Pacific Journal of

Mathematics

EXISTENCE THEOREMS FOR CERTAIN CLASSES OF
TWO-POINT BOUNDARY PROBLEMS BY VARIATIONAL

METHODS

RICHARD J. DRISCOLL




EXISTENCE THEOREMS FOR CERTAIN CLASSES
OF TWO-POINT BOUNDARY PROBLEMS
BY VARIATIONAL METHODS

RICHARD J. DRISCOLL

Prefatory remarks. The principal results of this paper are existence
theorems for solutions of two classes of vector differential systems; in
each case the existence theorem is established by variational methods.
In particular, the second system considered is a generalization of a scalar
system, including as a special case the so-called Fermi-Thomas equation,
studied by Sansone [8; pp. 445-450]. In spite of similarities occurring
in the discussion of the two systems considered, the two problems are
sufficiently distinct to warrant separate treatment. Accordingly, we shall
divide the remaining sections of this paper into two parts, in which the
numbering of sections and of displayed material will be independent; the
bibliography, however, will apply to both parts.

Matrix notation will be used throughout and all matrices will have
real elements; in particular, a vector v = (u,), (j =1,2, ---,n), will be
regarded as an n x 1 matrix. If M is a matrix, M* will denote the
transpose of M, while for a vector v = (u,), ( =1, 2, ---, n), we define
|u| = U+ --- +u2)’*. For F(u)a scalar function of the vector u, the
symbol F,(u) will denote the vector function (F,,(u)); if G(u) is a vector
function (Gy(u)), (¢ =1, 2, .-+, m), of the vector u, then G, (u) will denote
the m x n matrix [|0G,/ou,ll, @ =1,+--,m;j=1,---,m). If Mand N
are matrices, the notation M > N is used to signify that M and N are
real symmetric matrices of the same dimensions and M — N is non-
negative. As usual, the symbol C™ represents the class of finite dimen-
sional matrix functions which are continuous and have continuous deri-
vatives of the first » orders on some given set.

Part I

1. Introduction. This part of the paper will be concerned with
vector differential systems of the form
(1.1) ¥ =fv9), e<z<b,
y(a) =Yy, y(b) = Y2,
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92 RICHARD J. DRISCOLL

where f(z, ¥, 2) is an m-dimensional real vector function of the real scalar
2 and the real n-dimensional vectors ¥ and z. It will be shown that the
system (1.1) has a solution, under the hypotheses H,, H,, H,, H;, of §3
and HF of §4. For reasons of convenience, we shall work primarily with
the system

(1.2) v'=r919), a<z<b,
y(a) =0 =y(b),

and show in §4 how a system (1.1) may be reduced to such a system.
The existence proof will use variational methods applied to the
functional

(1.3) 10,2 = [0 — 21 + 12 = (s, 9, D) ia

with (y, 2) in the class K of function pairs defined below. In §2 there
are listed some lemmas to be used later. In §3 an existence theorem
for a solution of (1.2) is established by showing, in effect, that I(y, ?)
has a minimum for (y,#2) in K, and that this minimum is zero. The
relation between systems of the forms (1.1) and (1.2) is considered in
§4, while §5 contains a comment on a modification of hypotheses.
Finally, § 6 is devoted to an example of a class of problems to which the
existence theorem proved here is applicable.

In what follows, A, will denote the class of vector functions y(x)
which are absolutely continuous and for which |¥'(x)|* is integrable on
a < <b, while K is the class of vector function pairs (y, 2) with y(x)
and 2(x) in A, and with y(a) = 0 = y(b).

2. Some useful lemmas. For future reference we collect here certain
auxiliary results.

LEMMA 2.1. Suppose that the matriz f,(x, Y, z) exists and is con-
tinuous for a < x < b, all y, and all z. If for each p > 0 the elements
of f, are bounded for a < x <b, |y| <p and 2z arbitrary, then there
are values K, = K(0) and K, = K, (0) such that

| f(z,y,2)| < K|2]| + K, for a <z <), |[y]| <p, 2 arbitrary.

LemMma 2.2, If {w,(®)}, (m=1,2,...), 48 a sequence of wvector
b

Sunctions of class A, such that the two sequences { | w,, lzdw} and
b a

{ S | wh, lzdx} are bounded, then the w,(x) are wuniformly bounded on

a <x<b, and there exists a w(x) in A, and a subsequence {wmj(x)}
such that wmj(x)ﬂw(x) uniformly and wy, () — w'(x) weakly in the
class of integrable square functions on a < x < b.
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This lemma is a ready consequence of well-known results for the
Hilbert space of real-valued measurable functions whose squares are
Lebesgue integrable on a < x < b, see, for example, [7; §§32, 99].

LeMMA 2.3, If y(x) is in A, and y(a) = 0, then

b 7{2 b
g ty'lzdxz————g y Pde .
a ——-(}(,)2 a

4(b

This is a well-known condition on the smallest proper value of the
differential system %" + Ay =0, y(a) =0 = ¢'(h). For an independent
proof see [2; p. 184]; the present inequality follows from (7.7.1) of [2]
by a simple change of variable.

We will also need some results related to non-oscillation of the scalar
differential equation

(2.1) (u(@)'(2)) — Po@)u(x) =0, a<2<b,

where +Jr, is of class C' and +, continuous on @ <z <b. The equation
(2.1) is termed non-oscillatory on a < x < b if for two arbitrary points
2, «, satisfying a < 2, < &, < b, any solution u(x) of (2.1) vanishing at
2, and at x, vanishes identically on ¢ < 2 < b. It is well-known that if
Yr(x) > 0ona < x<b, then (2.1) is non-oscillatory on @ < x < b if and
only if

(2.2) J(u) = S:(«pl(m)u”(m) F yn(@u(@)dz > 0

holds for all non-identically vanishing u(x) belonging to A, and satisfying
u(a) = 0 =u(b). For a proof of this statement see, for example, [5:

’

Theorem 2.1], where a more general result is proved. Moreover, if (2.1)
is non-oscillatory on a < x < b, the infimum of J(u) for u(x) in A, and

b
satisfying u(a) = 0 = u(b), S uldx = 1 is greater than zero, as can be

seen from an indirect argun;ent. Indeed, if the infimum were equal to
zero, then there would be a sequence of functions u, in A4, with u,(a) =

0=u,b), | ude=1, j=1,2 -+, and with J(u,)—0. One readily
a b
verifies that the sequence { u;zdx} would be bounded, so that, by Lemma

2.2, there would be a u(w3 in A, and a subsequence of {u,}, denoted
again by {u,}, such that u,(x) — u(x) uniformly on a < x < b, and u)(x)
— w/(x) weakly on this interval. The identity

J(u,) = J(w) + g:«pl(x)[Zu’(u; — ) + () — w)dz + S:w]rz(m)(ui — w)de

would then imply that 0 = lim J(u,) > J(u), contrary to (2.2), since
b

w(a) =0 =wu(d) and | wdx = 1. With these comments one readily estab-

lishes the following result.
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LEmMMA 2.4. If (2.1) s non-oscillatory on a < x < b, and yr(x) > 0
on this interval, then there exists an ¢ > 0 such that if h(z) is any
Junction continuous and satisfying |hx)| <e on a <x <b, then the
equation (Yr(x)u') — (Yro(@) + A(x))u = 0 is non-oscillatory on a < x < b.

3. Existence theorem for a solution of (1.2). In the future sections
we will make reference to the following hypotheses on the real-valued
vector function f(zx, ¥y, 2):

H,. f(x,y,2) is continuous for (z,%,2) in Q:a <z <b, |y| < o,
|z] < oo.

H,. The matrices f, and f, exist and are continuous for (x,y, 2)
m Q.
H,. For any p > 0, there exists a K = K, such that |df,/0z,| < K
Jor ly) <pasz< b’ Izl < oo, (’L,j = 1; ---,’I’L).

H,. For arbitrary p >0 there exist scalar functions r(x) =
(@5 0) € C, Yr(x) = Pi(x; 0) € C" with y(x) >0 on a <x < b, and a
constant N = N(p) such that:

(a) the scalar differential equation (Y(x)w') — Y (x)w = 0 is non-
oscillatory on a < 2 < b;

(b) the integral inequality

2| v*f (@, v, 0w = | lor, = V1w P+ ly Pl — N
holds for all y(x), 2(x) in A, satisfying y(a) = 0 = y(b) and
S:Iy’—dew <p.
H,. For arbitrary y(x), 2(x) in A,, the vector differential system

w' — fz(m, y(ﬁ?), z(m))w’ - fy(x, y(x)! Z(Cﬁ))’w =0 , @ S x é b

3.1)
w(a) = 0 = w(b)

has only the solution w(x) =0, a <z < b,
We now prove the following theorem.

THEOREM 3.1. Under the hypotheses H,—~H, there exists a solution
of the system (1.2).

Let {y.(%), z.(x)}, m =1,2, ---, be a sequence of function pairs of
class K such that I(y,, #.) — I,, where I, denotes the infimum of I(y, 2)
on K. Since {I(Y., 2,)} is a convergent sequence, there exists a constant
M, such that I(y,,z,) < M, m=1,2,.... It will be shown first that
the inequality

32 [ (9@) F + 205007 @, Yulo), e < M, M =1,2, -
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holds for
(3.3) M = 2M ik, where k = Min(1, 7%[4(b — a)?]) .

Let 0(0) = | Fu(9)ds + 2,(a), Where fu(&) = F (2, Yu(s), z(x)). Then
Up(X) = 2,() — v,:(x) is in A4,, and u,(a) = 0, so that by Lemma 2.3,

b 1) 7-[2 b
12 = fupdo = | luinl2dx2~———72§ |, i
a a - a

A(b
This inequality yields
G4 M= k] (s = 2l + |20 = onDe = @2 90— va Pz,
where k is as in (3.3). Since
b b b b
S Y VO = y:ivm! — S Ymnde = ~S Y [l

relation (3.2), with M given by (8.8), results from (3.4) and the obvious
inequality

S"ly:n — 0Pl > (" (0 — 20 0,)da

b
Since the sequence {S [ Y — Zm !%ix} is bounded, we may use H, to
write )

b b
2] v @y ) = 107 = DIG P + ol gl — N,
where +r(2), yr(x), and N have the properties stated in H,. This relation
with (3.2) yields

b
[LCriva + l y ) < M+ N
Since (Yr(x)u’)Y — Yr(2)u = 0 is non-oscillatory on a < x < b, Lemma 2.4

implies that there is an » with 0 < » < 1 such that (yr') — /rWru = 0
is non-oscillatory on o < x < b. As y,(a) =0 = y,(b), we then have

[Lovdv + il ya s = 0

and
[Lerdvt + il v e = (= 0yl Pl = 11w,

where 7, = (1 — 7)Min,.,.,¥(x). Thus, the sequence {Sbly;n {2dw} is
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bounded, and since each y,(x) vanishes at a and b, the vector functions
Yn(x) are uniformly bounded on a < x# < b. Moreover,

1]
[[1amrds < ['lo + (o — wi pdo
b b
<2[ v pds + 2| 20 - vi s

< 2Sb|y,’n Pdz + 2M,

so that the sequence Hblzm lzdx{» is bounded. Finally, with f,.(x) con-
tinuing to denote f(, ¥.(), 2.(2)), We have

[tanrde = ("1 = fu) + fulida
<2{' 12 — fulde + 2| | £ Pda
< oM, + 2S:| fulidz .

As the vector functions y,(x), (m =1, 2, --.), are bounded uniformly on
a <z <b, in view of hypothesis H, and the result of Lemma 2.1, this
latter inequality implies S"[ o Pde < K' + K"Sb | 2 ['d@ + 2M,, for suita-
ble constants K’, K". He;lce, the two sequencg {ya(%)}, {2.(%)} satisfy
the hypotheses of Lemma 2.2, and we conclude that there exist sub-
sequences, which will be denoted simply by {y.(x)} and {z.(x)}, and a
pair of functions y(x), z(x) in A,, such that y,(x) — y(x) and z,(x) — 2(x)
uniformly on a < 2 < b, while y,(x) — %'(x) and z,(x) — 2'(x) weakly on
the same interval. _
With f,.(x) as above and f(x) = f(x, y(x), 2(x)) we have

I(ym’ zm) = I(y! z) + Il,m + IZ,m ’

where
Low= [ 11— 2) = @ = )P + | (Fo = ) = (3 — ) Pl
and
L =2 {0 = "0 = ¥) = (e = 2)]
@ = U — ) = (fa = e

Since ¥.(x) — Y(x), 2n.(®) — 2(x) uniformly, we also have f,(x)— f(%)
uniformly on @ < x < b. This, and the fact that y,, — ¥, 2, — 2’ weakly
on the same interval, implies that I,,, —0 as m — «. As I, >0, it
follows that
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I, = lim I(Yu, 2,) = I(y, 2) .
s

On the other hand, the definition of I, requires I, < I(y,2), so that
I, = I(y, z); that is, (y,2) renders I(y,z) a minimum in the class of
function pairs K.

It follows that for arbitrary 7(z), &(x) in 4, with %(a) = 0 = 7(b),
and ¢ a real parameter, the functional I(y + 07, z + 6¢) has a minimum
at d =0, and therefore (d/d8)I(y + 07, z + 6¢) = 0 for 6 = 0; that is,

@5 [ = -0+ @ = - i — f8de =

where the arguments of f, f,, f, are x, y(x), 2(x).

In view of H,, (see [4; pp. 213-214]), for an arbitrary continuous
function g(x), ¢ < x < b, there exists a solution (7(x), {(x)) of the dif-
ferential system

7)’ - é‘ =0 ’
& — fulw, y(x), 2(2))n — fix, y(x), 2(x)) = 9(x), a<x<b,
7(a) = 0 = 7(b) .

Therefore, Sb[z*’ — ¥z, ¥, 2)]lg(x)dx = 0 for arbitrary g(x) continuous on

a<x<hb, and consequently 2'(x) — f(z, y(x), 2(x)) = 0 a.e. on the same
interval. Relation (3.5), with 7(x) chosen identically zero on a <z < b,

then yields Sbg‘*(y’ — z)dx = 0 for arbitrary ¢ in A,, and hence Y'(x) = 2(x)
a.e. on a < gc < b. From the relations z(x) = 2(a) + f (s, y(s), 2(s))ds,
y(x) = S 2(s)ds, it then follows that y(x) and z(x) are of class C’, and
that ¥'(x) = 2(x), 2'(x) = f(x, y(x), 2(x)) for @ < x < b, so that y(x) is of
class C"” and satisfies (1.2).

4. Existence of a solution of (1.1). For the system
y' =f@,v,v9), a<x<b,
y(a’) =Y., y(b) =Y,

let F(x, v, 2 = f(x,y + M=), 2 + N(x)) — \N'(x), where Mx) is any vector
function of class C” on a < x < b satisfying Ma) = ¥, Mb) = ¥,. Then
(1.1) is equivalent, with w =y — X, to

w' = F(x, u,u), a<x<b,
u(a) = 0 = w(d) .

(1.1)

(4.1)

This leads us to formulate the following hypothesis.
H¥. There exists Mx) of class C" on a < x < b with Ma) =¥y,
Mb) = ¥, and such that for arbitrary p > 0 there exist scalar functions
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() = (5 ), continuous on a < x < b, Yy(x) = Yry(x; 0) of class C’' on
a <2 < b with yy(x) > 0, and a constant N = N(p) such that:

(a) the scalar differential system (Yr(x)w') — yn(@)w =0 is non-
oscillatory on a < x < b;

(b) the integral inequality

b b
2[ v sy +x 2+ Ve = [ 0h = DIY'E + iy llde — N
holds for all y(x), 2(x) wn A, satisfying y(a) =0 = y(b) and

S:[y'—z|2dx<p.

THEOREM 4.1. Under hypotheses H,, H,, H,, H}, H;, the system (1.1)
has a solution.

Let F(x,y,2) =f(&, ¥+ Mx), 2z + N(x)) — \N'(x), where \(«) is the
function described in Hf. Clearly, F(z, v, z) satisfies H,, H,, H,. Since
f satisfies HF, we have

2 y*f y +r 2+ V)dn > 1 = DI P+l y [lde — N

for arbitrary y(x), 2(x) satisfying y(a) = 0 = y(b) and Sb]y’ — zdx < p.
Hence, for such y(x), z(x) we have

[ v F@ v, 2w > [ 10— DIy + ol y [l = N — 2] v v (@)da
N P N R PG
1 b "2
= (e L),

for any ¢ > 0. But by Lemma 2.4, ¢ can be chosen so small that
(') — (Yy —)w =0 is still non-oscillatory on a <2 <b. Thus,
F(x, y, ) satisfies H,. Finally, one easily verifies that if f(x, v, 2) satis-
fies H, then F'(x,y, z) satisfies H,. Thus, whenever f(x,y,2) satisfies
the hypotheses of Theorem 4.1, the corresponding function F'(z, ¥, z) of
(4.1) satisfies the hypotheses of Theorem 3.1, so that the result of
Theorem 4.1 is a direct corollary of Theorem 3.1.

5. A comment on altered hypotheses. We note here that hypothesis
H, is implied by the more restrictive but simpler hypotheses H and HY'.
H.. There exists a constant C such that

[y (f(@, ¥, 2) — f(@,9,2)) | < Clyllz, — 2], for (2, 9,2), (%, ¥,2)in 2.

HY. There exist scalar functions y(x), continuous on a < ¢ < b,
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and () > 0 of class C' on a < x < b, and a constant N such that:
(a) the scalar differential system (Y)W’ — r(x)w = 0 is non-
oscillatory on a < x < b;
(b) the integral inequality

2[ v, v v0de = [ 1ok = DIV P+ iy Pde — N

holds for all y(x) in A, satisfying y(a) = 0 = y(b).

To see that H, is implied by H) and H} (assuming, of course, H,,
H,), for y(x), z(x) in 4, and ¢ > 0 we write,

b b b
2Ly*f (x, y, )z = ZSmy*f (z, ¥, ¥)dx + ZLy*[f (%, 94,2 — f(z,y, y)ldw
b

> 2| v £ @, v, ¥)do 20('lylly — 2o
> 2[ v s, v, v)de — Cef 1y pde — (€19)[ v —2lan

@

= ["1r, = DIy'e + 0 = Col 1w ~ [Co)le + ]

for all y(x), 2(x) in A, with y(a) = 0 = y(b) and Sb! ¥y — zPdx < p. Since
¢ can be chosen so small that (y,w')' — (Y, — eC )l;u = 0 is still non-oseil-
latory on a < 2 < b, we see that H; and H} imply H,.

It is to be noted that if the elements of f,(x, y, #) are bounded for
(x,y,2) in Q, then f(z, y, 2) satisfies both H; and HJ.

6. An example. Let f(x, 9, 2) = g(z, y)(1 + 2*)"*, where z is a scalar
and g(z, ¥) is a scalar function of the scalars = and y satisfying the
conditions :

(a) 9(z, ¥) and g,(x, y) are continuous fora <& < b, —co <y < o}
(6.1) (b) gy(w,y) =0 for a <x<b, —o0 <y < oo;
(c) there exists a constant A > 0 such that if |y| > A then
v, 9 =20, a<x<b.

One may verify that f(x, v, 2) satisfies hypotheses H,, H,, H, H},
and H,.

Part 11

1. Introduction. Sansone [8; pp. 445-450] has proved the existence
and uniqueness of a solution of the scalar differential system

Y =P@)p®,y), 0<x< oo,
yeC on 0<e<o,
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under assumptions which are related to hypotheses H,-H; (see §§2, 7)
of this paper. The product r(x)p(x, y) appears in (1.1) to facilitate
stating the hypotheses in such a way as to include the Fermi-Thomas
system (see [8; p. 445)),

1.2) Yy’ =y
0 =1, limy@)=0.

In this paper we consider solutions of a vector differential system, for
which we prove an existence and uniqueness theorem which includes the
results of Sansone.

The proof given in [8] may be considered in two parts. In the first
part the author proves, in effect, that under his hypotheses the system

Y=Y, y), 0<z< oo,
(1.3) y(0) =y,, y(x) bounded on 0 < x < o,
yeC on 0L < o,

has a unique solution. Essential to Sansone’s proof of this result is the
fact that his hypotheses guarantee a local uniqueness property for solu-
tions of

(1.4) Y’ = (@), y) ;

that is, under his hypotheses, (1.4) has for 0 < x, < o exactly one
solution satisfying y(x,) = ¥,, ¥'(%,) = y,. The hypotheses of the present
paper, however, are not strong enough to imply such local uniqueness,
as will be shown by an example in §2. In the second phase of his
proof, Sansone appeals to hypotheses which are designed to guarantee
that the bounded solutions of (1.8) actually satisfy (1.1). In this paper
we make a similar step, but again our hypothesis is weaker than the
corresponding ones in [8], as will be made clear in §7.

Sections 2-5 of this paper present an existence and uniqueness
theorem for a solution of the vector generalization of Sansone’s system
mentioned above. This proof is primarily by variational methods, and
the solutions are shown to be characterized by an extremal property.
In § 6 there is given a different characterization of these solutions, while
§7 contains several theorems relating to the asymptotic behavior of
solutions. Finally, §8 is devoted to properties of solutions of (2.1) as
functions of initial values.

2. Formulation of the problem. Let g(x,y) be a real-valued scalar
function of the scalar x and the n-dimensional vector ¥y = (y,). We will
denote by g,(x,y) the vector (gyj(oc, ¥)), and consider the problem of
solving the vector differential system
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(2.1) ¥'(@) = g,(x, y(@)), O0<@< oo,
y(0) =y, , y(x) bounded on 0 < x < o ,

where y(x) € C' on 0 <2< o and y(x) € C" on 0 <z < . We will
suppose that g(x, y) has the form g(x, y) = y(x)G(x, y), where +(x) and
G(x, y) are real-valued functions which satisfy the following hypotheses :

H. G(z,y) is continuous n (x,y) on Q: 0<x< o, |y] < oo,
and G(x,0)=0 for 0 <z < co.

H, G/(x,y) exists and is continuous in (x,y) on Q.

H,. y*G,/(z,y) >0 for (x,y) on L.

H. 74G,(w,y+ 1) — Gz, 9)] = 0 for (z,9), (z,7) on Q.

H;. +r(x) s conttnuous and positive for x > 0 and integrable on
any finite closed interval 0 < x < A.

It is to be noted that g(x, y) may satisfy H,-H, without the equa-
tion y¥” = g,(«x, y) having the local uniqueness property mentioned in §1.
Indeed, if we take

/2
g(w,y):{sys , ¥=0,
0, y<0,
so that
1242, y>0,
gy(w,y)={ v y

0, y<0,

it is easily verified that g(x, y) satisfies H-H;, with y(x) = 1. However,
the function ¥,(x) = (x — x,)*, @, > 0, satisfies the equation y"'(x) = g,(x, y(x)),
as does the function y,(x) = 0. Since we have y,(x,) = y.(x,), ¥i(x,) = Vi),
it follows that the local uniqueness property does not obtain here.

A few consequences of the above hypotheses are worthy of com-
ment. First, observe that H, and H, imply G,(x,0) = 0 for 0 <z < .
Also, since G(x,0) = 0 by H,, and

6@, 9) = || LG, sw)ds ]| = [ vGu(w, sp)ds = | 507G, (o, su)is
0 S 0 0
we have by H, that G(z,y) >0 on 2. Moreover, if y(x) is continuous
on 0 <x<A, A>0, and y"(x) exists and satisfies y"(x) =g,(x, y(x))
for 0 <x <A, thenye C'"on 0 <2< A. To see this we write

V@) =) - [Ty =y - [ voee uoar, 0<o<a.

Hence, lim,_.y'(x) exists. This, with the fact that y(x) is continuous
for 0 <z < A, implies 3'(0) exists and that lim, y'(x) = ¥'(0).

Next we note that if G(x, y) satisfies H, and H,, then H,is equiva-
lent to the statement that G(zx, y) is convex in y; that is,



102 RICHARD J. DRISCOLL

G, y) — G, 9) — W —y)G(x,y) =0

for arbitrary (z,v,), (®,%.) in 2. Finally, we note that the condition
G(x,0) =0 of H, is no essential restriction, since if G(x, y) satisfies
H—-H, with the exception of this condition, then the function Gz, y) =
G(x, y) — G(x, 0) satisfies H,-H, and presents the same differential system
2.1).

3. Some properties of solutions. In addition to the system (2.1),
we will consider also the system
(3-1) y"(x) = gy(xs y(x)) ’ 0 _<— a S 1A S b ’
Yy@) =Y., YO0 =1,

where y is of class C" on a < x < b, with the obvious modification in
case ¢ = 0. For these systems we prove the following theorem.

THEOREM 3.1. Under hypotheses H—-H,, the systems (2.1) and (3.1)
have at most one solution.

We will give the proof for (2.1); the proof for (3.1) is similar. If
y(x) and y,(x) are two solutions of (2.1), let 7(x) = y.(x) — y.(x). By H,
and H; we have for 0 < x < oo,

0 < 7*[gy(@, ¥, + 1) — gy, ¥)] = 9., 1) — 94(%, ¥:)] = 7",

and hence,
S:v*(t)n”(t)dt >0, 0<z<ow.
Consequently, upon integration by parts, we get
) = |7 Pde = 0.
Since (|7 = 29*y' and (| 7*])" = 2|7 |* + 29*y", it then follows that

(n@) [y =0, and (7@[)" =0, 0<2 <.

Consequently, either 7(x) =0, 0 < x < o, orelse | 9(x)| — o as £ — oo-
Since the latter is impossible, (2.1) has at most one solution.
The following result will be of use later.

LEMMA 38.1. If g(x,y) satisfies H-H,, and y(x) is a solution of
y'(x) = g, (x, y(x)) on 0<2x< oo with SO |y [*de < o, then y(x) 1s
bounded on 0 < x < .

If y(x) satisfies 4" = g,(x, ), then, since (|y|»)' = 2|y |* + 2y*y"’ =
2|y ! + 2y*g,(x, y) > 0, we know that either there is an x, such that
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ly| =0 for # > #,, or else there is an x, such that |y| # 0 for 2 > x,.
In the latter case we have

lyllyl =9v*y', x>,
and

lyPlyl” =1y @™ y") + (ylPly' P —@y)Y) =0, x>u,,

since y*y" = y*g,(x,y) > 0. Hence, either |y | < 0 for x > x,, in which
case lim,_.|y(x)| < |y(x,)], or there is an « > 0 and an x, > %, such that
ly/ >a >0 for >, In this latter case, for x >, we have
lyl1v'| = vy =|yllyl = aly|, so that [¢'|>a> 0 and consequently

:ly' P[dex = oo. Since this is the only case in which y(x) would be un-

bounded, we conclude that if y(x) is unbounded then rly’ 'de = 0.
0

4, A preliminary existence theorem. In what follows I(y; a, b) will
denote the functional

1w, 0) = [ 1y} +20(@5)lde,  y@) in Kb,

where K(a, b) is the clags of absolutely continuous vector functions y(x)
with |y'(z) |* integrable on a < « < b, and satisfying y(a) = y,, ¥(0) = ¥,.
We prove the following result.

THEOREM 4.1. If g(x,y) satisfies hypotheses H-~H,, then for any
a, b satisfying 0 < a < b, the system (8.1) has a unique solution. More-
over, this solution 1is a unique minimizing fumction for I(y;a,b) in
the class K(a, b).

By H, and the fact that g(x, y) > 0, we see that I(y;a, b) > 0 for
y in K(a, b). Let I(a, b) denote the infimum of I(y; a, b) for ¥ in K(a, b),
and let {y,(x)} be a sequence of elements of K(a, b) such the I(y,; a, b) —
I(a,b). As g(x, y.(x)) >0 on a < x < b, we have

j"ly:n fdw = I(yw; a, b) — 2§°g<x, yn)de < Iy a, b) ,

b
so that there exists an N such that ‘ [y Pde < N for m=1,2, -,
Moreover, for a <« < b, )

(@) — vl =| [ 08t) <@ o 1srat < 0 - @) luipat,
so that | ¥,,(®) — ¥, | <[(b — a)N]"?, and hence | ¥,(¢) | <|ya|+[(b —a)NJ¥2.

Consequently, we may use Lemma 2.2 of Part I to conclude that there
is a subsequence, which we will denote again by {¥,.(x)}, and a function
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y(x) in K(a,b), such that y,(x) — y(x) uniformly on a <x < b, and
yn(x) — y'(x) weakly on this interval.
From the identity

b
Ini @, 8) = Iwi 0, 5) = | 190 — o/ I + 200, v) — 92, 1)
+ 2(yn — ¥) "Y' ldw

and the fact that y,(x) — y(x) uniformly on @ < x < b while y.,(x) — ¥'(x)
weakly on this interval, one obtains the lower semi-continuity relation

I(a, b) = lim I(y,; @, b) > I(y; @, b) .

Since the definition of I(a,b) requires that I(a,bd) < I(y;a,b), we see
that I(a,d) = I(y;a,b); that is, y(x) minimizes I(y;a, b) in the class
K(a, b).

It follows that if »(x) is absolutely continuous with 7(a) = 0 = 7(b)
and |7/(x) |* is integrable on @ < x < b, and 6 is a real parameter, then
I(y + 67n;a,b) has a minimum at 6 =0. From this it follows that
(d/d0)I(y + 61; a,b) =0 at § = 0; that is,

b
Sa[v’*y’ + 7*gy(x, y)ldz = 0 .
In particular, this last equality holds for arbitrary » of class C” on
a<z<b with 7(a) =0=x0b) =7(a) =7'(), and for such an 7 inte-
gration by parts leads to

(4.1) SZn”*[y(x) — S:dsS:gy(t, y(t))dt]dx —0.

By the fundamental lemma of the calculus of variations, there exist
constant vectors & and &, such that

v@ = a5 ot umyat+eo + 6, a<esh.

Therefore, 4" (x) exists and satisfies
y'(x) =gz, y@®), a<x<b,

with the understanding that if @ = 0, then %”(x) may fail to exist at
x = 0. Since y(a) =y, y(b) =1y, it follows that y(x) satisfies (3.1).
The uniqueness of this solution follows from Theorem 3.1. Moreover,
since the above argument shows that any function of class K(a, b) that
minimizes I(y; a, b) is a solution of (8.1), it follows that the above deter-
mined y(x) is the unique minimizing function for I(y;a, d) in K(a, b).



EXISTENCE THEOREMS FOR CERTAIN CLASSES 105

5. An existence theorem for a solution of (2.1). In what follows,
K will denote the class of absolutely continuous vector functions y(x)
with | ¢’ |* integrable on 0 < # < < and satisfying y(0) = y,, I(y; 0, =) < =,
where

130, ) = |1y + 2002, y))ds
We now prove the following result. .

THEOREM 5.1. Under hypotheses H,—H; the system (2.1) has a unique
solution; moreover, this solution is a unique minimizing function for
I(y; 0, ) in the class K.

Let {y,.(®)}, m =1,2, -+, be a sequence of functions in K such that
I(Y,; 0, o) — I, where I denotes the infimum of I(y;0, «) for y in K.
Then the non-negativeness of g(z, ) implies that the sequence :]y,’n [*dx

is bounded, and since ¥,(0) = y, for every m, as in the proof of Theorem
4.1, the y,(x) are uniformly bounded on each finite interval. Hence, by
Lemma 2.2 of Part I, there is a subsequence, say {y,(x)} again, and an
absolutely continuous function #%(x), such that on each finite interval
Ynu(x) — y(x) uniformly, and y,(x) — y'(x) weakly. Now for any 4 > 0
we have I(Yn;0, ) > I(y,; 0, A); moreover, as in §4 we have
A4
103 0, 4) = 1930, 4) = 2| [(0(e, 1) — 902, 1) + U — ¥)*¥'lds

and consequently lim inf,..I(y,;0, A) > I(y; 0, A). Hence

T=1limI(y,;0,0)>I%;0,4), A>0,

and finally,
I>1(y;0, o) =limI(y; 0, A) .
A—oo

In particular, this latter relation implies that y(x) is in K, and in view
of the definition of I we have I(y;0, «)>1I, so that I(y;0, o) =1.
That is, %(x) minimizes I(y;0, ) in the class K.

Now on any finite interval 0 < x < A, the thus determined y(x)
must coincide with the unique vector function which minimizes I(y; 0, A)
in the class K(0, A) of curves joining (0, y,) and (4, y(A4)), for otherwise
one could piece together a curve which would give I(y;0, «) a smaller
value than does y(x). By Theorem 4.1 it then follows that y(x) satisfies
y"(x) = g,(x, y(x)) on 0 < x < A, where A is arbitrary, and consequently
y"(x) = g, (%, y(®)) on 0 < & < co. Since I(y;0, ) is finite, Lemma 3.1
implies that y(x) is bounded on 0 < x < « and therefore is a solution
of (2.1). The uniqueness of this solution follows from Theorem 3.1,
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Inasmuch as we have actually shown that any y(x) that minimizes
I(y;0, ) in K is a solution of (2.1), the uniqueness of y(x) as a mini-
mizing function follows from its uniqueness as a solution of (2.1).

6. A further characterization of solutions of (2.1).

THEOREM 6.1. Suppose that hypotheses H—H, are satisfied, and
Y(x) is the unique solution of (2.1) guaranteed by Theorem 5.1. If,
for a given vector, &, y = yy(x, ), 0 < x < N, s the solution of

(6.1a) Y = g,(®, Y(@)) ,
(6'1b) y(O) =Y y(N) = ’ N= 1’ 27 *t

then yy(x, &) — y.(x) and yy(z, ) — y.(x) uniformly on each subinterval
0 <2 < A.

We will suppose in what follows that the definition of y,(x, £) has
been extended so that yy(x, £)=§& for > N. The inequality (| yy(x, £) )"’ =0
and the end conditions (6.1b) then imply that

(6'2) lyN(xyS)lgMaX(lyol!lgi)7 OS,’E<OO, N:1’2r”'-

Moreover, the identity

63) (O =+{n4 8 — v — | ds| 0t vatt 931,

OSxSA, N>A9

shows that the sequence {|yi(x, £)|} is uniformly bounded on 0 < x < A.
Consequently, the sequence {yy(x,£)} is uniformly bounded and equi-
continuous on any finite interval, so that we may select a subsequence
{yx (z, &)} which converges uniformly on any finite interval to a continu-
ous function y(x). From (4.1) it follows that if 7(x) is of class C” on
0 <2< o, and 7(0) =0 = 7'(0) = 7'(A), P(x) =0 for > A, then

[ o e = s ot v b, 0t jta =0, N> 4.

Since vy j(w, &) — y(x) uniformly on 0 < x < A, we then have

[[7{we) - [[as{ aut, vetnat Jaw = 0.

As before, application of the fundamental lemma of the calculus of vari-
ation yields the result that y”(x) exists and %" = g,(z, y) for 0 < 2 < A.
Since A is arbitrary, it follows that y"(x) = g,(, ¥(x)) on 0 < & < oo.
Moreover, %(0) = y,, while the relation (6.2) shows that y(x) is bounded
on 0 <2 < o, go that in view of Theorem 5.1 we have y(x) = y..(x).
Now for 0 < x, < o, let » be any accumulation point of the bounded
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sequence {yy(x,, &)}, and let a subsequence {yv (%, £)} be chosen such
that yy (%, £) — 7. Then, as before, the sequence {yy (@, £)} is uniformly
bounded and equicontinuous on any finite interval, so that we may select
a subsequence which approaches y.(x) on 0 < x# < «. Consequently, the
sequence {Y(x,, £)} has only one accumulation point, namely % = y.(z,),
from which it follows that y,(z, &) — y.(x) for 0 < & < oo.

With {u(x) = yy(x, & — y.(z), as in the proof of Theorem 3.1 we
have that (|&y(2)[?) = 0, 0 <« < N. This implies that for any A >0
and N> A we have [¢y(2)] < |&x(4)| on 0 < o < A, and thus y(x, &) —
Y(x) uniformly on 0 < x < A.

The fact that yi(z, &) — y.(x) uniformly on 0 < x < A now follows
from (6.3), and the corresponding identity obtained by replacing y.(x, &)
by y.().

7. Asymptotic behavior of solutions of (2.1). At this point we
introduce the following hypotheses:
H,. For each ¢ > 0 there is an z, > 0 and a ¥(x, ¢) = 0 with 2¥(z, ¢)

integrable on every finite subinterval of z, < x < o, S 2¥(x, c)dx = oo,

and such that for x> x,, |y| > ¢ we have y*g,(x,y) 26?If(x, c).

H, If yx) ts in C' and |yx)]>=c>0 for 0<x < o, then
I(y(); 0, ) = co.

We have the following result.

THEOREM 7.1. If in addition to H-H,, either H, or H, is also
satisfied, then any solution of (2.1) approaches zero as x — o,

If y(x) is a solution of (2.1), then ([y}»)" = 2y™y" + 2|y’ | > 0.
Since y(x) is bounded on 0 < x < o, it follows that (¥ [|?)’ < 0, so that
either |y(x)| is bounded away from zero or else y(x)—0. If H, is
satisfied then, in view of the fact that I(y(x);0, o) is finite for y(x) a
solution of (2.1), it follows that |y(x)| cannot be bounded from zero;
that is, y(x) — 0.

Suppose now that H, is satisfied. As was noted in the preceding
paragraph, (| ¥ [*) is non-decreasing and non-positive, so that lim, ..([y [?)’
exists. This limit is zero, since |y|* is non-negative, and hence
lim, ..y*y' = 0. This fact leads to the following relations,

—2yre@) = [ (uprar =2 @+ 1y,
2@ (@) = 2| W Ot vo) + VO Pt
—v W@ = | v, ue)t .

Integration now yields
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L@ = slu P = ds| vgat,
2 2 I P s
and hence
1 2 A4 [T
Tly@ = | as|Tyrgae .
Finally, upon integration by parts we obtain
oo oo A
Liv@ = Al vaat — o] vradt + [ s ve)ds .

If there is a ¢ > 0 such that |y(x)| > ¢ on z, < & < o, then by H,
it follows that for all « and A satisfying z, <2 < A <

Llv@ = [ sr (s, ods — | vrate wenat

But this implies that mslff(s, ¢)ds < oo, contrary to assumption. Thus,

there is no ¢ > 0 such that ly(x)] > ¢ on an interval of the form x, <
2 < oo, and since |y(x)| is non-increasing it follows that |y(x)| — 0 as
X — oo,

In connection with the comments in §1 of this paper, it is to be
noted that the hypotheses used in [8] to establish the analogue of our
Theorem 7.1 correspond to the assumption that the ¥(x) of H, satisfies

Sw@“(x)dx = oo, instead of the weaker requirement made here.
0

For the next two theorems we will make use of the following
hypothesis.
H,. There exists a function ¢(x) such that

[ 9u(, %) — 94(®, 1) | < (@) |9 — 4],

Jor 0 <o < oo, [Y| <o, |y, < o0,
where ¢p(x) > 0, xp(x) is integrable on any finite subinterval of 0 <
x < o, and S xp(x)de < oo,

1]
We prove the following theorem :

THEOREM 7.2. If o(x,y) satisfies H,, H, H,, H, and g,x,0)=0,

and if a is any constant vector, then there is a unique solution y(x)
of ¥ = g,(x, y) for which y(x) > a as x— oo.

Let G(2) =S to(t)dt. Tmitating Hille [3; p. 238], we consider the
following successive approximations corresponding to a given vector «,

yo(x)za, 0<e < oo,

U@ = a + | (¢~ D)t Y OME,  0<w< e,
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We will show by induction that for 0 < x < oo,
(a) y(x) is defined;

(b)) |yu(®) — yus(@) | < | ] [cha?)]k < la] Ec(Y;(O)]k , k=12 ...,

We have |y,(x) — y(x)| = 'S:(t — x)g,(t, a)dt{ . The integral here exists

since on x <t < oo we have |t —x||g,(t, @) <t]g,(t, )| < tp(t)| ],
which is integrable on x <t < . Moreover,

|0a) — ()| < || ()it = || G(@)

so that (7.1) is satisfied for k = 1.

Suppose (7.1) is true for k =1,2, -+, N— 1. Then yy(x) is defined,
since | 9,(, Yy-1(t) | < &(£) | Yy-i(t) |, Where yy_,(t) is bounded on 0 < ¢ < .
Moreover,

9@ = Uri) | = || = 2 (000t Ys(8) = 90tts Ur- (D)L
< [ 9(0) L) — v t) | 28
PR
< mS t(E)GT-Yt)dt .

Since G¥-'(t) is bounded, all the integrals above exist. Hence,

— . —{(X l - N1 — ‘ @ ' [G(m)]N
120 — r@) | < A |GG @ = LW

Now yy(®) —a =¥ —¥Y) + (Y. — Y1) + ¢++ + (Yy — Yy-1), and the
series v, | ¥x(®) — Yr-(®)| converges uniformly on 0 < x < < by (7.1b).
Hence y(x) = lim,_.yy(x) exists ; moreover y(x) is continuous on 0 < x < o
and satisfies |y(x)| < |a|exp {G(x)}. Therefore |y(x)| is bounded on
0 < x < o, and H, with the uniform convergence of {yy(x)} on 0 <z <

implies y(x) = a + r(t — x)g,(t, y(t))dt, so that

y(x) = gy(x, y@), O0<2< oo,
limy(x) = a .

oo

If Y(x) satisfies Y"(x) = g,(x, Y(x)) on 0 <2 < o and Y(x) — 8
as x — oo, then the integral Sm(t — x)g,(t, Y())dt, 0 < x < oo, exists
and 7(x) = Y(@) — 8 — r(t — Dg,t, Y(t)dt is such that 77(x) =0,
0 <2< o, and r/(m)—eoxas x — . Hence, 7(x) =0 and Y(x) =8 +

Sm(t — x)g,(t, Y (¢))dt. With y(x) as above we then have
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9@) =Y (@) | =|a— 8+ | ¢t — Dot v) - t, YO ,
<la—gl+ | ) ue) - Y(t)ldt,

so that by a simple modification of Gronwall’s lemma, (see [1; p. 35]),
it follows that

ly(@) — Y(@)| < la — Blexp {G(2)} .

If 8= a then Y(x) = y(x), which proves the uniqueness of solutions of
y"' = g,(x,y) with given limit as x — o. Moreover, |y(x) — Y(x)| <
|aa — B|exp {G(0)}, so that we have the following corollary.

COROLLARY 7.1. The solution y(x) described in Theorem 7.2 is a
continuous function of a = y(o).

We now prove the following theorem on the order of growth of
solutions.

THEOREM 7.3. If g(z, y) satisfies H,, H,, H;, H,, and g,(z, 0) = 0, and
if y(x) satisfies y" = g, (x,y) on 0 < & < o, them n = lim,_.y'(x) exists
and is finite, and y(x) = x[n + o(1)].

Note the H; implies |g,(x, )| < ¢(x) |y |, which is all that is needed
here. If y(x) satisfies ¥’ = g,(x, y), then following Bellman [1; p. 114]
we write

u(®) = 9(0) + 2(©) + | (@ — t)gy(t, u(®)dt
Hence, for # > 1,
%@ | < 2(vO)| + YO D + o] 6(t) luet) | at
or
LD < gy 1+ 1w @D + | w0y 12O e
Therefore, by Gronwall’s lemma, (see [1; p. 35]),

DL < 191 + 1y @ exp {{ vt} ,

and hence there is a constant M such that
ly@)| < Mz, 2x>1.

Now for £ > 1 we have
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[[lot veniat < (o0 1vw)1at < u| toitrat

so that SNI g,(t, y(t)) | dt exists. Since

y'(®) = y'(0) + S:gy(t, yt)dt ,

we have that y'(x) — 7 as © — o, where

7 =90 + | 0. vens.

The final equality in the theorem is a ready consequence of this finite
limit of #'(x).

8. Behavior of solutions of (2.1) with respect to initial values. We
continue to suppose here that H-H, are satisfied, but not necessarily
any other hypotheses. Let #,(x), y,(x) be two bounded solutions of "' =
g,(x,y)on 0 < & < o, and set (x) = y,(x) — y,(x). Then by H,, we have
¥’ >0, so that (|70 =27 [P+ 29*7” > 0. Since 7(x) is bounded,
we must have [7(x)| non-increasing; in particular, [7m(z)| < |79(0)| on
0 <2< o. Suppose now we denote by y(x;a) the unique bounded
solution of ¥ = g,(x,y) which satisfies y(0;a) = a. Then y(z;a) is
continuous in £ and « jointly, as may be seen from the inequality

ly(@; @) — yz, @) | < |y(@; @) — y@; @) | + |y(@; a) — yx; a)|,
<lad—al+|y@; a) —yx; a)| .

Moreover, for any 4 > 0,

B @i = t[u; ) - y0; @) — {"ds| gutt, uit; anat |,

so that ¥'(x; @) is also continuous in z and a.

We turn now to the question of differentiability of solutions with
respect to initial values. The derivation of our results will involve the
use of a lemma, the proof of which is based on certain theorems due
to W. T. Reid. In [6], Reid has discussed a class of non-oscillatory
linear matrix differential equations which includes as a special case the
matrix equation

8.2) U" = Px)U, a< < oo

where P(x) is a non-negative definite symmetric matrix with continuous
real-valued elements. As shown in Theorem 6.1 of [6], if U(x) is a
solution of (8.2) which is non-singular on a subinterval b < x < o, and
the necessarily constant matrix U*x)U'(x) — U*(x)U(x) is the zero
matrix, then
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M(b; U) = lim (S:U*l(t)U*'l(t)dt>—l

exists and is finite. Moreover, such a U(x) is a principal solution of
(8.2) in the sense of Reid [6] if and only if M(b; U) = 0. In addition,
a principal solution U(x) is characterized by U(z) = U, ..(x)C, where C
is a non-singular constant matrix and U, .. = lim,... U, ,(x), where U, (%),
t > b, is the unique solution of (8.2) satisfying U, ,(b) = FE, U, (t) = 0.

It follows as a special case of Theorem 5.1 of this paper that the
vector system

w' = Ax)u , I0<r <o
#(0) = u,, |u(x)| bounded on 0 <z < oo,

(8.3)

where A(x) is a real symmetric non-negative matrix of functions con-
tinuous on 0 < 2 < o, has a unique solution. Moreover, Theorem 6.1
shows that the solution wu(x) of (8.3) is the limit, as N — o, of a func-
tion uy(x) satisfying uy = A(@)uy, Ux(0) =u, y(N)=0, N=1,2, +--,
In view of the similar characterization of this solution and of the principal
solutions described above, it follows that the column vectors of U(x),
where U(x) is a principal solution of U’ = A(x)U, are particular bound-
ed solutions of "’ = A(x)u. This fact will be used in the proof of the
following lemma.

LEMMA 8.1. Suppose A(x; h) is an n X n non-negative definite sym-
metric matrix, continuous jointly in the scalar x and the vector h for
0< 2 < o and b in some open set H. Let W,(x) be the unique princt-
pal solution of

Wi(x) = A(w; k) Wi(x) ,
satisfying
w.(0)=E.
Then, if hy 1s wn H we have lim,_, W,(x) = W, (), uniformly for x on

any tnterval 0 < x < X.
We consider the solutions U = U,(x) of the system

U" = A(x; h)U

(8.4)
U0)=E, U0 =E

or, equivalently,
U=V

(8.5) V' = A(x; h)U
U0)=E, VO =E.
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The latter is of the form (2.4) of [6] with A =0, B=FE, C = A(x; k).
The solution of (8.4) is non-singular on 0 < x < oo, since if £ is a constant
vector such that w = U(x)¢ satisfies u(x,) = 0 with x, > 0, then

0= Sx"u*(u" — Au)dz ,
0

— u*ul

v j’”"(t W+ wtAuyde
= —|&fF — XZO(I u' [P + w*Au)da

so that £ = 0.

Continuing to use the notation of [6; § 3], we compute the value of
the constant matrix {U, U} = U*(x)V(x) — V*x)U(x) to be U*O0)V(0) —
VH0)U) =0, and we find that 7= E. By Theorem 3.1 of [6] we
know that any solution Y(x) of Y"” = A(x)Y with Y(0) = E has the
form

Y(@) = U(x)I:E ¥ (L U“%t)U*‘%t)dt)KJ ,

for some constant matrix K.

Now by Theorems 5.1 and 6.1 of [6] we have W,(z) = limy_.. You(x),
where Y = A%, W)Yo, Yiu(0) = E, Y N) =0. But in view of the
boundary conditions satisfied by Y,»(x) we have

Youla) = U(m)[E + (g U"l(t)U*‘l(t)dt)KoJ ,

with
K, = —(S:V U—l(t)U*—l(t)dt)"‘ .
Hence,
Youl() = U(ac)[E - G U—IU*-lthS:V U-U*-dg )] ,
and finally,
(8.6) W () = Uh(x)[E —<S U,:lU?;“dt>M(0; U,b)] .

We now need an estimate of U; (z)Ux '(x) for large z. To this end
put Z,(x) = (1 + @) 'U,(x). In view of (8.4), one readily verifies that

(A +2yzZ;)y — A+ afAe; h)Z, =0, Z,0)=FE, Z)0)=0.
From this fact it follows that
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0= S:Z:‘[«l +PZY — (1 + BPA(; h)Z,)dt

=+ tyZ}z;

= Sz(l + VZ¥Z, + ZF At h)Z,)dE
0 0
and therefore

(A + 2y ZF (@) Z)x) = S”(l 27 + ZFAZ)dL .
0

Consequently, (Z;Z,) = Z}Z, + Z;¥'Z, = 2Z}Z, >0 on 0 < 2 < o, and
75 (%) Z, (%) > Z;7(0)Z,(0) = E for x > 0; that is, U, (x)U,(x) > (1 + z)’E
and hence U; (x)U; () <1+ «)2F on 0 < 2 < o for k in H.
Since as & —h, we have U,(x)— U, (x) uniformly on each finite
interval 0 < z < X, it follows that
lim M(0; U,) = M(0; U, .
n-»ho
This result, with (8.6), proves the lemma.
We can now prove the following theorem:

THEOREM 8.1. If g,(x,y) = Hgyi@,jH exists and 1is continuous for
@, y) m Q2: 0<e< oo, |y| <o, and if g(x,y) satisfies Hi-H;, then
with y(x; @) as in the beginning of this section, we have that dy(x; a)/oas
and 0y'(x; a)/oa; exist and are continuous wn x, a for 0 < x < oo,
la| < o, j=1,2,:,n.

Note that if the hypotheses of this theorem are satisfied, then
g,4(x, y) > 0 for (x, y) in 2. We denote by ¢ the unit vector having all
components zero but the jth, and we let da = e“Ph, 4y = y(x; a + da) —
y(x; o), where h is a real scalar. Then

(4y)" = gy(x, y(x; o + da)) — g (x, y(x; a))
= (S:gyy(ac, y(x; a) + My)d0>z!y ,
so that

”

(%) = <S:gw(w, y(r; a) + 04y)d€><%) , h#0.

In Lemma 8.1 we identity A(x; h) as Slg,,,,(x, y(x; o) + 04y)do, where
0
« is fixed, and we identify h, as zero. We note that

Ay — o d | A?/(x)) _ 14y@)| < | 4y(0) | <1
<h>x=o M Wl = k]
0 < z < «. Hence, (1/h)4y is the unique bounded solution of 2"’ = A(x; h)z

satisfying 2(0) = ¢”. As explained above, the unique principal solution
of
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(8.7 W= Ax; h)Z, ,
satisfying
(8.7") Z;(0) = E ,

is the same as the bounded solution of (8.7'), (8.7") guaranteed by
Theorem 6.1 of this paper, of which (1/h)4y is the jth column vector,
for h + 0. Lemma 8.1 then implies that lim,_(1/h)4y(x) exists and is
equal to the jth column vector of Z(x); that is, for all «, the vector
function y, (v; a) = (8/da)y(x; o) exists and satisfies

8.8) (¥a,(2; Q)" = gu(®, Y(@; Yo (@5 0) ;. 0 <@ < oo

Since |y, j(oc; a)| <1, we may use Lemma 8.1 with 2 = « in conjunction
with the inequality

| Yo (B, @) — Yo (2, Q)| < [ Yo (@5 @) — Yo (@5 @) | + [ Y0, (&5 @) — ¥ (5 @) |

to show that v, @5 «) is continuous in x and «. Differentiation of the
right hand member of (8.1) with respect to «; shows the existence of
(0/0a)y'(x; o) and its continuity with respect to « and a.
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