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1. Introduction. We are concerned with propositions of four types
(1.1-1.4) about a commutative Banach algebra A and its various commu-
tative Banach algebra extensions B.

1.1 TPr. If {B,:iel} is a family of extensions of A, then there

18 an extension B of A and topological isomorphism {f,:%1 € I} where
fi(B)) € B and f(a) =a for a € A.

Let us call [normally] solvable over A a system 2 of polynomials
over A (or more generally, multiple power series elements) such that
there is an extension B of A in which there is a system of elements
[whose norms do not exceed 1 and] whose substitution into Y reduces
each member equal to 0.

1.2 Sol. Let {3,:% € I} be a family of solvable systems such that
no indeterminate occurs in more than one system. Then ¥ = 2, 1s
solvable.

A system _# of ideals is removable if in some extension, each
ideal J of 7 generates the ideal (1).

1.3 RId. Let {J;:% € I} be a family of removable ideals. Then
it 1s a removable system.

An element ¢ € A is called [normally] subregular if it has an
inverse [of norm < 1] in some extension.

1.4 Inv. Let {c,:7 e I} be a family of subregular elements. Then,
i some extension, each ¢, has an inverse.

Our findings on such propositions is that TPr is false, and that
Inv is true if I is finite, but false if a natural norm restriction is
brought in. By the finite form of 1.1-1.4 we mean that in which I is
finite. By the normal form we mean the statements obtained if in
(1.1) the f; are required to be isometries, if ‘solvable’ in (1.2) is replaced
by ‘normally solvable’, and ‘subregular’ in (1.4) by ‘normally subregular’.

This gives four forms of propostions of each type:

normal (no qualification)

(1.5) . .
finite normal finite .

For each type (1.1-1.4), there are rather obvious implications in
(1.5), namely to the right, and downward. (To see this, one need only
observe that ¢ is subregular if and only if \¢ is normally subregular for
some A € C, ete.). For each form (1.5) there are implications among the
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types:
TPr = Sol
1.6) / U
RId Inv .

(For example, the diagonal rests on this observation: if J is remov-
able then 1 — 52, — -+ — 7,2, is solvable for some j,, ++-,7, € J; and
solving the latter removes the former.) We present our results on
these sixteen concetvable propositions in this diagrammatic way. In
each quadrant of (1.5) imagine a cluster of four symbols as in (1.6).
Affix a dagger if the proposition is false, a star if true, and a reference
to the crucial theorem. Unsettled cases have a question mark.

Pt t ?
? t ? ?
1.7
f t t6.2)
? T (3.2) ? * [1, 3.8]

Besides this there is a small positive result (7.1) which is a special
case of RId.

Further results not included in the scheme (1.7) are as follows.

The cortex (class of non-removable maximal ideals) is sometimes
greater than the Shilov boundary. This is based an a class of algebras
of Shilov, whose theory we have felt obliged to sketch (sec. 4)

For completeness we have considered also the case where A has
the sup-norm (that is, |la]| = sup |&(a)|, & ranging over all complex
valued homomorphisms of A.) There Sol holds (6.1): There is one ex-
tension which normally solves all normally solvable systems. Necessary
and sufficient conditions for TPr are given (5.3)

For some subalgebras A of the [, -algebra B of a discrete abelian
group, B provides inverses of norm 1 for all normally subregular ele-
ments (3.5, 3.6).

Section 2 provides more careful definitions of extension, and shows
that when Sol can be proved, then the solving algebra can always be
taken as a quotient-algebra of a power-series algebra.

2. Analytic extension. In order to save space we shall list here
properties of a Banach algebra which we shall usually, if not always,
require.

(2.11) It s a Banach space.

(2.12) It is a linear algebra over the complex numbers C, with unit 1.
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(2.13) [labl] < llall lloll, (L]l =1.

(2.14) It is commutative.

Let A be such an algebra. Let I be a set (to be used as indices).
We want to define the commutative Banach algebra A(X) generated by
the family X = {x,:7 € I} and A. Because a norm has to be defined,
we need some details. First we define the free commutative semi-group
S(X) with unit generated by X. S(X) is the set of all functions from
Ito {0,1,2, ...} which vanish at all but finitely many places. The
operation is addition. We write it multiplicatively, and use the notation
(2.2) AR A
for the element which has the value £, at 7, (fj=1,---,%) and is 0
otherwise. The function which is 0 everywhere is written as 1. A
change in the order of the factors in (2.2) does not produce a different
element, of course. Now A(X) is the set of functions f from S(X) to
A such that

(2.3) = SX) I I < oo
We may let

axf; e wf:
stand for the element of A(X) which has the value a € A at the element
2.2 of S(X), and the value 0 elsewhere. We write a for al (1 € S(X)).
Then each f has the form

(2.4) £ =3ak,
where each &, has the form (2.2), and
(2.5) A1 = 35 llall -

Clearly the element of A(X) can be added and multiplied, being func-
tions with values in A. The algebra A(X) is easily seen to satisfy the
conditions 2.11-2.14. It clearly ‘‘contains’’ the algebra A[X] of poly-
nomials in the indeterminates with coefficients in A.

If I, is a subset of I, and X, is the corresponding system of inde-
terminates, then A(X,) can be canonically embedded in A(X). The al-
gebra A(X) is not very interesting in itself. For example, its space of
multiplicative linear functionals of the form

A(4) x Dt
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where 4(A) is the corresponding space for A (compare [2, 4.1])

A Banach algebra extension of A is an isometric isomorphism of A
onto a subalgebra A, of a Banach algebra B where the unit of A, is
that of B. When possible we abbreviate this by saying that B is an
extension of A, and pretend that A c B.

A system X = {y,:k ¢ K} of elements of A(X) is called normally
solvable over A if there is a Banach algebra extension B satisfying
2.11-2.14 and if for each ¢ € I there is an element b, € B with ||b;]| < 1
such that if b, be substituted for «, in v,, then 0 results for each k.
(If X contains any x, not appearing in any v,, the corresponding b;
need not be expressly exhibited. It may be chosen as 0 € B.)

For an example, see (2.9) below.

A natural attempt to ‘“solve X normally’’ is to form the closed

ideal J generated by Y in A(X), and form
(2.6) A; = A(X) mod J

The norm in Ay is the canonical one for residue-class algebras [5, p. 14].
The main theorem of this section (2.8) is that this construction is
always successful when Y 4s normally solvable. (Obviously, if the
construction is successful, ¥ must be normally solvable.)

The only possible obstacle to this approach is that, whereas A(X)
is a Banach algebra extension of A4, As might not be, because norms
of elements in A c A(X) might be diminished when A; is formed
(compare [1, pp. 537-8; 2, p. 204.])

2.7 PROPOSITION. As is a Banach algebra extension of A and is
normally solvable if, for each finite collection of polynomials p;, ««-, v,
e AX) and indices j,, +++, J., and each element a € A, the inequality

(2.71) lall < lla — puvs, — -++ — 2ty |

holds.

The norm on the right is the one mentioned in (2.5). The proof
of (2.7) may be omitted. It suffices to deal only with polynomials p,
in (2.7) because there are dense in A(X).

It would be a waste of effort to have X contain any elements not
involved in X, in essaying to verify (2.71).

The converse (2.7) is valid and we thus arrive at the following.

2.8 THEOREM. JX s mnormally solvable if and only if (2.71)
holds for all a, p,, +++, D, as specified in (2.7).

To see the ‘‘only if’’, suppose B normally solves the system X,
containing elements {bl}ie,O where I, are the indices of the elements
actually appearing in 3, such that v,6) =0 for all j. Then we can
set up a homomorphism
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h:AX)— B

wherein i(x,) =b,, © € I, (x)) =0, © ¢ I,, and h(a) = a for a € A (re-
garded as a subalgebra of A(X) as well as of B.) Clearly ||h(f)I| < l|f]l.
The ideal J is contained in the kernel of %, because A(y,) =0 for all
v; € ¥. We thus arrive at a homomorphism %* of bound at most 1
[5, 7D] of As into B. Therefore the natural image a + J of an element
a from A has a norm (in A4s) not less than the norm of its image in
B. The latter is a itself, so that |ja|| < |l + J||. This implies (2.71),
so that (2.8) is shown.

The necessary and sufficient condition given by (2.8) can in special
cases be replaced by a simpler one.

2.9 THEOREM. Let ¢, d € A, and let n be a positive integer.
Then
c=dx" [lo]| = 1

can be solved in some extension algebra if and only if, for every
a € A,

llcal| = lldall .

The proof, which resembles [1, sec. 3], is simple and may be
omitted.

An illustration of the two-way utilization of (2.8) is the following.
2.91 THEOREM. Let ¢ € A, and let pt > 0. Then
c=e l2l] <

can be solved in some extension algebra if and only if for each v > p,
and positive integer N, there is an extension im which for some n

c=(1+%)” n=N, Iyl <v,

Proof. It is evidently a matter of showing that ¢ — e** is normally
solvable precisely when ¢ — {1 + (¢xd/n)}™ is normally solvable for
infinitely many =, whenever 8 > 1. The former can be solved in the
latter circumstances because the class of normally solvable elements of
A(x) is closed, by (2.8). Conversely, if the latter is normally solved with
z in some extension algebra B, and n > u8, then (letting A = y/n) take
y = A"! log (1 + Mx8), and obtain e* = ¢, with |ly|| £ —)! log (1 — A9).

3. The union of normally solvable systems. In (1.2) we included
the condition that the solvable families whose union is to be formed
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involve distinct collections of indeterminates. This is natural, because
while each of the one-member families

(3.1) {1 -2}, {1— 2z}

is normally solvable over any algebra, the union is never solvable. As
indicated in § 1, we do not know if this condition is enough to make
even Sol (finite) hold, but we shall now show that Sol (normal, finite).
is not generally true. Our example has the special merit of dealing
with systems whose solution consists in constructing inverses, so that
it destroys Inv (normal, finite) as well, as promised by (1.7).

3.2 THEOREM. There exists a Banach algebra A (2.11-2.14) with
elements p, q over which

(3.21) 1—qx
and
(3.22) 1—py

are normally solvable, but

(3.23) {1 —qx, 1—py}
18 not normally solvable.

Proof. The algebra A is isomorphic as a topological algebra, to
the algebra of absolutely convergent power series on the unit disc. In
order to reserve letters such as z for possible use as indeterminates, we
use p for the ‘‘complex variable’’. Select a real number «, a > 1.
For a € A, say,

(3.24) =N+ MNP+ NP>+ oo
we define
(3.25) lall = o] 4+ a(Pha] + N + +20) .

The operations are the usual addition and multiplication of series.

(2.11-2.14) are easily verified. (In fact, this algebra is a simple speci-

men of a ring of Shilov’s type K..,» (§4) where {a,} = {1, a, a, ---}).
It is clear that

(3.26) lpall = |lal| (@ €4).
Moreover, for 0 < 8 < 1 we also have

(3.27) llgal] = llall

where

(3.28) g=01-9)"1—3dpp.
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To see (3.27), consider that
1 — 8p)pall = |lpall — 8llp%all .
Now
lp’all = llpall, so [I(1 — ép)pall = llpall (1 — &) = (1 — d)llall ,

by (3.26).

By [1, 3.5] each of the one-element systems
(3.29) {v} = {1 —qzx},
(3.30) {rd = {1 — oy},

is normally solvable (and, the combined system is solvable [1, 3.8]).
We submit that the following is an identity in z, ¥ :

(3.31) (1 — )1 — 8p)" = & — (1 — 8)y + n[d(L — 8)(L — 8p) + (1 — d)y]
+ 7l— (1 — op)] .

This is readily verified by substituting (3.29), (8.80), and (8.28) into
(3'31[);et us now suppose {v,, 7.} is normally solvable. Let a = 6(1 — 9)
(1 — 8p)~*. Then, from (3.31)

a— ] =yl l=20—-Q0-8y.
Comparing this with (2.71), we see that

lell < lle =1 —=8yll=1+@1-29),

where we have used (2.5) for the norm in A(x,y). Now a= 51 — §)
1+ 8p+ &*+ +-+) and the norm of this is given by (3.25):

||a‘“:8(1'—8)(1+8a+82a+ "')28"’82—“82“.
It thus appears that
(3.32) a<1+42(1 -85,

Thus the desired counterexample is possible. In fact, if a > 1
then some & will make (8.32) false.

The next proposition shows how plentiful these counterexamples
really are.

3.4 THEOREM. Let A be any algebra satisfying (2.11-2.14), contain-
g an element ¢ which is not regular but is no topological zero-divisor.
Then A contains p, q and can be given an equivalent norm such that
{1 — gz}, {1 — py} are each normally solvable, but {1 — qx, 1 — py} is not.
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Proof. Select a complex-valued homomorphism & of A such that
&) = 0. We may assume that [lac|| = ||e|| for all a € A. Select any
d such that 0 < 8§ < 1. I now present the p and ¢: p = 8¢, p = 3B¢
(1 — &¢) where 8 = ||(1 — &¢)7'||; and the new norm

(3.41) la| = [&a)| + alla — &) (a>1).

Here « is a parameter to be fixed later. It is not hard to see that
(3.41) satisfies (2.11-2.14). Furthermore,

(3.42) lla|| < la| < 3a|lal| .

Since &(c) =0 we have |3ca| = a||8cal| = 3ala|| > |a|. It follows that
1 — 3¢y is normally solvable. It is similarly established that 1 — 33¢
(1 — d¢)x is normally solvable.

Now suppose some extension B of A (A with the |--| norm, be it
understood) had elements x, ¥y of norm not exceeding 1 such that

Then 3Bc(l —dc)x =1, ey =1.
Bl —38c)x =1y, Bxr —y = Rdecx .
Now 3Bcx = (1 — 8¢)~* so we have
8(1 — 8¢)* = 3Bx — 3y
Whence
(3.43) 81— =3B +1).
But
1 —=38)"=1+alll—c)" -1
where the coefficient of a is not 0 because & # 0. Hence a can be
chosen so that (3.43) is impossible.

The Banach algebra A used in (3.2) cannot yield a counterexample
if the parameter « is taken as 1. This follows from the following.

3.5 THEOREM. Let B satisfy (2.11-214) and let A be a subalgebra
with unit. Let A(B) be the space of complex-valued homomorphisms of
B, and 4(A), the corresponding set for A. Suppose that every & € A(B)
when restricted to A falls into the Shilov boundary [4, 5] 8,4(A).
Suppose moreover that there is a collection U of elements in B such
that

(3.51) u € U and a € A implies ||lual| = ||a||

and
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(3.52) {ua:u e U, a € A} is dense in B.

Then each element ¢ of A which has an inverse of morm mnot exceeding
1 in some extension of A, has such an inverse in B.

Proof. If ¢e A has an inverse in some superalgebra, then it
cannot vanish on 9,4(A) as each of these homeomorphisms can be extended
to any superalgebra of A. Thus ¢ has an inverse b in B, and what
remains to be proved is that [[b]| < 1. This will result from the fact
that necessarily, [|cal| = ||a|| for all a € A [1, 3.5].

By (38.52), there exist {u,}, {a,} such that u,a, —b. Therefore
[lew,@,]| — ||cb]| = 1. However (by 3.51)

llewatall = llean|| = ll@nl] = llunaall — |10l .

This completes the proof of (3.5).

From this general proposition we now consider another which shows
that for the A of (8.2) with a« = 1 there is a B to which A bears the
relation described in (8.5). In fact, B = LYZ) where Z is the discrete
group of integers, and A can be identified with those elements of B
which are supported by the semi-group Z. of non-negative integers.
This pair is discussed in [5. 23C and 24E].

3.6 THEOREM. Let G be a discrete abelian group and S a subsemi-
group containing e € G. Let B = LXG), and A be the subalgebra of B
consisting of those functions whose support lies in S. Let U be the
group G as naturally imbedded in B:x—38,, O,(y) = &y — x), where
3x) =0 or 1 according to whether x #+ e, or x =e. Then U, A, B
satisfy the conditions of (3.5).

The specific properties of U are obvious, and the relation of 4(B)
and 0,4(A) is easily established, either by analogy with [5, 24E], or by
[7, 4.6].

4. The cortex. Let A satisfy (2.11-2.14) as always. By 4(4) we mean

the space of complex linear homomorphisms of the algebra A onto the
complex numbers C, with the weak topology. By the cortex I'(A) of
4(A) (or, more briefly, the cortex of A) we mean the set of those
homomorphisms which can be extended to every extension B of A.

Now those & € 4(A) which can be extended to B form a compact
set K, which is the continuous image (under the restriction map) of
4(B), and the cortex is evidently the intersection of these E,;. More-
over, each E) contains the Shilov boundary 8,4(A) [4, 5] which is never
void. Thus we have the following.

4.1 THEOREM. The cortex I'(A) is compact, and contains the Shilov
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boundary.

When A has the sup norm, i.e, when |[la|| = sup {|&(a)|: & € 4(A)},
then I'(A) = 6,4(A) since the extension B = & (9,(4(A)) admits only
homomorphisms which are on the Shilov boundary. There are algebras
in which the norm is not equivalent to the sup-norm in which I'(4)
and 0,(4(A)) coincide, for example the A of (3.6) above.

However, the work of Shilov [6] makes it possible to exhibit alge-
bras with one generator in which I'(4) # 0,(4(4)). Because of the
rarity of this paper in these parts it may be permissible to sketch proofs
of some of Shilov’s theorems.

Let {a,} = {a,, oy, +++} be a sequence of real numbers where, for
m, n >0,

(4.21) oo=1<a,.,.2a,- q,.

Let K(a) be the space of these formal power series (which notation
makes the algebraic operations more evident)

(4.22) fR)=a,+ a2+ az’ + ---
for which
(4.23) 11l = 2 asla; o .

K(a) satisfies (2.11-2.14). It follows from (4.21) that = =lim (a,)'"
exists. Thus the spectrum of 2z (see 4.22) is the disc {|\] < r}, and
this is a homeomorphic image of 4(K(a)) under the map & — £(z).

We now consider the possibility of enlarging the algebra by defin-
ing a, also for n > 0, and norming formal Laurent series as in (4.23).
It is easy to see that if such «, (n < 0) can be defined with (4.21)
holding, then for each » =1, 2, ...,

(4.24) Br=s8up a,(0p) i =1, 2, ¢
must be finite. Moreover

4.25 PROPOSITION (Shilov). Letting a_, = 3, for n =1, 2, ««+ pro-
vides an extension of the K(a) when B, is finite.

The proof lies in verifying (4.21), and then observing that B3, < (8,)".
Let us call this extension algebra K(a, 8). The spectral radius of 1/z
is evidently

(4.26) s = lim (B,)""
and 4(K(a, B)) is homeomorphic to the spectrum of 2z, which is
(4.27) st}

When B, = © we set s~ = 0.
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4.3 THEOREM (Shilov). The element )N — z is a generalized zero-
divisor in K(@) if and only if st <\ < r.
Now A — 2z is mot a generalized (or topological) zero-divisor if

(4.31) inf {||[(x — 2)f (@) : I/ (»)]] = 1}
is positive. The evaluation of (4.31) is facilitated by

4.32 LEMMA. Let T be a convex compact subset of a topological
(real) linear space L, and let @, «++, 9 be Ny + 1 real valued linear
Sunctionals on L. Let S(x) = |p(x) + <+ + |py(x)|, ¢t = min {S(x): x
€T}. Then there exist ¢, 1, +++,1, and a point x, € T such that

(4.33) S(x,) = p
and

(4.34) z, is an extreme point of T relative to Z(i,, +++,1,), where the
latter is the linear subspace defined by ¢, = @, = +++ = @i, = 0.

Proof. Selection an x, such that S(z,) = ¢ and such that the num-
ber of ¢, that vanish at «, is a maximum. Let

(4.85) p(x) = 3(sgn py(x,)) Pi(x)

where ’ is to remind the reader that sgn 0=0. Let {¢,:--,%,} be
those indices for which ¢,(x,) = 0, and define 7 as in (4.34). By the
maximum-property of =, each sgn ¢, is constant on 7' N Z. There-
fore @(x) = S(x) on T N Z. Now ¢ is linear and so there is an extreme
point 2z, of the convex set T' N Z such that ¢(x,) = p.

Having established the Lemma we apply it as follows to the space
L, of polynomials of degree < N. Let T, be the collection of those
members of L, whose K(a) norm is < 1. For f e Ly let ¢,(f) be a;
times the ith coefficient of (A — ) f(2). It is clear that the inf in
(4.31) has the value

lim inf Sy(f).

Now feTy

The set Z(i,, « -, %,) of those f € Ly such that ¢,(f)= .-+ = P,
(f) = 0 is clearly the set of those f such that \a, =a,., for =1,
%y *++,1, (here a_, and a, are interpreted as 0.) Let the indices
be arranged so that 7, < %, < +++ < 1,. This sequence decomposes into
maximal blocks without gaps. If {m 4+ 1,.-,m + p} =0 is such a
block then

(4.36) fo = 2™ 4+ NP1z 4 o oo - N2P127)

lies in Z(iy +++,4,). If 6 ={0,---} let f, =0. If 0+ i then
le Z(iy +++,%). If 4, 14+ 1 do not occur (0< 4, 2+ 1=<N) then
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2t e Z(iy, +++,1,). Conversely, every function in Z(i,, - -+, ¢,) is uniquely
expressible as a linear combination of these functions just associated
with {4, -+-,4,}. Considering how the norm is taken, the extreme
points of Z(i;, -+, %,) N Ty are obviously just functions of the type

(4.37) c2™(\P — 2P)(\n — 2)7?

where ¢ is any number that makes the norm 1. (Here we allowp =1
and also m = 0 to take care of those monomials mentioned above which
are not due to gap-less blocks.)

4.4 LEMMA. The inf (4.31) can be evaluated by letting f run
through the system (4.37).

Shilov does not seem to examine the inf (4.31) to the extent we
do here, but the functions (4.87) occur in his considerations.

We now pass to a proof of (4.3). First of all, if |\ < s~! then 2
and z — )\ have an inverse in K(a, 8), whence z — \ cannot be a topolo-
gical zero-divisor. If [A] > r then z — A has an inverse in K(«).

Now suppose z — )\ is not a topological zero-divisor. We wish to
show that A <s! if A\ <r. We confine ourselves to » =0, and
assume A < 7. X\ cannot be » or s~! for these yield topological zero-
divisors by Shilov’s earlier theorem [6]. If N < » then for N, some
we have \? < a, for p > N. From (4.31) we obtain an M < o such
that |[(x —2)f(®)|| M > ||f(2)|| for all f. Inspired by (4.4) we select
f(®) =N+ A2 + ««« + 27 and obtain

AP+ >\~p—laﬁ T+ +a, < MO\'“I -+ ap+1) < 2Map+1 .
For ¢ > Nand p=Fk + q —1 we obtain
Na, < 2MAats, ,

whence (by 4.24) M*B, <1, and (by 4.26) xs < 1.
Using the notation of (4.3), we deduce the following [see 6. Th. 7].

4.4 COROLLARY. For K(a) the Shilov boundary is {\:|\| =7},
and the cortex is {M:s' < |\ =< r}. For K(a, B) the Shilov boundary
18 {N:87 = |\ or |\ =1} while the cortex is the same as for K(a).
Thus if s™* < r, then in each case the cortex is greater than the Shilov
boundary.

Shilov remarks that if ¢ < o then examples can be constructed such
that s =1, »r = p. He gives no example, so we may just give one
producing the interesting case s' =0, » =1. We have, of course, to
define {a,, a;, ---}. Let a,, = exp (\(m)) where \(m) is defined as follows.
Set
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A (m) = n7m when m< n
=0 when m=nd.

Let AM(m) = M(m) + Ay(m) + -+ . It is not hard to see that \(m) —
AMm + 1) >n — 7%6. It follows that B, = + o (see 4.24) and because
B,y = B, that B, = o whence s = 0 (see 4.26).

We close this section by comparing the extension K(a, 8) which
Shilov has provided for K(a) when 3, < « with that provided by [1, 3.1]

The least norm of 27! in any extension of K(a) is easily seen to be
B;, for this least norm is by [1. 8.1] the reciprocal of the inf (4.31).
Thus it is reasonable to compare Shilov’s extension K(a, 8) with that
provided by § 2, for normally solving 1 — B2x.

4.5 THEOREM. Let B, < o. In K(a, B) the norm of z " is B,. -In
the “canonical’’ extension of K(®) mormally solving 1 — Bzx, the norm

of 27" is (B)".

Proof. The statement about K(a, 8) is obvious.

Denote B, by 8. In the extension (2.6), the norm of z* is inf
S[z® — (1 — zy)g(x, y)] extended over all polynomials g, S meaning sum of
all norms of coefficients of powers of x, where||y"|| = ||3"2"|| = B"a,. Let
p + ¢ be a maximum for the term yx*y? in some particular polynomial
g(x, ¥); and suppose » + ¢>n — 1. Then z™ —(1 — xy)g(x, y¥) has yx?+ yr+*
as its highest degree term. If we modify g(x, ¥) by omitting the term
vx®y?, then the S-contribution from x?y%terms in z" — (1 — xy)g(x, y)
might become [y| B?«a, larger, but the contribution |y| 87+ ay., Will disap-
pear. Hence this modification changes the S[- -] by at most a negative in-
crement. Therefore, we may confine ourselves to ¢’s whose terms
have p + g < mn — 1. Of these, g = 0 gives the minimum possible value
for S[---], and it is B".

This theorem (4.5) shows that K(a, 8) gives the smallest possible
inverse not only to z, but to all its powers (whereas the ‘‘canonical’’
one may not do justice, so to speak, to the inverses of 2%, 2°, ---). This
being so, one wonders if K(a, 8) might not provide the best (i.e., least-
in-norm) inverses to z — A for [\| < s, Our result (4.4), whose full
force has not really been employed above, shows that this is not gene-

rally true.

4.6 THEOREM. Consider K(a) with {a, oy, ay, +++} = {1,2,1,1, -+.}.
Then s~*=r =1. For |\ =N <1 the norm of (z —\,)™" in K(a, B) is
2(1 — ). For each \, such that |\ =X < 1 there is an extension of
K(a) in which the norm of (2 — \)™" 18

461) @C+NA+MTiFA<12 and (1 —N)" if A =1/2.

Proof. The details are tedious and should be accepted or verified
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by the reader. The system (4.24) comes out {8, By, *++} = {2,2,2, .-}
whence [|[(z — \)7Y] =2(1 — A)* in K(a, 8). Taking however a fixed )
(one might as well suppose A = A\, = 0), the best that can be done by
the canonical (and thus by any) method is a norm for (z — \)~' equal
to the reciprocal of the inf (4.31). A page of calculation, based on (4.4),
yields the result stated. Curiously, the formula (4.61) gives a func-

tion which is not monotonely increasing, but has a minimum at » = 1/2.

5. The tensor-product problem TPr. The proposition TPr (norm,
Jfinite) is false in general because it would conflict with (3.2). However,
there is a simpler argument, which also destroys TPr (top, finite). It
rests upon the following.

5.1 THEOREM. Let B satisfy (2.11-2.14), and let {B,:1 € I} be a
family of closed subalgebras; and let A be a closed subalgebra with
the unit of B included in each of the B;,. Let 4, be the space of com-
plex-valued homomorphisms of B;, and let I'; be the cortex, © € I. Let
T.* be the restriction map

(5.11) T :di— 45 TXE) =¢la-
Then for each j € I we must have
(5.12) X)) cNT4,) .

Proof. Let ¢ belong to the right hand side of (5.12). Then ¢
extends to B, and thus ¢ is for each ¢ a restriction of some ¢; € 4,,
to A.

For a pair of real numbers r, 0(0 < o < 7) let A(r, p) be the alge-
bra of functions continuous for o < |\ < 7 and holomorphic for
0 <\ <7, with the sup-norm. The cortex is the set {|\| = o}
U {M = r} (deleting the former when p =0). Let A = A4(0,1), B, =
A1/3,1), B,= A(2/3,1). Then A cC B, C B, and in some sense B, is
the desired tensor product of B, and B, (over the ring A) but not in
the sense TPr for the injection of B, — B, is not bi-continuous. In
fact, because T*(1/3) ¢ T*(4,), we have:

5.2 THEOREM. TPr does not hold for A{B, B,).
Returing briefly to (5.12), we show that it is sufficient for TPr
when all norms are sup-norms.

5.3 THEOREM. If {B,:t € I} is a family of Banach algebra exten-
stons of A (all satisfying 2.11-2.14) and each B, has the sup-morm
then an algebra B as in TPr (1.1) exists such that the mappings f;
are isometries, provided condition (5.12) holds for each j.

We sketch a demonstration with close reference to [3, Appendice IJ.
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One forms B, = @, B;. Let ¢ be any element of X,.; 4, such that
¢ila is independent of ¢. Then @,c;&; = ¢* is a C-homomorphism of
B,. We define the norm of an element b e B, as ||b]| = sup |¢*(b)|, and
complete B, in that norm. Now let b, € B, have norm 1. Then [£,b))] =1
1 for some &, € I';, By (5.12), this ¢; is part of a collection {¢;} of the
type used in forming the homomorphisms ¢*, and surely |£*(f,(b,)= 1.
Thus [|£,(b,)ll = [[b,]l. On the other hand, if [¢*(f,(b,)| > 1 then |¢.(b,)> 1
for some &; € 4, which cannot be if [|b;]| = 1.
Thus (5.8) is proved.

6. The Sol problem for sup-normed algebras. The non-equivalence
of Sol and TPr is brought out by the fact that Sol (norm, arb) is true
when A has the sup-norm. For then, the algebra M(0,4(A)) of bounded
functions on the Shilov boundary solves normally all normally solvable
systems.

6.1 THEOREM. Let B, satisfying (2.11-2.14), normally solve a
system X over a subalgebra A having the sup-norm. Then M(0,4(A))
also normally solves 2.

Proof. Well-order the class 4(B) of C-homomorphisms of B. For
each ¢ € 0,(4(4)), let ¢ be the first element of 4(B) which is an ex-
tension of ¢. Define T(b)(¢) = ¢'(b). This mapping is isometric on A4,
and of bound 1 on B. These two properties insure that the homomor-
phism T preserves ‘‘normal solution’’. Thus (6.1) is proved.

It is worth noting that M(6,4(A)) not only solves all systems solv-
able over A but also all systems solvable over itself.

7. A fragmentary result on joint removal of ideals. Let A4 satisfy
(2.11-2.14), and let 4 be its space of C-homomorphisms. Let J be an
ideal of A. The hull H of Jis {¢:£ € 4, ¢ =0 on J}. This is com-
pact.

7.1 THEOREM. Let {J,:% € I} be a family of removable ideals
(see § 1) and let J be a removable ideals. Let each J;, and J be a princi-
pal ideal. Let the hulls H, converge to the hull H of J in this sense:
every mnetghborhood W of H contains all but finitely many of the H,.
Then the system {J} U {J,:1 € I} is removable.

Proof. If J =cA then ¢ is subregular (see § 1); and we can select
¢ so that [|ca|| = |lal| for all a € A. Elements ¢; can be selected so
that each J;, = ¢;A with |lc;al] = ||a|| for all a € 4. Let W = {¢: |¢(c)|
<1/2}. Let H;, .-, Hin include all those hulls which are not included
in W. Let d =¢;-+--¢c; . One can find an integer p such that
[E(de?)) < 1 for all HU U H;. In some extension algebra B, dc® has
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an inverse b, ||b|| =< 1. If the ideals J, J; (¢ € I) are not all removed
by B then B has a C-homomorphism ¢, which is an extension of some
& in HUUH;,. Now ¢ybde?) =1, |£(b)] =1, but |(de?)] < 1. This is
a contradiction.

A question. Suppose ¢, ---, ¢, are elements of A which generate
a removable ideal. Then there are numbers g, «--, #, such that
llall = lleall o + <+ + + llcqallttn. (Indeed, if 1 = ¢, + -+ + ¢,@, in some
superalgebra, then one can take g, = ||x;]].) Is the converse true?
If so, we would have that every finite collection of removable ideals is
a removable family of ideals, that is, RId (finite). The method would
be, using the given systems

Ciiy ***y Cpys (7’ eI) ’

to construct a new system
Ck = ";l_e_-[l Ck‘,‘
(ks +++, k, a permutation of 1, --+,n) and apply that converse.
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