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Introduction. Riemann surfaces were originally introduced as a tool
for the study of multiple valued analytic functions. In Riemann’s
work they appear as covering surfaces of the complex plane with given
branch points. Since then Riemann surfaces have been considered from
several different aspects.

Here we shall follow the point of view assumed by Beltrami and
Klein, who visualized these surfaces as two-dimensional submanifolds of
Euclidean space whose conformal structure is defined by the surrounding
metric. )

Recent results of J. Nash' on isometric imbeddings of Riemannian
manifolds assure that all models of Riemann surfaces with the natural
Poincaré metric can be C* isometrically imbedded in a sufficiently high
(51) dimensional Euclidean space. However, the question still remains
open whether or not every Riemann surface has a conformally equivalent
representative in the ordinary three-dimmensional space.

Although the dimension requirement seems restrictive, there is
reason to believe that, since only conformality is required, at least the
compact surfaces can be conformally imbedded. We shall not be
directly concerned here with this existence problem; instead, we shall
present a family of elementary surfaces which may contain all conformal
types and whose conformal structure can be easily characterized.

In the genus one case, the conformal structure is usually described
by a complex parameter v which gives the ratio of two principal periods
of an abelian differential of the surface. It is always possible to
choose these periods so that their ratio v lies in the region M of the
Gauss plane defined by the inequalities:

Smy <0, =2 <Rev=<3; |v|>1for Rew <0, [v| =1 for Rev =0 .

It is well known that every Riemann surface of genus one has in M
one and only one representative point.

It is easy to verify that the representative points v of the tori of
revolution lie in the imaginary axis and cover it completely. Thus it
seems plausible that the affine images of the tori of revolution should
cover all conformal types in the genus one case; however, we have
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1 ““The imbedding problem for Riemannian manifolds”’. Annals of Mathematics, 63
(1956), pp. 20-63.
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found no proof of this fact. Indeed the characterization of the parameter
y for an imbedded surface leads in general to rather difficult problems.

For this reason, for quite some time there have been no known
examples of surfaces whose representative point in M lies off the
imaginary axis. In 1944, O. Teichmiiller* proved the existence of
these surfaces by showing that there are small deformations of the
tori of revolution for which the variation of v is not purely imaginary.

Led by these observations we have tried to develop a method of
uniformizing a given Riemann surface that could be of practical
application for some wide enough family of surfaces. To make our
considerations applicable to surfaces of higher genus we needed to
introduce some parameters to take the role that v plays in the genus
one case. To this end we have adopted as a canonical form of a
Riemann surface the result of the Schottky uniformization. In fact,
some imbedded surfaces can be considered topologically ‘‘marked’ in a
natural way, and the Schottky uniformization associates with every
marked surface of genus g (>1) a complete set of geometrical invariants
which can be expressed by means of 3¢ — 3 independent complex
parameters.

In view of the importance of these parameters we deemed neces-
sary to include in the first section of this paper a description of the
Schottky uniformization and some general facts associated with it. In
the second section we present a definition of ‘¢ M-surfaces’. These
are imbedded surfaces which may have edge type singularities along
curves but can be made into Riemann surfaces in a natural way. To
generate these surfaces we adopt a process which uses surfaces of genus
zero as building blocks to construct surfaces of genus one and sur-
faces of genus one to construct surface of higher genus.

In the third section we present a method of constructing the
Schottky uniformization of a given M-surface. This method is more
general than it appears in the context since from the existence of
the Schottky uniformization, every marked surface can be considered
an M-surface (dropping the condition that the building surfaces of
genus zero should be globally imbedded.) As will be shown in the
fourth section, this method assumes practical importance when the
building blocks of M-surfaces are ordinary spheres. These special
M-surfaces we have called ‘‘natural’’.

To present our results in this case we made use of anallagmatic
coordinates of spheres as introduced by E. Cartain in [2]; for the sake
of completeness a brief introduction to these coordinate is also included.

In the last section a few properties of natural M-surfaces of genus

2 ‘“‘Beweis der analytischen Abhiingigkeit des konformen Moduls einer analytischen
Ringflichenschar von den Parametern’’, Deutsche Math. 7 (1944), 309-336.
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one are studied, and some of the results are used to construct the
Teichmiiller models. At the end a process is given by means of which
all natural M-surfaces can be made into C* smooth canal surfaces.
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1. A choice of conformal parameters for compact Riemann surfaces.

1.1 Here and in the following Y shall denote a given 2-sphere;
‘“a coordinate in Y’ shall mean an extended valued complex coordinate
introduced by a stereographic projection of X upon the Gauss-plane.
Let z be such a coordinate. Since z is defined up to a Moebius transfor-
mation of X onto itself, we can assume that the points 0, 1, o are
situated wherever we may wish. Whenever it does not lea ®to am-
biguities, we shall make use of the same symbol for a point of Y and
its complex coordinate.

If 4 is a Jordan curve and « a point of X not lying in 4, we
shall denote by A(a) the connected component of 3 — 4 which contains
a. A(x) will be called the interior of A with respect to a. If 4
separates « from another point 8 of X we have of course

3= Ma)+ 4+ AB) .

Let now «;,,8, (1=1,2,---,9) be 2¢g distinct points of 3 and
w, (1=1,2, .-+, g) given complex numbers of absolute value greater
than one. Let 7, be the Moebius transformation of 3 onto itself defined

by the equation
(1)

TR— Q2 O

[
Tiz"“Bz Z——,@i

We assume for a moment that o, =0 and B, = . Under this
coordinate system we have

T2 = W2 .
Let p, and p, be the smallest and the largest of the absolute values
lailrlBil i:2’3!°°'yg°

If o, ] > (1/n)e./p,) for some 0 < 7 < 1, a circle with center at 0
and radius 7 = 70, is transformed by 7, onto a concentrical circle of
radius
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r=lo|r>p,.

Thus if |w,| > p./p. there are infinitely many circles 4 such that

A(e0) N 7,.4(0) .

Before expressing this fact in an invariant way we shall introduce
a notation. If a and B are two distinct points of ¥ by P(a, B) we
shall denote the pencil of circles which admit «, @ as a couple of
inverse points.

We have thus shown that:

I. Provided | w,| is sufficiently large we can choose a circle A in
an infinite number of ways so that

(a) deP, B)

(b) the points a,, By; +++: a,, B, are contained in the domain A(B,)N
T, d(ay).

Let 4, be one of these circles.

We shall show now that:

II. Provided the | w,;|’s are sufficitently large the circles A, can be
chosen in an infinite number of ways so that

(a) 4,eP(ay, B;)

(b) the closed disks

A1(a1), 71/‘1(/81)’ c Aa(aq)r Tqu(By)

are exterior to each other.

Because of I we can prove II inductively.

Suppose that the circles A,, A4,, +-+, 4,_, have been chosen in such
a way that

(a) AJeP(aJ! IBJ) (.7‘21’2"'"@‘_1),

(b) the closed disks A,(«,), T.4,(B1); == Ai—(;-1), Ti—14;-1(Bi-1) are
exterior to each other,

(c¢) the remaining points a,, B8; (7 =1, ¢ + 4, ---, g) are contained
in the domain

{4,8)) N T 45} .

J=1,i~-1

We temporarily assume that a; = 0 and 8; = . We let S be the
set consisting of the closed disks

Aay), T A4(BY), 2 ooy Aioi(Xiny)y Timidii(Bi-y)
and (if 7 < g) the points

Aisqy Bi+ly ey agy /811 .
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Under this coordinate system let p, and p, be the minimum and
the maximum value assumed by |z| as z varies in S. Clearly the
argument can be completed since, for the same reasons as before, if
| ;| > p,/o,, the circle 4 can be chosen in an infinite number of ways
so that

(a) 4deP(a;, By)

(b) the set S is exterior to A(w;) and 7,4(B3;). Let A, be one of
these circles.

A further investigation on the nature of the inequalites to which
the |w,|’'s are to be subjected, for such a construction to be possible
would be of some interest, but for our immediate purposes it is not
needed.

We would like to point out, however, that if for a given set of
‘complex numbers {a,, B, ®; -+; @, B, ®,} the construction in II is
" possible, then it is also possible for any other set {«a;, B,, @}; <+ +; ay, By, W}
such that

[Cl);lg,(()i! i:1v2"°"g-

1.2. Let M, be the subset of the 3g-dimensional complex cartesian
space composed of those points

m o~ {0, By @ =e; o, By, g}

- for which it is possible to choose g Jordan curves 4,, 4,, +++, 4, of ¥
- such that
: (a) each 4, separates a; from g,

(b) the closed sets 4,(a,), T,.44(B), ==+, 4,(,), T,4,(B,)° are exterior
;to each other.

III. The points of M, give rise to compact Riemann surfaces of
genus g.*

If m~ {a, By, ®;+++; @, B, ®w,} and 4, 4,, +++, A, are chosen
‘to satisfy (a) and (b), we set

R = i=nl,g {Ai(ﬁi) n TiAt(ai)} .

We then identify the points of the boundaries A, and 7,4, of R by
means of the transformation 7,. In other words we set @ ~ 7,Q for
each Qe 4,. We do this for ¢ =1,2, -+, g. Let X denote the result-
ing space.

We shall make X into a Riemann surface introducing local uni-
formizers.

3 Here the r;’s are again given by (1).

4+ The construction presented here is to some extent contained in a paper of Schottky
published in Crelle’s Journal (1887, cfr. [8]). See also Hurwitz-Courant [5], p. 462.
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If P is a point of X which is interior to R and N is a neighborhood
of P contained in R we take as a local uniformizer any coordinate in
Y which does not attain the value o within N.

If Pis a point of X which lies on one of the A’s, say 4,;, we have
to proceed in a different way.

First we take a neighborhood N of P in ¥ which is so small that
it is contained in the set

R UTIR.

Then we define a corresponding neighborhood N* of P wn X by
setting

N* = {4:(8:) N N} + 7{dy(@;) N N} =R N (N+ 7,N).

If 2z(p) is a coordinate in X which does not attain the value o in
N, we introduce as a local uniformizer in N* the function on X which
takes the value z(p) for pe R N N and the value z(z;'p) for a point p
of RN 7,N.

We proceed in a similar way for each of the curves 4;,. The
resulting manifold is a Riemann surface of genus g; it will be denoted
by I'(m; 4,, 4,, «-+, 4,) and referred to as a ‘‘Schottky model”.

1.3. We shall give statement III a more precise meaning by show-
ing that

IV. Any two surfaces I'(m; Ay, Ay, <<+, A,) and ["(m; A}, A}y «++, A})
(same m), are conformally equivalent.
Let G be the group of Moebius transformations generated by the

)

7,’s. G constitutes what is usually called a ‘“Schottky group’’.

We shall denote by f(m) the set obtained from 3 by deleting the
limit points of G.

The following properties of G are well known (cfr. for instance [4]
pages 37 to 66), and can be easily established:
(a) The group G is free.

(b) The sets D :igg {m N7dy(a;)} and D’ :igg {MH T di(a)}
are fundamental regions of G.

(¢) The images of D (as well as those of D’) decompose and cover
completely the set I'(m), i.e. ﬁ(m) = %}TD = %GTD's.

These relations yield

(3) D=SDncD

TEG

(4) D =3DnzD;

TEG

5 We should emphasize that f(m) is a disjoint union of the images of D and D’.
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since D and D' are bounded away from the limit points of G°® both
these sums, after a finite number of terms, terminate with a string of
empty sets. The equality in (3) is also equivalent to

(5) D=>DntD

TEG

and (4) can be written in the form

(6) D =SoDn D).

TEG

We define a mapping” ¢: D« D' by setting
op =1t for p e DN D' .

Since the unions on the right hand sides of (5) and (6) are disjoint
¢ is well defined. Clearly ¢ preserves the identification of points in I”
and /7 and thus defines a topological mapping of I” onto I, in addition
it maps every sufficiently small neighborhood of I" conformally onto
neighborhood of .

From this the assertion follows.

1.4. The abstract Riemann surface represented by any one of the
surfaces I'(m; 4,, 4,, -+, 4,) shall be denoted by I'(m); it shall be
referred to as ‘‘the Schottky model corresponding to m.”’

Suppose now that there exists a Moebius transformation of 3 onto
itself which sends the points ay, ;; --+; @,, B, respectively onto the
points «f, B}; ---; ), B, and assume that the parameters w,, @, ---, ®,
have been chosen in such a way that both m ~ (ay, 8, @y; +++; g, B, ®,)
and m' ~ (&), Bi, wy; +++; ), B, w,) lie in M,. Then the corresponding
models I'(m) and I'(m’) are conformally equivalent. Under these circum-
stances, it is natural to identify any two points m and m’ of MM, for
which we have

CU,; = w; ’
(7) if g=2 (Bu ay, o, Bl) = (B:, af, a, /8{)8 1= 2,49,
lf g9 g 3 (aii ay, A, Bl) = (a{! a;; a;, B;) ’l’ = 3: ce, g

If I" is a Riemann surface of genus g, the Jordan curves 4,, 4,, -+, 4,
will be said to form a ‘‘canonical semi-basis’’ if they can be completed
to a canonical basis for the cycles of I'.

The Riemann surface I" will be said ‘‘marked’ if a canonical semi-

¢ The limit points of G are contained in the sets v ‘Ajay), ci ©;A5(8;) and ¢ As(a;z)
(is j=1r 2,0, g)

7 Here and in the following a ‘“‘mapping’’ shall mean a ‘‘one-to-one mapping’’.

8 By the symbol (x, ¥, 2, w) where z, ¥, 2, w are given distinct complex numbers we
mean the cross-ratio (¥ — )z — w)/(x — w)(z — ¥).



128 A. M. GARSIA

basis has been chosen in /I". The surface I" marked by 4,, 4,, ---, 4
shall be denoted by the symbol I'(4,, 4,, <+, 4,).

We shall consider two marked surfaces I'(4,, 4,, ---, 4,) and
', A, ---, 4,) as the same object whenever /" ~ /" (conformally) and
4, is homotopic to 4} (for 7 =1, 2, ---,g). With these identifications
the following theorem holds:

g

V. The points of M, are in a one-to-one correspondence with the
marked Riemann surfaces of genus g.

Proof. Clearly, every Schottky model I'(m; 4,, A, ++-, 4,) can be
considered a marked surface by the choice of 4,, 4,, -+, 4, as a canonical
semi-basis.

But the converse is also true: namely, to each marked surface
I'(4,, 4,, <+, 4,) there corresponds a Schottky model, uniquely defined
up to a Moebius transformation, and thereby a point of 9t,. This cor-
respondence is easily established after constructing the so-called ‘‘Schot-
tky covering surface’” of each marked surface. This concept is well
known (see for instance [4], pp. 256-257), but for the sake of comple-
teness, we shall sketch its definition.

Let I'(4,, A4,, «++, 4,) be a given marked surface.

Let M,, M,, ---, M, be a completion of A,, 4, -+, 4, to a canonical
basis, and _# denote the free group generated by the cycles M,
M,, «--, M,.

We imagine the surface I'(4,, 4, -+, 4,) cut along the curves 4, to
yield a planar region X bounded by the 2¢ Jordan curves 4,, 4,, «--, 4,
ATt Ay see, A7 of I'. We then reproduce an infinite number of exact
replicas X,, of X, one for each M € _#. The closed sets X, are then
glued together according to the following rules:

(i) If M = M,M* (and the first factor of M* is not M;') then the
points of the curve 4;' of X,. are identified with the corresponding
ones in the curve 4, of X,.

(ii) If M= M;"M* (and the first factor of M* is not M,) then
the points of the curve /4; of X,. are identified with the corresponding
ones in the curve ;' of X,.

With these identifications the set S X, becomes a covering surface
ME g,

of I'. We shall denote it 7°, and call it the ‘‘Schottky covering surface’’
of I'(4y, Ay, ==, 4)).

What then remains to be proved is a consequence of the following
well known properties of the surface I¢A. (cfr. for instance [5] pp.
483-484 or [4] Chapter X).

9 We tacitly assume, without restriction, that the curves {; do not intersect each other.
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(a) [, is of planar character, it can be conformally mapped into
the sphere 2.

(b) The mapping p; of r, «—»f’A which sends each region X, of
fA onto the adjacent region X, , is a cover transformation of f”,,.

(¢) The group of cover transformations of I, is free and admits
the mappings o, p,, --+, ¢, as generators.

(d) If @ is any conformal mapping of I°, into X, the cover trans-
formations of I, induce in I, through the mapping ¢, a set G of
Moebius transformations which is a Schottky group. The generators of
G are given by the Moebius transformations

Ty = PP, Ty = PPy oo0, T, = PP~ .

(e) The image ¢X; of X, (where by F we mean the identity in
') constitutes a fundamental region for G; its boundary consists of the
curves @4, @A,y <o+, Ay @AY, @AY, «oo, A7t and @47t is the image
of ¢4, under the transformation 7, for each 7.

Thereby X, and 7,7, ---, 7, originate a Schottky model which is
conformally equivalent to I'(4,, 4, ++-, 4,).

(f) If @' is any other conformal mapping of [, into %, @'p
induces a Moebius transformation of 2; thus, if we set

T, = PP, T, = @'t

and

TR — O z— Q; z'l’-z—ag_w,z-a;
—_— = - 4

1 s
T2 — B4 2—By TR—PB z— B

(under some coordinate system in ), the corresponding points
m ~ (aly 1817 Q5 o5 Uy, 189) a)g)
m ~ (a;) B;y (Z);, ey a:v B:]! (t);,)

of M, are to be considered the same since the equalities in (7) will
necessarily be satisfied.

1.5. After Statement V it is natural to adopt the following:

DEFINITION. If I'(4,, 4,, ---, 4,) is a given marked Riemann surface
and m ~ {a,, By, @ +++;a, B, ®;} is the point of M, corresponding
to it, the complex numbers

@y Wyy 22, Wy
(8) (’)i+q—1:(18i, Ay, Ky, Bx) (’522,"',9 if 922)
Wirggms = (X O, &gy By) (1=3, -+, 9 if g=3)
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will be called ‘‘the conformal parameters’ of I'(4,, A, «--, 4,).

In the following we shall say that a marked Riemann surface
4, A, «+-, 4,) has been ‘‘uniformized’’ if the mapping of fA into Y
and the conformal parameters of 7°(4,, 4, ++-, 4,) have been charac-
terized.

It is interesting to note that Schottky in [8] expressed the abelian
differentials and their periods as analytic functions of the parameters
@y, By, @ e &y B, @, unfortunately, there are some restrictive
hypotheses in his proofs, and the results, although explicit, assume
formidable expressions.

2. Some special models of compact Riemann surfaces.

2.1. The three-dimensional Euclidean space shall be denoted by Ei.
Any smooth (four times continuously differentiable), non self-intersecting
surface of E,, homeomorphic to a sphere, shall be called a p-sphere.

A p-sphere shall always be assumed to have been assigned a specific
orientation.

Let 4 be a Jordan curve of a p-sphere I'. If a is a point-of I”
not lying in 4, as before, we shall denote by 4(a) the connected com-
ponent of I" — A which contains «.

We can define an orientation of 4 by specifying which of the two
connected components of I" — 4 is to be the interior or the exterior of
A; conversely if 4 has been oriented, we can accordingly speak of the
interior and the exterior of 4 in I". To this end we shall adopt the
following convention:

If @ is a point of 4, t and b are unit vectors having respectively
the direction of the positive tangent to 4 and the positive normal to I”
at @, and if the unit vector n, normal to 4 and tangent to I' at @,
points towards the interior of 4, then the ordered triplet ¢, n, b should
form a left handed frame.

Any oriented surface of E, can be made into a Riemann surface in
a natural way by means of the conformal structure induced by the
surrounding metric. In this fashion every p-sphere can be considered
a compact Riemann surface of genus zero, and therefore it can be map-
ped conformally onto a sphere.

2.2. Let Y be a sphere, and z a complex coordinate in ¥. If I'is
a p-sphere, let 2 = @p be a conformal mapping of I" onto ¥. By means
of @ we can transfer to I" several conformally invariant properties of
Y. We shall define the cross-ratio of any four points «, 8, v, 8 of I
by setting

(1) (@, B, v, 8) = (pa, B, PY, ¥I) .
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The right hand side of (1) is independent of the mapping . In fact,
if 4 is any other conformal mapping of I" onto 3, the mapping 7 = rp!
of X onto itself is conformal and necessarily a Moebius transformation.

A Jordan curve A of I will be called a p-circle if the ecross ratio
of any four points of A is real; i.e., if the curve ¢4 is a circle in 3.

If 4 is a p-circle of I" and «, B, v are distinct points of 4 by an
“‘inversion with respect to 4’ we shall mean the transformation ¢
defined by the equation

(2) (op, @, B, v) = (p, @, B, 7)

the bar meaning complex conjugation. Clearly @o@-! is in ¥ an inver-
sion with respect to the circle ¢4.

The most general conformal mapping 7 of I” onto itself is determined
by the images «', B, ¥’ of any three distinct points «, B, v of I', and
its equation can be written in the form

(zp, &', B, V') = (p, @, B, 7).

Such a mapping will be referred to as ‘‘a Moebius transformation of
the p-sphere .

We will find it convenient, in order to avoid having to refer back
to the sphere X, to consider Schottky models imbedded in a p-sphere.
Indeed, the construction of these models can be carried out for p-spheres
in exactly the same way it was done in the last section for ordinary
spheres; thus we shall not repeat it.

2.3. Let I, and I', be two p-spheres which intersect along a Jordan
curve 4. Suppose that there exists a conformal mapping ¢ of I'; onto
I", which leaves fixed the points of the intersection A.

The mapping ¢ is unique.

In fact, if +r is another conformal mapping of /', onto /", which
leaves the points of A fixed, then the mapping @' I'y— I, leaves”
more than three points fixed and must necessarily be the identity.

This shows that ¢ is completely determined by the conditions
imposed on it by three distinct points of the curve 4, hence @ may not
exist if the intersection of 7", and I', is arbitrary.

A class of examples of couples of intersecting p-spheres for which
such a mapping exists can be obtained by constructing surfaces which
have a common axis of revolution and intersect along a common parallel,
then taking their images under arbitrary Moebius transformations of
space.

Suppose now that the finite ordered set of p-spheres 7y, I'y, e««, ',
is such that for each 1 =1, 2, +--, n:

(a) The surface I',_, intersects the successive one I, along a Jordan
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curve 4, which we shall suppose sufficiently well behaved. (We set
A, = Ay T, =1T).

(b) There exists a conformal mapping 4; of I',_, onto /", which
leaves fixed the points of the curve 4,.

(¢) 4,., has on points in common with 4,.

Let each 4, be oriented in such a way that the interior of 4, in
I';_, contains the curve 4,_,. Let A; and A; denote respectively the
interior of 4, in I",_, and the exterior of 4, in I';. With this notation
we have

A4 A7 + Ay + AF =T .

The ordered set of p-spheres Iy, I}, -+, [",_, will be said to generate
“a link of M-surface’’, if in addition to (a), (b), (c) it satisfies the fol-
lowing conditons:

(d) The exterior 4;, of 4;,_, in I",_, contains the curve 4;.
(e) No two of the sets 4, ,+4;,N A7 have any points in common.
These conditions being satisfied, the set

L=Ad+ A5 N A7 + A+ Af 0 A7 + ooe + Aoy + 45 0 A7

constitutes a compact, piece wise smooth, surface of genus one. We
shall make L into a Riemann surface.

For each =0, 1, .-, n — 1 let ¢, be a conformal mapping of I,
onto a given sphere Y.

Let o, =@, 4, =4y, ', =1y, A_, = A,_,, €tc...

If p, is a point of 4 N 4;,, and N a neighborhood of p, in I,
small enough to be contained in 4; N A4;,,, we take as local uniformizer
in N the function 2z = ¢,p, where z is any coordinate in ¥ which does
not assume the value o in ¢,N.

If p, is a point of A4,, let N be a neighborhood of p, in I, small
enough to be contained in the domain {4,4f .} N4;,. We take as a
"neighborhood of p, in L the set

N*={47'N} n 47 + Nn 4, + NN 4f .
We introduce as local uniformizer in N* the function defined by setting
2 =@ dp for p € {47°N} N 47
and
z=¢mp for p e NN {4, + 4}}

Again, z is any coordinate in ¥ which does not assume the value infinity
in @,N.

10 Here and in the following we shall assume a link to consist of at least 3 p-spheres.



THE CALCULATION OF CONFORMAL PARAMETERS 133

The conformal structure thus introduced in L agrees in a natural
way with that induced by the surrounding metric of E,. Of course, in
general along the curves 4, there will be discrepancies between angles
measured in F,; and angles measured in L.

The surface L will be referred to as a “link of M-surface’’ or
briefly a “link’’. It will be denoted by L(I"y, Iy, -+, ,_).

2.4. We shall now construct surfaces of higher genus by putting
together several links. There are several ways to achieve this. For
our purposes it will be sufficient to construct only surfaces which consist
of a p-sphere I, with many handles, each handle being part of a link
containing I,.

Let L,, L,, ---, L, be the links

Ll(rl,m rl,l) % rl.nl—l)
L2(P2,0y Loy oo, r2.n2—1)

Ly(['q.oy Pg.zr ) Pg,na-—l) .

With the same notations as before we shall use the symbols 4, ,,
4; 4, 1. ; where the first index will denote which link the object represented
belongs to, and the second index, which position it occupies in the link
itself.

Suppose that L,, L,, ---, L, satisfy the following conditions:

(f) The initial surfaces I",,, ---, I",, are all the same p-sphere I',.

(g) No two of the sets L, — I'y have any point in common.

(h) The closed sets I'y — 4}y, I'y— 45, (¢, =1, 2,---, g) are all
exterior to each other.
Then the set = defined by

E=L NLN-+-NL,+ 3, L—1),
1,9

or, which is the same, by
E= g];i (Az.o + Am) +zgg{Ai+’o N At_,l} + %i (Lt - Fo)

shall be called an ‘‘M-surface’’.

E can be made into a Riemann surface using the same local
uniformizers which were introduced for the L,’s themselves.

However, some care has to be applied in the choice of permissible
neighborhoods, and this is solely for points of the surface I,.

We shall illustrate the situation with representative cases:

Suppose that P is a point of E that is in 7.

If Pe ) {4/,n4;,}, then we can take as a neighborhood of P in

i=1,9
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E any neighborhood of P in I", which is small enough to be contained
in () {480 40.}.

If Pe 4,, we choose first a neighborhood N of P in ", which is
small enough to be contained in the domain

Ay MmO 50} + Ay + () (A0 0 433}
then we take as a neighborhood of P in E the set
N* = {452, N} N 450+ NN 4,0+ NN 45,.
If Pe4,, we choose a neighborhood N of P in I",, so small that
N 4,40 (480 0 40D} + Apa + 452 0 A5 -
We then take as a neighorhood of P in E the set
N* = {4;iN} N 45, + NN 4,, + N N 45,

3. Characterization of the conformal parameters.

3.1. Let E~ (L, L, ---, L,) be a given M-surface, and E(4,,, 4,1,
«e+, A,,) denote the surface E marked by the set of curves

Al.ly Az.v M) Aq.l .

We shall now present a construction of the Schottky model cor-
responding to E(4,,, 4,1, ==+, 4,,)-

Let us first take under consideration the case that = consists of a
single link L(I"y, Iy, «+-, I,_).

We imagine to have cut L along the curve 4,

Using the mapping 4, we can collapse the portion 4, + 4} NA; of
L into the p-sphere I',. The new set

X,=d, {4+ A N A7} + Ay +AF N A7+ oo o + Ao+ A5 0 A+ A+ A N Ai™

with the points of its boundaries 4, and 4,4, identified by the transforma-
tion 4,, can also be considered a Riemann surface.

We shall briefly describe the neighborhoods and the local uniformizers
at the points of the set 4,{4, + A N4;} + 4,.

If pe4d,4,, we choose Nap in I', so that

47N C 4,(AF N A7) + 4+ A7 N 47,
we then take
N* = {47'47'N} 0 A7 + N N 4,{4, + 47} .

As a uniformizer in N* we take the function
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2= @,p for p € N N 4,{4, + 4}}
2z = @, d,4p for p e {47*4;*N} N A7

(provided that z # « in N).
If ped,{4;N4;} we choose Nop so that

N C 4,{4F 0 45}

then set N* = N and 2z = ¢,p (assuming z # o in N).
If pe 4, we choose Nap so that

N C 4,{4] N A7} + 4, + 43 0 47,

then set N* = N and z = @,p (assuming 2 #* o in N).
L and X, are conformally equivalent.
In fact, the function +», defined by

yup=1p forpe A+ AF N 47 + o0 + 4, + 4 0 A7
yp = dyp for p € 4, + AF N A7

induces a conformal mapping of L onto X,.
We proceed in a similar way, and collapse the subset

Ao {dy + A7 0 ATE A Ay + A5 0 AT
of I', into I, by means of the mapping 4,, the subset
Ao { Ay + A7 O AT} 4+ A{dy + AT O A7} A+ A+ A7 0 A7
of I'y into I, by means of the mapping 4,, ete..., the subset
Ay ome d{ly+ AN AT} A oo e+ Aoy { ey + AoV A} + My + Ai O A
of I',_, into I'y, by means of the mapping 4., and set
Ky = dyg ove L{dy + A7 N A7} + oo + dp{dmy + A 0 A5}
R/ PR S/ b B PR S 7/ o7 il V7 bl S M

Again, X,., is made into a Riemann surface, by introducing local
uniformizers in such a way that the function «f,_, defined by

Yo =p for pe A+ A7 N Aoy + <o + A, + A7 0 A7,
Vi = 4p for p € Ay + A N Az,

‘P’k—lp = AkAk—l s A2p for p € A1 + A1+ N A;

induces a conformal mapping between L and X,_,.
In this fashion, at each step of the process L and X,., are kept
conformally equivalent, in particular for ¥ =mn we obtain that L is
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conformally equivalent to the subset

Xn—l = Andn-l e AZ{AI + A1+ N A;} + .-
+ dp{dp-y + A7y 0 A7} + Ay + A7 0 AT + 4,

of the p-sphere I',. Of course the points of the boundaries 4, and
Aoydy_q oo dod,, of X, , are to be considered identified by the mapping
Ad,dy_q +++ 4, or, which is the same', by the transformation 7 = 4,4,_,
eee dyd,.

3.2. We shall now prove that

1. X,_, s a Schottky model in I,.

Since 7 is necessarily a Moebius transformation of I",, all we have
to show, to justify our assertion, is that = is hyperbolic or loxodromic,
that it has two fixed points ae ', — 47 and Bet4;, and that

th(a) D A(a) .
Now for each k& we have

Ak{Plc—-l - Al;} = A, + 45

and since
Af DMy — A7,
we have
(1) A diy D A}
Thus if

Ak—l cee Al{ro - Al_} > /112'-1 ’
because of (1) it will follow that
(2) Ak"'AI{PO—Al—}DAI:'

However, we have 4,{I"y, — A7} = A, + A} D A}; hence (2) is true and
for k = n we have

(3) ol — A7y DA DT, — Af .

Since I’y — A7 is closed and A7 is open, the boundaries 4, and 74, of
I'y— A7 and t{l"y — A7} cannot have any point in common. Therefore,
if a* and B* are two points of I", such that a*e I', — 47 and B* e 47,
otherwise arbitrary, from (3) follows:

U 4,dy—1 -+ 43 and dpdy-1 - - - 4341 agree along A;.
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() C Ay (a¥)
and
TA(BY) © 4(BY) .

From these inclusions we can deduce that 7 is neither parabolic nor
elliptic:
In fact, if = were parabolic with v as a fixed point, then
v = lim 77"a* = lim 7°B3* .

n—>oo n—o

But this would imply that
v € A(a*) N 4(B%)

which is absurd.

If = were elliptic and p € A,(a*), then 77'p € A(a*) and thus 7-'p
would be contained in an open set D C 4,(a*); consequently 7-"DcC 4,(a*)
for all » = 1; but for a suitable value of n 7-"D would cover p. This
would imply that every point of A(a*) is interior to A, (a*) which is
absurd.

Thus 7 is hyperbolic or loxodromic and its fixed points are determined
by the limits

o =limt"{I", — A7}

N—rco

B = lim 7747 .

n—-oo

With this notation under any coordinate system in 7", the equation of
7 takes the form

T — —a
2 —w?

7w —R T e — B
with |@| > 1. Finally, since a e ", — 47, from (3) we obtain
thA(a) D A(x) .

3.3. We shall now consider the general case.
Let E ~ (L,, Ly, -+, L,), imagine E(4,,, 44, +-+, 4,,) cut along the
curves

Al.u Az,u M) Ag,l .
We then apply to each link L, the previous construction. Each handle
AM + A;-l N Ai‘,z + e + Ai'ni‘—l + A;ni—l n A{.o (7' = 17 2; cecy g)
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of B, is ﬂattened into 7", by means of the mapping v, defined by the
equalities:

‘I’ip = Ai,ni s At,adi,zp for p € A’L.I + Ai+,1 N A;,‘z
Y = Ai.ni cee disp for p € 4,, + A, N A7,

(4)
Y = Ai,nip for p e Ai,nl—l + A;:ni-l N 4z, .

The resulting subregion X of the p-sphere I', can be considered to be
the intersection

X= an—l n an—l NN an-l

of the Schottky models X,,-1 corresponding to each link of E.

The pairs of boundaries 4,, and 4, - 4;:4,,4,, of X should be
considered identified by the mapping 4, --- 4,34,, or, which is the
same thing, by the mapping 7, = din, =+ dindia Furthermore:

II. X is a Schottky model conformally equivalent to E.

Proof. As a by-product of the proof of Statement I we obtain that

(a) Each mapping 7, (1 =1, 2, ---, g) is a hyperbolic or loxodromic
Moebius transformation of I7,.

(b) The fixed points «;, B; of 7, are respectively contained in
Iy — 47, and A7,

(¢) In any coordinate system in I, the equation of 7, writes

(5) T.lz"‘at za)iz_az
T2 — B z— B

with |w, | > 1.
(d) Each 7, satisfies the inclusions (see (3))

T {l'y — A7} D Afy D I[Ny — A7y
or, changing notation:
(6) T i (@) D Ay (@) D Ag () -
Since 4, ;) is open we can safely conclude that (6) implies
Tl a(0) D Ay () .
Condition (¢) in the definition of a M-surface requires the closed sets
Po - At+,0 = AQ.O(IBt), Fo - Aj-l = AJ,l(aJ) (7:’ j = 1; 2’ b g:

to be disjoint. However, the inclusions
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T d; () D Ay (@)
imply

T3l 1(B:) C 4;.(8:)

hence we must have

T3, 4;(By) C Ay o(By) -

Therefore also the closed sets
TiAl.l(Bi)r Aj,1(aj) (’1:, j = 1’ 2, cee, g)

are disjoint. With this, the conditions for X to be a Schottky model
are all satisfied.

The conformal equivalence of X to = is a consequence of the fact
that the function +» defined by the equalities

yp=p for peL,NL,N -+ NL,— >4,
i=1,0

and (see (4))
yp=p for pe Li—Ty+ A, (i=1,2 ¢,9)

induces a conformal mapping of = onto X.

3.4. The mapping +, or rather its analytic continuation in E,
uniformizes the marked surface E(4,., 4y *=+, 4,).

Let &, represent the Schottky covering surface of E(A, 1, Ay, +++, 4,.)
and X the region obtained by cutting E along the curves 4, ,, 4,4, = ++, 4,,.

Let the cycles M,, M,, ---, M, of a completion of A, Ayq, ¢+, 4,,
to a canonical basis of E be chosen in such a way that each M, inter-
sects the curves 4,,(j =1, 2, -+, n,) in the order

Az.n" Ai,'n‘—lr *ty A’l,zy Ai,l .

As before, let _#Z be the free group generated by the M,’s and X,
for each M e _# an exact replica of Xj.
Then we have

B, = ZXM
ME g,

where again the boundaries of the X,’s are identified according to the
rules (i), (ii) stated in §1.4.

For each Me_»~ let 74,€G? be the Moebius transformation cor-
responding to M under the isomorphism of _# onto G defined by setting

12 As before G' denotes the group generated by the 7i’s,
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Mp-—»‘l'i (’i:1,2,'~~,g).
The mapping «fr of é,, into I', is then obtained taking
Yo = Thp for p e Xy — 3 4,

i=1,9

A~

and the region of I, onto which =, is mapped is given by the union

«iré 1= St X
TEG
This shows that X is the Schottky model corresponding to
B(Ayq, Ag1y ++, 4,,) and therefore that the conformal parameters of
B(4,,, As., =++, 4,,) are characterized by the invariants w, and the fixed
points «,, B; of the transformations ;.

4. Links of spheres.

4.1. Given two oriented spheres /', and I', intersecting along a
circle 4, there always exists a conformal mapping 4 of I, onto I", which
leaves unchanged the points of A.

The mapping 4 can be constructed in the following way:

Let 7 be a Moebius transformation of E, which sends a point of
A onto the point at infinity. The circle 4 is taken by 7 onto a straight
line 74 and the spheres I, and I', onto two planes 7", [, intersecting
along 74. If 7, and 7, denote the two planes through 74 which bisect
the dihedral angle formed by z/", and 7/',, the two transformations z,
and 7., obtained by reflection across m, and w, respectively, map 77", onto
zI", with preservation of angles and leave unchanged the points of 4.

The corresponding spheres 7-'z, and 7'z, generate the inversions
T, = T7'T, 7T, T, = T 'T,,t which map /", onto I", with preservation of
angles and leave unchanged the points of 4. These two spheres are
called the spheres of antisimilitude of 7°, and I', (see also [3] page 230).

To see which of 7, and 7, defines the conformal mapping 4, suppose
that we transfer the orientation of I"; and I', onto z/", and 7I", by means
of 7. The product R = 7,7, is a rotation of = radians around 74,
therefore whatever may be the orientations of z/", and z/",, R generates
a sense reversing transformation of /', and zI", onto themselves. The
same will also be true for the product

R = 7Rt

with respect to I', and I',. Since 7, = {t7'r, 7,7} {t7'7,,t} = R'T,, either
T, or 7, is orientation preserving (as a transformation of I", onto I,).
But each of them is a sense reversing transformation of E,, therefore
the transformation 4 is given by that one of 7, and 7, which sends
the interior of I", onto the exterior of I',. The one of 7-'mw, and 7-'x,
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which generates 4 will be called the ‘‘direct’’ sphere of antisimilitude
of I', and I,.

We can thus construct M-surfaces by means of collections of inter-
secting oriented spheres. Such M-surfaces will be called ‘‘natural’’.

Natural M-surfaces form a wide family for which the canal surfaces®
are limit elements. It seems reasonable to conjecture that every Riemann
surface can be realized as a natural M-surface. We shall later show
that every natural M-surface can be deformed into a C= canal surface
without altering its conformal structure. For these reasons we found
it of some interest to present a brief study of the conformal parameters
of natural M-surfaces. This will lead to a few results concerning the
conformal imbedding of Riemann surfaces of genus one.

Before presenting these results we need to introduce a few tools.

4.2. The conformal geometry of the 8 dimensional space is simplified
by the use of ‘‘anallagmatic coordinates’’. An introduction to these
coordinates can be found in a paper by E. Cartan [2] or in a book by
R. Lagrange [6]. Here we will give only a brief description of them.

The collection of all planes, properly or improperly real spheres,
and points of E; shall be called the ‘“3 dimensional anallagmatic space’’;
we shall denote it by .&7.

A one-to-one correspondence between the points of a 4-dimensional
real projective space F, ~ (a,, a,, a, , «,) and the elements of o7,
can be generated in the following way:

To each point a ~ (o, a;, @, a;, a) of &, if x, x, x, denote the
cartesian coordinates of a point of E,, we can associate the equation

(1) a(xy + 22 + x)) — 20, — 20,2, — 200, + a, =0 .

If =0 this equation defines a plane of E..
If a0 (1) is equivalent to the equation

(2) (xl"‘&)z“}‘(wz_gl>2+(903—2(—3—>2:a%+a§+a§_a’0a4’

40} Qa, Q@ ag

which defines a real sphere, a point or an improperly real sphere accord-
ing as the quadratic form

(3) (@, a) =ail + a5 + a3 — aa,

is greater, equal or less than zero.

This correspondence between &7, and .7, is clearly invertible. The
five real numbers «,, «,, a,, a,, a, (determined up to a common factor
of proportionality) thus associated to each element of .7, are called the
‘‘anallagmatic coordinates’’ of that element. When expressed in anal-

13 Surfaces which are envelopes of spheres (see [1]).
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lagmatic coordinates, the Moebius transformations of E, become the
homographies of &°, which leave invariant the binary form

(4) (a’ B) = alBl + a262 + aﬁB:& - %(aUB(i + a4BO) M

This form is assumed as a scalar product in <. We have to
distinguish it from the Euclidean scalar product

(5) Xy =Y + TY, + TYs ,

which will also figure in our subsequent formulas. To this end vectors
with 5 components will be denoted by means of Greek characters and
vectors with 3 components by means of Latin characters. We shall
always denote (4) by (a, 8) and (5) by x - y, x - x often by x? a point
a of Z, briefly

a~(a, a, a,),
and the binary form (4)
(6) (@, B) = a-b— 3B+ apf,) .

To represent oriented spheres of E; it is convenient to normalize
the anallagmatic coordinates by making use of the factor of propor-
tionality so as to express orientations in an invariant way (see [2]).
This is achieved by requiring that:

(1) If a~ (a,, a, @) corresponds to a point of E, we should have

a, +a,>0

(2) If a corresponds to a real oriented sphere I" of E, and
& ~ (2, x, x,) corresponds to an interior point of I" we should have

(a, ) =1
(a, §)>0.

(8) If a corresponds to an oriented plane 7 and & to a point of
the half-space towards which the positive normal of 7 is directed, we
should have

(a, @) =1
(x, & > 0.
(4) If a corresponds to an improperly real sphere, we should have
(@, a)=—1
a,+a,>0.

The transition from Euclidean to normalized anallagmatic coordinates
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can be carried out according to the following rules:
(a) If p~ g is a point of E, and )\ > 0 then
£E=2\1, p, D).

(b) If I'~a is a sphere or radius R and center in ¢, oriented so
that ¢ is an interior point

a=1 e e—R).

(¢) If I' ~a has the same center but imaginary radius

a= %(1, ¢, ¢+ RY.

(d) If 7 ~a is a plane which contains the point Q@ and has the
unit vector n as positive normal

a= 0, n 2n-Q).

By means of these formulas it can be easily verified that:

(i) The cosine of the Euclidean angle formed by two oriented
spheres I’y ~ a and I',~ B is given by the binary form (6).

(ii) A point p ~ & belongs to a sphere I'~a if and only if
(a, §) = 0.

(iii) The equation of the inversion 4 generated by a real sphere

I' ~ 8 when expressed in normalized anallagmatic coordinates takes the
form*

(7) 48 =& — 2(§, 93,

where & denotes a variable element of Z#,.

The normalization (1) for anallagmatic coordinates of points of E,
is invariant under products of inversions generated by real spheres. In
fact, from (7) follows that if & = 1/R(1, ¢, ¢* — R* and & = \(1, p, p?)
then

(7)* 48 = X——~’p;ezcl L p, b
with
p’ =c + ———_ (p et c) .

Thus 4§ satisfies condition (1) whenever § does.

14 See also [6] pages 25-26.
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Using (7) we can readily obtain the anallagmatic coordinates of the
direct sphere of antisimilitude of two given intersecting oriented spheres
I''~a, and I'y ~ a,. According to the considerations in § 4.1, the sphere
I" ~ & is the direct sphere of antisimilitude of 7", and I', if and only if
the inversion 4 which it generates, transforms the oriented sphere 77
onto the sphere I, oriented in the opposite way; thus in anallagmatic
coordinates we should have

da, = — @, ,
and by (7)
(8) a — 2w, 8)8 = —a,,
or
(9) (@, =BT %.

To find (@, 8) we multiply both sides of (9) scalarly by a, obtaining

(10) (@, 8) = = /LT 52

where by @ we indicate the Euclidean angle formed by /7, and I7,.
Now, (a,, 8 does not vanish, for otherwise (8) yields @, = — a,; and
since the orientation of & does not affect the outcome of (7) we can
choose the positive sign in (10) so that we obtain

(11) s &t a
2cos /2

4.3. The conformal parameters of natural M-surfaces admit a purely
algebraic characterization in terms of the anallagmatic coordinates of
the generating spheres.

Suppose first that L~ (I"y, I'y, -+, I',_,) is a given natural link,
and that ', ~a, (¢t =0,1,---,n —1). Set ', =TI, @, = @, and ¢, equal
to the angle formed by I';_, and I'; (¢ =1, 2, --+, n).

Let I'; ~8; be the direct sphere of antisimilitude of I";_; and I";, and
4; be the Moebius inversion generated by §;. In other words

_ et

2cos ¢,/2
4.8 = E— 2(§, 8)3; .

The results of § 3.2 imply that the Moebius transformation which
defines in 7", the Schottky model corresponding to L is given by the
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product of inversions
T = Andn—l cee Al .

The conformal parameter of L is related in a simple way to the
eigenvalues of 7.

The study of this transformation can be simplified if we introduce
a complex coordinate in I', and make use of the results established in
§ 3.2.

To construct a stereographic projection p = @z of the complex plane
7 onto the sphere /', we can proceed in the following way:

We first choose a basis in &, which consists of @, and four other
normalized vectors ¥,, €, &, ¥, representing respectively

(a) v, and v,: two distinct real points of I,

(b) ¢, and &,: two real spheres containing the points represented
by v, and y,, orthogonal to each other and to the sphere I,.

We then normalize v, and v, so that

(70) 'yl) = - 1/2 715
and set for each z = x + iy of 7
Pz = No(% + @€, + y& + {#* + ¥}y),

where the indeterminate )\, is only restricted to be a positive real
number.
Introducing the two complex points

¥ = (e, — i8)[2, ¥ = (& + i8)[2
the equation of @ assumes the more suggestive form
(12) Pz = MY, + 27 + 27 + 22v) .
To find the inverse of ¢, we observe that if
E =N\ + M+ Ny + M7

represents a real point of I", we must have E=¢ and (§, £ = 0; this
yields ,

N =2
and
Mo =P .
This means that such a & can always be written in the form

15 The scalar product of two normalized vectors of & which represent real points of
Ej3 is always negative.
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f=ﬂ{w+—q+xv+1§;>w

Thus we can set
Y
13 g =2,
(13) pE ~

In view of the results of § 3.2, the mapping 7 = 4, --- 4,, restricted to
I',, is a loxodromic (in particular hyperbolic) Moebius transformation.
Let us denote then by A and B its two fixed points in ", and assume
that A is the source and B is the sink.

If we set

1 1
= —=0(1, 4, A%, =-—(1, B, BY),
Y% AB( ) Y1 AB( )

and take for & and e, any two spheres satisfying condition (b), since
@' maps A onto the origin and B onto the point at infinity of =, the
equation of the Moebius transformation t* = ¢@~'rp of 7 will assume the
simple form

(14) %2 = pez ,

with p >1and —7 <60 < 7.
Thus for each point

f:)\’070+7\"_7+i7+%71,

0

we have (using (13), (14) and (12)):

A 0 N
TE = Z'* -1 T* — 67,9
E=gptipTE =9 —M—?P o
o) e\ )\,X
)J( 06\ 0e 2 )
\7o Ao No

or

——hm+m

ﬂ»)» )

A priori the indeterminate ), is only restricted to be a positive real
number. However, the ratio \}/\, depends solely upon the transforma-
tion 7. ‘

16 By 2/4p we mean an extended valued complex number.



THE CALCULATION OF CONFORMAL PARAMETERS 147

In fact, since 7 preserves the scalar product of <&, we must have

(& v) = (& 7)),
(15) (Tfr '71) = (f’ 7_171) ’
(7o ) = (Yor V1) -

Since v, and v, represent fixed points of =
T = U »
T, = Y,

for some positive real numbers z, and f,. Substituting in the equations
(15) we obtain

S~

bh=p0.

1 1
T )uo =
I 2

EgES

This gives

AN
N 1% ¢

0

TE = %'yo + Nety + Ngtly +

and since )\ is arbitrary
Ty = ¥y,
Ty = e~y |
Finally, the relation 4,&;,_, = — @, for 7 =1, 2, ---, n implies
a, = (—1)"aq, .

With this we have shown that the eigenvalues of 7 are (—1)7, 1/p,
o, €, e, Thereby the relation between these eigenvalues and the
conformal parameter of L is established.

Only little has to be added concerning the general case.

If B~ (L, L, -+, L,) is a given natural M-surface and I, is the
common initial sphere of the L,’s, we operate separately on each link
L, and determine the transformation 7z, generated by the spheres of L,.

These transformations alone carry complete information regarding
the conformal parameters of E.

However, unlike the case of a single link, the eigenvalues of the
7,’s are not sufficient by themselves to characterize the conformal
parameters of =, since they yield only the first g of them. The real
eigenvectors of these transformations have to be determined also, and
among them those representing the fixed points A;, B, of each 7, have
to be selected. Then, according to the definition (formulas (8) of § 1.5),
the remaining parameters are given by the coordinates of the points
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A, have coordinates 0, c and 1 respectively.

4.4. With the same notation as in §2.3, let L~ (I"y, I'y, =+, ")
be a natural link and 4; be the intersection of the sphere I',_, with
the sphere I";. If w = pe¥ is the conformal parameter of L, we shall
say that o is the thinness and @ the torsion of L.

The thinness of the link L can be estimated in terms of the ca-
pacities of the annular domains 4;, N 4;. In fact, we have the fol-
lowing:

THEOREM. Suppose that each annulus Af, N A7 has a capacity c;
satisfying the inequality

1
log o,

(16) ‘ o=

for some p, > 1. Then the thinness p of L satisfies the imequality

(7) 0= 0054 0,

and the equal sign holds if and only if (16) are equalities and the
spheres Iy, Iy, «++, I",_, are all orthogonal to the spheres of a hyperbolic
pencil.
To prove this theorem, we need a few preliminary considerations.
If 7 is a loxodromic transformation of a sphere I'; i.e. if for some
coordinate system in I”

- 2 -«
=

™ — B z2— 0

the number | @ | (which can always be supposed greater than one) will
be called the ‘‘stretching factor’’ of r.

Let 4 and A" be two circles of I having no points in common and
suppose that «, and B, are the two points of I" which belong to the
elliptic pencil generated by 4 and A'. Let a, and B, be ordered in such
a way that the disks A(a,) and A4'(3,) are exterior to each other.

LemMMA I. Among all Moebius transformations of I' which map
A(a,) onto A'(a,) only those which admit «, and B, as fixed points have
the smallest stretching factor.

Proof. Let us choose a complex coordinate in /" which is such that
a, =0, B, = o and 4 has the equation |z|=1. The equation of A’
will then be
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lzl=p

for a suitable p > 1.
If 7 is a Moebius transformation of I" which sends A(a,) onto A'(«xy)
its equation can be written in the form

TR — & —
4 :wz [44

™ — B z2— B

with a € A(a,), B € A(B,) and |w| > 1". Now, 7 must send the points
1/a& and 1/8 respectively onto the points o*/a and p*/3. In other words,

we must have

18)a,b  Lla—a_,la-a glg—a_,1B—a

ol — B la—B" e - 18— 8

and
(19) (@, B, Ya, 1B) = (a, B, pla, P*IB) .
Equation (18)a gives

P —aa 1—aB
1—aa p*—ap’

equation (19), after a few eliminations, yields

402—6?/3.92—“@—:‘02_
1—aB 1—aB
Therefore we have

o] = 2|E=2a].

011l — aa

But aa < 1 (since «a € A(w,)), thus
EY:

and the equality sign holds if and only if aad = 0. However, when
a = 0 equations (18)a,b give 8 = . This proves the assertion.

Let the Moebius transformation (vz — a)/(tz — B) = w(z — a)/(z — B)
define in 3 a Schottky model M(z). Any circle 4 such that the closed
disks A(a) and 74(B) are mutually exclusive cuts M(7) into a region
A(B)NtA(e) which is an annulus. As a consequence of the previous
lemma we can show that:

17 This follows from an argument similar to that presented in § 3.2,
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LEMMA II. Among all circles A for which Ala) and TA(B) are
disjoint, only those belonging to the pencil P(a, B) cut M(7) into an
anulus of minimum capacity.

Proof. Let a, and B, be the two points belonging to the elliptic
pencil generated by 4 and 74, and assume that a, e 4A(a) and B, € T4(B).*®
If ¢ denotes the capacity of the anulus A(8) N t4(«) the stretching
factor of every Moebius transformation which sends A(«) onto v4(a) and
admits a, and B, as fixed points is given by p = e'/“.

By Lemma I we must have

|wl g el/c
or, which is the same (since |w| > 1)
¢ =1/log | w|

with equality possible if and only if @ = «a, and 8 = 8,. Q.E.D.
We can now give a proof of the theorem.
If ¢ denotes the capacity of the annulus

A — TAT = Ay ooe 4p{dy + A7 O AT} A+ -
+ An{An—l + 47 N A;} + Ay + A7 N A7,

from a well known inequality of potential theory (cfr. [7]) we obtain

N
Cn

1
¢

v

(20) 1 +
C

S

and the equality sign holds if and only if the circles 4, --- 4,4,
Ay eoe dydy, ooe, A4, ., A, A, belong to the same pencil. Since the thin-
ness o of the link L is equal to the stretching factor of the transforma-
tion 4,4,-, -+ 4,, from Lemma II we get

(21) oz e,

thus from (20) and (16) the desired inequality follows.

To prove the last statement of the theorem, we observe that the
equal sign will ocecur in (17) if and only if, (16) being equalities, equality
holds simultaneously in (20) and (21). However, this happens if and
only if all the circles 4, -+ 4,4, 4, +++ 434y, +++, 4,4,_,, 4y, A, belong
to the pencil generated by the fixed points a, B of the transformation

T = Ay 4.

Let then I be any sphere orthogonal to I, and containing « and

18 This is always the case after a suitable labeling of «y and B,.
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B. Since I" is orthogonal to /4, I" will be orthogonal to I",_, and I"}, (the
direct sphere of antisimilitude of 77,_; and I",.)

Therefore 4,I" = I" and consequently /" is orthogonal to 4,(4,4,_,) =
An—y. ' will then be orthogonal to 7I”,., and to I',_, (the direct sphere
of antisimilitude of I",_, and I",_,). But this implies that 4, .4, =TI
and consequently I' is orthogonal to 4, ,4,(4,4,-,4,.,) = 4,_,, ete.
Proceeding in this fashion we obtain that 7" is also orthogonal to
[y Iyyy »o+, [y, 'y, The spheres orthogonal to I”, and containing «
and B form a hyperbolic pencil.

Conversely if the spheres Iy, I'y, --+, [',_, are orthogonal to the
spheres of a hyperbolic pencil P, so will also be the spheres of anti-
similitude I}, I}, -+, I'}; consequently each sphere of P will be invariant
under any of the transformations 4,, 4,, «--, 4,.

We can then easily deduce that the circles 4, <+« 4,4,, -+-, 4,4,_,, 4,
are orthogonal to the spheres of P and thus they all belong to the
pencil generated by the two points a and B intersection of I", and the
spheres of P. But a and B are the fixed points of the transformation
Apdyy oo 4y,

Our proof is thus complete.

Although it will not be needed in the following we would like to
point out that the inequality (17) holds also for general links. In fact,
Lemma II is valid in the stronger form:
disjoint, only the circles of the pencil P(a, B) cut M(t) into an annulus
of minimum capacity.”’ :

This statement follows from standard potential theoretical consider-
ations.

5. Some special links.

5.1. Let m, denote the w-plane and w,, w, two complex numbers
for which

Tmw,fw, < 0 .
Let G denote the group generated by the translations

TW = W + W,
(1) TW =W+ W, .

If we identify the points of 7 which are images of each other under
the transformations of G, we obtain a Riemann surface of genus one
I(w,, w,).

The surface I'(w,, w,) can also be thought of as the parallelogram
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FP={wiw= M, +pw; 0=NA=<1, 0= p=<1}.

with opposite sides identified by the transformations (1).

This standard construction generates every Riemann surface of genus
one: as a matter of fact, as w, and w, vary, I'(w,, w, assumes every
conformal type and each an infinite number of times.

It is clear that two Riemann surfaces I'(w,, w,) and I'(w}, w)) are
conformally equivalent if and only if the lattices

L ~ {mw, + m,w,}

my, my=0, 1, £2, -
I ~ {mlw;_‘_mz’w;} 1y 2 ’ ’ ’

can be superimposed by a similarity. Now it is well known that this
is possible if and only if the two ratios

’
v="%and v =%
W, w;
are images of each other under a transformation of the restricted
unimodular group; in other words if and only if there exist integers

a, b, ¢, d for which ad — bc =1 and

av + b

Y = .
cv+d

The set

MW= {r:Tmy<0; —12< Rev =1/2; |v]|>1
for Rev < 0; |v| =1 for Rev = 0}

is a fundamental region of the restricted unimodular group; thus two
Riemann surfaces I"(w,, w,) and I''(w,, w,) will be conformally equivalent
if and only if the complex numbers w,/w, and wi/w} have the same image
point in M.

If we have a Schottky model M(7) defined by a Moebius transforma-
tion

rz—a___pewz—a

72— B o (0>1; —r<0=n

of some sphere Y, a conformally equivalent model is given by the surface
I'(log p + 6, 273). In fact, the function w = log (2 — a)/(z — 3) defines
a conformal mapping of M(7) onto I'(log p + 6, 2m1).

The point

Yy = i _ 'i__log ‘0
2T 2w
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belongs to M if

(Ef?{)? I (1"%’%9 ) > 1 when 0 >0
(2)

<2—€r>2 + (lo_ég;r_@_)z >1 when 6 < 0.

Thus can we conclude that two distinct Schottky models M(z) and
M(z') whose conformal parameters pe’® and o'¢* satisfy the inequalities
(2) are never conformally equivalent.

We shall proceed to show that there exist natural links which are
not conformally equivalent to any of the models I"(log p, 277).

5.2. Let a=1/R1, ¢, ¢*— R?, a,=1/R(1, ¢, ¢ — R?» and
«, = 1/R(1, ¢, ¢ — R? be three given spheres® of equal radius and
suppose that cc, = cc, = 28, 8 < R < ¢,¢,/2.

Let 4, and 4, be the circles of intersection of a, @, and a, a,
respectively, m;, and 7w, be the planes containing 4, and 4, d the
intersection of m;, and m, (proper or improper), p the intersection of d
with the plane through ¢ perpendicular to d, and p,, p, represent the
points of contact of the two planes through d which are tangent to «.

We would like to compute the capacity of the annulus

D = A(p,) N 4(p,) .

To do this it is sufficient to compute the stretching factor of a
Moebius transformation of a@ which admits p, and p, as fixed points and
sends 4,(p,) onto A,p,).

Let 7 denote the plane through ¢ and d, and ¢ the sphere through
A, which is orthogonal to @. Clearly the product

T = T,T,

of the inversions 7, and 7, with respect to = and o generates a
transformation of @ which is of the type requested. We shall compute
its equation.

We indicate by a and & two unit vectors with the directions of c,e:
and cp respectively. Let us assume for simplicity that the origin of
the coordinate system of F, is at ¢. We then have

1
a=2(1,0, —R
R( )

7=, a, 0).

19 Qccasionally we shall make use of the same symbol to denote a geometric object and
its representative in~ ;.
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. N AN N ~

Setting ¢ = pce, = pee, and » = pep, = pep,:
7w, = (0, —sin pa + cos b, 28) ,
7w, = (0, sin pa + cos @b, 23) ,

1 1 .
:_—17 %! ? :—.17 -k R "br yin ’
7 plpz( pi, p)) 5E sm«p( sin yra + R cos r )
1 1 .
¥, = —(1, p,, p) = ——— (1, Rsin Rcosyb, R?) .
2 plpz( P, D) 2Rs1n«}r( Ya + ¥ )

By its definition ¢ belongs to the pencil generated by ¢, and v,, as
well as to the pencil generated by a and =,.
Thus for suitable values of g, \, £/, N

(3) 0= py, + Ny, = t'a + \N'm, .

Observing that since (g, 6) = 1 and (v,, v,)=—1/2 we must have r=—1/g,
equating the middle components of (3) we obtain

M+ 1 _ tanq
M—1  taneg

Now
T2 = Yo Ta% = Y1,

o9 = 91 — 2(7,, )0 = \’y, and analogously 7.y, = (1/\)y..
Thus for the stretching factor p of the product 7,7, we get

(4) pzvztancp+tan«1r
tan @ — tanr

this determines the capacity of D™.

5.3. It is easy to show that every point of 9 which lies in the
imaginary axis can be obtained as an image of an imbedded surface.

In fact, the image of a torus in 9t is always pure imaginary, and
as we vary the radius of the generating circle, keeping the center fixed,
we can describe the whole imaginary axis.

We shall exhibit a family of natural links with the same property,
and at the same time illustrate our way of computing the conformal
parameters of natural links.

Let a, b, ¢ be unit vectors forming a left handed orthogonal triplet
and set

20 The obvious argument based on the fact that the stereographic projection is a cross-
ratio-preserving transformation would lead to the same result with more or less the same
effort.
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& = (1, cos i % a + sin i27p, 1 - E’)
R n n

(assume n = 38). It can be readily verified that «,, a,, ---, @,_, define
a natural link for every value of R greater than sin z/n and less than
one.

Let 4, denote the intersection of a;_, with @, and the sets A;, A;
have the same meaning as in § 2.3. To compute the conformal parameters
of the link

L(’I’L, R)=/I0+A; NA7 + --- +An—1+/1;;—1 n4;,

according to the results of §4.3 we should study the transformation 7
product of successive inversions with respect to the spheres

S — R_a..ta
YT 2 VR —sinn/n

(t=1,2,---,m).

This does not present any difficulty. In fact, we observe that each
of the a,’s is orthogonal to the plane
& = (0, ¢, 0)

and the sphere

62:(1—1—}?2’ 0, _1/1—122).

Thus all the spheres of P(g,, &) (the pencil generated by ¢, and &,)
are orthogonal to each of the a,’s and therefore also to each of the §,’s.
This implies that the spheres of P(g,, &) are all invariant under the
transformation z. Consequently also the points ¢, and ¥, which a, has
in common with the spheres of the pencil P(g,, &,) are invariant under
7. We can then conclude that 7 admits the decomposition

Y= ?70
TE, = €,

TE, = &,

T, = (—1)"«q,
T = P,

with a suitable o > 0 (if ¢, and v, are properly labeled o will result
greater than one).

Thus the torsion of L(n, R) vanishes independently of n and R.
To determine the thinness o0 we use the formula (4) of last section and
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obtain for the capacity ¢; of each anulus A;_, + 4}, N 47

Rcosn/n + sinwfnv'1 — RZ}‘I

¢; = 1lo
! {chosn’/n—sin7r/'n1/1—R2

Applying the theorem of § 4.4 we obtain

_ (Rcos/n + sinw/n1/1 — R*\"*
5 =
(%) o (R cos T/n — sin t/n 11 — R2>

Clearly for any given n > 3 this function increases from 1 to « as
R decreases from 1 to sin 7/n.

It is interesting to note that if R is kept fixed in (5) and we let n
tend to infinity we obtain

. ‘/—. 2
lin p = e~ .

n—oo

This result is not surprising since the link L(n, R) then approaches
the torus enveloped by a sphere of radius R as its center describes a
circle of radius one,

5.4, The fact that each link L(n, R) has torsion zero could have
been predicted. We can show that if a natural link admits a plane of
symmetry or a sphere of inversion (which amounts to the same thing)
then its torsion must vanish.

We shall consider two representative cases.

Case 1. All the spheres of the link are orthogonal to the sphere
of itnversion.

Let a,, a,, -++, @&,_, be the generating spheres and € be a real sphere
such that

(ai’ 6):0 ('i:O,l,'°‘,’n‘—'1)-

From this follows that the spheres of antisimilitude &, §,, «--, 3,
will also be orthogonal to € and therefore

(6) T€ = dydyq o dE=E.
We suppose that v, v, v, ¥ decompose 7, and set (as in §4.3)

1 _ _ }
T, = ?vo, Ty, = Oy, Y = €%, Ty = e ¥y,

Since & is orthogonal to «, it must be of the form

(7) €= \¥o + MY, + \Y + Ay ;
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however, for a natural link p > 1 (cfr. theorem of §4.4), and thus the
hypothesis ¢? + 1 is incompatible with (6) and (7).

Case 2. The spheres of the link are interchanged by the sphere of
inversion. By means of two or more additional spheres we can reduce
(without altering the conformal structure of the link) every possible
gituation to the following one:

The spheres @, @,, -+, &,_, are an even number » = 2p and further-
more the sphere of inversion € is such that

Ty = Qy, T O = Ay, Tl = Qy_y, * o+, T X, = ap.m
The spheres of antisimilitude will then be related in the following way
8, =78,8,., =Ty, »v+, 8,0, = T:d, .

This implies that the transformation 7 = 4,4,_,++-4, can be written in
the form

T = Tedydy oov 4,Tedyd, ) o+ 4,
or, setting o = 4,4,_, «++ 4;:
T = T,07'T:0 .

Assuming that ¢,, v, are the source and the sink of the transformation
7, for a suitable p > 1 we have

T(TS'YO) = TEO‘-ITSO.TEVO = TET_I'YO = 0T, .
In view of the unicity of v, (since p + 1) we must have
(8) Te% = %o — 2(%0, €)€ = M,

for some )\ > 0 (cfr. the properties of the normalization in §4.2). Secalar
multiplication of (8) by ¥, yields 2(v,, €) = + VA so that choosing the
positive sign (the orientation of & is irrelevant) we obtain

(9) e=1/—1_):.vo—w/ﬂ.

Considering the spheres a; in the different order
ap’ azz+1; e, By, Ay oo, ap—l ’

we obtain again the same link; the source and the sink of the corre-
sponding Moebius transformation t* = g7r.67'r, will then be the points
v, = oy, and ¢, = oy,. Therefore we must also have

21 By re¢ we mean the inversion generated by e&.
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1 —_—
10 E=——9q,—V uy!
(10) VAT ©y

for some ¢ > 0.

We set ¥ = (¢, — 18,)/2, v = (¢, + 16,)/2 where &, and &, are any real
spheres containing ¢, and ¢, orthogonal to each other and to the sphere
a@,; from (9) follows that

TY=9,TY=19.

Now (g%, 0v,) = (¥, 7,) = 0 and similarly (9%, o7,)=(a7, 0v,)=(07, o7:) = 0,
therefore in view of (10) we deduce

TOTH = T 0V = OF , TOTY = T 0¥ = 0,
and
=0"0y =9, 1y =0"'dy =¥ ."

which is what we wanted to show.

Case 2 illustrates the intuitive fact that if a link L admits a plane
of symmetry then whatever torsion L might inherit from one of its
symmetric parts is taken away by the other. This property is not peculiar
to natural links but it holds for all Riemann surfaces of genus one im-
bedded in E,.

We shall give only a sketch of the proof for the general case.

If a surface admits a plane of symmetry then it admits an anticonfor-
mal (sense-reversing angle-preserving) mapping onto itself. This fact by
itself is sufficient to exclude that the corresponding parallelgramm lattice
could be a general one, it must have rectangular or rhomboidal genera-
tors.®

However, the case of rhomboidal generators can be excluded also.
The anticonformal mapping generated by a plane of symmetry in E, will
always leave invariant two distinct closed curves of the surface as loci
of fixed points. On the other hand, if a rhomboidal lattice is a general
one, the reflections which preserve the identification of points admit also
two distinct invariant curves, but only one of them as a locus of fixed
points.

5.5. In contrast with the results of the previous section, it is not
difficult to construct natural links whose torsion does not vanish. The
simplest models of such links can be obtained using five linearly indepen-
dent spheres.

22 A shorter but less illustrative proof could be derived from the fact that the equation

Tey = vy together with (8) leads to an absurdity.
23 We owe this observation to Professor H. Royden.



THE CALCULATION OF CONFORMAL PARAMETERS 159

In fact, we can show that
If a link L is generated by five spheres &, @, - -+, @, then its torsion
vanishes if and only if the vectors @, are linearly dependent.

The torsion of L vanishes if and only if there exist vectors which
are invariant under the product of inversions = 4,4, --+ 4, generated
by the spheres §,. Now, the transform of a vector & by t (after a re-
peated application of formula (7) of §4.2) can be written in the form

Tf = f - 2(5’ 81)81 - 2(Alff 82)82 — s 2(‘44 tee Alf’ 85)85
and the equation
(E; 81)81 + (Ava 82)82 +oeee + (44 bl A1fr 85)85 =0

can be satisfied when and only when the 8,’s are dependent. On the
other hand if we let o denote the matrix whose columns are the vectors
a;, 5§ denote the matrix whose columns are the vectors §;, and set
t=VT1+ (@, @)2 * we have

12, 0 0 0 122,
y2p 121 0 0 0
5=alo0 12, 124 0 0
o 0 Y2, 12e 0
0 o 0 12, 12
and

2ty ooty
Thus the 8’s are dependent or independent together with the a,’s. This
proves the assertion.

This result does not quite solve our original problem of constructing
models whose representative point in M is off the imaginary axis, at
least as long as we do not know when the point 6/27 — ¢ (log 0)/27 is
contained in M. We shall get around this difficulty by showing that our
models can be made sufficiently thin (cfr. the inequalities (2) of §5.1).
To this end we shall exhibit a family of links within which this defor-
mation is possible.

Let C, C,, ---, C, be points of E, and P denote the closed polygonal
line C,C,---C,C,. Suppose that each segment C,C;,, (1 =0, +--, 4; C;=C,)
has length equal to twice that of the unit of measure, and set 2¢, =
angle CHC/’,CTHI. Let a; be a sphere of radius R and center C,,1i.e.,

2 cfr. (10), (11) of §4.2.
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1 2 2
(12) o, = E(ly C, C;—R".

In order that the spheres a; fulfill the conditions (a), (b), (c), (&), (e) of
§ 2.3, so that they can be used to define a link, it is sufficient to require
that for each 7=1,.-.,5 a,_, intersects a; and does not intersect
a,,, (Seta; = a,). We shall thus assume that P is such that

(13) P, > 7|6+ g, or C;_,Cyyy > 2(1 + ¢) .
for some 0 < ¢ < 7/3,0 < ¢ < 1, and restrict R to satisfy
(14) 1<R<1+e.

Let L(P, R) denote the link defined by such a choice of P and R.
From (12) follows that

1 ¢ Ci

(15) deta = L get|l & Cif
R,
1 C;, C:

therefore the torsion of L(P, R) vanishes if and only if the vertices of
P lie on the same sphere. Now, it is geometrically evident that if we
keep P fixed and let R decrease to 1 the capacities of the anuli 47, N 47
will decrease to zero (see also formula (4) of §5.2) and thus by the
theorem of §4.4 we can predict that the thinness of L(P, R) will tend
to infinity.

This proves the existence of links whose torsion does not vanish and
whose representative point is in .

More accurate results about the links. L(P, R) could be obtained by
a direct calculation of the eigenvalues of the corresponding Moebius
transformations. However, without going into tedious computations we
can show that: the portion of M covered by the images of the links
L(P, R) contains a strip of constant width around the imaginary axis.

It can be shown (see [6] pp. 26-28 and 154-155) that the character-
istic polynomial of the Moebius transformation generated by a set of
linearly independent spheres 8,,8,, ---, &, is given by the expression

1L+ 2(81’ 82) e 2(8“ 85)
(16) a(\) = det 208, 8,) 1+ e 2(8,, 8;)

208, 8;) 2)(8;, 8;) -1 4N
On the other hand, from the results of § 4.3 we have
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am x(A) = (W — 2cos On + 1)(\* — 2cos hon + 1)(M + 1)% .

(we have set cos ha = 1/2(p + 1/p)). Evaluating (16) and (17) for A =1
and equating the results we obtain

(18) sin K'o/2sin*0/2 = — det || (8, 8)) ] .

If we recall the definition of the scalar product ((4) of § 4.2) we see that
it is

0 0 0 0—1/2\
0 1.0 0 O
1(&,8)|=8" 0 0 1 0 0 |6
0 0 0 1 O
—1/20 0 0 0
this means that
det || (8, 8)) || = — 1/4{det 8}*.
Substituting in (18) we obtain
. det & |
19 92| =1/2 14t ]
19 | sin 6/2] / sin ha /2

We now observe that for a link L(P, R) we have (a;_,, @) =1 — 2/R? and
setting »r = V' R* — 1, (11) gives

det 5 = frdeta
240
so that, using (15), (19) yields
1 ¢ ¢
(20) [det| seoeerens ]
|sin6/2] = 2571 sinC ;w/?

We shall get upper and lower bounds for sin ho/2.
Let o° be the sink of the Moebius transformation corresponding to
L(P, R), and set

Y=, Gy, G}), 47" =\ = M1, G, G), -, 4y = Ay =N\(1, G, Gg):P'YO .

Since 8, = 1/r(1, A,, A}) with A, = (C,_, + C})/2, recalling formula (7)* of
§ 4.2 we obtain

{

2
7\,1 - ()Al y 7\,2 = GlAz
r? r? r?

% (4 + 1), since the number of spheres is odd.
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this gives

GA -GA, ---GA,
o= o .

But each G, is a point of the corresponding sphere «;; thus we get

(1) =
r

The theorem of §4.4 gives a bound from below. Let C, denote the
capacity of the anulus 4}, N 4;, using (4) of §5.2 and some geometrical
considerations we obtain

C, = {log Rs%n @ + V1 — R?cos’p, }“‘ ’
Rsin ¢, — V1 — R?cos?p,

thus

= (Rsin @, + V1 — R¥cos @) - - - (Rsin ¢, + V1 — R¥cos’p,)’ .
= 7‘10 ’

since we keep R < 2sin @, each of the factors in the numerator of the
right hand side is greater than one therefore

(22) o>L .

7,.10

Finally (21) and (22) used in (20) yield (assuming r < 1):

1 ¢ ¢ 1 ¢ ¢

,det ......... l Idet ......... |

(23) 11 € Cil _|ging2| = 1 ¢ Ci
2H{(R+1y—(R—-1)} 21 —7")

These inequalities imply our assertion:
For each polygon P~ C,C, --- C,C, let D(P) denote the value of

If P, is a regular pentagon of side 2 then the link L(P,, R) is certainly
well defined when 1 < RV 2. Simple geometrical considerations to-
gether with formula (5) of § 5.8 show that the link L(P,, V"2 )has a thin-
ness O, for which logp, < 2r. Let then P vary among the polygonals
which satisfy the following conditions.

(1) D(P)=+0.
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(2) The link L(P, V' 2) is well defined.
(8) The point v(P) = (8(P)/2r) — i (log o(P))/27 corresponding to
L(P,v/ 2) is contained in the region | Rey| < 1/2,|v| < 1.
Assume 1 < R < V2 and set u(P, R) = (0(P, R)/27) — i(log o(P, R))/2x
where 6(P, R) and o(P, R) represent the thinness and the torsion of
L(P, R).

For every fixed P, as R decreases from 12 to 1, the point v(P, R)
describes a curve M(P) which starts from a point outside WM, enters
M for a suitably small value of R and tends to infinity from within
M as R—1.

The first inequality in (23) shows that each curve M(P) is bounded
away from the imaginary axis. Then, if we let P approach P,, because
of the second inequality in (23), M(P) will tend to the imaginary axis
and sweep a neighborhood of the type asserted.

A family of polygons satisfying the conditions (1), (2), (3) can be ob-
tained from the following model. Let (x, v, 2) be a cartesian coordinate
system in E,. Let

C, = (1/sin /5, 0, 0), C, = (x(yr), y(y), 2(yr)), C, = (—cot /5, 1, 0)
C, = (—cot 7[5, —1,0), C, = (x(y), —y(}), —2(y))

with

_ 1
=lr) = 1/2 sin 27/

y(¥r) = 1/2 + 2 sin 7[5 cos /10 cos
2(y) = 2s8in 7[5 sin

5 + 2 sin 7/5 sin /10 cos

and set P(y) ~ C,C,(¥)C,C,C(y)C,. The points C, have been chosen so
that P(0) is the regular pentagon of side 2 which lies in the plane z, y,
has its center at the origin and a vertex in the positive real axis. When
r varies Ci(y), C,(y) describe the circles H, K loci of points whose dis-
tances from C,, C, and C,, C, respectively are equal to 2. A short cal-
culation gives (for +» < 7/2)

(24) D(P) = 2° sin 7[5 sin 710 sin 4o(1 — cos ) .

It can be easily seen that the links L(P(yr), 1 2) are well defined when
defined when || < 7/4 (the only critical distance in this range is C,C,
and it is well above 21/2).

Numerical estimates of the width of the strip covered are poor,
since (21) is rather crude. Nevertheless using (23) and (24) with
R =1.2 and p = 11 we obtain | 6| > 2 degrees.
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5.6. We shall conclude by showing that each natural M-surface can
be deformed into a conformally equivalent C> canal surface. Our con-
struction is based on the following observation.

Let I" be a Riemann surface, N a subregion of /" and 4 the boundary
of N. Let N* be a Riemann surface with a boundary A* and suppose
there exists a conformal mapping 4 of N* onto N which is defined and
continuous up to A*. Then we can make the set

I*=( — N) + N*

into a Riemann surface conformally equivalent to I'. The proof is im-
mediate. We introduce local uniformizers in I'* so that the mapping
@(P) of I'* onto I defined by

@(P)=P for Pel* — N*
#(P) = AP for PeN*

is conformal.?®

We shall illustrate the use of this observation in a simple case.
Suppose I" is imbedded in F,. Assume that N is a simply connected
piece of a surface of revolution whose boundary is a parallel. Let N*
be any other simply connected piece of surface of revolution which has
the same boundary and the same axis as N. The existence of the mapp-
ing 4 in this case is trivial. The observation can thus be applied, and
we can deduce that I" and I'* = (I" — N) + N* must inherit the same
conformal structure from E..

If I is C~ across 4 and we want I'* to possess the same property,
then we have to restrict N* to osculate N along 4 to an infinite degree.

Our next application will be the smoothing of natural M-surfaces.
Let L be a given natural link and suppose that we want to render
smooth the edge formed by the spheres I', and I', of L. Let 4 be the
circle of intersection of I, and I",. For simplicity we shall assume that
the whole space has been subjected to a Moebius transformation so that
I’y and I', have become spheres of equal radius, their centers being interior
points. Let 4-, A* be the portions of I", and I', which are exterior to
I'y and I'; respectively, 7= the plane of 4; m, and 7, two planes parallel
to w at a small distance ¢ from 7. Assume that 7, and 7, interseet A~
and A* respectively and set

di=mNA, Ady=m, N A* .

Let a be the straight line which contains the centers of I", and 7I',, v
a half plane bounded by a; k, and k, the semicircles 7", N v, I, N v
respectively. Let

26 In § 2.3 we have proceeded in a similar way.
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A=vNnN4d,A=vnd, A,=v N 4,.

Let N be the portion of L generated by the rotation of the arcs
AkA and Ak,A, around a.”

We shall choose & to be a curve of v which joins 4, to A, and fits
with k, and k, at its end points in a C= fashion. Let N*(k) be the
surface of revolution generated by rotation of the are A4,kA, around a.
It is easy to see that when the non-Euclidean length of the arc A,kA,
in the half-plane v is equal to the sum of the non-Euclidean lengths of
the arcs Ak, A and Ak,A, there exists a conformal mapping 4 of N*(k)
onto N which leaves invariants the points of 4, and 4,. And then, in
view of our observation, N*(k) can be used to replace Nin L. It remains
to be shown that such a %k can be found.

Let us first choose k& to be the semicircle of v which joins A, with
A, and is orthogonal to a. Since k is then a geodesic, using the triangle
inequality, we obtain

(25) n. E1A KA, < n. ELAKA + n. L1.AkA, .

Now, k& can be deformed at its end points to fit with k,, and %, as
smoothly as we please, increasing its length as little as we wish. There-
after, if necessary, we can increase the length of %k to change (25) into
an equality. ‘

To complete our argument we must show that L can be rendered
smooth without introducing self-intersections. However, it is clear that
k can be chosen to be a simple curve contained in the circle of center

A and radius the (Euclidean) length of the segment AA,, for any given

c.
REFERENCES

1. W. Blaschke, Vorlesungen wber Differentialgeometrie, Berlin: Julius Springer, 1929,
vol. III.

2. E. Cartan, OFuvres completes, Paris: Gauthier-Villars, 1955; vol. 2, part III, pp. 1701-
1726.

3. J. L. Coolidge, A Treatisc on the Sphere and the Circle, London: Oxford U. Press,
1916.

4. L. Ford, Automorphic Functions, New York: Chelsea Publ. Co., 1951.

5. A. Hurwitz and R. Courant, Funktionentheorie, Berlin: Julius Springer, 1925.

6. R. Lagrange, Produits d’inversions et metrique conforme, Cahiers Scientifiques, Fasc.
XXIII, Paris: Gauthier-Villars, 1957.

7. G. Pélya and G. Szegd, Isoperimetric inequalities tn mathematical physics, Annals of
of Math. Studies, No. 27, Princeton U. Press, (1951), 51-54.

8. F. Schottky, Ueber eine specielle Function, welche bei einer bestimmien linearen Trans-
Jormation thres Arguments unverdndert bleibt, Crelle’s J., 101 (1887), 227-272.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

27 This sentence is meaningful when ¢ is sufficiently small.






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

Davip GILBARG

stanford University
stanford, California

F. H. BROWNELL

Jniversity of Washington
seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7. California

L. J. Page

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

(]

. F. BECKENBACH E. HEWITT
. M. CHERRY A. HORN
. DERRY L. NACHBIN

v ™

M. OHTSUKA E. SPANIER
H. L. ROYDEN E. G. STRAUS
M. M. SCHIFFER F. WOLF

SUPPORTING INSTITUTIONS

JNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
JNIVERSITY OF CALIFORNIA

VIONTANA STATE UNIVERSITY
JNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
JREGON STATE COLLEGE

JNIVERSITY OF OREGON

JSAKA UNIVERSITY

JNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by Kokusai Bunken Insatsusha
(International Academic Printing Co., Ltd.), Tokyo, Japan



Pacific Journal of Mathematics

Vol. 10, No. 1 September, 1960

Richard Arens, Extensions of Banach algebras........................... 1
Fred Guenther Brauer, Spectral theory for linear systems of differential

CQUATIONS . . . o o e et ettt ettt e e ettt 17
Herbert Busemann and Ernst Gabor Straus, Area and normality ........... 35
J. H. Case and Richard Eliot Chamberlin, Characterizations of tree-like

COMBIMUA . .« o oo e vttt e e e et et et 73
Ralph Boyett Crouch, Characteristic subgroups of monomial groups . . . . ... 85
Richard J. Driscoll, Existence theorems for certain classes of two-point

boundary problems by variational methods ......................... 91
A. M. Duguid, A class of hyper-FC-groups . ..............ccooeiuiia.n. 117
Adriano Mario Garsia, The calculation of conformal parameters for some

imbedded Riemann SUFfACES . . ...........couiiii i, 121
Irving Leonard Glicksberg, Homomorphisms of certain algebras of

FHEASUTES . . oo v v vttt e e e e e e e e e e e et e 167
Branko Griinbaum, Some applications of expansion constants . ............ 193
John Hilzman, Error bounds for an approximate solution to the Volterra

INtegral eqUALION . .. ..o 203
Charles Ray Hobby, The Frattini subgroup of a p-group .................. 209
Milton Lees, von Newmann difference approximation to hyperbolic

CQUALTONS . .« oot ettt it e e et
Azriel Lévy, Axiom schemata of strong infinity in axiomat
Benjamin Muckenhoupt, On certain singular integrals . . .
Kotaro Oikawa, On the stability of boundary components .
J. Marshall Osborn, Loops with the weak inverse property
Paulo Ribenboim, Un théoréme de réalisation de groupes
Daniel Saltz, An inversion theorem for Laplace-Stieltjes tr
Berthold Schweizer and Abe Sklar, Statistical metric spac
Morris Weisfeld, On derivations in division rings . . . .....
Bertram Yood, Faithful *-representations of normed algeb




	
	
	

