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The problem of determining all isomorphisms between the L, alge-
bras of a pair of locally compact groups G and H has been considered
by J. G. Wendel [16, 17] and H. Helson [7] (in the abelian case); these
authors showed in particular that all norm-decreasing isomorphisms
arise essentially from isomorphisms between the groups (and are iso-
metries). In the abelian case a device suggested by Helson leads to
much more, and we shall determine all norm-decreasing homomorphisms
of certain algebras of measures (similar to L,) on G into the algebra
of measures on H(cf. 2.1 below.).

Let M(G) denote the Banach algebra of all finite, complex, regular
Borel measures on G, with convolution as multiplication. L,(G) forms
a subalgebra of M(G), in fact an ideal. Because of this, knowledge of
the norm-decreasing homomorphisms of L, algebras into algebras of
measures on another group leads to the determination of all norm-de-
creasing isomorphisms between M(G) and M(H); indeed when G and H
are abelian we shall show that for each norm-decreasing isomorphism
of a (not necessarily closed) subalgebra of M(G) which contains L,(G)
with a similar subalgebra of M(H) there is an isomorphism v of G
onto H and a fixed character § of G for which T is just the measure
gy transported to H via v (whence TL(G) = L(H) and T is an iso-
metry). This is exactly the abelian Helson-Wendel result extended to
superalgebras of L, in the non-commutative situation we can only
obtain the analogous result for compact groups.

Aside from familiar facts about harmonic analysis (as given in [10,
15]) our main tools will be the following results obtained in [6] for a
compact group G:

(1) each multiplicative subgroup of mnon-negative elements of the
unit ball of M(G), other than the trivial subgroup {0}, consists of
translates of Haar measure of a fixed normal subgroup of G [6, 2.4];

(2) each mon-zero idempotent in the unit ball of M(G) is Haar
measure of a subgroup multiplied by a multiplicative character of
this subgroup [6, 4.3].

It is a pleasure to record the author’s indebtedness to K. de Leeuw
for many stimulating comments and suggestions.

NoTATION. As usual CyG) will denote the continuous complex
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functions on G vanishing at infinity; M(G) is of course C,(G)*. The
space of all continuous bounded complex functions on G will be denoted
by C(G).

When G is abelian, G~ will denote its character group with generic
element §; the respective identities of G and G~ will be g, and g,. In
general measures on G will be denote by the letter p and those on H
by v with g, (v,) the mass 1 at g (h). It will be convenient to use p
for the measure and also for the corresponding integral, writing p(f) =

S f(9)u(dg) where integration is always over the entire group. For
notational ease we shall take the Fourier-Stieltjes transform ft of x to
be defined by [u«(g) = S(g, o)(dg)(=p(g)); in particular for absolutely

continuous measures, inversion will involve the familiar conjugation. .

On occasion we shall need to multiply a measure g by a function
f: fp will denote the measure we might define by fu(dx) = f(x)u(dx).
Finally it should perhaps be stated explicitly that the term ‘‘subalgebra’’
should only be taken in the algebraic sense, and all references to
norms on subalgebras of M(G) are to the norm of M(G).

1. Preliminaries. If 7 is an isomorphism of L,(G) onto L,(H), and
G and H are abelian then one has a dual homeomorphism 7 of H™ onto
G~ for which (Tp)” = ftor. This fact from the Gelfand theory formed
the starting point of Helson’s investigation [7], which proceeded to show
7 had algebraic properties as well when T is norm-decreasing. Helson
observed [7, §2] that = could be extended to map almost periodic funec-
tions in a linear norm-decreasing fashion, but found no application for
his observation, which will be fundamental for our abelian results.

Our first result yields the algebraic content of the norm-decreasing
character of somewhat more general maps. Here and elsewhere || ||..
will denote the usual supremum norm for functions, and 0 the func-
tion identically zero.

THEOREM 1.1. Let G and H be a pair of abelian topological
groups, with G~ and H”™ their (algebraic) groups of continuous charac-
ters. Let T be any map of H™ into G~ U {0} with th, = §,. If

(1.11) iaﬂ'ibt” < iaiﬁi]
i=1 oo i=1

for any trigonometric polynomial Z;‘=1atﬁi on H, then 7' G” is a
subgroup of H™ and the restriction of T to this subgroup an algebraic
homomorphism.*

£

1 Actually we could take G~ and H” to be any groups of (multiplicative) characters on
a pair of (not necessarily abelian) groups G and H. One need only replace G* and H*
(below) by the duals of the (discrete) groups G™, H” (into which G and H map onto dense
subsets).
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COROLLARY 1.2. If 7: H™ — G U {0} satisfies (1.11) and th, € G*

then o : h— T(ﬁl)“‘t(ﬂﬁ]) is multiplicative on the subgroup hi't=YG") of
H”™, and otherwise vanishes.

COROLLARY 1.8. If 7: H" — G~ satisfies (1.11) then o : h — (Tfao)‘lrfe
is & homomorphism of H™ into G~. Conversely if o is a homomorphism
(1.11) holds. Finally tdentical equality obtains in (1.11) iff = 1is one-
to-one as well.

Proofs. In (1.11) we are of course demanding that the obvious
linear extension of 7 mapping trigonometric polynomials on H into those
on @ be norm-decreasing, and thus we have a norm-decreasing exten-
gion of this map taking A(H), the almost periodic functions on H, into
A(G). Letting H* and G* be the almost periodic compactifications® of
H and G we then have a norm-decreasing map 7 of C(H*) into C(G*)
with TH* cG*" U {0}. As a consequence the norm-decreasing adjoint
map T* of C(G*)* = M(G) into C(H*)* = M(H*) is multiplicative, for
T*( % p)h) = g% p(Th) = p(Th)pr(Th) = T*p(h)T* (k) since Th is
either 0 or a character. Hence (T*(y, * )" = (T*u) (T*,)" and
from the one-to-one nature of ~ we obtain T*(y, » ) = T,  T*p,.

Moreover from TiiO = th, = g, we see that T* preserves non-nega-
tivity; for £ >0 and |[|g¢|| =1 imply 1= u(g,) = (Thy) = T*ﬂ(ﬁo) <
NT*ull < llpell =1 so that T*p(1) =1 = || T*p||, and therefore T*pn>0.

Consequently 7'* maps the multiplicative subgroup {y,:g e G*} of
the unit ball of M(G*) into a subgroup of the unit ball of M(H™)
which consists of non-negative measures. Thus by [6, 2.4] (cf. in-
troduction (1)) the image consists of translates of Haar measure v of
some subgroup K of H*, and we can write T*p, =19 where '@ ig
the translate of v to the coset v(g) € H*/K. For k in K*(=the subgroup
of H*” = H” of all characters identically 1 on K, hence constant on
cosets mod K) we have (v(g), fL) = VO(h) = T *yg(ﬁ) = pg(Tﬁ) = (g, 7h)
for all ¢ in G < G*. But as usual this implies = is multiplicative on the
subgroup K+ of H" since, for hy,h, in K<, (g, t(hhs)) = (1(g), ki) =
(7(9), h)(v(9), b) = (g, Th)(g, Thy) = (9, Thiths) for all g in G. On the
other hand for 7 ¢ K+ we have 0 = v"@(h) = T*pg(ﬁ) = yg(TiL) = (g, 7h)
for all g in G, and thus vh = 0; consequently 7"'G" is precisely the
subgroup K+ of H”, and our proof of Theorem 1.1 is complete.

We might remark that the converse of 1.1 can be obtained in
somewhat the fashion of the corresponding assertion of 1.3 (below), and

2 Jt will be convenient to view G as a dense subset of G* and A(G) as the restrictions
to G of the elements of C(G*) [10, 15]. Similarly we consider the elements of G™ as the
restrictions to ¢ of the elements of G*™,
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equality obtains identically in (1.11) if tH cG” and, as in 1.3, 7 is
one-to-one. Since we shall have no use for these facts proofs will be
omitted.

The proof of Corollary 1.2 follows immediately from noting that

”(‘L’lkLl)‘l_Xn‘_l aiz'fbiH = ﬁ,airﬁi

(so that (1.11) holds for ¢) while 0(?20) = §,. Evidently ¢ is independent
of the particular choice of iLl.

The direct portion of Corollary 1.3 is a consequence of 1.2, taking
iLl = ho. For the converse part we note that if ¢ is a homomorphism
then interpreting it as a map of H*" into G*~ we have a dual homo-
morphism v of G* into H*, and

(B ok )@ = (Zai)oro) -

Consequently (since we may consider G and H as dense subsets of G*
and H*) we have

(1.12) Hé a.0h, g: atahti(g)l = sup lé aiﬂi('y(g))l

= sup
oo G*

3 (h)| < sup l py aii}i(h)} - H Y azhi”w ,

=1

= sup
Y(G*)

and (1.11) holds. Clearly identical equality obtains if ¥(G*) = H*. On
the other hand since v is continuous and G* compact, ¥(G*) is a com-
pact subgroup of H*, and if ¥(G*)+ H* some non-zero f in C(H®)
vanishes on ¥(G*); since f can be approximated uniformly by trigono-
metric polynomials equality in (1.12) cannot always obtain. Thus identi-
cal equality is equivalent to v(G*) = H*, or dually, to the one-to-oneness
of o, hence of 7.

We shall return to some reformulations and analogues of these re-
sults in §6.

2. Homomorphisms. In order to utilize the device suggested by
Helson we need not restrict our attention to Banach algebras. We
need only insist that our subalgebra A of M(G) have G™U {0} as its
space of multiplicative functionals and be large enough to determine the
norm of each trigonometric polynomial on G. Unless something to the
contrary is stated G and H will represent locally compact abelian groups
throughout this section.

It will be convenient to extend the definition of the Fourier-Stieltjes
transform ft of g in M(G) by setting f(0) = 1#(0) =0, and regard
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G~ U {0} as the one point compactification of G”. Consider the following
conditions on a subalgebra A of M(G):

(2.01) For each trigonometric polynomial 37, a9, on G
|Z 0| = sup{|i(E ain)s e A, el < 1} 5
i=1 oo i=1

(2.02) The set of maps p— [Hg), §€ G U{0}, corresponds in a
one-to-one fashion to the set of all multiplicative linear functionals
on A, and A"cC(G"U {0}).

When both conditions hold A™ contains® sufficiently many functions
to determine the topology of G~ U {0}; for (2.01) implies A” separates
any pair of elements of the compact space G~ U {0}, and thus each g,
in G" U {0} has a base of neighborhoods of the form {§:|f(g)— f4(d.)|<e,
1=1,2,+++,n}, where ¢,e A. A = L(G) clearly satisfies these condi-
tion, and will of course be the most important example.

THEOREM 2.1 Let A satisfy (2.01) and (2.02). Then if T is a non-
zero norm-decreasing homomorphism of A into M(H) there is a compact
subgroup H, of H, a continuous (not mecessarily open) homomorphism
v of G into H|H,, and characters § of G and h of H for which

(2.11) Ti(f) = poISGhf) o7,  fe ClH),
where S denotes the map of Cy(H) onto C(H|H,) defined by Sf(hH,) =
SH F(rRY(@AR') (where v is Haar measure on H,); alternatively

0

(2.12) Ty = hS*Iju

where I' is the homomorphism of M(G) into M(H|H,) defined by setting
ru(f)y=mfov),feC(HIH,), and S* is the adjoint of S mapping
M(H/[H,) into M(H). Conversely each such quadruple H,, v, g, h defines
a non-zero norm-decreasing T via (2.11) or (2.12).

Proof. For each h in H", U (T,u)”(fc) defines a multiplicative
functional on A, and thus we obtain a unique 7h in G U {0} for which
(T;e)A(hf) = fu(rﬁ). Since the elements of A™ suffice to define the topology
of G"U {0} and the functions (T¢)” are continuous on H”~ one clearly
has 7: H~ — G"~ U {0} continuous.

On the other hand 7 satisfies (1.11) as a consequence of (2.01):

(2.13) Hg attﬁi‘ _ = sup

Hell<1

n A
(o)

3 Of course this holds when A” is only a separating subalgebra of C(G"U{0}); but
then we can only assert that G~ forms a subspace of the space of multiplicative functionals
on A (taken in the w* topology).
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= sup |73 0k
< sup |Te($ aik)| < |3 adi |

Thus in order to apply Corollary 1.2 we need only verify that th,e G”
for some iLl in H; but such an h, exists since otherwise TH"~ = 0,
(TAY"(H”) = 0 and thus TA = 0 by the one-to-oneness of the Fourier-
Stieltjes transformation. Consequently o : h — (Tﬁl)“lr(ﬁﬁl) is multiplica-
tive on the subgroup K = ¢ Y(G") = ﬁ;lf‘l(GA) of H”, and of course
vanishes elsewhere. As we have seen 7, and thus o, is continuous on
H” so that ¢7*{0} is closed and K = ¢~*(G") is open. Therefore K is
an open and closed subgroup of H”, whence H"/K is discrete, and the
dual H, = K+ of H"/K is a compact subgroup of H.

Dual to the continuous homomorphism ¢|K : K— G~ we have a
continuous homomorphism v of G into K~ = H/K* = H|H,, and thus
for b in K and g in G, (g, oh) = (v(g), k) = v*9(h), where @ is again
the translate to the coset 7(g) of Haar measure v on H,. Moreover the
formula

(2.25) (9, oh) = v"(h)

clearly also holds when h ¢ K= Hy, since both sides are then zero.
Combining (2.25) with a(h)z(h,) = t(hh,), or o(hhiY)r(h,) = 7(h), we make
the following computation, with F e L(H"):

Ty = Sf’(h)T/x(dh) = [Py i
Fpeiyah = ||F @, hydg)dh
[, otiiiyg, <hdipdg)

~ \|F@ iy, chydhde)
HF(h)(h hhii)(g, Thyv*@(dh)dhudg)

= \[(\# e, ai)w, hyro@iyia, <hardo)

= SF (h)(R, By (dR)(g, Thy)dg)

= \S(hi* FYv(9))(9, th)(dy) ,

iy

or, setting h = At and g= h,
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(2.26) Tu(F) = p(§ - [SGF) o v]) ;

since L(H")" is dense in C,(H) and both sides of (2.11) are continuous
in f, (2.11) follows. The alternative form (2.12) follows when we make
the obvious notational transfer.

Conversely given H,, v, § and h, and thus S* and I, the right side
of (2.12) clearly defines a norm-decreasing homomorphism of M(G)—
M(H), as the composition of four norm-decreasing homomorphisms. To
see that 7+ 0 we need only verify that (2.11) remain valid for f =
h'e H™; for then

Tu(h') = p@IS(hR') o 71)

while S(hh')e (H/H) if hiv e H}, and then S(Eh)oy = §'e€G". Con-
sequently TAMR) = AGY) = A~y # {0} for an appropriate &', by
(2.02).

But that (2.11) remains valid for f = h'e H” follows from the same
sort of computation as the preceding; with F e L(H") one obtains

[Fanamnai = Tud) = (@, )SGH@)d9)
= {J@ o, bE@o@nuag
= [ ([ [, 10w, o, hyroampmag)aic
= |7@( (@, prsiiyoomude) )i
= (P mgLs Gy o i

whence (Tu)(h') = p(GIS(hR') o v]) for almost all #’. But the second ex-
pression vanishes for A’ in the open complement of h-Hi so that (by
continuity) the first also vanishes there. On the other hand for B in
R H (also open) we have (g[S (ﬁfc’) o v]) continuous as a function of
' since S(hk)o v = o(hh') where ¢ is the continuous homomorphism of
Hi} = (H|H)" — G~ dual to v. Consequently both expressions are con-

tinuous functions of A’ on h~'H} as well, and thus coincide on this open
set.

2.2 REMARK. When the subgroup H, is trivial (i.e. = {h,}) one may
write 2.12 in the more concise form Ty = I'gy; for clearly we have

Ty = hi'gp so that Tp(f) = pllhf) o 7)) = p@(ho7)(fom) and we
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may replace § by g(%ofy)eG“. This situation will of course occur if
each h in H” produces a non-zero functional on TA, i.e. when TH CG™;
for then Hf = K= H".

2.3 REMARK. If A is an ideal of a larger subalgebra A, of M(G)
and A satisfies (2.01) and (2.02) there is the possibility of applying
Theorem 2.1 to certain norm-decreasing homomorphisms T on A,  For
provided TA # {0}, we may apply the result to the pair A and T|A to
obtain T|A = T,|A where T, represents the homomorphism (given by
the right side of (2.12)) of all of M(G) into M(H); consequently (since
A is an ideal in A)) for pe A, ¢ e A,,

Ty Tp=T¢ ) =T+ p) = Topf » Ty = Topt « Tpe

and (T — Ty)* T = 0. Hence Ty — T,y annihilates TA, and we
need only know that T'A has no non-zero annihilators in M(H) (not
TA,) to conclude that Ty = T,u' for all ¢’ in A,. As a particular case

COROLLARY 2.31. Let A satisfy (2.01) and (2.02) and let A, be a
larger subalgebra of M(G) in which A forms an ideal. If T 1is a
norm-decreasing isomorphism of A, onto M(H), then T is determined
as in Theorem 2.1, indeed as in 2.2 since Hy = {h,}.

Since p+*A = 0 implies ;AJAA = 0 while A7(§) #+ {0} for each § in G
by (2.02), A has no non-zero annihilators in A,. Thus since 7T is an
isomorphism, 7A has no non-zero annihilators in TA, = M(H), and
Ty = fLS*I‘gy. But if v denotes Haar measure of H, one clearly has
(ﬁv) * T = Tp so that we must have hy the identity of M(H), hence
H, = {ho}-

2.4. The following example shows how completely wrong Theorem
2.1 is for arbitrary large subalgebras of M(G) in general; it was sug-
gested to the author by K. de Leeuw. Let G be any non-discrete
locally compact abelian group and, for ¢ in M(G), let p= p» + p° be
the Lebesgue decomposition of p into discrete and continuous parts,
i.e., p* is a countable linear combination of point masses (converging in
norm) and p° vanishes on all one point sets. Since the continuous
measures form an ideal and p? * p? is still discrete, g — p* is a norm-
decreasing homomorphism of M(G)— M(G), or indeed of M(G) onto
M(G*(G* = G in the discrete topology); clearly the map is not induced
by any continuous v : G — G

2.5. The restriction that T be norm-decreasing in Theorem 2.1 can
be replaced by apparently weaker conditions in certain cases. The fol-
lowing result has a much simpler proof when A = L\(G).
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THEOREM 2.5. Let A be a subalgebre of M(G) satisfying (2.02)
which 1s spanned by its mon-negative elements and has sufficiently
many of these to determine the mon-negative almost periodic functions,
1.e.,

(2.51) feAG) and p(f) >0 for all £ >0 in A imply f£>0.
If T is any mon-zero homomorphism of A into M(H) which preserves
order (¢t > 0= Ty > 0) then T is norm-decreasing. If A also satisfies
(2.01) then Ty = S*I'y, pe A.

Proof. As in Theorem 2.1 we obtain 7: H™ — G"U {0} with T/l(i[) =
;z(rﬁ). The functional g — Tp(fzo) cannot be zero for then 0 = Tpu(1) =
|| Tpe|| for g2 > 0, whence T'A = 0 since the non-negative elements span
A. For £>0in A, p(thy) = Tu(h,) =0 so that zh, >0 by (2.51), and
thus th, = §,. Consequently for g >0, ||p2]| = p§) = puzhy) = Tpx(hy) =
|| Tpele.

Let 7, denote the linear extension of 7 mapping trigonometric poly-
nomials. If p is a non-negative trigonometric polynomial on H and
¢ >01is in A then p(rp) = Tu(p) > 0, so that 7,p > 0 by (2.51). Thus
7, preserves the order of real valued trigonometric polynomials, and
since 7hy = §,, —1 < p < 1 implies —1 < 7,p < 1. But for any trigono-
metric polynomial p = 37, a,fzi, if p* = Z?ﬂaiﬁ'% then (p + »*)/2 and
(p — p*)/2i are real valued, with values bounded by —||9||~, ||?]||.. Hence
Iz + p%)/2|l« = [IPlle) T2 — 2¥)/2]l = 70 — P¥)/2i]|. = [|P]|, and
therefore ||7,p]| < 2| p]|w-

Consequently 7, extends to a bounded map of A(H) into A(G), which
we may view as a map of C(H*) into C(G*); calling the extension 7,
we have Tu(f) = iz, f), e A, f € C(H*), since this held for trigono-
metric polynomials. Moreover this identity implies 7, (as extended)
preserves order by (2.51), so the adjoint 7y : M(G*) — M(H*) must also
preserve order. As before we conclude from 7,4, = g, that el = |l el
for # >0 in M(G*). Therefore 7,7 maps the point masses on G* into
the unit ball of M(H*), and thus their w* closed convex circled hull
into the same set. Since the hull coincides with the unit ball of
M(G*), |75 |l = llell =1, and, for z in A,

sup [T f)| = ’I§gpﬂlﬂ(fof)!§”shlp [T )] = 122l
o= 1'0 w1

I eo=1

where f varies in A(H). But the norm of 7Tu as a functional on A(H)
coincides with its norm as a measure ([4], [6, §5]), whence || Tu| =
ll¢tll, and T is norm-decreasing.

For the final statement in 2.5 we need only note that since h,=4g,,

¢ At this point the proof for 4 = L; is essentially complete; for T' is clearly norm-
decreasing on simple functions (rather, on the corresponding measures) and these are dense.
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and since our present = coincides with that obtained in the proof of
Theorem 2.1, we may take ﬁl = h} in deriving (2.26), so that b= I{O,
g = g, in (2.12), completing our proof.

It should perhaps be noted that portions of the above proof can be
used to obtain an analogue of Theorem 1.1 in which (1.11) is replaced
by *¢ ;‘,1airﬁi >0if >, ah, > 07’; for clearly our argument shows
this condition implies (1.11).

If the group H has a connected dual we can replace ‘‘norm-de-
creasing’’ in Theorem 2.1 by ‘‘bounded’’.

THEOREM 2.6. Let A be a subalgebra of M(G) satisfying (2.01)
and (2.02), and suppose H™ is connected. If T is any bounded mon-
zero homomorphism of A into M(H), then T 1is nmorm-decreasing; con-
sequently there is a homomorphism v:G— H and a § in G~ for which
Tp =rgp, pe A, In particular if A is a closed subalgebra, all non-
zero homomorphisms of A into M(H) arise in this fashion.’

Proof. As in the proof of Theorem 2.1 we obtain a continuous
map 7:H™ — G U {0} with 'G™ # ¢; further, the linear extension of
7 mapping trigonometric polynomials is bounded by a computation an-
alogous to (2.13), and we may view this as extending to a bounded map
7,: C(H*)— C(G*). Again 77 : M(G*) — M(H*) is multiplicative (as in
1.1), for k) = p(toh) = p(th), or (tFp)~ = frot, fre M(G¥).

Now (for any locally compact abelian G) if we define fie M(G*)
corresponding to pe M(G) by setting fi(f) = SG flo)udg), fe C(G*) (so
that fi represents the restriction of the integral corresponding to g to
almost periodic functions) then p—fi is an isometric isomorphism of M(G)
into M (G*) ([4], or [6, §5]), and, as functions on the set G~, ﬁ: fr. Moreover
as a consequence of a theorem of Bochner-Schoenberg-Eberlein [4], M(G)™
consists of just those g in M(G*) with /i continuous on the space G™.
Thus, for ¢ in M(G), since 7 is continuous and (z7fi)" = ﬁo T=/florT,
we have (7;fI)" the transform of some measure oy in M(H), i.e.,
ot = (op)~. Clearly ¢ is a multiplicative map of M(G) into M(H).
Since 77'G” # ¢ for any % therein we have Iayg(}i)l = ]f;kﬂg(hA)] =
| ﬁg(‘cﬁ)] = ]yg(rﬁ)| =1 for all g in G, whence oy, + 0. Consequently
if E denotes the set of all point masses on G,cE forms a bounded
non-zero subgroup of M(H) so that (H~ being connected) by a theorem
of Beurling and Helson [3, §5] ¢F consists of unimodular multiples of
point masses on H. Thus E maps into the unit ball of M(H) under o,

5 Such homomorphisms being automatically bounded since A is a Banach algebra and
M(H) is semisimple.
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or equivalently E~ maps into the unit ball of M(H*) under zF. But
E~ is w* dense in the set of point masses on G*, and thus 7 carries
all point masses on G* into the unit ball of M(H*). As in the proof
of Theorem 2.5 this implies ||Tu|| <||¢|l, pe A. The final assertions
of 2.6 now follow from 2.1 and 2.2, since the connectedness of H”™
precludes the existence of any non-trivial compact subgroup H, of H.
A consequence of our proof is

COROLLARY 2.61. Let H” be conmected, and let z:H™ — G~ U {0}
be any non-zero continuous map for which

i aﬂii”w < M'

i=1

S i

Jor all trigonometric polynomials Zzi.lafci on H. Then M can be re-
placed by 1, TH CG", and h — (ch)"'th is a homomorphism.®

For the map again extends to a bounded map 7, of C(H*) into
C(G*) with ||7y]] = |75l <1 so that M can be replaced by 1. Since a
translate of 7-'G” provides us with an open subgroup of H™ by 1.1,
T7'G" = H™ and we need only apply 1.3.

2.7. A result of Leibenson [9], improved by Kahane [8], can be
stated as follows: the only maps 7 of the circle group 7" into itself for
which fo 7 has an absolutely convergent series whenever f does are of
the form 7(t) = ¢, - t*, where t,e T* and n is an integer. The following
corollary of 2.6 yields a stronger assertion as a special case (G” =
H™ =T'' A = L(G)); the result is of course essentially a dual formula-
tion of 2.6.

COROLLARY 2.71. Let A be a closed subalgebra of M(G) satisfying
(2.01) and (2.02), and let H™ be connected.” Then any map T of H™
into G~ for which

fe A" implies fore M(H)"
must be of the form
e(h) = § - a(h)

where € G and o is a continuous homomorphism of H” into G™.

6 Note that continuity cannot be dropped from our hypothesis: for a map of R™ which
merely interchanges two elements produces a bounded map of trigonometric polynomials
on R.

7 In this and our subsequent results involving a connected dual (viz: parts of 3.5, 4.2,
4.3, and 5.1) (2.01) can always be replaced by the requirement that || p||e << Ksup {| u(p)|:
w€A,||nt] =1} for all trigonometric polynomials p.
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Proof. Let Ty be that element of M(H) for which (Tu)” = ftor,
peA. Clearly T is an algebraic homomorphism of A into M(H), which
must be bounded since A is a Banach algebra and M(H) is semisimple.
Moreover T is non-zero, since otherwise A"(rH™) = 0, contradicting
(2.02). Thus 2.6 applies to yield a continuous homomorphism v:G — H
and a ¢ in G~ with Ty = I'gy, pe A, whence as before

k) = (T (h) = Tuth) = Fiph) = wGth o v)) = f(Gh o 1)

for all g in A, b in H”. Consequently (k) = §(h o) = §o(h) where
0:H" — G is the continuous homomorphism dual to v.

It should be noted that we cannot obtain the type of boundedness
required in 2.6 by simply assuming A is a Banach algebra under some
norm.

An analogous result, in which connectedness is replaced by more
stringent requirements on 7, is a consequence of 2.5 and Bochner’s
theorem. We shall omit its most general statement, taking our algebra
A to be L,(G) so that no specific hypotheses concerning the algebra
appear.

COROLLARY. 2.72. Let T be a map of H™ into G~ for which ¢ ot
is positive definite on H™ whenever @ 1is a positive definite element
of C(G"). Then t 1s a continuous (but mot mecessarily open) homo-
morphism.

Proof. Since the Fourier-Stieltjes transform of a measure is a
linear combination of four positive definite functions we may define T
as before for ¢ in A = L(G) to obtain a non-zero homomorphism of
L(G) into M(H). Moreover, p >0, pe L(G) imply fr is a positive de-
finite element of C,(G"), and thus (7Tp)” = frotr is positive definite.
Thus (by Bochner’s theorem again) Tyt >0, and we may apply 2.5 to
obtain Tyt = S*I'p, pe L(G), in the notation of Theorem 2.1. But for
h ¢ HE we have L(G) (ch) = (TL(G)) (k) = (S*I"L(@))"(h) = 0; hence
from tH CG” we conclude that Hi = H™ and H, is trivial, Tp = 1"u
and therefore T/J(ﬁ) = y(rﬁ) = y(ﬁ o), so that 7 appears as the dual
to v, completing our proof.

The same proof (except for the final step) applies if one takes ¢
only to be a non-trivial map of H” into G"U {0} (i.e., with 77'G" +# ¢);
one obtains the fact that Ty = S*I'p, pe L(G), and concludes that 7
is a continuous homomorphism on the open subgroup z-'G"~ of H” (in
order to consider @ o 7 as defined on all of H™ one should include 0 in
the domain of @, with ¢(0) = 0).

2.8. It is tempting to try the same approach in the non-commuta-
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tive situation, replacing characters by finite dimensional matricial rep-
resentations; apparently only in case H is compact can we obtain any
congequences without a deeper investigation.

For any map ¢ of functions and matrix U = (u;;) of functions let
oU represent the matrix (g(u,,)). Then if U is any bounded continuous
finite dimensional matricial representation of H, v — v(U) is a bounded
representation of M(H). Moreover if T : L,(G)— M(H) is any bounded
homomorphism, then ¢ — Tp(U) is a bounded representation of L,(G)
and, as is well known, must be of the form p— ;1((7), where U is a
continuous bounded matricial representation® of G. Viewing C(H) as a
subspace of M(H)*, the adjoint 7* maps C(H) into L,(G)* = L.(G),
and we may clearly identify U and T*U = (T*uy,;) as identical matrices
of elements of L.(G). Consequently we can take T™*u,, as a continuous
function, indeed an almost periodic function, on G.

Now if H is compact the Peter-Weyl theorem assures us that we
can view T* as mapping C(H) into 2(G); moreover this map 7 is clear-
ly norm-decreasing if 7' is. Each g in M(G) provides us with a func-
tional f& on 2A(G), and since 7*:2A(G)* — M(H) is norm-decreasing,
7Bl < 1 pll < |l so that o:pp—7*f is a norm-decreasing map of
M(G) into M(H). But ¢ is automatically multiplicative: for

o(px )U) = (% 1)~ (U) = px p(U) = i U)p(T)
= o U)oU) = (op» o' )U)

for all U, so that o(y* ') = a(p) * a(¢) by the Peter-Weyl theorem.
Thus E = {opy,:9€ G} forms a multiplicative group in the unit ball of
M(H).

Unfortunately the results of [6] do not determine all groups in the
ball of M(H) in the non-abelian case, but only those consisting of non-
negative measures. FE will be such a group if T (and therefore T%,
7, 7% and o) preserves order; moreover we then have p— Tpy(1) a non-
zero representation of L,(G) if T # 0 (otherwise 0 = Tu(l) = || Tx|| for
all ¢ >0, hence for all ). Since g — Tp(l) also preserves order,
T*1 =1. As a consequence 7T is automatically norm-decreasing (cf.
footnote 4), and E # {0} since oy,(1) = p(r1) = p(T*1) = 1. We thus
have E a set of translates of Haar measure of a normal subgroup H,
of H, and can write as before gy, = V"9, v(g9) e H|/H,.

But the map g — I, of G into A(G)* (taken in the w* topology) is
continuous, so that g — t*f;, = v*@ is w* continuous, and one can easily
conclude that v is a continuous homomorphism of G into H/H, More-
over since g — f, is w* continuous we can represent [t as the w* con-

vergent vector valued integral Sﬁqy(dg), pre M(G). Applying % we

8 That is, a homomorphism into a group of (possibly singular) matrices.
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obtain o*71 = [e*7,pdg) = | pdg) so that T*(s) = [ =
USfov),fe C(H), in our earlier notation. Finally we have z*u = Ty,
pre L(G): for v*(U) = w(zU) = y(T*U) = T(U), all U. Hence we
may write T = S*I".

Actually if T is any non-zero norm-decreasing homomorphism what
we really need to know is that some one-dimensional representation of
H induces a non-zero representation of L,(G). For then we have multi-
plicative characters x' and y of H and G respectively for which T(y’') =
2(0); consequently ¥ Ty'u() = Ty 'u() = x*i(x) = (1) and the norm-
decreasing map T,:p— x'Tyx'p¢ has TF1l =1, whence it is easily seen:
to preserve order (as in 1.1). Thus Tu = (') *S*[yy.

THEOREM 2.9. Let G be any locally compact group, H any compact
group. Then any non-zero order-preserving homomorphism T : L(G) —
M(H) s of the form S*I'. If T is merely norm-decreasing and T*y'
18 a non-zero element of L.(G) for some multiplicative character }' of
H, then Tp = x"S*["yp, where x",x are multiplicative characters of
H and G respectively; indeed y" = (x')', x = T*Y.

3. Isomorphisms. An almost immediate consequence of Corollary
2.31 is the fact that isometric isomorphisms between M(G) and M(H)
arise in the same simple fashion as in the case of L, algebras. Actually
we have a stronger result.

THEOREM 3.1. Let G and H be locally compact abelian groups,
and let A be a subalgebra of M(G) containing L,(G), B a similar sub-
algebra of M(H). Then for any isomorphism T of A onto B which is
norm-decreasing on L,(G) there is an isomorphism v of G onto H and
a character § of G for which

Ti(f) = t9(fo), feCyH), peA.

Thus T is an isometry and T(G) = L,(H).

Before proceeding to the proof of Theorem 3.1 we might note that
L,(G) can be replaced in our hypothesis by any subalgebra of M(G)
satisfying (2.01) and (2.02) which is an ideal in A.

Proof of Theorem 3.1. Applying Theorem 2.1 to the restriction of
T to L,(G) we obtain characters §, and h,, and operators S* and I" for
which Ty = h,S*I'g,p, e L(G). Consider the norm-decreasing isomor-
phism T, = h7*T§;* of A, = §,A onto B, = h{'B. A, contains L,(G), and
B, contains L,(H), while T, =S*I"'p for g in L(G). Evidently
v* Ty = Top, e L(G), where ¥ is Haar measure on H,. Since ¥ is an
idempotent, ¢t — U * Typt is a homomorphism of A, into M(H) which is



HOMOMORPHISMS OF CERTAIN ALGEBRAS OF MEASURES 181

one-to-one on L,(G). Consequently it is one-to-one on all of A, for
U* Tope = 0 implies U+ Ty(pe * pf') = 0, ¢ € L(G), whence gt * ¢/ = 0 by the
one-to-oneness on L,(G), and ¢ =0. But if H,=+ {h} we have H{ a
proper open and closed subgroup of H~ so that we can find a v in
L(H), v # 0, with {(H#) =0, by the regularity of L,(H). Since b is
the characteristic function of H, (U *v)” = UH = 0, and P*y = 0; on the
other hand v = T\p, re A, o + 0, so that ¥ * v = 0 by the one-to-oneness
of £— o= Ty, and we conclude that H, = {h,}. Thus 7 appears as a
continuous homomorphism of G into H, and we may now write Tyt =
Iy, pre LG).

As a consequence’ we have (T,) (h) = (') (h) = p(h o 7) = fi(h o),
pe L(G), with hovyeG”, so Tt — (Toy)”(ﬁ) is a non-zero functional on
T.L\(G). Repeating a previous computation, we have, for p in A, and
¢ in L(G)

Topex Topt = Topex p) = D(pex pr) = Fpes Iyt = T Tyt

L(G) being an ideal, so that (T,n — I'p) * T,L(G) = 0. Thus for each
h, (Tott — I'p)"(h) = 0 whence Tyt = I'pt, pre A,. Consequently Tu(f) =
WG f) = Tgphf) = gpho v - fov) = t@u(fo 7)) for g in A, and it
remains to show v is an isomorphism of G onto H.

First o(G) is dense in H; for otherwise we have a non-zero f in
C(H) with fovy =0, while v(f)+#0 for some v in L(H), v = T,
whence 0 = u(f) = Tou(f) = (f o v) = 0. Moreover v is one-to-one since
if 7(9.) = 7(gs) then 2= 1, — 11, has I'pe =0 (for p(f o v) = f(¥(9) —
f(v(g.)) = 0). But then for p' in L,(G) we have p* p'e L(G) and
Topep)y=I(pxp)=TpuxI't =0 whenece pxp/ =0 for all ¢ in
L(G), and clearly ¢t =0, g, = ¢,. Indeed the argument shows /" is one-
to-one on M(G).

Consequently it is sufficient to show o' is continuous on v(G); for
then ¢ is a homeomorphism, ¥(G) is therefore locally compact and, be-
ing dense in H, must coincide with H as is well known. Suppose then
that the net hs = ¥(gs) — hy = %(9,). Clearly I'tt,, = v,,. For g in A,
with Tyt in L(H) we have vy, xTypeL(H)CTA, =TA,; -clearly
T(pg* 1) = vy x 't = v, * Topt 80 that p, * pre A, since I' is one-to-one
on M(G), and further Ty(y,, * 1) = vu, * Topt. But || To(pty, * t)— Toptl| =
[[vng * Topt — Topt]| — 0, Topt being in L,(H), and since T';'|L,(H) is auto-
matically continuous, ||, * ¢t — ¢t|| — 0. As a consequence {gs: & > &} is
contained in some compact K C G for some J,; otherwise a cofinal subnet
tends to infinity and Iim | ey * £ — ]l = 2]|t]| for each such p. If g
is any cluster point of {gs} in K then, for each §, p, * p(g) is a cluster

9 This follows as in the final part of the proof of 2.1.
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point of {,, *(9)}, which of course converges to («(§) since
[ty *tt — ]l > 0.  Thus g, +xp=p and Typ=TITp="7I(*p) =
Vyepy ¥ T = Yy, ¥ Topt; since T,p is an arbitrary element of L,(H) we
clearly have v(9) = h, and g = g,. Consequently {g;} converges to g, by
the compactness of K, and v~! is continuous.

Finally we have I'L,(G) = L,(H) since strong continuity of the map
g — t, * 1t is equivalent to strong continuity of A — v, * I't, and L, con-
sists of just those measures for which strong continuity holds, by a
theorem of Plessner. Consequently TL,(G) = L(H) and our proof is
complete.

Applying 2.5 and 2.6 to T|L,(G), we obtain

COROLLARY 3.11. Let T be any isomorphism of A onto B for which
p>0,peL(G) tmply Ty >0. Then T is an isometry ' induced by
an isomorphism v of G onto H.

COROLLARY 3.12. If H™ 1is connected any isomorphism T of A
onto B is on 1isometry determined as in 3.1.

THEOREM 3.2. When G and H are arbitrary compact groups, the
conclusions drawn in Theorem 3.1 and Corollary 3.11 continue to hold.

Proof. Consider first the situation indicated by 3.1, and let o, vo
be the Haar measures on G and H. Then 7z is a non-zero idempotent
in the unit ball of M(H), and thus, by the result (2) cited in the in-
troduction, of the form yx,v where v is Haar measure of a subgroup of
H, and yx, is a multiplicative character of this subgroup.

But A=’ = Ky, K the complex field, so B * (yw) = K(ywv). Tak-
ing M(H) = C(H)* in the w* topology, the linear map v’ — v’ * (y,v) of
M(H) into itself is of course continuous, and clearly is of norm < 1.
In particular the unit ball of B maps into D - (yw), where D is the
unit disc {z:]|2] <1} in K. Since each v, is w* adherent to the unit
ball of L,(H)C B, we obtain v, * (y;v) € D(y,v) for each h in H, and the
carrier of v must be translation invariant. Consequently v = 1* and
Y. appears as a character of the full group H.

Thus ¢t — Tp(x') is a non-trivial one-dimensional representation of
L(G):for T = x’(17") = 1. As in 2.8 we obtain a multiplicative
character y of G for which Ty(xi*) = p(y); since p(x) =1, x =1, and
by 2.9 we have Ty = x.S*I'p, pre L(G). Setting Typ = y;'Ty we obtain
an isomorphism of A onto B, = yi'B, with T,p = S*I'y, pre L(G), and,
in particular, T, = 3'Tp’ = .

As in 3.1, v must be one-to-one; otherwise we have a g+ 0 in
M(G) with I'tt = 0 so that Ty(px ') = S*M(pex ') = S*'pu=S*r'y =0



HOMOMORPHISMS OF CERTAIN ALGEBRAS OF MEASURES 183

for all ¢/ in L(G), and® p* L(G) = 0, £ = 0. Moreover if the compact
image ¥(G) of G in H/H, were not all of H/H, we should have an f in
C(H|H,) with f+ 0,f>0,fov =0; thus if o denotes the canonical
map of H onto H/H,,

0 < V(fop)=Ty(fop)=S*Tt(fop)=TL(f)=p(for)=0;

consequently v maps G onto H/H, and therefore is a homeomorphism
and isomorphism between these groups. But now [I” appears as an
isometry mapping M(G) onto M(H|/H,), and since S* is easily seen to
be an isometry, T, = T,|L(G) = S*I'| L(G) is isometric. This combines
with Ty =1 to show 7, and T;! preserve order: for

>0 px = ||pli &= Ty« = || gV = || Thpe|v°
S TR

Consequently T; maps {¢:0 < ¢ < '} onto {v:0=<v =<1, or, more
generally, the algebra L.(G)f = {f - ¢ f € L(G)} onto L.(H)-1'. As
an isometry T, thus maps closure onto closure, or L,(G) onto L(H),
and we are forced to conclude that H, is trivial since its Haar measure
acts as an identity on T.L(G) = L,(H). Hence v is an isomorphism of
G onto H, and T, =TIp. As before we conclude that T,u = Ip,
pe A: for with (f e L(G), Topt * Topt! = T ) =TI'(px )y =T'px 'y =
r'px Ty and (Tope — I'p) » L(H) = 0. Thus we have Ty = y,.I'pe = I'yp,
as in 2.2, or Tu(f) = p(x - (f o)), proving the analogue of 3.1. The
analogue of 3.11 follows since our T must then be norm-decreasing on
L(G) as in 2.8.

3.3. Returning to the abelian case, the results of Sreider [14] for
G = R indicate that G~ forms a smaller part of the maximal ideal
space of M(G) than one might initially presume. As one would suspect
from the one-to-one nature of the Fourier-Stieltjes transformation
however, G~ would seem still to occupy a rather dominant réle in the
Gelfand representation of M(G); this view is certainly reinforced by 3.1
since it shows the norm-decreasing automorphisms of M(G) can only
induce self-homeomorphisms of the maximal ideal space which leave G~
invariant, and indeed preserve its algebraic structure.

3.4. A variant of the proof of Theorem 3.1 yields the form of all
norm-decreasing isomorphisms of L,(G) onto a closed subalgebra of
L(H); when G~ is connected this yields the answer to the question:
what (proper, closed) subalgebras isomorphic to L,(G) can L,(G) contain?
Clearly if G, is a proper open subgroup isomorphic to G then L(G)

0 If p*Ly(G) =0 then for f, F€C(G) we have 0= SSf(glgz)p(dgl)F(g;‘)ﬁ(dgz) =
§ f* F'(g)u(dg,), whence p = 0 since such convolutions f* F are dense in C(G).
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provides such a subalgebra; when G~ is connected these are the only
candidates.”

THEOREM 3.5. Let A be a closed ideal in M(G) satisfying (2.01)
and (2.02) and let T be an isomorphism of A onto a closed subalgebra
B of L(H). If T is norm-decreasing then Ty = hS*I'gp (as in 2.1)
where v 1s an isomorphism of G onto an open subgroup of H|H, In
particular if H™ is connected any isomorphism of A onto B is of the
form p— I'gp, where v maps G isomorphically onto an open subgroup
of H.

Proof. By 2.6 the second assertion follows from the first. By 2.1
we have Ty = iLS*F{m; as before we can eliminate §, I%, and may as
well assume Ty = S*I'p. Since A is an ideal in M(G) and g+ A =10
implies ¢ = 0 by (2.02), we conclude exactly as in 3.1 that v is one-to-
one.

Moreover if y~* isn’t continuous on ¥(G)C H/H,, for some neighbor-
hood U of g, we have y(VH,)NU’= ¢ for each neighborhood V of
hy; let g, e v (VH)NU'" and let v(g,) = h,H, where h,e V. Since

T(pe~ thy,) = S*(pxpr,)) = S*Ip " = S*pwy, = Tpxy,

(where v¥? is the translate to v(g) of Haar measure on H, as before)
we conclude from the strong convergence of Ty +y, to Ty and the
automatic continuity of T~ (B being closed) that ||, — p|| —0.
Noting that p* g, = ¢ for all ¢ in A implies ¢ =g, by (2.02), our
previous argument yields the fact that g, — g,, contradicting g¢,e U’.
Thus v is a (topological) isomorphism, (&) is locally compact and there-
fore closed, and we need only show 7(G) open to complete our proof.

Let H, be the inverse image of v(G) under the canonical homomor-
phism of H onto H|/H,, a closed subgroup of H. If fe Cy(H) vanishes
on H, we clearly have S*I'u(f) = 0 so that the regular Borel measure
S*I'y vanishes on all Borel subsets of the complement of H,. Since
S*I'ye is a non-zero element of L,(H) for some p, H, clearly contains
some compact set C of positive Haar measure, and thus must be open®;
hence ¥(G) is open and our proof complete.

11 It is of course not the answer otherwise. For example let A, be the algebra of
integrable f on the circle T with f(etf) = f(ei(0+22/n)); then setting g(¢) = f(t¥/?) yields a
well defined element g of Ly(T}), and f— g is easily seen to be an isomorphism of A, with
Ly(TY).

12 For we can find a Baire subset £ of H containing G with E\C of (Haar) measure
zero; then the Borel measurable function h — ¢r(R)er= R~y — ¢o(h)po~Yh~1k') (for A’
fixed, ¢ the characteristic function) differs from zero only on a subset of (E\C)(h'E\R'C)
so that ¢p * er~XR/) = Sgao(h)(pa—l(h‘lh')dh. As usual the fact that ¢z *¢r~-1#0 on a
neighborhood U of hy yields for h/ € U a h in C with k' € hC-1 < H; whence U H, and
Hy is open.
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4. Some other isomorphisms. The réle of condition (2.02) in §2
was confined to providing us with a map 7 of character groups dual to
a given homomorphism of our algebra A. In certain situations such a
7 arises naturally in the absence of (2.02) and provided (2.01) holds, our
approach may again be applicable. For example suppose A is a closed
subalgebra of M(G) satisfying (2.01) for which G~ forms a subspace of
the maximal ideal space 9 of A; further suppose G~ is connected.
Then any endomorphism 7T of A for which the dual map 7: I — M
sends G~ into itself necessarily has 7(9) = g, - 9(9), € G~, where ¢ is
an endomorphism of G~. For T is necessarily bounded so that ¢ in-
duces a bounded map of A(G) into itself (by an analogue of (2.13), using
(2.01)), and Corollary 2.61 applies. Consequently T is itself determined
as before; similarly if G” is not connected but 7 is also norm-decreas-
ing, or order-preserving while (2.51) obtains, we can apply Corollary
1.8 or the remark following 2.5 to the same end.

Exactly such a situation arises in connection with the Arens-Singer
theory of generalized analytic functions [1], in particular in Arens’
subsequent generalization of the conformal mappings of the dise [2].
There (among other things) Arens is interested in the automorphisms®
of a certain closed subalgebra A, of L,(G), G locally compact abelian;
one has a fixed closed subset G. of G satisfying [1, §2]

(4.01) G, is a subsemigroup of G, i.e., x,yeG, imply xyeG,,

(4.02) the interior of G. is dense in G. and generates G;

A, = L(G,) is then the set of all elements of L,(G) vanishing off G..
As Arens and Singer showed, L,(G.) has G~ as the Silov boundary of
its maximal ideal space; consequently (by a well known property of the
Silov boundary) any automorphism 7' of L(G,) induces a self-homeomor-
phism 7 of its maximal ideal space which maps G~ onto itself. More-
over the fact that G, generates G shows (2.01) and (2.51) hold for L,(G.).
For the closure G; of G, in G* is a generating subsemigroup of G¥,
while any closed subsemigroup of a compact group is a subgroup [5, 11].
Thus G; = G*, and G,, as well as its interior, is dense in G*; since
point masses concentrated at interior points can clearly be approximated
by elements of the unit ball of L,(G,) in the weak topology defined by
almost periodic functions, we obtain (2.01) and (2.51).

Consequently if G” is connected we have 7(9) = g, - 0(9), € G", by
2.61, where ¢ is an automorphism of G~. Writing elements of L,(G)
as functions rather than measures, we thus have (7'f)(9) = F(6:0(9))
=(0.1)"(0(9)) = E[(9.f) o ¥17(9), where ¥~ is the automorphism of G dual
to g, and k > 0 compensates for the change in Haar measure produced by
v (of course k = 1if G is discrete). Clearly Tf=k(g.f) o v says vG,. =G,

13 These are not Arens’ full set of generalized conformal mappings, which correspond
to the automorphisms of his algebra Aj.



186 IRVING GLICKSBERG

and we have additional information about z. Thus in the classical case
of the Arens-Singer theory (where G is the group Z of integers, G.
the non-negative integers, and L,(G.)” may be viewed" as the algebra
of analytic functions with absolutely convergent Taylor series on the
disc |2z] < 1 (the maximal ideal space of L,(G,))) v must be the identity,
so that 7 reduces to a rotation on |z| =1, hence® is a rotation of
|2z] < 1. In other words the only self-homeomorphisms t of the disc
which (via F'— Fot) map the set of analytic functions with absolutely
convergent series on the disc onto itself are rotations.

Again in the case G = Z x Z, G, = {(m, n): m, n > 0}, where L,(G.)
can be viewed as the algebra of analytic functions of two complex
variables with power series absolutely convergent on |z| <1, |w]| =1,
there are clearly only two candidates for o ((m,n)— (n, m) and the
identity), and thus the general automorphism is of the form

S W" — S A W
or
>0 W™ — S WA 2

where ¢ and d are fixed unimodular constants; in other words each
automorphism is induced by separate rotations of each disc |2] <1,
|w| <1, plus a possible interchange of variables. Clearly this extends
to n complex variables.

Generalizing our setting slightly we have

THEOREM 4.1. Let G and H be locally compact abelian groups with
closed subsemigroups G. and H, satisfying (4.02), and let L(G.),
L(H,) be defined as above. Then if either group has a connected dual
an isomorphism T of L,(G,) onto L,(H,) is an isometry of the form
Tf = k(g f) o v, where k is a positive constant and v an isomorphism of
H onto G with YH, = G.. Without connectedness the same applies to
order-preserving or norm-decreasing isomorphisms.

4.2. Clearly most of what we have said applies equally well to any

closed algebra satisfying (2.01) for which G~ yields the Silov boundary.
And any closed subalgebra A of L(G), with A" a translation invariant

14 More precisely Li(G+)" is the set of restrictions to |2| =1 of these functions
(since ~ still is the Fourier transformation and not the full Gelfand representation, cf. {10,
p. 72)).

16 For r is analytic as the function representing the characteristic function of {1}
under the full Gelfand representation. Alternatively we could note that knowledge of = on
the Silov boundary determines r among all automorphism-inducing self-homeomorphisms of
M, since here rotation of the full disc is clearly such a homeomorphism it coincides witk
¢ on the full disc.
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set of functions on G~ which separate the elements of G"U {0}, has G~
the Silov boundary 8 of its maximal ideal space. For G~ forms a sub-
space of the maximal ideal space (cf. footnote 3), while if p— g is
the Gelfand representation of A4, |||l = lim [[p#™ " = || &]l.. = | /()]
for some § in G~, for each p in A, and 6 C G~. But since A" is transla-
tion invariant we clearly have & a translation invariant subset of G~,
and 8 = G~ (this is precisely the argument of [1]).
Consequently we obtain as before

THEOREM 4.3. Let A be a closed subalgebra of L(G) which is closed
under multiplication by elements of G~, B a similar subalgebra of
L(H), and suppose A satisfies (2.01) while B merely has B~ a separat-
ing set of functions on H"U{0}. Then if H™ 4s connected any iso-
morphism T of A onto B is an isometry of the form Tp = I'gu (nota-
tion as in 2.1), where v 1s an isomorphism of G onto H. Without
connectedness the same applies to norm-decreasing (or, if A satisfies
2.51, order-preserving) isomorphisms.

Here v is the isomorphism dual to the isomorphism ¢ we obtain
from 2.61, etc., rather than its inverse, which is the v of 4.1.

5. When G is discrete a general theorem of Silov [13] shows that
Ly(G) is the direct sum of a pair of ideals if and only if G~ is discon-
nected. When G~ is connected L,(G) may still be the vector space
direct sum of a closed ideal and a closed subalgebra, and Theorem 2.6
then reveals the exact situation.

THEQREM 5.1. Let G™ be connected, and L(G) = AP I where A is
o (non-zero) closed subalgebra and I a (non-zero) closed ideal. Then G
is the direct product of a discrete subgroup G, and an open subgroup
G, for which A= L,(G,) and I= {p: pe L(G), [(§,Gi) =0}, where §,€ G;.
Conversely any such decomposition of G and character §, orthogonal to
G, yields a decomposition of L(G) of the type described.

Proof. Let T be the projection of L(G) onto A, a nonzero homomor-
phism. By 2.6, Ty = I'g,t where I" is induced by a continuous endo-
morphism v of G. Let ¢ be the endomorphism of G~ dual to v, so that
gov=a(g)and Tp(g) = (3.9 7)) = 9,0(9)). Since T*= T, ((§,0(9)) =
T*§) = Ti§0()) = (U§:0(6:0(9)).  Consequently o(§) = o(§:0(3)) =
o(9)o(o(9)) whence (setting § = 9 9o = 6(9:) = g0y and coo =o.
Dually vov = v, and thus the algebraic subgroup G, = ¥(G) of G, on
which v acts as an identity map, is closed (for v(g;) — g implies ¥(7(gs)) =
7(g;) — v(g) and — ¢ whence g = v(9)eG,). Moreover the fact that
g, = 0107 says §,€ Gy

But G, is open as well. For /"¢ is a non-zero element of L,(G) for
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some £ in L(G), while I"'ti(f) = p(fov) = 0 for f e C(G) vanishing on
G, = v(G), so that the regular Borel measure 7"yt vanishes on all Borel
sets in the complement of G,; thus G, contains some compact subset C
of positive Haar measure, and must be open (cf. footnote 12).

Set G, = {gv(9)~*: g € G}, clearly an algebraic subgroup of G. Then
g = (g7(g9)™") - ¥(g) vields a direct product decomposition of G, G = G,QR G,
for g e G,NG, implies g = ¢'v(9")" = v(g) = W(g")1(9')* = g,. Since G, is
open, G, is clearly discrete, and evidently v is the projection of G onto
&, corresponding to our decomposition.

Let g% be the restriction of the measure g in L,(G) to ¢.G,, so
that ¢ = Zglegl #9% and

rpn) = mfon =5\ sa@ds), feCG).

1e Gl 916y

Since
ot x PO f) = Sf (97'9)p"(dg) = L S er9)dg)

and g7'g = v(g) for geg,G, we have I'pt = 35 cq Moyt * 9%, But this
clearly implies /”, and therefore 7, maps L,(G) into L,(G,); indeed it
shows I' and (since ¢, € G3-) T leave elements of L(G,) fixed so that A =
TL(G) = L(G,). On the other hand I, being the kernel of T, consists
of just those ¢ in L(G) with I'g,pt = 0, i.e. with f4(§,0(9)) =0,§eG".
Thus g el if and only if f(¢,0(G™)) =0 or f(§,Gi-) = 0 since o, as the
dual to the projection v of ‘G, X G, onto G,, is the projection of G~ =
G+ @ G- onto Gi.

Conversely given G =G, ® G, §:€ G+ one need only set Ty =
Dioea st * (0:41%) to obtain a projection of L,(G) onto L(G,); writing
d'g, (with ¢ e Gy, §,eGi) as the generic element of G” an easy com-
putation shows Tu(g:9;) = (9,94 so that T is clearly multiplicative and
I, as described, is its kernel.

If G is disconnected our present tools can only be applied to those
decompositions for which || 7T|| = 1 (that other cases occur can be seen
from the results of [12] for G the circle group); one can then obtain
an analogous result, somewhat complicated by the fact that v appears
as a2 homomorphism of G into G/G,, G, compact, and indeed the decom-
position of L, arises from a decomposition of G/G,, G/G, = G,/G, R G./G,,
and A appears as S*L(G,/G,).

6. Some reformulations. When G and H are compact abelian
groups Corollary 1.3 has an interesting reformulation; our final section

will be devoted to this result and some analogues.

THEOREM 6.1. Let G and H be compact abelian groups and let 1
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be any norm-decreasing linear map of the Banach space C(H) into
C(G) for which TH™CG”. Then there is a homomorphism v of G into
H for which Tf = (TIZO) - fov,fe C(H). In particular if Tﬁo =0,
then T is a Banach algebra homomorphism when C(G) and C(H) are
equipped with ordinary multiplication.

Further the range of T 1is dense iff v s one-to-one, and then
TH” =G~ and T is onto, while T is an isometry iff v(G) = H.

Although we could obtain a proof by noting that 7 is merely the
linear extension of 7 = T|H” we obtain in the proof of Theorem 1.1,
an appeal to Corollary 1.3 is more direct. Clearly 7 satisfies the hypo-
thesis of 1.3, and thus o h— (Tﬁo)'lrﬁ is a homomorphism of H™ into
G”. Since H” and G~ are discrete, ang o thus continuous, we have a
continuous dual homomorphism v : (g, o(h)) = (v(g), 7&). Thus

A

(Sad)o@) = (Zaoh)o) = @ ch)) (TS adio),

or Té]l a,ﬁi = z’l%o[(izzl ani) ° V:I . |

Since trigonometric polynomials are dense T'f = th, - (fow),feC(H).

For the final statements, we clearly need only consider the case
Tibo = §,. Note that if v is not one-to-one then Tf = fov says the
range of T consists of functions constant on the cosets of the non-
trivial kernel of v, and thus the range cannot be dense in C(G). On
the other hand if v is one-to-one, then (by compactness) it is an iso-
morphism of G with a subgroup v(G) of H. Thus for any character y
of v(G) we have a character § of G for which yov = ¢, and since y =
i |%(G) for some h in H” we obtain Aoy = yov = §, whence G* = TH".
Further if F e C(G) then any continuous extension f of Foy~*e C(v(G))
to all of H (available by Urysohn’s lemma) yields fov = F, and T is
onto. Lastly, if v(G) is proper we have an non-zero f € C(H) vanish-
ing on ¥(G) so that Tf = fov =0, and 7 is not even one-to-one, while
if ¥(G) = H then T is clearly an isometry.

In one case specific mention of characiers as such can be eliminated,
vielding the weaker result: if T is a linear norm-decreasing one-to-one
map of C(H) into C(G) taking the positive definite functions in the ball
of C(H), P(H), onto P,(G), then f —»(Tﬁo)‘le is multiplicative. For
with one-to-oneness the set of extreme points H™ U {0} of Py(H) maps
onto those of P(G), G"U {0}.

In this form we have an indication that a similar result can be
obtained for the L, algebras of locally compact abelian groups.

THEOREM 6.2. Let G and H be locally compact abelian groups and
P(G), P(H) be the integrable positive definite functions. If T is a
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linear isometry of the Bamnach space L(G) onto L(H) with TP(G)=
P(H) then T is an algebra isomorphism.

Before proceeding to a proof of 6.2 we should perhaps note an
abstract version. Recall that an extreme positive (extendable) func-
tional on a commutative Banach * algebra is a * preserving multiplica-
tive functional. Then

THEOREM 6.3. Let A and B be commutative Banach * algebras
with (without) identities, and suppose B is semisimple and symmetric.
Let T be a linear isometry of the Banach space A into B for which
the adjoint map T* takes the positive (extendable) functionals on B
onto those on A. Then T is a * isomorphism of the algebras A into B.

Proof. Let P(A), P(B) be the set of positive (extendable) functionals
of norm 1 on A, B. We know T'*, being an isometry, maps P(4) onto
P(B). Since it is one-to-one T* must map the set P(A)* of extreme
points of P(A) onto P(B)°. But these sets consist of * preserving multi-
plicative functionals, and since each multiplicative functional on B is *
preserving by hypothesis, and thus an extreme positive (extendable)
functional, T'* provides us with a map of 9M,, the maximal ideal space
of B, into M,. Consequently (with = now the Gelfand representation),
(Taa') (M) = (aa'Y (T*M) = (T*M)a"(T*M) = (Ta) (M) - (Ta'Y (M).
Since B is semisimple, Taa' = Ta - Ta', and we need only verify Ta* =
(Ta)*. But since M and T*M are * preserving for M in MM,, (Ta*) (M) =
aX(T*M) = (T*M) = (Tay (M) = (Ta)* (M), so Ta* = (Ta)* also fol-
lows from the semisimplicity of B.

The proof of Theorem 6.2 now follows quite simply, for, as is well
known, the positive (extendable) functionals on L(G) form the polar
cone of P(G). Thus the adjoint of T satisfies the requirements of 6.3
when A = L(G), B = L(H), and T is an algebra isomorphism.
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