4. A subgroup H of G is normal if and only if F(H) is
a two sided ideal in C(G).

The correspondence between F(M) and H(M) for arbitrary subsets
M c G leads yet to another useful result.

LEMMA 5. Let Mτ and M2 be any subsets of G. Then M2 c H{MX)
if and only if F(M1 U M2) =

Proof. Assume first M2 c H{Mλ). Then H(M1 U M2) = HiM,) and
by Lemma 2, we have

F{MX U M2) = FiHiM, U M2)) = F^M,)) - ^(M,) .

Let us now assume that F(M1 U M2) = jP(Λfi). It is clear that F(M2) ZD
F{Mλ U Af2). Using Lemma 2, we get F(H(M2)) z> ̂ ^(MO) and by
Lemma 3 ikί2 c iϊ(M2) c U ^ ) .

Lemma 5 states in particular that an element m e G can be approx-
imated by finite products of positive powers of elements in M if and
only if the set of all function of C(G) which are invariant under right
translation by all elements of M is not reduced by joining m to M.

Taking M2 = G, we obtain as a necessary and sufficient condition
for the set Mλ to generate G that F(M±) be the set of all constant func-
tions on G.

Taking for M1 a subset of a given subgroup H — M2y Lemma 5
states that Mλ generates H if and only if F(Mλ) = F(H).

4. Irreducible representations of G. We now list some definitions
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and facts concerning representations which we shall have to use in the
following.4

Let {i?Cλ): λ e A} be a complete system of inequivalent irreducible
unitary continuous representations of G of degrees r λ respectively. Let
Rw(s) be the matrix associated with the element s in Rw for a given
basis in the corresponding vector space and Rm the identity represen-
tation. Denoting by u^ e C(G) the coefficient in the ίth row and feth

column in iϋ ( λ\ we have u^is"1) — v${s) and

ij * upq —

since the i? (λ) are unitary.
The functions u\j} are linearly independent and form a basis for the

linear space R(G) of all complex linear combinations

( 6 ) I = Σ Σ αί* λ ) ^ } , «Lλ) e C .

(5) shows that R(G) is a subalgebra of C(G). The Peter-Weyl theorem
says that R(G) is dense in C(G) under the uniform norm. More speci-
fically5, every / e C(G) can be uniformly approximated by functions of
the form

(7) l= i

which belong to R(G) as shown below.

Using the notation (α, 6) = \ α(x)6(^)cίx for a e C(G), b e C(G) we
)G

have, as can be verified easily,

8 ) *4λ) * / = Σ CΛ

- Σ (Λ

From (5) and (8) we can conclude that for fixed λ and i the functions
^ί^ (k = 1, 2, , rλ) form a basis for a minimal right ideal J?Sλ) of

^ See [5] § § 39, 40.
5 See [5] Theorem 39D. As pointed out be Prof. Edwin Hewitt in a lecture, one can

choose the approximate identity in the center of C(G) by taking u{x) = v(y1xy)dy and
J G

having v 6 C{G) (v Ξ> 0) vanish outside a sufficiently small neighborhood of e.
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and C(G). Analogously it follows from (5) and (9) that for fixed λ and
k, the functions u^ (i — 1, 2, •• ,r λ ) form a basis for a minimal left
ideal Z4λ) of R(G) and C(G). Finally it follows from (5), (8) and (9) that
for fixed λ the functions u\¥ (i, k = 1, 2, , rλ) form a basis for a minimal
two sided ideal T<λ) in R(G) and C(G). Each of these ideals is closed
because of its finite dimensionality.

Taking I e R(G) as in (6) we have

2 αifc

(10) I * u® = JL Σ a

Γ r λ ~| 1 r λ

and

λ r Γ/ rλ \ -i

— Σ ^λ I Σ ^ i ^ ) * I

We see that R(G) is the direct sum of the minimal two sided ideals
TCλ) which in turn are direct sums of minimal right ideals J2(,λ) and, in
the same way, of minimal left ideals Lίλ).

(12)

is itself a two sided ideal in C(G) but is not closed unless it
coincides with C(G). (This occurs if and only if G is finite).

The numbers (/, v$) appearing in (8) and (9) can be regarded as
the Fourier coefficients of the function / e C(G). For non-zero / there
exist only a countable number of non-zero Fourier coefficients (and at
least one).

Every element a = Σ r χ oc^u^ e Riλ) can be written in vector nota-
tion as a scalar product nίλ)a where u£λ) stands for the basis vector
(u(n\ uίi\ , ulfy and a for the coefficient vector (a19 a2, , α r λ), writ-
ten as column vector. By the definition of uffl we obtain under right
translation by any s e G

(13) [<}].(a0 = u&ϊxs) = Σ v%\xyu<#(8) or
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Right translation by s evidently induces a linear transformation in
Riλ) whose matrix with respect to u£λ) as a basis is just i?(λ)(s), and
Rlλ) is invariant under right translation. For any function a e R\λ\ the
effect of the translation is given by the formulas

(14) as =

as ==

where αs is the coefficient vector of as.

5 Generating sets in G and irreducible representations of G. We
investigate for a given subgroup H of G the intersection of F(H) with
the ideals of R(G), introduced above. If / e F(H) and / Φ 0, then
(/, ttίi}) Φ 0 for some λ, i, k. The function

is different from zero, lies in F(H), and by (8) also in R(G) (in fact in
β(,λ)), therefore in F'(iΓ) = F(H) Π J?2(G) (also in F(H) n i?ίλ)). ^(ff) is
again a left ideal in C(G) since lϋ((?) is a two sided ideal in C(G) and
contains all functions of the form uff*/ for a given / 6 F(ίf). From
(7), we obtain as an immediate consequence

LEMMA 6. F\H) - F(H) Π R(G) is dense in F(H).
Let now / ' e Ff{H). By (11), / ' can be written as a linear com-

bination of functions of the form u\P*f which are by (10) contained
in F(H) Π i?iλ). On the other hand, every linear combination of func-
tions in F(H) Π R[λ) is again a function of F'(H). On account of the
direct decomposition of R(G) with respect to the minimal right ideals
Rlλ\ we see that Fr(H) is, as a linear space, the direct sum of the linear
spaces F(H) n Rlλ),

(15) F'(H) = Σ θ Σ θ [F(H) n Rίλ)]
λ€/i ί = l

some of which may consist only of zero.
Let now F(H) Π Rίλ) be non-zero (we have already seen that there

must be at least one non-zero F(H) Π i?ίλ)) and let //λ) e F(H) Π Rίλ\
We can write //λ) as a scalar product of the basis vector π λ ) of i?ίλ) and
the coefficient vector fw

(16) fϊλ) = ujλ)fcλ) .

The function //λ ) is invariant under right translation by all elements
h e H. In view of (14) this means that
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(17) p> = R^(hψv for all h e H

i.e., f(λ) is an eigenvector of RCλ)(h) with eigenvalue 1 for all h e H.
Conversely, for fixed λ, every eigenvector with eigenvalue 1 common to
all R^(h) (h e H) determines by (16) a function //λ) e F(H) Π R\λ\

Since for a given i, λ linear independence of functions f}λ\gίλ) is
equivalent to linear independence of the corresponding coefficient vec-
tors f(λ), QW we see that the dimension of F(H) Π R[λ) as a linear space
is precisely the number of linearly independent eigenvectors f(λ) common
to all R^ih) (h e H) with eigenvalue 1.

DEFINITION 2. For any non-void subset M of G and for any fixed
λ, let d(κ)(M) denote the maximal number of linearly independent
eigenvectors common with eigenvalue 1 to jβ(λ)(m) for all m e M.

The inequalities 0 ^ c£(λ)(Λf) ^ r λ necessarily hold. In the present
case, we see that d^(H) is the dimension of F(H) Π iϋ[λ) for all i —
1,2, « , r λ since it obviously does not depend on i. Taking dCλ)(H)
linearly independent functions of F(H) Π Rίλ) and r — d(λ)(H) properly
chosen u^ (ί, λ fixed) as a basis for R[λ) amounts to transforming the
representation i?Cλ) to an equivalent one, J?'(λ) = S~1

JR
Cλ)S, in which iϋ' ( λ )

restricted to the elements of if, becomes reducible as representation of
H and is found to contain the identity-representation of H exactly
d(λ)(H) times. Thus d^λ)(H) can also be defined an the multiplicity with
which the identity representation of H is contained in iϋ (λ), restricted
to the elements of H and considered as a representation of H.

F(H) Π R[λ) has the dimension dw(H) for given λ, as we have seen. The
subspace F(H) Π T ( λ ) is the direct sum of all F(H) Π R{^ ( ΐ = l , 2, , rλ)
and has therefore dimension rkd

iκ){H). If there is only a finite number
of non-zero dw(H), then there are only a finite number of non-zero
F(H) n Rίλ) and F(H) Π T<λ\ By (15), we see that F'{H) is a linear
space of dimension Σjλ€A^λdw(H) which is finite-dimensional, and
therefore Ff{H) is closed. But then F'{H) = F(H) by Lemma 6, and
F(H) is of finite dimension Σ λ e ^ λ d ( λ ) ( i ϊ ) . If infinitely many d^(H) are
non-zero then F'(H) is an infinite dimensional linear space and the same
must be true of F(H). Combining this result with the results of
Theorem 1, we obtain:

THEOREM 2. If d(λ\H) is the multiplicity with which the identity
representation of a subgroup H of G is contained in R(λ\ restricted to
the elements of H and considered as a representation of H, then

Σ rλd^(H) = _ L _ if μ{H) > 0 .
λβΛ l^yli)

If μ{H) = 0 then the series ΣλeΛ?\d(λ)(iJ) diverges.
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The sum ΣjλeΛ^\d(λ)(H) can therefore be considered as giving the
" index" of H in G. A subgroup H has measure 0 if and only if
d(λ)(H) > 0 for infinitely many X e A.

Let N be a normal subgroup of G and d(λ)(N) > 0 for a certain λ.
Then F(N) Π R[λ) contains a non-zero function / = Σr

k

λ

=1

a*uM Assume
that aτ Φ 0. The set F(N) is a two sided ideal by Lemma 4, and so is
F'(N) = F(N) Π R(G). Therefore F'(N) contains together with / the
function

/ * uff = — ^ λ ) for arbitrary j , 1 <̂  j ^ r λ .
rλ

This means that R\λ) c Fr(N) and d(λ)(ΛΓ) = rλ. On the other
hand, supposing that for a given subgroup H d(λl(H) assumes only
the values 0 or r λ for all λ e A, we see that F{H) Π R[x) is either zero
or R{κ\ Then F(H) n r ( A ) is either zero or Γ(λ) and F'(H) is the direct
sum of two sided ideals and itself a two sided ideal in C(G). Its closure
F(H) must also be two sided and by Lemma 4, H is normal.

THEOREM 3. A subgroup H of G is normal if and only if d{λ)(H)
assumes only the values 0 or rλ for all X e yt.G

Trivial illustrations of this fact are given by the entire group
G (d(0\G) = 1 and d(λ)(G) = 0 f or λ Φ 0) and by the group consisting of
{e} only {d(λ)(e) = rλ for all λ 6 J).

We proceed now to characterize the generating properties of an
arbitrary subset M of G by means of the representations R{λ). Since
M c H(M), there are by the definition of d(λ)(H(M)) at least d(λ)(H(M))
linearly independent functions in R\λ) that are invariant under right
translation by all elements of M and d(λ)(M) :> dCλ)(H(M)). Conversely,
as seen in the proof of Lemma 2, any such function of R[λ) is also in-
variant under right translation by all elements of H(M) and d{λ\M) fg
d(λ)(H(M)). Together with the previous result, we now have

LEMMA 7. // M is an arbitrary subset of G, then dCλ)(M) = d(λ)(H(M))
for all X e A.

The main result which we can now prove is

THEOREM 4. If M1 and M2 are arbitrary subsets of G, then M2 c
H{Mλ) if and only if dix\Mx U M2) = d^iM,) for all X e A.

Proof. Let M2 c H{Mλ). Then H{Mλ) = H{MX U M2) and d{k\Mx) =
ΛZΊ U Λf2) for all λ 6 J by Lemma 7. On the other hand, the

6 See also [4] and [1] Theorem 1.
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equality d{X\Mx) = d^{M1 U M2) for all λ e A implies by Lemma 7 that

FiHiM,)) Π #ί λ ) = (̂fΓOMx U M2)) (Ί i^λ ) for all λ e Λ ,

F{H{MX)) Π Γ α ) = 2 ^ ^ U M2)) n T°° for all λ e J ,

F>{H{MX)) = FiHiMJ) n S(G) - ^ ( / / ( ^ U M2)) n Λ(G)

^ W U ^ ) (by (15)),

FiHiM,)) = F(H{Mλ U M2)) (by Lemma 6) and

M2 c H(MX) (by Lemmas 2 and 5) .

A number of corollaries are easily obtained. Putting M2 — G in
Theorem 4 and noting that d(λ\G) is positive only for λ = 0 we obtain

COROLLARY 4.1. The subset M of G generates G if and only if
dCλ\M) = 0 for all λ Φ 0.

Taking as M2 a subgroup H and as Mx a subset M of H, we get

COROLLARY 4.2. I%e s^δseί M o/ the subgroup H of G generates
H if and only if d(λ)(M) = d(k)(H) for all λ e A.

Finally, combining the results of Theorem 2, 3 and Lemma 7, we
obtain

COROLLARY 4.3. The subset M of G generates a normal subgroup
of G if and only if d(λ\M) assumes only the values 0 and r λ for all
λ e A. If dίλ)(M) > 0 for only a finite number of λ e A, then M
generates a subgroup of measure ll^xeA^\d(x)(M); otherwise M gener-
ates a subgroup of measure 0.

6 Finite generating sets in G. The preceding results are in par-
ticular valid for finite groups. In that case we are only concerned with
the investigation of generating properties of finite sets of elements.
Schreier and Ulam7 have shown that a connected compact metric group
G is generated by almost every pair of elements. Since the component
of the identity in any compact group G is a connected normal subgroup
of finite index in G, it is clear that there are always a finite number
of generators for a compact metric group.

For the case of a finite set M, there is a simple way to determine
dCλ\M) and to state the conditions of the last theorems and corollaries,
based on the following lemma.

LEMMA 8. Let Ba)(mly •• ,m ί) be the rectangular matrix with r λ

rows and srκ columns obtained by joining horizontally the s matrices
R{K\mk) - R{λ\e) (k = 1, 2, , s). Let ¥λ\mlf , ms) be the rank of

7 See [7] and [8].
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Bw(m19 •• ,m s ) . Then d(λ\{mk:k = 1, •••, s}) = r λ - b(λ\mly - , m , ) .

Since this Lemma has been stated by the author in [1] without

proof it may be suitable to set down a proof here.

Proof. Let B*(λ)(ml9 , ms) be the conjugate transpose of Biλ\mλ, ,
m8). Its rank is the same as that of BCλ\mlf •• , m ί ) . Since R(λ) is
unitary, B*(λ)(ml9 , ms) could have been obtained by placing the s
matrices R^im^1) — Riλ\e) (k — 1, •••, s) below each other. Since
dCλ}({mJύ: k = 1, , s}) ,= ^^({m*:1: & = 1, ••, s}) we have to show that
the rank of B*CλXmlf ••*, ms) is equal to r λ — (^^({m*:1: fc = 1, •••, s}).
In order to simplify the notation, we shall from now on omit the index
λ and the indication of the group elements when possible.

If we denote by As the rs x rs matrix obtained by placing the non-
singular r x r matrix, A, s times along the principal diagonal in a rs x rs
zero-matrix, then As is non-singular and A~XB*A has again rank b. If
u = (u19 , ur) is the basis of the r-dimensional linear space correspond-
ing to the matrix-representation R, then the transition to a new basis
u' in which the d first basis vectors are invariant under the transfor-
mations corresponding to mϊ1, , mj1 is given by the formula nP = u'
where P is a non-singular r x r matrix. In the new basis these trans-
formations are given by the matrices P-\R(ma *)P. The d first columns
in each of these have as their only non-zero elements Γs in the main
diagonal. In each of the matrices P '^^mί" 1 ) — R(e))P those columns
are therefore zero columns. Placing those s matrices one below the
other we obtain, as one can readily see, exactly the matrix P;τB*P.
The rank of this matrix can therefore not exceed r — d and we have
b <; r - d.

Assume that b < r — d. Then one of the columns C'd+1, , C'r in
P;ιB*P, say C'c, would be a linear combination of the other ones. By
a permutation of the vectors ud+1 and uc in u' given by u'Q = u", where
Q is the matrix of the corresponding permutation, we obtain as above
a matrix Q~ιP;ιB*PQ with rank δ in which the d first columns vanish
and the (d + l)-th column appears as a linear combination of the
remaining ones C'd'+1 = Σί-a+2#jCj\

Define 22 as the matrix obtained from R(e) by replacing in the (d +
l)-th column the zeros below the principal diagonal by — ad+2, , — ar

in that order. Passing to a new basis by the formula xx"R = u'", we
obtain as above the matrix RJ1QJ1PS1B*PQR in which, as one can see
easily, the first d + 1 columns vanish. But then the first d + 1 columns
in (PQR^Rim^^PQR have as their only non-zero elements Γs in the
main diagonal. This in turn means that the first d + 1 basis vectors in
it'" are invariant under the transformations corresponding to all elements
m^\k = 1, * ,s). But this contradicts our assumption that there are
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not more than d linearly independent vectors of that property. So
b = r — d, and the lemma is proved.

Lemma 8 allows us to determine dCλ)({m19 •• ,m s}) if the matrices
RCk)(mk)(k = 1, •••, s) are given. Applying Lemma 8 to a single element
m, we see that d{k\{m}) is exactly the multiplicity of the eigenvalue 1 in
2?(λ)(m). if j^(λ)(m) ( j o e s n o £ have 1 as an eigenvalue, then 6(λ)(m) = r λ .

Using Lemma 8, we can also reformulate the preceding results, e.g.
Corollary 4.1 takes the following form: the elements m19 , ms generate
G if and only if b(λ)(mu •••, ms) = r λ for λ Φ 0.. This condition is in
particular satisfied if for every λ Φ 0 there is at least one m ( λ ) among
the m1 ms for which RCλ\m(λ)) does not have 1 as an eigenvalue.
In this case, however, we can even say that the products of the form
mίi ma

ss (0 ^ ak: k — 1, , s) are dense in G and, arranged in a
certain order, form a sequence which is equidistributed in G.8 Similarly
we can see that the hypothesis of Corollary 4.2 is satisfied if for every
λ e A there is at least one m ( λ ) such that the multiplicity of the eigen-
value 1 in R(λ\m(λ)) is exactly d(λ)(H), i.e., the multiplicity with which
R(λ) restricted to H contains the identity-representation of H. Again
in this case we can make the stronger statement that the products of
the form m?i ma

ss (0 <Ξ ak: k — 1, , s) are dense in H and, arranged
in a certain order, form a sequence which is equidistributed in H.
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THE /^-PROBLEM AND THE STRUCTURE
OF tf

D. R. HUGHES AND J. G. THOMPSON

1* Introduction* Let G be a group, p a prime, and HP(G) the sub-
group of G generated by the elements of G which do not have order p.
In a research problem in the Bulletin of the American Mathematical
Society, one of the authors posed the following problem: is it always
true that HP(G) = 1, HP(G) = G, or [G : HP(G)] = pΊ This problem is
easily settled in the affirmative for p = 2, and a similar answer was
recently given for p — 3 ([5]). In this paper (Section 2) we give an
affirmative answer for the case that G is finite and not a p-group.
Furthermore (Section 3) we are able to give a rather precise description
of the structure of G in the most interesting case, when [G : HP(G)] = p.
This structure theorem depends heavily on the deep results of Hall and
Higman ([4]) and Thompson ([6]) on finite groups. If H (Φ l ) i s a finite
group and there exists a group G such that HJfi) is isomorphic to Hy

where HP(G) Φ G, then we call H an if^-group; it is seen that ί/^-groups
are natural generalizations of "Frobenius groups." By a Frobenius
group we mean a finite group G possessing an automorphism σ of prime
order p such that xσ = x if and only if x — 1. It is easy to show that
this implies

for all ίc in G. This last equation characterizes ifp-groups,1 and as a
generalization of Thompson's result ([6]) that Frobenius groups are nil-
potent, we show that iJp-groups are solvable, among other things.

Throughout the paper, if B is a group, A a subgroup of B, then
NB(A) and CB(A) mean, respectively, the normalizer and centralizer of A
in B. By Z(A) we mean the center of A.

2. The i^-problem. Let G be a group, and let H — HP{G). Suppose
( 1 ) G is finite,
( 2 ) G is not a p-group,
( 3 ) the index of H in G is greater than p,
(4 ) G is a group of minimal order satisfying (1), (2), (3). Note that

every element of G which is not in H has order p.
Let g be a prime dividing [G : 1], q φ p, and let Q be a Sylow q-

group of G; then Q is also a Sylow g-group of if. Let N ~ NG(Q); then

Received January 16, 1959. The first author was supported in part by the United States
Air Force through the Air Force Office of Scientific Research of the Air Research and
Development Command under contract No. AF 18 (600)-1383.

1 Unless the group is a p-group; see Theorem 2.
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by the Frattini argument (see [1], p. 117, for instance), G — NH. Thus
[G : 1] = [NH:Y] - [N: 1JH: l]/[ΛΓn H: 1].

First, let us suppose N φG. Then clearly HP(N) c HP(G), so
#,(iV) ^HΠN. Since Q c # , ( # ) , it follows that HP(N) Φ 1, so
[ΛΓ: flp(iSΓ)] < p, and hence [N:Nf] H]<p. So p2 = [G : H] =
[G : ΐ]l[H :ΐ] = [N: 1]/[JV Π H : 1] - [JV: JV Π H] < p. This is impossible,
so we must have N = G, and thus Q is normal in G.

Now let Qx (^ 1) be any subgroup of Q, normal in G, and consider
Clearly H^G/Q,) = 1 or H^G/Q,) has index p in G/^, unless

is a p-group. Indeed, it is obvious that Hv{GIQλ) c fl/Qlβ But
:HIQJ} = \G:H] = p>, so [G/Qx: HP(GIQJ\ > [G/Q : fΓ/QJ = P2 im-

plies HP{GIQX) = 1. So G/Qi is a p-group.

LEMMA 1. 1/ [G : H] = p2, then Q is an elementary abelίan q-group,
none of whose proper subgroups (Φ 1) is normal in G, Q is normal in
G, and G = PQ, where P is a Sylow p-group of G.

Proof. We have shown that Q is normal. If Qx above is taken to
be the Frattini subgroup of Q, then Qτ is normal in G, since it is charac-
teristic in Q. Since QXΦ Q, GjQx cannot be a p-group, so we must have
Qx = 1. Thus Q is elementary abelian. Since G/Q is a p-group, it is
clear that G = PQ, and the rest of the lemma follows similarly.

In what follows, P is a Sylow p-group of G and Po c P is a Sylow
p-group of if; clearly [P: Po] = p2 and Po is normal in P, since P0 — Pf]H.

If α; (=£ 1) is in Q, while α is in G, not in H9 and if α# = xa, then
α# has order pq. But α# is not in H, since α is not in H, and thus ax
has order p; hence ax Φ xa. If Po = 1, then P, of order p2, is an auto-
morphism group of H = Q such that no non-identity element of P fixes
any non-identity element of Q. But by ([2], pp. 334-335) this means
that P is cyclic, whereas P is clearly elementary abelian in this case
(for all its elements have order p). So P o ^ 1.

Since Po is normal in P, Po Π Z(P) Φ 1 (see [3], p. 35, for instance).
Let z be an element of Po Π Z(P), chosen to have order p, and let ZQ

be the subgroup (of order p) generated by z; note that z and Zo are
contained in H. Let K = 2Γ0Q, and observe that [iΓ: 1] = p[Q : 1]. Let
a be an element of G, not in iϊ, and Gx = {α, iΓ} = the group generated
by a and If. Then Q c fl^Gy c f f n f f ^ d , so [Gx: fl,^)] - p, by
induction. Hence J£o c if c HP(G^, so there must be an element y in K
of order pg. Then 2/p is in Q and ̂ /Q is in X^ZQX, for some α? in if,
since Zo is a Sylow p-group of if. By adjusting our choice of P, we can
assume that yq is in Zo; let u — yp, v — yq. Then u Φ 1, t; ̂  1, u is in
Q, t; is in ZQ, and ̂ v = vu. So if Qx = {u}, we have ^ 0 c CgiQJ. But
then α;""1^ c C^^"1©^), and if α? is in P, this implies Zo c ^(x"1^!^),
for all a? in P. But, from Lemma 1, the subgroup generated by all
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x^QiX, as x ranges over P, must be Q, and so ZQ c; CΘ(Q). Since ZQ is
in the center of P, it follows that ϋΓ0 is normal in G, so we consider
G/Zo. One easily sees that HP(GIZO) c ίZ/Z0, and Hp{GjZ0) equals neither
1 nor G/Zo. Hence p2 - [G : H] = [G/Zo: ff/Z0] < [G/Zo: HP(GIZO)] - p,
which is a contradiction. So:

THEOREM 1. // HP(G) φ 1 or G, and if G is finite and not a p-
group, then [G : HP(G)] = p.

If G is a p-group, or is infinite, the situation seems more inacces-
sible; as remarked earlier, Theorem 1 still holds if p = 2 or 3, no matter
what G is. But the proof for p = 3 (see [5]) utilizes the Burnside theorem
(for p = 3) and this strongly suggests that the infinite case at least is
considerably harder.

3* Structure of jEflΓgrouρs* Let us suppose that G is a finite group,
and that H—HP(G) has index p in G. Then we say that H is an iί^-group.

THEOREM 2. If H is not a p-group, then H is an Hp-group if and
only if H has an automorphism σ of order p such that

for all x in H.

Proof. If H = HP(G), let a be in G, a not in iί, and define xσ =
a^xa, for cc in ίZ". Since (α$)p = 1, while (ax)p — ap(x)(xσ) ••• (xσP~1),
the equation of the theorem follows immediately.

Conversely, if σ exists satisfying the hypotheses of the theorem, then
let G be the holomorph of H by the automorphism group {σ}. It is easy
to see that HP(G) Q H. Since HP(G) Φ 1 (for H is not a p-group), it
follows that [G : HP{G)~\ = p, from Theorem 1, so HP{G) = £Γ.

Note that if xσ = a?, then the equation of Theorem 2 implies xv = 1.
So if p does not divide the order of the iίp-group H, then i ί is even a
Frobenius group, and so is nilpotent ([6]).

THEOREM 3. If H is an Hp-group, then H = PK, where P is a Sylow
p-group of H, K is normal in H and is nilpotent, and P Π K — 1. In
particular, H is solvable.

Proof. We can assume that PΦ 1, and that H is not a p-group.
Inductively, suppose the theorem is true for all iJp-groups whose order
is less than the order of H, and (using Theorem 2) let j be an auto-
morphism of H, of order p, such that
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If A is a γ-invariant subgroup of if, then A is an if^-group or is a p-
group, while if B is a γ-invariant normal subgroup of Ή, then H/B is
an ifp-group or is a p-group.

Now let B be any γ-invariant subgroup of P, B normal in P, B Φ 1
let ΛΓ = NH(B). If N=H, then if/5 is an ί^-group, so H/B - (P/BXKJB),
where KJB is normal in HjB and is nilpotent. So Kx is normal in H
and since ίΓj/JB is γ-invariant in HjB, so is Kλ γ-invariant in if. So Kλ

is an iίp-group. If Kt Φ if, then i^ = BK, where K is normal in Kλ

and is nilpotent, and K Γ\ B — 1. But then K is characteristic in iΓx,
hence is normal in if; every Sylow g-group of if, q Φ p, is in K. So K
is characteristic in H and clearly if = PK, P Γi K — 1.

If JKi = if for every such i?, then B = P is the only γ-invariant
normal subgroup of P, other than 1. Hence in particular P is elementary
abelian. Then if/P is an if^-group, and even a Frobenius group, so is
nilpotent. Furthermore (since H is then solvable), if = PK, where K is
isomorphic to if/P. Let K = Q±Q2 Q{, where Qέ is a Sylow gΓgroup
of K (and of if) for distinct primes q19 q2, •••, qt.

Now let G be the holomorph of H with the group {γ}. Then, by
the Frattini argument, NG(Qt) Π H Φ NG(Qi), so by an appropriate choice
of 7i in G, yt not in if, we can assume that Qt is γΓinvariant. Thus PQt

is γΓinvariant and so it is an ifp-group (it is straightforward to check
that any element of G, not in H, can play the role of γ).2

If t > 1, then PQt has order smaller than if, so Qt is normal in PQt.
Thus both Pand K are contained in NH(Qi)f so Q4 is normal in if, hence
K, which is the direct product of the Qu is normal in if, so we are done.

If t = 1, let Q = Q19 and as above, choose γ in G, not in if, so that
Q is γ-invariant. If Qo Φ 1 is a γ-invariant normal subgroup of Q, then
PQ0 is an ifp-group, smaller than H = PQ if Q0Φ Q; thus P normalizes
Qo> so Qo is normal in if. Then by considering if/Q0> we find that Q/Qo

is normal, so Q is normal in if, and again we are done. Thus we can
assume that Q is elementary abelian with only trivial γ-invariant normal
subgroups.

Now we consider the holomorph G again. The maximal normal p-
group of G is P, since {γ} (as part of G) is not normalized modulo P
by Q. Then G\P is a solvable (and in particular, p-solvable) group of
automorphisms of the elementary abelian group P, and G\P has no normal
p-group (^1). Furthermore, this representation of G\P as a linear trans-
formation group on Pis faithful, since CH(P) π Q = l (otherwise CH{P) Π Q
would be a non-trivial γ-invariant normal subgroup of Q). Thus we can
utilize Theorem B of Hall and Higman ([4]); since Q is abelian, Theorem
B asserts that γ, as a linear transformation of P, has the minimal

2 In these references to the holomorph G, we are not making a distinction between an
element as an automorphism of H and as an element of G; the automorphism is actually
identified with an element of G which induces the prescribed automorphism in H.
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polynomial (x — l)p. But in fact, γ has a minimal polynomial which
divides 1 + x + + %v~\ since

for all b in P. Thus we have a contradiction, and so Q is normal in H,
and we are done.

Now we must consider the case that if B (Φ 1) is any γ-invariant
subgroup of P, normal in P, then N = NH(B) is never equal to H. Hence
N, being γ-invariant, is an Hp-gτowp or is a p-group, so N = PXKU where
Px is a Sylow p-group of N, Kλ is normal in N and is nilpotent, and
Kλ Π Pi = 1. Since 5 is normal in N, Kλ is contained in CN(B), and thus
contained in CH(B), so NH(B)ICH(B) is a p-group (i.e., is isomorphic to
PJP0, for some subgroup Po of P^. But then, since this holds for all
such J5, Thompson's theorem ([6]) asserts that P has a normal comple-
ment K in H; i.e., if = PK, where P Π K = 1 and if is normal in ϋ .
Since K consists exactly of the elements of H whose order is prime to
p, K is characteristic. Thus K is an ϋ^-group (even a Frobenius group)
and is nilpotent, so we are done.
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PROJECTIVE INJECTIVE MODULES

J. P. JANS

1. Introduction, In this paper we prove several theorems about
rings having a generous supply of projective injective modules. This is
a curious class of rings. For instance, every module over a semisimple
ring with minimum condition is both projective and injective, while
over the integers only the zero module has this property. On the other
hand, for some non-semisimple rings, Quasi Frobenius rings [5], every
projective module is injective. For others no non-trivial projective
module is injective (for example, a primary algebra over a field with
radical square zero and having vector space dimension greater than two).

We begin our study in § 2 by considering primitive rings. We give
(Theorem 2.1) a necessary and sufficient condition for a primitive ring
to have a faithful projective injective irreducible module. By means of
this condition we prove a structure theorem (Corollary 2.3) for rings
having both a left and a right injective projective irreducible module
with the same anihilator.

In § 3 we generalize both halves of a theorem originally proved by
Thrall for finite dimensional algebras [10, Theorem 5]. This theorem
states that a necessary and sufficient condition for the minimal injective
[3] of the ring to be projective is that the ring have a faithful injective
module which is a direct summand of every faithful module. We prove
this theorem in one direction for semi-primary rings and, in the other
direction, for rings with the ascending chain condition. It should be
noted that we have rephrased the theorem to eliminate the duality given
by the field. We find that this can be replaced by the dual concepts,
projective and injective.

Throughout the paper we shall only consider rings with identity 1
and modules over such rings on which 1 acts like identity. "Minimum
condition " means minimum condition on left ideas [1],

The author wishes to express his appreciation to John Walter for
many stimulating conversations which contributed to the formulation of
this paper. We also wish to thank Alex Rosenberg for suggesting clear
concise proofs of Theorems 2.1 and 3.2.

2. Projective injective irreducibles. We shall begin by considering
primitive rings. Recall that a (right) primitive ring R has a faithful
irreducible right module M [7, p. 4]. The module M is always the
homomorphic image of R, and if M is projective then M is induced by

Received Jaunary 28, 1959. The author was supported by the National Science Foun-
dation.
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a minimal right ideal of R. That is, R is a primitive ring with minimal
right ideals. Conversely, if J? is a primitive ring with minimal right
ideals then the faithful irreducible module is induced by an idempotent
generated (= direct summand) right ideal of R. Thus, the faithful
irreducible is projective.

In the following we shall study primitive rings with minimal right
ideals and we shall establish a necessary and sufficient condition for the
faithful irreducible module of such a ring R to be injective. We are
greatly aided in this study by the rich structure theory for these rings;
see for example Jacobson's book [7, Chapter IV].

Using the notation and the structure theorem from [7, p. 75], we
have S — F(M, N) c R c L(M, N) where M, N are dual spaces over
a division ring D and M (N) is a right (left) irreducible faithful projec-
tive i?-module. S is the socle of R.

THEOREM 2.1. The module M is R injective if and only if M =
iV* = KomD(N, D).

Proof. If M = Ή.omD(N, D) then by Prop. 1.4 p. 107 of [2], M is
R injective.

For the converse, assume that M is R injective. In this case, it is
enough to show that for every maximal right ideal J of S there is
a nonzero element a of S such that aJ — 0. Then the left ideal Sa
contains an idempotent e Φ 0 such that e J = 0 and J is a modular [7]
(called regular in [9]) right ideal. But Rosenberg has shown [9, p. 131]
that if every maximal right ideal of S is modular then M — N* —
Hom^JV, D).

Identify M with a minimal right ideal of S. Since J is maximal
in S we can consider the R exact sequence of modules

0 > J >S-?->M >O .

Since M is R injective by [2, Th 3.1, p. 8] the homomorphism θ has
the form θ(s) — as for some a Φ 0 in the right ideal M of S. But since
Ker θ = J", aJ = 0. Theorem 2.1 then follows from the remarks above.

One should note that the corresponding theorem with right and left
interchanged is proved analogously, hence we have the following

COROLLARY 2.2. If R is a primitive ring then R is a simple ring
with minimum condition if and only if R has both a left and a right
faithful irreducible projective injective module.

Proof. If R is a simple ring with minimum condition then it has
faithful irreducible left and right modules [7, p. 39] and every module
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over such a ring is both protective and injective [2, p. 11].
To show the converse, we appeal to the theorem. Using the nota-

tion of the theorem, M — iV* and M"* = N. But we know [7, p. 68],
that this can only happen when both have finite dimension over D. In
this case R is isomorphic to all transformations on M and is a simple
ring with minimum condition [7, p. 39].

The theorem and its corollary also have applications to any ring
having left and right projective injective irreducibles. It is clear that
if a ring R can be written as a ring direct sum S + K where S is
a simple ring with minimum condition, then R has both a left and a right
projective injective irreducible module, each having anihilator K. It is
interesting to note that the converse is also true.

COROLLARY 2.3. If R has both a left and a right projective in-
jective irreducible, each having anihilator K, then R = S + K (ring
direct sum) where S is a simple ring with minimum condition.

Proof. Under the above assumptions R\K is both a left and a right
primitive ring and the faithful irreducible left and right modules con-
sidered as RjK modules are still projective and injective. Thus, by
Corollary 2.2, RjK is a simple ring with minimum condition and both
as an R module and as an R/K module is the direct sum of a finite
number of copies of the left irreducible projective injective module.
Thus the sequence of left R modules 0 —> K —> R —> RjK —• 0 splits and
R = S 0 K, left R direct. The proof will be established if we can show
that S is really an ideal of R.

Certainly, KS — (0) because S is the direct sum of modules anihi-
lated by K. Let k belong to K and consider the left ideal Sk contained
in K. It is clear that (Skf — SkSk = (0) because k anihilates S on the
left. Suppose that Sk is not zero. In this case, Sk is the homomorphic
image of the completely reducible module S and is the direct sum of
a finite number of injective irreducible modules. But that makes Sk
injective and a direct summand of R. However, this contradicts the
fact that Sk is square zero, since direct summands of R are idempotent
generated. Thus we have established that Sk = (0) and that the de-
composition given above is a ring direct sum.

REMARK. There is a one-sided version of Corollary 2.3, in which
one assumes only the existence of a projective injective irreducible left
module plus the ascending chain condition on left ideals in R modulo its
Jacobson radical. The conclusion is the same. However, the conclusion
is two sided, so the existence of a projective injective left irreducible
and the above mentioned chain condition (or semi-primary, etc.) implies
the existence of a projective injective right irreducible.
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3. Minimal faithfuls and minimal injectives Following ThralΓs
paper [10], we shall say that the ring R has a minimal faithful left
module M if M is a faithful injective module and if M appears as a
direct summand of every faithful module. It is clear that M must be
protective, for the ring itself is a faithful protective module. M will
always be isomorphic to some left ideal direct summand of R.

If T is any R module, the minimal injective Q{T) of T is the unique
"smallest" injective module containing T as a submodule, [3]. Using
these two concepts, we can prove a generalization of one half of a theorem
of Thrall [10, Theorem 5]. Thrall proved it for finite dimensional al-
gebras over a field.

THEOREM 3.1. If R is right Noetherian and if R has a minimal
faithful left module M then Q(R), the left minimal injective of R, is
projective.

Proof. As noted above M must be isomorphic to a projective in-
jective left ideal which we also denote by M.InR consider the
collection of right ideals generated by finite sets of elements of M.
Since we have assumed R to be right Noetherian, there is in this col-
lection a maximal right ideal H generate by x19 » 9xn belonging to
M. Since H is maximal with respect to this property, we know that
M c H. For if not, H could be enlarged by adjoining another generator
from ikf.

If x is in R and xxi — 0 for i = 1, •••, n, then xH = (0) and con-
sequently xM = (0). But M is faithful, so x = 0. Now let Q be the
direct sum of n copies of M and for x in R define θ: R—+Q by letting
the ith component of θ(x) be xxt. This is a left module homomorphism
of R into Q and, by the remark above, is a monomorphism. Q is pro-
jective and injective since it is the direct sum of a finite number of
projective injective modules. The minimal injective of R is a direct
summand of Q and is therefore projective.

We should note that if R is both left and right Noetherian and has
a minimal faithful left module then the minimal injective of any pro-
jective module is projective. This follows from the fact that every free
module can be embedded in a projective injective module, a direct sum
of copies of M. We need the assumption that R is left Noetherian to
insure that the direct sum of left injectives is injective. Compare this
to the definition of Quasi Frobenius ring [5]: ' ' Every projective is
injective ".

To prove the other half of ThralΓs theorem we consider the class
of semi-primary rings. The ring R is said to be semi-primary if it has
a nilpotent Jacobson radical N and R/N has minimum condition on left
ideals. An important property of semi-primary rings is the fact that
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every module over such a ring has minimal sub modules. For, if M is
a module over the semi-primary ring R with radical N then in the
sequence M z> NM z> ID NrM = (0) of submodules of M there is
a point where NkM Φ (0) but JNP̂ Λf = (0). JVW, a module over R/N,
is the direct sum of irreducibles each of which is minimal. Note also
that R has only a finite number of nonisomorphic irreducible modules.

THEOREM 3.2. If R is a semi-primary ring and if the left minimal
injective Q(R) of R is projective then R has a minimal faithful module.

Proof. By the remark above, we know that R itself has minimal
left ideals. Let Mlf * ,Mn be one each of the non-isomorphic minimal
left ideals of R. From [8], we know that the minimal injective Q(Mt)
of M% is indecomposable. In addition each Q(M^) is projective since it
appears as a direct summand of Q(R). But the projective indecomposable
modules over a semi-primary ring actually appear as left ideal direct
summands of the ring [4, p. 331]. Thus each Q(Mi) is isomorphic to
a projective injective indecomposable left ideal Lt of R. Note that for
ί Φ j , Li is not isomorphic to L ; since each has a unique minimal sub-
module [8] and these are not isomorphic.

Let M be the direct sum of the modules Lu we wish to show that
M is the minimal faithful module for R. From its definition it is pro-
jective and injective. If Ma is a minimal ideal of R, Mα is isomorphic
to a minimal submodule of M. Since M is injective that isomorphism
has the form x —> xm for some m in M [2, p. 8]. Hence Ma does not
anihilate M. If no minimal left ideal of R anihilates M, then no non-
zero left ideal anihilates M and M is faithful.

Now let T be an R module such that M{ΐ Φ 0. Then there exists
t in T such that Mtt Φ 0. Consider the homomorphism X (x) = xt of Lt

into T. This homomorphism restricted to M,t is not zero and since M%

is the unique minimal submodule of Lt, Σ is actually a monomorphism
of Lt into T. Lt is injective so 7 = 1 , 0 ^ .

From the preceding argument we conclude that for i Φ j MiLj = 0
since Lt and L} are indecomposable and not isomorphic. Now let F be
a faithful R module. Since MJF Φ 0, the argument above shows that
F = I Ί Θ FI where MtFτ Φ 0 for i > 1. Continuing inductively, F^λ =
Li 0 Ft where MjFi Φ 0 for all j > i. Thus we see F = ikίφ Fn and
M appears as a direct summand of every faithful R module. This com-
pletes the proof of Theorem 3.2.

REMARK. Since a ring with minimum condition is both semi-primary
and Noetherian, both halves of ThralΓs theorem hold for these rings,
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COINCIDENCE PROPERTIES OF BIRTH

AND DEATH PROCESSES

SAMUEL KARLIN AND JAMES MCGREGOR

A birth and death process (for brevity referred to henceforth as
process B) is a stationary Markov process whose state space is the non-
negative integers and whose transition probability matrix

(1) Pij(t) = Pr{x(t) = j \x(0) = ί}

satisfies the conditions (as t —> 0)

( 2 ) Pί3{t) =

\t + o(t) if j = ί + l

μ%t + o(t) if j = i - 1

~ (λt + [h)t + o(t) if j = i

where Xt > 0 for i > 0, μt > 0 for i > 1 and μ0 > 0. We further assume
that Pu(ί) satisfies the foward and backward equation in the usual
form. In this paper we restrict attention to the case μ0 — 0 so that
when the particle enters the state zero it remains there a random length
of time according to an exponential distribution with parameter λ0 and
then moves into state one etc.

In order to avoid inessential difficulties we assume henceforth that
the infinitesimal birth and death rates Xt and μi uniquely determine the
process. This is equivalent to the condition Σ~-o (πn + l/λn7Γn) = °°
where

π0 = 1 and πn = ° 1 2 ***—n—ι- [ 2].

In the companion paper we show that for all t > 0

/ iu i2, , in\ k < i* < % < * <
(3) det (P<μf Jv(t)) = Pit

has the following interpretation : Start n labled particles at time zero
in states il9 i2, •• ,in respectively, each governed by the transition law
(1) and acting independently. The determinant (3) is equal to the prob-
ability that at time t particle 1 is located in state jly particle 2 is
located in state j2 etc., without any two of these particles having occupied
simultaneously a common state at some earlier time τ < ί. We refer to
this event as a transition in time t of n particles from initial states

Received December 18, 1958. This work was supported in part by an Office of Naval
Research Contract at Stanford University.
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occur. This problem is completely solved in § 4. By means of trivial
arguments it is shown that coincidence is certain if the original birth
and death process is recurrent, while coincidence is not certain if the
original process is strongly transient. If the original process is weakly
transient coincidence may or may not be certain, and this case presents
a much more difficult problem. A criterion is given which expresses the
necessary and sufficient condition that coincidence be certain, in terms
of the constants of the original birth and death process. Finally in § 3
some interesting examples are considered. A technique for computing
the distribution of the time until coincidence is developed, and applied
to the telephone trunking model and some linear growth models.

l Positivity properties of Q(%1> *»'••''*» \
κx19x2, •••,&/

Let M, K and L be functions of two variables satisfying

( 8 ) M(ξ, η) - Γ K(ξ, ξ)L(ξ, V)dσ(ζ)
Jα

where ξ traverses X, ζ ranges through Y and η varies over Z all of
which are linearly ordered sets and where σ(ξ) denotes a measure defined
in Y. Xcan denote an interval of the real line or a set of discrete
points on the line. In the latter case, the set will usually consist of
the integers. The same applies to Y and Z. When Y consists of a
discrete space then, of course, the integral sign of (8) is interpreted as
a sum. We define the Fredholm determinant

( 9 )
Λ,zn

M(xlf zx), M(xlt z2), , M(xl9 zn)

M(x2, zί)9 M(x2, z2), , M(x2, zn)

M(xn, zj, M{xn, z2), , M(xn, zn)

with xx < x2 < < xn and zλ < z2 < < zn and analogously for K
and L.

If the formula (8) is viewed as a continuous version of a matrix
product, then the extension of the multiplication rule which evaluates
subdeterminants of M in terms those of K and L becomes

(10)
I'X*' ' • # ' a ? Λ = ί ί
l, *2, * * , Zn a<VJy<.Jp * i Vn Zl9 Z2, , Zn

dσ(yx)dσ{y2) dσ(yn) .

For the proof of (10) we refer to Pόlya and Szego I [8 p. 48]



COINCIDENCE PROPERTIES OF BIRTH AND DEATH PROCESSES 1111

( 6 )

where iλ < i2

of (5) t h a t

%AJi «

i (&i), Q* ( O , ••%©. fan?ι n n

ΐw and xλ < x2 < < ίcw we obtain by virtue

( 7 )

".ί-J
dψ(xn) .

(See Paragraph A of Section 1.)
The above formula displays in the simplest possible way the depen-

dence of Pit -1' \\\'%>) on the time t, the initial state (ίlt •••, ίn) and
final state (jlf * , i w ) . For the birth and death process itself formula
(5) has proven to be a very powerful tool in analyzing the statistical
properties of the process. It may be expected that formula (7) will be
of comparable utility in the study of the compound process. However
certain technical details stand in the way of such a study. While the
general properties of the orthogonal polynomials {Qn(%)} have been
intensively investigated by numerous mathematicians, the somewhat more

complicated polynomials \Q(τi' °"' ln)\ appear to be new objects of
I \xii ' * f %n/ )

study. At the present time we possess numerous interesting theorems
about these polynomials but our results are still incomplete. In a separate
publication we will elaborate on the structure of this determinantal
polynomial system. In the present paper we develop only those properties
directly relevant to our analysis.

We investigate two types of problems associated with the compound
process. The first problem is concerned with the behavior of the ratio

P(t;
Jl> i 3n

Pt;
. rClf

as t —•> oo. This requires some knowledge of positivity properties of the

polynomials QI lf ' n ). In § 1 these required positivity properties
\Xι, , Xn)

are developed, and in § 2 it is shown that the above ratio converges to
a finite positive limit as t—^ca. The second problem is that of deter-
mining for which processes coincidence in a finite state is certain to
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iu %, , in to the states j 1 9 j 2 , , j n respectively, without coincidence.
In particular, for t > 0 the expression (3) is always positive. For con-
tinuous time discrete state space processes, the converse proposition is
also true. Specifically, if (3) is always positive, then Pij(t) is the transi-
tion matrix of a birth and death process [6].

In this paper, we investigate certain aspects of the structure of the
Markov process describing the transitions of n particles conditioned that
no coincidence takes place.

We refer to this process as the compound birth and death process
of order n. Frequently, when no ambiguities arise the terms " b i r t h
and d e a t h " and " o r d e r n" will be suppressed. The basis of the sub-
sequent analysis is principally an integral representation for

which is derived from a corresponding representation formula for Pi^t).
Let Qn(x) denote a sequence of polynomials of degree n defined by

the recursive relations

(4 ) - xQn(x) = - (λn + μn)Qn{x) + KQn+1(x) + μnQn-i(x) n > 0

QQ(x) = 1 Q^(x) = 0 .

These equations may be written in compact form as

- xQ = AQ

where Q represents the vector (Q0(x), Qi(^), Q2(%)f •• •,) and A is the
infinitesimal matrix of the process

A =
μ2 — (λ2 + μ2) λ2

μz - (λ3 + μ3) λ3

Let ψ(x) denote the unique measure on [0, oo) with respect to which
Qn(x) are orthogonal. (The measure ψ is unique because of the assump-
tion Σ in* + l/λfcπfc) = oo.) Then

( 5 ) Pnm(t) = πm \~ e-^Qn(x)Qm(x)dψ(x) .
Jo

Introducing the notation
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The relevance and utility of this identity will be abundantly clear.
We record several relations which are applications of it.
(A) The derivation of (7) from (5) is a special case of (10).
(B) The identity

(Π) Σ:

can be expressed in the form (8) with ξ = n, ζ = j , and ΎJ = x

M{ξ, rj) = Hn(x)

Άte>S> ~ (0 ζ > ξ

L(ζ, rj) = Qj(x)

(Qj(x) = 0 for j a negative integer and dσ(ζ) = πό when ξ = j.)
Since

^\i ^2> * * * y ^n

unless 0 < lx < ilf ix < l2 < i2f , ίn^1 < ln < in, in which case its value
is one, we obtain by applying (10) to (11)

(12) i, h,

= Σ ΣΣ Σ ••• Σ πhπh...πι
Q h, k, ••*,In

(C) We shall need to evaluate determinants of the form

(13)

QnJίO), Qίo(O),

Q«,(θ), Q'φ),

-t(0), Q'.kΦ),

, nQ

which for convenience of writing we give the name a(no,n19 • *,/^fc)
We assume tentatively in what follows that Qn are normalized such

that Qn(0) — 1. This can be accomplished with no loss of generality
since Qn(0) are different from zero. The value of the determinant
a(n0, nlf * ,nk) in the general situation would be altered by the multi-
plicative factor l/Qno(0)GΛl(0) QΛfc(0).

A more convenient expression for (13) is obtained as follows : By
subtracting the first row from each of the succeeding rows and using
the fact that Qn(0) — 1 for all n we have
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a(no,nun2,

^(0) - Q'no(O). . Q<*>(0) - Q<*>(0)

;2(0) - Q'^0) -. Q<*>(0) - Q<*>(0)

- QUO) Q<"(0) - Q<*>(0)

We next observe that relation (11) provided with successive differen-
tiation yields

(14) Q<r+Y>(0) - QΓft

+1)(O) = - (r
λ v 7 Γ v μ

Σ πμQίΓ»

(n > no,r = 0 ,1 ,2 , •••,)

In order to apply (10) to (14), we may identify

M(ξ, rj) = QZ£\0) - Qζ+1

and dσ(ξ) = l/λvττv where ^, f, 57 each traverse the set of non-negative
integers. By virtue of (10) utilizing the representation (14) we obtain

(15) a(nQfn19n2, •••,%)

-(-i)*(fc!) Σ Σ ••
ι 1 Z 1

Σ

where we have employed the specific evaluations of the Fredholm sub-
determinants based on K(ξ, Ύ]).

Another application of (10) shows that

(16) L ^ 1 * 1 * " Φ > l ] c

h h
= Σ Σ + i Σ ^o^x n^aiPo, fa> * , t*k-i)

Putting (15) and (16) together establishes the recursive relation

(17) a(nQ9nl9 - - ,nk) = {-lfk\ Σ Σ
k 1 1

1 L l l 2

2-ι 2-1 μuμ,, ' , μk_) •

Note that the range of summations guarantee that μ0 < μ1 < μ2 < <
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Furthermore, (17) exhibits determinants a(no,nl9 •• ,nk) of order k + 1
in terms of corresponding determinants of order k. Consequently, the
procedure may be iterated out of which follows whenever Qn(0) > 0 that

(18) ( - 1)*<*+1>" a(no,nl9n2, ••-, w*) > 0

for all choices of nt provided n0 < nλ < n2 < < nk. It is also routine to
calculate the explicit value of a(n0, nlyn2< < nk) by iteration of (17).

In particular

a(n0,

a(n0, nlf
n2

'"1

jS 1

) — V

1
λ f cτr f c

1
1 λ f c 7Γ e

1
V

ι

Σ π μ «(//0, μλ) .
μ^k + i

The derivation of the identity (17) was predicated upon the fact
that Qn(0) = 1 for all n. If all the Qn(0) are of negative sign then the
sign of (13) is altered by the factor (— 1)&+1 where k + 1 is the order
of the matrix. Indeed, all we need do is replace Qn(x) by Qw(ίc)/Qw(0) =
Pn(x) and apply the argument to Pn(x). The value of a(no,nlf •••,?&*)
based on Pn(x) differs only by an obvious multiplying factor from that
based on Qn(x).
(D) Following the same lines of argument as above we shall show

(19) ( - i)<

provided xι < x2 < x3 < < xk < a where a denote the smallest value
in the spectrum of ψ, and where Qn(0) > 0 by our normalization condi-
tion. The result expressed in (19) may be regarded as a generalization
to the compounded polynomial system of the property that Qn(x) for
x < a is of one sign.

Suppose for definiteness that the polynomials Qn(x) are orthogonal
functions with respect to a measure ψ on [0, oo). The proof is by
induction on k. Since Qn(x) are normalized to be positive at 0, it follows
that Qn(x) > 0 for all x < a which is the assertion of (19) when k = 1.
We shall assume that the validity of (19) for A th order determinants
has been demonstrated for any system of orthogonal polynomials whose
weight function concentrates on the interval [0, oo), and proceed to show
the result is valid for the k + 1st order determinants. Let xlf x2i , xk+1

denote a set of values arranged in increasing order with xk+1 < α.
Replacing Qn(x) by Qn(x + Xk+ύlQΛ^ic+i) we may, without loss of gener-
ality assume xk+1 — 0 and that Qn{%k+i) = 1 for all n. This alters
the original determinants by a positive multiplicative factor, provided
we evaluate the changed matrix polynomial system at the points
Vi — Xi — Xk+i' H e n c e
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,nk+1\ _

Subtracting the fcth row from the k + 1 row, the fc-lth row from the
fcth row, etc., and finally the first from the second row we have

(20)
* " 1 >

Observe that

(21)

where

e w ^ W — ** .2-ι

— x

comprise an orthogonal system of polynomials with respect to the measure
xdψlλ0 which concentrates its measure on (0, oo) since ψ does [2, p 504].
Therefore,

whenever xλ < x2 < xz < < xfc < 0 and mλ < m2 < < mfc since

•ffί(O) = Σ'=o ̂ Qj(O) > 0. Inserting (21) into (20) shows that

(~ l YQiyy β#β>^*+1>) can be written as

μ/S

where the //?s traverse the sets n3 < μs < nJ+1 — 1, j = 1, 2, , k re-
spectively, and 7μlf...,μ > 0. Taking account of the inequality x5 < 0,
i = 1, 2, , k and the induction hypothesis which insures the inequality

( , * ' M > 0 we obtain
Juu , XJC /
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as asserted. This completes the proof.
A little manipulation of (19) will show that

(22) ( -

Q4
Qnί

QW' QV-'KΎ)

Qnij) Q'niΊ) •

> 0

true for every γ < a. This is verified by subtracting the last column of
(19) from the next to last and using the mean value theorem. Repeating
this k times and afterwards letting all the xt converge to γ produces
(22). Subject to the correct normalization the argument employed in
paragraph (C) above shows that these determinants are actually strictly
positive.

A further sharpening of the relation (19) and (22) is possible. In
order to describe this extension we must assign a special meaning to the

determinant
, x 2 t , xk

where nx < n2 < < n^ and xλ < x2 < < xfc and distinguished in
that several of the x's can be equal. (The asterisk sign on the Q shall
always occur when one or more of the x's are equal and indicates that
a special interpretation is to be made.) Let us illustrate by means of an
example.

If xλ < x2 = x3 < x4 — x5 = x6 then

% $ * * * ^

Qn2(Xl) Qn.^) Qn.^d

Q'nJ&t)

In general, when there is a block of equal x values present, the succes-
sive columns, corresponding to these x values in forming Q* are deter-
mined by the successive derivatives, i.e. (Qn), (Q'n), (Q"), , (QSί"1) where
r is the number of equal x values.

One can show by a more tedious elaboration of the methods in (C)
and (D) that generally

(23) /
fcλ \ Q

J
when xx < x2 < < xk < a with the emphasis on strict inequality in (23).
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We do not indicate the details since an analogous argument will be
used in the proof of Theorem 1.
(E) With the aid of the results of (C) and (D) we shall deduce deter-
minantal inequalities valid for special choices of positive #'s. Let Qn(x)
be a system of orthogonal polynomials normalized as usual so that Qn(0)>0
and ψ its measure on [0, oo). Let us suppose the measure ψ begins
with isolated jumps located at aλ < α2 < < ar followed by a non-isolated
point in the spectrum starting at ar+1 where r may be 0,1, 2, ••• . In
particular, when r — 0 then the first point in the spectrum of ψ is not
an isolated jump. On the other extreme if r = oo then the first portion
of the spectrum ψ consists of an infinite number of isolated jumps which
could include the full spectrum. It is not necessary, in what follows,
to describe more precisely the spectrum beyond ar+1.

THEOREM 1. Let 0 < n1 < n2 < n3 < < nkj and Qn be normalized
as usual such that Qn(0) > 0 then for k < r,

(24) (— i)*(*-i)/2Q/^i> n*> ' # Φ > nΛ > 0

and for k > r,

(25) ( ]_wfc-i)/2Q*/™i> 2̂> » ̂ r, nr+ly nr+2, , nk \ . Q

where Q* is defined as above.

Proof. The proof is by induction on the order of the determinant k.
The case where r = 0 has already been completely examined in paragraph
(C). Hence, we assume r > 1. We suppose furthermore that the theorem
has been established with regard to any orthogonal polynomial system
whose spectral measure concentrates on the non-negative axis with the
number of initial isolated jumps totalling less than r. Let r be fixed
and > 1 and suppose we have established the theorem for determinants
of size < k. Denote by Pn(x) — Qn(x + a^jQn(a^). These polynomials
constitute an orthogonal system with respect to the measure ψ(x + ax)
whose first mass points occur at 0, a2 — alf α3 — alf , ar — aλ. Observe
that

% , n2, , nΛ = Q^nlf n2,.*-, " . W f ^ . . . f nj

, δ 2 , •••, bk au a2, , aj

where C(n19 n2, , nk) > 0 and

bi = 0, b2 = α2 — al9 , br = ar — alf b3 ~ ar+1 — aλ for j > r + 1 .

Subtracting the Λ-lth row from the fcth row, the k-2th row from
the fc-lth row etc., we obtain
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Ύ\ Ύ)

Q Q

) - Pn^i), br+1) - Pni(br+1),

The right-hand side is a determinant of size k — 1. Dividing the respec-
tive columns by — 1/6V, v = 2, 3, , (remember δ2 > 0 since r > 1), we
have

(26) ( - I)*- 1 sign P * p ' ™2' # * ** ' n

= sign

Pnβ>%) -

— b2 — br+1

— 6 r + 1

Let

and set

Hr(x) = λ*π*
— x

— x

I = 0,1, 2, •••, so that M(

r

0) = Zfr and λ* and μΐ are the parameters
corresponding to the polynomial system Pn(x). Finally, for 0 < μx < μ2 <
• < //fc»! define

b2, , bk

Expanding the right-hand side of (26), using (21) and an analogous
formula for the successive derivatives of Qn(x), we obtain
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(27) s ign(- i)*-ψ*(ni> n** ~*>nA

= BipΣ7μ l lμ1,.,μ t.1J

where the γ's are positive and n% < μt < nt+1, (i — 1, , k — 1). But

Z - l

Hence by suitable operations on the columns of L we obtain

LI1' 1j — H ^ λj

where the H* determinant is formed from the polynomial system Hn in
the same way that Q* is constructed in terms of Qn.

The H system represent orthogonal polynomials with respect to a
measure da(x) — C xdψ(x + aλ). The jump at the origin of dψ(x + α^
is obliterated due to the factor x. Otherwise, a possesses r — 1 initial
jumps located at α2 — alf , ar — ax and the non-isolated portion of the
spectrum begins at the point ar+1 — ax. By the induction hypothesis

(—l)tk-V(*-vi2H*(^1'^2\\\*'JJlJc~~1j>0. This fact in conjunction with

(27) shows that

/ J\fc(fc~l)/2jD*( Wit W2f

 # # , ΎljΛ ^ Q

K K , h

as desired. The proof of the theorem is complete.
What is essential for the validity of (25) is that the first r choices

of yt > 0 used in evaluating (25) should coincide with the first spectral
points a% of ψ (here r has the same meaning as in the theorem).
Otherwise the values of y5 (j>r + 1) can be arbitrarily chosen from
the interval ar < y < ar+1 with the restriction that they are arranged
in ascending order even allowing equalities. Actually, more is true. A
careful examination of the above arguments shows that

(28) ( - l)*c*-Ό/W^i> n* , nt, nβ+1, ,n
X a l f a 2 t • * , a g , y 8 + 1 , - - ^ y

where w4 strictly increase and yό for j > s + 1 satisfy as < ys+1 < ys+2 <

••• <yk <as+1.
To complete the story we note without proof that it is possible

to construct examples which show that Q( ™' nJ~ ) does not possess a
\x, y j

fixed sign for all n when x and y satisfy x < αx and aγ < y < α2.
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2. The compound process. The infinite matrix P(t) satisfies the
differential equations

**& = AP(t) ,
dt

= P(t)A ,
dt

called respectively the backward and the forward equations of the birth
and death process. Either equation may be derived from the other when
it is known that both P(t) and A satisfy the symmetry relations

Pi3(t)πi = Pjt(t)πJf aiμi = a3iπ3 .

As a consequence of these equations we deduce the backward and forward
equations of the compound process :

d pίf. in •••> K\ _ v in pff if Λ">ir-i> % — 1,

jl,- ,jn r β l ^ 3 l , " m , 3 r - l , 3 r , J r + l f - - ' , 3 n

(29)

^ p Λ . ί i , > i Λ _ v î v pit î> * * > ̂ - i ' ̂ > V+i, * * ' , K \
a t ^ jl,-- ,jn T = l { ^ ii, '--Jr-lJr ~ 1, jr + l, "'Jn

Here we employ the natural convention t h a t Pit;1.1' '*' V) for ίx<

• < in and \̂ < < j n is zero if any two iv or any two j v are equal
or if iλ — — 1 or i i = — 1. The first of the above equations (backward
equation) follows a t once from

d

= Σσ (sign (j)PM (ί) Pi , ( ί) l—P 4 j (t)iPi j (t) Pi > (*)

on applying the backward equation, Pr(t) = AP(ί). Here Σ σ denotes

summation over all permutations σ = ( ' **"' ) of 1, 2, •••, w. The

forward equation may be obtained in a similar way from the forward
equation of the original process. Alternatively either of the two equa-
tions is a consequence of the other one together with the symmetry
relations
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P(t; ^ —
V 3if *~,

and λrτrr = μr+1 πr+1.
The backward and forward equations of the compound process may

also be derived from the representation (7) and the fact the determinantal

polynomials Q[%1' "*9%n\ satisfy the recurrence formula\xl9 , xnj

(30)

- ( λ r

where Q(y' * * *' !̂* ) for i x < ^ j n is taken to be zero if any two j \
\Xl, # , M/jj/

are the same or if j \ = — 1. This recurrence formula follows at once
by applying the basic recurrence formula —xQ(x) = AQ{x) to the right
member of the identity

= Σ Σ σ (sign o)Qi^xσ^ Qίr_1(^σ _ x ) [~ ^σ-rQί (^σ-)] * * Qin(
x<rJ

I t is not difficult to see t h a t Pit; V ***' M converges to zero as
\ 3i, mmm,3J

t —> oo. In fact if the original birth and death process is either transient
or recurrent null then Ptj(t) —> 0 for each i and j so the determinant
—• 0. On the other hand if the original birth and death process is
recurrent (either ergodic or recurrent null) and Fi0(t) is the probability
that first passage from state i to state 0 occurs in time < t then FitQ(t) —> 1
and from probabilistic considerations

pit; %1 β " ' M < 1 - F<n,0(ί) -> 0 a s ^ - c o .
ii, , 3n

Thus we have two reasons why the determinants may —> 0 and at
least one of them is always in force.

According to the Doeblin-Chung ratio theorem [1]

lim 3u

exists and is finite and positive. For the compound process of the birth
and death process we are able to make the following considerably sharper
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statement.

THEOREM 2.

p(t. h, •••, ^

exists and is finite and positive.

Proof. It is evidently sufficient to consider the case when (ftj, ,lcn) =
(Zx, . . . , ln) = (0,1, , n — 1). Let f(xu , #n) be the polynomial such
that

We wish to show that

» , JΛ = Λχiψ ... f φ / 0 , ... f n - 1\T β

converges to a finite positive limit as t —> oo. Suppose there are x values
0 < aλ < < ar+1 such that the function ψ(x) has positive jumps at
au •••, ar but no other spectrum in 0 < x < ar+1 while ψ has infinitely
many points of increase in every interval αr+1 < x < ar+1 + ε. We consider
separately the cases r >n, 1 < r < n and r = 0. The case 1 < r < w,
which exhibits all the necessary arguments, will be discussed in detail
and the other two cases are left as an exercise for the interested reader.
When 1 < r < n integrals of the form

j j F(x19 , xn)dψ(xλ) dψ(xn)

may be written in the form

\ I F(xlf , x^dψix^ dψ(xn) .

Ύ ^> Π
«Λ/2 i _ W'2

•

xr+i ^ ar+1 .

For large t the main contributions to the integrals in (31) therefore
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come from the neighborhood of the point (xlf « , xn) ~ (αr, , ar,
ar+1, •• ,ar+1). To make this precise we first observe that Theorem 1
shows that f(au , α r, ar+1, , α r + 1) = c is positive and that the measure

has positive mass in every "right-hand" neighborhood of the point
(«!, * , α r , α?.+1, , α r + 1). The expression (31) can be written in the
form c + (/i/J2) where

J J

, xn) - e]dθ(x19 , xn) ,

J 2 = I . . . I e - ^ 1 + + ^ ) ί + («14- . α r + α r + 1 + . . . + α r

Given ε > 0 we choose S > 0 so | f(xly , xn) — c | < ε for | a?i — ^ | +
• + I ίcr — α r I + I £ r + 1 — α r + 11 + + | xn — ar+1 \ < 8. Let R8 and ^
denote the parts of the region 0 < xλ < < xn where

%i + + xn < ax + + ar + (n — r)ar+1 + δ and where

xλ+ + xn > aλ + + ar + (n — r)α r + 1 + δ respectively.

Then

while

> f ... f e-c

> f .. ~ht

>Be~

where J5 > 0. Consequently lim sup^*, | (/i)/(/2) I < ε and the theorem
follows.

3* Some examples of the probability distribution of the time
until coincidence. A random variable of natural interest to the study
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of the compound process of order n is the time ί* until coincidence.
To expedite the discussion we restrict attention to the case of the
compound process involving two particles. The obvious extensions are
left to the reader. In general, coincidence need not occur with certainty.
We define ί* to be the time of first coincidence if this is finite and to
be +CΌ otherwise. In the next section the condition that coincidence
be a certain event is expressed in terms of the parameters of the birth
and death process. In this section the explicit distribution of £* is
determined for some important examples.

We begin with a few remarks concerning the general character of
this problem. We may consider a two-dimensional birth and death process
whose states are all pairs (i, j) with i > 0, j > 0 and transition proba-
bility law

In this formulation the problem is to determine the distribution of the
time of first hitting the diagonal ray i = j .

Alternatively, we may consider the compound process with state

space (i, j), 0 < i < j and transition probability law p(t; ]' •?). In this
formulation, coincidence occurs if the particle is in some state (k, k + 1)
and is then absorbed—the process terminates at (k, k + 1). The problem
is then to determine the distribution of the time until the process ter-
minates in this manner.

Let Si3(t), (0 < i < j) denote the probability distribution of the time
until coincidence when the initial states of the particles are respectively
i and j i.e.

S»{t) = Pr{£* < 11 x(0) = i, y(0) = j , i < j}

Because the path functions are continuous (a particle moving from state
i to state j in time t must occupy all the intermediate states in the
intervening time), coincidence can only occur following a transition from a
state (k, k + 1) for some k. More exactly, the probability that coincidence
happens during the time interval [t, t + K] with h sufficiently small
requires that the two particles occupy adjacent states before coincidence
at time t and at the next transition the particles meet. The probability
of this event is clearly

Σ P(t h j )(λΛ + μk+1)h + o(h)
fc=0 v fc, k + V

and the density function of the time until coincidence is

Rίj{t) = dS^{t) = £ {κ + )

d t *=o v &, A:
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The method we use to compute Sίj(t) consists of determining explicitly
the generating function

G(z, w) = Σ Rij(t){zιwj - zjwl)
0£ί<j

or sometimes more conveniently

H(z, w) = Σ πiπjR
iJ(t)(zίw) - zjwι)

and then reading off the coefficient of zιw\ (i < j).
If we have available

(32) Mz, t) = Σ PΛtY

and hence

we obtain employing (10) the determinantal identity

, Z, W, ί ) = JΓS7ΓS+1

», t) Λ+i(w, ί)

= Σ πhπhP(t llf l* \whzh - whzh)
°*h<h 2 v k, k + V

where z < w.

Direct summation gives

(33) Σ (λ* + i"*+i)Λf(fcf ί , w , ί ) =
k 0 0

Σ

In many cases it is possible to recognize the left-hand side of (33)
in terms of classical functions and then obtain Rιιh(t) by picking out the
proper coefficient in the series expansion. We record several important
examples.

EXAMPLE 1. Consider the telephone trunking model (λn = λ, μn —
nμ, n > 0) [4]. The orthogonal polynomials are the Poisson Charlier
polynomials. The generating function of the transition probabilities is
known to be

f (v f\ — Λ-α(l-z)(i-e~^ ί)Γ1 (Λ ?\s>-μtΊJc ^ (~\ΓO (~V|fc

jk\Zj o) — v yκ '[_! — ̂ i — z)e * j — cxt(Z)ipt(Z)]

where a = X/μ and at(z) and βt{z) are defined in the obvious fashion.
The preceding calculations in this case yield
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Σ πιπιRh-h{t)\whzh - whzh]
0 < ί < ! i

1127

(34)

= a(w - [(k λ]
\ (k + 1)!

where 7t(wf z) = βt(z)βt(w). This is a combination of Bessel functions
viz. μlo(2\/aλγ) + X/VaF/ I1(2ι/αiγ) where Iv denotes the usual Bessel
function with imaginary argument. If we specialize to the coefficient
of z°wτ we get

R01(t) = e-^e-2aσ\IQ(2aσ) + — IΎ(2aσ)\ where (7 = 1 - e~^ .

EXAMPLE 2. Consider the linear growth birth and death process
where

ί V) I 1 I /y\κ" Q TΊ f\ It M /t" Ύt ~~~^> C\
m V ~T~ -*- "l t Λ /Λ' (X1X.WX h-^γi It/IV Iv *^ \j

and a is real, a > — 1. The associated orthogonal polynomials are the
Laguerre system normalized at the origin equal to 1. Utilizing the
generating function of [5 eq. (25)] we obtain

Σ πιπιRhh{t)\whzh - whzιi\

(3 5) = tc(a + lMz)8t{w)\yt(w) - 7t(z)]{2F(a + 1, a + 2, 1, uβ(2

+ aF(a + 1, α + 2, 2, u ^ , w)}

where î 1 denotes the standard hypergeometric function

and (α)n = Γ(a + n)/Γ(a). Here,

( i - h«ί)(

1

/

\

/

1 -
1 + _

1 +

and %t(«, w) = 7t(2)7((w). The coefficient of Λυ1 in (35) reduces to

(36) +
+ aF(a + 1, α + 2, 2, (-

+ ict

The coincidence time density function R01(t) is the expression (36) apart
from the constant factor lj(a + 1). When a is a non-negative integer
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the coincidence time density function reduces to a rational function.
In the particular case a — 0f we obtain

R«\t) = - 2/c

+ 2fctγ

which shows that coincidence is certain with the expected time until
coincidence infinite. This is true of all the linear growth processes
introduced in this example.

If we examine a linear growth process where there exists a permanent
absorbing state at —1 then obviously coincidence is never certain. It
is of some interest to compute the probability of coincidence before
absorption. Let us illustrate by considering the model where Xn = (n + l)/c
and μn — (n + l)/c for n > 0. A calculation similar to that above gives

R*\t) = 2κ κ

(l + 2fcty(i + tcty (l + ictγ

It is easy to evaluate I R°\t)dt = 251A — 8 log 2. The reader may verify
Jo

that this lies between 0 and 1 (approximately. 71).

4 The probability of coincidence* In this section we shall determine
the exact conditions which imply that coincidence in a finite state is
certain to occur. Our results apply to the case of n independent particles
moving simultaneously subject to the transition law of the same birth
and death process (B). Our methods may be extended in the obvious
way to treat the case in which the particles are subject to different inde-
pendent birth and death laws. Such a generalization is left to the reader.

If the process (B) is recurrent then coincidence is clearly certain.
In fact, if two particles originate in states i and j > i, respectively
then the second particle reaches the state 0 in finite time with proba-
bility one and coincidence must precede this event because of ' 'continuity''
of paths. Thus it remains to decide the probability of coincidence when
the process (B) is transient.

In [3] we classified two kinds of transient processes. A transient
birth and death process is said to be ''weakly transient" if ΣΓ-o-P«j(£) = 1
for all t and some i. In terms of the birth and death rates this is
equivalent to the divergence to infinity of the sequence

where Qm are the associated polynomials of the process (B).
A birth and death process is said to be strongly transient if for

some t and i, ΣΓ-O-FYJOO < l A necessary and sufficient condition for



COINCIDENCE PROPERTIES OF BIRTH AND DEATH PROCESSES 1129

the process to be strongly transient is that, for any starting position
and for any positive time value t, with positive probability the diffusing
particle reaches infinity in time t.

It becomes evident that for strongly transient processes coincidence
is not a certain event, since with positive probability one particle may
stay in a given state (say i) in any specified length of time while the
other particle moves to infinity without touching state ί during this
same period of time. An analogous argument will prove that the
probability of coincidence for the case of n independently moving par-
ticles is not a certain event when the process is strongly transient.
We shall determine in Theorem 3 the exact condition for coincidence
to be certain. It will be clear that the criteria is the same for two,
three or n particles.

We concentrate in what follows on the case of two particles. It
is tempting to proceed as follows. Let wi3 denote the probability of no
coincidence in finite time when two particles start respectively in states
i and j (i < j). We set wklc — 0. Writing out a recursion relation in
terms of the first transition, we obtain

Xi + Xj + μ% + μj X% + Xj + μ% +

(37) λ < . nt

Xi -j- Xj -f- μ% ~r y-j χ% ~τ xj -\~ μ% ~τ μj

valid for all 0 < i < j. A sufficient condition guaranteeing that coinci-
dence is certain is that the only bounded positive solution of the system
(37) is the identically zero solution. In the situation of non-certain
coincidence it would also be of interest to calculate the probability of
no coincidence wi}. The investigation of this problem is complicated by
the abundance of positive solutions that (37) possesses.

The study of (37) is interesting in itself and indicative of the
difficulties associated with solving two-dimensional difference equation
systems even in comparatively simple cases having probabilistic signi-
ficance.

To illustrate this we exhibit several solutions of (37). Suppose the
spectral measure ψ of (B) is located in the interval [α, oo) where a > 0.
Then

(38) wtj{a) = - JL
QAμ)

Qj(a)
= -±QQ2a V-α, a

for each a satisfying 0 < a < a is positive by virtue of Theorem 1.
when a = 0, wtJ(0) is interpreted as -Q;(0) + Q[(0) = ΣtΛ l/λfcττfc Σί-o^r
The verification that for all a, w^ia) is a solution of (37) is accomplished
by choosing xλ — — a and x2 = a in the recursion law (30).



1130 S. KARLIN AND J. MCGREGOR

Unfortunately, there is no natural ordering among the solutions
Wtj(ά). We show first that woj(a) is increasing in a (0 < a < a) for each
j . To this end, observe that

ί
wQj(a) = Qj(-a) - Qj(a) = Σ αJfcα

fc

where aj1c is positive for k odd and zero for k even. Hence, wQj(a)
increases as asserted. On the other hand, we show that wj>j+1(a)
is decreasing in the same range of a. In fact, by virtue of a known
representation [9 p. 42] we have

wJJ+1(a) = -A- Σ πrQr(a)Qr(-a) .

Hence, w'JtJ+1(a) = l/λ,7Γ, Σ U τϋr[-Qr(a)Qf

r(~a) + Q'r(a)Qr(-a)]. It is
enough to show since Qr(a)Qr( — a) is positive that

a) = _ Q'r{-a) , QM < 0
V Qr(a)QΛ-a) Qr(-a) Qr{a)

But the roots of Q'r(x) are separated by the roots of Qr(x) and since Qr(x)
has no roots in [— c», a) [9, p. 43] we conclude that —Qr

r(x)IQr(x) is
increasing.

The lack of order and the multiplicity of natural positive solutions
seem to be the main sources of difficulty in proving the non-existence
of any bounded positive solutions of (37). The solution ^ ( 0 ) should be
singled out because it is always present (as a > 0) and also lim^*, woj(O) = oo
is precisely the condition that the process be weakly transient.

It should be added that the one parameter family of solutions, dis-
played in (38), when a is a positive number, does not exhaust in terms
of linear span the totality of solutions. It appears that one can always
construct at least a three parameter family of determinantal extremal
solutions. The problem of characterizing all solutions of (37) in general
remains open and relates to the problem of determining all determinantal
polynomial systems satisfying the recursion law of (30).

We now turn to a discussion of the main theorem of this section.

THEOREM 3. // the process (B) is recurrent or weakly transient
then coincidence is certain if and only if

(40) Vn = Σ ΣΣ
0

where wm — ΣίΓ"1 V\^i Σ*-o πj a n d wo — 0
Before embarking on a proof of the theorem, it is necessary to

interpret condition (40). To this end, denote by th the random vari-
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able which represents the length of time for a particle subject to
the transition law of the process (B) to move from state i to state
i + 1. In other words ί4 denotes the first passage time from state i to
state i + 1. In the same way, since the path functions are continuous,
zn — t0 + tx + + tn-.λ represents the first passage time from state 0
to state n. The ti are evidently independent but not identically distributed
random variables.

The Laplace transform φn(s) of the distribution of zn is given by

when Qn is the nth orthogonal polynomial. More generally, the Laplace

transform of the distribution of tm + tm+1 + ••• + ίB_j is

These formulae are proved as follows: The well-known Laplace transform
formula, which expresses the first passage time distribution from state
i to state j in terms of the transition probability function is

(41) F^s) ξd?l

Inserting the formula of [2 p. 522] in (41) gives the desired result.
From knowledge of the Laplace transform it is routine (successive

differentiation of φn(s) at zero) to determine the moments of zn. In
particular,

E(zn) - Σ - - — Σ πr = wn - - Qf

n(0)
0 λfc7Γfc r-0

and

(42) variance (zn) = - Q;'(0) + [Q'MV

From identity (11), we get

n~1 1 c n~1 1

= Σ i Σ πλQ'Φ)] Σ J
1

- Σ πλ-Q'rΦ)] = Σ - J - Σ πrwr.
0 Xπ Ό

Inserting this in (42) leads to

But
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\wl = Σ (wr+1 - wr)wr+1 - i- Σ,(wr+1 - wrf

= Σ ( - ^ Σ π, W+ 1 - 4 Σ (w,*i - wrγ

(43) 1 Var (zn) = Σ - ^ - Σ Φ , « - w.) - Σ
Z 0 Xπ k = 0 2 r =

= tfn-i ~ — Σ (
2 r=0

Since w4 is increasing in i

v > y v

and hence

) > Σ

If the series ΣΓ (^r+i ~ wrY is divergent then vn~λ —>oo and J Var (zn) —>&>,
but if the series is convergent then vn-x — J Var(zn) is bounded. In any
case {vn} and {Var(2n)} either both converge or both diverge.

It is possible for wn to increase to infinity while at the same time
vn stays uniformly bounded. For example, let

τrr = — and - i - = -4- for r > 1.
r λr7Γr ee

A straightforward calculation shows that

n 1 r ^e n 1

Σ —7-Σ -Γ- = Σ — + a convergent series
r 0 β fcl fc 0 γ

1 r ^e^ n 1

Σ -Γ- = Σ
fc r=0

~ log n + c .

Also

The inner sum grows like its largest term and we have

vn — Σ —[1°& (k + 1) — log fc] + a convergent sequence

which clearly exhibits ^w as uniformly bounded.
A class of examples in which vn —* oo can be constructed as follows.

Suppose, πn and obey the asymptotic relations
λnπn
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πn ~ n«-γL(n) (a Φ 0) and — — ~ nβL*(n)

where L(n) and L*(%) are slowly oscillating sequences (L(n) is said to

be slowly oscillating if for every c > 1, —ψβjL —> i) 2 - < oo and
L(n) λwπw

ww tends to infinity. Under these conditions we show that vn tends to
infinity. In fact

wn ~ Σ rβ+«L(r) ~ n«+β+1L(n)
r=l

where L(n) — c L{n)L*(ri), (c is a constant) and provided a + β + 1 > 0.
(Similar conclusions hold even in the cases a — 0 and α + /3 = ~ 1 in-
volving iterates of L(n).)
We next observe that

vn > A± rβL*(r)± k^L(k)[wr+1 - wk]
(44) r=[

r = 0 fc=l

where A and A' stand for fixed constants. The estimate in (44) is valid

since wr grows like r*+β+1L(r). Finally,

> ^ " Σ rβLΣ
r=0

(r)r«L(—r)
V 2 /

and the proof is finished.
Some other useful conditions that assure the validity of (40) are as

follows: If the spectral measure ψ of the birth and death procsse (B)
has either

(a) positive measure in every neighborhood of the origin, or if
(b) ψ has an infinite number of points of increase, contained in a

bounded interval 7, then vn tends to infinity.
The proof of these statements depend on an alternative representa-

tion of the quantity Var zn. To this effect, we observe that the Laplace
transform of zn can be factored in the form

(45) φn(s) = - =: -

π (i + 7*~

where ani are the roots of Qn (recall that the ani are real and positive).
A direct calculation shows that

n ^ n 1

Var zn = Σ —— and wn = Σ —
ί _ i •v2 ί _ 1 rv
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In case (a), the first root anl tends to zero and hence Var zn becomes
unbounded. In case (b) as n increases the interval /must contain an un-
bounded number of roots anl, and therefore Varzn is unbounded. Sever-
al notable applications may be recorded.

Queueing models, defined by the parameters Xn = λ, n > 0, μn — μ,
n > k0, μ0 = 0, and kQ a prescribed positive integer, have the property
that coincidence is a certain event. In fact, for these examples case
(b) applies (see [4]).

The situation of linear growth, birth and death processes, (i.e.
χn = Xn + α, n > 0, μn — μn + b, n > 0, μQ = 0) with regard to the
probability of coincidence is as follows. If μ — λ, then coincidence is
always certain (case (b) above). If μ > λ then the process is recurrent
and coincidence is trivially certain. If μ < λ then the process is weakly
transient and coincidence is not certain. This last assertion is proved
as follows. The spectral measure is discrete with mass points located
essentially at an arithmetic series. The roots of Qn{ — s) for any n are

separated by the mass points of ψ and hence always 2( — ) < &Σ—Γ < C.
\oίnij n

We turn now to the proof of the theorem. The arguments are
divided into a series of lemmas.

DEFINITION (Levy [7]). A series of independent random variables
#i + + %n = sn is essentially divergent if there exists no sequence
of constants an such that sn — an converges almost surely to a finite
random variable.

LEMMA 1. If vn is divergent then the series of independent random
variables t0 + tλ + + tk-x — zk is essentially divergent. (The mean-
ing of tr is as before.)

Proof. Suppose we can find a sequence of constants an such that
zn — an converges. In particular, its characteristic function

—^—^— converges for each real λ

to a characteristic function <£>(λ). It follows that the corresponding
symmetrized random variable with characteristic function

for each real λ and uniformly in any finite interval. But, by virtue of
(45) for λ > 0

\Qn(-iV\-)\> = π (l + -M > l + XΣ 4-
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Hence, for λ Φ 0, \Qn(-i\)\2 tends to infinity and |cp(λ)|2 = 0. Thus
φ(X) is not a characteristic function as required. The contradiction
implies that zn — an cannot converge for any sequence of constants and
consequently zn is essentially divergent as was to be shown.

COROLLARY 1. Suppose vn is divergent and let tt and t\ represent
independent observations of the first passage time from state i to state
i + 1. Then

is essentially divergent.

Proof. This is clear since the characteristic function of zk — z'k
(μk = a sequence of constants) is

which for real λ Φ 0 tends to zero as shown in the proof of Lemma 1.

LEMMA 2. With the same notation as in Corollary 1, if vn diverges
then for every fixed r

(46) Pr {[t0 + tx + + ί J - [ί; + tUi + - + *ί] < 0 i.o.} = 1

(i.o. is an abbreviation of infinitely often).

Proof. With r held fixed it will be sufficient to prove that

(47) Pr {tf

r + t;+ 1 + + t'k - tr - tr+1 tk > Ci.o.} - 1

for every positive constant C. Indeed, the validity of (47) implies that
for almost every value of ί0 + tλ + + i r - 1

1 - Pr{ ί o .+ ••• +tk- (t'r+ ••• + tί) < OLo. |ίo + t 1 + ••• + ί r - i } .

Invoking the law of total probabilities leads immediately to the con-
clusion (46).

We devote ourselves now to the proof of relation (47). Since the
series (t'r — tr) + (tf

r+1 — tr+1) + + (t'k — tk) — Tk (the dependence of
Tk on r is suppressed since we are keeping r fixed) is essentially diver-
gent we may appeal to a theorem of P. Levy [7 p. 147] and deduce
that if Ak is any sequence of constants

(48) Fv{Tk>Aki.o.}

is either 0 or 1. We select for our purpose all Ak — 0. Since Tk con-
stitute a series of symmetric random variables the value of the expres-



1136 S. KARLIN AND J. MCGREGOR

sion (48) is clearly 1. By virtue of a second theorem of P. Levy [7 p.
147],

Pr{T f c>Ci.o.} = 1

for any constant C and the proof of the lemma is finished.

Proof of the Sufficiency of Theorem 3. Suppose for definiteness
that particle labeled (i) starts in state 0 and particle labeled (ii) starts
in state r, each independently subject to the same transition law. Let
tt and t'i9 for particles (i) and (ii) respectively, represent as previously
the first passage time from state i to state i + 1. Lemma 2 assures
that with probability 1 there is a state k such that the particle labeled
(i), having started at zero, reaches k for the first time earlier than the
particle labeled (ii) whose initial state was r. Since the path functions
are continuous, the two particles necessarily cross and coincidence is
certain.

Necessity. The proof of necessity will likewise be written in the
form of a series of lemmas.

LEMMA 3. If vn is bounded then

(49) P r {t0 + t, + ••• + t*-! -•«; - t'r+1 «ί > 0

for all k > r} > 0 .

Proof. Consider T* = (ίj - ΐr) + ••• + {t'k - tk), k = r, r + 1, ••-,
which is a partial sum composed of independent symmetrically distributed
random variables. The hypothesis (see (43)) means that the variance of
Tk is uniformly bounded. Therefore, invoking the three series theorem
(because t — tt are symmetric only the convergence of the series formed
by the variances of the successive terms has to be verified), we may
conclude that Tk converges almost surely to a finite valued random

Let £* denote the limit of Tk. Take any value C such that

Pr {\t*\ < C} > 0 .

Since Tk converges almost surely to ί* there is a kQ such that

Pr {|Tk\ < C for all k > k0} > 0 .

Making C even larger (say C) if necessary we can assure

(50) Pr {|Γfc| < C" for all fc = r, r + 1, •••,} > 0 .

Consider now the random variable ί0 + ίi + + fr-i which is inde-
pendent of all Tk, k > r. Since t0 is exponentially distributed it follows
that
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(51) Pr {t0 + tλ + . . . + tr-λ > C'} > 0

for any C sufficiently large. Combining (50) and (51) yields the estimate

Pr {t0 + tλ + + tr-x - Tk > 0 for all k > r}

> Pr {tQ + + tr^ > C"} Pr{Tfc < C" for all k > r} > 0

for an appropiate positive constant C.
This means that with positive probability a particle starting at zero

never reaches a state k > r + 1 for the first time at an earlier time
then a particle beginning in state r. The proof of the lemma is finished.

LEMMA 4. // coincidence is a certain event when the particles
have a prescribed pair of initial states r, s (r < s) then coincidence is
a certain event for any pair of initial states.

Proof. This is a direct consequence of the fact that with positive
probability any pair of state i, j (i < j) can be attained starting from
the initial states r and s without the occurrence of coincidence.

Consequently, if there exists positive probability of no coincidence
starting from i and j , respectively then the same is true for r and s
contrary to the hypothesis.

LEMMA 5. Let coincidence be a certain event. Suppose the initial
states of the two particles (i) and (ii), respectively are i0 and j0 > i0.
Then the event that particle (ii) reaches every state k (k > k0) for the
first time ahead of particle (i) has probability zero.

Proof. We shall prove the lemma by producing an infinite sequence
of states kλ < k2 < with the following properties (called A). If the
initial states of the particles (i) and (ii) are any pair r and s where
r < s and s < kt then the probability exceeds 1/4 that particle (i) will
reach state ki+1 ahead of particle (ii).

Let us suppose statement (A) is established and now show how to
finish the proof of the lemma. To this end, we have

Pr {(ii) reaches state k prior to (i) for all k > k0}

< Pr {(ii) reaches state kt prior to (i) for all kt > k0}

< Π (1 — Pr {(i) reaches state kt+1 prior to (ii)l(ii) reaches state

kt prior to (i))} .

The infinite product is zero since on account of statement (A) infinitely
many factors are < 3/4.

It remains to prove statement (A).
Suppose we have already constructed kuk2i , kt. Since coincidence

is a certain event regardless of the pair of initial states r and s, (r < s
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and s < ki) there exists a time value t0 so that with probability > 1 — ε
coincidence occurs sometime earlier then t0. The value of t0 may be
determined for each pair of initial states r and s. However, since there
are only a finite number of possibilities r, s (r < s) where s < kt we can
choose t0 large enough so that the same value of t0 applies for any of
these pairs of starting states. By further reducing to a subset of paths
of probability > 1 — 2ε (ε can be specified in advance as small as desired)
we can determine a state ki+1 > kt which is not entered by either par-
ticle in the time duration (0, ί0). The existence of kt+1 is guaranteed
since the hypothesis of the lemma postulates that coincidence is cer-
tain and hence the process cannot be strongly transient. Restricting
consideration to this set of paths we note that at the first instance of
coincidence the two particles are indistinguishable and hence, with prob-
ability 1/2, particle (i) will enter state ki+1 ahead of particle (ii). Let
Ei denote the event that (i) reaches state ki+1 ahead of (ii) when the
initial states respectively are any pair r and s, s < kt.

The above argument establishes that Pr {E,} > (1 - 2ε)/2 > 1/4 and
the proof is hereby complete.

Proof of Necessity. This is immediate by comparing Lemmas 3
and 5.

The problem of computing the probability of coincidence for the
case when vn is bounded remains open.

We close with some observations regarding the problem of deter-
mining criteria which guarantee finite expected time for coincidence.
First it is evident that for an ergodic birth and death process the ex-
pected time until coincidence is finite. To decide when the event of
coincidence has a finite expected time is in general an open question.

The following two examples are of some interest. In the case of
the linear growth processes associated with the Laguerre polynomials,
we were able to determine a double generating function for the explicit
distribution of the coincidence time (33). Here, it is easy to show by
direct calculation that the expected coincidence time is infinite.

We shall now prove that for the recurrent null or transient queue-
ing model (labeled B) the expected coincidence time is infinite. For
definiteness Xn — λ, n > 0 and μn — μ, n > 1, μ0 = 0.

We consider for the situation of two particles starting in states i
and j , 0 < ί < j , the following induced random walk W whose state
space is composed of the non-negative integers. We say that W is in
state r if j — i — r. Transitions in W are engendered whenever one
of the particles of process B changes its state. Explicitly a transition
of W occurs from state r to r — 1 if and only if after the first change
the state labels of the two particles, undergoing the process B, are
either (i + l,j) or (i, j — 1). A movement from r to r + 1 occurs in
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the contrary case. The motion on W, thus induced by the birth and
death process will be understood to apply only when i > 0. The homo-
geneity of the queueing model implies that the changes engendered in
W are independent of the specific states occupied by the two particles
of the process B and only depend on their distance (j — i) apart provided
i > 0. Hence

Prw{r -> r - 1} = Prw{r — r + 1} = 1/2 for r > 0 .

It is well known that for this random walk the time until first
passage into the state 0 from any non-zero initial state has an infinite
expected value [3]. Moreover, first passage into 0 obviously corresponds
to the event of coincidence for the original birth and death process.
There is one slight complication in the above argument arising from
the fact that when one of the particles of process B starting at i
reaches zero, the transition probabilities of the induced random walk do
not agree with the probabilities of the changes in distance between
the particles. This is due to the reflecting character of state zero, i.e.
when one of the particle of its process is in state 0 then this particle
can only move to state 1. We will show that this complication is of no
consequence in deciding whether coincidence in B occurs with finite
expected time.

Let the particles begin in states i and j,(ί< j). Since coincidence
is certain let us consider all those paths E where coincidence occurs
without either particle ever reaching zero. Conditioned in this way the
induced random walk describes the changes of the " distance" (number
of states separating the two particles) until coincidence. But, for the
random walk W the expected number of transitions for the first passage
into zero is infinite. Since the expected time between transitions for
the birth and death process is l/(λ + μ), the expected time until coinci-
dence averaged over the paths of E is infinite. Next, let F denote the
set of paths in the process B where the particle, starting in state i<j,
reaches state zero before coincidence. Since the process B is null re-
current or transient, again the expected time length of the paths of F
is infinite. Hence, under either circumstance the expected time until
coincidence is infinite.

The above argument may be extended to prove that if a birth and
death process is null recurrent of transient with certain coincidence, then
the expected time of coincidence is infinite provided Xίlil/P^ + /O — °°>
and

1 γ, __ π _ vπjav ^i ~t~ f ^ i + n 'JO — 1
1 -~ Vn — Qn — m a x — — — • , pQ — i

*>o λ f + μ + χ.+n + μί+n

are the transition parameters of a recurrent null or transient random
walk W on the integers (i.e. PrTF {n —> n + 1} = pn).
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On the other hand, the expected coincidence time is finite whenever

Jt±±J*ϊ+*.
λ4 + μt + Xi+n + μi+n

1 - Pn = Qn = m i n

describes an ergodic random walk W and max l/(λ^ + μ3) is bounded.
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COINCIDENCE PROBABILITIES

SAMUEL KARLIN AND JAMES MCGREGOR

1. Introduction, It was shown in [14] that if P(t) = (PtJ(t)) is the
transition probability matrix of a birth and death process, then the
determinants

3im On

where ix < i2 < < in and j \ < j2 < < j n

 a r e strictly positive when
t > 0. In this paper it is shown that these determinants have an inter-
esting probabilistic significance.

(A) Suppose that n labelled particles start out in states ίlf ,in

and execute the process simultaneously and independently. Then the
determinant (1) is equal to the probability that at time t the particles
will be found in states j l y , j n respectively without any two of them
ever having been coincident (simultaneously in the same state) in
the intervening time.

From this statement it follows that the determinant is non-negative, and
as will be seen strict positivity can be deduced from natural hypotheses,
for example if Pi j (t) > 0 for a — 1, •••, n and every t > 0.

The truth of the above statement rests chiefly on the facts that the
process is one-dimensional—its state space is linearly ordered, and that
the path functions of the process are everywhere '' continuous". Of
course the path functions are discontinuous in the ordinary sense but the
discontinuities are only of magnitude one. Thus when a transition occurs
the diffusing particle moves from a given state only into one of the two
neighboring states, and even if the particle goes off to infinity in a finite
time it either remains there or else it returns in a continuous way and
does not suddenly reappear in one of the finite states. These two prop-
erties of one-dimensionality and "continuity" have the effect that
when several particles execute the process simultaneously and indepen-
dently, a change in the order of the particles cannot occur unless a
coincidence first takes place. (The states are all stable so that with prob-
ability one a transition involves only one of the particles.)

It is also important for our results that the processes involved have
the strong Markoff property of Hunt [10], [11], (see also [19]). However
it is a consequence of theorems of Chung [3] that any continuous time

Received December 18, 1958. This work was supported in part by an Offiice of Naval
Research Contract at Stanford University.

1141



1142 SAMUEL KARLIN AND JAMES MCGREGOR

parameter Markoff chain whose states are all stable has the strong Mar-
koff property.

There exist processes of birth-and-death type whose path functions
may have discontinuities at infinity. Such processes have been described
in some detail by Feller. Although the above result (A) does not apply
to these processes they fall within a more general class of processes
which we discuss next.

We consider a stationary Markoff process whose state space is a set
of integers and whose states are all stable. Let (Ptj(t)) be the transition
probability matrix. Then

(B) Suppose that n labelled particles start in states ίlf * ,in

and execute the process simultaneouly and independently. For each
permutation σ ofl, , n let Aσ denote the event that at time t the
particles are in states j ^ ^ , •• ,iσ<» respectively, without any two
of them ever having been coincident in the intervening time. Then

p(t; ίlf # ' M = Σ(signcj)Pr{Aσ}
,Jn

where the sum runs over all permutations of l, ,n and
sign σ — 1 or —1 according as σ is an even or an odd permutation.
The first stated result is seen to be a special case of this one. For

if the path functions are " continuous " and ix< ••• < in, j \ < ••• <jn

then Fΐ{Aσ} is zero except when σ is the identity permutation. There
is one other case in which the general formula permits an interesting
simplification, namely when the process is a local cyclic process. By
this we mean that the states may be viewed as N+l points 0,1, •••, N
on a circle and transitions occur only between neighboring states, 1 and
N being neighbors of zero and N — 1 and 0 neighbors of N. We take
0 <%!< < in < N and 0 < j \ < < j n < N and then Pr{Aσ} is zero
unless σ is a cyclic permutation. Since the cyclic permutations of an odd
number of objects are all even permutations we have in this situation

- Σ P r { A σ } , ^odd.(3) pit; ^ ' " ' M -
Jit 9 Jn

Σ P r { A σ } ,
li

Σ
η . . . / / / cyclic σ
Jit 9 Jn

This determinant is therefore non-negative.
Analogous results hold for one dimensional diffusion processes. Let

P(t,xyE) be the transition probability function of a stationary process
whose state space is an interval on the extended real line. It will be
assumed that the process has the strong Markoff property and that its
path functions are continuous everywhere. Given two Borel sets E, F
the inequality E < F will denote that x < y for every x e E,y e F.
We take n states xλ < x2 < < xn and n Borel sets Eλ<E2 <•••<£'„
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and form the determinant

^EJ >>.P(t,xltEn)

(4) P(t; Xί' '"'
E " P(t,xn,E1)...P(t,xn,En)

(C) Suppose that n labelled particles start in states x19 , xn

and execute the process simultaneously and independently. Then the
determinant (4) is equal to the probability that at time t the parti-
cles will be found in the sets El9 •••, En respectively without any
two of them ever having been coincident in the intervening time.

Next consider a stationary strong Markoff process whose state space
is a metric space and whose path functions are continuous on the right.
We take n states xl9 , xn and n Borel sets E19 , En and again form
the determinant (4).

(D) Suppose that n labelled particles start in the states xl9 , xn

and execute the process simultaneously and independently. For each
permutation σ of 1, 2, , n let Aσ denote the event that at time t
the particles are in the states Eσι9 *, Eσ respectively without any
two of them ever having been coincident in the intervening time.
Then

(5) p(t; X l ' '
v EU---,E

where the sum runs over all permutations σ.
The last result contains all of the preceding ones as special cases.

It has another interesting special case, namely when the state space is
a circle and the path functions are continuous.

There is a mapping θ -• eiθ = x of the closed interval 0 < θ < 2π
onto the circle. Given n Boral sets E19 * ,En on the circle we say
Eλ < < En if there are n Borel sets E[ < < E'n in the interval
(0, 2π] or [0, 2π) which are mapped onto El9 -*-,En respectively by the
above mapping. Specializing the sets to be one point sets gives the
meaning for x1 < < xn when x19 , xn are n points on the circle.

Now let P(t9x9 E) be the transition probability function of a strong
Markoff process on the circle with continuous path functions. Because
of the continuity of paths a change in the cyclic order of several diffus-
ing particles on the circle cannot occur unless a coincidence first takes
place. Thus the terms in (5) corresponding to non-cyclic permutations σ
will all be zero. Finally we take advantage of the fact that the cyclic
permutations of an odd number of objects are all even permutations,
and obtain the following.

(E) Suppose xx< < xn9 Ex < < En and n labelled parti-
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cles start at xl9 , xn respectively and execute the process simultane-
ously and independently. If n is odd and Aσ is defined as before
then

(6) ( Σ
v Ely-"7En

/ c y c l ι c σ

where the sum runs over all cyclic permutations.
Similar but more complicated results are valid in still more general

situations. For example we restrict our discussion to stationary processes
although both the methods and the results can be extended to non-
stationary processes. A generalization of another type which has in-
teresting applications is obtained when the n particles execute different
processes.

Let Pa{t, x, E), a = 1, ••, n be transition probability functions of
n strong Markoff process on the real line with continuous path functions.
Choose n states xx < < xn and n Borel sets Ex < < En and form
the determinant

( 7 ) det PΛ(t, x«, Eβ) .

If n labelled particles start in states x19 ••, xn respectively, and execute
the processes simultaneously and independently, the ith particle executing
the ith process, then the determinant (7) is the probability that at time
t the particles will be found in the sets Elf * ,En respectively, without
any two of them ever having been coincident in the intervening time.

The formal proofs of formulas (5) and (6) and of the interpretation

of p(t, XlfX* m">x») are elaborated in §5. For this purpose the rele-
V EuEf- Ej

vant preliminaries and definitions concerning Markoff processes are
summarized in § 4.

In § 6 we offer some observations on the problem of determining
when the strong Markoff property applies to direct products of processes.
In this connection we direct attention to those aspects of this problem
relevant to our analysis of the main theorem of § 5.

Section 2 contains a brief heuristic proof of (C) in the situation of
two particles. This is inserted in order to motivate the formal proof of
§ 5. Section 3 discusses the connections of the concept of total positivity,
to statements (A) - (E).

Total positivity is significant in relation to the theory of vibrations
of mechanical systems [8], the method of inversion of convolution trans-
forms [9], and the techniques of mathematical economics [13]. In this
paper total positivity is shown to be also important in describing the
structure of one dimensional strong Markoff processes whose path func-
tions are continuous. In a vague sense the most general totally positive
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kernel can be built from convolutions of stochastic processes whose path
functions are continuous. In principle, the representation desired is
similar to the representation formula which applies to Pόlya frequency
functions discovered by Schoenberg [20]. A detailed discussion of this
idea will be published separately. In this connection we mention that
Loewner has completely analyzed the generation of totally positive mat-
rices from infinitesimal elements [18].

In § 7 we investigate conditions which insure that the determinant
(4) is strictly positive. We find that this is the case if P(t, x, E) > 0
whenever t > 0, E is any open set and P(t,x, E) represents the transi-
tion probability function of a strong Markoff process on the real line
with continuous path functions.

The following converse proposition is of interest. Suppose the transi-
tion function P(t, x, E) of a Markoff process has the property that all
determinants of the form (4) are non-negative. Does there exist a
realization of the process such that almost all path functions are conti-
nuous? This is true with some mild further restrictions. In § 8 with
the aid of a theorem of Ray [19] we are able to establish a partial converse
based on a restriction about the local character of P(t, x, E). It will be
recognized that most cases of Markoff processes obey this requirement.

In § 9 we characterize the most general one dimensional spatially
homogeneous process whose transition kernel is totally positive.

The final section presents a series of examples of totally positive
kernels derived from Markoff processes with continuous path functions.

2 A heuristic argument. In this section we give a non-rigorous
outline of the method of proof for the case of two particles. Let P(t, x, E)
be the transition probability function of a stationary Markoff process on
the real line. Suppose that two distinguishable particles start at x1 and
x2 > xx and let Ex < E2 be two Borel sets. The determinant

pit; *i M = P(t, xlf E^Pit, x2, E2) - P(t, xlf E2)P(t, x2, Eλ)
V ExEj

is equal to Pr {A[} — Pr {A2} where A[ is the event that at time t the
first particle is in Ely the second in E2 and A[ is the event that at time
t the first particle is in E2, the second in Eλ. Each event A'if regarded
as a collection of paths, may be split up into two disjoint sets At + A"
where A% consists of all the paths in A[ for which no coincidence occurs
before time t and A" consists of the paths in A[ with at least one coin-
cidence before time t. We assume the paths are sufficiently smooth so
that for each path in A" and A2 there is a first coincidence time. This
will certainly be the case if all paths are continuous on the right.
Choose a path in A" and at the time of first coincidence interchange the
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labels of the two particles. This converts the given path into a path in
A[f and the resulting map of A" into A" is clearly one-to-one and onto.
Because of the Markoff property and because the particles act indepen-
dently it is plausible that this map is measure preserving so that

Pr {A[f} - Pr {A'J}

and granting this it follows that

. XU XΛ = p r Γ̂ JJ _ p r f̂ ,|

Ex Ej

= Pr {Aλ} - Pr {A*} ,

which is the general form of the result. If the path functions are all
continuous then Pr {A2} = 0 and the formula becomes

p(t; Xl>

3. Total positivity. A matrix is called (strictly) totally positive if
all of its minors of all orders are (strictly positive) non-negative. Such
matrices and their continuous analogues the totally positive kernels occur
in a variety of applications and have been studied by numerous authors.
A lucid outline of the theory together with an extensive bibliography
has been given by Schoenberg [21], Krein and Gantmacher [8], Our re-
sults indicate the existence of large natural classes of semi-groups of
totally positive matrices and totally positive kernels. One simply takes
the transition probability function of a one dimensional diffusion process
with continuous path functions. A number of interesting examples are
given in § 10.

Conversely the total positivity of the transition function may be used
to draw conclusions regarding continuity of the path functions. A pro-
gram along these lines has already been carried out by the authors for
the case of birth and death processes [12]. (see also § 8.)

Our attention was first drawn to total positivity in connection with
diffusion processes by unpublished results of C. Loewner who showed
that the fundamental solution of

du d2u . 7 du
— = a — -f o —
dt dx2 dx

on a finite interval with smooth a and b and classical boundary conditions,
is totally positive.

4. Definitions. As indicated in the introduction we are chiefly con-
cerned with processes on the integers, the real line, or the circle. In
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order to deal with all cases at once it is convenient to discuss certain
results for a more general process whose state space is a metric space
X.

Let X be a metric space, S3 the Borel field generated by the open
sets of X, and S3' the Borel ring generated by the finite intervals on
0 < t < co. Suppose there is given a set Ω called the sample space and
an X-valued function x(t, ω),0<t<cv,ωeΩ. Let 9JΪ be the Borel
field of subsets of Ω generated by the sets of the form {ω; x(t, ω)e E}
where t > 0 and E e S3. Suppose that for each x e X there is given
a probability measure Px on X such that Px{ω; x(0, ω) = x} = 1. Then
the function x(t, ω) is called a stochastic process on X with sample space
Ω and distributions {PJ.

The stochastic process is said to have right continuous path functions
if for every fixed ω the function x( , ώ) is right continuous on 0<£<oo.

Let ^f/t denote the Borel field generated by all sets {ω; x(s, ω)e E}
where E e 33 and 0 < s < t. Conditional probabilities relative to SDΪj will
be denoted by Px{ \x(8)fs<t}. The stochastic process is called a
stationary Markoff process if for every fixed t

Px{x{tt + t, ω) e E i f i = 1 , , n \ x(s), s<t}

= P*u,*> {α(ίι, o)) 6 Et, i = 1, , n]

with probability one when 0 < tx < < tn and Eu , En e 93.
We will be concerned only with stationary Markoff processes in X

with right continuous path functions. It will always be assumed that
the function

P(t,x,E) = Px{x{t,ω) e E}

is measurable relative to S3' (x) S3. This function satisfies the Chapman-
Kolmogoroff equation:

P(ί + s, x, E) = ^P(t, x, dy)P(s, y, E) .

Let F be a closed set in X. The time of first hitting F is defined
as

τF(ώ) — inf {ί x(ty ω) e F]

where the inf of the void set is taken to be + co. The place of first
hitting F is defined, if τF(ω) < co, as

ξF(ω) = x(τF(ω), ω) .

The Markoff process will be called a strong Markoff process if for
any closed set F we have the first passage relation
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Px{x(t, ώ) e E} = Px{x(t, ω) 6 E, τr(ω) > t}

ξF(ω) 6 dy

In this relation it is implicitly assumed that the sets {ω τ{ω) < t}
and {ω τ(ω) < ί, |(α>) e H} where H is a closed subset of i*7, are 2δ£

measurable for each t. A discussion of the validity of these assumptions
made in § 6. It is there shown that under very slight conditions on the
transition function the assumption holds.

It seems reasonable to believe that the direct product of a finite
number of strong Markoff processes is again a strong Markoff process.
At the present time we are not able to prove that this is generally true,
although in the proof of the main theorem we assume this result. On
the other hand proofs can be given which cover the vast majority of
the special cases of interest. As noted above it follows from theorems
of Chung that the strong Markoff property is preserved under direct
products for processes with countably many states all of which are stable.
This includes the birth and death case. In § 6 we give a proof for direct
products of a one dimensional diffusion process whose transition prob-
ability function P(t, x, E) is jointly continuous in t and x. This covers
the case when P(t, x, E) comes from a diffusion equation

^ = α ( α θ ^ + & ( « ) —
θt dx2 dx

with a(x), b(x) continuous and a(x) > 0. References to other theorems of
this kind are given in § 6.

Let Xif ί = 1, , n be metric spaces and for each i let xt(t, ωt) be
a stationary Markoff process in Xt with sample space fl4 and distributions
{P^}. We form the product space X = Xx (x) (x) Xn in which the
generic point is an ti-tuple x = (xlf •• , xn) with xt e Xt. The space X
with the distance p(x, y) = Σp(xif yt) is a metric space. The vector valued
function x(t, ω) — (xλ{ty ω^)y , xn(t, ωn)) is a stationary Markoff process
in X whose sample space is the direct product Ω of the Ω% and whose
distributions are the direct product measures

x(t, ω) is called the direct product of the given processes.

5 The main theorem. Let X be a metric space, and x{t, ω) a
stationary strong Markoff process in X with right continuous sample
functions, sample space Ω and distributions {Px}. We form the direct
products X, Ω of n copies of X and Ω respectively and the direct product
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x(t, ω) of n copies of the given process. We say this direct product
process represents "n labelled particles executing the x(t, ώ) process simul-
taneously and independently", and this is the sense in which that phrase
is to be interpreted in statements (A)-(E) of the introduction. We
assume x(t, ω) is a strong Markoff process (see § 6).

The associated distributions are

The set F of coincident states consists of the points x=(x19 ,xn)
with at least two of the xi equal to one another. A permutation λ of
the n letters 1, 2, •••, n is called a transposition if there are two letters
i < j such that λ(i) = j , X(j) — i, and λ(r) = r if i Φ r Φ j . In this case
we use the notation \ = (ί,j). A coincident state x = (xu -••, xn) is
said to belong to the transposition λ = (i, j), i < j if xlf , x5-λ are all
different but xt = x3. Thus every coincident state belongs to a unique
transposition, and for a given λ the set of all coincident states belong-
ing to λ will be denoted by F{X). The group of all n\ permutations of
1, 2, •••, w will be denoted by S and the set of all transpositions by A.

Given n Borel sets Elt •••, En in X and a permutation σ e S, the
direct product set

Eσ = Eσω (8) . . . (8) EσW

is a Borel set in X. Let A^ = {ω; x(t, ω) e Eσ] where t > 0 is fixed.
Then if x — (xlf , xn)

p ί t . Xi, , »» V Σ ( s i g n σ ) p _ { A ; }
V Eu.. ,En

J °*s

by definition of the determinant and of P~.
The time τ(ω) of first coincidence is defined as the time of first

hitting F:

τ(ω) = τF(ω) = inf {ί x(ί, S) 6 F} .

The place of first coincidence is ξ(ω) = x(τ(ω), ω). Our main result can
now be stated very simply as follows.

THEOREM 1. The sets

Aσ = {ω ω e A'σ, τ(ω) > t]

are all measurable and

P(t; * " • • • ' * » ) = Σ (sign σ)P7{Aσ] .
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Proof. Since τ is measurable the sets Aσ are also measurable. For
each σ we apply the strong Markoff property to obtain

( ( Pj{x(t -s,ω)e Eσ}μ(dy)
JO JF

where

< s}

e ΛΓ

Now F is the union of the disjoint Borel sets F(X), λ e A, and if y e
F(X) then Py{x(t -s,ω)eEar}= Py{x{t - s, ω) e Eλσ]. Hence

σes

— Σ
σes

v
xeΛ

(sign σ) (W(s) f P?{x(t - s,ω) e Eσ}μ(dy)
Jo Ji?W

- (signλσ)l dΦ(s) \ Py{x(t - s,ω) e Eλσ}μ(dy)
Jθ jF(λ)

= ~ Σs(sign σ) [PJ{A;> - P^{^lσ}] .

This quantity is therefore zero and

P ( ί ; ^ •••'«-) =Σβ(signσ)P;-{i4;}

- Σ^(signσ)P-{Aσ} .

The various assertions (A) - (D) of the introduction can be obtained
by specializing the above theorem in the appropriate way.

6 Strong Markoff property for direct products* For the vast
majority of one-dimensional diffusion processes which are met in appli-
cations one finds that the transition probability function P(tf x, E) is
jointly continuous in t and x. It will be shown that the direct product
of ^-copies of such a process has the strong Markoff property. The proof
imitates the proof of a theorem of Dynkin and Jushkevich [7].

THEOREM 2. Let x{t> ώ) be a stationary Markoff process on the real
line with continuous path functions and transition probability function
P(t, x, E) which is jointly continuous in t, x. Then the direct product
x(t, ω) of n copies of this process is a strong Markoff process.

Proof. Let F be a closed set in the ti-dimensional space, τ(ω) the
time of first hitting F for the direct product process, and ξ(ώ) the place
of first hitting F, The fact that τ(ω) and ξ(ω) are measurable functions



COINCIDENCE PROBABILITIES 1151

is a trivial consequence of the continuity of the path functions. With a
given integer m > 1 let τm(ω) — kjmy where k is the integer such that

m m

and let ξm(ω) = x{τjω), ω). Then for any Borel set E

P»(x(t, ω) e Έ) = Pj{x(t, ω) e E, τjω) > t}

+ Σ Pϊ{x(t9 ω) e E, τm(ω)=lL\ .

Let

(θ if τm{ω)φ —

and

ι0 if y 0 E .

Then

ϊ- \x(t, ω) e .&, τM(ω) = —1 = £?j{

= Ej \E \Ak(ώ)f(x(t, ω)) I φ ) , s < Al l

= E7\Ak(ώ)E\f(x(t, ω)) I φ ) , s < Al l

= E- [Ak{ω)PτWm-^\x(t - A, (ή e l | J

- A, ω) e E~\Pj\ξm{ω) e dy, τ.(ω) = A

and hence we have the first passage relation for r m :

e ^} - Pj{x{t, ω) e E, τjo>) > t}

{ξm(ω) e dy]

For every ω we have τm(ώ) > τm+1(ω) [ τ(ω) and by continuity of path
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functions ξm{ω)—*ξ{ω) as m—*OD. Hence τm(ω)f ξm(ώ) converge in mea-
sure to τ(ώ), ξ(ω). Since P^{x(t — s, ω) e E] is jointly continuous in y
and s and is bounded we may let m —> cx> in the above formula and ob-
tain the first passage relation for τ(ω). This completes the proof.

The referee has brought to our attention the following stronger
theorem of Blumenthal, [1, Theorem 1.1], which is slightly reworded
here.

THEOREM. If the process has right continuous path functions and

if for every bounded continuous function f the function \ f(y)P(t, x, dy)

is continuous in x for each £>0, then the process has the strong Mar-
koff property.

In this theorem the state space X is any metric space. Naturally
this theorem requires more involved arguments than the above Theorem
2. Finally we mention that a very thorough discussion of the Markoff
chain case has been given by Chung [4].

7 Strict total positivity Let X be the non-negative integers and
x(t, ω) a stationary strong Markoff process on X with all states stable
and "continuous'' path functions. If P(t) = (Pa(t)) is the transition
probability matrix of the process then it follows from assertion (A) that
this matrix is totally positive. Let us call the process a strict process
if Pij{t) > 0 for every i, j and all t > 0. We will prove

THEOREM 3. If the process is strict then its transition probability
matrix is strictly totally positive for every t > 0.

Proof. The proof is similar to the proof of a related theorem in
[14], namely Theorem 20 on page 543. It is seen from the proof of that
theorem that it is sufficient for our purposes to prove that if iλ < i2 <
• < in then

Yί; *i'* ' M > 0
^ O m. . « O* '

, V

for every ί > 0, that is the principal subdeterminants are strictly posi-
tive. However since

pί2t. ) (

it is enough to show that these determinants are strictly positive for



COINCIDENCE PROBABILITIES 1153

sufficiently small t > 0. Because the path functions are right continuous,
if {rfc) is an ordering of the positive rationale, the set

U fl (ω x(rk, ω) = i\ x(0, ω) = i]
1 <l/

has probability one. Hence for some m = m(i) > 0 there is a positive
probability Rt that a path starting at i remains at i for at least up to
time l/m(i). Now if 0 < t < max ljm{ik) then we have

and this proves the theorem.
Now let x(t, ω) be a stationary strong Markoff process on the real

line with continuous path functions satisfying the hypothesis of Theorem
1. Let P(t,x,E) be the transition probability function of the process.
The process will be called strict if P(t, x, E) > 0 whenever t > 0 and E
is any non-void open set. We will prove

THEOREM 4. Tf the process is strict then its transition probability
function is strictly totally positive in the sense that if £>0, a?1< <
xn and E1 < < En are non-void open sets then

Pit; Xl> •"•'a? Λ > 0 .

We begin with two lemmas in which the hypotheses of the theorem are
assumed.

DEFINITION. If α, b are two points on the real line then

τΛ(ω) = mf{t x(t, ω) = a} ,

M(t,x,a) = Px{τa(ω)<t} ,

M(t, x, a, b) = Px{τa{ω) < t, τb(ω) > t] .

LEMMA. // a < x < b then M(t, x, α, b) > 0 and M(t, x, b, a) > 0
for every t > 0.

Proof. Assume that M(t, x, b, a) = 0 for some t = t0 > 0 and hence
for every t < tQ. Then if J = [6, <χ>) we have for every t < t0

Pit, x, J) - [P(t - s, α, J)dβM(s, a?, α)
Jo
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and in virtue of the continuity of paths

P(t, a, J) = [p(t - s, x, J)dsM(s, a, x).
Jo

Now because of the continuity of paths we can choose tλ so 0 < \ < tQ

and

M(t, α, x)M(t, x, a) < 1/2 for 0 < t < tx .

Since P(s, a, J) < 1 for all s < tx it follows from the integral equations
that

P(s, α, /) < 1/2 for s < tx,

and by an iteration argument we obtain P(tlf a, J) — 0 which contradicts
the hypothesis. Hence M{t, x, 6, α)>0 for t>0. Similarly M(t, x, α, 6)>0
for t > 0.

DEFINITION. Given an open interval V = (α, 6) let

Λ(ί, x, V) = P,{τα(ω) > ί, τ6(ΰ>) > ί} .

LEMMA 2. 7/ ΛJ e V = (α, 6) then .#(£, a?, F) > 0 for all t > 0 .

Proof. Assume that for some xe V and £'>0 we have R{t', x, V)=0.
Then R{t, x, V) = 0 for all ί > ί\ Because of continuity of paths t0 =
inf {t JB(ί, a?, V) = 0} is positive. Now choose any # 6 V, y Φ x. To fix
the ideas we assume x < y < b. If ε > 0 is so small that M{t\ x, yy a)—
M(e, x, y,ά) > 0 then the inequality

0 - R(t', x, V) > \^R(t' - τ, y, V)dτM(τ, x, y, a)

shows that R{V - e , y, V) = 0. Consequently if t^ inf {« R(t, y, V) = 0}
then

0 < tx < t0 - ε < t0 .

But we can now repeat the argument and show that t0 < tx. This con-
tradiction proves the lemma.

Proof of the Theorem. Let x±< < xn and Ex < < En be non-

void open sets. The index of the determinant

(t. *»—,*.
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is defined to be the number k of values of i for which x% is not in Eim

Thus the index of an nth order determinant of this kind is an integer
between 0 and n inclusive.

In each set Et choose a non-void open interval Ut such that xt e Uι

if xi G Ei but Ui contains no x5 if xt 0 EL. Because of the probabilistic

interpretation

These two determinants have the same index k. If k = 0, then from
the probabilistic interpretation and the second lemma above

P(t; XlfΛΛm9Xn

V Ulf~ fUn

Thus the subdeterminants with index zero are positive. Now suppose
the index is k > 0. We can find n open intervals U'l9 •••, £/„ whose
closures are mutually disjoint such t h a t xt e U't for every i and U[ = E7"4
if α?4 e Ϊ7t. We can choose n points x[, , x'n such t h a t x\ e Ui for every
i and ίc{ = xt if ^ e ί7ίβ Now in the collection U19 •••, Un, U[, •••, ?7^
there are exactly m = n + fc distinct intervals and they are disjoint.
Denote them by Vτ < < F m . Similary in x19 , α?w, a?ί, •••,#„ there
are exactly n + & distinct points. Denote them by y1 < < ym and
then yi e Vi for each i. Let J5(ί) be the m-square matrix with elements

bu(t) = P(t, yt, Vj) .

The determinant pit; Xu *">x») is a minor of B(t). Moreover B(t)
V Ulf—,Un'

is totally positive, all of its elements are strictly positive, and its prin-
cipal minors have index zero and are therefore strictly positive. Hence
by Lemma 14 of [14] all minors of B(t) of index one are strictly positive.

This proves that p(t; Xlf # ' ' ' Xγι ) > 0 if the index of this determinant

l 9 ; n

is < 1. We now assume that for some integer r, 1 < r < n, all the
determinants of the t y p e P U Xl9 "°'Xn (with index < r are strictly

v E ••• E '
positive.

Let 1 < ix < < in < m, 1 < j \ < < j n <m and

Σ I iv - iv I = r + 1 .
v=i

Then
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P(t;

and in this sum there is at least one term with

n n

I h "v I S ' , 2-j I α v jv I ^ '
V = l V = l

F o r t h i s t e r m t h e i n t e g r a n d Pis; Vχi ***'Vn ) i s p o s i t i v e f o r e v e r y

\ Y .. # y /
^i, •••, vn in the range of integration because vy e Vjy for at least n—r
values of v. Also for this term the integrator P(t; ^V ***'^'» J has

v dv19 , dvj
positive measure on the range of integration because y^ e VΛy for at
least n — r values of v. Hence the special term and also the entire sum

is strictly positive. This proves that p(t; Xl' * * ~'Xn ) > 0 if the index
\ jp jp /

of this determinant is < r + 1, and the theorem follows by induction on
the index.

8 Local character of P(t, xy E) and continuity of path functions*
Let P(ty x, E) be the transition probability function of a stationary Mar-
koff process on the real line. Given δ > 0 we define

V(x, δ) = [a + δ, CX3) ,

I'(x, δ) = U(x, δ) u V(x, δ) .

The transition probabilities are called of local character if P(tf x, I\x, δ)) =
o(t) for each x and δ > 0. They are called uniformly of local character
if for each δ > 0 and each compact set F on the real line the relation
P(t, x, Γ{x9 δ)) = o(t) holds uniformly for x e F. We will prove that if
the transition probabilities are positive of order two (see Theorem 5)
and if for some a > 0 we have P(tf xy I'(x, δ)) = o{ta) for each x and
each δ > 0 then the transition probabilities are uniformly of local charac-
ter, and in fact for every β > 0 the relation P{ty xy Γ{xy δ)) = o(tβ)
holds uniformly on compact sets. This is of interest in connection with
a theorem of Ray [19] to the effect that if the transition probabilities
are uniformly of local character and if P(ty xy X) = 1 where X is the
real line (not the extended real line) then the process has path functions
continuous except possibly at + oo and — oo.
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THEOREM 5. Let P(t, x, E) be stationary transition probabilities on
the real line such that P(t, x, E) -> 1 as t -> 0 + if x is an interior
point of E. If P(t, x,E) is positive of order two (i.e. the second order
determinants of (4) are non-negative) and if there is an a > 0 such that
for every x and every δ > 0 we have P(t, x, Γ(x, δ)) = o(ta) then for every
compact set F on the real line and every β>0, δ>0 there is a constant
M = M(F, δ, β) such that

P(t, x, Γ(x, δ)) < Mtβ

for every x e F.

Proof. Given a point x on the real line and δ > 0 let y — x + δ/2
and N = (y — δ/4, y + δ/4). Then because of the second order positivity

P(ί, x, V(x, δ))P(ί, y, N) < P(t, x, N)P(t, y, V(x, δ)) .

Both factors of the right member of this inequality are O(t") while
P(ί, y, N) -> 1 as t -> 0. Hence P(ί, x, V(xf 8)) - O(t2").

This is valid for arbitrary x and δ, so the argument can be iterated,
and for any integer n > 1 we have

P(ί, x, V(x, δ)) = O(ί Λ ) .

The 0 symbol so far may depend on x and certainly depends on δ.
A similar argument applies to P(t, x, U(x, δ)) and combining them we
have

P(ί, x, Γ(x, δ)) = O(tη

for any β > 0.
Now suppose x < y < z, let E — (z, oo) and let TF be an open

interval containing y but whose closure does not contain z. Then

P(ί, x, £?)P(ί,!/, TΓ) < P(ί, α?, ΪΓ) P(ί, 2/, JS7)

< P(ί, 1/, S)

There is a positive ί0 = ίo(2/, £7) such that P(ί, y, TΓ) > 1/2 for ί < ί0

and therefore

P(ί, a?, £7) < 2P(ί, ?/, £7) if t < ί0 .

Similarly if 2<2/<x and E — (— ^yz) then there is a positive t1 — t1(yJ E)
such that

P(ί, x, S) < 2P(ί, y, E) if ί < t, .

Now let ί1 = [α, 6] be a finite interval and δ > 0. Choose a finite
number of points ylf , ym such that every open subinterval of (a — δ,
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b + δ) of length (l/2)δ contains at least one of the points yt. Given
x e F there are indices a, β such that

x - 4"δ <y«<χ <Vβ<χ +-^δ

Δ Δ

Since U(x, δ) c U(yx, δ/4) and F(x, δ) c V(yβ, δ/4) we have

P(ί, x, U(x, 8)) < 2P(t, ya, u(ym, A ) ) ,

P(t, x, V(x, 8)) < 2P(t, yβ, v(yβ, A ) )

for sufficiently small t. In fact these inequalities are valid if t is less
than the least of the numbers tQ(yi9 V(ytf δ/4)), tλ(yi9 U(yίf δ/4)), i — 1, 2, ,ra.
Since each of the finite collection of functions P(t, yt, V(yu δ/4)),
P(t, Vi, U(yif δ/4)), ί = 1, 2, ••-, m is o(ίβ) for any /3 > 0, it follows at
once that for fixed δ > 0, β > 0 P(t, x, Γ{x, δ)) = O(tβ) uniformly for
X 6 F.

9 Homogeneous processes* A process on the real line will be called
a homogeneous process if it is a stationary strong Markoff process with
right continuous path functions and its transition probability function
satisfies the homogeneity relation

P(t, x + h,E) = P{t, x,E -h)

where E — h = {y y + h e -B}. This class of processes includes all the
processes with stationary independent increments and is slightly more
general. If X denotes the real line then for any homogeneous process
the function

P(t, x, X) = P(t, 0, X) - a(t)

is independent of x. From the Chapman-Kolmogoroff equation a(t+s) =
a(t)a(s) and then because of monotonicity a(t) = e~βt where 0</9< + c».
The case β = 0 gives the processes with stationary independent incre-
ments. The general homogeneous process is obtained by taking a process
with stationary independent increments and stopping it after a random
time T with Pr {T > t] = e~βt. The trivial case β = + oo is excluded
in the remainder of this section.

There are two special kinds of homogeneous processes of particular
interest from our point of view. First the essentially determined ones
for which, if E is any open set
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e~βt if x + vt e E
P(t, . (

{0 otherwise

where v is a real constant and 0 < β < oo. And second, those derived
from the Wiener process, for which

P(t, x, E) = -£LΛ expΓ- (Λ±^VΪ] dyV2πσt U L 2σt J

where v is a real and σ a positive constant and 0 < β < oo. These two
types are interesting because they have continuous path functions and
the transition probability functions are therefore totally positive. For
those derived from the Wiener process it is strictly totally positive, while
for the essentially determined ones it is not. The main result in this
section is the following.

THEOREM 6. If the transition probability function of a homogene-
ous process is totally positive then the process is either an essentially
determined one or else one derived from the Wiener process.

Together with the results of § 5 this theorem shows that for homo-
geneous processes total positivity is equivalent to continuity of the path
functions. At the close of this section we show by a different method
that for homogeneous processes positivity of order two is already equi-
valent to continuity of the path functions. This assertion is probably
true not only for homogeneous processes but for arbitrary one dimensinal
strong Markoff processes with right continuous path functions. Although
we are not yet able to prove the result in this generality, we do have
a proof for the case of birth and death processes, which is published
separately [12].

Proof. Let P(t, x, E) be the transition probability function of a
totally positive homogeneous process and let P(t, x, (— oo, oo)) = e~βt.
We form the function

Pe(t, x, E) = (" e<»P(t, y, E)qζ{t, V - x)dy
J-oo

where ε > 0 and ?8(ί, x) = (2ττεί)"1/2 exp [- (x2j2et)]. Then Pε is a
homogeneous strictly totally positive kernel for t > 0, it satisfies the
Chapman Kolmogoroff equation, and is analytic in its dependence on x.
There is therefore a density function ps(t, x) such that

P8(ί, x,E)=\ ps(t, y - x)dy .

For fixed ε, ps is measurable in t, x and is analytic in x for fixed ε, t.
From the formula
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P.(ί, y-x)= lim ±-Pt(t, x, (y, y + h))
Λ->0 + h

we deduce that if xx < x2 < < xn and y1 < y2 < < yn then det
pε(£, αjj — y3) > 0 for £ > 0. Thus for fixed t and ε the function pε(t, x)

ί f°° \

is a Pόlya frequency function (we have I ps(t, x)dx — 1 ) in the sense
of Schoenberg [20] and the Laplace transform

1 _ f-

(M) J-
e~xspε(t, x)dx

converges in a strip — a < Re [s] < a with α > 0, and has there a rep-
resentation

ψ(s, t) = e~ys2+8s Π (1 + δ vs)e-V
V = l

where γ > 0, δ, δv are real, 0 < γ + Σ δ ? < c o The constants γ, δ, δv

will of course depend on t. From the Chapman-Kolmogoroff equation
we have ψ(s, t) = [ψ(s, tjnj]n where n is any positive integer. Conse-
quently any zero of ψ(s, t) must be of order at least n and n being
arbitrary there can be no zeros. Hence

ψ(s, t) = e8s~ys2 , γ > 0 .

Again using the Chapman KolmogorofE equation in the form ψ(s, t + τ) —
—ψ(sf t)ψ(s, τ) we deduce that δ = at, γ = b2t where α, b are real and
independent of t. Now if t > 0 is fixed F(x) = eβt P(t, x, (0, oo)) is non-
decreasing, F(— oo) = 0, i^(+oo) = 1, that is .P is a distribution function,
and the above result shows that the convolution of F with the normal
density qe(t, oo) is a distribution of normal type. By a well known
theorem [17], F is also of normal type and we have

ί: e~sxdF(x) = e~ats + (b2 - ε)ts2

with b2 — ε > 0. If b2 — ε = 0 the given homogeneous process is an es-
sentially determined one while if ¥ — ε > 0 it is one derived from the
Wiener process.

Another approach to the problem of determining when homogeneous
processes or equivalentely infinitely divisible processes are totally positive
is based on the Levy Khintchine representation. We consider an in-
finitely divisible process x(t) properly centered with no fixed points of
discontinuities whose characteristic function φ(t, s) has an expression

log <p(t, s) -

- tψ(s)
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with the aid of (1) we are able to establish

( 2 ) lim—Pr {\x(t) - x(0) | > λ} = ( dG(x)

wheji λ and — λ are continuity points of G. This limit relation is es-
sentially known but for lack of any available specific reference we sketch
a proof.

The proof consists of defining

Fτ{x(t) - x(0) < λ} - 1 ; . 0ior Λ > u

H(t, λ) =
Pτ{x(t) - s(0) < X} f o r χ < 0

t

and forming the Fourier Stieljes transform of H which reduces to
(φ{t, s) — l)/ί. This clearly converges pointwise as t -» 0 to ψ(s). Invok-
ing the Levy convergence criteria following comparison with (1) establishes
(2).

An alternative proof of (2) can be based on verifying the validity
of (2) first for the case of a finite composition of independent Poisson
processes and afterwards passing to a limit to obtain the general in-
finitely divisible process.

The truth of (2) also follows by exploiting the properties of the
infinitely divisible process Uκt which counts the number of jumps of
magnitude exceeding λ that the process x(t) executes in time t. (See
[5] page 424).

Because of (2) and Theorem 5, we see that x(t) is totally positive

of order 2 if and only if \ dG(x) = 0 for all λ > 0. Hence the only

totally positive infinitely divisible process is the Wiener process except
for a drift factor.

10. Examples* In this section we present some examples of totally
positive semigroups of matrices and kernels. These matrices and kernels
are fundamental solutions of parabolic differential equations (or differen-
tial difference equations).

In generating examples of totally positive kernels it is useful to note
that if P(t,x,E) represents a totally positive kernel and P(t,x,E)
possesses a continuous density p(t, x, y) with respect to a α-finite measure
μ then p(t, x, y) is totally positive in the sense that

det p(t, xiy yj) > 0

where x1 < x2 < < xn and yx<y^< < yn. The proof consists of
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selecting Ex< E2 < < En where Et is a sufficiently small open set
enclosing yi and computing

the limit taken as μ(E^ tends to 0 for all i.
Ex. ( i ) The analytic properties of birth and death matrices have

already been investigated in detail by the authors [14]. In Theorem 20
of that paper it is shown that with every solvable Stieltjes moment
problem there is associated one or more strictly totally positive semigroups
of matrices. A few examples of interest are recorded :

(a) Let L%(x) be the usual Laguerre polynomials ί normalized so that

L*(0) = ( n + a\\ , and let P(ί) be the infinite matrix with elements

PUt) = \~e-"Lϊ(x)L#x)χre-*dx .
Jo

Then P(t) is strictly totally positive for t > 0, a > — 1 .
(b) Let cn(x, a) be the Poisson-Charlier polynomials [15] and P(t) the

matrix with elements

PnJt) - Σ e-«cn(k, a)cm(k, a)^L .
fc=o kl

Then P(t) is strictly totally positive for t > 0, a > 0.
Ex (ii) The Wiener process on the real line is a strong Markoff

process with continuous path functions. The direct product of n copies
of this process is the w-dimensional Wiener process which is known to
be a strong Markoff process. Therefore the kernel

P(ί, x, E) = ~

is totally positive for t > 0 (strictly, since P(ί, x, E) > 0 when E is an
open set).

Ex. (iii) If Γ(t) = (Γ1(t), •••, Γ*(ί)) is the ^-dimensional Wiener
process and X(t) is its radial part, i.e.,

then X(ί) is a process on 0 < x < oo with continuous path functions.
These processes have been studied by Levy [16], Spitzer [22] and others.
The corresponding diffusion equation and transition function are
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du _ d2u , 2γ du
dt dx2 x dx

P(t, x,E)=\ p(t, x, y)dμ{y) ,

where

rv- fc-1

P(t, x, v) = Γ e - Λ T(ay)T(ay)dμ(a)
Jo

2γ+1/2Γ(γ + 3/2)

where J stands for the usual Bessel function.
These formulas make sense for arbitrary γ > 0 and have been

studied by Bochner [2]. The density may be written in the form

p(t, x, y) = (2t)- ( Y + 1 / a ) exp ( ^ ) exp

Now T(ixj2t) is a power series with positive coefficients, in fact

\ 2t J fc=o Jo-

where

a Γ(γ + 1/2)

and σ(s) is an increasing step function whose jumps occur at the even
integers. Let 0 < xλ < x2 < < xn and 0 < yλ < y2 < < yn. If
0 < Sj < s2 < < sw then the Vandermonde determinant

is known to be non-negative, positive if xx > 0. From the formula

det τ(^Ml) = \ \ J ^ M J ^ y»)dσ(Sl)dσ(s2). dσ(sn)
V 2ί / JJoS S l<V .<Sre<~ VSl s / V 8 1 β/

it readily follows that T(ixy/2t) and hence also p(t, x, y) is strictly to-
tally positive.
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Ex. (iv) If we consider Brownian motion on the circle the transition
density function has the form

p(ί, ί,ψ) = l + 2Σe~4 A ccos2πn(θ - ψ)
71 = 1

where θ and ψ traverse the unit interval. This formula may be derived
as the fundamental solution of the heat equation on the circle. In this
case the hypothesis of Theorem 1 are fulfilled and we deduce that all
odd order determinants of p(t, θ, ψ) are non-negative (actually strictly
positive) viz

If 0 ^ θx < θ2 < < θ2n+1 < 1 and 0 < ψ1 < ψ2 < <ψ2n+1 < 1
then det p(t, θί9 ψj) > 0.
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MEASURES ON BOOLEAN ALGEBRAS

J. L. KELLEY

This paper is concerned with the general problem of the existence of
measures on Boolean algebras. A measure on a Boolean algebra s/ is
a finitely additive, non-negative function on sf which assumes the
value one at the unit element of the algebra s/. It is known that
measures on Boolean algebras always exist, and in some profusion (see,
for example, [2]). We are concerned primarily with the existence of
measures which are strictly positive that is measures which vanish only
at the zero element of the algebra. Not all Boolean algebras possess
strictly positive measures, and workable necessary and sufficient condi-
tions for the existence of a strictly positive measure have not been
given. We shall give such conditions. Our results seem to represent
definite progress on the general problem, although the relationship be-
tween our conditions and various conjectures is not clear. In particular,
I do not know whether there is necessarily a strictly positive measure
on an algebra s?f which satisfies the condition: J ^ — {0} is the union
of a countable family {J^n}, such that each disjoint subclass of the class
S>fn contains at most n members. Tarski has conjectured that this is
the case.

In the first section we define, combinatorially, for each subset & of
a Boolean algebra s/ a number, / ( .^ ) , called the intersection number
of ,^?. It is then showed that there is a strictly positive measure on
j y if and only if sf — {0} is the union of a countable number of sets,
each of which has positive intersection number. The intersection number
is also evaluated precisely in terms of measures on s^ I(&) is the
maximum, for all measures m on j y , of inf {m(B): B e &}. A dualized
formulation of these results in terms of coverings is obtained.

The second section is concerned with the existence of countably ad-
ditive measures. Necessary and sufficient conditions for the existence of
such measures have been given by Maharam [3], but these conditions are
not entirely satisfactory. The contribution to the problem made here is
simply this: an algebra supports a countably additive strictly positive meas-
ure if and only if it has a strictly positive measure and is weakly count-
ably distributive. (See the second section for definitions). The condition
of weak countable distributivity appears thus as a very natural requirement
which enables one to derive countably additive measures from finitely
additive ones; the fundamental difficulties lie in the finitely additive case.

It has been shown that some of the natural conjectures on the

Received February 2, 1959. This investigation was made during the tenure of a
Fulbright Research Professorship at Cambridge University.
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existence of measures, or of countably additive measures, imply the
Souslin hypothesis (cf. [2] and [3]). In the third section of this paper
some results of this sort are obtained. Assuming the falsehood of the
Souslin hypothesis, a linear continuum is constructed that has appallingly
pathological properties. A condition in terms of Boolean algebras which
is equivalent to the Souslin hypothesis is given. The last section deals
with measures which dominate, or are dominated by, a non-negative
function having certain convexity properties.

We shall assume, unless specifically stated otherwise, that the Boolean
algebra s/ is the algebra of all open and closed subsets of a compact
totally disconnected Hausdorff space X; the Boolean operations of (finite)
join and meet are then simply union and intersection, and X is the unit
of the algebra. This assumption is justified since, via the classical
Stone theorem, every Boolean algebra can be isomorphically represented
in this fashion.

Intersection numbers and covering numbers. Let & be an ar-
bitrary non-void subclass of a Boolean algebra s/. For each finite
sequence S = <Slf , Sny of (not necessarily distinct) members of &
denote by n(S) the number n of terms in the sequence and let i(S) be
the maximum number of members with non-void intersection. If Kt is
the characteristic function of St then ί(S) = sup {Σ {&% (#) i = l f w}:
xeX} . The intersection number I(&) is defined to be inf {i(S)l n(S)
S a finite sequence in

1. PROPOSITION. If m is a measure on sf and & is a non-void
subclass of s/ then inf {m(B): e &} < I(&), where I(&) is the
intersection number of &.

Proof. Let r — inf {m(B): B e ^ } , and let Kt be the charcteristic
function of St where S — (Su , Sn > is a finite sequence in &.
Then S Σ { ϊ i : i = l, ,»} dm = Σ {m(Sι): i = 1, , n) > m, and
therefore Σ {Kt(χ): ί = 1, •••, ̂ } > rn for some x in X. Hence the
maximum number i(S) of elements of S which intersect is at least rn,
and i(S)jn(S) > r. Taking the infimum for all S9 we have !{£?) > r.

The preceding proposition can be restated: I{&) > sup inf {m(B):
B e &} , where the supremum is taken over all measures m on J^f.
The principal result of this section implies that equality holds here and
the supremum is assumed.

2. THEOREM. // & is a non-void subclass of a Boolean algebra
then there is a measure m on s>/ such that inf {m(B): B e &} =
I(&), where I(&) is the intersection number of ^ .

Proof. Let C be the class of all continuous real valued functions
gn X, with the usual supremum norm, let F be the class of characteristic
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functions of members of ^ , and let G be the convex hull of
F. We assert that if / e G then \\f\\>I(&). For suppose that
| | Σ {tiKt: ΐ = l, •••, q]\\ — r, where Kt is the characteristic function of a
member St of &, 0 < ίt < 1 for each i, and Σ {ί4: i = 1, , 9} = 1 .
For arbitrary β > 0 we then have || (1/ri) Σ {P«^ ί = l> > 9 } | | < ^
+ e for suitably chosen positive integers plf ••• ,pq with Σ iVi' i = 1 >
• ••,#} = w. Upon considering the sequence in ^ obtained by counting
each Si the integer pi times, we see that at least n I(&) of the mem-
bers of that sequence intersect, whence I(&) < || (1/ri) Σ {PtKt: i = 1,
•••,#} II < r + e. Consequently I(&) < r and the assertion is proved.

Let H be the open sphere in C about 0 of radius I(&)\ i . e .
H— {/: 11/11 < I{&)}. Since the norm of each member of G is at least
I{0?), each member of the combinatorial sum G + H is somewhere
positive. If P is the class of non-negative members of C and Q is the
cone {s(g+h)-\-tp : s > 0, ί>0, geG, heH, peP}, then no member of
ζ) is everywhere negative. In view of the Hahn-Banach theorem, there
is therefore a hyperplane separating Q and the function which is identi-
cally — 1 that is, there is a linear functional φ such that φ( — 1) <Φ(f)
for all / in Q. We may suppose that φ ( — 1) = — 1, and because
Q is closed under multiplication by positive scalars, we must have φ(f)
> 0 for / in Q. For e > 0 , the function constantly equal to — I{^) + e
belongs to H, hence / — I(&) + e e Q for all / in G, and therefore
Φ (f - /(.^) -t- e) < 0. Thus φ {f) > I(&) - e for all positive e, and hence
Φ(f) > I{&) for all / in G. Finally, for each A ί n j / let m(A) be φ
of the characteristic function KA oϊ A. Then m is non-negative, finitely
additive, m(X) = 1, and m(J5) > I(&) iί B e &, because in this case
the characteristic function KB belongs to G . The theorem is then proved.

3. COROLLARY. For each non-void subset & of s/ the intersection
number I(&) is the maximum of the numbers inf {m(B): B e &} for
all measures m on

4. THEOREM. There is a strictly positive measure on a Boolean
algebra s$? if and only if S?f — {0} is the union of a countable number
of classes, each of which has a positive intersection number.

Proof. If sf - {0} is the union of classes &n with / ( ^ ) > 0
then, choosing measures mn on s/ with inf {mn (B): B e <^?n} > 0, the
sum Σ {2~wmw :n an integer} is a strictly positive measure. On the
other hand, if m is strictly positive on s/ then sf — {0} is the union
of the classes {B: m(B) > 1/n] , and each of these classes has a positive
intersection number by virtue of Proposition 1.

We may derive directly from the preceding results a necessary and
sufficient condition for the existence of a measure which is "small" on
a subclass £Γ of an algebra s/, since m(A) < r for each A in ^ iί
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and only if m(B) > 1 — r for each member B of the class £% of comple-
ments of members of ^ . This dualization leads to an interesting
description of the intersection number of g& in terms of the class 9f,
which we now give.

For each finite sequence S = <( Sλ, , Sn y in s^/ let m(S), the
multiplicity of covering, be the minimum number of times that each
point of X is covered by elements of S. If Kt is the characteristic
function of St then m(S) = inf {Σ, {Kt (x) : ί = 1, , n} : x e X} . Let
n(S), as before, be the number n of elements of S, and for each non-
void class <ĝ  of SZ let the covering number C(cg") be the supremum
of m(S)/n(S) for all finite sequences S in <gf. Intuitively, this may be
interpreted: 1/C(̂ f) is the outer measure of X obtained by using
coverings by elements of ^ , assigning members of <ϊf measure one,
and permitting "multiple" coverings.

The connection between intersection and covering numbers is given
by the

5. PROPOSITION. If & is a non-void subclass of the algebra s/
and c^ is the class of complements of members of & , then I(,^) +

- 1.

Proof. Let S be a finite sequence in j y . The number n(S)—i(S)
can be described: it is the smallest number such that some set of
(S) elements of S intersect, and, in terms of the sequence £' = <(S/,
•••, Sn

ry of complements S of S=<S 1 ? •••,£„>, the number n(S) — i(S)
is the smallest such that the remainder, after omission of some set of
n(S)—i(S) elements from S', does not cover X. In brief, n(S) — i(S) is the
multiplicity of covering of <S/, •••, S/> . We then have: 1 — I{&?)
= l-inf {i(S)ln(S): S a finite sequence in ^ } = s u p {[n(S)~i(S)]ln(S): S
a finite sequence in &} = sup {m(S')ln(S'): S' a finite sequence in

In view of Corollary 3, the preceding proposition implies the

6. COROLLARY. For each non-void subclass c^ of j>/ the covering
number C{c^) is the minimum of the numbers sup{m(^4):^4 e ^f},
where the minimum is taken over all measures m on j^f .

In view of Theorem 4, we have immediately the

7. COROLLARY. There is a strictly positive measure on s^f if
and only if S/ — {X} is the union of a countable family of subclasses,
each of which has covering number less than 1.

Countably additive measures* A Boolean algebra J^f is complete if
and only if each subclass of s^f has a supremum in jzf (or equivalently,
each subclass has an infimum). We shall denote mί{B:Be,^} by
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A{B:B 6 &} , and sup {B : B e ^} bγ A {B B e ^}. In general
these differ from f) {B : B e &} and \J {B: B e ^} ) if the infimum
and supremum exist, then J\ {B : B e ^} is the interior of f\ {B: B
e &} , and \/ {B : B e &} is the closure of U {B : B e ^} . In case
S/ is complete, the interior of each closed subset of X is closed, and
the closure of each open subset is open.

In this section it will always be assumed that s>f is complete and
satisfies the countable chain condition (that is, each disjoint subclass of

tjy is countable). The set of positive integers will be denoted by ω,
and the class of all sequences of positive integers by ωω. For n e ωω,
and ί e ω, nt is the ith member of the sequence n.

The algebra jy is weakly countably distributive iff for every double
sequence AttJ of members of s/ such that Aitj+1 c AttJ for all i and
j , it is true that V {A{A tJ: j e ω} : i e ω} = A ί V t Λ n , ^ e ω}
n 6 ωω} . The topological condition on X which is equivalent to weak
countable distributivity is simple and striking. Dixmier has shown [1]
that each first category subset of the Stone space of a hyperstonian*
algebra is nowhere dense, and the results of Horn and Tarski [2] imply
that a hyperstonian algebra is weakly countably distributive. We now
show that these two properties are equivalent for complete algebras
satisfying the countable chain condition. (I do not believe the following
theorem has been published previously, although it has been discovered
independently by John Oxtoby.)

8. THEOREM. A complete Boolean algebra jzf which satisfies the
countable chain condition is weakly countably distributive if and only
if each subset of the Stone X which is of category I is nowhere dense.

Proof. We first note that a subset A of X is nowhere dense if
and only if A {B: B e Ssf and B 3 A} = 0. Moreover, because S^
satisfies the countable chain condition, the infimum of any subclass &
of s$f is identical with the infimum of some countable subclass of &,
and hence A is nowhere dense if and only if there is a sequence {BJ
of members of s/ such that A c Bn and A » Bn = 0. Of course, {Bn}
may be assumed to be monotonically decreasing.

Assuming s*/ is weakly countably distributive, suppose C is a subset
of X which is of the first category. Then C = \J ιAiy where each At

is nowhere dense, and there are members BttJ of jx?, monotonically
decreasing in j , such that At c C\ jBitJ and 0 = Λ J ^ J f° r each ί.
Hence 0 = Vi ΛJ BttJ - A, VΛ.n,. But V* Bt ,„, D U Λ = C for each
n, and it follows that C is nowhere dense.

*That is, the Stone space of a measure algebra. The term "hyperstonian" seems un-
fortunate. In spite of my affection and admiration for Marshall Stone, I find the notion of
a Hyper-Stone downright appalling.
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To prove the converse, suppose that each subset of X which is of
the first category is nowhere dense, and that Aitj e sf and A^5+3<z.A%%i

It is easy to see that V« ΛJΛ,« C: An V A . ^ Suppose that B is a non-
void member of Ssf such that J S c A n V Λ ^ a n d JBnViΛ^i.j *s void.
Since B Π AjAitj is void, JS does not intersect the interior of Γ\3Aitj,
and hence B Π Γ\j^ij is nowhere dense. Therefore B Π UifΊy^j *s of
category one and hence nowhere dense. We may then choose a non-zero
member C of s>/ such that C a B and C Π UiΠ^i.^ is empty. Using
compactness, choose nt such that Cf)Ai<n. is empty. Then CnAnViΛn,
is void, which contradicts the fact C a B.

Making use of this proposition, we have no difficulty in establishing
the

9. THEOREM. Let s^ he a complete Boolean algebra with a
strictly positive measure m. Then there is a strictly positive countably
additive measure on s^f if and only if s/ is weakly countably
distributive.

Proof. Horn and Tarski [2] have established the fact that each
algebra (not necessarily complete) which has a strictly positive countably
additive measure is weakly countably distributive. On the other hand,
let m be a strictly positive measure on s^f and let έ$ be the cx-algebra
of subsets of X which is generated by jy\ Then m has a unique
extension n which is a countably additive measure on &. (This may
be established by using m and coverings by members of s/ to define
an outer measure p on ^ , and showing that the σ-algebra of im-
measurable sets contains s/\ or alternatively, one may use m to define
a positive linear functional on the class of continuous linear functions
on X, and use the Riesz-Kakutani representation theorem for such
functionals.) Let b — sup {n(B): B e & and B nowhere dense}. We
assert that this supremum is attained, for if {JBJ is a sequence such
that b — sup {n{Bi) :ieω} then D = JJ {Bt: i e ω} is also nowhere
dense, in view of our hypothesis, and clearly b = n(D). Now define
wc by nc(A) = n(A — D). Then, in view of its definition, nc vanishes
at every nowhere dense set. Moreover, nc is strictly positive on j&, for
if A is a non-void member of sf there is a non-void member B of s>f
such that B c A- D, and nc (A) > nc (B) = m(B) > 0. Finally, nc is
countably additive on j y , for if {At} is a disjoint sequence in s$? then
the set E = \f {At: i e ω} — \J {At: i e ώ] is nowhere dense, hence
nc(E) = 0, and nc(V{Ai:ίeω}) = nc(\J{At: i e ώ]) = Σ W ^ O : i e ω}.
The theorem is then proved.

Souslin lines. We first review a few definitions. A linear continum
is a non-void set X with a linear ordering > such that X has a first
and a last element and such that there are no jumps or gaps. In terms
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of the order topology, these requirements can be stated: X is compact
and connected. A linearly ordered set X is of real type iff there is an
order isomorphism of X onto a subset of the class of real numbers.
The interval algebra of a linearly ordered set is the Boolean algebra
generated by the half-open intervals (a : b] = {x : a < x < b}, where a
and b are arbitrary points of X It is well known (and easy to prove)
that a linear continuum X is of real type iff the order topology is separable
(that is, there is a countable dense subset of X), and this is the case
iff there is a strictly positive measure on the interval algebra of X. If
the interval algebra satisfies the countable chain condition, then X is
said to satisfy the countable interval condition.

We shall call a linear continuum X a Souslin line iff X satisfies the
countable interval condition, and no non-void interval in X is of real
type. We now show that, if the Souslin hypothesis fails, then there
exists a Souslin line.

10. PROPOSITION. Let X be a linear continuum which satisfies the
countable interval condition but is not of real type. If R is the relation
{(7/, y) : x = y or the interval [y, x] is of real type or the interval [x : y]
is of real type}, then the quotient XjR is, with the induced order, a
Souslin line.

Proof. As a preliminary we show that if _̂ "~is a family of intervals
in X which is linearly ordered by inclusion, and if each member of JΓ~
is of real type, then \J{T: T e ^} is also of real type. If ^" is
countable this result follows from the fact that a countable union of
separable subsets of X is itself separable. But J7~ may always be
assumed to be countable for: we may by transfinite induction choose a
subfamily {Ta} of J7~ which is well ordered by c and covers U {T: T
6 ^} , and such a well ordered family must be countable since other-
wise the class of sets of the form Ta+1 — Ta yields an uncountable dis-
joint family of intervals.

It follows easily from the above that an equivalence class modulo the
relation R is either a closed interval or consists of a single point, and
that the family J^~ of such intervals must be countable and disjoint.
The quotient map Q of X onto X\R is then continuous relative to the
order topologies for X and X/R, and X\R is therefore compact and
connected. Finally, suppose that J is a separable interval in X\R, that
A is a countable dense subset of /, and that B is a countable dense
subset of U {F: Fe J7~). Let C be a countable subset of X such that
B c C and C intersects Q~τ[x] for each x in A. We assert that the
closure C~ of C contains Q - 1[/], for: if J is an open interval disjoint
from C~ then J is disjoint from U {F: F e L^~} , hence Q is a home-
omorphism on J, whence Q[J] is disjoint from A, and therefore Q[J]
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is disjoint from /. Thus Q"^/] is separable, and this, in view of the
definition of R, contradicts the fact that 7 is a proper interval. Conse-
quently XjR can contain no separable interval, and is therefore a
Souslin line.

It is now easy to show that a Souslin line has very curious
properties. Recall that a regular open set is an open set which is the
interior of its closure. For a compact Hausdorff space (or for any space
which is of the second category at each of its points) the Boolean algebra
of regular open sets is naturally isomorphic to the algebra of Borel sets
modulo the ideal of Borel sets of the first category, for: the class of
all Borel sets A such that the Boolean sum of A and some first category
set B is regular and open is easily seen to contain the Borel algebra,
and no non-void regular open set is of category I.

11. LEMMA. Let X be a Souslin line. Then a subset A of X is
separable if and only if it is nowhere dense, and this is the case if

and only if the set A is of the first category.

Proof. A separable subset of X is nowhere dense in view of the
definition of a Souslin line conversely, if A is nowhere dense the set
E of endpoints of intervals complementary to A~ is countable, and
choosing a member of A between each pair of points of E whenever
possible yields a countable dense subset of A. Finally, each nowhere
dense set is of the first category, and the countable union of sets which
are nowhere dense, hence separable, is separable, and hence nowhere
dense.

12. THEOREM. The algebra Stf of regular open subsets of a Souslin
line X has the properties:
( i ) each disjoint subfamily of s/ is countable,
(ii) the algebra sf is complete,
(iii) the algebra St? is weakly countably distributive,
(iv) there is no strictly positive measure on j ^ , and in fact
(v) if m is any measure on s^ then there is a countable subfamily
^ o f j / such that m(B) = 0 for B in & and y {B: B e ^} = X.

Proof. The assertion (i) is clear, and (ii) follows from (i) together
with the fact that j y is countably complete. To show that s/ is weakly
countably distributive let us consider s*f as the algebra of Borel subsets
of X modulo sets of the first category, and suppose that AiΊ is a double
sequence of Borel sets such that AttJ D AiJ+1 for all i and j . We may
suppose that each AitJ is closed. It is always the case that B = A {V
{Aiini : i e ω} : n e ωω} Z) V {A {Altj: j e ω} : i e ω] = C. Let us sup-
pose that I is a non-void open interval whose intersection with C is oί
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the first category, (and hence nowhere dense). Then I contains a non-
void open interval J whose closure is disjoint from C. Via compactness,
choose for each i an integer nt such that Aί>n. fails to intersect J.
Then B, in view of its definition, is disjoint from J, and we have
showed that B Π (X — C) is nowhere dense. Thus B is congruent to C
modulo the class of sets of the first category, and s/ is weakly count-
able distributive.

If there were a strictly positive measure on Ssf then the map
carrying each point x of Xinto the measure of the interval [a, x\, where
a is the first point of X, would be an order isomorphism of X into a
set of real numbers. Thus (iv) is proved, and assertion (v) follows from
a simple argument based on the fact that every closed interval in X is
itself a Souslin line.

REMARK. Part (iv) above may easily be strengthened; for example:
there is clearly no strictly monotonic real valued function on sf.

It is not difficult to give a precise equivalence to the Souslin hypo-
thesis in terms of properties of Boolean algebras. Let us call a
maximal chain in a Boolean algebra (that is, a maximal linearly ordered
subclass) a segment. A Boolean algebra is atomless if and only if each
non-zero element is the sum of two disjoint non-zero elements.

13. THEOREM. The following statements are equivalent:
( i ) (the Souslin hypothesis) each linear continuum which satisfies the
countable interval condition is of real type,
(ii) each segment in an atomless Boolean algebra which satisfies the
countable chain condition is of real type, and
(iii) if s/ is the algebra of regular open subsets of a linear continuum,
and if s/ is complete, atomless, weakly countably distributive, and
satisfies the countable chain condition, then each segment in s^f is of
real type.

Proof. We first show that (i) implies (ii). If SS is a segment in
atomless Boolean algebra s^f which satisfies the countable chain condi-
tion, then it is easily seen that there is no uncountable disjoint family
of intervals in £f. Moreover, since s^ is atomless, there are no gaps
in S/7 (that is, between any two distinct members of £/' there is a third
member which is distinct from both). It follows that the (order)
completion of £f> is a linear continuum satisfying the countable interval
condition, and, assuming the Souslin hypothesis, is of real type. Thus
Sf is of real type.

Clearly (ii) implies (iii). That (iii) implies (i) is an immediate
consequence of the properties of a Souslin line, and the fact (Proposition
10) that a Souslin line exists if the Souslin hypothesis fails.
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Dominated measures* Maharam has showed [3] that if a Boolean
algebra s/ satisfies certain conditions then there is a continuous outer
measure on j ^ ; that is, there is a non-negative real valued function p
such that if A = V {An : n e ω} then p{A) < Σ {v(An : n e ω} , and, if
{An) is a monotonically decreasing sequence with 0 = A{An :n e ω} then
p(An) converges to zero. It seems possible that this result might be
strengthened by showing that each outer measure dominates a measure.
This leads to the general problem of Hahn-Banach type: if & is a
subalgebra of jtf and if m is a measure on έ%? which is dominated there
by a non-negative function p such that p(A) + p(B) > p(A (J B), is it
then possible to find a measure on j>f which is an extension of m and
is everywhere dominated by pt The extension theorem just proposed
is false, even for finite algebras. However, a similar result can be
established if the premises concerning the function p are strengthened,
and, although the result fails to apply to Maharam's theorem, it appears
to be of some interest in itself.

14. THEOREM. Let s/ be a Boolean algebra, let pbe a non-negative
monotonίc real valued function on j ^ such that p(A)+p(B)>p(A\jB)
+p(A Π B) for all members A and B of j>f, and let m be a measure
on a subalgebra & of j>f such that m(B) < p(B) for B in &. Then
there is a measure n on j>f, which is an extension of m, such that
n(A) < p(A) for all A in

Proof. The proof is first reduced, by means of a compactness
argument, to the case of a finite Boolean algebra. For each pair c<g>
and & of finite subalgebras of s>f such that X e ^ c & and ^ c
£2ϊ let Q(<g*, &) be the set of all non-negative functions q on j y which
satisfy the requirements: q is finitely additive on ^ , q{C) — m(C) for
C in £f, and q(A) < p(A) for A in s^. The class Q{r^, &) is, by
virtue of the Tychonoίf product theorem, compact relative to the topology
of pointwise convergence on j y , and Q(^", &') z> Q(r^, £&) if rg" c
^ and £&' c &. Proof of the theorem is equivalent to showing that
the intersection of the classes Q ( ^ , ϋ^), for all ctf and £^, is non-void,
and in view of compactness it is sufficient to show that each class
Q ( ^ , 3ϊ) is non-void.

The problem is then reduced to that of extending m from a sub-
algebra ^ to a finite containing subalgebra &, and we may assume that
& is a minimal algebra properly containing ĝf. In this case, using
the known structure of finite Boolean algebras, & is generated by a finite
class C, Clf , Cn of disjoint non-void sets, and & is generated by
D, Ώ\ C^ , Cn, where D Π D' is void and flUΰ'^C, The ex-
tension of m requires the choice of a number m(D) such that the following
inequalities are satisfied:



MEASURES ON BOOLEAN ALGEBRAS 1175

m(D) + m(A) < p(D U A) for all A in ^ with A Π C void, and
m ( D U D r ) - m(D) + m ( B ) < p ( D ' t ] B ) f o r a l l B i n <af w i t h ΰ u C v o i d .
Thus extension is possible if and only if m(D) can be chosen so that
m(C) + m(B) - p(D'uB) < m(D) < p(D{jA) -m(A) for all members A
and B of ^ which are disjoint from C, and this inequality can be
attained if the left hand member never exceeds the right hand for all
such choices of A and B. Rewriting, the proof reduces to establishing
that m(C) \- m{A) + m(B) < p(D U A) + p(D' U B) for all members A
and B of ^ which are disjoint from C. But

m(C) + m(A) + m{B) = m(C U A U B) + m(A n 5)
< p(C U A U 5) + p(A Π ί ) < p(D U A) + p(ΰ' n B),

the last inequality being derived from the assumption on p as applied
to the sets flu A and Df U B. Thus the extension of m is always
possible, and the theorem is proved.

There is a dual to the preceding theorem which may be obtained as
follows : Suppose m is a measure on the subalgebra ^ and that m
dominates a non-negative function p such that p(A) + p(B) < p(A U B)
+p(Af]B) for all A and B in j ^ . Then, setting q(A) = m(X)-p(X-A),
it is easily verified that m and q satisfy the conditions of the preceding
theorem. There is therefore an extension n of m which is every-
where dominated by q, and it follows that n dominates p. Hence:

15. COROLLARY. Let s^f be a Boolean algebra, let pbea non-negative
monotonic real valued function on s/ such that p(A)+p{B)<p(A\jB)
+ p(A Π B) for all A and B in s/', and let m be a measure on a
subalgebra & of s/ such that m(B) > p(B) for B in &. Then there
is a measure n on j ^ , which is an extension of m, such that n(A)>
p(A) for all A in sf.

ADDENDUM

Since writing this paper I have received the following communications.
Prom Professor A. Horn (June 18, 1959):

A. " Lemma 11-this property is actually characteristic of Souslin
lines: A linear countinuum in which the separable subsets coincide
with the nowhere dense subsets is a Souslin line, and conversely.
This is true because if we have an uncountable disjoint family of
intervals, then a set formed by choosing one point from each
interval is nowhere dense and non separable. Thus we have a
new and inter sting formulation of Souslin's problem ••••"

B. [ Incidentally, it is interesting that Theorem 14 is not
valid (even for monotonic p), if & is not a subalgebra and m is
merely a partial measure (in the sense of [2]) on <%? •••]
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From Professor Roman Sikorski:
March 25, 1959.

A. (1) The proof of Theorem 2 can be simplified. Theorem 2 is
a particular case of the following general theorem:

(*) Let X be a partially ordered Banach space such that
0 < x < y implies \x\ < \y\. For every convex set S of non-nega-
tive elements there exists a functional / > 01 such that | / | = 1
and mϊxesf(%) = infx€s \x\.

Theorem (*) follows immediately from a general theorem on
the existence of a functional satisfying a given set of inequalities.
This general theorem is due to Mazur and Orlicz (Studia Math.
13, (1953), 137-179). A simple proof of Mazur-Orlicz's theorem
was given by me (ibidem, p. 180) and by Ptak (also in Studia Math.).

(2) Your Theorem 9 can be proved simply without using Stone
spaces. In fact, suppose that m is a finite measure on a Boolean
algbra &. The formula

m'(A) = inf (m(Ax) + m(A2) + •) for A e ^
(where inf is extended over all disjoint decompostions A =Aλ + A2

+ •••) defines a σ -measure on & (viz. mr is the greatest σ
-measure < m). It is easy to verify that if m is strictly positive
and B is weakly σ -distributive, then m' is strictly positive.

The remark (2) is due to Professor Ryll-Nardzewski.
April 3, 1959

B. I would like to inform you that Professor Ryll-Nardzewski has
found the following analogue of your Theorem 4 for σ-measures:

(*) There exists a strictly positive ^-measure μ on a Boolean
algebra & if and only if & — (0) is the union of a sequence
{^n} such that, for every n,

(1) the intersection number I(&n) is positive
(2) if Am c Am+1 (m = 1, 2, •) and Ax + A2 + . . e &n%

then there exists an m such that Am e &n.

Necessity. Take as &n the class of all A e &f such that
μ(A) > 1/n.

Sufficiency. There exists a measure μ'n such that μ'n(A) >

n) for every A e &n. Let

μn(A) = inf limw μn'(Am)

where inf is extended over all sequences Am e & such that
A — Aλ + Aa + and AmaAm+1. By definition, μn is a σ-measure
and μn{A) > I{&n) for A e &n on account of (2). The (/-measure

i.e. such that/(a?) ^ 0 for
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is strictly positive on B.
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GENERALIZED RANDOM VARIABLES

JOHN G. KEMENY

We will consider random variables on a denumerably infinite sample
space. However, the range R of the random variables will not neces-
sarily be a set of real numbers. In Part I the range will be a subset
of a given metric space, and in Part II it will be an arbitrary set.
Since each distribution on the sample space determines a distribution on
R (for a given random variable), the sample space may be ignored
entirely, and we may restrict our attention to distributions on R. Thus,
instead of discussing means and variances of random variables on the
sample space, we will discuss'means and variances of distributions on
the set R.

In classical probability theory R would be a set of real numbers,
and the mean and variance of a distribution on R would also be real
numbers. Of these restrictions only one will be kept, namely that the
variance will always be a non-negative real number. As indicated above,
R may be a more general space, and the means will also be selected
from more general spaces. The defining property of a mean will be the
property of minimizing the variance of the given distribution. It will
be shown that these means still have many of the classical properties,
though in general means are not unique, and in certain circumstances
there may be no mean.

While the mean is classically taken to be a real number, it need
not be an element of R. For example, the mean of a set of integers
may be a fraction. This approach is extended in Part I, where the
means may be arbitrary points of a certain metric space Γ, and R is
any subset of T. Even the form chosen for the variance is the same
as in classical probability theory.

In Part II the concept of a random variable and of means is fur-
ther generalized. Here R is an arbitrary set, and the topological space
T from which means are chosen need not be metric and need bear no
relation to R. The variance is still a numerical function on Γ, but of
a much more general form than in Part I. In both frameworks an
analogue of the strong law of large numbers is proved, to show that
classical results can be generalized to these new kinds of random variables.

In Part III we consider certain generalizations. The positive result
in this part is that the restriction to independent random variables in
Parts I and II is unnecessary; the results hold for any metrically

Received February 11, 1959. The author wishes to acknowledge the aid of the National
Science Foundation through a grant given to the Dartmouth Mathematics Project. He also
wishes to thank H. Mirkil for a number of valuable suggestions.
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transitive stationary process. There are also certain negative results,
showing that some " obvious generalizations" fail.

PART I

We consider a metric space T, from which our means will be selected.
Let φ be the metric on T. The range R = {rj of our random variables
may be any denumerable subset of T. We impose one restriction on
the space T:

(1) The closed spheres in T are compact.

As indicated above, instead of considering the random variables
themselves, we will consider only distributions P = {p4} on R. For each
such distribution we define two numerical functions on T:

WP(t) = Σ φ(rt, t) Vi and VP(t) = Σ <P\ri91). Pί .

The former may be thought of as a mean distance to t with respect to
P, and the latter as a variance computed with respect to t. Both func-
tions are non-negative real valued, with + ω as a possible value. We
will, however, consider only distributions that satisfy the condition:
(2) There is a t0 e T such that VP(t0) is finite.

DEFINITION. The variance of the distribution P is defined as

vP = inf Vp(t). An element t of T is a mean of P
tβT

if VP(t) — vP. We denote the set of means of P by MP.

In view of this definition we note that (2) is equivalent to the as-
sumption that P has finite variance. Should P have infinite variance,
then all points of T would be means of P according to the definition.
While the theorems to be proven below would all be true, they would
become trivial. It is possible to give a more sophisticated definition of
the mean for the case of an infinite variance (see [3]), but this leads
into problems beyond the scope of the present paper.

LEMMA 1. If WP{Q and VP{Q are finite, then

I WV(*i) — WP(t2)\<φ(tut2) and

I VP{tx) - VP(t2)\ < φ(tlf t2) [2VP{tx) + 2 + φ(t19 ta)]

Proof. I WP{Q - WP(t2) I < ΣI φ(ri9 tt) - φ(rt, Q \ . Pi
i

< Σ <p(ti, *2) Pi = <p(tif *a)
i

using the triangle inequality on φ.
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I VP{tλ) - VP(t2) I < Σ I φ\ri9 tx) - φ\riy t2) | . Vi

< <p(t1912) Σ [φ(ri9 tx) + φ(ri9 ί2)] . Vi

t1)+ WP(t2)]

where in the second step we factored and applied the triangle inequality,
while in the last step we used the result proved above. The second
part of the lemma then follows if we observe that WP(t) < VP(t) + 1
for any t.

LEMMA 2. WP(t) and VP(t) are finite for all t.

Proof. This is a consequence of the restriction (2). Choose tQ as
in (2). Then WP(t0) is also finite. Lemma 1 yields that | VP(t0) - VP(t)\
is finite, hence the lemma follows.

LEMMA 3. VP(t) is a continuous function of t.

Proof. Suppose that tu t2, is a sequence converging to t then
by Lemma 1, | VP(t) - VP(tk)\ < φ(t, tk) [2VP(t) + 2 + φ(t, tk)]. But
Φ(t, tk) - φ(t, t) = 0, hence VP(tk) - VP(t).

There is one closed sphere that will occur frequently below. Let
S± = Sph ("l/βFpίrJ/Pi, ̂ i)» that is the set of all points in T whose ψ-
distance from rx is at most the specified amount. Then Sλ is compact
by (1).

THEOREM I. MP is a non-empty compact set.

Proof. If t $ Slf then VP(t) > φ\rly t) - pλ> <oVP{rλ). Hence VP(t)
is bounded away from vP. Thus the inf of VP on all of T is the same
as on Sλ. But VP is continuous, by Lemma 3, and hence FP(Si) is com-
pact. This means that VP actually takes on its inf on Slf hence P has
at least one mean. Furthermore MP — VP\{v^)> hence it is a closed
subset of S19 and thus compact.

We will suppose that a sequence of point x19 x29 is selected from
R. The points are selected independently, at random, according to
a distribution Q satisfying (2). [We may consider R to be our new
sample space, and the x3 to be identity functions on R. Then they are
independent, identically distributed generalized random variables.] For
each n, we associate a distribution Hn = {h^} with the first n points
in this sequence; namely hf is the fraction of the first n points that
are equal to ri9 or hf is the frequency of occurrence of rt among the
first n random variables. It will be convenient to write Vn in place of
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Vπny to write vn for the variance of Hn, and Mn for the set of means
of Hn. Clearly Hn has the property (2).

LEMMA 4. For any t e T, Vn(t) —> VQ(t) with probability 1.

Proof. We may consider φ*(xj9 ί), for a fixed ί, to be a sequence
of ordinary random variables on R. They are independent and identi-
cally distributed. Their mean is VQ(t). Since this is finite by Lemma
2, the ordinary strong law of large numbers applies to them. But this
states precisely that Vn(t) —• VQ(t) with probability 1. (See [2], p. 208).

LEMMA 5. For any compact set C there is probability 1 that
Vn(t) —* VQ(t) uniformly on C.

Proof. Since C is compact and VQ is continuous, VQ < A on C.
For any integer k we can find a finite set of points Ck such that the
spheres of radius 1/fe about points in Ck cover C. Since the union of
the sets Ck is denumerable, it follows from Lemma 4 that there is prob-
ability 1 that Vn(t) -> VQ(t) for all points in all the Ck. [The set of
sequences on which convergence fails at one point has measure 0, hence
the union of all these denumerably many sequences has measure 0, and
hence the complement of the union has measure 1.] We restrict our-
selves to such sequences of x5. Let t be any point in C. Select a point
tk e Cfc so that φ(t, tk) < 1/fc. Then

I vn(t) - vQ(t)\ < I vn(t) - vn{tk)\ + i vn(tk) - vQ(tt)\

+ \VQ(tk)~ VQ(t)\

< ±\2Vn(tk) + 2 + l Ί + I Vn(tk) - VQ(tk) I
k\- k Δ

f[2A + 3] + 3 | F , ( y - VQ(t*)\
k

where Lemma 1 was used in step 2, and the uniform bound A applied
and terms combined in step 3.

Given ε > 0, we choose k large enough to make the first term less
than e/2. Since Ck has only a finite number of elements, for sufficiently
large n, \Vn(tk) — VQ(tk)\ < ε/2 for all tk e Ck. Hence for sufficiency
large n, \Vn(t) - VQ(t)\ < ε for all { e C.
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LEMMA 6.1 With probability 1, for sufficiently large n Mn c Sτ.

Proof. By the ordinary strong law of large numbers, h" —> ft with
probability 1; and by Lemma 4, Vn{r^) —> ̂ ( r j with probability 1.
Hence we can select a sequence with probability 1 on which both events
take place. On such a sequence, for sufficiently large n,

vn < Vn{rx) < 2VQ(r1) and Λ» > ft/2 .

Hence, if /; ̂  Slf then for sufficiently large nf

Vn(t) > φ*(r191) Mz >

which is bounded away from vn. Hence if ί 0 Sx, then £ 0 Λfw. And
hence Λfw c S1#

We are now in a position to prove a version of the strong law of
large numbers. This states that the sequence of sample means con-
verges to the mean of the distribution with probability 1. In our more
general framework we do not have unique means, though we do have
assurance from Theorem I that the set of means is non-empty both for
the samples and for the distribution. We thus want to prove that the
sequence of sets Mn converges to the fixed set MQ with probability 1.
As the criterion for convergence we require that every open set con-
taining MQ should contain almost all Mn. If the means happen to be
unique, this is equivalent to ordinary convergence.

THEOREM II. Mn —> MQ with probability 1.

Proof. By Lemma 5, there is probability 1 that Vn(t) —> VQ(t) uni-
formly on Si. By Lemma 6, almost all Mn are subsets of Sx with
probability 1. Hence with probability 1 we may restrict ourselves to
^-sequences on which both events occur. Let 0 be an open set containing
MQ. Then Si Π 0 is compact, and hence VQ takes on a minimum value
v on it. But no mean is in this set, hence v > vQ. Let m e MQ and

t e s, n ό.

Vn(t) - Vn{m) = \Vn{t) - VQ(t)] + \Vq{t) - VQ(m)] + [VQ(m) - Vn(m)] .

From the uniform convergence of Vn we know that for sufficiently
large n the first and third terms will both be less than (v — vQ)β in
absolute value. The middle term is at least v — vQ. Hence for suf-
ficiently large n the difference is positive, and hence t $ Mn. Hence no
element of Sx Π 0 is in Mn, and we also know that Mn c; Sλ for almost
all n. Hence Mn c 0 for almost all n.

1 Si is here defined with respect to the Q-distribution, that is, VQ and q\ take the
place of Vp and p\ in the definition. This will be the sphere used from here on in Part I.
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THEOREM III. vn—>vQ with probability 1.

Proof. \vn-vQ\<\ Vn{mn) - VQ(mn) | + | VQ(mn) - VQ(m) | if mn e Mn,
me M.

As in the previous theorem, we may combine Lemmas 5 and 6 to
assure that the first term tends to 0 with probability 1. The sequence
of mn's will, with probability 1, have a limit point, by Lemma 6 and
the compactness of Sx. And by Theorem II this limit point will, with
probability 1, be in MQ. It then follows from the continuity of VQ that
if we choose as m this limit point, the second term goes to 0 with
probability 1.

One interesting set of applications of these theorems may be obtain-
ed by choosing for T a metric space with compact spheres, and choosing
for ψ a suitable function of the metric. If d is the metric, and / is
a numerical function such that /(0) = 0, / ' > 0 and / " < 0, then φ(tlf t2) =
f(d(tlf t2)) is also a metric on T. In particular, we may choose φ = d*,
for k < 1. The choice of k — 1 yields the generalization of the ordinary
arithmetic mean, and k — 1/2 yields a generalization of the median.

If for I7 we choose Euclidean w-space, and let φ — d, then Theorem
II yields the classical strong law of large numbers for the case of dis-
crete random variables with a finite variance.

Condition (1) is a natural condition to impose when generalizing
results from Euclidean w-space. But it is reasonable to ask whether
the condition is really necessary. For example, could one replace it by
the assumption that T is locally compact ? The following example shows
that local compactness does not suffice: Let T — R Ό S, with S = {sj
for i = 1, 2, •••. We introduce the metric φ as follows.

φ(rif r3) = φ(8t, Sj) = 2 ( 1 - 8 , , ) and φ(rt9 Sj) = \
2 if j < %

Let Pi = 1/2*. Then vP — 1, and rx is the unique mean. Suppose that
Hn is a close approximation of P, with A? < 1/2. This has positive prob-
ability. If iQ is the last i for which hi > 0, then Sj is a mean of Hn

for all j > iQ. Hence Mn does not converge to MP — {rj. This metric
topology, which happens to be discrete, violates condition (1), but T is
locally compact.

PART II

We will now consider a more general framework in which R is an
arbitrary set, and T any topological space. We will consider the space
P of all possible measures P = {pj on R. But since R is an arbitrary
denumerable infinite set, we may—without loss of generality—take P to
be a measure on the integers. The basic tool in Part I was a numerical
function VP(t) on T, for each measure P, satisfying certain conditions.
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We will again assume that there is a function VP corresponding to
each P in P.

We will introduce metrics on two basic spaces. On the space P of
all measures on the integers we define d(P, Q) — 2« \Pι — Qi I On the
space F of all non-negative bounded real-valued functions on T we define

Our basic assumptions concern the mapping P —> VP from P into F.
We require that :

(1) Each image VP is a function that takes on a minimum on every
closed subset of T.

(2) The mapping is continuous.
We may then introduce means and variances as in the definition in
Part I. We may prove near analogues of the previous theorems.

THEOREM Γ. MP is non-empty for each P e P.

Proof. Vp takes on a minimum on every closed subset of T, by
(1), hence it takes on its minimum on T.

We will again consider sequences xJf selected independently at ran-
dom according to a distribution Q. We define the sample distributions,
means, and variances as in Part I.

LEMMA. Hn —> Q with probability 1.

Proof. The lemma asserts that d(Hn, Q) -+ 0 with probability 1.
From the definition of the metric on P we see that this asserts that
Σ J ^ ? ~ ^ i l ~ > 0 with probability 1. This was proved by Parzen in
a paper that has not yet appeared (see [4]).

THEOREM IP. Mn —> MQ with probability 1.

Proof. Let 0 be an open set containing MQ. Then 0 is closed,

and hence VQ takes on a minimum value on it, by (1), say v. Since no

mean of Q is in 0, v > vQ.

Suppose that Hn —> Q in P, which occurs with probability 1 by the

lemma. Then by (2), Vn —• VQ in F. But this means that Vn(t) con-

verges uniformly to VQ(t). Let t e O, m e MQy then

Vn{t) - Vn(m) = [Vn(t) - VQ(t)l + [VQ(t) ~ VQ(m)]

+ ίVQ(m) - Vn(m)] .

By the uniform convergence of Vn we can make the first and third
terms less in absolute value than (v — vQ)β, for all t e 0, for sufficient-
ly large n. The middle term is at least v — vQ, hence for all sufficiently
large n the difference is positive, and hence for these n, Mn cz 0.
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THEOREM IIP. vn —• vQ with probability 1.

Proof. vn < Vn(m) < vQ + | Vn{m) - VQ(m) |, for m e MQ .

And vQ < VQ(mn) < vn + | VQ(mn) - Vn{mn) |, for mn e Mn .

Hence, \vn - vQ\ < sup| Fw(ί) - Fβ(t)l = d(^»> Vq) .
tET

But this tends to 0 with probability 1, by the lemma and (2).

Let us consider some applications of these theorems. First we will
suppose that VP(t) = Σψ2{r,u t) p.if where φ is a numerical function on
R x T. This is the nearest analogue we have to Part I. But even in
this case the assumptions made in Part II are not comparable to those
in Part I. The easiest way to assure that (2) is satisfied is to require
that \ψ\ < B on R x T. Then Vp is always bounded, and

I vP(t) - v&)\ < Σ<p2(n, ί) \Vi - Qλ < B> Σ I P * - ?«l

Hence d(VP, VQ) < B2 d(P, Q). Hence the mapping P—> VP is continuous.
There are various ways of fulfilling (1). One very interesting case

is where T is compact and φ{ru t) is lower semi-continuous on T for
each rt e R. Then every closed subset is compact, and hence a lower
semi-continuous function will take on its minimum on it. And VP is
the uniform limit of a sequence of monotone increasing lower semi-
continuous functions, hence it itself has this property.

Thus if T is compact, we may choose as φ any function bounded
on R x T, such that each φ(rt, t) is lower semi-continuous on T. Ob-
vious examples of this may be found by choosing R c T, where T is
a compact metric space and ψ a continuous function of the distance.
Thus we see that if we are willing to assume that T is compact, we
are allowed to choose φ in much greater generality than in Part I.

If, in particular, Tis a finite metric space, then Theorem IP has
an interesting corollary. Since the topology is discrete in this case,
Mn —> MQ implies that Mn c MQ for sufficiently large n. Hence there is
probability 1 that for sufficiently long sample sequences all sample means
are means of the distribution. If the distribution has a unique mean,
then there is probability 1 that all sufficiently large samples have this
mean as their unique mean.2

Let us now consider an example of a compact space with a bounded
φ, where φ is only lower semi-continuous. Let T be the set of all vec-
tors {αj, i = 1, 2, •••, where a% > 0 and Σ* α * ^ l We define the
distance φ(A, B) between two vectors as Σt I α« ~~ &* I However, T is

2 An interesting application of this result is worked out by the author and J. L. Snell
in a forthcoming book: It can be shown that there is a " natural " metric for the space of
all rankings of k individuals. Thus our result allows certain statistical procedures for
rankings.
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not compact with respect to the metric topology. So we choose for T
a weaker topology, namely the topology of componentwise convergence
of vectors. T is compact with respect to this weaker topology, and ψ
is lower semi-continuous on the resulting topological space. Clearly,
Ψ < 2, hence all our conditions are satisfied, and hence the theorems
are applicable.

Let us next consider an example where φ is bounded, but Tis not
compact. Let R c: T, and T an arbitrary topological space. Define
φ(r, t) = 1 - δr t. Then VP(t) = 1 if t <£ /?, and 1 - pt if t = r*. Hence
on a set not intersecting R the minimum of 1 is taken on at all points,
while otherwise the minimum is taken on where pt is largest. Hence
VP satisfies condition (1), and we see that MP is always a non-empty,
finite set. It is the set of modes of the distribution P.

Finally, let us consider one example where VP is not of the general
form of Part I. Let T be a compact metric space, and R c T. If d
is the metric, we define VP(t) as the inf of Σ ί € j d(rif t) pt over all
sets / such that Σ i 6 J P i > .9. Here VP is lower semi-continuous on the
compact set, hence (1) holds. Since d is bounded on Γ, say by B,
a change of ε in P will produce a change of at most Be in VP; hence
(2) holds.

This result has the following "practical" application. Suppose that
a state legislature decides to establish a state university. They may
insist that the University service at least 90 percent of the state's
population, and that it be in the "most convenient location" for the
population. This may be interpreted by introducing as a metric distance
between rέ and t the distance a person at rΛ has to travel to reach
a university located at t. Then we find the mean of the VP described
above, with pt taken proportional to the population at location rt.
Theorem IP then states that if the college population is a cross-section
of the entire population, and if the university is large enough, then
there is an excellent chance that the location '' most convenient for the
entire population" will be "most convenient for the freshman class"
in any given year. While the practicality of this procedure is debat-
able, it is more reasonable than the location of a state university in the
geometric center of the state. It also shows that the theorems of Part
II lend themselves to many unorthodox applications.

It is worth remarking that if VP is lower semi-continuous, then MP

will be closed. So in all the examples discussed above where VP was
a lower semi-continuous function on a compact space, we obtain the full
equivalent of Theorem I, since MP is compact. And in the example of
the modes MP was finite.

But we can't always expect this to happen in the very general
framework of Part II. As a matter of fact, MP may be any subset of
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T. Let S be a subset of T, and define f(t) to be 0 on S and 1 on S.
If we assign this same function to all distributions, that is VP = / for
all P, then both conditions (1) and (2) are fulfilled. But MP = S.

It may be worth pointing out that the mapping P—* VP need not
be defined on all of P. It suffices if it is defined and continuous on
a subspace, as long as this subspace includes all measures having only
a finite number of positive pt. The theorems then apply to measures
in the subspace. This extra freedom is convenient in a situation where
the desired definition of VP leads to unbounded functions for certain
distributions.

PART III

In conclusion we will show that certain other classical ideas fail to
generalize. If X19 X2 are two random variables, we can introduce a mean
random variable X which corresponds to 1I2(X1 + X2) in the classical
case. We define the value of X to be the mean of the values of X19

X2, if there is a unique mean. If there is more than one mean, we
assume that X is equally likely to take on each of these values. We
would at least expect that if X± and X2 have the same unique mean,
then X also has this mean. However, Figure 1 shows a distribution on
a metric space with eight points (each line represents a unit distance),
which provides a counter-example. If Xx and X2 each have the distri-
bution of Figure 1, then X has the distribution of Figure 2. While Xx

and X2 have the unique mean A, X has the unique mean B.

,04

Fig. 1. Fig. 2.

Next we will consider classical proofs using Chebyshev's inequality.
We may state a version of this inequality, in the terminology of Part I
as

Pr [φ(x, MQ) > fc] < vjk2 .

This inequality may be proved by an exact analogue of the classical
argument. However, the usual method for obtaining the weak law of
large numbers from it fails. We would need to show that if we define
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a mean random variable X, as above, its variance tends to 0. However,
this is rarely the case. If, for example, R consists of two points, and
we have probability 1/2 for each point, then the variance of X tends
to 1/2.

On the other hand, it is easy to extend our results to stochastic
processes more general than those considered so far. In Parts I and II
only identically distributed independent generalized random variables
were considered. However, the only property of the process used in
Part I was that the strong law of large numbers held. In Part II only
the Parzen result was used. Both of these hold for metrically transitive
stationary processes (see [1], Ch. X Sects. 1-2, and [4]). Hence all our
results hold for these stochastic processes.

BIBLIOGRAPHY

1. J. L. Doob, Stochastic processes, John Wiley and Sons, 1953.
2. W. Feller, Probability theory and it applications, John Wiley and Sons 1950.
3. M. Frechet, Les elements aleatoires de nature quelconque dans un espace distancie,
Institut Henri Poincare, Vol. X, No. IV, 1948
4. E. Parzen, On the convergence of distribution functions at points of discontinuity
forthcoming.

DARTMOUTH COLLEGE





CONCERNING THE COHOMOLOGY RING OF
A SPHERE BUNDLE

D. G MALM

l Introduction. This paper is concerned with the problem of
determining the cohomology ring of an orientable fibre space whose
fibere is a sphere, in terms of the cohomology ring of the base space
and invariants of the fibre space.

When the fibering sphere is of even dimension k — 1, an invariant
P in the (2k — 2)-dimensional cohomology group of the base space is
defined, which is closely related to one of the Pontrjagin characteristic
classes if the fibre space is a fibre bundle. If the (2k — 2)-dimensional
cohomology group of the base space B has no elements of order two,
then two (k — l)-sphere spaces over B with the same Stiefel-Whitney
classes Wk and Wfc_! and the same invariant P have isomorphic integral
cohomology rings.

In the other case, when k is even, if H2Jΰ~2(B, Z) has no two-
torsion, then two (k — l)-sphere spaces over B with the same Stiefel-
Whitney classes Wk, Wk-19 and TΓΛ_2 have isomorphic integral cohomology
rings.

If H2fc~2(B, Z) has elements of order two the situation seems to be
more complicated and no results are obtained. Also, the problem of
determining the cohomology ring with mod 2 coefficients is not touched
upon here.

The method is based upon the algebraic mapping cylinder of the
map x-+x'}?s, where w is Thorn's class, and thus parallels Thorn's
construction of the Gysin sequence using the mapping cylinder.

In conclusion, I wish to thank Professor W. S. Massey for his
generous advice and encouragement in the preparation of this paper,
which contains the essential parts of a dissertation submitted to Brown
University.

2. Notation and terminology* We define a fibre space as an ordered
quadruple (E, p, B, F) such that Ey B, and F are topological spaces, p : E—>B
is a continuous map, and such that the following condition holds: For
each x e By there is a neighborhood U of x and a homeomorphism φ
mapping U x F onto p~\U) such that (pφ)(y, z) — y for each y e U and
z e F. We call E the total space, F the fibre, and B the base space.

By a fibre bundle is meant a fibre space with a structural group,
as defined in Steenrod's book [8]. A fibre bundle whose fibre is an

Received January 19, 1959. The author received financial and other support from the
National Science Foundation under Grant G1348 during the preparation of part of this paper.
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w-sphere and whose group is the group of all (n + 1) x (n + 1) real
orthogonal matrices of determinant + 1 (denoted by SO(n + 1)) will be
called an ^-sphere bundle. An w-sphere space is a fibre space whose
fibre is an ^-sphere.

We assume that all w-sphere spaces with which we are concerned
satisfy the following orientability condition: If S™ denotes the fibre
over the point x e B, then the local system of groups defined by
Hn(Sχ), for x e B, is a simple system.

We also assume that the base space of any fibre space or fibre
bundle we consider is compact, and we will use Cech-Alexander-Spanier
cohomology with compact supports. Unless otherwise indicated, all
cohomology groups are with integer coefficients.

In [11], R. Thorn showed that the Gysin sequence of a (k — 1)-
sphere space (E, p, B, S*"1) may be obtained in the following manner :
There is associated to the given (k — l)-sphere space another fibre
space (A, p0, By F) whose fibre F is a fc-cell, for which we may suppose
E c A. (A is the mapping cylinder [10] of p : E—*B). Thorn showed
that there is an element ^/ e Hk(A — E) — H*(A, E) such that the
homomorphism Θ : H^A) -> H%A - E) defined by

(2.1) θ(x) =

(the cup product) is an isomorphism onto. In addition pf : Hq(B) —> HQ(A)
is an isomorphism onto. In fact, there is a cross section s:B—>A
where s(x) is the center point of the fibre over x, and s* and p£ are
inverse to each other. We thus obtain the following commutative
diagram of exact sequences, where all the vertical arrows are isomorphisms
onto:

> H«(A - E) ^—> H*{A) > Hq(E) — H^\A - E) > . . .
t t., t., t
\θ \ιd. \%d. \θ

H*(A) > H*(E)

jpo* W hid.

I

£+ H"(E)
Figure 1

Here the homomorphisms λ, μ, v, and ψ are defined by λ = j*θ
μ = p* - 1λp*; v = ^" xδ*; and ψ = p*" 1^; the top horizontal sequence is
the cohomology sequence of the pair (A, E), and the bottom sequence
is the Gysin sequence. Thus according to the results of Thorn, the
Gysin sequence of (E, p, B, S16'1) is isomorphic to the cohomology
sequence of the pair (A, E).
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In addition, if we let

and Wh = pt'ι{wk),

then Wk is the kth Stiefel-Whitney class (the characteristic class)

and μ(x) = xWk for α; e

Mv) = 2/w* for 2/ 6 JH

Define wt by

(2.2) 0(w4) = S\{&)

where S j : iJft(A — JB7) —> £Γ*+*(A - 2?) denotes the Steenrod squaring

operation (see [9], or [3], expose 14).* Then also the Stiefel-Whitney

classes Wt are given by

Thus Wi e H\B, Z) for i odd and W% e #*(£, Z2) for % even and less
than k. Wk is always an integral cohomology class. In addition,
2Wt = 0 for ΐ odd. For more details, the reader is again referred to
the paper of Thorn [11].

We will regard C*(A9 E) as a subgroup of C*(A). It is actually
a two-sided ideal in C*(A), with respect to both the cup product and
Steenrod's cup-i products [9]. Since C*(£r) ^ C*(A)/C*(A, S ) (we are
using Alexander-Cech cohomology), we identify these two cochain rings.
Note that the map j * of Figure 1 is then induced by the inclusion
C*(A, E) c C*(A).

The notation introduced here will remain constant, for example, A
will always be the mapping cylinder of p : E —> B, ψf will always be
the cohomology class introduced by Thorn, etc.

Another important property of the Stiefel-Whitney classes is the
following: The Bockstein homomorphism maps the even dimensional
ones onto the odd dimensional ones (see [8], p. 195).

Finally, the map v of Figure 1 satisfies the following equations:
If x € Hq(A) and y e HP(E), then

v[m*(x) y] = ( - l ) g £ (vy)

and v[y m*(a?)] = ( — l)kQ{vy) x .

This is Lemma 1 of [7].

3 The algebraic mapping cylinder of θ. If {E, p, By S^"1) is a sphere
space, then using p : H*(B) -> H*(E), H*(E) is a module over H*(B)
with the definition x*y = (p*x)y for x e H*(B) and y e H*(E). The

* Here, for i even, we let θ operate on H*(Λ, Z2) in the obvious way.
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following is an unpublished result of A. Shapiro: If (E, p, B, Sfc~1) and
(£", pf

y B, S10'1) are (k — l)-sphere spaces over the same base space B
with the same characteristic class TFΛ, then H*{E) and H*{E') are
isomorphic as iϊ*(jB)-modules. According to W. S. Massey, this may be
proved in the following manner.

Let A be the mapping cylinder of p: E —> B and let U e C*(B) be
such that p\U e ^/ e Hk(A — E). Let M be the algebraic mapping
cylinder (see [5], page 159, Exercise D) of the map x-^xU for
x e C*(JB), that is

Mp = CP(B) x Cp'k+1(B),

and 8(xf y) = (8x + yU, - δy) for (x, y) e M.

It is easily seen that (M, δ) is a differential group. In the diagram of
exact sequences

where i(ίc) = (x, 0) and j(ίc, y) — ?/, the left square commutes and the
right square anti-commutes. We obtain the exact sequence

?-+ H*(M) - ^ > Hp~k+1(B) ~^->

where μ is the map induced by x—*xU, in other words, μ is the map
μ of Figure 1.

Now define η : Mp -> CP(A)IC*(A, E) = CP(JS7) by letting 37(0?, y) be the
equivalence class of pi (x) in CP(A)/CP(.A, E). η commutes with δ and
thus induces η* : HP(M) —* HP{E). We then have the diagram

. . . > H«-\B) - ί U H%B) — H\M) - ^ H*-*+\B) > •••

I id. \id. h?* (X) *̂

1 i i

It is easily verified that all the squares commute except the square
marked " 0 " , which anti-commutes. By the five-lemma, Ύ]* is an iso-
morphism onto.

We now make M into a module over C*(J5) by the definition

x(v, w) = (α?v,(— l)pcι?^)

for α? e CP(B) and (ι?, w) e M. It is easily verified that 8{x(v,w)} =
(δx)(v,w) + (-l)pxδ(v,w) and thus H*{M) is an #%B)-module. For
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x e H*(B) and y e iϊ*(M), we have Ύ)*{xy) = (p*a00?*2/)> that is, η*
preserves the module product. Consequently H*(M) and H*(E) are iso-
morphic as iJ*(i?)-modules.

Now suppose U' is any other representative for Wk. Then the
maps x—>xU and x —>xUf are chain homotopic, and it is easily seen
that both algebraic mapping cylinders have isomorphic cohomology as
iϊ*(i?)-modules. Consequently, both H*(E) and H*(E') are isomorphic
as iί*(ί?)-modules to £Γ*(M), where M is the algebraic mapping cylinder
obtained from any representative for Wk.

We remark that it is misleading to say that "H*(E) depends only
upon H*(B) and the characteristic class Wk." It is possible to give
examples of polyhedra Bx and B2 such that their integral cohomology
rings are isomorphic, and then construct 1-sphere bundles (E19 plf Bλ S

1)
and (E2, p2, B2 S

1) such that the characteristic classes of the bundles
correspond under the isomorphism, yet H*(Elf Z) and H*(E2, Z) are not
isomorphic. The reason is that H*(Blf Z2) and H*(B2, Z2) are non-
isomorphic, hence the mod two Gysin sequences are non-isomorphic,
and H*(ElfZ2) and H*(Elf Z2) and H*(E2, Z2) do not have the some
additive structure.

The theorems that follow concerning the cohomology ring of the
total space E will be obtained by introducing a multiplication in the
algebraic mapping cylinder and proving that under certain circumstances
the map rf (or rather, a similar map) is a ring homomorphism. For
simlicity, we will work with the cochains of A instead of B.

4 Adjusted triples and the multiplication in the mapping cylinder.
We wish to define a bilinear function (product) from Mp x Mq into
Mp+q which obeys the familiar coboundary formula

δ(α β) - (8a) β + ( - iya . (8/3)

for a e Mp and β e Mq. The problem may be simplified by observing
that if (x, y) and (v, w) are elements of M, we require that

(x, y) (v, w) = [(x, 0) + (0, y)] [(v, 0) + (0, w)]

= (x, 0)(ι;, w) + (0, y)(v, 0) + (0, y)(0, w).

Thus we divide the problem into three simpler ones for each of these
products we require that the coboundary formula holds. Furthermore,
we know what the first product should be, for we want to preserve
the module structure. Thus we want (x, 0)(v, w) = (xv, (— T)pxw) for
(x,o) e Mp. By a careful study of the last two products, we arrive at
the following definitions.

DEFINITION 4.1. An adjusted triple (U, W, N) for the sphere
space (E, p, B, S10'1) is a triple of coohains of A for which:
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( i ) U 6 ^ e Hk(A - E),
(ii) W is a cochain representing wΊc-ι,
(iii) 8N = *7 wxϊ7 - T7ί7, Ne C2k~\A, E),

(iv) 8w = \° i f k ίs e v e n

\-2U if k is odd.

DEFINITION 4.2. Let (U, W,N) be adjusted and let M be the
algebraic mapping cylinder of the map x—>xU. For (x,y) e Mp and
(v, w) e Mq, we define

(x, y) (v, w) =

(xv + ( - iy^y{U^xv) + ( - l)p+kq+k+1y[(wU) ^2U] +

( - lYxw + ( - l)kqyv + ( - l)k^k+1^y(w ^JJ) + ( - l ^

We will now prove two propositions which will justify the above
definitions.

LEMMA 4.3. For any sphere space (E, p, B, S*'1), there exists an
adjusted triple (U, W, N).

THEOREM 4.4. The product of Definition 4.2 is a bilinear function
from Mp x Mq to Mp+q for which δ[(x, y){v, w)] = [δ(x, y)](v, w) +
[ ( - l)p(x, y)]δ(v, w). Consequently a product HP{M) x Hq(M) -> Hp+q(M)
is induced. In addition, the additive isomorphism η* : HP(M) —• HP(E)
induced by η : Mp —> CP(A)ICP(A, E) where Ύ](x, y) is the equivalence
class of x in CP(A)/CP(A, E), preserves products.

We prove Lemma 4.3 first. Suppose k is even. Let W be any
cocycle representing w^^ and let U be any cocycle representing
^/ € Hk(A - E). By equation (2.2), U^XU and WU represent the
same element of H2k'\A — E). Thus there is a cochain N in C*(A, E)
for which 8N = U'^XU - WU.

Now suppose that k is odd. It is known that in this case, if
Δ:H*-1(A,Z2)-+IP(A,Z) is the Bockstein homomorphism, then Δ(wfc_2) =
wk — —wk. Let ί ί e ^ e Hk(A — E). If W1 is any integral cochain
representing wk-19 then there is a cochain R e C*(A) for which 8Wι=
-2U+8R, whence (SW^U = 2U2 + (8R)U. From (2.2) we see that
U^U= W1U+8N1 + 2Q for some ΛΓ\Q e C*(A, JE7). Taking the
coboundary, we get -2C72 = ( δ ΐ ^ t / + δ(2Q) and so δ(2Q) = δ(-RU),
that is 2Q + ^ί7is a cocycle of C*( l̂, E). Since the map<9 of (2.1)
is an isomorphism, there is a cocycle X of C*(A) and a cochain
S e C*(A, # ) for which 2Q + RU = XU + δS. Consequently f ^ t / =
(W1 + X — R)U + 8(Nλ + B). By taking cohomology classes, we see
that W1 + X - R represents wk-lf and (U, W1 + X - R, N1 + Ξ) is
adjusted. This completes the proof of Lemma 4.3.
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To prove Theorem 4.4, we note first that the product is clearly
bilinear, since the cup product and the cup-ϊ products are. To prove
the coboundary formula, we compute

δ[(x, y)(v, w)1 = (8(xv) + (-l)
+ (-ΐ)»+k< <I+»B(ywN) + {-lyxwU + (-ifoyvU + {-ly+

and

[δ(x, y)Jv, w) + ί(-iy(x, y)Wv, w) = (δ* + yU, -Sy)(v, w)
+ (-l)v(x, y)(Sv + wU, -Sw)

= ((8x + yU)v + (-ly+^i-SyXU^v) + (-iy^"^(-8y)[(wU)
(-iy*\8x + yU)w + (-iy>(-Sy)v

wU) + {-iy+q+ιy(U^lhv + wU])

Thus the difference of the first components is

- yϋv

Sv + wU)) + (-
+ (-iy«y(δw)N.

We now use the formula

(4.5) Sfa-,?) = (-ly^-'u^-t^v + {-ly^v—^u + (δίt)wtί>

+ (-1)%—^

for «. a p-cochain and v a g-cochain (see [9]), and a formula due to G.
Hirsch [6],

(4.6) (uv)-^,w = u{y ~ΊW) + (

where v and w are g- and r-cochains respectively. Thus

Also,
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N) + (~l)kq+1y{(8w)N

u- WU)} .

Consequently the difference of the first components is seen to reduce to

Since

+ ((δw; C/)-2C/} ,

this difference becomes

which is zero by the formula of G. Hirsch.
On the other hand, the difference of the second components of the

two expressions is

(-l)pyUw

But

iU + (~l)qwU

and

δ(ywW) = (δy)(wW) + (-iy+k+1y[(Sw) . W+ (-iy+k+1w(8W)] .

Thus this difference reduces to

ywll+ (-l)k+1yw8W] = 0 ,

since δT7= 0 for fc even and δW = -2U for k odd.
Thus the cochain formula holds and a product is induced on the

cohomology level. Since C*(A, E) is an ideal in C*(Λ), and since U and
iV are in C*(A, S), we see immediately from the definitions of η and
the product that η* preserves products. This completes the proof of
Theorem 4.4.
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We remark that the product of Definition 4.2 is not associative,
though, of course, the induced product on the cohomology level is.

5 The invariant P. We now define, when k is odd, an invariant
P' of the (k—l)-sphere space (E, p, B, S70'1), which is an element of
H2]C~2(A, Z), and its image P = pf-\P') e H2Jc~2(B, Z). P ' and P will be
called the P'-invariant and the P-invariant, respectively, of the sphere
space.

Let (U, W, N) be an adjusted triple. A straightforward com-
putation, using equation (4.5), shows that W2 + W^Ί(S W) — AN — U^2U
is a (2k — 2)-cocycle. We define P ' to be its cohomology class in
H2k~2(A, Z), and P = pf-\P').

THEOREM 5.1. Let (E, p, B, Sk~λ) be a sphere space for which k is
odd, and let (U, W, N) and (£/', W',N') be adjusted triples for this
sphere space. Then W2+ W^1(8W)-iN-U^2Uand W'2+ W'^tfW')-
4iV'— U'^JJ' represent the same element of H2k~2(A), and consequently
P' is independent of the choice of nice triple made in its definition.

This theorem, which states that P is an invariant of the sphere
space, is proved with the help of the following lemma.

LEMMA 5.2. Let k be odd, and let (U, W, N) be an adjusted
triple. Then (Uf, W',Nr) is an adjusted triple if, and only if, there
exist βeCk-\A, E), yeCk~2(A), ψeCk-2(A) a cocycle mod 2, and pe
C*k~2(A, E) a cocycle, for which

U' =U+Sβ,

W = W - 2/3 + 8(φ + 7) ,

and

Nr = N + β^JJ' - U^J3 -(φ + Ύ)U' + β2 - Wβ + p .

We first prove that if (U, W,N) and (17', W, N') are adjusted,
then there exist β, γ, φ, and p with the stated properties. Since ί7and
U' both represent ^/, there exists β e Ck-\A, E) for which U' = U + Sβ.
Now δW = -2U' = -2(U + 8/3) = δW - δ(2β), or W - W + 2β is a
cocycle. Let a' = W — W+2β. Taking cohomology mod 2 in A,
(denoted by brackets) we see that 0 = \W' - W] = [2/5 - α'] = [α'].
Thus there exist yeCk'2(A) and aeCh~\A) for which a' = δ(y) + 2a,
and δa = 0. Then W = W + 2(a - β) + δy. Now

δ(N' -N)= U'^JJ' - U^JJ + WU - W'U'

= (δβ)^U + U^(δβ) + (δβ)^(δβ) - 2(α -β)U

~δ(yU) - W(δβ) - 2(a - β)δβ - δ(yδβ) .
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Using equation (4.5), we have

2βU - 2Uβ .

Consequently

B(N' -N) = B(β^U - U^β) - B(Wβ) -f- (Sβ^iSβ) - 2aU

-B(yU) - 2a(8β) - S(γ8/3) + 2βSβ .

But since (8/3)^(8/3) = 803^(8/3)) - βBβ + (8β)β, we have

B(N' -N) = 8{β^,U - TJ~β - Wβ - jU + /92 - j8β + β

-2aU'

- yU' - Wβ + /S2} - 2aU' ,

which states that 2aU' is a coboundary of C*(A, E), since N', β, U', U,
and N are in C*(A, E). Since θ of (2.1) is an isomorphism, this means
that there is φeC*-"(A) such that 2a = Bφ, and -2aU' = -B(φU').
We then have

B(N' - N) = Siβ^U' - U~J3 - jU' -Wβ

This gives the stated result immediately.
Now suppose (U, W, N) is adjusted and β, γ, φ, and p have the

stated properties. Then clearly U' represents ψs and W represents
«;„-,. Also 8 W = BW- 28β = -2U - 28β = -2U'. Finally,

SN' = U^U - WU+ Biβ^U') - BiU^β) - B(φ + y)U' + βBβ

+ (Sβ)β - WBβ + 2Uβ

= U^JJ - WU' - 8(φ + f)U' + (δ/SJwjE/ ' + βϋ' - U'β

+ U^Bβ -~Uβ + βU+ βBβ + (8/9)/? + 2Uβ

= U'^U' - WU' - B(φ + i)U' + 2βU'

= U'~ JJ' - W'U' .

Consequently (Ur, W', N') is adjusted. This completes the proof of
Lemma 5.2.

We now prove Theorem 5.1. Let (U, W, N) and (Ur, W',N') be
adjusted triples related by β, γ, φ, and p as in Lemma 5.2. Let

a = W* + W^(BW) -4N- U^U

and

a' = W'2 + W'—^BW') - AN' - U'^U' .

Then

a' -a= Wn- W2 + W'^JiδW) - W^Ί(8W) + 4(N - N')
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Since U^2U and Ur^-2U
r both represent wft_2^', we may let 8z =

U^JJ - U'^2U
r, for some zeC*(A,E). Then it is easily verified,

using Lemma 5.2 and equation (4.5), that

a' - a = - ± p + 8{z - (<p + γ)-1(2C/') + W\Ψ + γ)

-{φ + 7)δ(φ + 7) + (φ

Thus, taking cohomology in H*(A), we have [a' — α] = [—4^]. But
is a cocycle of A — E and thus for some XeH*(A) we have [p] =
where the cohomology class of p is here taken in H*{A — E). Con-
sequently, now taking cohomology classes in H*(A), we have [—4/?] =
—A(Xwk) which is zero since 2wk — 0. This completes the proof of
Theorem 5.1.

We now turn to some properties of P. We shall prove the follow-
ing theorem:

THEOREM 5.3. Let k be odd, and let {E, p, B, Sfc"\ SO(k)) be a (fc-1)-
sphere bundle, with B a finite polyhedron. If H2k~2(B, Z) has no
elements of order two, then P = P2fc-2, the Pontrjagin class in dimension
2k-2.

The hypothesis that the fibre space admit SO(k) as structural group
is needed in order that the Pontrjagin class be defined.

The proof of this theorem requires several lemmas and the use of
the universal Gysin sequence.

We recall [8] that given any topological group G, there exists a
universal principal G-bundle (EG, p, BQ, G, G) which has the following
property:

Given a polyhedron B, any principal G-bundle over B is isomorphic
to the bundle induced by some m a p / : S - > 5 β . BG is called the classi-
fying space for G.

Suppose now that Go is a closed subgroup of G. The following
lemma is proved by H. Cartan in [3], expose 7.

LEMMA 5.4. If (E, p, B, G, G) is a principal G-bundle, and π: E/Go ->
E\G — B is the natural projection, then (EjG0, π, B, G/Go, G) is a fibre
bundle which is associated with (E, p, B, G, G), where G operates on G/GQ

in the natural way.
It is known that if (EG, p, BG, G, G) is a universal principal G-bundle,

and Go is a closed subgroup of G, then in the associated fibre bundle
{EG\GQ, π, B, G\GQ, G) given by Lemma 5.4, the total space EoIG0 is of
the same homotopy type as the classifying space BQQ. For a proof, see
[7], Lemma 6. Taking G = SO(k), Go = SO(k - 1), we have G/Go = Sk'\

We will call (BS0{k_Ό, π, Bsoa), Sk~\ SO(k)) the universal (k - 1)-
sphere bundle. It has the following pleasant property: Any bundle
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(E, p, B, Sfc~\ SO(k)) is isomorphic to the induced bundle f~\BSo{Ίc-i)j π,
Bsow S*'1, SO(k)) for some map f:B—*BSOw This follows from the
fact that the operation of taking induced bundles and of taking associated
bundles commute. This is easily proved if one uses the definition of
"induced bundle" am} "associated bundle" in terms of the coordinate
transformations ([8]).

LEMMA 5.5. Let (£", p\ B', Sk-\ SO(k)) be a (k - l)-sphere bundle,
with P-invariant βr, and let (E, p, B, S*~\ SO(k)) be the bundle induced
by f:B-+ B', with P-invariant β. Then f*(β') = β.

Proof. Let F:E—>E' be the map of the total spaces correspond-
ing to / , so that the following diagram is commutative:

F
E > E'

\v \v>

B -^-> B'

This diagram may be imbedded in a commutative diagram

E -iU E'

B JU B'

where A and A! are the mapping cylinders of p and pf respectively,
and i and V are inclusion maps. A is a quotient space of (E x I) U B,
where I is the closed unit interval, and similarly for Af. Letting square
brackets denote equivalence classes in the quotient spaces, ^~ is defined
by

^~[(x, t)] = [(Fx, t)] for x e E, t e l ,

and

= [/δ] for beB.

Also i(e) — [(β, 0)] for ee E. It is easily verified that j^~ is a continuous
function and the diagram commutes. Let ^ ~ * : C*(A')—*C*(A) be the
cochain homomorphism induced by j^~ .

Passing to the cochain level we have the commutative diagram
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(E) J^- C*(E')

C*(A')

'J* p ' l\ |

C*(B)< C*{B )
Figure 2

where pQ:A—>B and p[: A! —> Bf are the projections.
Now let (U', W, N') be an adjusted triple for (Ef, p\ B\ S*-1). Let

U=J*r*(U'), W=jr\W), and N=JT*(N'). Clearly jT~#(C*(A', E'))c
C*(A, E). Since the Stiefel-Whitney classes and Thorn's class ^/ are
preserved by / (or ^~), we see that (U, W, N) is an adjusted triple
for (.£7, p, 5). A representative cocycle for the P'-invariant of (£", p', B')
is Wn + W'^δW - 4iV' - U'^>2U', under .^" # this goes into W2 +
W ^ΊSW — &N — U^"2U, a representative cocycle for the P'-invariant of
(E, p>B). Consequently f*(βf) — β, in view of the commutativity of
Figure 2.

The following two lemmas together imply Theorem 5.3.

LEMMA 5.6. Let k be odd, and (E, p, B, Sk-\ SO(k)) a (k — l)-sphere
bundle, with B a finite polyhedron. Using the rationale or the integers
mod n, n odd, as coefficients for cohornology, P = P2k-^ the Pontrjagin
class in dimension 2k — 2 with rational or mod n coefficients.

LEMMA 5.7. Let G be a finitely generated abelian group with no
elements of order two. Let aeG be such that for each odd integer n
there is an aeG for which a = na. Then a = 0.

We omit the proof of Lemma 5.7, which is quite simple.

Proof of Lemma 5.6. In view of Lemma 5.5, it suffices to prove
Lemma 5.6 for the universal (k — l)-sphere bundle (B8(Kk-1)f π, Bso(k),
Sk'\ SO(k)).

Since the base space B of our bundle is a finite polyhedron, we
need only use an ^-universal bundle for sufficiently large n. For this
bundle, the base space may be chosen to be compact (see [8], Section
19), and we may use Alexander-Spanier cohomology with compact
supports.

Let Wk be the characteristic class of this bundle, thus Wk e Hk(BS0(k^),
and let Wk^(k — l)eHk'\BS0Ck^) be the universal Euler-Poincare class
(for the cohomology of the classifying spaces see the article by A. Borel
[1] for a review of the results we need, see the article by W. S.
Massey [7]). Since k is odd, 2Wk = 0 and Wk = 0.

Choose (£7, W> N) adjusted for this sphere bundle and let M be the
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algebraic mapping cylinder associated with this adjusted triple, with a
multiplication defined as in §4. We then have the following commuta-
tive diagram of exact sequences, where all the vertical arrows are
isomorphisms onto (the square marked " (g)" anticommutes). The
notation is that used previously.

0 — H*(A) — H*(M) — H«-k+\A) -ί-> 0

lid. L* ® lid.

0 _L* H«(A) — JΓ*(JW-o) — ffβ"*+1(A) — 0

Fig. 3.

In what follows, an integer w is to be taken as wα> or wo/ if the
coefficients are the rationale or the integers mod an odd integer respec-
tively. Here, ω is the unit of C*(A, rationale), ωΫ is the unit of
C*(A, Z2m+1), and n is n reduced mod 2m + 1.

We note that (W, 2) is a cocycle of Mk~ι and compute that (W9 2)2=
(W2 - (δ T Γ ) ~ i ^ + 4.t^w2U - AN, 0). Since (δ T P ) ^ TF = δ( W^x W) -

we have

(W, 2)2 = (Z + 5C7— 2U - 8 ( ^ 1 7 ) , 0)

where Z = TF2 + PF^^S PP) — 4JV — U-^JJ is a representative cocycle
for the invariant P' e H2k~\A). Since U is a coboundary, hU^JJ m and

ΐ*(P') = [(PΓ, 2)2] 6 ff»-a(Af) ,

where the square brackets denote cohomology classes. Thus m*(P') =
ft*i*)(P')=?*[( W, 2)^*[( PF, 2)]-[PF] 2 6 iP-XZW-υ), and (TΓ* O ̂ " ^ 0 =
[PF]2, or π*(P) = [PF]2. We now need the following lemmas.

LEMMA 5.8. With integral coefficients, ψ{Wk-.x(k — 1)) is twice a
generator of H°(BsoCk:>).

LEMMA 5.9. With integral coefficients, τr*(P2fc_2) = (Wk^(k — I))2.
For proofs, see [7], Lemmas 7 and 8.
Thus, using the rationals or the integers mod an odd integer for

coefficients, we have π*(P2fc_2) = {Wh-λ(k — I))2. Now TΓ* is an isomorphism
and we complete the proof that P=P2k-2 by showing that {Wk-X{k—I))2=

[PP7.
By Lemma 5.8, we may choose e = ± 1 so that v{eW1c-1{k — 1)) =

-2eH°(A). But v([WJ) = -j*[(PF, 2)] = - 2 . By exactness there is a
ί/e Jff*(A) such that eWk^(k - 1) = [W] + m*(y). Multiplying by [W]
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and eWk-xik — 1) respectively, we get

εW^k - 1)[W] = [WY + m*(y)[W]

and

(Wk^(k - I))2 = εWt-AJc - 1)[W] + m*(y)εWk^(k - 1) .

Together these give us

- (Wk^(k - l)f = -m*(y)([W\ + εW^k - 1)) .

We now apply v to this equation, remembering that [WY and Wk-ι(k —
are in image m* = kernel v. Then

0 = -yv([W] + eWt-άk - 1)) = Ay .

Thus y = 0 and (TΓ^A; - I))2 -
It is possible to prove the following theorem, which immediately

implies Lemma 5.6.
If k is odd, and (E, p, B, Sk~1

t SO(k)) is a (k — l)-sphere bundle
with Wk = 0 and B a polyhedron, then P — P2k-2, the Pontrjagin class
in dimension 2k — 2.

This is a direct consequence of Theorem IV of [7]. It is only
necessary to prove that P is Massey's invariant 4α + β2, which can be
done by a computation in the mapping cylinder.

According to W. T. Wu [12], for a (k — l)-sphere bundle, if ^ 2

denotes the Pontrjagin squaring operation, then

reduced mod 4. If (U, W, N) is adjusted for the sphere bundle,
W2 + W^Ί(δW) represents ^2(^ f c-i) a n d U^2U represents w^^w^.
Consequently,

P = P2ic-2 reduced mod 4 .

Let (?£_! denote the group of all homeomorphisms of S*™1, and BGCJC^O

the classifying space for Gk-λ. It would be of interest to know whether
the invariant P comes from a cohomology class in H2lc~2(BG ).

6* The main theorem for k odd* In this section we assume that
k is odd and (E, p, B, S*'1) is a (k — l)-sphere space. We consider the
effect of dropping the conditions that N and U be in C*(A, E), where
(U, W, N) is an adjusted triple for (E, p, B, S*"1). A check of the proof
of Theorem 4.4 shows that the product of Definition 4.2 still induces
a product in the mapping cylinder. However, in general rj* no longer
preserves products. To retrieve (in part) this property of rf we add a
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requirement that U, W, and N be connected with the invariant P\
Before stating the main theorem we require several lemmas.

LEMMA 6.1. Let Ue_wkeH*(A), Ze P'eH2Jc-2(A), and let W be
any integral cochain representing w^ for which SW = — 2U. Then
there exist NeC2k-2(A) and QeC2k~\A) for which

4JV + SQ = W2 + W^(S W)- Z - U^2U .

Proof. Let (£/', W, N') be adjusted, and let Z' = W'2 + W'^a(8W)
— 4JV' — U'^JJ, a representative cocycle for P\ Then there are
cochains a, β, and γ for which U = Uf + Sβ, W = W + Sy - 2β, and
Z = Z' + δα. Let

N= Nf - W'β + β^JJ' + β2 - U'^β

and

Q = -γw^P' ) - 2 1 ^ ^ - 2(δγ)w^ - a

A straightforward computation of 4iV + SQ completes the proof.
We now prove a similar lemma for the cochains of B instead of A.

The fibre space (A, pQ, B, ά-cell) has a cross section s : B —• A. On the
cochain level we have

C*(S) ί=b C*(A)
0

with s* o pi the identity.

LEMMA 6.2. Let Ue WkeHk(B), ZePeH2k~\B), and let Wbe any
integral cochain representing W1c-1 for which SW — —2U. Then there
exist NeC2k'2(B) and QeC2k-\B) such that

4JV + SQ = W2 + W-Ί(δW) - Z - U^2U .

Proof. PoU,ptW, and p\Z satisfy the conditions of Lemma 6.1.
Let JV' and Qf be the cochains of A given by Lemma 6.1, and N =
Q - s*Q'. Then

4JV + SQ = s*(4iV' + δQ') - (sψQW)2

-Z- U^2U.

We remark that since 4SN = 4,(11^,11.- WU) we have SN =
^ - T î7. Also, if JV, Q and JV', Q' satisfy Lemma 6.2 or Lemma



CONCERNING THE COHOMOLOGY RING OF A SPHERE BUNDLE 1207

6.1, then N — N' is a cocycle and 4(JV — Nf) is a coboundary, for
4(N - N') = 8(Q' - Q).

LEMMA 6.3. If (Uf, W, Nf) is adjusted, and if (U, W, N) is as in
Lemma 6.1, there exist cochains β,j, and a cocycle TeC2k~2(A) such
that 4Γ is a coboundary, U = U' + δβ, W = W + δγ - 2β,

and N=N' - W'β + β^U' + β2 - U'^λβ - (δy)β

<γU' + T.

This follows directly from the proof of Lemma 6.1 and the above remark.
Now let U, W, and N be any cochains of B which satisfy Lemma

6.2, and let M be the algebraic mapping cylinder of the map x—*xU,
with a product given by Definition 4.2. We then have a product in
H*(M). For the remainder of this section, we will use square brackets
to denote the natural map C*(A) -> C*(A)IC*(A, E) - C*(E). The main
theorem follows.

THEOREM 6.4. There exist η: Mp —> CP(E) an allowable homo-
morphism and a cocycle TeC2]c~2(B) such that 4T is a coboundary
which have the property that if (x, y) and (v, w) are p and q-cocycles,
respectively, of M, then

(6.5) η{(x, y)(v, w)} - φ, y)η{v, w) - [(-l)*+β+1j%wΓ)] + δX

for some cochain X of E.

Proof. The homomorphism rj is defined as follows : Choose (£/', W,
N') adjusted. We apply Lemma 6.3 to p\U, p\ W, ptN to obtain β e Ck~\A)
for which ptU= U' + δβ. Define η(x, y) = [ptx + p\{y) β] for (x, y) e M.
Then

δη(x, y) = \δplx + {δpl(y)}β +

- [ptδx + p%δy)β + p\{y)(pW - U')} ,

while

yδ(χ,y) ==7}(δx + yU, -By)

(vlv){vW) + Pl(-δy)β].

Since —δy = δy and Uf e C*(A, E), η o 8 = δ o η and η is allowable.
Let Γ = η{(x, y)(v, w)} — η(x, y)η{v, w), where (a?, y) and (v, w) are

p and g-cocycles respectively of M. Then

Γ = [(-ly^pKyM
w N) + {-l)vp\{yv)β

w W)β - (ply)β(Φ) - (ply)β(plw)β] .
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We now replace ptU by Uf + δβ. Note that all terms involving Uf

drop out, for C*(A, E) is an ideal. For simplicity, we write x' — pt(x),
etc. Then

Γ = [(-1ΓVPM + (
+ (-ly^ψw'pKN) + (-l)py'v'β

+ (-l)p+q+1y'w'pl(W)β + (-l)p+1y'βvr + (-Ϊ)p+q+1y'βw'β] .

Now

Since δv = -w?7, δ(pjt ) = ~p\wpW = -w'U' - w'hβ. Thus

and

Γ - [(-lϊ^Yί/Sw^δ/S)} + (-l)"+V{(wf

(-l)p+q+1y'βwrβ] + coboundaries ,

for yf is a cocycle and ( — l)p+qyrδ(β^1v
f) a coboundary. It is easily

checked that

(-I)p+q+1y'βw'β - (-l)Vδ
+ (-1)P+V{(δ/SJw^}^ + ( - l ^ ^ V ^ .

From Lemma 6.3 we have pt(W) = W + δγ — 2/3. From these we get

r = K-iy+wίβ^Ίi

+ (-iy+*+yw'(W + δγ - 2β)β + (-ly

+ (-ϊ)p+1y'{(δβ)^ΊW'}β + (~iy+q+1yfw'β2] + coboundaries .

Since

we have

r = [(-ly+'y'tf^Ίiβ)}

+ (-iy+«+yw'pl(N) + (-iy+q+1y'w'(W + δy)β

+ ( — iy+*y'w'β2 + (-I)p+Iyfδ{wf^1β}β] + coboundaries .

Now
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and thus

Γ = (-l)*+*+y {(w'δβ)^J3} + (-iy+(1+1y'w'(W' + δy)β

+ (-l)p+ψw'β2 + {-iy+1y'δ{w'^>β}β

+ ( - i r g + W { - W'β + β2 - (Sy)β + β^Ί(δβ) +

+ coboundaries, where we have used Lemma 6.3 on pl(N) .

Thus

r = i(-iy^+γ{(

+ (-ly+t+ψw'iβ^-Ίδβ) + (-iy+Q+1y'w'T] + coboundaries .

But

(-ly+ySlw'^^β - {-iy+1y'8{(w'^J3)fi} + (-ly^y'iw'^

and so

r = κ~iy^ψ {{w'S

+ (-ly+t+yw'iβ^Ίδβ) + (-ly+'+yw'T] + coboundaries

- [(-ly^ψ{(w'δβ^fi + (w'^J3)8β + w'tf^δβ)

+ (-iy+q+1y'w'T] + coboundaries .

By Hirsch's formula 4.6,

Γ = [(-ly+^y'w'iβ^δβ + (δβ)^J3} + (~iy+q+1yfw'T]
+ coboundaries .

Since δ(/9w^) = β^δβ +

Γ = [(-l)s+«+1j/VΓ] + coboundaries .

In view of the fact that pj o s# is homotopic to the identity, we
have

Γ = [(- l^+^^d/ws Γ)] + coboundaries

as asserted. This completes the proof of Theorem 6.4.

REMARK 6.6. The following diagram commutes except for the
square marked " ® " which anti-commutes.

-̂> H%B) - ^ > H*(E) - ^ > i ϊ g - f c

ΐίd. ΐίd. ]y* ® ΐΐd.

Thus by the five-lemma, Ύ]* is one-to-one and onto.
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Proof. Let xf exeH*(B). Then (xr, 0) represents i*(α?) and
represents η*i*(x). It also represents p*(x). For the other square, let
{x, y)ezeH*(M). Then y represents j*(z), and [pjx + (ply)β] represents
η*(z). Referring to Figure 1, ψ = p * - 1 ^ * . . Now δ{pS(αj) + (^)/8} =
Pt(~yU) + vl{y)δβ = — (PSI/) Ef' Thus 0H*)O) is represented by —y.

From equation 6.5 we see that if H2ΪC~2(B) has no elements of order
two, rf : Hq{M) —> Hq(E) is a ring isomorphism.

THEOREM 6.7. Let (E, p, B, S*'1) and (£", p\ B, S*-1) 6e

(orientable) (k — l)-sphere spaces over the same (compact) base space
with k odd. Suppose H2Ίc~2(B, Z) has no elements of order two. Then
if the sphere spaces have the same P-invariant and the same Stiefel-
Whitney classes Wk and Wk-ly their integral cohomology rings are
isomorphic.

To prove this, we observe that both cohomology rings are isomorphic
to the cohomology of the mapping cylinder M of Theorem 6.4.

If the rationals or the integers modw, n odd, are used as coefficients
for cohomology, then η* is always a ring isomorphism since H2k~2(B)
will have no elements of order two. Consequently the cohomology ring
with these coefficients of a sphere space is always given by Theorem
6.4.

7 The case k even. In this section we suppose (E, p, B, S*'1) is
a (k — l)-sphere space, with k even. Suppose VeC^2(A) is any integral
cochain representing wfc_2. Then for some W, 8V = — 2W and W
represents Ww Let Uewk. Then VU and U^2U both represent
WJC-ZWK and so VU + U^2U is a coboundary mod 2, i.e., there exist N
and Q cochains of A for which

2N+SQ= VU+ U^2U .

From this it follows that 8N = U^-JJ - WU. If also 2N' + δQ' =
VU + U^-2U, then JV — N' is a cocycle and 2(ΛΓ — N') a coboundary.

LEMMA 7.1. Let (U, W, N) be adjusted for the sphere space
(E, py By S*-1) and let V be an integral cochain representing wfc_2 for
which SV == —2W. Then there exist a cocycle Ye Cfc~2(A) and a cochain
Xe C2k-2(A, E) for which

VU + U^2U -2N= 2YU +SX .

Proof. We first remark that it is possible to find such (U, W> N)
and V. One chooses V to be any integral cochain representing wfc_2 and
defines W by 8V = —2W. Then W represents w^x. Choose Ue^re
H*(A - E), and Ne C2U-\A, E) .such that SN - ϋ^JJ - WU. Now let
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b = VU + U^2U - 2N. Then 6 e C2fc~2(A, E) and it is easly seen that
b is a cocycle. For some x,ye C*(A, E), U^JJ — VU + 2x + 8y since
ί7^2C/and Fί/both represent wk^/ mod 2. Thus b = 2(Fί7+ a? - N) + δy.
Since 6 is a cocycle, FΪ7 + a? — JV is a cocycle of C*(A, E). The map 0
of (2.1) is an isomorphism, consequently there is a cocycle YeCk~2(A)
and a cochain Z e C2fc~2(A, E) such that Ft/ + x - N = YU + δZ. Then
b = 2YU + δ(2Z + y).

The following crucial lemma may be interpreted as giving a standard
form for the cochains N described in the opening paragraphs of this
section.

LEMMA 7.2. Suppose U is any representative cocycle for wh, V is
any cochain representing wk-2, δ F — — 2W, so W represents wk-lf

NeC2k~2(A), QeC™~\A), and 2N + δQ = VU + U^2U. Suppose also
that ([/', W',N') is adjusted, V represents wk-2, and δV = -2W.
Let X and Y be chosen by Lemma 7.1 so that V'U' + U'^JJ' - 2Nr =
2YU' + δX. Then there exist β, a, γ, and T, cochains of A of degrees
k — 1, k — 2, k — 3, ami 2k — 2 respectively so that T is a cocycle, 2T
is a coboundary, U = U' + δβ, W = W + δa, V = V + δy - 2a, and

N - N' - aδβ - aUf + (δβ)^2U
r + β^λ(δβ) + β2 + W'β+yU' + T .

Proof. The existence of a, β, and γ so that the first three equa-
tions are satisfied is trivial. To prove the lemma it is only necessary
to verify that

2(JV' - aδβ - aU' + (δβ)^2U
f + β^δβ) + β2 + W'β + YU') + δQ'

for some cochain Qr. We choose

Q' = ΎU' + V'β + yδβ + (δβ)^U' + β^2(δβ) + β^β + X.

The computation is omitted since it is straightforward.
For the next theorem, we return to the cochains of the base space

B. We suppose Ue Wke Hk(B), V is a cochain representing Wk-2e
Hk-\B, Z2), and δV =- -2W. Then W represents W^eH^B). We
obtain N and Q in C*(B) for which 2N + δQ = VU + U^2U. Let M
be the algebraic mapping cylinder of the map#—>xU ΐoτ xeC*(B),
with a product given by Definition 4.2. This product satisfies the
coboundary formula and induces a product in iJ*(ikf). We will use
square brackets to denote the natural map C*(A) —> C%A)/C*(A, E).

THEOREM 7.3. There exists an allowable homomorphism η: Mp —>
CP(E) and a cocycle TeC21ΰ'2(B) for which 2Γ is a coboundary with the
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following property: If (x, y) and (v, w) are p and q-cocycles, respec-
tively f of M, then

(7.4) η{(x, y)(v, w)} - φ, y)η{v, w) = [(-l)ppt(y w Γ)] + δZ

for some cochain Z of E.

REMARK 7.5. The following diagram commutes except for the
square marked "(g)" which anti-commutes:

\ ) ί U H%B) -£-> H%M) —^U H*-\

ltd. \id. U * ® lid.

(B) £ ^ E ^ H(

Consequently, by the five-lemma, 27* is one-to-one and onto.
To prove Theorem 7.3, we first choose {Ur

f W, N') adjusted and
obtain Xand Ffrom Lemma 7.1. Then apply Lemma 7.2 to obtain a, β, 7,
and T for which p\U = U' + 8β, p\W = W + δa, p\V = V + δγ - 2α,
and

'=N'-aδβ-

Define, for (x, y) in M,

η{x, y) =

Then η is allowable, i.e., δη — ηδ.
The remainder of the proof is omitted, as it is a tedious computa-

tion similar to the proof of Theorem 6.4. The proof that the diagram
of Remark 7.5 commutes has been given in the proof of Remark 6.6.

From equation (7.4) it follows that if H2k~2(B) has no elements of
order two, rf is a ring isomorphism.

THEOREM 7.6. Suppose (E, p, B, S*-1) and (£", p', B, S16"1) are two
(orientable) (k — l)-sphere spaces over the same compact base space with
k even. Suppose H21c~\B, Z) has no elements of order two. Then if
the sphere spaces have the same Stiefel-Whitney classes Wk, Wk^.19and
Wk-2, their integral cohomology rings are isomorphic.

This follows because both cohomology rings must be isomorphic to
the cohomology ring H*(M).

The following theorem generalizes a result of R. Thorn ([4], expose
17, Theoreme 3).

THEOREM 7.7. Suppose (E, p, B, Sfc~x) is a (k — l)-sphere space, for
k even. Using the rational numbers or the integers mod n, n odd, as
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coefficients for cohomology, the cohomology of the base space and the
characteristic class Wk determine the cohomology ring of the total
space E.

Proof. WIC-1 = 0 since 2Wk-1 = 0. Let U be any representative
cocycle for Wk e Hk{B), and let M be the algebraic mapping cylinder of
x —*xU, for xeC*(B). We introduce a multiplication in M by choosing
W = 0 and N = i(U^2U) or, specifically, the multiplication is defined
by

(x, y)(v, w) - (xv + (-ly^yiU^v) + (-l)p+1y{(wU)^2U}

+ (~l)pywi(U^2U)y {-lyxw + yv + ( - l ^

for (as, 2/) e Mp and (v, w) e Mq. Since H{U^2U) = U^-JJ, this multiplica-
tion induces a multiplication in iΓ*(M).

Let [/' e ̂  e ίP(A - £7). Then for some /3 e C*~\A), p\U= U'+8β.
Define η:Mp->Cp(E) by >?(#, i/) = [p\x + (i#)/S]. Then 97 is allowable
and induces if : HP(M) —> HP(E). Let (a?, #) and (v, w) be p and 9-
cocycles, respectively, of M and let Γ = η{(x, y)(v, w)} — η(x, y)η(v, w).
Then, letting xr = p\x, etc., as before, we have

r = κ-i)*+

+ (-\yy'βvf + (-I)p+q+1y'βw'β] .

Exactly as in the proof of Theorem 6.4, reduce this to

Γ - [(-l)*+W(/3~iδ£) + (-l)Vw

+ coboundaries .

Since (δ£)wa(δ£) - δ(/3-2δ^) + M « « +

r = [(-ly+y

+ coboundaries ,

and so Γ is a coboundary since

2/32 =

Thus η* preserves products. 37* is shown to be one-to-one and onto
exactly as in the proof of Remark 6.6.

In conclusion, we would like to point out that the remarks at the
end of Chapter 3 apply also to Theorems 6.7 and 7.6. The question of
what one needs to know about H*(B) in addition to the product structure
(and various characteristic classes) to determine H*(E) seems to be
rather complicated (see [7], Part 1, and [4], expose 17). Certainly
various higher order operations are needed.
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TRANSFORMATIONS ON TENSOR PRODUCT SPACES

MARVIN MARCUS AND B. N. MOYLS

1. Introduction* Let U and V be m- and n-dimensional vector
spaces over an algebraically closed field F of characteristic 0. Then
U ®V, the tensor product of U and F, is the dual space of the space
of all bilinear functionals mapping the cartesian product of U and V
into F. If x e U, y e V and w is a bilinear functional, then x Cξ) y is
defined by: x®y(w) — w(x,y). If e19

 m ,em and f19 * ,/w are bases
for U and F, respectively, then the et <g)fj, i — 1, , m, j = 1, , n,
form a basis for U® V.

Let MmtΛ denote the vector space of m x n matrices over F. Then
U® V is isomorphic to Mm>n under the mapping ψ where ψiβi^fj) =
2?tj, and Etj is the matrix with 1 in the (i, i) position and 0 elsewhere.
An element z e Ϊ7® F is said to be of rank k if z = Σ L A ® i/*, where
xu *",Xjc are linearly independent and so are ylf

 m

 9yk. If i?fc =
{2; e Z7 ® FI rank (2;) = k}, then ^(i2fc) is the set of matrices of rank k,
in Mmtn. In view of the isomorphism any linear map T of U <S) V into
itself can be considered as a linear map of Mm>n into itself.

In [2] and [3], Hua and Jacob obtained the structure of any map-
ping T that preserves the rank of every matrix in Mm>n and whose
inverse exists and has this property (coherence invariance). (In [3] F
is replaced by a division ring, and T is shown to be semi-linear by
appealing to the fundamental theorem of projective geometry.) In [4]
we obtained the structure of T when m = n, T is linear and T preserves
rank 1, 2 and n. Specifically, there exist non-singular matrices M and
N such that T(A) - MAN for all A e Mnn, or T(A) = MA'N for all A,
where A! designates the transpose of A. Frobenius (cf. [1], p. 249)
obtained this result when T is a a linear map which preserves the
determinant of every A. In [5] it was shown that this result can be
obtained by requiring only that T be linear and preserve rank n. In
the present paper we show that rank 1 suffices (Theorem 1), or rank 2
with the side condition that T maps no matrix of rank 4 or less into
0 (Theorem 2). Thus our hypothesis will be that T is linear and
T(R1)

(^Rι. We remark that T may be singular and still its kernel
may have a zero intersection with Rλ\ e.g., take U = F and

2. Rank one preservers* Throughout this section T will be a linear
transformation (l.t.) of U® V into U®V such that T(R,) c Rλ. Here

Received March 2, 1959. The work of the first author was sponsored by U.S. National
Science Foundation Grant G. 5416.
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U and V are m- and ^-dimensional vector spaces over F. Let elf •••,
em aud fx •••,/„ be fixed bases for U and V, and set

( 1 ) Γ ίβ iΘΛ) = ^ 0 ^ , i = 1, « ,ra; i = 1, •••,%.

Note that no u4 J or vtJ can be zero. We shall show, in case m Φ n that
there exist vectors ut and v3 such that T(ei(g)fj) = ui(ξ§vJ, and hence
that the l.t. T is a tensor product of transformations on U and V
separately. In case m = n it will be shown that a slight modification
of T is a tensor product.

Denote by L(xlf •••, #{) the subspace spanned by the vectors ^ , •••,
xtf and let />(#!, •••, xt) be the dimension of L(x19 •••, # t).

LEMMA 1. Lei ^ , •• ,xί., wx, •• ,w s be vectors in U, and let y19

•••, yr, Zi, ••*, zs be vectors in V. Let

( 2 ) Σ ( 3 4 ® l / ι ) = Σ K ® 3 , ) .

2/ />(Xi, , xr) — r, then yt e Lfe, , z8), i = 1, , r αm£ similarly
if PiVu * ,yr) = r, then xt e L(^, , ws), i = 1, , r.

Proof. Suppose that (̂a?̂  , xr) — r. Let Θ be a linear functional
on C/ such that 0(0̂ ) = 1, ^(xj = 0, ί Φ 1, and let α be an arbitrary
linear functional on V. For x e U, y e V, define

( 3 ) g(x, y) = θ(x)a(y) .

Applying (2) to g, we get

d = Σ 0(Wj)a(Zj) = a
ί l

where each 0 ( ^ ) is a scalar. Since a is arbitrary, ^ , and similarly
2/2» •••> 2/r> a r e contained in L(^, •••, «s). The second part of the lemma
is proved in the same way.

LEMMA 2. If T(Rj) c Rlf and T satisfies (1), then for i = 1, •••,

m, either

( 4 ) P ^ , . . . , u ί n ) = n

or

( 5 ) />(wtl, , uin) = 1 αncί /)(?;,!, . , vln) = w .

Similarly, for j = 1, •••, w, either

(6 ) jθ(wu, , um ;) = m and ^(v^, , vTÔ ) = 1 ,

or
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( 7 ) (uιjy , umJ) = 1 and (vlj9 , vmj) = m .

Proof. Suppose that uicύ and uiβ are independent. Then

T(et <g) (/* + /β)) - (w4Λ <g) v<Λ) + (utβ <g) v^)

must be a tensor product w (g) v. By Lemma 1, ^ία5, vtβ e L(v). Since
all vi3 Φ 0, L(t;ίfl>) = L(viβ). For y Φ a, β, L(viy) = L(t; ίβ), since wίy must
be independent of at least one of uiΰ6, uiβ. We have shown that if
ρ(uίlf , uin) > 2, then p ^ , . . . , vin) = 1.

Suppose next that ^ ^ ^ •••, %4w) = 1, viz., uloύ — cΛuilf cα Φ 0, α =
1, •• , w. If

i, , vin) <n y let Σ α* î« = 0

be a non-trivial dependence relation. Then

= Σ (c«Un (g) - ^ - O = tt41 (8) ( Σ αΛv,β) = 0 ,
l V / \ /

which is impossible by the nature of T. Hence p(uilf •• ,uin) = 1 im-
plies ^0*!, •••, vin) = n.

It follows by a similar argument that if p(vil9 * ,vin) = 1, then
jθ(t641, •••, u t n) = n. Hence either (4) or (5) must hold. The second part
of the lemma is proved similarly.

We remark that if m < n (or n < m), then (4) (or (7)) cannot hold.

LEMMA 3. Either (4) and (7) hold for all ί,j; or (5) and (6) hold

for all i, j .

Proof. We show first that either (4) or (5) holds uniformly in i.
Suppose that for some i and k, 1 < i < k < m, p(utl, , uin) — n while
l°(w*i> •••, ̂ n) = 1- Then for some a, 1 < a < n, p{uicύy ukoc) — 2. For
β φ a consider

= c(uίa (g) vtΛ) + (ttij3 (8) ι;4β) + c(^fcα 0 vfcαJ) + (^fcβ (g) vfcj3) ,

where c is an arbitrary scalar.
By hypothesis and Lemma 2, vioύ — avkai and vιβ = 6^^ = δ^fcαί for

suitable non-zero scalars a and 6, while p(vka, vkβ) — 2. Thus η = (αc^ ίΛ +
6^ ίβ + c f̂cα5) (g) ̂ fcα> + (ukβ (g) vΛ/3), and by Lemma 1, ρ(acuia + buiβ +
CMfcαs* 'Mfcjs) = 1 for all scalars c. Since p{nk0ClJ ukβ) = 1, this implies that
P(cuίcύ + u ί β, ukβ) = 1 for all c. This is impossible, since p(uia, uίβ) — 2.
Thus either (4) is true for all i, or (5) is true for all i. A similar
argument applies to (6) and (7).
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If (4) and (6) hold for all i and j , then there exist non-zero scalars
ctJ such that vtJ — ctjvU9 i = 1, •••, m, j = 1. •••, n. For aj9 b scalars,
consider

K m \ "Ί / m w

Σ «ιβ,) <8) (/i - δ/2) = ( Σ «Ai^ii - δ Σ α
Let ^ , * ,2 m and wlf •• ,wm be the m-column vectors which are re-
spectively the representations of un, , uml and u129 , wm2 with respect
to the basis e19 * ,e m . Let C be the m-square matrix whose columns
are cnzlf , cTOi£m and let W be the m-square matrix whose columns
are cnw19 , cm2wm. Then with respect to the basis eί9 , em the vector
Σί^iα«cίi^ίi ~ δ Σί^i<χicί2/^i2 has the representation (C — bW)a where a is

the column m-tuple (a19 , αTO). Now C and W are non-singular since
fKMn> #» u^i) = i°(̂ i2> % ̂ 2) = w, so choose b to be an eigenvalue
of W~XC and choose a to be the corresponding eigenvector. Then
(C — bW)a = 0 and hence there exist scalars a19 * ,am not all 0 and 6
such that

a contradiction since T{R^) £ i2lβ

Hence (4) and (6) cannot hold for all i and j . Similarly both (5)
and (7) cannot hold for all i and j . This completes the proof of the
lemma.

In view of the remark preceding this lemma, (5) and (6) must hold
when m Φ n.

THEOREM 1. Let U and V be m- and n-dimensional vector spaces
respectively. Let T be a linear transformation on Z7(x) V which maps
elements of rank one into elements of rank one. Let Tx be the l.t. of
V®U into Z7® V which maps y 0 x onto x(g)y. If m — n9 let φ be
any non-singular l.t. of U onto V. Then if m Φ n, there exist non-
singular l.t.'s A and B on U and V, respectively, such that T —
A 0 B. If m — n, there exist non-singular A and B such that either
' T = 4 ® ΰ or T = Tx{φA 0 φ^B).

Proof. By (1) and Lemma 3, T(et 0/j) = ui3 0 vij9 i = 1, , m,
j = 1, ••-, w, where either (5) and (6) hold or (4) and (7) hold. Suppose
first that the former is the case; in particular, p(ully •• ,%<n) = 1 for
i — 1, , m and p(vυ, , vwi) = 1 for j = 1, , w. Then there exist
non-zero scalars sijf ttJ such that w4i = s^u^ and v^ = tijvυ. Thus

( 8 ) Γ(

where u% — uil9 v} = ^ , and c^ = s t/^. For i — 2, •••, n9
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must be a direct product a? (g) w. By (6) and Lemma 1, Σ?=AΛ =

^ί ΣJ=ICIJ^J f° r some constant dt. By (5), ctJ = d^. Hence

(9) T(ei®fJ) = xi®yj,

where xt — d^ and y3 — cυVj. Since the {a?J and {I/J} are each linearly
independent sets, there non-singular linear transformations A and i?
such that xt = Aet and y3 = £/,. Then Γ = A (g) JB.

When m — n, (4) and (7) may hold in particular,

P(vu, , ̂ ι») = 1 and ρ(u1Jf , u n j) = 1 for i,,/ = 1, , n.

As in the preceding case, there exist linearly independent sets x19 •••,

xw and 2/1, * ,Vn such that

(10) 7 ( ^ 0 / , ) = ^ ® ! / , .

There exist non-singular transformations A and B oί U and V, re-
spectively, such that Aet — φ'^yt and JB/̂  = φxjt ί, j = 1, •• ,n. Thus
ΓΓ'Γίe* ® Λ) - ^Ae4 (g) ^~15/,. Q.E.D.

In matrix language we have the following.

COROLLARY. Let T be a l.t. on the space Mnn of n-square matrices.
If the set of rank one matrices is invariant under T, then there exist
non-singular matrices A and B such that either T(X) = AXB for all
X e Mnn or T(X) = AX'B for all X e Mnn.

3 Rank two preservers. In this section T will be a l.t. of Z7£ξ) V
such that T(R2) c R2. We shall show that under certain conditions
T(RX) c Rlm

LEMMA 4. If W is a subspace of U(&V such that, for some integer

r, 1 < r < min (m, n),

(11) dim Ŵ  > mn — r max (m, n) + 1 ,

Proof. Suppose that m = max (m,n). The products β« (g)/,, i = 1,
•••, m, i = 1, •••, r, are linearly independent and span a space T^ of
dimension mr. Furthermore, W1 c U ϊ - A T h e n dim(W1ΠT7) =
dim TΓi + dim PF - dim (W1 U TF) > mr + (mw - rm + 1) - mn = 1. The
result follows, since WΊ n W c U?i=i^j Π W.

LEMMA 5. // Γ(Λa) c Γ(JKa) c i?2, ίfee^ Γ ^ ) c #> u
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Proof. Suppose xx^yx e Rlt and choose x2(&y2 e R1 such that
p(xlf x2) = ρ(ylf y2) = 2. Then a = s T ^ (g) j/J + ίΓ(α;2 (g) t/2) e i?2 for all
non-zero scalars s, t. Now suppose that T(xx (g) yx) = Σ J - I ^ J ® v j , where
p(ulf •••,%,,) = (̂Vi, , vp) = p, and that T(x2 (g) ?/2) = Σ?-i^ ® w,, where
pfe, , 3Q) = /o(Wi, , wq) — g. Let %p+1, , um be a completion of
î> * » ̂ p to a basis for J7. It follows that

for some

Since a e

vectors h3 e V, j

P

R2, it follows by

p{svι + thu •

= 1,...

+ Σ%

, + th}) •

Lemma

>,svp + t

, m. Then

(g) thj + Σ

1 that

ι'K) < 2 fc

The vectors s^ + tΛlf , svp + thp are linearly independent when s = 1
and ί = 0. By continuity, they remain independent for small values of
t. Hence p < 2 and T{x1^y1) e Rx U i?2.

THEOREM 2. // T(R2) c i?2 αticί 0

Proof. Suppose xx (g) yx 6 ^ and 7(0?! ® 2/0 0 Λi By Lemma 5,
T(x1 (8) ί/0 e # 2 , since 0 0 T{R,). Thus Tί^! (g) 2/0 = (u, ® ̂  + (^ (g) v2),
where jO^, u2) = io('?;1, v2) = 2. Let x1? , xm and 7/!, , yn be bases
for U and F respectively. Then for st Φ 0

(12) sT(x1 ® 2/x) + ίΓ(α?4 ® ̂ ) e R,U R2

for ΐ = 1, , m, j = 1, , n.

At this point it seems simpler to regard the images T{xt (g) y3) as ele-
ments of Mmn. It is clear that there is no loss in generality in taking

Let i and j be fixed for this discussion, and let A = T(Xi (g) ̂ ) .
Let alf •• , α n be the m-dimensional vectors which are the columns of
A, and let εft be the unit vector with 1 in the &th position. It follows
from (12) that

(13) p(sε1 + taly se2 + ta2, taZJ , tan) = 2

for si =̂  0. The Grassmann products

(14) (seι + taj Λ (se2 + ία2) Λ ta* , 3 < fc < w
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must be zero for st Φ 0. In the expansion of (14) the coefficient of
s2t is 0; that is, ε1 Λ ε2 Λ α* — 0.

Thus the matrix A has non-zero entries only in the first two rows
and columns. It follows immediately that the dimension of the range
of T < 2(m + n) — 4. Hence the dimension of the kernel of T > mn —
2(m + n) + 4 > mn — 4 max (m, n) + 1.

By Lemma 4, there exists an element of Uί=i whose image is zero.
This contradicts the hypothesis; hence T{R^) c Rlm

We see then that the form of T satisfying Theorem 2 is given in
the conclusions of Theorem 1.

REMARK. We feel that the hypothesis 0 $ T(\J*jmlR3) of Theorem
2 should not be necessary, but we have not been able to prove the
theorem without it. More generally, we conjecture that T(Rk) c Rk

for some fixed fc, 1 < k < n, should suffice to prove that T is essentially
a tensor product.
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THE NILPOTENT PART OF A SPECTRAL OPERATOR

CHARLES A. MCCARTHY

l Introduction* Throughout this paper, 36 is a Banach space, T
a bounded spectral operator on 96 with scalar part S, nilpotent part N,
and resolution of the identity E(σ) for σ a Borel set in the complex
plane. M is the bound for the norms of the E(σ); \E(σ)\ < M for all
Borel sets σ. The resolvent function for T, (λ — T)~\ is denoted by
R(X, T). The operator R(X, T)E(σ) has an unique analytic extension
from the resolvent set of T to the complement of σ, and on the sub-
space E(σ)% it is equal to the operator R(X, Tσ) where Tσ is the re-
striction of T to E{σ)H. For material on spectral operators, we refer
to the papers on N. Dunford [1], [2], χσ(ξ) is the characteristic function
of the Borel set σ: χσ{ξ) = 1 if ξ e σ, χσ(ξ) = 0 if ξ 0 σ. For p a non-
negative real number, μp is Hausdorff p-dimensional measure [3, pp. 102
#.]; μ2 is Lebesgue planar measure multiplied by π/4, and μλ restricted
to an arc is majorized by arc length.

We assume throughout that there is an integer m for which the
resolvent function for T satisfies the mth order rate of growth condition

\R(\, T)E(σ)\ <K* d(\,σ)-m,X $ σ, \X\ < \ T\ + ' 1 ,

where d(X, σ) is the distance from λ to a and K is a constant inde-
pendent of σ. If X is Hubert space, it is known that this growth
condition implies Nm = 0 [1, p. 337]. In an arbitrary Banach space,
this is no longer true; the best that can be done is Nm+2 = 0. If ϊ is
weakly complete, iVm+1 — 0; or if a is a set of μ2 measure zero, Nm+1E(σ) = 0.
If a lies in an arc and either X is weakly complete or a has μx measure
zero, then NmE(σ) = 0. Examples show that we cannot obtain lower
indices of nilpotency in general.

2 The fundamental lemma and some easy consequences. If f(ξ) is

a bounded, scalar valued Borel function, the operator \ f(ξ)E(dξ) exists

as a bounded operator with norm at most 4Af sup ε | /( | ) | [1, p. 341], so
that uniform convergence of a sequence of bounded Borel functions fn{ξ)
implies convergence in the uniform operator topology of the operators
\ fn(t)E(dξ). Thus for a given bounded Borel function f(ξ) and a given

positive number η, there exist a finite number of disjoint Borel sets σi

and points ξt e σt such that

Received February 5, 1959. This paper is a portion of a doctoral dissertation presented
to Yale University, written under the direction of Professor E. Hille, while the author
was an NSF fellow. Particular thanks are due to W. G. Bade who read the manuscript
and discovered an error in the author's original proof of Theorem 3.1.
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Similiarly if An are a finite number of bounded operators and fn(ξ) are
bounded Borel functions, for any positive number η, there exist a finite
number of disjoint Borel sets σi and points ξt e at such that

Anfn(ξ)E(dξ)-ΣiΣnAnfn(

in particular, for an integer k and a positive number η, there exist
a finite number of disjoint Borel sets σi and points ξt e σ% such that

(T - ξfE(dξ) - Σi(T - ξtY-

LEMMA 2.1. ΓΛerβ ecmί constants Mk such that | NkE(σ) \ < Mte e
 fc+1~m

/or cm?/ choice of ε, 0 < ε < 1, and Borel set σ of diameter no greater
than ε.

Proof. Pick ε, 0 < ε < 1, and let σ be any Borel set of diameter
no greater than ε. We have [1, p, 338]

For any positive number η, there is a decomposition of σ into a finite
number of disjoint Borel sets σt c σ, and points ξ% e σ4 such that

\ (T - ξfE{dξ) - Σi (Γ - &)*#(**) I < η .

Since σ is of diameter at most ε, there is a circle Γ of diameter 3ε
which encloses σ and for which |γ — ξ\ > e for all γ 6 Γ and ξ e σ.
Then

(Γ - ξtTEiσt) = - L . f (γ - f )*β(7, T)E(σt)dy ,
2πι lr

so that

Σ i (Γ - ξi)*E(<*i) = -^7- ί Λ(7, Γ)Σι(7 - ξt)
kE(σt)dy ,

which in norm in no greater than

(*) 1 . sup I Λ(7> Γ)j&(α) I sup I Σ i (7 - ξt)*E(σt) \ length of Γ .
2π yer yer

The mth order rate of growth condition gives
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sup I R(y, T)E(σ) \ < Ke~m .
yer

F o r a n y γ e Γ ,

| Σ i ( 7 - ξi)*E(σt)\ < 4 i k f . m a x | γ - ξt\
k < 4M(2ε) f c ,

i

so that (*) is no greater than

— K e ~ m 4M(2ef 6πε = Mkε
k+1~m ,

2π

where Mk = 3 2k+2KM, and is independent of η, ε, σ, and the manner
in which σ is decomposed. Thus

\NkE(σ)\ < Mke
k+1~m + 7}

for every positive η, which proves the lemma.

THEOREM 2.2. Let σ be a Borel set whose Hausdorff p-measure is
zero for a given p. Then NkE(σ) — 0 where k is an integer and
k > p + m — 1.

Proof. Since σ has p-measure zero, for every ε > 0, there is a cover-
ing of σ by disjoint sets G% of diameter et such that Σ ie? < ε By
Lemma 2.1 we have

\N*E(σ)\ < ΣilN'Eiσ^KM.Σi^1-™

Since ε may be chosen arbitrarily small, NkE(σ) = 0.

COROLLARY 2.3. Nm+2 = 0.

Proo/. Taking o to be the spectrum of T and p = 3, Nm+2E(σ(T)) = 0;
but E(σ(T)) is the identity mapping on £.

COROLLARY 2.4. //* σ λαs planar measure zero, then Nm+1E(σ) = 0.

COROLLARY 2.5. //* σ Λαs μ^measure zero, then NmE(σ) = 0.

3 The case of weakly complete X. Let σ be a Borel set in the
plane. For any ε > 0, we can cover σ with disjoint Borel sets. o% of
diameter εt9 εt < 1, such that

Σ. ε\ < μlσ) +

Thus by Lemma 2.1,
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< Mm+I(μ2(σ) + ε) .

Since ε and σ are arbitrary, we have for all Borel sets σ,

As a consequence, all the scalar measures x*Nm+1E( )x = [(N*)m+1E'¥( )x¥]x,
x e 36, x* e 36*, are absolutely continuous with respect to μ2, and have
derivative bounded by ΛfTO+1|fic*| \x\ .

Suppose that /(£) = Yjζ=x(xvχσ (ξ) is a simple Borel function; ap are
scalar constants and σp are disjoint Borel sets. We have

is

Thus if fn{ξ) are simple Borel functions converging in Lx{μ2) to f(ξ), the

operators I fn(ξ)(N*)m+1E*(dξ) converge in the uniform operator topology

to an operator which we denote by \ f(ξ)(N*)m+1E*(dξ) this limit opera-

tor has norm bounded by Mm\\

THEOREM 3.1. // X is weakly complete, then Nm+1 = 0.

Proof. Assume that Nm+1 Φ 0, so that also (iV*)m+1 Φ 0. We will
first obtain a bicontinuous map of an infinite dimensional Lx space into
36*. An analogous map into 36 would show then that 36 cannot be re-
flexive, since the image in 36 of this Lx space would be a closed non-
reflexive subspace of 36; however, the map into 36* is needed for the
slightly more general case of 36 weakly complete.

Let the Borel set σ, x0 e 36, and xt e 36* be chosen so that
m+1jB*(σ)^o*]^o Φ 0, and let the derivative of the measure
7 n + 1£ r*( )̂ o*]̂ o be denoted by g{ξ). We can then find a subset τ of

σ and a constant a > 0 such that μ2(τ) > 0 and | g(ξ) | > a on τ.
Define the map Φ of L^τ, μ2) into X* by

Φ(f) ==

Φ is a linear map with bound Λfw+1|aj*|. Now take

x =
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The norm of x is no greater than AM α~1 | # 0 | . But we have

= ι/u,
which shows that

\Φ(f)\ >\f\Lι a-(4M\x0\)-\

so that Φ is one-to-one and has a continuous inverse.
Now let Ψ be the map of L^τ, μ2) into ϊ :

?Γ is a continuous map with bound no greater than AM or11 x0 | we will
show that ?Γ is one-to-one and bicontinuous. We have

so that

sup \Φ(fW(h)\ = sup lί
l/lr <1 I/I 7- <1 J

Z l Z l

But since Φ is bounded,

sup |^(/)^(fe)| < sup \x*Ψ(h)\
\f\T < i *ei*

= \Φ\\Ψ(h)\ ,

so that

\h\Loo<\Φ\\Ψ(h)\;

thus ίP is one-to-one and bicontinuous, The range 2) of Ψ in ϊ is then
a closed non weakly complete subspace of 36. But this is impossible,
because every closed subspace of a weakly complete Banach space is
again weakly complete; the proof of this last remark is as follows.

Let ΐ be a weakly complete Banach space, 2) a closed subspace.
Let yn be a weakly Cauchy sequence in 3), so that y*yn is a Cauchy
sequence of numbers for every y* in Γ*. Since any x* in X*, when
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restricted to 2), is an element of 2)*, x*yn is a Cauchy sequence of num-
bers for every x* in X*. Since X is weakly complete, there is an x0 in
X such that lim^ββίc*^ = x*xQ for every x* in X*; and since 2) is strongly
closed in X, it is weakly closed, so that x0 must lie in 2). Finally since
every y* in 2)* is, by the Hahn-Banach theorem, the restriction of an
x* in X*, lim j/*j/n = 2/*#0 for every 2/* in 2)*, so that 2) is weakly complete.

THEOREM 3.2. If X is weakly complete, then NmE(σ) = 0 for every
set σ of finite fa-measure.

Proof. Follow exactly the same discussion above, replacing the
number m + 1 by m and the measure μ2 by μλ.

Note that Theorems 3.1 and 3.2 also hold if X is assume to be
separable instead of weakly complete, for the image of the L^ space
in X would be a nonseparable closed subspace of X; but every closed
subspace of a separable space is again separable.

4 Examples* In the following examples we will need two com-
putational lemmas.

LEMMA 4.1. For each real number p > 1 and Borel set a,

( |λ - ξ\~CP+2)μ2(dξ) < 8d(λ, σ)~*f for all λ 0 a .
J *

Proof.

7Γ J 0

< Bd(X, σ)-p .

LEMMA 4.2. For each real number p > 1 αt̂ cί Borel subset σ of
the real line,

\ \\-ξ\

where μx is Lebesgue measure along the line, and λ is any complex
number, λ 0 σ.

Proof. Let λ = a + iβ, a, β real. Then either, (i), d(a, σ) > d(X, σ)/2
or, (ii) I β I > d(X, σ)/2. In case (i) we have
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d(λ,σ)/2

< 2p+1p-1d(λ, σ)~p .

In case (ii) we have

f \\-ξ\-[^μi{dξ)< f" \ξ-iβ\-wdξ
J σ J -oo

< \°° ( f + /32H<p + 1 )d£

< 2ί)+1ττd(λ, σ)~* .

EXAMPLE 4.3. Let Σ be a disc in the plane with /vmeasure 1.
Let

x = L4Σ) 0 L2(Σ) φ 0 L2(£) 0 Lx(^) ,

where m copies of ^( l 1 ) are taken. Let T be the operator S + N where
S and N are defined as

) Θ Λ(f) Φ Θ βr»(f> Φ πm

= \Sf(S) θ fΛ(f) φ φ fflrw(f) θ fλtf)],

) 0 Λ(f) 0 0 gJS) 0 λ(fH

Since Σ has measure 1, any function in Lr is in Ls for all s < r, and
the Ls norm is no greater than the Lr norm; thus N is a bounded
operator with norm 1. Also JV is a nilpotent for which Nm+1 Φ 0. The
operator T is a spectral operator with resolution of the identity

E(σ)[f(ξ) 0 gx(ξ) φ 0 flfj?) 0 fc(£)]

= [/(f)χ,(l) θ gmxΛξ) 0 θ ff (f)

The resolvent function is

R(X, T)E{σ)[f(ξ) 0 Qί(ξ) φ φ Uf) 0 ft(f)]

_ Γ M)Uξ) φ / gχ(g)^(f) ,
L Λ — ζ \ Λ — ̂  \K — ζ)

(gm(ξ)x

V x -

\

)xΛξ) • . . . • g.(g)χ g(f) •
(λ ξ)m

x - ξ (λ - ξ)m (x - | )

.I, g»(f)Xσ(g) • . . . • j ^ D ^ ί l L 4 -
( λ | ) (λ | ) m + 1X-ξ (λ-|) (λ - | ) m + 1 (λ - £)m

All the terms are clearly of mth order rate of growth except possibly
for
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(a)
(λ - ξ)m+1 , (b)

(λ ~
, and (c)

(X -

For (a) we have

<j/k{J/-
l/2

for (b) we have

J Jλ -

and for (c) we have
1/2

Jλ -

Thus each term of the resolvent, and hence the resolvent itself satis-
fies the mth order rate of growth condition; this shows that Corollary
2.3 cannot be improved.

EXAMPLE 4.4. Let Σ be as in the previous example and let

X = Lr(Σ) e θ Lr(Σ) 0 LS(Σ)

where m copies of Lr are taken, r and s are to satisfy 1 < s < r < oo
and rs < 2(r — s). Let T — S + N, where S and N are defined in
essentially the same way as in the previous example. The resolvent
function is given by

i(ί)θ Θ/-(l)θfl(l

B θ ( J

-ξf

.. + fM)xM)\
(λ - ξ)m I

f,(ξ)y (ξ) \Ί

Each of the terms is clearly of mth order rate of growth except possibly
for the Ls norm of /ι(|)(λ - g)"<ro+1)χ,r(|), and for this we have

< {j JΛ(f)l'A(cif)pr{J|λ

< I /i I I r 8 ^ d(X, <r)—O-
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Thus the resolvent satisfies the mth order rate of growth condition, and
Nm = 0. Since X is reflexive, this shows that Theorem 3.1 cannot be
improved. Note that 36 is also separable.

EXAMPLE 4.5. Let Σ be the interval [0,1] endowed with /^-measure,
and let

* = L^Σ) 0 0 L^Σ) 0 LX(Σ)

where m copies of !/«, are taken. Let T = S + N where S and N are
defined in essentially the same way as in the previous examples. The
resolvent function is given by

R(\, τ)E(σ)[m) ω θ/.(i) Θ ai
_ r

LL x -
i- / » ( g ) x . ( g ) I . . . . ,.

(X ξf — | ) m + 1 / Ji I ,
X — ξ (X — ξf (X — | )

Each of the terms is clearly of mth order rate of growth except for
the Lλ norm of /ΛlXλ - f)- ( m + 1 )χσ(£), and for this we have

<\f\Loo\ | λ -
J σ

Thus we have an example of an operator with spectrum in a rectifiable
arc which satisfies the mth order rate of growth condition, but for which
Nm φ 0.
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ON A CRITERION FOR THE WEAKNESS OF AN

IDEAL BOUNDARY COMPONENT

KόTARO OlKAWA

1. Exhaustion, Let F be an open Riemann surface. An exhaustion
{Fn} of F is an increasing (i.e., Fn c Fn+1) sequence of subregions with
compact closures such that \Jn=iFn = F. We assume that dFn consists
of a finite number of closed analytic curves and that each component
of F — Fn is noncompact. This is the most common definition used in
the theory of open Riemann surfaces. Sometimes, however, we shall
add the restriction that each component of dFn is a dividing cycle if
this is the case we shall call the exhaustion canonical.

2. Weak boundary component. Let 7 be an ideal boundary com-

ponent of F, and let {Fn} be a canonical exhaustion of F. Then there

exists a component yn of dFn which separates γ from Fn. Let n0 be a

fixed number and consider the component Gnoί Fn—FnQ (n>n0) such that

yn c 8Gn. There exists a harmonic function sn(p) on Gn which satisfies

the following conditions :

( i ) sn = 0 on ynQ and f *dsn = 2τr, (γWo = dFnQ n dGn)

(ii) sn = \ogrn = const, on γw,
(iii) sw = const, on each component βnv of dGn — 7W — 7Wo and

( *dsn = 0.

The condition lim^*, rw = <χ> depends neither on nQ nor on the ex-
haustion. If it is satisfied, 7 is said to be weak.

Weak boundary components were introduced for plane regions by
Grδtzch [1] in connection with the so-called Kreisnormierungsproblem.
He called them vollkommen punktformig. They were generalized for
open Riemann surfaces by Sario [6] and discussed also by Savage [7]
and Jurchescu [2]. The above definition was given by Jurchescu [2].

A noncompact subregion N whose relative boundary dN consists of a
finite number of closed analytic curves is called a neighborhood 0/ 7 if 7 is
an ideal boundary component of N as well. Let {c} be the family of
all cycles c (i.e., unions of finite numbers of closed curves) which are in
N and separate 7 from dN. Jurchescu [2] showed that λ{c} = 0 if and
only if 7 is weak, where X{c} is the extremal length of the family {c}.

Received October 22, 1958. This paper was prepared under Contract No. DA-04-495-
ORD-722, OOR Project No. 1517 between the University of California, Los Angeles and the
Office of Ordnance Research, U. S. Army.
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3, Savage's criterion. Let {Fn} be an arbitrary exhaustion. Let
En be the smallest union of components of Fn — Fn-λ such that yn_x —
dEn Π dFn-! is a cycle which separates 7 from Fn-X (n — 2,3, •••).
Evidently yn c dEn. If {Fn} is canonical, En is connected and 7W is a
closed analytic curve.

There exists a harmonic function un(p) on 2ίn such that

(i) un = 0 on 7w-i and I *dww = 2π,
•K-i

(ii) ^w = \ogμn = const, on 0JS7Λ - 7w-i = θί?» Π dFn.
The quantity log μn is called the modulus of En (cf. Sario [4,5], who
called μn the modulus). It is expressed in terms of extremal length as
follows:

l0g/4 = i J r '
where {c}n is the family of cycles in En homologous to 7n-i

Since Σ°° 1/Mc}w ^ 1/̂ {C}> we get the following criterion :

THEOREM 1 (Savage [7]). If there exists an exhaustion such that
ΠΓ=2ft = °°, then 7 is weak.

The purpose of the present note is to discuss the converse of this
theorem.

4 Jurchescu's criterion. Suppose the exhaustion {Fn} is canonical.
There exists a harmonic function Un(p) on En such that

(i) Un = 0 on Yn-i and I *dUn = 2π,
K-i

(ii) Z7W = log Mn — const, on 7 n,
(iii) Un = const, on each component /5WV of 0 ^ — yn — 7W^X and

Jurchesch's paper [2] contains implicitly the following result:

THEOREM 2 (Jurchescu). A boundary component 7 is weak if and
only if there exists a canonical exhaustion such that Π n ^ ΐ = °°.

Proof. Sufficiency: Let {c'}n be the family of cycles in En sepa-
rating yn from 7n_1# It is not difficult to see that log Mn = 2π /λ{c'}w.
Since Σ°°l/λ{c'}w ^ l/λ{c}, we conclude that Σ~=2 log Mn = co implies
λ{c} = 0.

Necessity : Consider a canonical exhaustion {ί^}. The desired ex-
haustion {Fn} is obtained by taking its subsequence as follows :

Fτ = F?. TO define F2, consider the quantity rn introduced in No. 2
with respect to F«n - F\ (n = 2, 3, .). Take ^2 so large that rni ^ 2,
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and put F2 = F°2. Evidently M2 = rn2. Similarly, F3 = F£3 is defined

by considering F% — Fl? (n — n2 + 1, n2 + 2, •) and by taking nz > n2

so large that τ%z }> 2 where τni is the quantity rn introduced in No. 2

with respect to F% — FΪ'. We have M3 = rw . On continuing this process,

we obtain a canonical exhaustion such that Σn=2logΛfn^ Σ~=2log2=oo.

The idea of this proof was first used by Noshiro [3].

5* The converse of Savage's criterion. We shall now show that
Savage's criterion in Theorem 1 is also necessary.

THEOREM 3. If j is weak, then there exists an exhaustion such

that ΠίΓ-2/Aϊ — °° It is not necessarily canonical.

Proof. By Theorem 2 there exists a canonical exhaustion {F°} such
that Π«=2 Mn = oo. From this we construct a canonical exhaustion {F%}
as follows :

Ff = Fl To construct F*, let ΘE°2 - γ? - γj = /3n U fta U U /9Mj

be the decomposition into components, and let HI be the component of
Fl - F\ such that dH\ Π F\ = β2V (v = 1, 2, , fca). F 2* is the union of
Ft9E

0

2\JΊi9 all the other components of F°2 - F°u and \jlUHl In
this way, Ft is defined as the union of F%-lf E°nUjo

n_u every com-
ponent of F°m+1 - F°m (m ̂  w) which is adjacent to F*_ l f and \jl=iHl+1.
By construction, £7* = E°n U U ϊ ϊ i ^ + i

The desired exhaustion {Fn} is obtained by taking a refinement of
{ί1*} as follows : Consider E°n and the function C/̂  for the exhaustion
{F°n}. Let dE°n - 7°, - 7i_x = βnι U /5W2 U ••• U /3n]fcn be the decomposi-
tion into components and let U°n = αv on βnv (v — 1, 2, , few). We may
assume, without loss of generality, that the αv 's are different by pairs.
We suppose that

0 = α0 < a1 < < akn < αfc^+1 = log Af°.

Take a[ (αv_x < α' < αv v = 1, 2, , kn9 αίw + 1 Ξ log M°) and αj' (αv < a" <
α v + 1 v = 1, , fcn, α" = 0) so close to αv that

( 1 ) * Σ « - αf.0 ̂  log M: - 2~n .
V = l

Consider the sets

Di={p; a'L, < Uliv) < < } , v = 1, 2, . . . , kn + 1, (αί'w+1 = log M°w)

^ v - b ; < - i < UlivXal), y = l ,2 , ..,fen + l .

The modulus log μ'<» of D;v with respect to βv = {p ?70

n(p) = αJ'.J and
QZ)̂  — β' is equal to αί — c d , since the function Z7i(p) — α"-i plays the
role of ujjή introduced in No. 3. Let log μ ( v ) be the modulus of Ώ\
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with respect to β" and dDl - β\ Since μ^ ^ μ'^\ we obtain, by (1),

(2)

We have decomposed E°n into kn + 1 subsets Dl. E% — E°n consists
of components Hl+1 such that βnv = dHl+1 Π ΘE°n(v = 1, 2, ••-, fcj. By
decomposing Jϊ^+ 1 into &w — v + 1 slices, we obtain a decomposition of
Έ* into &w + 1 parts. It is possible to divide each of the other com-
ponents of Ft — Fn-i into kn + 1 pieces so that we get an exhaustion
{Fn} which is a refinement of {F}}. Dl plays the role of En with respect
to this exhaustion. Therefore, by (2), we get

6, Remark* On a ' ' schlichtartig" surface, every exhaustion is
canonical. If F is an arbitrary Riemann surface, the question arises
whether or not Savage's criterion is still necessary under the restriction
that {Fn} is canonical. The answer is given by

THEOREM 4. There exist a γ of an F which is weak and such that
Πw=2 μn < °° for every canonical exhaustion.

Construction oί F: In the plane | z \ < oo, consider the closed
intervals

Ik: [2*2,2fc2 + l | (fc = 2,3,...)

on the positive real axis, and the circular arcs

α v : \z\ = v, | a rgz | ^-£•

(v = 2fc2 + 2, 2&2 + 3, . . . ,2< f c + 1 > 2 - l;fc = 2,3, •••) .

Take two replicas of the slit plane (| z \ < oo) — U^= 2 /fc and connect them
crosswise across Ik (k = 2, 3, * •). From the resulting surface, delete all
the α v ' s on both sheets. This is a Riemann surface F of infinite genus.

F has an ideal boundary component γ over z — oo, which is evidently
weak.

Let {FJ be an arbitrary canonical exhaustion. Consider En corre-
sponding to γ (No. 3). The interval Ik determines a closed analytic curve
Cfc on F. Since γw_! = 92?w Π -FVi is a dividing cycle, the intersection
number γw-i x C^ vanishes and, therefore, yn^ Π Ck consists of an even
number of points whenever it is not void.* Take two consecutive points

* Added in proof. We should have mentioned the case where γn_1 tangents Cfc. The
following discussion covers this case if the number of the points of γ w _ 1 Π^ f c is counted
with the multiplicity of tangency and case p=q is not excluded.
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p and q in ηn-λ Π Ck. There are two possibilities according as the arc
pq c γw_! is homotopic to pq c Ck or not. If the latter case happens
for at least one pair of p and q, we shall say that 7 ^ intersects Ck

properly.

Since 7n_x is a closed curve separating γ from Fn-U there exists a
number fc such that γw_χ intersects Cfc properly. If there is more than
one k, we take the greatest one and denote it by k(n).

To estimate μn, let {c}n be the family of all cycles in En separating
7n_! from ΘEn — γn_ lβ We have mentioned that log μn — 2π/X{c}n. Let
Ck be a curve for which there are numbers n with k(n) = &. Evidently
these n are finite in number and consecutive. Let nk be the greatest.

I. If k(n) = fc and n < nk then 7 ^ and 7W intersect Ck properly.
Since every c e {c}n separates yn-i from γw, it has a component which
intersects Ck and is not completely contained in the doubly connected
region Δk consisting of all points that lie over {z 2fe2 — 1 < | z \ < 2*2 +
2, | a r g z | < π/2}. Therefore, every c contains a curve in {c'}(fc) which
is the family of all curves in the right half-plane connecting Ik with the
imaginary axis. Consequently

( 3 ) ΣcJo-* \{c}n

II. k(ri) — k and n ~ nk. Consider all the av (v ^ 2fc2 + 2) on the
upper sheet. Let Gn-X be the component of F — Fn-λ such that dGn~1 =
7 ^ . For a sufficiently large v9 av is an ideal boundary component of
Gn-!. Let v(k) be the least v with this property. If v(k) = 2*2 + 2,
then every c e {c}n separates 7 -̂1 from αv(fc) and, therefore, it has a
component intersects either Ck or one of four line segments over
[2fc2 - 1, 2fe2] or [2fc2 + 1, 2fc2 + 2]. When v{k) - 2ι* + 2 for some ϊ > fc, then
7re-i separates «V(Λ)-3 from αvCfc) and every c e {c}w separates 7W_! from
α v α ) , so that c has a component with the above property. If v(k) is
not of the form 2?i + 2, then, for the same reason, every c e {c]n has
a component which intersects the line segment on the upper sheet lying
over \y{k) — 1, v(k)], and is not contained in the simply connected region
on the upper sheet consisting of all points over {z v{k) — 1 < | z \ < v(k),

a r g z | < 7r/2}. In any case, every c e {c}n contains a curve in {c"}(fc)

which is the family of all curves in the right half-plane connecting
\y{k) — 3, v(k)] with the imaginary axis. Therefore,

(4) - J — < 1 .

By (3) and (4), we obtain

( 5 )
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To show the convergence of Σfc=2 l/λ{c'}(fc), we make use of the
transformation z->z\ It is immediately seen that λ{c'}(fc) is equal to
the extremal distance between [- oo, 0] and Γk = [22*2, (2*2 + I)2] with
respect to the region A— {[— °o,0]U/*} c . Since A is conformally
equivalent to Teichmϋller's extremal region {[—1, 0] (J [Pf °°]}c where

(2*' + I)3

we have (Teichmiiller [8])

(P->oo)

/b2

and, therefore, ΣΓ=2 l/λ{c;} ̂  < oo. Similarly ΣΓ=2 l/λ{c"}(fc) <
because i (ft) ^ 2fc2 + 2. We conclude that

Σ log μn < oo .
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AN ALGEBRAIC CRITERION FOR IMMERSION

BARRETT O'NEILL

Let R be the curvature tensor of a simply connected d-dimensional
(d > 4) Riemannian manifold M. T. Y. Thomas [2] has proved that if
the rank of R is not too small, there exist conditions expressed in terms
of polynomials in the coordinates of R which are satisfied if and only if
Mean be immersed in the Euclidean space Rd+\ The proof is existential;
the polynomials are not all given explicitly. Using the notion of Grass-
mann algebra we shall find a single, rather simple condition on R
necessary and sufficient for the existence of an immersion i: M-* M(K)
with second fundamental form of rank at least four, where M(K) is
a complete (d + l)-dimensional Riemannian manifold of constant curva-
ture K. If coordinates are introduced this condition can be expressed
algebraically in terms of polynomial equations and inequalities in the
coordinates of R. The case K — 0 yields an explicit variant of Thomas'
result.

1. A differential criterion for immersion* Following [1] we fix
the following notation for the structural elements associated with a d-
dimensional C°° Riemannian manifold M: F(M), the bundle of frames on
M: Ra, right-multiplication of F(M) by a e O(d), the group of d x d
orthogonal matrices; <p, the 1-form of the Riemannian connection. Thus
φ — (ψij) is a vertical equivariant 1-form on F(M) with values in the
Lie algebra of d x d skew-symmetric matrices. (We assume throughout
that 1 < i, j, k < d.) Let ω = (ωt) be the usual horizontal equivariant
i^-valued 1-form on F(M) defined by ωt(x) = (dπ(x)1fiyi where x is in
the tangent space F(M)f to F(M) at / = (f19 •••,/*) and π is the natural
projection. The curvature form Φ — (Φ^) is by definition Dφ, the hori-
zontal part of dφ. In the case of 1-forms or 1-vectors we write xy,
rather than x Λ y, for the Grassmann product.

THEOREM 1. Let M be a simply connected d-dimensional Riemannian

manifold, M a complete (d + l)-dimensional Riemannian manifold of

constant curvature K. Then M can be immersed in M if and only if

there exists a horizontal equivariant Revalued 1-form σ = (σ̂ ) on F(M)

such that

(Σkσkωh = 0

(1) iΦij = σ^j + Kωiωi (Gauss equation)

\Dai — 0 (Codazzi equation).
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Proof. Suppose there exists an immersion i: M-^M. Since M is
simply connected, there is a unit normal vector field on the immersed
manifold, N being a differentiate (= C°°) map from M to the tangent
of M. Then the formula ψ(m, flf , fa) = (i(m), di(fύ, , di(/Λ), JV(m))
defines a differentiate map ψ»: F(M) —> i'Xikf). (Denote by Ra, φ, the
structural elements of Jkf.) Note that ψ o Ra = Ra o ψ» if a e O(d) c
O(d + 1). This fact plus the uniqueness of the Riemannian connection
of M are used in the proof that

ί
d)i = ωi o dψ

0 - ωa+1 o dψ

Ψij = ^ίj ° ^

Furthermore, the Ra-valued 1-form defined by (3) ̂  = ̂ l d + i ° ψ satisfies
the conditions stated in the theorem. This form is, of course, one ex-
pression for the second fundamental form of the immersed manifold.

Conversely, given a form σ on F(M) with the stated properties we
must produce an immersion i: M—> M. To do this we first find a dif-
ferentiable map φ: F{M)-+F{M) satisfying the differential equations
(2) and (3). Consider the 1-forms ωt — ωi9 ωa+1, φi3 — φijf <PM+I ~~ °i o n

F{M) x F(M), where we use the same notation for a form on one fac-
tor and that form pulled back to the product manifold by a projection.
We want to apply the Frobenius theorem to these forms. Taking account
of the structural equations one sees that its hypothesis holds provided
Σicσkωk = 0; dφtJ = —^jcφiJcφkj + σiσj + Kωtωj; and dσt = — 2fc^fctffc. But

these conditions follow from the corresponding equations in (1)—in the
case of the last one because for a (or any other unvalued horizontal
equivariant 1-form on F(M) we have dσt = —Σφi1cσk + Dσt. Then if
(g, g) e F(M) x F(M), an integral manifold through (g, g) given by the
Frobenius theorem is the graph of a differentiable function ψ' defined
on a neighborhood U of g e F{M), carrying g to g, and satisfying (2)
and (3). Subject to these conditions φ' is unique, except for the size
of its domain. Further, one can show that φf commutes with right-
multiplication in the sense that, where meaningful, φ' o Ra and Ra o φ'
agree. This fact permits us to extend the local solution ψ' by right-
multiplication (in an obvious way) to a solution φ: π~\V) —• F(M), where
V = π(U) c M. Thus there exists a unique differentiable map j : V—> M
such that j o π = π o ψ on π~\V). We claim that j is an immersion:
In fact, suppose / e F{M) projects to me V, and let ψ(f) =Je F(M).
Now if y e F(M)f projects to x e Mm we have

= ωt(y) -

= <dj(x),fi>, and <dj(x),fd+1> = ωd+1(dψ(x)) = 0 .
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This proves j : V —* M is an immersion similarly one checks that its
second fundamental form is σ\π~\V). But an immersion is controlled
by its second fundamental form; explicitly in the case at hand, if jf is
another such immersion of V in M with j(m) = j'(m) and djm = dj'm for
some one m e V, then j — j ' . This uniqueness property, the simple
connectedness of M, and the special character of M are the essential
points in a proof (which we omit) that out of local immersions as above
a global immersion i: M-* M can be constructed of which σ is the
second fundamental form.

2. The Gauss equation. Of the conditions (1) imposed on σ, the
crucial one is the Gauss equation. Under the usual translation [1] of
horizontal equivariant objects on F(M) into objects on M> the curva-
ture form becomes a function which to each x, y e Mm assigns a linear
transformation Rxy: Mm—>Mm. Then then equation <βxv(u), v)> =(Rm(xy), uv}
defines the curvature transformation Rm as a linear operator on the
Grassmann space Λ2Mm. The function m—>Rm is for our purposes the
most convenient form of the curvature tensor R of M. The form σ
translates to a function S on M with Sm a linear operator on Mm, and
the Gauss equation becomes R = S A S + K, where K denotes scalar
multiplication by the constant curvature K of M.

Reversing the process, suppose that S is a differentiate field of
linear operators on the tangent spaces of M such that R = S Λ S + K.
Let σ be the horizontal, equivariant Ra-valued 1-form on F(M) corres-
ponding to S. Then Φi3 — aiσi + Kω%ωy The other two conditions on
σ follow automatically if the rank of R — K, that is, the minimum rank
of Rm — K for m e M, is not too small. Explicitly:

LEMMA 1. (notation as above) Let R = SΛS + K. If rank (R — K)>
3, then Σ^σ^ω,, = 0. // rank (R - K) > 4, then Dσ% = 0.

Proof. By a symmetry of R, shared by K, we have @ ζβ(x)S(u)9 yv) =
0, where © denotes the sum over the cyclic permutations of x, u, y.
Eliminating v we get @{«S(τ/), #> — <y, S(x)y)S(u)} = 0. But since rank
S A S > 3, the same is true for S, and it follows that ζS(y), xy =
<y, S(α?)>. But the symmetry of S is equivalent to Σ^σ^ωj, — 0.

To prove the second assertion (due essentially to T. Y. Thomas),
we apply D to the equation ΦtJ = σiσό + Kωtωj. Since Dω = 0 and
DΦ — 0 (Bianchi identity) we get Ώoi Λ a5 — σt Λ DίXj. The rank con-
dition implies rank S > 4, hence rank σ > 4. Thus the result is a con-
sequence of the following.

LEMMA 2. Le£ x19 ,xde V, a finite-dimensional real vector space,
and let w19 , wd s Λ 2 F. If xt A w3 — wt A Xj for all 1 < i, j < d9
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and the vectors xlf , χa span a subspace of dimension > 4, then
wx= = wd — 0.

Proof. We may suppose that x19 x21 x3, x4 are the first four elements
of a basis e19 e2, for V. Let P — {1, 2, 3, 4}, and fix an index p e P.
By a standard Grassmann argument one can show that there is a yp e V
such that wp = ypep. Then ep A wq = wp A eq implies (yp + yq)epeq = 0
for all qe P. Thus 2yp = (yp + j/β) + (j/p + yr) - (j/α + yr) is in the sub-
space spanned by ep9 eqf er, where q and r are any elements of P such
that p, q, r are all different. It follows that yp is a multiple of ep9 and
thus wp = 0. But if i > 4, then ep A Wi — wp A e,h = 0 for all p e P,
so that wt = 0 also.

Summarizing9 if M and M are as in Theorem 1 and rank (R — K)>
4, then M can be immersed in M if and only if R — K is decom-
posable, i.e. expressible as S A S with S a differentiate field of linear
operators on the tangent spaces of M.

In the following section we consider the purely Grassmannian ques-
tion of the decomposability of Rm — K at a single point of M.

3. Decomposability^ Let V and W be finite-dimensional real vec-
tor spaces, and let T: A2V—> A2W be a linear transformation. To
determine whether T is decomposable we use the following definition:
Three bivectors are crossed if any two, but not all three, are collinear,
(a set of bivectors being called collinear if all have a common non-zero
divisor, i.e. all are decomposable and the planes of the non-zero ones
have a line in common.) One easily proves:

LEMMA 3. Bivectors wlf w29 w3 are crossed if and only if there
exist linearly independent vectors x, y, z and non-zero numbers K9 L, M
such that

tw1 — K xy
(A) W — T γz
\ *± ) W2 — ±J JϋZ

vm> = M yz .

If w19w39 ws are crossed, then in any expression (4) the sign of the pro-
duct KLM is always the same. (In fact, the vectors x, y, z are unique
up to nqn-zero scalar multiplication, so we need only check that chang-
ing the signs of any subset of {x,y, z} does not change the sign of
KLM.) In case KLM > 0 we say that w19 w29 w3 are coherently crossed.
Note that if T is decomposable then T carries coherently crossed bivec-
tors to bivectors which are either coherently crossed or coplanar. Our
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aim is to prove the converse when rank T > 4. (We do not need the
easy cases of lower rank.)

LEMMA 4. The following conditions on T are equivalent:
(a) T carries decomposable bivectors to decomposable bivectors.
(b) T carries two collinear bivectors to two collinear bivectors.
(c) T(xy) A T(uv) 6 Λ2W is skew-symmetric in its arguments.

LEMMA 5. If rank T > 4 and T carries crossed to crossed or co-
planar bivectors, then R carries collinear to collinear bivectors.

Proof. It is sufficient to prove collinearity is preserved in the case
of three bivectors. Thus we must show that T(e1e^)) T(exe3), T(exe^ are
collinear. Now any two of these bivectors are collinear, hence all three
are either crossed or collinear. We assume the former and get a con-
tradiction. If they are crossed there is a unique subspace U of W; with
dimension 3, such that the bivectors are in A2U a A2W. We may also
assume that elt e2, e3, e± are linearly independent for otherwise we can
reduce to the case of two collinear bivectors. Thus these vectors are
part of a basis for V.

Case I. There is an index i such that T(eλe^ 0 Λ2U.
Consider T{exe^> T(eλe^), T{ex(e± + δet)), where 8 is an arbitrarily small
non-zero number. Now the last of these three bivectors is not in Λ2U,
while the union of the planes of the first two spans U. Hence all
three are not in the second Grassmann product of any 3-dimensional
subspace of W. Thus they are not crossed. On the other hand, any
two are collinear, so all three are collinear. But this is a contradiction,
for an arbitrarily samll change in the crossed bivectors T(exe^9 T(exe^,
T(eλe^ cannot produce collinear bivectors.

Case II. For all i, T{exe>ι e A2U.
We prove the contradiction rank T < 3 by showing that T(epeq) e A2U
for all p, q. If T{exev) and T{exeq) are independent, then by hypothesis,
T(epeq) is crossed with these two bivectors, hence is in A2U. If they
are dependent and T{exep) Φ 0, then by hypothesis T(exe^) and T(epeq)
are coplanar and T(epeq) e Λ2U. Finally, if T{eλep) = 0, then by Lemma 5
0 = T(e1ep) A T(ereq) - T(e±er) A T(epeq) for r = 2, 3, 4. But since Tfoe,),
T(e1e^)y T(β1e4) are crossed one easily deduces from these equations that
T(epeq) e Λ2U.

THEOREM 2. Let T: Λ 2 F - ^ Λ 2 ^ be a linear transformation of
rank > 4. Then there exists a linear transformation S: V—> W such
that T=SAS if and only if T carries coherently crossed to coherently
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crossed or coplanar bivectors.

Proof. We may choose a basis elf , ed for V such that T is
never zero on the corresponding canonical basis for Λ2V. Fix an index
1 < i < d. By the preceding lemma there is a non-zero vector ut e W
such that Ui divides each Γ(e4ej), j = 1, •••, d. Furthermore this vector
is unique up to scalar multiplication. To see this we need only show
that these bivectors Tie^j) are not all coplanar. But if they were,
then T(etej)f T(etek), T(ejek), since not crossed, would have to be coplanar
for all j , k, implying rank T < 1.

Now let i, j be different indices. We claim that T(etej) = Ki5UiU3J

In fact, since there is an index k such that the bivectors T{e%e^) and
T(etek) are not coplanar, they are crossed with T(eseh). By Lemma 3
and the divisibility properties of u^u^u^ it follows that these crossed
bivectors may be written as KutUj, Lu^, MujUk respectively.

By changing the signs of u2, •••, ua where necessary, we shall now
arrange to have the number KtJ (i < j) all positive. We can certainly
get all Ki3 > 0 in this way. Consider Tiefr), T^e,), T^e,) . If the first
two bivectors are not coplanar, then all three are coherently crossed,
hence the product K^K^K^, and consequently KtJ, are positive. If
T{eλe^) and T(exe3) are coplanar, we argue as follows: Since rank T > 1
there is an index k (say k > j) such that uΆ is not in the plane spanned
by u19 ut, Uj. Thus T{eλe^ and T{exek) are not coplanar, so Kik > 0.
Similarly KjΊc > 0. And since utf uj9 uk are independent, it follows that
Kυ>0.

To complete the proof it will suffice to find numbers λly •••, λd such
that for any i < j we have Ktj = λέλj For then the equation Tie^j) =
KijUiUj becomes T(e&3) = (λ4%i)(λ^), and by definding S: V—> W to be
the linear transformation such that S(et) — Xtut we get T = S Λ S.

Call a set i, j , k of indices a triple if i < j < k and wβ, %, ^fc are
independent. For each triple consider the equations Ki3 = λέλj, iΓέj =
\\JCJ KjΊC = λjλfc. Since the i f s are positive there is a unique positive
solution \i,Xj,\k. Since each index i is in at least one triple we get
at least one such value for λ,. We must show that the values obtained
from two different triples containing i are the same. We need only
consider triples of the form i, j , p and i, j , q, for it will be clear from
the proof in this case that the position of ί in a triple is immaterial
and that the case where five indices are involved may be reduced to
the present one using rank T > 4. We know that

T(etep) = XiλpUiUp T(eteq) =

T{efiv) = XjXpUjUp T(ejeq) =
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First consider the case in which the vectors ut9uj9up9 uq are linearly
independent. By Lemma 4, T(etep) A T{e3eq) = —T(ejep) A T{e%eq), but
since uiupuόuq Φ 0 this implies Xtμ3 = μtXj. But also XtX3 = μ%μ5, and
since the numbers in the last two equations are all positive we get
λ< = μt. Now suppose uifUjUp,uq are dependent, hence span a 3-di-
mensional subspace. Since rank T > 4 there must exist an index r (say
r > p, q) such that ui9 uj9 up, ur and UiU3uq9 ur are each linearly in-
dependent. Thus the values of Xt determined by i9 j , p and i9 j , p are
the same as that determined by i, j,r.

This shows the existence of S such that T = S A S uniqueness up
to sign is implicit in the proof, for the only ultimate element of choice
is in the orientation of u19 i.e. the use of uλ rather than —u^

4* Coordinate criteria for decomposability With notation as in
the preceding section, fix bases e19 •••, eΛ for V and f19 •• ,/a for W.
Let Tt3 = Tiβiβj) = Σa<βTi3cύβfafβ. What conditions on Ti3 are necessary
and sufficient for T to be decomposable, or alternatively (if rank T > 4)
for T to carry coherently crossed to coherently crossed or coplanar bi-
vectors ? Necessary is that T carry decomposable to decomposable bi-
vectors, and this is easily proved equivalent to

( 5) Ti3 A Tkl = Tkj A Tu f o r a l l l<i,j,k,l<d

This condition as well as the condition rank T > 4 are standardly ex-
pressible in terms of polynomials in Tijaβ.

LEMMA 6. Suppose that any two of the bivectors a,b,c e A2W are
collinear, and let a — Σa<βAΰύβfcύfβ, similar expressions for 6, c. Then
α, by c are coherently crossed if and only if there exist indices 1 < a <
β < 7 < d such that

A A
vccβ s±ay -"-/3V

• ~D T> \ A

'^ft -Day x3o y ^> U

^r &y ^ β y

Proof. The bivectors α, 6, c are either crossed or collinear. We
show:

(1) if crossed, then for some a, β9 γ we have J(aβy) Φ 0,
(2) if coherently crossed, then each such non-zero determinant is

positive,
(3) if collinear, then each such determinant is zero.
For α, β9 7 let x —> x be the natural projection of W onto the sub-

space U spanned by/ Λ , / β , / Y ; same notation for the induced projection
of A2W onto A2U. In the first two cases above we can write α, 6, c in
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the form of (4), hence a — Kxy, b — Lxz, c = Myz. For (1), since x, y, z
independent there are indices α, β9 γ such that x, y, z are independent,
hence α, 6, care independent, and the result follows. For (2), suppose
Δ(aβy) Φ 0. Using the above notation we have KLM > 0. Notice that
any two canonical bases (lexicographic order) for Λ2U have the same
orientation. Thus Δ(aβy) > 0. The proof of (3) is similar.

A further necessary condition for decomposability of T is that Tijf

Tik, Tjk be coherently crossed or coplanar. Assuming (1), this is equiv-
alent to
(6) If 1 < i < j < k < d, then either Tij9 TίJc, TjJc are coplanar or there
exist indices l < t f < / 3 < γ < c Z such that

Pijaβ TiJΛy

p ηπ
• iTcoύβ -*• iicocy

• ikccβ J- jkcoy

If the basis e19 •••, ea is such that all Ti5 Φ 0, then (5) and (6) are
necessary and sufficient for the decomposability of T, for Lemma 5 and
Theorem 2 use no more than this. For an arbitrary basis, however,
they are not enough, as one can see from simple examples. We must
add, say

(7) If Ti5 = Tik = 0, then either Tjk = 0, or, for all r, Tir = 0 .

Now one can prove the following lemma by reducing to the case in
which all Tis Φ 0.

LEMMA 7. Let T: A2V—> Λ2W be a linear transformation with
rank T > 4. Then T is decomposable if and only if, relative to ar-
bitrary canonical bases for A2V and A2W, conditions (5), (6), (7) hold.

5 Summary. Again let R be the curvature transformation of the
simply connected manifold M. For simplicity we discuss the case
M = Rd+ι. Assume that (at each point) rank R > 4 and R carries co-
herently crossed to coherently crossed or coplanar bivectors. It is clear
that the proof of Theorem 2 applies simultaneously to all Rn with n
any point of a convex neighborhood C of m e M. One need only use
the simple connectedness of C to choose the orientations of the various
choices of ux consistently. We thus obtain a differentiate field of linear
operators S such that R = S A S, first locally, then as usual, globally.
When rank R > 3 we can still prove R decomposable, but the Codazzi
equation may fail thus our criterion for immersion, while always sufficient,
is necessary only in the case of immersions for which the second funda-
mental form S has rank at least four. Call such an immersion 4-regular.
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This same argument, with R — K in place of K, proves

THEOREM 3. Let M be a simply connected d-dimensional manifold
(d > 4) with curvature transformation R. Let M(K) be a complete
(d + lydimensional manifold of constant curvature K. Then M has
a 4-regular immersion in M(K) if and only if rank (R — K) > 4 and
R — K carries coherently crossed to coherently crossed or coplanar bi-
vectors, i.e. conditions (5), (6), (7) hold at eaeh point of M.

For a given M one may ask for the set 3ίί of numbers K such
that M has a regular immersion in an M(K). Consider two cases:

(i) If R does not preserve decomposability, say R(xyf Φ 0, then M
is not immersible in Ra+1 and ^Γ contains at most the number K deter-
mined by the necessary condition R(xy) = S(x)S(y) + Kxy. We check as
above whether K e 3?Γ.

(ii) If R preserves decomposability, so that (5) holds, ^f may well
be infinite. By studying conditions (6), (7) one can characterize ^f in
terms of polynomials in an unknown K and the coordinates of R.
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VIBRATION OF A NONHOMOGENEOUS MEMBRANE

M. H. PROTTER

1. Introduction* We consider a simply connected two dimensional
domain D with a nonhomogeneous membrane M stretched across D and
fixed at the boundary Γ. Let p(x, y) > 0 be the density function of
the membrane. We shall be concerned with the first eigenvalue λ0 of
the equation

(1) uXχ + uyv + Xp(x, y)u = 0

subject to the condition u — 0 on Γ. Let K be the circle with boundary
C on which a homogeneous membrane Mx of the same mass as M is
stretched. Let \ be the first eigenvalue of

( 2 ) Vχχ + Vyy + XV = 0

with v = 0 on C. In a recent paper Nehari [1] established the following
interesting result.

THEOREM. (Nehari) If \ogp(x,y) is subharmonic then

(3) λ0 > \ .

Nehari further showed that relaxation to the condition that p(x, y) be
subharmonic is not possible. In fact for the case that D is a circle and
p(x, y) is superharmonic the inequality in (3) is shown to be reversed.

It is the purpose of this paper to establish comparison theorems for
the first eigenvalue of homogeneous and nonhomogeneous membranes of
the same shape. That is, we shall consider the first eigenvalue of
equations (1) and (2) in the same domain D subject to the boundary
condition u — 0 and v — 0 on Γ respectively. We denote the first eigen-
value of the latter problem by μ and consider comparisons between λ0

and μ. We of course have the completely trivial comparison

λ0 > μ

if 0 < p(x, y) < 1 throughout D. Nehari's result pertained to the case
where p(x, y) had average value 1 and thus we wish to obtain relations
between λ0 and μ for density functions which may become large.

A general technique for obtaining lower bounds for the first eigen-
value for a homogeneous membrane in a domain D follows from the

Received March 12, 1959. This research was supported by the United States Air Force
through the Air Force Office of Scientific Research of the Air Research and Development
Command under Contract No. AF 49 (638)-398.
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inclusion principle. If D is contained in Do then the first eigenvalue
for D is larger than that for Do. It D is bounded then we can enclose
D in a rectangle or circle for which the first eigenvalue is known. This
technique is also possible for nonhomogeneous membranes as will be
readily seen from the basic inequalities established in § 2. In § 3 com-
parison theorems are established when the density function is assumed
to satisfy various conditions involving the behavior of the second deri-
vative of p(x> y). Section 4 discusses comparison theorems between two
nonhomogeneous membranes.

2 Basic inequalities. Let u be any function which vanishes on Γ,
and let a(x, y) be an arbitrary C2 function in D. We apply Green's
theorem to the expression

11 au(uxx + uyy)dxdy

and obtain

( 4 ) 1 1 au(uxx + Uyy)dxdy — — i 1 a(u% + uy)dxdy + —11 u\axx + ayy)dxdy
D D D

The boundary integrals vanishing in virtue of u — 0 on Γ. Further
we let P(x, y), Q(x,y) be arbitrary C" functions in D and note that

( 5 ) JJ [Pu% + (Qu\]dxdy - 0 .

Performing the differentiations in (5) and adding the result to (4) we
get

— 11 an(uxx + uyy)dxdy
V
= + HI a(M* + u

2Puu*

~

If u were the first eigenfunction and λ the first eigenvalue of the
nonhomogeneous membrane, then (1) would hold and the above expres-
sion would be

+ 2Puux + 2Quuy

_ 1 , ) - λ 1 2l d i - 0
2 xx yy J
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On the other hand this integrand is a quadratic form in uχy uy, u. It
will be a positive definite form if a > 0 and

( 7 ) Px + Qy> — (P2 + Q2) + \{axx + ayv) + apX .

If a, P, Q,X happen to satisfy (7) then clearly it is impossible that

(6) holds. However if (7) holds for any value λ, it obviously holds for

0 < λ < λ and thus (6) cannnot hold for any function u{x, y) with

0 < λ < λ. This implies that λ is a lower bound for the first eigenvalue

of (1).

We shall therefore be concerned with the possibility of selection of

functions P, Q, a such that inequality (7) holds for some value λ. For

convenience we assume the bounded domain D is in the first quadrant.

We select the function α(x, y) to be

a(x, y) — sin ax sin βx

where a and β are constants selected so that a(x, y) is positive throughout

D. We define the quantities

m0 = minα
Ί)

and MQ = 7ΠQ\ Inequality (7) is implied by the inequality

(8 ) Px + Qy> M0(P2 + Q2) + A(α x x + ayy) + apX

and if we define

Pλ = M 0 P, Qx = M0Q

(8) is equivalent to

(9 ) Plx + Qly > PI + QI + \MQ{axx + ayy) + Moap\ .

Let φ(x, y) be the first eigenfunction for equation (2) in the domain
D subject to the condition v = 0 on Γ'. That is,

ΦχX + Φyy + μΦ = 0 .

We make the following selection:

Φ Φ
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and obtain from (9)

(10) μ > Mosinαxsinβyϊ—— (a2 + β2) + Xp(x, y)\

L & _J

Define the quantity

No = max p(x, y) sin ax sin βy

and we obtain the following result.

THEOREM 1. Let λ0 be the first eigenvalue for the nonhomogeneous
membrane with density function p{x, y) spanning a domain D and μ
the first eigenvalue for the homogeneous membrane spanning the same
domain. Then

μ + γ(
(11) λ0

M0N0

The theorem is an immediate consequence of inequality (10) which ex-
hibits the positive definiteness of the integrand (6). Inequality (11) is
a statement that (10) must be violated.

We note that (11) is a useful relation if No is particularly small;,
hence this states that p(x, y) should be small near the center of the
membrane, but may be large near the outer edge and still (11) will be
a significant lower bound for λ0. The basic distinction between (11) and
other results lies in the fact that p(x, y) has no restriction except
positivity.

A word should be said about the selection of the function a(x, y).
We chose for this function the first eigenfunction for the equation (2)
applied to a rectangle which contains D in its interior. We could have
selected for a(x, y) the first eigenfunction for any including domain, e.g.,
a circle, equilateral triangle, etc. with a resulting inequality similar to
(11). Finally the selection a == 1 yields the standard result

λ0
JL

maxφ, y)

3. Bounds with condition on the density function. We return
to inequality (7) and the selection of a, P, and Q. We recall that these
functions may be arbitrary except that α(x, y) must be positive. We
make the choice
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Then (7) becomes

Px + Qv > p(x, y)(P2 + Q2) + ±4—) + λ

We

(13)

and

define

select

P -

pQ = max

Φx

PoΦ '

•P(x,

Q =

v)

— Φy

PoΦ

where, as before, φ is the first eigenfunction of (2) for the domain D.

We obtain

>
Po ~ 2 p

If we assume the function \\p is superharmonic and set

(14) Nλ= -max-i jμ

•B 2 \p

we obtain the following result.

THEOREM 2. Let λ0 be the first eigenvalue for the nonhomogeneous
membrane with density function p(x, y) and μ the corresponding first
eigenvalue for the homogeneous membrane spanning the same domain
D. If l[p is superharmonic in D we have the inequality

(15) λ0 > JL + N,
Po

where p0 and Nx are given by (13) and (14) respectively.

It is possible to obtain a comparison theorem for the case where
log p is subharmonic. To see this we make the choice

a(x, y) — log —
P

and we assume 0 < p(x, y) < 1 in D. With this selection we take

P Φx Γ\
— — -y W = —

Q
PoΦ ' PoΦ
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as before and obtain

JL > l Jlog —) + λplog -i- .
p0 2 V pi p

We assume logp is subharmonic and define

(16) N2 = — min z/(log p)

(17) N3 = max p log — .
D V

THEOREM 3. Let λ0 and μ be as in Theorem 2. If logp is sub-
harmonic in D then

0 ~ pQN3 N3

where N2 and N3 are given by (16) and (17).

A final application of this type which we exhibit results from the
selection

a = e«*<x'io

where a is a constant which remains to be chosen. If we suppose that
p is strictly superharmonic and select a so that

\ήp + a(pl + pi) < 0

we obtain the relation

λ0 > μ max
D p

4. Comparison of two nonhomogeneous membranes* Let q(x, y)
be a second density function corresponding to a membrane spanning D
and let v be the first eigenvalue for

(18) wxx + wyy + vq(x, y)w = 0

with boundary condition w = 0 on Γ. We denote the corresponding first
eigenfunction by ψ(x, y). It is possible to compare λ0 and v when the
functions p and q satisfy various relations. Let

(19) q0 = max q(x, y)
D
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(20) r0 - maxax

and

(21) JV4 = - max ΔiϊL) .
Ί) ^ p '

We make the selections

and find
2

THEOREM 4. Lei λ0 and v be the first eigenvalue corresponding to
density functions p and q respectively. If q\p is superharmonic then
we have the inequality

where q0, r0 and iV4 are given by (19), (20) and (21).
Additional inequalities, analogous to those obtained in §§ 2 and 3

may be obtained by other selections for a, P and Q.
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INTRINSIC OPERATORS IN THREE-SPACE

VICTOR L. SHAPIRO

l Introduction. In Euclidean three-space there are three im-
portant classical intrinsic operators, namely the intrinsic curl, the in-
trinsic divergence, and the intrinsic (or generalized) Laplacian. Usually
they are given in terms of differential operators, but the occasion arises
sometimes when they cannot be so defined. In particular if u is the
Newtonian potential due to a continuous distribution, then in general u
is only a function in class C\ and consequently the usual Laplacian of
u, the usual curl of grad u, and the usual divergence of grad u cannot
be defined. Nevertheless, as it is easy to show, the intrinsic curl of
grad u is equal to zero, the intrinsic (or generalized) Laplacian of u
equals the intrinsic divergence of grad u, and furthermore Poisson's
equation holds. The question arises whether the converse is true. The
answer to questions of this nature is the subject matter of this paper.
In particular we shall establish the following result (with the precise
definitions given in the next section):

THEOREM 1. Let D be a domain in Euclidean three-space and let
v be a continuous vector field defined in D. Then a necessary and
sufficient condition that v be locally in D the gradient of a potential
of a distribution with continuous density is that the intrinsic curl of
v be zero in D and the intrinsic divergence of v be continuous in D.

2. Definitions and notation. We shall use the following vectorial
notation: x = (xlf x2, x3), ax + βy = (axλ + βy17 ax2 + βy2, ax3 + βy3), (xf y) =
the usual scalar product, x x y — the usual cross product, and | x | =
(x, xf'\

Let v{x) — [vλ(x), v2(x), vz(x)] be a continuous vector field defined in
the neighborhood of the point x0. Then we define the upper intrinsic
curl of v at x0 to be the vector, curl *v(x0) — [wf(x0), wt{x0), wt(x0)] where
wj(xo) = lim supr_0(τrr2)-1 \ (v, dx), j — 1, 2, 3, with Cj(x0, r) the cir-

cumf erence of the circle of radius r and center xQ in the plane through
x0 normal to the a^-axis where Cj(x0, r) is oriented in the counterclock-
wise direction when seen from the side in which the #Γaxis points. In
a similar manner using lim inf, we define the lower intrinsic curl of v
at x0, curl* v(xQ). If curl* v(x0) = curl* v(x0) is finite, we call this

Received February 9, 1959. This research was supported by the United States Air
Force through the Air Force Office of Scientific Research of the Air Research and Develop-
ment Command, under contract No. AF49 (638)-253. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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1258 VICTOR L. SHAPIRO

common value the intrinsic curl of v at x0 and designate it by cwc\v(x0).
This definition is essentially the intrinsic definition of the curl as given
in [4, p. 71].

Next, we define the intrinsic divergence. Let v(x) be a continuous
vector field defined in a neighborhood of the point xQ. Then with S(x0, r)
the spherical surface with center xQ and radius r, we define the upper
intrinsic divergence of v at x0 as follows

div* v(xQ) = l i m s u p ^ ^ r 3 ) " 1 \ (v, n)dS
JS(xo,rϊ

where n is the outward pointing unit normal on S(x09 r) and dS is the
natural surface area element on S(x0, r). Similarly we define the lower
intrinsic divergence, άiv*v(x0), using lim inf. If div*v(x0) = div*v(#0) is
finite, we call this common value the intrinsic divergence of v at x0

and designate it by άivv(x0) (see [9]).
If u(x) is a continuous function defined in a neighborhood of the

point a?0, then the upper intrinsic (or generalized) Laplacian of u at the
point x09 Lapw(#0), is usually defined as

Lap*tφ0) = limsup J(4ττr2)- 1[ udS
L }s(xQ,rϊ

Similarly we define Lap* %(#<,) using lin inf. If Lap*w(&0) = Lap^u(^0) is
finite, we call this common value the intrinsic (or generalized) Laplacian
of u at xQ and designate it by Lap^(^0).

It is clear that if v(x) is in class C1 and u(x) is in class C2, then
curlv(a ), divφθ> and Laptφ?) exist and equal the usual curl, divergence,
and Laplacian respectively, defined in terms of the partial derivatives.

If f(x) is a function defined in a neighborhood of the point xQ and
if f{x) is in L1 in S^Xo, r) for some r > 0 where Syix09 r) is the open
solid sphere with center x0 and radius r, we shall designate by A*/(»o)
the following upper limit:

A*f(x0) - l i m s u p ^ π r 3 ) - ^ f(x)dx .

Similarly, we shall designate by A*f(xQ) the corresponding value obtained

by using lim inf. As is well-known, for almost all x in Sx(x0, r), A#f(x) —

A*f(x).
Given v{x) a continuous vector field defined in a domain D, we shall

say that v(x) is locally in D the gradient of a potential of a distribution
with bounded density if for each point x0 in D there exists an S^XQ, r)
contained in D and two functions f(x) and h(x) defined in S^Xa, r) with
f{x) bounded in Sx{xQ, r) and h(x) harmonic in S^Xo, r) such that

(1) u{x) - -(4π-)-1f f(v)\x-v\ ~'dy + h(x) for x in S ^ r) ,
JSιCxQ,r)
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and v(x) — gradu(x) for x in S^x^ r). It is understood that f(x) is
bounded in S^x^ r) but need not be bounded in D.

It is well-known that if u(x) is defined by (1), then u(x) is in class
C1 in SjiXo, t), and furthermore Lap^(x) = f(x) (see [7]) at every point
where A*f(x) = A*f(x). We shall show that curl gradw(#) = 0, div*
gvadu(x) = A*f(x), and div* gradiφ?) = A*f(x).

E will designate the closure of the set E.

3. Statement of main results. We shall prove the theorems stated
below.

THEOREM 2. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Then a neces-
sary and sufficient condition that v(x) be locally in D the gradient of
a potential of a distribution with bounded density is that

(i) curl^(x) and cm\*v(x) be finite-valued in D.
(ii) curl^O*;) = curl*φ?) — 0 almost everywhere in D.
(iii) div^cc) and div*^(#) be locally bounded in D.
In the next theorem, the definitions of regular curves and regular

surfaces are those given in [4, Chapter 4].

THEOREM 3. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Suppose that

(i) CMYV^V(X) and curl^^α;) are finite valued in D.
(ii) there exists a continuous vector-field w(x) such that w(x) —

curl;!ί^(x) = curl*t?(x) almost everywhere in D.
Then curli>($) exists everywhere in D and is equal to w{x). Further-
more Stokes' theorem with respect to v and curl v holds for every open
two-sided regular surface contained in the interior of D, that is

(2) [ (v,dx) = [ (curlv,n)dS

where C is the regular curve which is the boundary of S oriented in
the counter-clockwise sense when seen from the side of S towards which
n points.

The sufficiency conditions of Theorems 1 and 2 follow as corollaries
of Theorem 5 to be stated in §5. As a further corollary of Theorem 5,
we obtain the following extension of a theorem of Beckenbach's [1,
Theorem 1] (i.e. we remove the uniformity conditions stated in his
theorem).

THEOREM 4. Let v(x) be a continuous vector field defined in a bound-
ed domain D of Euclidean three-space. Then a sufficient condition
that v(x) be a Newtonian vector field in D is that
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(i) CVLY\V(X) = 0 in D

(ii) άiγv(x) = 0 in D.
The curl of a vector field which is only assumed continuous in

a domain can be defined in a different manner than that given above,
namely by using spherical surfaces and the cross product. We shall
consider this definition and the analogues of Theorem 1, 2, 3, and 4 in
the concluding section of this paper.

4. Proof of Theorem 3* Since we need the result of Theorem 3
in order to establish Theorems 1, 2, and 4, we shall prove the former
theorem first. In order to do this, we need the following lemma:

LEMMA 1. Let v(x) — [v1(x)f v2(x)f v3(x)] be a continuous vector field
defined and continuous in a neighborhood of the point x0, and let X(x)
be a non-negative function in class C1 in a neighborhood of the point
x0. Let v\x) — X(x)v(x), that is Vj(x) = X(x)Vj(x)f j — 1, 2, 3. Then

(a) curl* v'(x0) = X{x0) curl* v(x0) + gradλ(#0) x v(xQ)
(b) curl*ι/(a;0) = X(x0) curl* v(xQ) + gradλ(α?0) x v(x0)

where X(x0) curl* v(x0) = X(x0) curl* v(x0) = 0 in case X(x0) = 0.
To prove the lemma, it is sufficient to prove (a) for (b) will follow

on considering -— v(x). To prove (a), we have to show with w*(x0) =
that

X(xo)wU%o) + VjiXtύX^Xo) - v

= lim sup^Trr 2 )" 1 ! X{x)vi{x)dxi + X{x)v1{x)dxj
J O C )

where (ΐ, j , k) is a cyclic permutation of (1, 2, 3) and X(xo)w£(xo) — 0 in
case X(x0) = 0. But this follows immediately from [9, Lemma 8].

To prove Theorem 3, it is sufficient to establish

[(V,dx) = [ (w, n)dS
JO JS

for every open two-sided regular surface S contained in the interior of
D. For once (3) is established, it holds in the particular case when S
is a disc. Consequently the assumed continuity of w in D and (3)
implies that

0 , dx) = Wj(x0) j = 1, 2, 3 .

Therefore curl?; exists everywhere in D and is equal to w, and conse-
quently (3) is equivalent (2).

We shall now proceed to establish (3). In order to do this, we first
notice that with no loss of generality (since we are going to use Fourier
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series to prove (3)) we can assume that the closure of our domain D is
contained in the interior of the three-dimensional torus Γ3 = {x, —π<
Xj ^ π, j = 1, 2, 3}. Now let S be a given open two-sided regular sur-
face contained in the interior of D. Since S itself is a closed point set,
between S and D we can put two domains Df and D" with the following
property:

Scΰ'cfl'cΰ"cfl"cflcflcT3.

Letting X(x) be a localizing function which is non-negative and in
class C°° on T3 and which takes the value one on Dr and the value zero
on T3 ~ D", we set vf(x) — X(x)v(x) and w'{x) = X(x)w(x) + gradλ(x) x
v(x) for x in D and i/(cc) = w'(α?) = 0 for x in T3 — D. Since v\x) —
v(x) and t^'(^) = w(x) for α? on S, (3) will be established once we can
show that

( 4 ) ( (v', dx) = [ (w'f n)dS .

In order to establish (4), we first observe from Lemma 1 and (i) and
(ii) of Theorem 3 that

( 5 ) curl*i/(αθ and cwΛ*v'(x) are finite-valued in T3

( 6 ) c\xr\*vr(x) = curl^^^x) = ^'(x) almost everywhere in T3.

Next we designate the multiple Fourier series of v] and w) respec-
tively by

( 7 ) v'j(x) ~ Σ*<etCm'*>
m

3 = 1, 2, 3

where m represents an integral lattice point in three-space.
The essential step in proving (4) is to show that

( 8 ) b«m = i(mβal - mya
β

m)

where (a, β, 7) is a cyclic permutation of (1, 2, 3).
In order to do this we fix xΛ and observe that

(9 ) v'j(x) - Σ Σ,<ΆmMeίCmβxβ+m^ for j - β, 7

where

(10) αipWγ(a?Λ)

Now by (5),
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(11) lim sup^Trr 2)- 1 ! v'β(xa, yβy yy)dyβ + v'y(xΛy yβ, yy)dyy

Jc^O)

is finite-valued in Γ3 with a similar statement holding for lim inf, and
by (6),

(12) l im^^r 2 )" 1 ! v'β(xΛ, yβ, y)dyβ + vy(xΛf yβ, yΫ)dy.,

= Wa(xa9 xβ, xy) for almost every (xβf xy) if xΛ lies in

( — π,π] — EΛ where Ea is a set of linear measure zero.

Consequently it follows from (10), (11), (12), a modified version of
[9, Lemma 8], and [9, Theorem 2] that for mβ and my any two integers
and xΛ in (—π, π] ~ Ea that

(13) ί[mβalβmγ(xa) - myaξlβ7ny(xa)']

= (47Γ2)-1l I β- ί ( m β x β + m v x γ%;(x α , α?β, xy)dxβdxy .
J — π J — JΓ

Letting mα be any integer, multiplying both sides of (13) by
(2πyie'imΛx«9 and then integrating over ( — π,π], we conclude from (10),
the fact that EΛ is of linear measure zero, and (7) that

i(mβal - WvO = bί ,

which is (8).
(4) follows now fairly easily. We introduce for ί > 0, the vector

fields vf(x, t) and w\x, t) where

(14) v'j(x,t) =
j = 1, 2, 3 .

w'j(x,t) = ̂ 6ie*c»».»)-ι«ιί

Then, since v'(x, t) and w'(a?, t) are vector fields in class C°° on JΓ3 and
since we can differentiate under the summation signs in (14), we con-
clude from (8) that cuτlv'(x, t) = w'(x, t). Consequently,

(15) f {v\x, ί), dx) = [ (w'(x, ί), w)dS for ί > 0.
Jc is

But as is well-known [2], v\x, t) —> v'(aj) and ^f(a;, ί) —> w'(a?) as ί —> 0
uniformly for a? in Γs. Therefore from the definition of a regular curve,

it follows that I {v\x, t), dx) —• I (v\ dx), and from the definition of a re-
Jc Jc

gular surface, it follows that \ (w'(x, t), ̂ )cZS -> I (wf, ̂ )diS. We conclude
is Js

from (15) that

f (V\ dx) - ( {w', n)dS
jC J S
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which is precisely (4), and the proof of Theorem 3 is complete.

5. Proof of Theorem 1, 2, and 4* The necessary conditions of
Theorems 1 and 2 follow immediately from the following lemma (for
an analogous two-dimensional result, see [3]), which we shall prove:

LEMMA 2. Let u(x) = — (4π)-1\ f(y)\% ~ y\~λdy where f(x) is

bounded in S^XQ, r0) with r0 > 0. Then for x in S^XQ, r0)
(a) curl grad ^(#) = 0
(b) A*f(x) = div^ grad?φθ and A*f(x) = div*grad%(#)
(c) div* gradw(x) ^ Lsφ*u(x) ^ Lap* u(x) ^ div* gmdu(x)
To prove the lemma, it is clearly sufficient to prove it in the case

x = x0, and furthermore with no loss of generality, we can assume xQ is
the origin.

Setting v(x) — grad^(x), we observe that

(16) vlx) = (4τr)-1( f(y)(xj - y3) \x - y \ -*dy j = 1, 2, 3 ,
J SΊCO.Ϊ Q)

and Vj(x) is a continuous function. Observing that

\ (grad I x — y \ ~\ dx) = 0

for 7/ not on (7,(0, r) j = 1, 2, 3, we conclude from (16) and Fubini's

theorem that \ (v, dx) = 0 for j = 1, 2, 3. Consequently (a) of the

lemma is established.

Observing the — \ (grad \x — y\~\ n)dS = 4ττ if y is in S^O, r)
JS(0,r)

and = 0 if y is not in S^O, r), we obtain from (16) and Fubini's theorem
that for 0 < r < r0.

(17)

Dividing both sides of (17) by 4ττr3/3 and then taking liminfr^0 of both
sides and next lim sup,.^, gives us precisely part (b) of the lemma.

(c) follows from (b), the boundedness of /, and [5].
Theorem 4 and the sufficiency conditions of Theorems 1 and 2 follow

from the following more general theorem:

THEOREM 5. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Suppose that

(i) curl^(#) and curl*^(x) are finite-valued in D
(ii) cur\^v(x) — curF^(x) = 0 almost everywhere in D
(iii) ά\γ^v(x) and div*^(^) are finite-valued in D
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(iv) there exists a function f(x) such that f(x) is in Lι on every
closed subdomain of D and such that div* v(x) ^ f(x) for x
in D.

Then (a) ά\vv{x) exists almost everywhere in D
(b) ά\vv(x) is in L1 on every closed subdomain of D

(c) for every closed sphere S^x^ r0) contained in D, there exists
a function u(x) in class C1 in S^XQ, r0) such that for x in
Si(Xo9 ro)» v(x) = gχa,du(x) and furthermore

u(x) = — (47Γ)-11 diγv(y)\x — y\ ~xdy + h(x) a.e. in S ^ , r0)

where h(x) is harmonic in S^XQ, r0).
In order to prove Theorem 5, we first need the following lemma

(see [8, p. 381]):

LEMMA 3. Let u(x) be in class C1 in S^XQ, r0). Then div^grad u(xQ) ^
6(xo) ^ Lap*^(#0) ^ div* grad^(^0)

With no loss in generality, we assume that x0 is the origin. Then
by the mean value theorem

(47r)~1\ \ u(tsin #cos φ, ίsin ^sin φ, icon ^)sin θdθdφ — u(ϋ) /f6"1

CitC2it

= (47Γ)"1! \ ^ t(rsin θcosφ, rsin ^sin^, rcos θ) sin
Jo Jo

where 0 < r < t. We conclude that

sup Γ(4τrr2)-1( udS - ^(
0<r<ίL J^(O,r)

^ sup (4πr3)-13\ [grad^, n\dS .
0<r<ί Js(0,r)

Consequently from their very definitions, Lap*^(0) ^ div* grad^(O). Simi-
larly we show that div* grad^(O) ^ Lap^^(O), and the proof to the lemma
is complete.

It follows immediately from the three-dimensional analogue of [9,
Theorem 2] that (a) and (b) of Theorem 5 hold. To obtain (c) of Theorem
5, we observe that there exists a positive ε such Sx(xϋ, r0 + ε) c D. Let
x be in S^x^ r0 + s), and let P(x) be the line segment connecting xQ

with x and directed to x. Then we define u(x) = \ (v, dy), and ob-
JP(X)

serve, since by Theorem 3 curl?; — 0 everywhere in Sλ(xύ, r0 + ε) and
Stokes' theorem with respect to v and curlv holds in this domain, that
u(x) is in class C1 in S^XQ, r0 + ε) and furthermore that v(x) = grad^(^).
Consequently by Lemma 3 and (iii) of the theorem

(18) Lap*w(#) and Lap*w(#) are finite-valued in S^XQ, r0 + ε) ,

and by (a) and (b) of the theorem and Lemma 3
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(19) Laptφ?) = divi (^) almost everywhere in S^XQ, r0 + ε) .

Therefore by (b) of the theorem, (18), (19), and the three-dimensional
analogue of [6, Theorem 1], it follows that for almost all x in S^x^ r0)

u(x) = — (4τr)"1\ divv(y) \ x — y \ ~λdy + h(x)

where h(x) is harmonic in S^XQ, r0). But this is precisely (c) of Theorem
5, and the proof to the theorem is complete.

6. The spherical intrinsic curU Let v(x) be a continuous vector field
defined in a neighborhood of the point x0. Then as mentioned earlier,
the upper and lower intrinsic curl of v at x0 can be defined by means of
the cross product and spherical surfaces. In short, we define the upper
spherical intrinsic curl to be the component-wise upper limit, curlf v(x0) =
lim supr^0(47rr3)"13l (nxv)dS. Similarly we define the lower spherical

intrinsic curl, curl^^cco), using lim infr_0. In case curl|^(a;0) = c\xr\*sv(x0)
is finite, we say the spherical intrinsic curl of v exists at the point x0,
and we designate this common value by cm\sv(x0).

We shall prove the following theorems:

THEOREM 6. Theorems 1, 2, 3, 4, and 5 continue to hold if in each
of these theorems curl*i>, curlew, and curl v are replaced by curlfv,

, and c u r l ^ respectively.

THEOREM 7. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Then

(a) if cnv\sv(x) exists and is continuous in D, then Qλxήv{x) exists
everywhere in D and equals cwc\sv(x).

(b) if cwΛv(x) exists and is continuous in D, then QMΪ\SV{X) exists
everywhere in D and equals curlv(ic).

To prove Theorem 6, it follows from the proofs of Theorems 1, 2,
4, and 5 that it is sufficient just to prove Theorem 3 and Lemma 2(a)
when curl*^, curl^'y, and curlτ; are replaced respectively by curlf'y,
curias ^, and curl s^.

The analogue of Lemma 2(a) follows immediately from Fubini's

theorem and the fact that I n x grad | x — y \ ~λdS = 0 if ?/ is not on

S(x0, r).
To prove the new version of Theorem 3, we designate by pj the

unit vector in the direction of the α^-axis and set vj = v x pj for j =
1, 2, 3. Then it follows from the definition of spherical intrinsic curl
and intrinsic divergence that the jth component of curl*'?; is div*^ with
a similar remark holding for curl^?;. Consequently by (i) and (ii) of
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the new version of Theorem 3 and by the three-dimensional analogue
of [9, Theorem 2], we obtain that for S ^ , r) contained in D,

(20) f (v3, n)dS == f Wj(x)dx j = 1,2,3 .

But (20) implies that curl^o?) exists everywhere in D and equals
giving the first part of the theorem.

The last part follows in a manner similar to the original version of
Theorem 3, and it suffices to give a sketch of the proof. We first
establish the analogue of Lemma 1 for the spherical intrinsic curl.
Next with D contained in the interior of T3 and S contained in D, we
introduce the periodic vector fields v\x) = X(x)v(x) and w'{x) — X(x)w(x) +
graάX(x) x v(x) where X(x) is a non-negative localizing function in class
C°° which takes the value one in a neighborhood of S and the value
zero outside another neighborhood of S for points in JΓ3. Then with
v'(x, t) and wr(x, t) as in Theorem 3, it follows using the three dimen-
sional analogues of the results in [9] that curl^'^, t) — w'(x, t). But, as
before, this implies that \ (v, dx) — \ (w,n)dS, which fact completes the

JO JS

proof of the theorem.
Theorem 7(a) follows immediately from Theorem 6.
To prove Theorem 7(b), we assume that D is contained in the in-

terior of T3, and we set w(x) = curl v(x). Then with ΊS^XQ, 3r0) contained
in D and X(x) a non-negative localizing function of class C°° which takes
the value one in S^XQ, rQ) and the value zero in T3 — S^XQ, 2r0), we in-
troduce, as before, the periodic vector fields vr{x) — X(x)v(x), w'(x) =
X(x)w(x) + gradλ(#) x v(x), v'(x, t)y and w'(x, t). Exactly as in Theorem
3, we obtain that curl?/(#, t) = w'(x, t). But then on setting vrj(x) =
v'(x) x p3 and v'3(x, t) = v'(x, t) x pj for j — 1, 2, 3, we obtain that

[ (v'3(x, t), n)dS = [ w)(x, t)dx for r > 0 ,

and consequently that

{v!3{x), n)dS = ( w'j(x)dx .

This last fact, however, implies that CUY\SV(XQ) = w(̂ 0)̂  and therefore
completes the proof to Theorem 7(b).
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TESTS FOR PRIMALITY BASED
ON SYLVESTERS CYCLOTOMIC NUMBERS

MORGAN WARD

Introduction, Lucas, Carmichael [1] and others have given tests for
primality of the Fermat and Mersenne numbers which utilize divisibility
properties of the Lucas sequences (U) and (V); in this paper we are
concerned only with the first sequence;

(U): UQ, U19 U2, . . . , Un = ^
a — β

Here a and β are the roots of a suitably chosen quadratic polynomial
x2 — Px + Q, with P and Q coprime integers. (For an account of these
tests, generalizations and references to the early literature, see Lehmer's
Thesis [2]).

I develop here a test for primality of a less restrictive nature which
utilizes a divisibility property of the Sylvester cyclotomic sequence [3]:

(Q):Qo = O, Q1 = l, Q3f •• ,Q»= Π iμ - β^/3), . . .
l<r<n
(r,n) = l

Here a and β have the same meaning as before. (U) and (Q) are
closely connected [4]; in fact

(l l) Un = nQd.
d\n

The divisibility property is expressed by the following theorem
proved in § 3 of this paper.

THEOREM. If m is an odd number dividing some cyclotomic number
Qn whose index n is prime to m, then every divisor of m greater than
one has the same rank of apparition n in the Lucas sequence (U)
connected with (Q).

Here the rank of apparition or rank, of any number d in (U) means
as usual the least positive index x such that Ux = 0 (mod d).

The following primality test is an immediate corollary.

Primality test. If m is odd, greater than two, and divides some
cyclotomic number Qn whose index n is both prime to m and greater
than the square root of m, then m is a prime number except in two
trivial cases: m — (n — I)2, n — 1 a prime greater than 3, or m = n2 — 1
with n — 1 and n + 1 both primes.

Received January 14, 1959.
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The primality tests of Lucas and Carmichael are the special case
when n — m ± 1 is a power of two (which allows Qn to be expressed
in terms of Vn) with X2 — Px + Q suitably specialized.

2. Notations. We denote the rational field by R, and the ring of
rational integers by /. The polynomial

(2.1) f(x) = x2 - Px + Q , P, Q, in I and co-prime

is assumed to have distinct roots a and β.
We denote the root field of f(x) by S/ and the ring of its integers

by ^ . Thus S/ is either R itself, or a simple quadratic extension
of R.

Let p be an odd prime of /, and p a prime ideal factor of p in
^ . Every element p of szf may be put in the form p = a/a with a
in ^ and α in /. The totality of such p with (a, p) — 1 forms a sub-
ring J^Ώ of jy\ Evidently J ^ Z ^ ^ I D ^ ^ / . If we extend p into ^
in the obvious way, we obtain a prime ideal s$. The homomorphic image
of iJ^p modulo S43 is a field, J^~p. We denote the mapping of <J^V onto
^ by CP).

Let JPW(^) denote the cyclotomic polynomial of degree φ(ri). Fn(z)
has coefficients in 7, and if ^ is greater than one, then (Lehmer [2],
Carmichael [1])

(2.2) <?„ = β ^

Furthermore

(2.3) z» - 1 = Π ̂ .(«)

3 Proof of theorem. Let m be an odd number greater than one
which divides some term of (Q) whose index n is prime torn, so that

(3.1) Qn = 0 (mod m) , (n, m) = 1.

Throughout the next three lemmas, p stands for a fixed prime factor
of m.

LEMMA 1. If p is any ideal factor of p in j?, then

(3.2) (Q, p) - (α, ί) - (/3, p) = (1) .

Proof. It suffices to prove that (Q, p) = (1). Assume the contrary.
Then (p, P) - 1. Since Ux = l and Ux+2 - P[7X+1 - QUX = Pί7 x + 1 (mod p),
it follows by induction that Un&0 (mod p). Then by (1.1), Qn ^ 0
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(mod p). But p divides m so that by (3.1) Qn = 0 (mod p) a contradic-
tion.

LEMMA 2. The rank of apparition of p in (U) is n.

Proof. Since Un ΞΞ 0 (mod p), p has a positive rank of apparition
in (U), r say. Then r divides n. But by (1.1), Ur — Y[a\nQa Hence
Q(l = 0 (mod p) for some d dividing both r and n. Clearly, if d = n,
then r = n and we are finished. Assume that d is less than n.

The number a/β = a2IQ is in ^ , by Lemma 1. Let τ be its image
in άfv under the mapping (ψ). Then by (2.2) and Lemma 1 i^(τ) =
Fd(τ) = 0 in j ^ , . Consequently the resultant of the polynomials Fn(z)
and .F^z) i s z e r o i n -^> Therefore its inverse image under the mapp-
ing is in ψ. But this resultant is evidently in /. Therefore it must
be divisible by p. But by formula (2.3), since d < n the resultant of
Fn(z) and Fd(z) must divide the discriminant ±nn~1 of zn — 1. Thus
n ΞΞΞ 0 (mod p) so that {n, m) ~ 0 mod p which contradicts (3.1) and
completes the proof.

LEMMA 3. The rank of apparition in (U) of any positive power
of p which divides m is n.

Proof. Let pk divide m, k > 1 and let the rank of pk in (U) be r.
Now Un = Π^i^ Qd ΞΞΞ 0 (mod pfc). But by Lemma 2, each Qrt with d<n
is prime to p. Hence r must equal w.

The theorem proper now follows easily. For let mf be any divisor
of m other than one. By Lemma 3, every prime power dividng m' has
rank of apparition n in (U). But the rank of apparition of m' in (U)
is the least common multiple of the ranks of the prime powers of maximal
order diving m'. (Carmichael [1]). Hence m' also has rank of appari-
tion n in (U).

4. Proof of pritnality test* Assume that (3.1) holds for some n

greater than Vm. If m is not a prime, it has a prime factor <Vm.

Let p be the smallest such factor, and let

(4.1) m = pq , q > 3 .

Then p has rank n in (U) by Lemma 3. But by a classical result
of Lucas, Up±ι = 0 (mod p). Hence n divides p ± 1. If n is less than
p + 1, Vm < p < \/m, a contradiction. Hence n = p + 1. If p — Vm,
then m = (n — I)2 and w — 1 is a prime. Since m is odd, n > 4. This
is the first trivial case.

If p < Vm, then q > p + 2 and m > p(p + 2). But if m > p(p + 2),
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then n2 > m > (p + I)2 — n2, a contradiction. Hence m = p(p + 2) where
p + 2 has no prime factor smaller than p. Hence p + 2 is a prime and
m — n2 — 1 with both w — 1 and n + 1 primes. This is the second
trivial case. In every other case then, m must be a prime.

5 Conclusion* The two trivial cases can actually occur. For if
P = 22 and Q = 3, then Q6 = α2 - aβ + β2 = P 2 - 3Q = 475. Hence
Q6 = 0 (mod 25) and 25 = (6 - I)2. Again, if P = 17 and Q = 3, then
Q6 = 280. Hence Q6 - 0 (mod 35) and 35 = 62 - 1 = 5 x 7. It is worth
noting that these trivial cases cannot occur if a and β are rational
integers. (See [1], Theorem XII and remark.)

To illustrate the theorem, note that if P — 2 and Q = 1, Qg ~ 73.
Since τ/73 < 9 and (9, 73) = 1, 73 is a prime. But for P = 3 and Q = 1,
Q9 = 91. But 9 < τ/9Ϊ so the test is inapplicable. As a matter of fact,
91 is the product of two primes. Evidently the test may be extended
to cover such a case. That is, if Qn = 0 (mod m), (n, m) = 1 and
w > i^m, m will usually be either a prime, or the product of two primes.
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A FIXED POINT THEOREM FOR CHAINED SPACES

L. E. WARD, JR.

1. Introduction. There are a number of theorems in the literature
of the following type: if a topological space is acyclic in the sense of
containing no simple closed curve, and if other appropriate conditions
are satisfied then the space has the fixed point property, that is, each
continuous function / of the space into itself admits a solution of the
equation x=f(x). For example, if the space is compact metric and
locally connected (i.e., a dendrite) then it has the fixed point property.
There are many generalizations of this theorem. Appropriate to this
discussion are of those of Borsuk [1], Plunkett [2], Wallace [3], the author
[5] and [6], and Young [8]. A common characteristic of these general-
izations is their requirement, explicit or implicit, of rather strong
unicoherence conditions. But it is clear that many relatively simple
acyclic spaces possessing the fixed point property are not unicoherent.
As an example consider the following sets in the Cartesian plane:

A = {(x, y) : 0 < x < 1, y = sin (πjx)} ,

B= {(0,y):-2<y<l} ,

C= {(x, - 2 ) : 0 <x < 1} ,

D= {(1,2/): - 2 < i / < 0} .

The continuum M — A[j B U C U D is not unicoherent but it is arcwise
connected, acyclic, and has the fixed point property. It is the purpose
of this note to formulate and prove a fairly general result which
includes this and related examples. In so doing we shall generalize the
theorems of Borsuk and Young cited above. As in our earlier papers the
methods used here are order-theoretic in character. Section 2 is devoted
to the partial order stucture of the spaces to be considered, and may
be regarded as an addendum to [4], [6] and [7].

2. Chained spaces• Throughout all spaces to be considered are
Hausdorff. By a topological chain or, more simply, a chain, we mean a
continuum ( = compact connected set) which has exactly two non-cutpoints.
These two points are, of course, endpoints and a chain is simply the
natural analogue of an arc in spaces which are not assumed to be
metric. A space is topologically chained or chained provided each two
distinct points lie in some chain. Obviously each two distinct points of
a chained space are the endpoints of some chain. If a space has the
property that each two distinct points are the endpoints of at most one
chain, then it is said to be acyclic. In this case the unique chain whose
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endpoints are x and y is denoted [x, y\. It is convenient to define
\x, x~\ to be the set whose only element is x.

Acyclic chained spaces have an inherent partial order structure
which facilitates their study. By a partial order on a set we mean a
binary, reflexive, transitive relation ^ between elements of the set which,
in addition, satisfies the rule

x <̂  y and y r£ x implies x — y.

If x <; y but x φ y we write x < y, and if P is a partially ordered set
we define

L(x) = {y € P:y^x} , M(x) = {y e P: x ^ y} .

In order to characterize acyclic chained spaces we recall a related
theorem from [7]. A dendritic space is a connected and locally connected
space in which each two distinct points can be separated by the omission
of some third point.

THEOREM 1. A necessary and sufficient condition that a locally
connected space be dendritic is that it admit a partial order satisfying

( i ) L(x) and M(x) are closed sets for each point x,
(ii) if x < y then there exists z such that x < z and z < y,
(iii) for each x and y the set L(x) Π L(y) is nonempty, compact and

simply ordered,
(iv) for each x the set M(x) —• x is open.
Although many chained spaces are not locally connected (e.g., the

space M of § 1) they can be made locally connected by properly altering
the topology. This change of topology preserves the original chain
structure of the space, and functions which are continuous in the orginal
topology remain continuous in the new one. This technique appears to
have originated with Young [8]. If X is a Hausdorff space let us say
that a chain component of X is any subset of X which is maximal with
respect to being chained. The chain topology is that topology which
results from taking the chain components of open sets of the given
topology as a basis for the chain topology. It is easily seen (and was
proved in [8]) that any space is locally connected in its chain topology.

LEMMA 1. An acyclic chained space is dendritic with respect to
its chain topology.

Proof. Let x and y be distinct points of the acyclic chained space
X and let z e [x, y\ — x U y. Since X is acyclic no chain in 1 - 2 con-
tains both x and y, and therefore z separates x and y in the chain
topology. Since X is connected and locally connected in the chain topology
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it is dendritic.
From Theorem 1 and Lemma 1 we infer that each acyclic chained

space is endowed with an intrinsic partial order structure which can
aptly be called the chain cutpoint ordering. It can be described in
the following way (compare with [7]). Select an element e and define
x fg y if and only if x e [e,y]. We now prove that the chain cutpoint
ordering characterizes the acyclic spaces.

THEOREM 2. A necessary and sufficient condition that the Hausdorff
space X be acyclic and chained is that it be dendritic in its chain
topology.

Proof. The necessity was established in Lemma 1. To prove the
sufficiency of the condition let X be a space which is dendritic in its
chain topology. By Theorem 1 X admits a partial order which satisfies
(i) — (iv) relative to the chain topology. If x and y are distinct points
of X then by (ii) and (iii) they are contained in a continum L(x) U L(y)
and by Theorem 3 of [7] that continum is a tree. Since a tree is chained,
so is X. If two distinct chains C1 and C2 have common endpoints, let
Aλ be a component of d — C2, x and y the endpoints of Alf and A2 the
minimal subchain of C2 which joins x and y. Obviously no point can
separate x and y in the chain topology, for it would have to lie in
A1 Π A2 — 0. Since this is a contradiction we conclude that X is acyclic.

3Φ A condition on rays* Let X be a space and e e x. A ray of
X tvith endpoint e is the union of a maximal nest of chains which have
e as a common endpoint. Thus, in a Euclidean space a half line emanating
from the origin is a ray in this sense. In the example of § 1 the set A
is a ray of M with endpoint (1,0).

If R is a ray with endpoint e in the space X and x e R, let A(R,x)
be the closure of (R ~ [e, x]) U x, We then define

KR = f| {A(R, x) : x e R} .

In a Euclidean space a ray R consisting of a half line emanating from
the origin has KR = 0. However, in the example of § 1 the set A has
KA equal to a closed line segment.

The crux of our fixed point argument is the following. If / : X—> X
is continuous where X is acyclic and chained, we examine the points x
such that x ^f(x). Either there is a " last" such point in a restricted
order-theoretic sense, in which case that point is fixed by a continuity
argument, or else such points form a ray R. Then we can show that
f(KR) c KR1 so that the fixed point property follows provided each KR

has the fixed point property.
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We begin by formalizing this condition on rays.

(FΛ) If R is a ray with endpoint a then KR has the fixed point
property.

In the example of § 1 let a = (1, — 2). Then there are two rays
with endpoint α, B[jC and A{]D. Since KBϋ0 is a point and KAUD

is a line segment the space M satisfies (Fa).

THEOREM 3. If X is an arcwise connected space in which the union
of any nest of arcs is contained in an arc then X is acyclic and X
satisfies (Fa) for each a e X.

Proof. Since the union of any nest of arcs is contained in an arc,
X is acyclic and if R is a ray then R is evidently an arc so that KR

is a point.
The substance of Young's fixed point theorem [8] is that the spaces

of Theorem 3 have the fixed point property hence, Theorem 5 below
is truly a generalization.

THEOREM 4. If X is an arcwise connected, hereditarily unicoherent
continuum then X satisfies (Fa) for each a e X.

Proof. We note that each subcontinuum of X is arcwise connected,
for if x and y are elements of the subcontinuum Y and [x,y\— Y is
not empty then [x, y] U Y would not be unicoherent. Now if R is a
ray of X then KR, being the intersection of a nest of continua, is a
continuum and hence is itself arcwise connected and hereditarily unicoher-
ent. Borsuk's theorem [1] asserts that such sets have the fixed point
property.

This result demonstrates that all continua statisfying the hypothesis
of Borsuk's fixed point theorem are included in Theorem 5.

If A and B are subsets of a partially ordered set with A c B then
A is cofinal in B provided for each b e B there exists a(b) e A such
that b ^ α(6).

THEOREM 5. Let X be a topologically chained acyclic space and
suppose there exists e e X such that (Fe) is satisfied. Then X has
the fixed point property.

Proof. We give X the chain cutpoint ordering with minimal element
e and let / : X—>X be a continuous function. Consider the family S/7

of all pairs (S, S') satisfying the following six conditions :
( i ) S is a nonempty simply ordered subset of X,
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(ii) S and S' are connected,
(iii) S' is cofinal in S,
(iv) e e S ,
(v) x ^f(x) for each x e S,
(vi) S U f(S') is simply ordered.

Obviously the pair (e, e) is a member of £f. We can partially order
&> by defining (Sy, S'y) < (Sδ, S'δ) if and only if Sy c S, and Sδ U f(S'y)
is simply ordered. If ^r = {(Sy, S'y)} is a < — simple subfamily of ^
and S = U {Sγ}, S' = U {S;} then it is clear that (S, S') e ^ and that
(S, SO is a -< — upper bound of ^//\ Thus Zorn's lemma can be applied;
let (So, S;) be a -< — maximal member of ^ .

If x0 = sup So exists we assert that #0 g /(a?0). For suppose there
is t e So such that /(α?0) is not a successor of t. We may assume
£ <f(t) if Γ = [ί, &0] then /(Γ) is a tree and t separates f(t) and/(x0)
in f(T). If Wis the component of f(T) - t which contains f(x0) then W
is a neighborhood of /(x0) in the relative topology of f(T) and hence
there is q e So, t < q < x0 such that /(g) 6 W. But this implies that
f(q) is not a successor of q, a contradiction. Therefore, ί ^ /(aj0) for
each t e So and hence α?0 ̂  /(^0) If ô < /(#o) let [/ be a connected
neighborhood of /(a?0) relative to the chain topology such that £7 c X — x0.
Then there exists x± e X — U such that ίc0 < x1 < /(x0)

 a ^d /([̂ o> ^J)
c Z7. But then each point p e [x0, xλ] satisfies p ^ f{p) letting Sx — So

U [x0, OJJ, S; = α?!, it is apparent that (So, Sr

0) < (S19 S[) in contradiction
of the maximality of So. Hence x0 = f(x0).

On the other hand if SQ has no supremum it is a ray R with end-
point e and it remains only to show that f{KR) c KR. By (vi) and the
fact that So = R is a ray we have f(S'o) c R. Moreover, A(R, x) c SJ
for each x e S'o and hence KR c S'o. Therefore, f{KR) c 57 Now
suppose /(?/) e R — KR for some y e KR. Let F be a neighborhood of
/(?/) such that F and KR are disjoint; then V and yl(iϋ, a;) are disjoint
for some x e R and there exists a e R — \e, x] such that f(a) e V.
Moreover, it is clear by (ii) and (iii) that a may be so chosen that a
e So and hence /(a) e A(R, x), SL contradiction. Therefore, f{KR) c KR

and the proof is complete.
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SILOV TYPE C ALGEBRAS OVER A CONNECTED

LOCALLY COMPACT ABELIAN GROUP

ALFRED B. WILLCOX

A certain class of commutative Banach algebras of functions on a
compact abelian group has been studied by G. E. Silov [6]. His algebras,
which he calls homogeneous rings, are partially characterized by the
property of containing arbitrary translates of elements. The most inter-
esting examples are various algebras of complex functions on the circle
or torus of any dimension with various differentiability properties and
algebras of continuous functions on a compact abelian group which have
absolutely convergent Fourier series. Silov's results have been extended
by Mirkil [5] to algebras over non-abelian compact groups. We present
here some results which generalize parts of the theory to translation
closed algebras over connected locally compact abelian groups. The major
problem in an extension in this direction centers about a replacement
for the type of classical Fourier analysis for continuous functions on
compact groups which has no satisfactory analog even in the abelian
non-compact case. Our approach to this problem is to recapture locally
some of the compact case when it becomes necessary. This approach
makes it necessary to add to Silov's conditions various additional assump-
tions. Nevertheless, a considerable portion of the theory survives;
enough, in fact, to include analogs of all the interesting examples from
the compact case. In § 1 we present the basic construction on which
the structure theorems of § 2 are based. In § 3 various examples are
discussed. It will be assumed that the reader is familiar with the
general theory of commutative regular Banach algebras. An account
assuming an identity can be found in [6]. The results extend easily to
algebras without identity. Such extensions can be found in [2], [3], [4],
or, for certain non-commutative algebras, in [8].

1. In this section we describe a method of constructing a Banach
algebra from the following ingredients:

( i ) a connected locally compact abelian group G,
(ii) a primary commutative Banach algebra K with identity, maxi-

mal ideal Q, and norm | |, and
(iii) a homomorphism ω of the character group G of G into the

coset of the identity in K modulo Q.
By well-known structure theorems [7, section 29] G = Ep x Gc where

Ep is the ^-dimensional vector group and Gc is compact abelian. From

Received August 8, 1958, and in revised form February 27, 1959.
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this it follows easily that G is (/-compact, i.e., G contains a sequence
{Cn} of compact neighborhoods of the identity 0 such that

( 1 ) Cn is contained in Cn+1 for all n and

( 2 ) G=\JCn.

Such a sequence {Cn} will be called a σ-covering of G. If / is a complex
function defined on G and {Cn} is a fixed ^-covering we denote by
the function defined by

t e Cn

- 0 , t$Cn.

Now suppose that for each n — 1, 2, ••• we have a linear combination
of characters Σt-ici»%*n> ^ complex, χ iw 6 G. Form the sequence {/(n)}
with / ( w ) = [Σi=iC ΐ r ιχ ί n] ( w ). Such a sequence will be called ω-Cauchy if
it is Cauchy in the metric

») - /c-)) = sup I Σ dnΐlin\in\t)
tea

is defined in the obvious way, and it is clear that

) ) I ^
Thus the complex sequence {N(fw} is Cauchy if {/(w)} is ίι>-Cauchy.
We define || {/^} || to be lim #(/<">), ^ — oo. If {/(w)} and {g«} are
^-Cauchy then {(/ - g)^} is also ω-Cauchy. {/(w)} and {ĝ w>} will be
called equivalent if || {(/ — g)w} \\ = 0. Γ/iβ resulting set of equivalence
classes of ω-Cauchy sequences {/(7°} will be denoted by KJG). In KJG)
we introduce the obvious operations α { / w } , {/(w)} + {#(w)} and {/(w)}
{g(w)}. With the above norm KJG) is clearly a normed complex algebra.

THEOREM 1.1. Kω(G) is a Banach algebra independent of the choice
of the σ-covering {Cn}.

We omit the details of the proof of this theorem. The second
statement follows readily from remark (A) below, and a more or less
standard diagonalization process shows that Kω(G) is complete.

Two remarks on the structure of Kω(G) are immediate.
(A) Kω(G) is isomorphic and isometric to an algebra of continuous

if-valued functions defined on G and vanishing at oo, the norm being
the usual sup norm. This can be seen as follows. Each element {/(w)}
of KJfi) is a Cauchy sequence in the Banach algebra of all bounded
if-valued functions on G with the sup norm. Assign to {/(w)} its limit
/ in this algebra. f(t) is necessarily continuous since any t0 e G has a
neighborhood within which /(WX^) is continuous for all sufficiently large
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n /(*)—*0 as ί-^oo since each/C7°(ί) has compact support. The mapping
{/(w)} —•*/ is clearly a homomorphism. Moreover,

{/'»>} II = lim #(/<»>) = lim sup | Σ cln[χin](">(ί)αKZ«») I
n n t

= sup lim I Σ c to[&nF^Mχ
ί re

= sup|/(ί)| .
ί

so the correspondence is an isometry.
(B) Since ω(X)(Q) = 1 for each χ e G we have | Σ cin[χtnγ

n\t) | ̂
I Σ^nCZiJ^W^ίZin)!- Thus each element of KJG) determines uniquely
a complex function f(t) such that sup \f(t) | ̂  || {/(w)} ||. The mapping
{/(7°} —>/ is a continuous homomorphism of KJG) onto a subalgebra of
C0(G), the Banach algebra of all continuous complex functions vanishing
at CΌ on G. KJG) will be said to be radical or to separate points of
G accordingly as the corresponding subalgebra of C0(G) is zero or separates
points of G.

In the sequel we shall denote a general element of KJG) by / as
suggested by (A) and the image of this element in the corresponding
subalgebra of C0(G) by /.

EXAMPLES. (1) Remark (B) and the Stone-Weierstrass theorem
show that if ω is the trivial homomorphism sending each χ into the
identity in K then KJG) - C0(G).

(2) Let G — Ex and K be the Banach algebra with two generators
1, x with x2 = 0. K is the set of all polynomials a0 + aλx, at complex,
with norm defined by \aQ + aλx \ = \ a0 \ + \ aλ \. if is primary with Q
the subalgebra generated by x. G — Eλ and a general character is
γ(t) = eίλt, λ e Ex. Define ω by ω(X) = ω(X) = 1 + ΐλ#. ω is clearly a
continuous homomorphism. A general element {/(n)} of KJG), with

fw = [ Σ W P J ( W ) . is a function f(t) =/( ί) + flr(ί)a? where

f(t) = lim Σ cpnχpn(t) ,
n p

g(t) = lim Σ cmχ'vn(t)
n p

and both limits are uniform in a neighborhood of each t0 e Eλ. Thus
g(t) =f'(t) and both/(ί) and/'(ί) tend to 0 at oo. KJG) is the algebra
.A(-Eί) °f Example 1, § 3. Various properties of KJG) are immediate
from standard theorems on Fourier series. We point out several which
play roles in subsequent theorems of this section. The homomorphism
/—>/ of remark (B) is clearly an isomorphism in this case. Moreover,
if / is any complex continuously differentiate function on Ex with
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compact support then / e KJG). This is obvious if we take for a σ-
covering the collection of intervals [—n, n\ and look at the Fourier series
for such a function on an arbitrary interval [—n, ri\ containing the
support of /. To obtain a sequence {/(w)} defining/we need only take,
for each sufficiently large n, a suitable partial sum of the Fourier series
for / on [—n, n\. Thus KJG) contains elements / such that f(t) = 1
on an arbitrary compact subset of G and f(t) = 0 on a disjoint closed
set. By Theorem 1.5 below G is the space of maximal regular ideals of
KJG) so KJG) is a regular Banach algebra. In fact, by the definition
of the norm KJG) contains a bounded sequence {/„} for which fjt) — 1
on [—n,ri] and fjt) has compact support. Such a sequence is an
"approximate identity" in KJG), i.e., lim//n = / for a n y / e KJG).
Thus the elements with compact support are dense in KJG). Finally,
any element / whose support is contained in [—n, n\ can be approxi-
mated uniformly on [—n, n\ by K-valued functions of the form
Σcpω(χp)χp(t) where each χp is constant on the subgroup {0, ±n, ±2n,
• ••}, or, equivalently, each χp is an integral multiple of 2πjn (cf. con-
dition (A) below). This, too, follows from a glance at the Fourier series
for the image / on the interval [—n,ri].

LEMMA 1.2. For any KJG) we have the following:

(a) f(t) = f(t)(Q) for any f e KJG)9

(b) KJG) is closed under multiplication by G in the sense that
for f e KJg) and X e G there exists an element χf e KJG) such that
VCh(t) - X(t)ω(χ)f(t) for all t e G.

(c) KJG) is closed under translation in the sense that for f e KJG)
and s e G there exists an element fs e KJG) such that fs(t) — f(t — s)
for all t e G.

Proof. For each t e G,

f(t)(Q) = Pkl.βώJ^MαQ)

= lim 2A»PUCw)(t) MXUQ)} = fit) ,

since ω(χin)(Q) = 1. This proves (a), (b) is clear: if f+-+ {/(w)} then
If *-* {[Z/](w)} (c) would be equally trivial if it were true that
[χ]θ)(£ - s) = χ(-β)[χj(n)(ί) for all t e G. Since this is not the case a
slight extra argument is necessary. Let / e KJG) with

as

For each n pick an integer n' in such a way that w' —> oo as n
and Cnr ZD Cn — s for all n. Then for any t e Cn
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[χ*»']Cfl#)(ί - s) = [χ ln,]«(t) χU-s) .

We may assume that | / ( ί ) | < ε for t $ Cn, n sufficiently large, so it
follows that

sup I Σtcin,χin,(-8)[χin.γ
n\t)ω(χtn,) - f(t - s) | < ε

teσ

for sufficiently large n. This means that fs e KJG).

LEMMA 1.3. KJG) is either radical or separates points of G.
This follows immediately from Lemma 1.2, parts (b) and (c) together

with the fact that G separates points of G. This lemma together with
remark (B) yield the following lemma. Again we omit the details of
the easy proof. We denote the structure space of maximal regular
ideals of KJG) by Wlκ.

LEMMA 1.4. For t e G the set Mt = {f e KJG)\f(t) = 0} is a
maximal regular ideal of KJG). Given an arbitrary f e KJG) the
image f(Mt) of f modulo the maximal regular ideal Mt is f(t). If
KJG) is not radical then the mapping t —> Mt is one-to-one of G into

Denote by TKJG) the "Tauberian part" of KJG), that is, the
closed subalgebra of KJG) generated by the elements f(t) which have
compact support. Lemmas 1.2, 1.3, and 1.4 hold for the algebra TKJG),
and we denote its structure space by 3Jtτκ. Given the conditions of
Lemma 1.4 we will identify G with its image in 3JtΓiΓ or SSJlK. We will
be interested in algebras KJG) and TKJG) primarily when they are
regular. Whether there actually exists a non-regular KJG) is an inter-
esting open question to which we will refer again in some remarks at
the end of this section.

THEOREM 1.5. Let ω be continuous. If TKJG) is not radical then
G = yj}τκ. If TKJG) is regular then the group topology in G is the
same as the ^TK'topology.

Proof. The proof of the first statement is very similar to Silov's
proof of the analogous theorem for the compact case so we omit most
of the details. If Mo e Mτκ consider e e TKJG) such that e(t) has
compact support and e(M0) = 1. Let m(χ) = [χe](M0). One shows that
m(χ) is a homomorphism of G into the complexes of modulus 1. Since
ω is continuous it follows that m is continuous. Thus by the duality
theorem m(χ) — χ(t0) for some t0 e G. This says that f(M0) = f(t0) for
any element which is a linear combination of elements χe, hence, by
definition of TKJG), for any element ge with g e TKJG). The desired
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result follows since e(M0) = 1. The second statement in the theorem
follows from standard theorems in topology. By definition of the Gelfond
topology, the 93?^-topology is weaker than the group topology on G.
Both are Hausdorff and locally compact, and if TKω(G) is regular then
an 3JίΓircompact set K is G-compact (since TKJG) has a unit modulo
the kernel of K and all elements tend to zero at co on G). Thus the
topologies are the same.

The last part of the above proof also yields the following.

COROLLARY 1.6. If KJG) is regular then G is closed in %JlK and
its topology is inherited from 9K .̂

We can now formulate a necessary and sufficient condition for any
regular TKJG) to be semi-simple. Recall that G = En x GG so that G
clearly contains a discrete subgroup D for which G/D is compact (D is
essentially the group Jn, where / is the group of integers) and a com-
pact neighborhood C of the identity such that the natural map of C
into G/D is one-to-one. TKJG)y or, more, generally, any algebra R of
continuous i£-valued functions on G, will be said to satisfy Condition
(A) if:

(1) TKJG) (or R) contains elements f(t) with f(t) not identically
zero such that f(t) has support contained in C, and

(2) every / e TKJG) (or R) with support in C is a uniform limit
on C of functions of the form Σciχi(t)ω(χ^ where the χt are elements
of G which are constant on D, i.e., each χt is a character of GjD.

Condition (A) implies that any / e TKJG) supported by C deter-
mines uniquely a function f(t) on G/D such that /(£) is an element of
KS(G/D) where ω is the homomorphism of the character group of G/D
into K which is induced by ω. Thus TKJG) is locally rather firmly
tied to the compact case.

The following lemma is stated in a form in which it will be appli-
cable both in the present discussion and later in § 2.

LEMMA 1.7. Let R be a semi-simple regular Banach algebra of
continuous functions f from G to K vanishing at co with \\f\\ —
sup I f(x) I x e G. Suppose S5Jl(R) = G and that R is closed under trans-
lation and multiplication by G in the sense of Lemma 1.2. Then

(a) for any f e R, f(t) vanishes on any open set in G on which
/(£) — f(Mt) vanishes, and

(b) R satisfies Condition (A).

Proof. The proof of (a) is exactly the proof of the corresponding
lemma (4.7,1) in [6] so we omit the details.
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Denote a general element of G by (s, t) where s = (a19 a2, , an) e

Eny t 6 Gc. For real a > 0 define S(a) = {(s, ί) | | α«1 ^ α, ί 6 Gc}. For

the discrete subgroup D we can take the direct product of the usual

discrete subgroup In of En and the identity subgroup of Gc. G/D is

then the product of an n- tor us and Gc. We may further assume that

the compact neighborhood S(a) of 0 with the usual identifications, oper-

ations and topology is isomorphic and homeomorphic to G/D. If C is a

compact subset of G containing S(a) then / 6 R is said to be D-periodic

on C if for any x e C, d e D for which x + d e C we have /(cc + d) =

/(x). Clearly any D-periodic element on C determines uniquely both a

continuous K-valued function on G/D and a similar complex valued func-

tion. R contains D-periodic functions on any compact set in G since

regularity and part (a) of the theorem provide elements whose support

is in S(a) and these can be extended to all of C by a finite number of

translations by elements of D. (The possibility of multiplying a unit

modulo the kernel of C by characters also yields D-periodic functions,

but for reasons of later applicability we prefer not to make use of this

hypothesis until later in the proof.) Suppose / is D-periodic on S(3a)

and that h e S(a). Then the element fh is D-periodic on S(2a). Let I

be the kernel of the subset S(a) of 2Jί = G and let R = R/L Denote

the image in R of a general f e R by f. The norm of / in R is

ll7ll = ll/IUw = inf||ff_||; g(x)=f(x) all xe S(a). ^Let Rp be the

closed subalgebra of R generated by all fh with / and h as above.

Clearly Rp can be represented as an algebra of continuous complex func-

tions on the compact abelian group G/D. Consider one of the generators

g = fhl and an element h in the interior of S(a). By adjusting hλ by

an element of D without changing the image fhl we can arrange to have

hλ + h e S(a). Then gh = [/ΛJΛ is D-periodic on S(2a) and its image gh

is in Rp. It is an easy exercise to show that if t denotes the image in

G/D of t e G then gh(t) = g(t — h) so ~gh is a translate of g in i?p. The

translation operator ! \ is then defined on a dense subset of Rp. We

show that 7\ is bounded. Let / be a general element of this dense

set, i.e., / = 2 ' t [ / t ] Λ with/^ D-periodic on S(3α), ht e S(a). Consider

fΰ, the image of fh as above. We must show that \\fh | | s ( o 0 ^ fc | | / | U G O

where k is independent of / . Let S = S(a) + Λ,. Clearly >S is in the

interior of S(2a). Choose a closed set T such that S(a) u S c T c

interior S(2a). It is obvious that | |/ |Uoo = HA lU We show that

IIΛ Wsw ^ IIΛ llr ^ fc llΛ lU The first inequality is clear since T z> S(α).

Pick e e Λ such that e(x) = 1 on T, e(x) = 0 outside S(2α). Then

- Λ(x) on Γ and

llΛe || = sup |Λβ(x) I (x e S(2α)) ^ || e \\ sup |/Λ(a?) \(x e S)
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by Zλperiodicity of fh on S(2a). By part (a) together with continuity

of elements of R we see that | | / Λ | U ^ sup |/Λ(#) I (# e S) so we have

J I Λ β II S | | Λ \\s II e ||. B u t | | Λ ||Γ ^ l l Λ β ||_ so | | Λ llr ̂  II e II H A IU
Hence ΓA is bounded, hence extendible to Rp where it clearly defines
the ordinary translate fa of an arbitrary f e R. If h is on the boundary
of S(a) we write h — hx + h2, hi e interior of S(a) and proceed as above.
Since all / e R are unjformly continuous K-valued functions it follows
that all elements of Rp are continuous under translation, that is, for
any / and ε > 0, \\f — fa \\ < ε for all h in some neighborhood of 0.
Thus Rp is a homogeneous space of functions in the sense of Silov
satisfying the conditions of [6, 2.7]. We can therefore conclude that
linear combinations of character of GjD are dense in Rp.

If e e R is chosen so that e(t) — 1 on S(3a) and if χt are characters
of G constant on Ό, then if g = Σci[χie'] g is in Rp and is the corre-
sponding linear combination of characters in that algebra. g(x) — Σcι

Xi(x)o)(Xi) for each x e S(a) so Condition (A) follows from the fact, noted
above, that | | / 1 | ̂  sup \f(x) \ (x e S(a)).

THEOREM 1.8. Let ω be continuous. If TKJG) is regular then it
is semi-simple if and only if it satisfies Condition (A). If KJfi) is
regular then it satisfies Condition (A) if and only if it is semi-simple
and <mκ = G.

Proof. Suppose TKω(G) is regular. Necessity of the condition is
contained in Lemma 1.7 in view of the results of Theorem 1.5 and
Lemma 1.2. Sufficiency follows readily from the fact that any KJG)
with G compact abelian is semi-simple [6, Theorem 4.6]. Suppose
/ 6 TKJG) and f(t) = 0 for all t e G. Pick e e TKJG) with support
contained in C and with e(t0) Φ 0 (by Condition (A)). Then ef is sup-
ported by C so ef(t) e KJG/D) and ef(t) = 0 for all t. Thus ef(t) = 0
for all t so that ef(t0) = 0. e(tQ) has an inverse in K since it is contained
in no maximal ideal of K so we must have f(t0) = 0. Thus, for each
s 6 G, /β(ί0) = 0 which implies that / = 0. The statement for KJG)
follows by the same argument if we observe that we have actually
proved that Condition (A) is equivalent to the vanishing of the kernel
of G. For TKJG) this is semi-simplicity since G = Sΰlτκy For KJG)
the vanishing of this kernel is equivalent to semi-simplicity plus the
condition that G = Wlκ, since we know by Corollary 1.6 that G is closed
in fflΐ^.

THEOREM 1.9. Let ω be continuous. If TKJG) (KJG)) is regular
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and semi-simple then it is an algebra of type C.1

Proof. Using part (a) of Lemma 1.7 one easily proves that the set
ί/l/(*o) = 0} is a closed primary ideal. It is immediate, then, that the
norm in Kω(G) is smaller than the type C norm. But the opposite in-
equality always holds.

Before turning to some structure theorems based on the above
construction we mention several questions concerning the algebras TKJG)
and KJG). The first one concerns the connectivity assumption on G.
The results in this section hold in slightly more generality. The de-
finitions and most of the early results require only that G be σ-compact.
Condition (A), Lemma 1.7, and Theorem 1.8 require only that G be
generated by a compact neighborhood of the identity (so that G — En x
Gc x Gd, Gd discrete [7, section 29]). Full use of connectivity is used
only in the next section in the proof of Theorem 2.3. Whether con-
nectivity could be dropped in favor of, say, (/-compactness is an open
question. Further open questions concern some of the separation con-
ditions we have employed. Does there exist a radical KJG)Ί Does
there exist a non-regular KJG)Ί Does a KJG) exist for which TKJG) Φ
KJG)Ί These questions are closely related to the question of regularity
of KJG) in the compact case, and a complete answer to this question
is not known. Silov has sufficient conditions for regularity of KJG) for
compact G [6, section 5.8], but no necessary conditions. In case G = En

and K is finite dimensional there is some evidence which suggests that
TKJG) is regular and equal to KJG). This is true, for instance, for
dimension ^ 3 , but the proof requires a classification of primary algebras
of these dimensions. This approach is not promising in the general
finite dimensional case, however, since a classification of all finite
dimensional primary algebras is not known. (Such a classification would
involve a classification of finite dimensional nilpotent algebras, a more
familiar unsolved problem.) In case G — Ex it is not hard to exhibit
sufficient conditions for regularity of TKJG) or KJG) by reducing to the
compact case where Silov's conditions can be applied. We state one
such result without proof. If G — Ex we may identity G with E19 the
circle group C with Eλjl(p) where I(p) is the subgroup of integral
multiples of py p a positive integer, and C with the group of integers.
The homomorphism ω of Ex into K induces, for each p, a homomorphism
ωp of C into K: ωp(n) — ω(njp). If Kω (C) is regular for each p =
1, 2, 3, then KJEλ) and TKJEλ) are regular.

1 A commutative regular Z?-algebra R is of type C if its norm is equivalent to the
norm | | | / | | | = sup | | / | U , where M ranges over the structure space of maximal regular
ideals and ||/||jif is the norm of the image of / in the difference algebra RJJ(M) (see
section 2).
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2. In § 1 we have seen that under certain conditions algebras
TKJfi) or KJfi) are semi-simple commutative Banach algebras of type
C closed under multiplication by G and under translation. In this
section we consider the converse problem.

We follow Silov in calling a Banach algebra R homogeneous over G
if R satisfies the following conditions: R is a semi-simple regular com-
mutative Banach algebra whose space of maximal regular ideals is a
locally compact abelian group G, R is closed under translation, the norm
in R is translation invariant, and the elements of R are continuous under
translation in the norm of R (it is sufficient to assume that R contains
a set of generators continuous under translation). Further, in case G
is not compact, we assume that R is Tauberian in the sense that the
elements with compact support are dense in R.

For t0 e G let the corresponding maximal regular ideal be MtQ. MtQ

contains a unique minimal closed primary ideal J(tQ) which can be
characterized as the closure of the set of all / e R such that f(t) = 0
in a neighborhood of t0. (If R were not Tauberian the above / would
have to be assumed in addition to have compact support.) Also, since
R is Tauberian, it is easy to see that an element e with compact support
for which e(t) = 1 for all t in a neighborhood of tQ is a unit modulo

Later in this section we will make use of the extensions to algebras
without unit element of the theorems on regular commutative Banach
algebras contained in [6, section 3]. As far as we know, some of these
generalizations are not available in the literature (in particular, the
results of sections 3.5-3.9 on algebras of type C). However, they are
all routine, and under the Tauberian condition the facts mentioned above
make Silov's proofs applicable almost without change.

If 0 is the identity element of G let K = R/J(0). K is a commuta-
tive primary Banach algebra with identity and maximal ideal Q — M0/J(0).
As before, denote the norm in K by | |.

LEMMA 2.1. If R is a homogeneous algebra over the locally compct
abelian group G then for all s e G, RjJ{s) is isomorphic and isometric
to RIJ(0) = K, and R can be represented as an algebra of continuous
K-valued functions on G vanishing at co.

Proof. The isomorphism is / + J(0) —>/β + J(s). Clearly it is a
homomorphism of if onto RIJ(s). It is an isomorphism since by definition
/ e J(0) implies fs e J(s). By in variance of the norm in R under
translation it is immediate that | | / | | 0 = | | / s 11* where \\g\\t denotes the
norm of the image of g in R/J(t). For / e R, t e G let f(t) be the
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image of / under the mapping R —> RjJ{t) —* K. The collection of func-

tions f(t) is the algebra isomorphic to R. Since \\f\\ = \\f\\ ^ sup | /( ί) |

(t e G), continuity of the functions / follows from continuity of the

elements of R under translation. Since R is Tauberian it is an easy

exercise to show that each f(t) vanishes at oo.

LEMMA 2.2. Let R be homogeneous over G and let Rf be the set
of all elements of R with compact support. Suppose Rr is closed under
multiplication by G, i.e., for each f e Rr and χ e G there exists an
element χf e Rr such that χf(t) = χ(t)f(t) for all t. Then

(a) R determines a homomorphism ω of G into the coset of 1 in
K = R/J(0) modulo Q = MQIJ{$),

(b) for any f e R and any χ e G for which g = χf exsists in R,

g(f) = X(t)ω(X)f(t) for al1 t e G> and
(c) if the mapping χ —* χf is continuous then ω is continuous.

Proof. Pick e e R with compact support and with e(t) = 1 on a
compact neighborhood C of 0. As we have remarked above, e is a unit
modulo J(0). For χ e G consider the element χe. If ω(χ) denotes the
image of χe in Rj J(0) = K the homomorphism is χ —> ω(χ). Clearly
ω(χ)(Q) = l. Since, for χlf χ 2 e G , [χ^e-χ^ χ2e](ί) = 0 in a neighborhood
of 0 and outside a compact set we have ω{χΎχ^) = a)(χ1)ω(χ2). A similar
argument shows that ω is independent of the choice of C and the choice
of e. Let h = χe, then h(t) — χ(t)e(e) — χ(s)χ(t — s)e(t — s) provided both
t and t — s are in C. If s is in the interior of C then let U be a
neighborhood of 0 such that U c C, ί / + s c C then the above holds
for all t 6 Ϊ 7 + s. Thus /̂  — χ(s)feg € J(s) so via the mapping R—*
R/J(s) -» ϋΓ we have h-^h + J(s) = χ(s)Λg + J(s)-+χ(s)h + J(0) = %(s)ω(χ),
this is, Λ(s) = %(s)α>(χ) for s in the interior of C. The equality extends
to all of C by continuity. Now let g — χf for a n y / e i? for which the
product is defined. Fix t0 e G, let C be a compact neighborhood of 0
containing £0 in its interior, and consider the corresponding e and h = χe.
It follows easily that g(tQ) - ge(t0) = hf(tQ) = χ(tQ)ω(χ)f(tQ). Part (c) is
obvious.

Two Banach algebras Rλ and R2 with the same structure space 3JΪ
will be called locally isomorphic in case for each t e 2JΪ there exist
homeomorphic neighborhoods E7Ί and ?72 of ί such that every element
of Rx restricted to U1 is carried by the homeomorphism into an element
of R2 restricted to U2, and conversely. Two algebras of ϋf-valued func-
tions on G will be called locally K-isomorphic in case the analogous
condition holds for the K-valued functions.

THEOREM 2.3. Let R be a homogeneous Banach algebra over a
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connected locally compact dbelian group. If R is of type C then R is
closed under multiplication by G. R can be represented as a closed
subalgebra of TKJG) where K = RjJ(0) and ω is the homomorphism
given in Lemma 2.2. TKJfi) is semi-simple and R and TKω(G) are
locally K-isomorphic. If ω is continuous then R and TKJfi) are
locally isomorphic.

Proof. Several remarks on Lemma 1.7 and its proof will produce
a large part of the proof of the present theorem. In the first place,
we know by Lemma 2.1 that R satisfies all the conditions of Lemma
1.7 except closure under multiplication by G. This hypothesis is ex-
pendable, however. It was needed in the lemma only because we lacked
the machinery for an intrinsic construction of the homomorphism ω.
The proof of 1.7 shows (without using the hypothesis in question) the
existence in Rp of a generating set X of characters which distinguish
between points of GjD. Since the set S(a) is the structure space of
R and χ(t) Φ 0 for all t, it follows from standard Banach algebra theorems
that with each χ e X R contains its complex conjugate χ-\ But the
only subgroup of (G/D)~ which separates points of G/D is (G/D)~ itself
(by Stone-Weierstrass and orthonormality of (G/D)^) so R contains all
characters of G/D. Thus for any character χ which is identically 1 on
D, R contains an element which is χ(t) on S(a). Furthermore, in the
proof of 1.7 more general "rectangles"

S(ξ19 ξ2, ••-,£») = {(β, ί ) e G I I a, \ ̂  ξi91 e Gc} ,

with the obvious corresponding discrete subgroups D, could have been
used in place of the sets S(a). Since G = En x Gc [2, 35A] it is clear
that any χ e G is identically 1 on some such D. It follows that for
any χ e G there exists a set S(ξu ξ2, , ξn) such that R contains a
sequence fk, k = 1, 2, , with fk(t) — χ(t) on S(kξ19 kξ2, , kξn). Since
this latter collection of compact sets is a σ-covering of G we conclude
that for any χ e G and compact set C c G R contains an element which
is χ(t) on C. Any element of R with compact support can therefore
be multiplied by a character, so Lemma 2.2 applies and the homomor-
phism ω is defined. The second part of 2.2, together with the fact that
R is of type C, implies that if fk—>/, fk with compact support, then
{ifk} is Cauchy and χfk —> χf. Thus R is closed under multiplication
by G. Conclusion (b) of 1.7 implies that R is a subalgebra of TKω(G).
For it is clear that if {Cn} is any ^-covering there exist discrete sub-
groups Dn such that the mapping Cn —• GjDn (compact) is one-to-one and
Condition (A) holds for each pair Cn9 Dn. If / 6 R, f' = lim/n, with the
support of /„ contained in Cn, and if fn(t) is approximated to within
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\\n uniformly on Cn by a function / ( w ) of the form Σciχi{t)ω(χ)1 then
clearly / corresponds to the element {/(7°} of Kω(G). Since R is
Tauberian it is in TKJG), and R is closed since its norm is the KJG)
norm. The local if-isomorphism and resulting semi-simplicity of TKJG)
follow from Lemma 2.2 and regularity of R, and the final conclusion
follows from Theorem 1.5.

THEOREM 2.4. Let R be a homogeneous Banach algebra of type C
over the connected locally compact abelian group G with R closed under
multiplication by G. Suppose that for some σ-covering {Cn} of G there
exists a bounded sequence {en} of elements of R with compact support
such that en(t) = 1 on Cn. Then R = TKJG) = KJG).

Proof. By Theorem 2.3 we need only show that R D KJG). Let
k = sup || en || and suppose that en(t) vanishes outside Cn,. Let {fCn)}
be any ω-Cauchy sequence of linear combinations of characters defining
an element of KJG). Consider the sequence {fCnΊen} in R. Choose
e > 0, then since {/(w)} is ω-Cauchy it follows from Lemma 2.2 that
there exists a compact set Cs such that for sufficiently large n | finΊen(t) | <
εk for t $ Cε. It is also clear that if m and n are sufficiently large
(m > n) then \finΊen{t) - fCm^em(t) | < e for t e Cn. Thus, for sufficient-
ly large m and n

II/°*X -f^em\\< max(ε, 2fcε) ,

s o {/cn'>en} is Cauchy. Its limit is the element we seek.

3» In this section we exhibit three examples of algebras of the
type discussed above.

(1) Let G = Ex and R — Dm(E^ be the algebra of all complex
functions / on Eλ which have m continuous derivatives all of which tend
to zero together w i t h / a t oo. | | / | | == sup ΣΓ-ol/ϋ \fCi)(t) I (-«> < ί < . ~ ) .
It is easy to verify that %ίl(Dm) = Ex and that J(t) = {/ e Dm | / ( i ) ( ί ) = 0,
i = 1, 2, , m}. DTO is locally isomorphic to Dm[a, 6], which is thorough-
ly discussed by Silov and to Dm{C), C the circle group [6], DJJ(t0) is
easily seen to be an (m + l)-dimensional " truncated " polynomial algebra
generated by images of functions which are (t — ίo)

fc, k = 0,1, •••, m in
a neighborhood of ί0. i)^ is of type C; indeed, the norm of / modulo
J(t0) is exactly Σ 1/i! |/c o(^o) | It is also clearly closed under multipli-
cation by G. Since each fil){t) —> 0 at oo it is uniformly continuous on
£Ί. Consequently, for each f e Dm \\f — / β | |-->0 as s—> 0. Dm is
regular and Tauberian by easy proofs. Finally, it is clear that there
exist en e Dm with \\em\\ constant and en(t) — 1 on [—n, ri], ejt) = 0

outside [—W — 1, w + 1]. This is true for any σ-covering of Ex provided
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that the distance between Cn and the complement of the support of en

is bounded away from zero. Thus Dm — KJG). Here K — {α0 + aλx +
a2x

2 + ••• + ocmxm I at complex, xm+1 = 0} and for f e Dm f(t) =/( ί ) +
f'(t)x + + (l/m!)/Cm)(ί)xm. ft> is given, then, by em -*1 + iXx +
+ (l/ml)(iX)mxm and is clearly continuous.

(2) Let G be any direct product of copies of Eτ and the circle
group C. One can define a wide variety of algebras on G analogous to
Dm(E^). For the circle and torus examples have been discussed by Silov
[6]. We illustrate by considering the algebra Dθ

m (— πβ <g θ <£ πβ) of
all continuous functions on the cylinder Exx C which have m continuous
directional derivatives in the direction making an angle θ from the
generating circle C, all vanishing at oo. Dθ

m can easily be seen to be
homogeneous of type C over E1 x C and to have a bounded set of units
modulo a ^-covering of Ex x C. Thus Dθ

m = Kω(E1 x C). It is easily
seen that K is the same (m + l)-dimensional algebra which occurred in
(1) and that ω is given by

(i/&!)[(ΐλ)fc cos 6> + (w)* sin

All DTO, w fixed, are locally isomorphic. If we call a curve in Ex x C
which intersects each generating circle in a constant angle a an α-curve
then it is clear that given non-zero a Φ β there is a homeomorphism of
G onto itself sending each α-curve into a /3-curve and each /3-curve into
an α-curve, but that no homeomorphism can send a π/2-curve into a
0-curve. From this it is easy to see that all D9

m, θ Φ 0 are isomorphic
to each other, but that D°m is not isomorphic to D9

m, θ Φ 0.

In the next example we introduce the C-completion Rc of a non-
type C Banach algebra R, that is, the completion of R relative to the
type C norm. The general situation is somewhat as follows: Silov has
shown that if Rc is semi-simple then it is an algebra of type C, and
he has examined the connections between R and RG for regular com-
mutative Banach algebras ([6] contains an account assuming an identity,
and the results generalize easily to algebras without identity.). If R is
a homogeneous algebra over a compact abelian group Rc is automatically
a KJG) and is therefore semi-simple. No such clear cut answers appear
to be available in the non-compact case, but given various additional
bits of information about R it is possible to obtain information about
Rc from the results in § 2. The algebra of the next example is one for
which such additional bits are available.

(3) Let G be a (/-compact abelian group, R the Banach algebra of
Fourier transforms / of elements / of Lλ{G). If / e R with f(t) —

then for | | / | | we use the Li-norm of/. Multiplication in R
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is pointwise and R is isomorphic and isometric to L^G) with convolution
as multiplication. Several properties of R are immediate or well-known.

(a) G is the structure space of R and R is semi-simple, regular
and Tauberian [2]. If / e LX{G) and h e G then the function χ(h)f(χ)
is also in L^G). But this function corresponds to the function fh(t) =
f(t - h) in R so

(b) R is closed under translation. Clearly | | / | | = \\fh ||. It is easy
to verify that 11 / — /,J | tends to 0 at h = 0 so

(c) the elements of R are continuous under translation. If / e R
and χ0 e G then χo(t)f(t) is the Fourier transform of the translate
/,0 e L^G), so

(d) R is closed under multiplication by G. Moreover, by a well-
known theorem on the Haar integral, if / and e are in LX(G) then / * e
can be ^-approximated by linear combinations of translates of e. In R
this means that

(e) Re is generated by Ge. Finally

(f) 11%/II = 11/11 for all / e R, χe G by an easy proof. From
properties (a)-(d) it can easily be seen that Rc satisfies all the conditions
of Lemmas 2.1 and 2.2 with the possible exception of semi-simplicity.
The fact that for any unit e modulo a compact set of G Re is generated
by Ge enables one to show directly that R° c TKJG) the type C con-
dition on R and the connectivity condition on G were used in Theorem
2.3 essentially to establish property (e). Property (f) (or, more generally,
\\χ±nf\\ = o(n) for all χ, /) implies that TKJfi) = C0(G). For if e is
such that χe -> ω(χ) in K then | ω(χ) | ^ || χe ||. Thus | ω(χ±n) \ = | ω(χ)±n \
is o(n) and a theorem of Gelfond-Hille [1, p. 715] shows that this implies
in a primary algebra that ω(χ) — 1. Example 1 of § 1 completes the
proof. Thus RG is semi-simple, hence homogeneous of type C so by
Theorem 2.3 RG is locally isomorphic to C0(G). By theorems of Silov
[6; 3.5, 3.9] extended to algebras without identity R/J(0) is isomorphic
to the corresponding difference algebra in C0(G), but this is the complex
field. Thus J(0) and hence each J(t) is maximal. This provides a proof
of the well known theorem (first proved by Beurling and Segal for the
real line and then by Kaplansky in general) which says that in the
group algebra of a locally compact abelian group closed primary ideals
are maximal. Finally, if G is connected then Rc = C0(R). For R contains
elements with compact support for which f(t) = 1 on a compact set and
0 5g f(t) <̂  1 for all t. Since J(t) = Mt this says that the type C norm
of / is 1, so Theorem 2.4 applies to Rc.
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CORRECTON TO "EQUIVALENCE AND

PERPENDICULARITY OF GAUSSIAN PROCESSES"

J. FELDMAN

It has been kindly pointed out to me by D. Lowdenslager that, as
it stands, the argument in [1] only works when L2(μ) and L2(v) are
separable. In particular, the theorem of von Neumann from [2], which
is used there, only holds in separable Hubert spaces. Our theorem
nevertheless holds in the non-separable case; an argument will be
supplied here enabling one to go from the separable to the general
case. We retain notation and terminology of [1].

For any countable subset C of L, let S% be the σ-subalgebra of
Sf generated by C, Lc the linear subspace of L spanned by C, and μc,
vc the restrictions of μ, v to &ί. \JC 5c is a tf-algebra contained in
£fy and, since each x e L is in some Lc, each x in L is measurable
with respect to \Jc £%. Therefore £s = \JC £ξ. Now, suppose, under
the assumptions of the theorem of [1], that μ and v are not equivalent.
Then there is some set in £f with ^-measure 0 and v-measure > 0 (or
vice versa). This set is in some &c. So μc and vc are not equivalent.
By the separable case of the theorem, they are mutually perpendicular,
i.e., there is some set in &ί with //-measure 0 and v-measure 1. Thus
μ and v are mutually perpendicular.

Next we show that μ ~ v implies that the correspondence x" -^-> xμ

between equivalence classes of functions has the property that T extends
to an equivalence operator between the linear subspaces Lμ and Zv of L2 (μ),
L2{v) generated by L. Assume, then, that μ<^v. By using the separable
case, we easily see that Tand T"1 are bounded. An argument on p. 704 of
[1] still works to show that the extension of T to an operator from L^ onto
Zv still has the property that, given ξ in LM there is an ^-measurable

x such that xμ = ξ and xv == Tξ. Write Γ* T as [\d F(λ). Let En =

F(l + —) - F(l - —) , n = 2, 3, 4, . . . Let E = fin En. I now assert

(I — E) Lμ is separable. For otherwise (/ — En) Zμ would be inseparable
for some n, and one could therefore find a countable orthonormal infinite

set £i, | 2 , . . . of elements of Zμ for which ||(Γ* T - J) |J | ^ — \\ξJi\, all i.
71/

Let H be the Hubert space spanned by the ξu Let L be the set of

^-measurable functions x on S such that xμ e H. Let £? be the σ-algebra

spanned by them. Let μ, v be the completions of μ and v, restricted to

S?% Then the Hubert spaces £ j , f^ are isometric to H and T(H),
1295
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respectively, in a natural way. Therefore they are separable, and, since
μ ~ v, the operator T induced by the correspondence xμ > xv is an equival-
ence operator. But T is unitarily equivalent to T\H, and T\H was con-
structed so as not to be an equivalence operator, giving a contradiction.

To show T is an equivalence operator, it suffices to show this for
T\(I— E) Lμ.. Since (I — E) Zμ is separable, we can reduce to the
separable case exactly as in the last five sentences of the previous
paragraph, with (/ — E) L^ playing the role played there by H to show
that T is an equivalence operator.

Finally, suppose that, for x e L> x* = 0 <Φ=Φ> x" = 0, and that the one-
to-one operator T from Lμ to Lv induced thereby extends to an equiva-
lence operator from Lμ to Zv. It must be shown that μ ~ v. If μ is
not equivalent to v, then as shown in the first paragraph (and using
the notation established there) there is some countable subset C of
L such that μc and Vc are not equivalent. But the operator Tc induced
by sending xμ to x" for x e Lc is precisely the restriction of T to those
elements in L^ which come from Lc. Now, the restriction of Γ to a
subspace is again an equivalence operator, so Tc extends to an equiva-
lence operator from (Lc)μ to (Lc)y, which contradicts the separable case
of the theorem.

Also, in reviewing [1], E. Nelson noticed that Lemma 1 is mis-
stated. It should read "positive" instead of "self-adjoint/' and, in
(b), "A2 - 7" rather than "(A - I)\"
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