A CLASS OF HYPER-FC-GROUPS

A. M. DUGUID
A CLASS OF HYPER-FC-GROUPS

A. M. DUGUID

1. Introduction. An element g of an arbitrary group G is called an FC element if it has a finite number of conjugates in G. The set of all FC elements of G forms a characteristic subgroup H of G (see Baer [1]). The upper FC-series of G, introduced by Haimo [4] as the FC-chain, may be defined by

\[H_0 = \{1\}, \]
\[H_{i+1}/H_i = H(G/H_i), \]

the subgroup of all FC elements of G/H_i. The upper FC-series is continued transfinitely in the usual way, by defining

\[H_\alpha = \bigcup_{\beta < \alpha} H_\beta, \]

when α is a limit ordinal. If $H_\gamma = G$, but $H_\delta \neq G$, for all $\delta < \gamma$, we say that the group G is hyper-FC of FC-class γ, following McLain [7].

A group G in which the transfinite upper central series

\[\{1\} = Z_0 \leq Z_1 \leq \cdots \leq Z_\alpha \leq \cdots \]

reaches the whole group is called a ZA-group (Kurosh [6]), and we may say that G has class α if $Z_\alpha = G$, but $Z_\beta \neq G$, for all $\beta < \alpha$. Glushkov [3] and McLain [7] have given constructions for a ZA-group of any given class. The main object of this note is to construct groups of given FC-class.

2. Constructions and proofs.

Definition. We say that a group G is of type Q_α if

1. G has FC-class α, with upper FC-series
 \[\{1\} = H_0 \leq H_1 \leq \cdots \leq H_\alpha = G, \]

2. $H_{\gamma+1}/H_\gamma$ is infinite, for all $\gamma < \alpha$, and

3. $H_{\gamma+1}/H_\gamma$ has the unit subgroup for its centre, for all $\gamma < \alpha$.

Thus the group with only one element is of type Q_0, and, in constructing a group G of type Q_α, we may assume the existence of a group G_β of type Q_β, for each $\beta < \alpha$. If α is a limit ordinal, we define G to be the ordinary (restricted) direct product of the groups G_β, for all $\beta < \alpha$. Then G has the properties 1 — 3, and thus has type Q_α. For the case $\alpha = \beta + 1$ we shall construct G by ‘wreathing’ the regular
representation of G_β with a certain kind of infinite centreless FC-group of permutations of the positive integers. (For convenience, we say that a group is centreless if its centre consists of the unit element alone.)

Definition. A faithful representation of a group G by permutations of the positive integers will be called a *special* representation of G if

(i) the stabiliser of each integer has finite index in G and
(ii) the intersection of the stabilisers of the elements of any set of all but a finite number of these integers is the unit subgroup.

Definition. An infinite centreless FC-group possessing a special representation will be called a group of type F.

To construct an example of a group of type F, let $D = B_1 \times B_2 \times \cdots$ be the ordinary direct product of an infinite sequence of finite centreless groups B_i, $i = 1, 2, \cdots$. Let $D_n = B_{n+1} \times B_{n+2} \times \cdots$, let k_n be the order of D/D_n and let the elements of D/D_n, in an arbitrary order, be $X_1^n, X_2^n, \cdots, X_{k_n}^n$.

For each element $g \in D$ and each $n = 1, 2, \cdots$, define the permutation π_{gn} of the integers $1, 2, \cdots, k_n$ by the rule

(1) \[\pi_{gn}(i) = j \text{ when } gX_i^n = X_j^n. \]

Now, for each $g \in G$, define the permutation π_g of the positive integers by the rule

(2) \[\pi_g(i + \sum_{j=1}^{n-1} k_j) = \pi_{gn}(i) + \sum_{j=1}^{n-1} k_j, \]

for all $i = 1, 2, \cdots, k_n$, and $n = 1, 2, \cdots$. The systems of transitivity in this permutation representation of D are the sets T_n of integers m such that $\sum_{i=1}^{n-1} k_i < m \leq \sum_{i=1}^n k_i$, for $n = 1, 2, \cdots$. If $m \in T_n$, then the subgroup D_n of D is contained in the stabiliser of m. Hence the stabiliser in D of each positive integer has finite index in D. On the other hand, suppose g is in the stabiliser in D of all but a finite number of the positive integers. Then there is a number n_0 such that g is in the stabiliser of each integer of each system T_n with $n \geq n_0$. So if i is any integer in the range $1 \leq i \leq k_n$, $n \geq n_0$, we know that g is in the stabiliser of $i + \sum_{j=1}^{n-1} k_j$, and this means that $gX_i^n = X_j^n$. Thus $g \in D_n$. But the subgroups D_n, with $n \geq n_0$, intersect in the unit subgroup of D. So $g = 1$. We observe also that the permutation representation of D defined by (1) and (2) is faithful. Thus we have a special representation of the infinite centreless FC-group D, which is therefore a group of type F.

Lemma. If G_β is a group of type Q_β and J is a group of type F,
A CLASS OF HYPER-FC-GROUPS

then a group G formed by wreathing the regular representation of G_β with a special representation R of J is a group of type $Q_{\beta+1}$.

Proof. The wreath group G may be regarded as a semi-direct product

$$G = KE, \ K \cap E = 1,$$

where $K = \prod_{i=1}^{\infty} A_i$ is the direct product of a sequence of groups, each isomorphic to G_β, and E is isomorphic to J. The automorphisms of K induced by elements of E permute the subgroups A_i, $i = 1, 2, \ldots$, realizing the special representation R of $J \simeq E$. Associated with G is a set of isomorphisms θ_{ij}, $i, j = 1, 2, \ldots$ such that $\theta_{ij}(A_i) = A_j$, and if $a \in A_i$, $g \in E$ and $g^{-1}A_ig = A_j$, then $g^{-1}ag = \theta_{ij}(a)$. θ_{ii} is the identity automorphism, for all i. (A brief general description of wreath groups, and further references, may be found in Hall [5].)

Let C_i be the set of all elements g in E such that $g^{-1}A_ig = A_i$. Then C_i is the centraliser in E of each element of A_i. Since the representation R is special, the subgroup C_i of E has finite index in E, for each i, and the unit element is the only element of E common to all the subgroups of any set of all but a finite number of the C's.

For all $\gamma \leq \beta$, put $H_\gamma = H_\gamma(K)$, the γth term of the upper FC-series of K. If possible, let $\tau + 1$ be the least such ordinal for which $H_{\tau+1}(G) \neq H_{\tau+1}$. Now any element k of K can be written as the product of a finite number of elements $a_{i\nu} \in A_{i\nu}$, $\nu = 1, 2, \ldots, n$, and the subgroup $C(k) = \bigcap_{\nu=1}^{n} C_{i\nu}$ has finite index in E. But $C(k)$ is contained in the centraliser of k in E, so $g^{-1}kg$, with $g \in E$, is finite valued. Hence

$$H_{\tau+1}(G) \cap K = H_{\tau+1}.$$

Suppose $kg \in H_{\tau+1}(G)$, where $k \in K$ and $g \in E$, $g \neq 1$. Let $\sigma + 1$ be the least ordinal in the range $\tau + 1 \leq \sigma + 1 \leq \beta$ such that $k \in H_{\sigma+1}$. Now H_σ is a characteristic subgroup of K, and hence is normal in G, and both kH_σ and kgH_σ are FC elements of G/H_σ. Hence gH_σ is FC in G/H_σ.

We can choose an infinite sequence of distinct positive integers, μ_1, μ_2, \ldots, such that $g^{-1}A_{\mu_i}g \neq A_{\mu_i}$, for all $i = 1, 2, \ldots$, for otherwise g would belong to all but a finite number of the C's. Moreover, since C_i has finite index in E, for each i, we can choose the sequence μ_1, μ_2, \ldots so that distinct terms belong to distinct systems of transitivity in the representation R of E. By relabelling the subgroups A_i, $i = 1, 2, \ldots$, we may arrange that the sequence μ_1, μ_2, \ldots is just the sequence of odd positive integers. So if n is any odd positive integer, and $g^{-1}A_ng = A_n$, then n is even. Since $\sigma < \beta$, we can choose
\(a_n \in A_n - H_\sigma(A_n), \) for \(n = 1, 3, \cdots \). Let \(a_n^{-1} = g^{-1} a_n g \), and define
\[
c_n = g^{-1} g^a_n = a_n^{-1} a_n, \quad n = 1, 3, \cdots.
\]
Then
\[
c_n^{-1} c_m = (g^a_n)^{-1} g^a_m = a_n^{-1} a_n a_m^{-1} a_m.
\]
If \(n \neq m \), the four integers \(n, \hat{n}, m \) and \(\hat{m} \) are all distinct and thus \((g^a_n)^{-1} g^a_m \notin H_\sigma \). Thus \(gH_\sigma \) is not FC in \(G/H_\sigma \), contrary to what we have already proved.

It follows that the upper FC-series of \(G \) is
\[
\{1\} = H_0 \leq H_1 \leq \cdots \leq H_\beta = K < G,
\]
for \(G/K \cong E \cong J \), and \(J \) is an FC-group. Moreover \(J \) is infinite and centreless, and the factors \(H_{\gamma+1}/H_\gamma \) are infinite and centreless, for all \(\gamma < \beta \), since \(G_\beta \) is a group of type \(Q_\beta \), and \(K \) is a direct product of groups isomorphic with \(G_\beta \). Thus \(G \) is a group of type \(Q_{\beta+1} \), as required.

We have now shown how to construct a group of type \(Q_\alpha \), given groups of type \(Q_\beta \) for all \(\beta < \alpha \), whether \(\alpha \) is a limit ordinal or not. So, by transfinite induction, we have:

THEOREM. There exist groups of type \(Q_\alpha \), for any ordinal \(\alpha \).

I should like to express my thanks to Prof. P. Hall of Kings College, Cambridge, who suggested the topic of this paper to me while I was studying under his direction.

REFERENCES

BROWN UNIVERSITY
Pacific Journal of Mathematics
Vol. 10, No. 1 September, 1960

Richard Arens, *Extensions of Banach algebras* ... 1
Fred Guenther Brauer, *Spectral theory for linear systems of differential equations* .. 17
Herbert Busemann and Ernst Gabor Straus, *Area and normality* 35
Ralph Boyett Crouch, *Characteristic subgroups of monomial groups* 85
Richard J. Driscoll, *Existence theorems for certain classes of two-point boundary problems by variational methods* .. 91
A. M. Duguid, *A class of hyper-FC-groups* .. 117
Adriano Mario Garsia, *The calculation of conformal parameters for some imbedded Riemann surfaces* .. 121
Irving Leonard Glicksberg, *Homomorphisms of certain algebras of measures* .. 167
Branko Grünbaum, *Some applications of expansion constants* 193
John Hilzman, *Error bounds for an approximate solution to the Volterra integral equation* .. 203
Charles Ray Hobby, *The Frattini subgroup of a p-group* 209
Milton Lees, *von Newmann difference approximation to hyperbolic equations* .. 213
Azriel Lévy, *Axiom schemata of strong infinity in axiomatic set theory* 223
Benjamin Muckenhoupt, *On certain singular integrals* 239
Kotaro Oikawa, *On the stability of boundary components* 263
J. Marshall Osborn, *Loops with the weak inverse property* 295
Paulo Ribenboim, *Un théorème de réalisation de groupes réticulés* 305
Daniel Saltz, *An inversion theorem for Laplace-Stieltjes transforms* 309
Berthold Schweizer and Abe Sklar, *Statistical metric spaces* 313
Morris Weisfeld, *On derivations in division rings* 335
Bertram Yood, *Faithful *-representations of normed algebras* 345