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AREA AND NORMALITY

H . BUSEMANN AND E . G. STRAUS

l Introduction* The simplest non-Riemannian α-dimensional area
(concisely: α-area) is a translation invariant positive continuous measure
(or area) defined on the α-dimensional linear subspaces, called α-flats,
of an ^-dimensional affine space An (1 < a < ri). Such areas have been
studied by Wagner [15] and they are the subject of the present investi-
gation which is in part related to Wagner's, but has no connection
with the differential geometry of general area metrics persued principally
in Japan by Kawaguchi, Iwamoto and others.

The simplest case, a — 1, is well known. In that case a segment
with endpoints x, y has a translation invariant length d(x, y). If the
sphere d(z, x) = 1 (z fixed) has at xQ a supporting (n — l)-flat (hyper-
plane) Ho then HQ is transversal to the 1-flat (line) Lo through z and
xOf and Lo is normal to HQ.

Therefore the existence of an (n — l)-flat transversal to a given
line is equivalent to the convexity of the sphere d(z, x) = 1; which, in
turn, is equivalent to the triangle inequality for d(a, b), in other words,
to the space being Minkowskian (normed linear).

If Lo is normal to HQ at x0 then it is normal to every line L through
x0 in Ho in the two-flat spanned by Lo and L. A well-known theorem
of Blaschke [2] states that for n > 3 normality between lines is symme-
tric only in euclidean space. However, as shown by Radon [13], this
is not the case for n = 2.

Here we treat the analogous problems for arbitrary a, and then
study the special case of Minkowski area.

We cannot give more than this vague hint without some definitions.
Let (x\ ---,xn) be affine coordinates of a point x in An with origin z =
(0, "',0). The a-box [xo,xlf •••,#«] consists of all points of the form
(1 — θt)x0 + Σf.ifiA where 0 < θt, < 1; and hence is a (possibly degene-
rate) parallelepiped.

An a-area assigns to every Borel1 set M in an α-flat a measure
a(M) which is invariant under the translations of An, and continuous;
that is, a([x0, , xa]) depends continuously on xOf , xa. The invariance
under translation applied to sets in the same α-flat A yields at once that
the measure in A is determined up to a factor depending on A. If we
introduce an auxiliary euclidean metric
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XA11 sets considered will be Borel sets.
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e(χ, v) = Γ Σ gΦ* - yι)(χ* - v*)!
L«,fc=i J

"

where the form Σ ^ i » ^ * * s positive definite, then the α-dimensional
Lebesgue measure, \M\e

a, in A which results from this euclidean metric
is invariant under translations so that

(1) a{M) = f{A)\M\l , /(A)>0.»

Translation invariance implies that f(A) = f(A') if A and A! are
parallel α-flats, and the continuity of a implies continuity of f(A). Be-
cause of the invariance under translation we may also write.

a([xQ, , xaj) = F { x λ - x 0 , , x a - x0)

where the function F{x19 ,xa) satisfies some simple conditions F19 * FA

listed at the end of § 2.
We call the area a convex if

(2) F(xJ + xx", &„••-, xa) < F(xλ', x2J , xa) + Ffa", x2, , xa)

and strictly convex if the strict inequality holds for independent xλ

r

9

X " X X

If an α-flat A and a δ-flat B intersect in a d-flat Ό, where
0 < d < min (α, 6), then they span a g-flat Q with g = α + b — d. We
call B totally transversal to A, or A totally normal to B (at D in
Q, where ambiguities are possible) if a(M) < a(M') for a projection3 Λf
parallel to β on 4 of any set Mr which lies in an α-flat A' through D in Q.
For d = 0, b = w — α this is Caratheodory's concept of trans versality4.
If A is totally normal to ΰ at ΰ , d > b + 1, then A is totally normal
to every δ'-flat, d < δ' < δ through Z) in B. We call A normal to
B at D and B transversal to A, if A is totally normal to every (d + 1) -
flat in JB through D. For d = 0, b = n — a this is Wagner's concept
of trans versality. Only for d = min (α, 6) — 1 does normality of A to
B at D imply total normality. This is the only case with d > 0 which
was studied previously in the literature, namely in [7] for Minkowski
area.

We call a totally convex if an (n — α)-flat totally transversal to a
given α-flat at a point exists. For totally convex a the α-flats minimize
area in the sense that the α-area of the union of all but one face of
a closed α-dimensional polyhedron is not less than the area of that face.

2 Therefore the case a = n is uninteresting as long as only areas for one definite An

are considered. Hence we assume 1 < a < n — 1 except in the last three sections.
3 This concept needs clarification when d >0. The precise form is found in §2.
4 Caratheodory treats more general α-dimensional variational problems. His ideas on

transversality are easiest understood by consulting volume 1 of his Gesammelte
Mathematische Schriften, Mϋnchen 1954; see in particular p. 364 and paper XX pp. 404-426.
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However, the α-flats may minimize α-area for a which are not
totally covex. On the other hand for 1 < a < n — 1 the α-flats need
not minimize area when a is merely convex. They will minimize
α-area if a is extendably convex which means the following; a assigns an
area φ(a) to every simple α-vector, α, in the space Va

n of all α-vectors,
if φ(α) can be extended to a convex function in all of Va

n then a is
extendably convex. The difference between extendable and total con-
vexity has a very palpable interpretation in Va

n.
If F2(x19 , xa) is a quadratic form in each set of variables

a?*, , xf ί = 1, , a then we call a(M) quadratic. If a(M) is eucli-
dean, that is if a(M) == \M\% for a suitable choice of e(x,y), then it is
quadratic, but a quadratic area is not necessarily euclidean when
1 < α < n — 1. The quadratic areas enter naturally as follows.

Let 0 < d < α <b < n and let a convex α-area a and a convex
δ-area β be defined in A". If normality (with respect to a) of an α-flat
A to a 6-flat B at a d-flat D is equivalent to normality (with respect
to β) of B to A at D then both areas are quadratic unless α + b —
n, d = 0. Whether the latter cases are really exceptional is not known
except for a — l,b — n ~ 1 (see below). If, in particular, a ~b and
a ΞΞ β, then equivalence of normality means that normality of two
α-flats at a d-flat is a symmetric relation. Hence symmetry of normality
implies—except for α = w/2, d = 0—that the area is quadratic. It will
be euclidean only in special cases, for instance when α < n/2 and d = 0
or α > n/2 and (2 = 2α — w. For α = δ = l, w>2 this becomes the above
mentioned result of Blaschke [2].

All the results on symmetry and equivalence of normality also hold
for total normality.

The α-dimensional Minkowski area (or measure), 2 < a < n, in an
^-dimensional Minkowski space with distance F(x — y) is the area of the
above type for which an α-dimensional unit ball in any α-flat A, that is the
set {x\F(x — x0) < 1 x, xQ e A], has the euclidean volume πα/2/Γ(α/2 + 1).
It is shown in [7] that these areas are convex and are strictly convex
or differentiable if F(x) = 1 is strictly convex or differentiate.

We do not know whether Minkowski area is totally or extendably
convex for 1 < a < n — 1.

If the α-dimensional area 1 < α < n — 1 of a Minkowski space is
quadratic then the space is euclidean. Hence if normality of an α-flat
A to a 6-flat B at a d-flat D with respect to the α-area of one Minkowski
space is equivalent to normality of B to A at D with respect to the
6-area of another, then both Minkowski spaces are euclidean, unless
a + b = n, d — 0. However only the case α = 1, 6 = w — 1, d ~0 is
really known to be exceptional when the two spaces are different. When
they are identical then already this case leads for n > 2 to an unsolved
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problem on convex bodies [10, Problem 5].
There are many interesting and difficult problems involving two

areas in a Minkowski space of which we settle only a few. In the last
section we obtain from the method and result of [8] a result of a dif-
ferent nature. If b > a and fb(B), fa{A) are the functions of (1) for
α-and δ-dimensional area of the same Minkowski space, we give an
estimate from above for fh{B) in terms of fa(A) with A c B.

2. Normality, Our first objects are the relations between the various
concepts of normality arising from different choices of d and b. In all
that follows let 0 < d < min (a, b); q = a + b — d < n. Moreover, A,
B, D, Q with or without subscripts denote α-, &-, d-, g-flats respectively
with ΰ c B c Q , A c Q , A n δ = ΰ .

Choose in B a c-flat C,c — b — d, which intersects D in exactly one
point and hence intersects A in this point only. The association of the
points of A and AQ which lie in the same c-flat parallel to C is a pro-
jection of Ao on A, which depends on the choice of C. The restriction
of this mapping to a subset Mo of Ao gives the projection of Mo on a
set M in A.

If C is a second c-flat in B which intersects D in a point, and I?*
is any δ-flat in Q parallel to B, then the projection of JS* Π Ao on A
with the use of C is the product of the projection of B* Π Ao on A
with the use of C and of a translation parallel to D (which depends
continuously on B*).

This and (1) imply.

(2.1) LEMMA. // Mo is a set in Ao and M, Mf are its projections
on A with the use of C and C respectively, then a(M) — a(Mr).

Thus the arbitrariness of C does not influence the measures of the
projections. Moreover, if 0 < a(M0) < oo, then a(M)la(M0) is according
to (1) independent of the choice of Mo in AQ.

We now define: A is totally normal to B at D in Q, or B totally
transversal to A at D in Q, if for a fixed Mo c Ao with 0 < a(M0) < oo
and a fixed C the area a(M) of the projection of Mo on A is minimal.

The preceding discussion shows that this definition is independent
of the choice of AQ, Mo and C; and hence depends only on D, B and Q.

The existence of an A normal to B at D in Q follows from two
observations.

(i) The function f(A) is continuous and has the same value for
parallel A. Hence f(A) attains its positive minimum fx and its finite
maximum f% on the compact set of α-flats through z, so that
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fΛM\l<a{M)<f2\MVa.

(ii) \M\e

a-+ oo and hence a(M) -> oo when A approaches a position
for which A Π B is greater than D.

As previously observed, a U totally transversal to a given A at D in
Q will in general fail to exist.

We now consider some properties of normality. In many of the
following statements ' 'totally'' appears in parentheses, because they
remain valid for the weaker concept of normality defined in the
Introduction.

(2.2) If A is (totally) normal toB at D in Q and the b'-flat Br lies in
Q and contains B but does not contain A, then A is (totally) normal to B'
at Df = B' Π A in Q.

This is nearly obvious. A (6 — d)-flat C in B which intersects D in
exactly one point also intersects A and hence D' in this point only.
Therefore the same C can be used for projection in both cases of
normality.

(2.3) If A is (totally) normal to B at D,d<b' < 6, then A is (totally)
normal to any bf-flat Br through D in B.

Take a (ί>' — d)-flat O in Br that intersects D in a point and choose
a (b — d)-flat C in B which contains O and intersects D in this point
only. For any A! through D in the space spanned by A and Bf the
projection of A* on A parallel to B and Br respectively coincide if we
use C and C\

Proposition (2.3) implies in particular that A is totally normal to
every (d + l)-flat through D in B. We shall see in § 5 that the con-
verse is in general not true. It does hold in an important special case.

(2.4) THEOREM. If Af)B~D, a~d + l, b — d>2 and A is
normal to every (d + l)-flat in B through D, then A is totally normal
to B at D.

For an indirect proof, assume that A is not totally normal to B

and let Z Φ A be totally normal to B at D in the space Q spanned by A

and B. A suitable δ-flat J3' in Q parallel to B intersects A and A in two

distinct cί-flats Dr and Df parallel to D. These lie therefore in a

(cί+l)-flat D+aB'. In D+ take a line L which intersects Df in a point.

Consider a set M in A with 0 < a(M) < oo. Since A is normal to

D+, the projection M of M on A parallel to L satisfies a(M) > a(M).
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On the other hand, let C be a (b — d)-flat in Bf which contains L and

intersects D' in L Π D' only. Projection of M on A parallel to B with

the use of C again yields the set M. Since A is totally normal to B

and A is not, we would have a(M) > a(M), a contradiction.

Defining normality of A to B at D as in the Introduction we
conclude from (2.4) that normality and total normality coincide for
d = min (α, b) — 1. Obviously (2.3) remains valid for normalily instead
of total normality. To prove (2.2) in this case we observe that a
(df + l)-flat E through Π in Br intersects B in a (d + l)-flat F D D .
For b' - b = d' - d and £7 U B spans J3' so that

dim E Γ\ B + b' = dim S + dim jB = d' + l + & = δ' + d + l .

By hypothesis A is totally normal to F at D, by (2.2) it is also totally
normal to E at Dr and hence normal to B\

Moreover (2.2) and (2.3) also show that the case b — n — α, q — n
is decisive in the following sense.

(2.5) If an (n —a)-flat (totally) transversal to A exists, then for
given DaAciQ,q = a + b — d, a b-flat (totally) transversal to A at D
in Q exists.

By hypothesis there is an (n — α)-flat N transversal to A through
a point p e D. By (2.2) A is normal to the (n — a + d)-flat B' spanned
by D and N. This settles the case q = n. If q < n then according to
(2.3) A is normal to the 6-flat B = Q n B'.

For later purposes we note the following consequence of (2.4) and
(2.5).

(2.6) LEMMA. A b-flat B transversal to A at D in Q for any given
D c A c Q will exist if and only if

(i) For p e A, every (a + l)-flat through A contains a line trans-
versal to A at p.

(ii) The set formed by the totality of all transversals to A at p in
the different (a + 1)-flats though A contains an (n — a)-flat N.

The flat N is then transversal to A.

Also for later application we notice as a consequence of the con-
tinuity of f(A) the following.

(2.7) LEMMA. If Av -> A,DV->D, Bv-+ B and Av is (totally) normal
to Bv at Dv then A is (totally) normal to B at D.

We follow these considerations up analytically using Barthel [1].
The invariance of a(M) under translation implies that the area of the
box [x0, xu , Xa\ has the form F(xx — xQ, , xa — x0) and
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( 2 . 8 ) F ( x l n . . . , α ? β ) = ί τ ( a ? ί , . . - , » ? , « , ^ , • • • , < )

= f(Ax)\[z, x19 , a?α]IS ,

where A^ is the fiat spanned by xlf , #α, if α?x, , xa are linearly
independent and F(x19 , xa) = 0 otherwise. Thus jFfo, , a?α) has the
following properties.

FΎ\ F(x19 * ,xa) is continuous in the a*n variables and symmetric

in x19 •••, xa.

F2: F{xιy . , xa) > 0 if xx A Λ xa φ 0.

F 3 : F(Xx19x29 ---9xa) = |λl FCa?!, •••,<).
F 4 : F ( ^ + λa?j, a?2, , a?α) = F f o , , xa) for j > 1.

Conversely, if a function F(x19 , xa) has the properties F19 , F4

then a well known argument (see e.g. [14, pp. 118, 124]) shows that
F(x19 , xa) has the form (2.8) with continuous f(Ax) and vanishes for
Xι A Λ xa — 0. Hence it defines an area function.

We now take definite independent vectors u19 , ua and assume
that F(xl9 — ,xd) possesses a differential as function of x\, , xΐ at
x. = ^ . Then JP3 and F 4 yield for small λ > 0 and j — 1, , a

(2.9) 8)XF(ulf , O = F ( ^ + λw.,, u2, , wβ) - F(u19 --sttα)

For λ -> 0, using the symmetry of F(x19 , a?o) we obtain the following.

(2.10) 1/ jP(a?lf •• , xa) possesses a differential as function of
xi9 , xΐ at ulf - - , ua uλ A Λ ua Φ 0, t/^en

^ — °όr \uι> > ua)
i OXk

Let A be normal to β at ΰ in Q ^ e D. Choose a non-degenerate
g-box [>, y^ , y6, wd+1, , %α] such that y19 9ya lie in D
in J5 and wd+1, , wβ i n Ά F o r a n y χd+i, , λ6 the box

£̂ι+i> •••, wj originates from the box

ί«-d+i J

by projection parallel to B. If F possesses a differential at y19 , yd,
wd+1, « ,Wα as function of α?d+1, •• , ^ + i , then normality of A to B im-
plies that F(yly —*,yd}ud+1 + Σ^iVuUa+2, — >ua) has a minimum for
λt = 0. Hence
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V d F ( y u - - . , y a , u a + 1 , * - , U a ) y i = 0 j = d + lf . . . f b .
dxd+1

Thus we have found the following.

(2.12) If the a-flat through z spanned by y19 , ydf ud+1, * ,ua is

normal to the b-flat B through z spanned by ylf •••, yb and F is dif-

ferentiable at y19 , ya, ua+lf "*,ua as function of x\, , x% for k =

d + 1, •• , a then

(2i3) v ; 8F(y19 -- ,yd, ud+1, - - - , u a ) y t Q ^ k = d +1, , a
9 a ? ί j ' i = <z + i , . . &.

We conclude from (2.11) that the matrix dF{y, u)jdx\ has rank
a — d. Therefore, if D, A, Q are given there can be at most one 6-flat
transversal to A at D in Q. For brevity we say that F(x19 •••,#«) is
individually differentiate at ^ , , ̂ α if it possesses a differential at
î> •• 9ua with respect to each of the sets of variables #&,•••,#";& =

l, , α .
With property (ii) of (2.6) in mind we state explicitly the following

consequence of our discussion.

(2.14) LEMMA. If F(xlf •••, xa) is individually differentiable at
u19 '"fua with ux A Λ ua Φ 0, and if in each (a + l)-flat containing
the a-flat Au spanned by u19 •••, ua there exists a transversal to Au;
then this transversal is unique and the y corresponding to the different
(a + 1)-flats through Au form the (n — a)-flat

ί dx{

3, Convexity, Convexity, strict convexity and differentiability for
the area a were determined in terms of the function F(x19x2, •••,#«)
in the introduction as follows.

(3.1) DEFINITION. Writing F(y9 x) = F(y9 x2, , xa) we say that a
is convex, strictly convex, or differentiable according as the curve
F{\yx + λ2ί/2, x) — 1 has those properties in the plane spanned by y19 y2

for any linearly independent y19 y2, x2t , xa.
Thus for convex a we have

F{yλ + y29 x) < F(y19 x) + F(y2, x) for yx A y2 A Λ xa Φ 0

with strict inequality for strict convexity. If we do not exclude linear
dependence of y19 y2, then setting yx = μy2 we have
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= F(yu x) + F(y2, x) if μ > 0
y19 x) = |1 + μ\F(y19 x)t

1 < F ( ^ , a?) + F(2/2, a?) if μ < 0 .

Thus we find the following.

(3.2) LEMMA. The area function a is convex if and only if

F{Vi + V2, x* , xa) < F(yl9 x2, , aα) + ί 7 ^, x2, , a?α)

/or y tΛ x2 Λ Λ #α =£ 0; and is strictly convex if and only if equali-
ty implies y1 = μya, μ> 0.

Let α be convex and % Λ Λ ua Φ 0. The function F has a dif-
ferential with respect to x[9 •••,#? at %lf , ua if and only if the curve

F(Xut + μv, u29 , ua) = 1

is differentiable at λ = 1, μ = 0 for all v with t ;Λ%iΛ Λ ua φ 0.
We have thus proved the following.

(3.3) A convex area function a is differentiable if and only if the
corresponding function F(x19 •••,#«) is individually differentiable for

»iΛ Λ xa Φ 0.

The differentiability properties of convex functions imply that for
every convex a the corresponding F has strong differentiability prop-
erties, of which we need only the following.

(3.4) LEMMA. If a is convex and u19 Λ * Λ ua Φ 0, then there
exist sequences {uίv} such that uiv-+ut (i = 1, * ,α) and such that
F(xlf •• ,#α) is individually differentiable at uiV9

 Φ",uav.

Reformulation of these properties in terms of the function f(A)
will prove useful. Since f(A) is defined relative to a definite euclidean
metric e(x, y) we may use euclidean concepts. In particular we will
speak of " perpendicularity " when we mean normality with respect to
e(x9 y).

Consider a plane P perpendicular at z to the (α — l)-flat La.τ and
choose in La_2 an (α — l)-box [z, x%9 , xa] with euclidean (a — 1)-volume
1. On each ray R in P with origin z choose yR such that F(yR, x2, 9xa) =
1. The euclidean α-volume of this box is e(z, yR). Hence, if AR is the
α-flat containing R and La^ then

F(yBf x2, , xa) = f(AB)e(z9 yR) = 1 .

If the ί-flat L ,2 < t < n — α + 1 is perpendicular to Lα_! at « we
denote by S(Lα_:, LJ the locus in Lt obtained by taking the point yR
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with e(z, yR) = f~\AR) on a variable ray R in Lt with origin z. Then
we can express our result as follows.

(3.5) LEMMA. The area function a is convex, strictly convex, con-
vex and differentiate if for any L2, Lα_x and only if for all Lt, La-19

2 < t < n — a + 1 the surface S(La-lf Lt) is convex, strictly convex,
convex and differentiable.

Following the arguments of [7] we now settle the case d =
min(α, b) — 1. The emphasis is not only on the result, but also on the
method of constructing normal and transversal flats which the proof
provides.

(3.6) THEOREM. Let d = min(α, b) — l,q = a + b—d<n. For given
d-, a-, q-flats D c A c Q, there exists a b-flat B transversal to A at D
in Q if and only if the area function a is convex. B is unique when
a is differ entiable. The normal to B at D in Q is unique for all given
D c B c Q if and only if a is strictly convex.

Proof. There are two cases.

CASE I: a = d + l,b = q — 1. If z e D a Q are given we take
the (q — d)-flat Lq-d perpendicular to D in Q at z and construct the
surface S = S(D, Lq-d) of (3.5). An α-flat A through D in Q intersects
Lq-d in two rays, each containing a point of S. Let yA be one of these
points. We claim that B is transversal to A at D in Q if and only
if it is spanned by D and a (q — d — l)-flat through z parallel to a sup-
porting flat H of S in Lq.d at yA.

The additional remarks on strict convexity and differentiability are
then obvious. For if H Π S contains more points than yA then the normal
A to B at D in Q is not unique, and if S has two different supporting
flats at yA then B is not unique.

To prove our assertion we take A1 perpendicular to B through D in
Q, and in Ax we take a set Mλ with 0 < α(ikfx) < oo. If we use C =
Lq-d Π B to define projection parallel to B, then we have for the pro-
jection M of Mi on any A

(3.7) a(M) = \M\lf(A) = \M1\i\sec(yAzyAl)\ f(A) .

Therefore B is transversal to A if and only if \ cos (yjZy^f-^A) is
maximal; or if and only if S has a supporting plane at yA which is
perpendicular to the ray from z through yAl, in other words is parallel
to B.

The construction is easily freed from the intervening metric e(x, y).
Let l<a = d+l<q<n and let z e D c Q be given. Take a non-



AREA AND NORMALITY 45

degenerate d-box [z,x19 •••,#*] in D and a (g — cί)-flat L ^ in Q which
intersects D at z only. In Lα_d construct the locus

Then the α-flat spanned by x, x19 , a?d with x e S is normal to the
δ-flat J? in Q through D if and only if Bf)Lq-d is parallel to a supporting
(q - d - l)-flat of S at α?.

CASE II: b — d + l,a — q — 1. As in Case I take Lα_d perpendi-
cular to D at z in Q. Instead of using S we now take the line per-
pendicular to a variable α-flat A through D in Q. The two points yA

with e(z, yA) = f~\A) generate a locus Γ. When a is convex, strictly
convex, convex and diff erentiable then T has the corresponding property.

This time we claim that B is transversal to A at D in Q if and
only if it is spanned by D and the perpendicular to a supporting
(q — d — l)-flat of Γ in Lg_d at yA. We define Ax and M1 as in Case I
and use the line C perpendicular to Ax at z for projection parallel to B.
Then the projection M of Mλ on any A again satisfies (3.7) and
f~1(A)\cos(yAzyA)\ is maximal if and only if yA lies on a supporting flat
of T which is perpendicular to C. Since C is perpendicular to Aλ it
lies in B. The additioned remarks follow as in Case I.

The definition of T cannot be entirely freed from extraneous con-
cepts, but their role can be reduced.

If T is convex, let T' be the polar reciprocal in Lq-d of T with
respect to the metric e(x, y) (see [5, p. 28]). If T is strictly convex
(diff erentiable) then T" is diff erentiable (strictly convex). In terms of
T' we can interpret the normality relation in a manner similar to that
of Case I; only the roles of normality and transversality are interchanged.

If x e T' then the (d + l)-flat spanned by x and D is transversal
to the a-flat A through D in Q if and only if A is spanned by D and
a (q — d — lyflat parallel to a supporting flat of Tr at x.

In the most interesting case, d = 0, the surface T" has a very in-
teresting meaning. In (Q = Lα_d) take any (q = a + l)-measure invariant
under translation. The only arbitrariness is then the unit of measure.
Then T is a solution of the isoperimetric problem to minimize the
α-area among all closed convex hyper-surfaces in Q which bound a set
of given (a + l)-measure. For details see [6]. Of course T' remains
a solution even if we change the unit of (a + l)-measure.

Assume that a is convex and consider an α-flat Au through z span-
ned by u19 ,ua and such that F is individually differentiate at
u19 * -,ua. Then (3.6) (more particularly Case II) guarantees that in
every (α + l)-flat containing Au there exists a transversal to Au at z.
We conclude from (2.14) that the transversals at z to Au in the different
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(α + l)-flats form an (n — α)-flat NA and from Theorem (2.6) that this
NA is transversal to A.

If F is not individually differentiate at ulf , ua then we can find
sequences {uiv} with uiv -> ut (i = 1, , α) such that F is individually
differentiate at uiV9 *-,uav. Hence if Av contains z,utv, •• ,w«v then
there exists an (n — α)-flat Nv transversal to A, at z. By the continuity
of the area function every limit (n — α)-flat of a subsequence of Nv is
transversal to A. Thus if a is convex there exists an (n — α)-flat
transversal to A. Using (2.14) and (2.5) we have proved

(3.8) THEOREM. If the area function a is convex then, given an α-
flat A, a d-flat D c A and a q-flat Q D A with 0<d<a<q<n;
there exists a b-flat f b = q — a + d, transversal to A at D in Q, which
is unique when a is differentiate. (Wagner [15], for d = 0).

The conditions in (3.8) are also necessary, but we conclude from
(2.5) and (3.6) that we need consider only fixed d and q.

(3.9) THEOREM. With the notation of (3.8); if for fixed d,q and
all A, D, Q a b-flat transversal to A at D in Q exists (and is unique)
then a is convex (and differentiable).

A normal to B at D in Q is in general not unique even for
strictly and extendably convex a (as we shall see in (5.14)) when
d < min (α, b) — 1. For in that case normality is not equivalent to
total normality. However, because total normals exist and are normal
we have

(3.10) If the a-flat A normal to B at D in Q is unique, then A
is totally normal to B.

Even the total normal is not necessarily unique for strictly and
extendably convex a, see (5.14).

4 Area minimizing α*flats Total and extendable convexity* The
area a(Δ) of an α-dimensional polyhedron Δ is defined as the sum of
the α-areas of its α-faces. In the following we reserve Δ for the union
of all α-faces but one, Δo, of an α-dimensional polyhedron in An which
is abstractly a closed orientable α-dimensional manifold but may have
self interersections in An. By AΔ we denote the α-flat containing the
face Δo and hence the boundary of Δ.

We say that the α-flat A (strictly) minimizes α-area in the g-flat
Q D i , q > α, if a(Δ) > a(Δ0) (a(Δ) > a(ΔQ)) for all choices of Δ ψ Δo in
Q for which Aj = A. If this is true for all α-flats A in Q we say that
the α-flats (strictly) minimize area in Q.

The case a = 1 is familiar; with the help of (3.6) we may formulate
these results as follows.
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The line L minimizes α-length in the g-flat Q if and only if a (q — 1)-
flat B transversal to L in Q at a point z exists. The line L strictly
minimizes length in Q if and only if L is the only line normal to B
Sit Z.

The lines (strictly) minimize α-length in An if and only if a is
(strictly) convex.

A few of these facts extend to the general case.

(4.1) The a-flat A minimizes a-area in Q if a {q — a)-flat B
totally transversal to A at a point z exists. Let B exist. Then A strictly
minimizes a-area when A is the only a-flat totally normal to B at z
or when a is strictly convex.

Project Δ on Aj parallel to B. For topological reasons this projection
covers z/0. Let σ be an α-dimensional face of Δ which lies in the α-flat
A and let σ0 be its projection on AΔ. If dim(jB Π A) > 0 then obviously
0 = a(σQ) < a(σ). If dim(ί? Π i ) = 0 then the transversality of B to
AΔ implies a(σ0) < a(σ). This proves a(Δ) > a(Δ0).

If a is strictly convex and Δ Φ Δo then a(Δ) > a(Δ0) is obvious when
dim(.β Π A) > 0 for some A containing an α-face of Δ. Assume there-
fore dim (B nA) = 0 for all such A. There is at least one pair of
α-faces σ1, σ2 of Δ which have a common (α--l)-face and at least one of
which is not parallel to AΔ. If A1 is the α-flat containing σ* then not
both A1, A2 can be normal to B. For, if At is the α-flat parallel to A1

through Aj Π B then dim(Ax Π A2) — a — 1 and hence Aι U A2 spans
an (α + l)-flat Q which intersects B in a line L through AΔ Π B. Since
a is strictly convex at least one of the two α-flats, say Alf is by (2.3)
and (3.6) not normal to B. Hence Ar is not normal to B and a{σ') > a(σQ

r).
Hence a(Δ) > a(Δ0).

If A is the only total normal to B at z then at least one α-face
σ' of Δ is not totally normal to B and again a(σr) > a(σr

0).
The case g = α + l is completely known essentially through Minkowski

(Theorie der konvexen Korper, §27, Ges. Abh. 2, Leipzing 1911, 131-229).
His terminology is so different that we give the argument here.

For each (α + l)-flat Q through z we construct the surface TQ,
analogous to T in the discussion of Case II in the proof of (3.6), as the
locus TQ of the points yA with e(z, yA) = f~\A) on the perpendiculars to
the α-flats A through z in Q.

(4.2) The a-flat A minimizes a-area in the (a+l)-flat Q if and
only if a line transversal to A in Q exists.

A strictly minimizes area in Q if and only if a line transversal
to in Q exists and yA is not an interior point of an a-flat region on TQ.

The sufficiency of the first part of (4.2) follows from (4.1) and the
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fact that a line transversal to A is totally transversal to A. We next
prove the necessity statements in both parts of (4.2).

We choose rectangular coordinates such that Q is the flat xa+2 =
. . . = χn = 0 and define, as usual,

H(0) = 0 for x = 0, H(x) = \x\f(Ax) for x Φ 0 ,

where Ax is the α-flat through z in Q with normal & and \x\ = (Σ^)1 / 2>
so that ΓQ has the equation iϊ(ίc) = 1. The function iϊ(x) is convex
with a.

If no transversal to A exists then, according to Case II in (3.6), TQ

does not possess a supporting α-flat at yA so that yA is an interior
point of the convex closure of TQ. Hence independent points xlf , xa+1

on TQ exist such that

(4.3) H(yA) > Σ \H(Xj), yB = Σ λ,a>4» λ, > 0 .

If ^ is an interior point of an α-flat set on TQ then independent
x19 , xa+1 on TQ exist with

α+l α+i

(4.4) H(yA) = Σ ^iH-(Xi), ^ = Σ ^ Ά > λj > 0 .

Setting I = ^/1 yA |, | 4 = a?4/| ̂ έ | we have - | yA \ξ + Σ \ I &ι I ?i = °

Therefore (see Bonnesen-Fenchel [5, p. 118]),5 an (α + l)-simplex in
Q exists whose faces have exterior normals, — ξ, ξl9 , ξa and area
I x I, λx I xλ I, , λα 1 x I. The total area of the faces with normals ξ19 , ξa

is

and \x\f(Ax) — H(x) is the area of the face with normal — ξ.
The relations (4.3), (4.4) prove the necessity statements in (4.2).
To establish sufficiency in the second part of (4.2) we resume the

notation used in the last part of the proof of (4.1). We assume that Δ
lies in Q and replace B by a line L transversal to A — AΔ.

For a{Δ) = a(Δ0) it is necessary that the mapping of Δ on Δo by
projection parallel to L be one-to-one and that all α-flats carrying
α-faces of Δ be normal to L.

Now there are two supporting flats A', A!f of TQ perpendicular to L.
On the other hand the construction of the transversal in the discussion
of Case II in (3.6) shows that at the points yA which corresponds to an
A normal to L the surface TQ has supporting planes perpendicular to

5 The proof there is involved but becomes very simple in the present case where the
number of faces is α + l.
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L. Therefore A! and A!1 each contain one of the two points yA and one
of the two points yA for each A which carries an α-faee of Δ.

Since projection of Δ on ΔQ is one-to-one and Δ Φ Δo it follows that
among the points yA, yA in A' there are a + 1 which do not lie in an
(a — l)-flat. These points span an α-simplex which lies on TQ.

(4.5) COROLLARY. The a-flats minimize a-area in all (a + l)-flats
if and only if a is convex. They strictly minimize area if and only
if in addition the surface TQ contains no a-flat piece for any (α+1)-
flat Q.

Our results are not as complete for g > α + l , aΦl. Consider the vector
space VI of all contra variant a- vectors 21 in An. A simple α-vector
21 Φ 0 determines an oriented α-flat in An through the origin. For the
α-area determined by 21 we obtain a function 0(21) defined on all simple
Si-vectors whose relation to F is given by

al Φ{xλ A Λ xa) = F(xlf , xa) .

Obviously Φ satisfies t h e condit ions

Φx 0(21) > 0 for 21 Φ 0

Φ2 0(λ2l) = I λ 10(21) for all real λ .

All α-vectors are simple only when a = 1 and a = n — 1. (If we
exclude the trivial cases a = 0, n). We shall prove at the end of this
section that for 1 < a < n — 1 and convex a it is in general impossible
to extend #(21) to a convex function defined for all α-vectors. An
obviously necessary condition for extendability is

(4.6) 0(21) < Σ Φ(&t) for simple 21, 21,, with St = Σ Si* .

Condition (4.6) is also sufficient. The simple α-vectors form a basis
of Vn

a. Hence if 21 is any α-vector then simple α-vectors 21$ exist so
that

(4.7) a = Σ a,,

since any scalar multiple of a simple vector is simple. We can now
extend 0(21) to all of Vn

a by defining

0(21) = inf Σ 0(« )

where the {21*} traverse all sets of simple vectors whose sum is 21.
Because of (4.6) 0(21) is not changed by this definition for simple 2t,
and the extended function obviously is convex and satisfies Φx and 02.
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We call a extendably convex if it satisfies (4.6). As before
consider a polyhedron Δ U Λ Orient it and let %, , 2Ir be the
simple α-vectors corresponding to the α-faces in Δ. Let 2I0 correspond
to Δo. Then

Σ 2ί* = 0 or 21 = - 3Γ0 = Σ 2Ii

so that α(zl) > α(40) is equivalent to condition (4.6). In general the
relation 21 = ΣU2I* for simple 21, 21, does not imply that - S ϊ , ^ , . . . , ^
correspond to the faces of a closed polyhedron. For example, the α-flats
corresponding to 21, 2Γt through the origin z may intersect at z alone.
However it is not unlikely that the validity of (4.6) for 21, % deriving
from polyhedra implies its general validity. We have not been able to
prove this. Thus we can only state:

(4.7) If a is extendably convex then the a-flats minimize area.

We call a totally convex if an (n — α)-flat totally transversal to a
given α-flat at a point exists. If the condition in (4.7) is necessary
then (4.1) shows that total convexity entails extendable convexity. We
shall prove this directly, obtaining at the same time a very interesting
geometric interpretation for the two types of convexity. The arguments
are closely related to those of Wagner [15].

Denote by Wa the affine space associated with the vector space Vn

a,
so that we may speak of hyperplanes etc. which do not pass through
0. The simple vectors in Vn

a form the Grassmann cone and the equation
0(21) = 1 defines on that cone the indicatrix I of the area a.

Extendable convexity of a means that I lies on the boundary of its
convex closure in Wa; that is, that I possesses at every point a
supporting hyperplane in Wa.

In order to interpret total convexity we provide An with the
euclidean metric gik = δi]c. This metric induces a scalar product 2ί 93
for the simple α-vectors in An whose geomentric meaning, apart from
sign, is the product of the (euclidean) area of one vector and the area
of the orthogonal projection of the other on the α-flat of the first.

This scalar product for the vectors on the Grassmann cone can be
extended to an inner product in Vn

a and hence induces a euclidean
metric in Wa. To the projection of an α-flat A1 on an α-flat A parallel
to the (n - α)-flat B perpendicular to the α-flat B* at a point there
corresponds in Vn

a the projection of the line Ax on the line A parallel
to the hyperplane HB perpendicular to the line JS*.

Assume now 21 e I and that I possesses at 2ί a simple supporting
hyperplane HB; that is a hyperplane HB perpendicular to a line
JB* on the Grassmann cone. If 2ίχ is a simple vector lying on H

B
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(that is, interpreted in An, if | SI | = | 2IJ | for the projection SίJ of % on
the α-flat of 2ί parallel to the (n — α)-flat B which is perpendicular to
B*), then 0(2ίx) > 0(2ί) since HB is a supporting plane of I. Therefore B
is totally transversal to A.

Conversely, if B is totally transversal to A at a point, then any
simple 2^ whose projection parallel to HB is 2ϊ satisfies Φ(%) < $(2ί) = 1,
so that HB is a supporting hyperplane of /. This could, of course, be
formulated without the use of an auxiliary metric:

(4.10) The area a is totally convex if and only if the indicatrix
I posseses at every point 21 = (αλ) a simple supporting hyperplane
^ α λ 6 λ = 1, where S3 = (6λ) satisfies the conditions of a simple vector.

If I is differentiate at 21, so that the a(n — α)-flat, T, tangent to
/ at 21 exists, then any supporting hyperplane of I at 21 must pass
through T. Through a given a(n — α)-flat there is exactly one simple
hyperplane (see [15]). Since extendable convexity means only the
existence of some supporting hyperplane of / at a given point we deduce
from (4.10):

(4.11) Total convexity implies extendable convexity but not con-
versely.

That the converse is not valid does not follow from the preceding
arguments, but in (5.13) we give an example of an extendably but not
totally convex area.

We now show that convexity of a does not imply extendable
convexity (Wagner [15] states this fact for min (α, n — α) > 2 but, as
it seems to us, he only proves that a certain definite extension of convex
area is in general not convex). For this purpose we prove a lemma
which seems to be of some independent interest.

(4.12) LEMMA. Let Sa be a simple closed (a — lysurface in an
a-flat A so that at every point of Sa there is both an interior and an
exterior supporting (a — l)-sphere of radius c in A. Let z e A be in
the interior of Sa so that at the line zx from z to any xe Sa makes an
angle no less than a > 0 with the tangent (a — l)-flat of Sa at x.

Then for every ε > 0 there exists a hypersurface S D Sa such that
every L2 through z which contains a line that makes an angle greater
thβn ε with A intersects S in convex curve.

Proof. For sufficiently small 8 > 0 the interior parallel surface S'a,
which is the locus in the interior of Sa of points whose distance from Sa

is δ, obviously satisfies the hypotheses of the lemma provided the
constants c and a are replaced by suitable constants cf and a!. Let T'a
be the α-body bounded by S'a.
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Let S be the locus of points whose distance from T'a is δ. Clearly
Sa c S. Every L2 9 z intersects S in a curve C. Assume that C is not
convex then there is an x e C at which C does not have a line of
support in L2 and therefore S does not have a plane of support at x.
Thus the point x' nearest to x on T'a must lie on Si and the line zx
makes an angle less than tan"1[d(^, x')jd(z, x')] < tan-1(δ/cί) with A,
where d is the distance from z to Sα.

Now let L be the tangent line to C at x. Since L intersects the
interior of C, the cylinder Lδ, which is the locus of points whose
distance from L is δ, must intersect the interior of Tf

a. Since the
quadric Q8 = Lδ Π A is tangent to S« at as' it follows that the minimal
curvature of Qδ at x' is less than 1/c'. Let L' be the tangent line to
Qδ at x' in the direction of minimal curvature then the tangent of the
angle between L and U is less than i/δ/c7.

Thus for sufficiently small 8 the two lines L and zx make arbitrarily
small angles with the lines U and zx' in A. Since the last named lines
make an angle with each other which exceeds a! it follows that every
line in L2 makes an arbitrarily small angle with A.

Now, for example, in the space F2 of 2-vectors in A4 we can find
a three-plane generated by simple vectors which contains no two-plane
of simple vectors. Such a three-plans is L3 generated by ex Λ e29 ez Λ e4

and (e± + e3) A (e2 + e4). The simple vectors which it contains are all
of the form X(ex + μe3) Λ (e3 + μe4). We can now define the area
function F so that the indicatrix I does not lie on the boundary of its
convex hull in L3, for instance by F(e19 e2) = F(e3f β4) = F(e1 + e3, β2 + β4) = 1
and ^(βi + 2β3, e2 + e2 + 2e4) > 6 in violation of (4.6); but so that / Π L3

satisfies all the conditions of Lemma (4.12) where z is the zero element
of V4. By Lemma (4.12) we can now extend I in such a way that its
intersection with every two-plane of simple vectors is convex, in other
words, so that F is convex. However, since I does not lie on the boundary
of its convex hull, the area is not extendably convex.

5* Equivalence of normality. Example. Quadratic area. The nor-
mality relations determine the area up to a constant factor in the following
sense.

(5.1) THEOREM. Let a and a' he two a-dίmensίonal convex area
functions, a + b — d < n and d < min(α, b) — 1. For any d-flat D and
any b-flat B through D let A be normal to B at D with respect to a'
whenever this is the case with respect to a. Then a'(M) and a(M)
differ only by a constant factor.

The same holds for total normality if there exists a b-flat totally
transversal with respect to a for any given a-flat at any given d-flat
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in any given (a + b — d)-flat (in particular, when a is totally convex).

Proof. Let a = d + 1. With the notation of Case I in (3.6) we
construct the surfaces S9 S' belonging to a and a! respectively. The
hypothesis of (5.1) means in terms of S, Sf: If H and Hr are parallel
supporting (q —- d — l)-flats of S and S' then a line through z containing
a point x of S Π H also contains a point of Sf ΓΊ H'. It folllows that S
and S' are homothetic, and this conclusion remains valid when this
condition on the line zx is assumed only for those x e S at which S is
differentiate, that is H is unique.

This weakening of the hypothesis amounts to requiring that A be
normal to B at D with respect to of only when B is the unique transversal
to A at D in 4 φ ΰ with respect to α.

The fact that S and S' are homothetic means that α'(M)/α(Λf) is
constant for all M lying in α-flats through a fixed (α — l)-flat in an
(a + δ ~- d)-flat. This yields the general answer, because two arbitrary
α-flats A', A" can be joined by a finite number of α-flats Ax =
A', A2, , Ar = A" such that dim Ai Π At+1 = α — 1 for i = 1, , r — 1,

Application of the result just obtained to the pencils determined by
Ai and Ai+1 proves the theorem.

The case d < a — 1 is reduced to d = α — 1 as follows. Let j?*,
dim 2?+ = & + α — d — 1 be the unique transversal to A at an (α — l)-flat
Z>+ in A(&B+. In D+ chose a tf-flat £> and an (α - d - l)-flat £7 such
that D*=zD@E. Then D+ = D®E where ί is a δ-flat and
i φ ΰ = 4 φ j S + because E a A.

For normality we know, and for total normality we assume, that a
6-flat B' totally transversal to A at D in A φ 5 + exists. By (2.2)
£ ' © # is transversal to A at D+ in A ® £ + and Bf@E^B+ because
J5* is unique. By hypothesis Bf is transversal to A at Z) with respect
to a!\ and again by (2.2) B+ is transversal to A at Z)+ with respect to
α'.

This means that the hypothesis of the theorem is satisfied for
d = a — 1 and 6 = α + & —d — l, so that the assertion follows from
the first part of the proof.

Let 0 < d < a < n. For a given α-area a we say that normality
at cί-flats is symmetric, if normality of an α-flat A to an α-flat A' at
a cZ-flat D implies that A! is normal to A at D.

lΐθ<d<a<n and an α-area a and a δ-area /8 are given, we say
that α-normality and /S-normality at d-flats are equivalent, if normality
of an α-flat A to a δ-flat B at a d-flat D with respect to a implies that
B is normal to A at D with respect to β and conversely, normality of
B to A at Z) implies that A is normal to B at Z).

This formulation admits the possibility that a = δ. If at the same
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time a — β then equivalence means symmetry. If a = b but a Φ β then
equivalence means that normality in one norm is equivalent to trans-
versality in the other.

Symmetry and equivalence of total normality are defined in the
same way by replacing everywhere normality and transversality by
total normality or transversality.

In the next section we discuss the implications of symmetry or
equivalence of normality. Here we give some examples where these
phenomena occur and the area is not euclidean.

(5.2) For d = 0, a = l,n = 2 symmetry of normality does not imply
that the length, i.e. the corresponding two-dimensional Minkowski
metric, is euclidean. All these metrics have been determined by Radon
[13], (see also [9, p. 104]).

(5.3) For any (n — l)-dimensional convex area function β there is
a convex one-dimensional area, i.e. a Minkowski metric F(x — y), such
that normality of a hyperplane to a line for β is equivalent to nor-
mality of the line to the hyperplane for F(x — y).

To see this we construct the surface V of Case II of (3.6) for β
and d = 0. That is, on the perpendicular to a variable hyperplane BBZ
at z we take the two points yB with e(yB, z) = f~\B). These points yB

traverse a convex hypersurface T and Tr is the polar reciprocal of T
As Minkowski metric F(x — y) we take the metric with Tf as unit sphere
F(x) — 1. Then the discussion under (3.6) shows that the hyperplanes
normal (for β) to a line zw at w e Tr are the supporting planes of T
at w and these are exactly the planes transversal to zw at w for F(x — y).

The α-area a, 1 < a <n — 1 is euclidean if a(M) = \M\e

a for a sui-
table choice of e(x, y). With the summation convention Yihgikx

Ίc =
this means for F that

(5.4) Σ

We shall call a quadratic if F2 is a quadratic form in each set of
variables x\, , xn

h (i = 1, ••, a). A quadratic F2 is a quadratic form
in the Plucker coordinates.

X[ι
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of the α-flat through z spanned by %ι9' *,xa> since F(xlt , xa) =
f(A)\[z,xlf •• ,ί»β]U where the terms on the right depend only on the
Plucker coordinates.

If F is quadratic then for any Lα_x and L2 perpendicular to La^ at
z the curve S(La-lf L2) of (3.5) is an ellipse and conversely. If Q is any
(α + l)-flat through z we construct in Q the surface T of Case II of
(3.6) for D = 2. The section of T with any plane L2 3 z is obtained
from S(a-lf L2), where La^ is perpendicular at z to L2 in Q, by a rota-
tion through ττ/2. Hence Γ is an ellipsoid. This implies that the area
restricted to Q is euclidean Thus we have the following.

(5.5) THEOREM. An a-area is quadratic if and only if it is euclidean
in every (a + l)-flat that is to say, if and only if normality of a-flats
at (a — lyflats in (a + l)-flats is symmetric.

We now wish to determine under what conditions a quadratic area
is euclidean.

(5.6) A quadratic a-area is euclidean if a = 1 or a = n — 1, and
in general is not euclidean if 1 < α < w — 1.

The first part of the statement is obvious since a quadratic length
is euclidean by definition and a quadratic (n — l)-area is euclidean in
w-space by (5.5).

A simple counting argument convinces us of the truth of the second

part since a euclidean quadratic area is determined by the metric (gi})

so that the manifold of euclidean quadratic areas is n(n + l)/2-dimen-

sional, while the manifold of Plucker coordinates is of dimension

1 + a(n — a); or, in other words, there are \Z) ~~ α(w — α) — 1 indepen-

dent (quadratic) identities satisfied by the Ph'^a (see e.g. [2]). The dis-

tinct quadratic form in the Plucker coordinates therefore have dimension

which exceeds (n ~X \ whenever 1 < a < n — 1.

If, for example, we restrict our attention to α-areas for which

then no two different forms can be identical. Thus the dimension of

this set is ί^Ί while the dimension of each equivalence class is no

greater than (^ +
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In particular, the Cartesian form

(5.7) F\xly ...,αjn) = Σ ( ^ ί-)1

is preserved only under orthogonal transformations. For, if we assume
the existence of a matrix gtj Φ StJ which preserves the form (5.7) then,
for a suitable choice of Cartesian coordinates, we have gtj = Ai?>i3 and
(5.7) becomes

(5.8) F\x19 , xn) = ΣAh A<e(P*i"V

Now, if (5.8) is Cartesian in one Cartesian coordinate system then
it is Cartesian in all. Thus Atl Aia = 1 for all ix < < ia. Since
n > a this implies At = 1 and #^ = δ o .

Since every euclidean area can be brought to Cartesian form we
have also proved the following (which also follows from Theorem 9.1).

(5.9) If two metrics gυ and gf

Xi give rise to identical a-areas,
a <n, then gi} = g'tJ.

We can now determine the relations which suffice to make a quad-
ratic α-area euclidean:

(5.10) THEOREM. A quadratic a-area is euclidean if it is euclidean
in every (a + 2)-flat.

Proof. We proceed by induction. Assuming the area is euclidean
is every m-flat, m > a + 2, we wish to prove it euclidean in every
(m + l)-flat. Let the (m + l)-flat Lm+1 have the equations xm+2 = =
xn = 0. Since the area is euclidean in every sub-flat x* = 0 (i =
1, , m + 1), there exists a matrix g™ (1 < p, q < m + 1 p, q Φ ϊ) so
that the area function has the form (5.4) in this sub-flat. By (5.9) we
have g™ = g$ if p, q φ i, j since that is the unique metric in the com-
mon sub-flat x* = xj = 0. Thus there exists a matrix gpq = gψq (i Φ p, q)
that defines a euclidean α-area in Lm+1 which coincides with the given
α-area in every coordinate sub-flat.

Without loss of generality we may assume the coordinates in Lm+ι

chosen so that gpq = Spq. Then on Lm+1 we have

(5.11) F\xly , xa) = Σ (PV V>2 + R

where R involves the products of distinct Plϋcker coordinates so that
every index 1, , m + 1 appears in every product (if m + 1 > 2α then
there are no such terms and the proof is complete).

Consider the sub-flat xm+1 = \xm of Lm+1 and introduce the coordi-
nates y* = x* (i = 1, , m - 1), ym = (1 + λ2)"V\ In terms of these
coordinates (5.11) becomes
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(5.12) F\xlf , a?α) = Σ (PΊ 'α)* + Λ'

where Rf involves only products in which there appears every index
1, * ,m. Now (5.12) is euclidean by hypothesis and the matrix gf

l5

which represents it in the form (5.4) reduces to the identity matrix in
every coordinate sub-flat. Hence g\3 = 8tJ and Rr Ξ= 0. This means R = 0
in every sub-flat xm+1 = Xxm, that is, R Ξ= 0 so that (5.11) is euclidean.

The simplest case of an α-area with 1 < a < w — 1, namely quadratic
2-area in A\ already povides examples to show that:

(5.13) For 1 <. a < n ~ 1 an extendably convex a-area need not be
totally convex.

For, denote the euclidean area in A4 which belongs to gite = 8ik by
E(x19 x2) and put et = (δ41, , δ<4). For any ε > 0

defines a quadratic 2-area which obviously is extendably convex. The
(&\ #2)-plane P1 2 is normal to every line in the (x*, x4)-]Aa,ne P34, because
for arbitrary λ, μ, p we have

i * 1 2 ^ + λe3 + μet, e2 + pXe3 + PfM4) > εE\eu e2)
1 0
0 1

λ μ
p\ pμ

= ε + 1 = i^2(βx, e2) .

Thus P1 2 is normal to P3 4. However, for small ε, P1 2 is not totally
normal to P34, since then

F\eλ + ez + eJ2, e2 + e3- eJ2) = εE\eλ + e3 + β4/2, β2 + β3 - β4/2) < 1 + ε.

According to (3.10) the plane normal to P3 4 at z cannot be unique.
Actually there is a one-parameter family of planes totally normal to P3 4

at z. To see this we observe that

F\eγ + λβ3 + μ4, e2 + ρe3 + σe4)

= ε(l + λ2 + μ2 + (? + σ2 + (Xσ - μp)2) + (1 + Xσ - μp)2.

For a given ε with 0 < ε < 1 this expression attains the minimal
value 4ε/(l+ε) for λ= -σ=8 cos θ, μ=ρ=δ sin θ where δ = (l-ε)1 / 2(l+ε)-1 / 2

and θ is arbitrary. Hence

(5.14) If l<a<n — 1 ί/̂ ê  extendable strict convexity of an a-area
does not imply that the a-flat totally normal to an (n — a)~flat at
a point is unique. More generally, the a-flat totally normal to a b-flat
at a d-flat is not necessarily^unique when d < min (α, 6) — 1.
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6* Equivalence of normality* Implications. Equivalence of nor-
mality for two convex areas implies for most combinations of the dimen-
sions α, bf d that both areas are quadratic.

(6.1) THEOREM. Let 0 <d<a<b<n a+b—d<n, but not a+b—n
and d = 0. If a convex a-area a and a convex b-area β have the property
that (total) a-normality and (total) β-normality at d-flats are equivalent,
then both a and β are quadratic.

(6.2) COROLLARY. If for a convex a-area (total) normality at d-flats
is symmetric then the area is quadratic unless n = 2a and d — 0.

We know from (5.3) that α = 1, b — n — 1 is actually exceptional
but no examples are known for a > 1. (See note at end of paper).

The following proof is arranged so that only the existence of normals
and not of transversals is used. Since the total normals exist, the proofs
remain valid when normality is replaced everywhere by total normality.

Since normals and total normals do exist for non-convex areas, it
is possible that (6.1) also holds without the assumption that a and β
be convex. However the present proof uses convexity.

The hypothesis on the dimensions means that either (1) a + b < n + d
or (2) a + b — n + d and d > 0. We consider the two cases separately.

In case (1) we show first (denoting an i-flat by L4):
(A) Given6 La-λ c La+1 c La+2 there exists an La c La+2 with

La Π La+1 = Lα_! such that the α-flats through Lα_x in La+1 are normal
to La.

(A') The same as (A) with b replacing α.6

The proofs are entirely analogous with a slight simplification for
(A) which we shall point out.

To prove (A) take Ln,b+d ZD La+1 with Ln-b+d Π La+2 = Lα+1, then take
B normal to Ln-b+d at D c Lα-lβ If d + 1 < a choose the (a — 1 — d)~
flat C such that D 0 C = Lα_x. Since ΰ 0 L n _ δ _ , = An we can find La

with L ^ c ^ c B φ C and L α 0 L α + 1 = L α + 2 . (Here we can take L f l cS,
but in the proof of (A') there would exist no Lh c A for b > α, whereas
Lb c A φ C exists because C is α ( 6 - 1 - d)-flat and hence dim
^40C —j)_i_d+a>b.) B is normal, hence by hypothesis transversal
at D to any α-flat Af in Ln_&+(ϊ through D. If Lw_δ+d D A ' D Lα_x then
Af is normal to 5 φ C at Lα_! and hence is normal to La at La-X.

We now show that (A) implies that a is quadratic. Let z e La c Lα+2

and take L3 through a perpendicular to Lα-χ in Lα+2. Construct the
surface S = S(L3, Lα_!) of (3.5). It follows from the discussion of (3.6)
Case I that for two lines G, H through z in L3 the α-flat G 0 La_x is normal
to Hξ&La-x if and only if H is parallel to a supporting line of S at
one of the two points G Γι S.

6 a + 2 < b + 2 <>n since b <n + d - a <n— 1.
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Now it follows from (A): Given L2 through z in L3 there exists in L3

a G a z such that for z e H c L2 the α-flat i ϊ φ Lα-λ is normal to G φ Lα-X.
In terms of S this means that every intersection of S with a plane
through z lies in some circumscribed cylinder of S.

A well known theorem of Blaschke [3] (see also [4, p. 157]) states
that a closed convex surface S' in A3 is an ellipsoid if every cylinder
touches S' in a plane curve. Blaschke assumes that Sf is differentiate
but not that S' has a center. The differentiability hypothesis is very
easily removed (see e.g. [9, p. 93]).

Under the hypothesis that S' has a center z the hypothesis may be
relaxed in two ways.

(Bj) Sr is an ellipsoid when every plane section of S' through z
lies on a circumscribed cylinder.

(B2) Sf is an ellipsoid when every circumscribed cylinder contains
a plane section of S' through z.

(Bx) is proved by a trivial modification of the proof of Blaschke's
theorem and is also well known from the theory of Banach spaces.

The proof of (B2) requires a less obvious but far from difficult
modification of Blasehke's proof. (Bx) and (A) show that S is an ellipsoid.
It follows that S (La-lf Ln-a+1) is also an ellipsoid (compare for example
[9, p. 91]).

In the same way we deduce from (A') and (Bx) that the surface
S(Lb_j, L3) constructed with the area β is an ellipsoid so that β is also
quadratic.

We now turn to the case a + b ~ n + d, d > 0 and prove:

(C) Given z e Lα_2 c ha-x c La+1 there is an a-flat A in La+1 with
A Π La-λ = Lα_2 such that the a-flats AQ in Lα+1 through La-λ are normal
to A. The same holds with b replacing a.

Take B normal to La-1 at an La-τ c Lα_2. Such a B exists because
a — 1 + b — n + d — 1, moreover La-X φ B = An.

For any line G through z in B the α-flat AQ = La^@G is transversal
to B at DG = La-iφCr. Hence AG is, by hypothesis, normal to B at
Do. If a > d + 1 choose an (a — d — l)-flat C through z in La^ such
that L d . 1 φ C = L a . l c L β . 1 . Then AG is normal to £ φ C at L^_x = De®C.
Let z e L2a B, L2 Γ) La-λ = ^,L 2 ®i α -i = iα-i This L2 exists because
Lα_x n ΰ = L*-! and 1 ^ 0 5 = An. Then A = L 2 φL α _ 2 c J ? @ C and
for^eG c L 2 the α-flat AG is normal to A at Lα-i

We now construct a surface T as in Case II of (3.6). On the line
perpendicular to a given α-flat A* through z in La+1 we take yΛ, with
e(z, 2/̂ 0 =/"'1(A'). The points y4/' traverse T.

Also, for a given Lα_2 with ί? e Lα_2 c La+ι we take the L3



60 H. BUSEMANN AND E. G. STRAUS

perpendicular to Lα_2 through z (L3 = La+1 if a = 2). If A! z> Lα_2 then
the perpendicular to A' at 2; lies in L3. The perpendiculars to the
A' ~D Lα_2 therefore intersect T in a surface To and it suffices to prove
that To, or its polar reciprocal T'o in L3, is an ellipsoid.

According to the discussion of Case II the α-flat spanned by x e To
and Lα_2 is transversal to the α-flat A! H) Lα_2 if and only if A! is
spanned by Lα_2 and a plane L2 through 2 parallel to a supporting plane
of Γό at x. Then A' is normal also to every α-flat in La+1 through Lα_2

and x.
Statement (C) means in terms of T'o, that given a line H through

z ( j y φ L α _ 2 is the Lα_! in the hypothesis of (C)) the cylinder parallel
to H circumscribed to To touches To in a set containing a section of
To by a plane L2 through z (£ΓφL α _ 2 is the La in the assertion of (C)).
It now follows from (B2) that TJ is an ellipsoid.

The proof that β is quadratic for a + b = n + d,d>0 is again
entirely analogous.

The Corollary (6.2) can be improved in special cases as follows:

(6.3) THEOREM. If a < n\2 and d = 0 or a > n/2 and d = 2α — n

and for a (totally) convex a-area a (total) normality at d-flats is
symmetric, then a is euclidean.

The area function is differentiate because, according to (6.2), it is
quadratic (in other respects the present proof is independent of (6.2)).

Let a < w/2, A 3 z and let BA be the (n — α)-flat transversal to A
at z. Then each α-flat Af 3 z in BA is transversal to A. Hence by
hypothesis Af is normal to A so that BΛ, D A. Thus A! ~D BA implies
BA, ID A. The mapping A-* BA can therefore be extended to a correla-
tion φ on itself of the bundle consisting of all i-flats (1 < i < n — 1)
through z (see [2, pp. 51-53]). Moreover ψ is a polarity because Aφ2 =
Af and if Lλ B Z then L ^ does not contain Lλ. Thus φ coincides with
the mapping which belongs to a suitable ellipsoid E with center z which
associates LλB z with its diametral hyper plane Lλφ. This nearly obvious
fact may be seen as follows.

We extend An to a protective space Pn and the correlation φ to
a correlation of P w by first associating z = (0, •••, 0,1) with the hyper-
plane at infinity if = (0, , 0,1). With the intersection Lλ Π H =
(#1, •> #n> 0) w e associate the hyperplane Lxφ = (ξ19 , ξn, 0). If T is

0 — 1 / * s

the matrix of a polarity in Pn which defines the ellipsoid E with the
above property.

This ellipsoid taken as unit sphere defines a euclidean metric in An

and also a euclidean α~area. By construction normality of α-flats at z
for this area coincides with α-normality of α-flats at z. According to
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(5.1) this shows that the two areas differ only by a constant factor so
that a is also euclidean.

The case a > nl2, d = 2a — n is very similar. If ABZ we take the
(n — α)-flat BA transversal to A at z. This time if A' 3 BΛ then A! is
transversal to A at A' Π A where dim A' f] A — 2a — n. By hypothesis
A! is normal to A so that J5̂ , c A. Since A' ID 2?̂  implies BA, c A,
the mapping A-+ BA can again be extended to a correlation of the
bundle of all i-flats (1 < i < n — 1) through z on itself. From here on
the proof proceeds exactly as in the first case.

7 Minkowski area. We now apply our results to the special cases
from which the general theory originated.

Consider a symmetric Minkowski metric (or a 1-dimension convex
area) F(x) in A\ We denote its unit ball F(x) < 1 by U and let U(A)
denote the intersection of U with the α-flat A through z. For any
α-flat A parallel to A the intersection (F(x — z) < 1) Π A, z e A originates
from U(A) by translation and is a unit ball in A for the metric induced
by F(x) in A. Following [7] we define an α-dimensional area 1 < a <
n in An by stipulating that the measure of U(A) have the euclidean
volume

(in particular πτ — 2, ττ2 = TΓ) SO that for a definite euclidean metric e we
have

The functions corresponding to our previous a(M) and J F 7 ^ , •••,#«)
will be denoted by |Λf | α and Fa(x19 , xa) so t h a t

\M\a=fa{A)\M\i,

Fa(x19 -- , ^ ) = fa(A)\[z, xlf •••JOJJU

and ^(ίc) = ^(α;). Since we admitted α = n we also have an ^-dimen-
sional measure

For a < n let La-X B z be an (α — l)-flat and L2 the plane perpendi-
cular to Lα_x at 2;. On a variable ray J? with origin z in L2 take the
point yR with

Φ, yΛ) = Λ" 1 ^) = I U(AB) IX"1, AR = Lβ.x φ Λ .
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That is the curve S(La-u L2) for fa as constructed in (3.5). It is a funda-
mental and non-trivial fact (see [7, p. 164]) that S(La-u L2) for fa is
always convex and is strictly convex or differentiable when the unit
sphere F(x) = 1 of the space is strictly convex or differentiable respec-
tively. Thus we have the following.

(7.1) THEOREM. The Minkowski areas \M\a, (1 < a < n — 1) are
all convex. They are strictly convex or differentiable if the unit sphere
F(x) = 1 is strictly convex or differentiable.

The question whether Minkowski areas are totally convex for
1 < a < n — 1 is equivalent to a difficult problem on convex bodies.
Even extendable convexity is not known (see Problem 10 in [10]).

We mention the following further property of Minkowski area which
is important for differential geometric investigations and was proved by
Barthel [1].

(7.2) If F{x) is of class Cr for x Φ 0 then Fa(x19 •••,#„) is of class

Cr for x1A-"AxaΦ 0.

We also note^

(7.3) If the a-area, l<a<n — l, of a Minkowski space is quadratic
then the space is euclidean.

For, if a > 1 then we conclude from (6.3) that the area in any
(a + l)-dimensional subspace is euclidean. It is easily seen and contained
in Theorem (9.1) that therefore the metric in this subspace is euclidean.
It is well known (see e.g. [9, (16.12) p. 91]) that then the metric of the
whole space is euclidean. Therefore (6.1) and (6.2) yield the following.

(7.4) THEOREM. Let 0 < d < a <b < n but not a + b = n and d =

0. If a, β are Minkowski a-and b-areas respectively (not necessarily
relative to the same Minkowski metric) and a-normality and β-nor-
mality at d-flats are equivalent then both Minkowski metrics are
euclidean.

If normality of a-fiats at d-flats in a Minkowski space is sym-
metric then the space is euclidean unless a = n/2, d = 0.

We note in particular that for all n > 2 symmetry of normality of
α-flats at (a — l)-flats suffices to make the Minkowski space euclidean.
From (5.2) we know that the case α = l ,δ = w — l ,d = 0 is exceptional
for two distinct Minkowski metrics. Whether this case is exceptional
when a and β belong to the same Minkowski space amounts (unless
a = b = 1) to an interesting open problem on convex bodies (see [10,
Problem 5]).
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Finally we see from Theorem (7.4) and the example at the end of
§ 6 that convex area functions—even quadratic area functions—are in
general not Minkowskian. The problem of characterization of Minkowski
areas among the convex area functions remains open, (see § 9).

The fact that area functions are now defined for all a leads to new
concepts, in particular to a sine function. If A Π B = D a z, where
0 < d < min(α, b) — 1 and A φ B = Q, take a non-degenerate g-box,
[z> Vi, , Vb, Xa+it > ffj, s u c h t h a t y l f , y a e D y a + 1 , * ,ybeB — D
and xΛ+1, , xa e A — D. Now put

(7.5) sm (A, B) = ^ ^ "

where i^0 — 1. The number sm(A, J5) is called the Minkowski sine of
the flats A, J3 because it depends only on the latter and not on the choice
of the g-box. For example, if d > 0 then replacing y19 * 'fyd by other
independent yl9 , yA e D amounts to multiplying all four terms Fa,
Fq, Fa9 Fb in (7.5) by

Ifo 2/i, •• ,^]IS/l[^yi» ••-! Va\\ea -

If D does not contain ^, but ^ e f l then the vectors yif xs in (7.5)
must be replaced by y, — z, Xj —• z.

The sine function is not the function of a number, " t h e angle be-
tween A and B". Even in the euclidean case this angle is defined only
for d — min(α, 6)-l. Hence the restriction to this case in [7] and [1].
The sine function for the euclidean metric will be denoted by se. Then
obviously, with f(LQ) = 1, we have

(7.6) sm(A, B) - se(A, B)fd(D)fq(O)fά\A)fi\B) .

For any λj, k = d + 1, , b j = d + 1, , a put

= Σ

Then the boxes of the form [z, y19 , yd, xd+1 + i/d+i(λ), , xa + y

have [z,y19 •••, i/d, a?d+1, •• ,a?α]
 a s projection in Q parallel to JB on

Since

does not depend on the λ*, the α-flat A is totally normal to B at
in Q if and only if

sm(A, B) > sm(A*, B) for A* n B - D, A* c Q .
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We denote this maximal value of sm(A*,J5) for given B,D,Q by
a(B, D, Q). If q = n then Q — An is unique and we write simply a(B, D).

(7.7) //

sm (Alf Bλ) = maxα(i, D, Q),
A

then

sm (A19 2?i) = max a(B, D, Q),
B

and converselyy hence A2 is totally normal to B2 and B2 is totally normal
to A2.

Proof. If A is normal to B then

(7.8) a(B, D, Q) = sm (A, B) < a(A, D, Q)

hence

(7.9) maxα(£, D, Q) < maxα(4, D, Q)
B A

Similarly, if B' is totally normal to A! then

(7.10) α(A', D, Q) = sm (A', B') < a(B', D, Q) .

Whence together with (7.9) we have

(7.11) max a(B, D, Q) = max a(A, D, Q).
B A

If

sm(Alf Bλ) = maxα(4, D, Q) = a(Alf D, Q)

then Bλ is totally normal to Ax. Hence (7.11) and (7.10) imply

sm (Alf Bλ) = a(Blf D, Q) = max {B, D, Q)

so that Ax is totally normal to Bx.

(7.12) If for given A (B) in Q through D there exists a b-flat
(a-flat) totally transversal to B (A) at D in Q (which is always the case
for min (α, b) = d + 1) and

sm(A2, B2) = min a(B, D, Q)

A

then

sm (A2, B2) = min a(B, Ό, Q)
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and A2, B2 are normal to each other.

For, if A is totally transversal to a given B, then

a(A2, D, Q) = sm (A, B) < a(B, D, Q) .

Hence

min a(B, D, Q) < mina(B, Ό, Q) .
A B

The proof is analogous to that of (7.7).
As a consequence of (7.11) and (7.12) we have the following.

(7.13) COROLLARY. If the function a(A, D, Q) is constant for fixed
Ό, Q then a(B, D, Q) is constant and conversely. Moreover the constants
have the same value. If a(A, D, Q) or a(B, Ό, Q) is constant then total
normality of A to B and total normality of B to A are equivalent.

The equivalence of total normality follows from the fact that for
any A totally normal to B we have

sm(A, B) = maxα(A, D, Q) .

The equivalence of normality implies that B (A) totally transversal
to A (B) at D in Q exist. Therefore both (7.11) and (7.12) apply.

Whether the converse of the second statement in (7.13) always holds
is not known. However the proof of (3.6) yields the following special
case.

(7.14) If d = min(α, b) — 1 and normality of A to B at D in Q is
equivalent to normality of B to A, then a(A, D, Q) and a(B, D, Q) are
constant.

Proof. If z e D we take as in Case I of (3.6) the (q - <Z)-flat Lq-d

perpendicular to D at z and construct, if a < b say, the surface S by
taking on each ray R in Lq-d with origin z the point yR with e(z, yR) =
fa\AR) where AR^D®R.

For the 6-area we construct T as in Case II by taking on the per-
pendicular in Q to a 6-flat B through D in Q the two points yR with
e(z, yR) — fς\B), and denote by I" the polar reciprocal of Γin Lq-d with
respect to the metric e(x, y).

If wR is the point R f] T then the supporting (q — d — l)-flat of T
at wR spans together with the d-flat parallel to D through wB a 6-flat
B normal to AR. The reciprocity of T and T implies that B has dis-
tance fh{B) from z. Hence by (7.6) we have7

7 Because d = min (α, b) - 1 the function se is the ordinary sine of the angle between
AR and B in the metric e(x, y).
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a(As, D, Q) = sm(4,, B) = se{AR, B)fd(D)fq(Q)fά1(ΛR)fi1(B) .

But

fb{B) = ae(AR, B)e{z, wR),fa{AR) = e~\zf yR) ,

so that we have the following nice interpretation for a(AR, D, Q):

a(AB, D, Q) = fd-
1(D)f-1(Q)e(z9 yR)\e(z, wR) .

If normality of A to B at D in Q is equivalent to that of B to A
then S and T" are homothetic. Hence e(z, yB)le(z, wR) is constant, which
proves (7.14).

8 The range of the sine functions. Problems regarding the ranges
of a(B, D, Q) are important for Minkowskian geometry and are geometri-
cally very attractive, but unfortunately often quite difficult—only in the
simplest case n = 2 hence α = δ = l,cϊ = 0 do we have complete
answers owing to Petty [12] who found the following.

For any line L± in A2 through z we put oc(Lιy z, A2) == a(L) and
denote by CF the unit circle F(x) = 1. Then

i) = π/4, maxα(Li) = π/2 ,
Lv F Lv F

and a(Lx) — π/4 or a(Lλ) — π/2 imply that CF is a parallelogram and
Lx a suitable line (different in the two cases).

Also

max min a(Lx) = πβ ,
F LF

where the maximum is attained only when CF is a hexagon which is
regular for a suitable e(x, y).

Finally

min max a(L^) = 1 ,
F

where the minimum is attained only when CF is an ellipse, that is
when the metric is euclidean.

By (7.13) and (7.14) we have a(Lλ) = kF, that is a(L^) is indepen-
dent of L19 if and only if normality of lines in the plane is symmetric.
This means that CF is one of the curves discovered by Radon [13] which
we encountered already several times implicitly and which we shall call
Radon curves. Their construction is also found in Petty [12] and in
[9, p. 104]. Since the regular hexagon is a Radon curve we find 1 <
kF < π/3 with kF = 1 only for the euclidean metric and kF = τr/3 only
when CF is a regular hexagon.
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Under the hypothesis of (7.14), if a — 6 and hence d — a — 1 then
S and T are Radon curves and we can derive the range of a(La, La-lf La+1)
(when constant) from Petty's results. Otherwise the ranges for a(A, D, Q)
with D, Q fixed are not known. For variable D, Q we deduce from (7.13)
and (7.14) the following.

(8.1) THEOREM. If 0 < d < a <b < n but not a + b ~ n and d = 0

then (x{La, La, La+b-d) is independent of Laf Ld, La+b~d only in the eucli-
dean geometry (where all a-functions are equal to 1).

Beyond this result only very few facts on the ranges of the sine
functions are known for n > 2, which we shall now discuss.

(8.2) m i n ^ L i , Lo) = min a(Ln-19 Lo) = πnj

(8.3) maxa(Llf Lo) = maxα(Ln^x, LQ) = n

In the first of these relations equality is obtained only when the
unit sphere S, that is F(x) = 1, is a cylinder and in the second only
when S is a double cone.

The proof is very simple. The equality of the first two members
in (8.2) or (8.3) follows from (7.12) and (7.7). Let H be a hyperplane
through z and Lx normal to H at z. If p, pf are the points Lx Π S and
Z7H = U Π H then the hyperplanes parallel to H through p and pf are
supporting planes of U. Moreover UH has maximal (n — l)-dimensional
volume among all sections U by hyperplanes parallel to H. Therefore

πn = I UI n < F ( p - p') I UHI „_! sm (L l f -ff) = 2πn-xa(H> «)

with equality only for cylinders.
On the other hand ?7 contains the double cone formed by the cones

with apexes p, pf and bases UH so that

with equality only for double cones.
These relations successively provide bounds for all α(Lα, Ld), but

these bounds are not sharp. We exemplify the procedure with a(Ln.2, Lo).
If Ln-2 is normal to L2 at z then we consider in L2 lines L[ and Lx

through z such that L[ is normal to Lx. Since Ln_2 is normal to Lx and
L[ we have, with Ln_x = L n . a φ L i ,

sm(Lw_2, L2)sm(L[, Lx) = sm(LΛ^2> I/i)sm(Lί, Lft-χ)

or

sm (Ln_2, L2) = a(Lx> z, Ln-X) sm(LJ, Ln^a'\Llf z, L2)

< ^ ~ "•*• ^ - 1 ^L ^n 4 __
— 9 TΓ 9 rr TΓ
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It is easily seen that with a proper choice of L19 L[ in L2 the line
L[ is normal to Ln_x. Hence

2 7ΓW_2 2 7rw_! π 2π πn.2

so that
1

Z7Γ
L. < α(LM_2, Lo)

The only exact bound other than (8.2) and (8.3) which has been
determined is the following.

(8.4) max a(Ln.lf Ln_2) = 2τrn_27rw/^_i .

This equality holds only for a cylindrical unit sphere with (n — 2)-
dimensional generators and a parallelogram as 2-dimensional crosssection
whose exact definition will emerge from the proof.

If an Lw_2 is given we choose coordinates so that its equations are
#n-i = xn = 0 and put #„_.,. = p cos9, xn — p Bmφ so that a?x, , a?n-3> P>Ψ
are our coordinates. Set U(Ln-2) = F. For given α?, ̂> with a? e V let
(a?, r(ίu, φ), φ) lie on the unit sphere S. Then, with e\x, y) — ^(x1 — j/*)a,

S = ̂  Γ ( r\x, φ)dxdφ >
2 Jo J F

with equality only when r(x, φ) is independent of x.

Now 1 r(α;, ̂ >0)^^ is the euclidean volume A(φ0) of the intersection
JV

of ί7 with the half-hyperplane φ = ^>0. Hence if P^o is the hyperplane
containing φ ~ φ0 we have

q r γ Ί /p p N _ s inl^! - φ2\2A(φ1)2A(φ2) _ πn-2πn

(1/2)Γ
Jo

Considering the convex curve p = A(̂ >) in «?!=•••= xn-2 — 0 we
see that the first factor on the right attains its maximum 2 when the
curve is a parallelogram and φlf φ2 fall in the diagonals. There will be
equality in (8.4) if and only if in addition r(x, ψ) is independent of x.
For n = 3 we have equality only for a parallelepiped.

The most important questions regarding the ranges of the sine func-
tions concern

min max a(La, Ld) = min max a(Ln-a+d, Ld) ,
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in particular whether, or for which α, d this number equals 1; and
whether the value 1 characterizes euclidean geometry. The case a ~
1, d = 0 is Problem 6 in [10].

9. Relations between the functions fa. The Minkowski areas are
derived from—and hence determined by—the Minkowski length. The
question arises whether in a Minkowski geometry any of the areas
(1 < a < n) determine the remaining ones.

(9.1) THEOREM. An a-dίmensional area function Fa(xlf , xa), 1 <
a < n — 1, is an a-dimensional Minkowski area for at most one Min-
kowski geometry. In other words, if Fa(xlt , xa) is known then F(x)
and hence the remaining Fb(xlf ,xb) are determined.

This follows from a theorem of P. Funk [11]:

Let Se be the sphere e(z, x) — 1 in B and let S(A) be its intersection
with A B z. Let g^x), i — 1,2 be an even continuous function on Se and
denote by S(A, gt) the integral of gi{x) over S(A) with respect to (a — 1)-
dimensional area. If S(A, gλ) = S(A, g2) for each A with z e AcB then

Induction reduces this statement to a = b — 1.
A proof for 6 = 3 is found in [5, p. 138], A proof for general b is

obtained by using expansion in terms of spherical harmonics. If x e Se

then xF~\x) lies on F(x) - 1. Hence | U(A)\e

a = S(A, arxF-a{x)) so that
by Funk's theorem this relation determines F(x).

An explicit expression of F(x) in terms of fa(A) can be found in
[4, pp. 154, 155], and this yields, in principle, the value fb(B) for given
B. Actually the expression thus obtained is much too involved to deduce
pertinent information from it. There is however an inequality of a very
simple form, although its proof is involved, which relates fb and fa and
which we are now going to derive from the results of [8].

If n>b>a>l,Bsz then

(9.2) Dφ, a)fς\B) > \ fάb(A)dA

with equality only for the ellipsoid. In this formula dA is the kinematic
density for α-flats in Bf the quantity D(b, a) is the measure of all α-flats
through z in B and hence is a constant which depends only on a and b.

Since in (9.2) B acts as the whole space we may take b = n. The
inequality is a special case of a relation between the functions

= πj\ ϋ-4(A)li, /,,„ = πnl\Ut\i i = 1, - , a

belonging to different Minkowski metrics with unit spheres Ut, •• ,*U
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with common center z:

(9.3) D(n, a) f[ frf > \ Π fa/a(A)dA ,

with equality only when the Ut are homothetic ellipsoids, i.e. when the
corresponding Minkowski metrics are proportional euclidean metrics.

The inequality (9.3) is in turn a consequence of a still more general
inequality.

Let M19 , Ma be convex bodies in the ^-dimensional euclidean
space En, n >3,2 <a <n — I then

(9.4)

x ( \M1 ΓΊ A\T . - . \Ma n A\n

a

/adA,
JABABz

with equality for | Λft | n > 0 only when the Mt are homothetic ellipsoids
with center z. The measure \M\t is of course, the ί-dimensional Lebesgue
measure in En.

We deduce (9.4) from the following relation for any closed bounded
sets M19 , Ma.

(9.5)

JABz JM^

where T(Plf , Pα,«) is the α-dimensional measure of the (possibly
degenerate) simplex with vertices Plf ,Pafz and dVpi is the area
element of A at P 4 e M4 Π A. The symbol Cέ(n, α) denotes a constant
which depends only on n and a.

For α = w — 1 and α = n — 2 (9.5) is proved in [8, (2), (17)], hence
we prove (9.5) by induction for decreasing α. Assume (9.5) to hold for
some a + 1 <n — 1. As Ma+1 we take the euclidean unit ball U with
center z. Then if B denotes an (a + l)-flat we have

( ( ••• ί
Now Ma+1 n -B is an (a + 1) — dimensional unit ball ί7, and if ψ is

the angle between the α-flats spanned by Plf , Pa and the line through
z and Pα+i, then

Γ(P l f , P α + 1 , «) = (α + l ) - χ φ , Pα+1)!sin<p| Γ(P t, , P β ,

Since
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f β»-«-i(s, pβ+1)|sin"-β-x

depends only on n and a we obtain, after carrying out the integration
ever U,

x \ [ ... f T"-^{Ply •• ,Pa,
jB3z JM^B J ^ α n j 3

For a variable α-flat A through 2 in J5 we have (see [8, (12)])

Integration first over all A through z in B, and then over all B
through z can, according to the properties of kinematic measure, be in-
terpreted as an integration over all A through z (except for a factor
which depends only on α), and this proves (9.5).

Steiner's symmetrization leads from (9.5) to (9.4). Consider a fixed
α-flat A through z and let Mly , Ma be convex bodies. It is shown in
[8, pp. 8-10] that under simultaneous symmetrization of the sets Mt Π A
in any (a — l)-flat C through z in A the integral

decreases unless the centers of all chords of all Mt Π A perpendicular to
C are coplanar with z. Hence the Mλ Γi A are homothetic ellipsoids
with center z if the last integral is to be minimized. The minimum is
actually attained for such ellipsoids [8, pp. 10, 11] and the integral has
then the value

C\n,d)\Mx n AlS / α - \Ma KA\aJa.

This proves (9.4).
We note two consequences of these results.

(9.6) The ellipsoids with center z maximize \ \M Π A\ldA among

all convex bodies with a given volume.
Application of (9.4) to the case M2 = = Ma = U yields

(9.7) |ΛΓU > πnπ~a

n/aD-ι{n, a)\ \M n A\nJadA ,
jΛβz

with equality only for the sphere. Hence the sphere gives the maximum
of min \M Π A\n

a\M\tn for given volume \M\ > 0f
A
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